WO2004098774A1 - Traitement hors site de catalyseurs d’hydrogenation - Google Patents

Traitement hors site de catalyseurs d’hydrogenation Download PDF

Info

Publication number
WO2004098774A1
WO2004098774A1 PCT/FR2004/001047 FR2004001047W WO2004098774A1 WO 2004098774 A1 WO2004098774 A1 WO 2004098774A1 FR 2004001047 W FR2004001047 W FR 2004001047W WO 2004098774 A1 WO2004098774 A1 WO 2004098774A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
steps
sulfur
hydrogen
carried out
Prior art date
Application number
PCT/FR2004/001047
Other languages
English (en)
Inventor
Pierre Dufresne
Franck Lebruyere
François LOCATELLI
Original Assignee
Eurecat S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurecat S.A. filed Critical Eurecat S.A.
Priority to US10/554,873 priority Critical patent/US7713905B2/en
Priority to JP2006505825A priority patent/JP4958545B2/ja
Priority to EP04742613.5A priority patent/EP1622720B1/fr
Priority to CA2523698A priority patent/CA2523698C/fr
Publication of WO2004098774A1 publication Critical patent/WO2004098774A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/705Passivation

Definitions

  • the appropriate catalysts are marketed and loaded into the reactors in the form of oxides while their activated and stable form is the metallic form.
  • the activity of the catalyst is selected, in situ, by introduction of a determined quantity of sulfur, generally 0.1 to 1.2% by weight of sulfur relative to the weight of catalyst.
  • the operation is carried out using a sulfur compound such as carbon sulphide, mercaptans, hydrogen sulphide, thiophenic compounds, sulphides and disulphides, for example dimethyl sulphide DMS or dimethyldisulphide DMDS.
  • a sulfur compound such as carbon sulphide, mercaptans, hydrogen sulphide, thiophenic compounds, sulphides and disulphides, for example dimethyl sulphide DMS or dimethyldisulphide DMDS.
  • the reduction with hydrogen (first step) is carried out at a fairly high temperature for a fairly long time (for example for the reduction of nickel oxide to metallic nickel, the operation is carried out at around 400 ° C. for 10 to 15 hours).
  • EP 466 568 B1 is described a process for the selection / pre-reduction of catalyst comprising a simultaneous step (a) of impregnation of the catalyst with a sulfur compound and (b) of pre-reduction of this catalyst using an organic reducing compound, therefore in the absence of fresh hydrogen.
  • the object of the invention makes it possible to improve the techniques of the prior art and to work under simplified conditions which are less restrictive for the operator of the industrial unit.
  • This manipulation is carried out “ex situ”, that is to say outside the reactor, which allows the operator (ie the refiner) not to have to perform it himself. - even but to have it done outside by a specialist in treatments, preconditioning or regeneration of catalysts. Then, at the end of a passivation process of a catalyst, the user of the catalyst, that is to say the operator or the refiner, will have the catalyst thus pretreated in his or her reactors and c '' is then in this or these reactors, that is to say “in situ” that it may possibly proceed to a deactivation with hydrogen with the advantage of not having to then heat its catalyst to high temperatures and for the long periods which are required when the said pre-treatment is not carried out.
  • a nickel catalyst reduced according to the techniques of the prior art must be treated in the presence of hydrogen at 400 ° C for 14 hours, or even 300 ° C and for 3 hours in the case of '' a conventional organic pre-reduction while at the end of the process according to the present invention, the operator could, for example, be content to reactivate with hydrogen his nickel catalyst at 150 ° C and for only 3 hours .
  • the method according to the invention relates to a method of "ex situ" treatment of a catalyst which needs to be reduced before use, this catalyst containing at least one metal from group VIII of the periodic table of elements and free of metals from group VI, deposited on a support, consisting of performing three steps (a) (b) (c)
  • catalysts based on at least one metal from group VIII of the periodic table of the elements will be treated (this metal preferably being nickel and more particularly in the form of nickel oxide) deposited on a support.
  • suitable, in particular alumina in particular when this catalyst needs to be reduced before use or re-use.
  • These catalysts are substantially free of Group VI metals.
  • These catalysts are used in particular in the hydrogenations of aromatic hydrocarbons and the hydrogenations of olefinic hydrocarbons.
  • the supports on which the metal or metals used are deposited can therefore be amorphous (alumina, etc.) or crystalline (zeolites, etc.) supports.
  • Alumina is the preferred carrier.
  • the invention thus relates to a method of "ex situ" treatment of a catalyst before use or reuse of this catalyst, characterized in that it consists in carrying out three steps (a), (b), (c) carried out indifferently in one order or another on this catalyst, which contains at least one metal from group VIII of the periodic table, and being substantially free of a metal of the group VI, (the catalyst preferably containing nickel, in particular in the form of a nickel oxide) deposited on a support, these three stages being the following:
  • step (a) bringing the catalyst into contact with at least one sulfur-containing compound or agent (so-called selection step).
  • selection step it is possible to operate in the presence of at least one solvent, that is to say in aqueous or organic solution, or in suspension in the aqueous or organic solution.
  • the catalyst therefore preferably consists essentially of nickel oxide deposited on an alumina.
  • Steps (a) and (b) are carried out for example in order (a) and (b) or in order (b) and (a). They can also be performed simultaneously.
  • the operation is carried out by mixing the catalytic mass and at least one solvent and at least one sulfur or sulfur-containing agent.
  • This agent or this sulfurized or sulfur-containing compound is chosen from the group consisting of diethanoldisulphide (D.E.O.D.S.), DMDS (dimethyl disulphide), polysulphides and elemental sulfur.
  • the sulfurization rate of the metal is preferably between 10 and 30%.
  • 0.05 to 10% and more particularly 0.2 to 2% of sulfur, expressed by weight of sulfur relative to the mass of the catalyst, are preferably incorporated into the catalyst.
  • the reduction rate of the catalyst is preferably at least 40%.
  • the invention is carried out more particularly in the following manner: o
  • the process is carried out "off site" (ex-situ) by impregnating the catalyst with at least one sulfur-containing compound in the presence of at least one solvent, that is to say whether operating in aqueous solution or in organic solution or in suspension in aqueous or organic solution, between 0 and 50 ° C, preferably between 10 and 40 ° C, more particularly at room temperature except when step (a ) is driving
  • step (b) This impregnation is generally carried out by stirring the catalytic mass with at least one solvent and at least one sulfur or sulfur-containing agent. This mixing is carried out by any suitable means. As an example, a rotary impregnator can be used where the solid is gradually brought into contact with the solution injected by nozzles. o
  • the sulfur or sulfurized agent used in step (a) can be diethanol disulfide or 2,2, dithiobis ethanol of formula HO-C2H4-S-S-C2H4-OH
  • DMDS dimethyl disulfide
  • Polysulfides such as ditertiododecylpolysulfide (TPS 32 from ATOFINA) or ditertiononylpolysulfide (TPS 37 from ATOFINA), preferably in solution in a solvent, can be used.
  • organic solvent of a white spirit as defined in US Pat. No. 4,530,917, or possibly also any other suitable solvent such as an alcohol or polyalcohol, glycol or polyglycol, or even an aliphatic or aromatic solvent.
  • a moving bed oven is preferably used.
  • a rotary oven of the lover oven type described in patent US Pat. 4,551,437 of the applicant or of the Louisville oven type (described in patent: FR-2,649,623 of the applicant) can be used.
  • the catalyst is generally reduced under hydrogen, for example in a rotary oven, between 250 and 600 ° C., generally between 350 and 500 ° C., and more particularly around 450 ° C. for 2 to 4 hours.
  • the catalyst is preferably passive to allow handling in air.
  • an oxidative passivation of the catalyst is advantageously carried out.
  • This oxidative passivation is carried out by partial and surface oxidation of the reduced metal atoms of the catalyst and preferably in a moving bed, for example in a moving bed or in a rotary oven.
  • This oxidation is carried out by bringing the catalytic bed into contact with a partial pressure of oxygen in an inert gas, for example nitrogen.
  • This partial pressure can initially be between 1 and 20% oxygen (or 0.001 or 0.02 Mpa) and preferably 5% O2.
  • This partial pressure is gradually increased until the nominal value of oxygen in the air is reached.
  • This passivation takes place between 0 and 150 ° C and preferably between 20 and 120 ° C.
  • the passive catalyst can be vented.
  • An alternative to the oxidative passivation is to immerse the catalyst in a heavy inert liquid such as for example a hexadecane or a paraffinic oil free of impurities.
  • a heavy inert liquid such as for example a hexadecane or a paraffinic oil free of impurities.
  • the latter may then "in situ", that is to say in the reaction zone where the catalyst will be used subsequently, possibly carry out reactivation with hydrogen of the catalyst, for example for a catalyst with nickel oxide base, between 100 and 250 ° C for 2 to 4 hours and preferably between 150 and 200 ° C for 2 to 3 hours.
  • the process can be applied to the treatment of a catalyst based on at least one oxide of an active metal (deposited on an amorphous or crystalline matrix), the selectivity of which is sought to be modified by poisoning at least a portion of its active sites, for example with a sulfur-containing agent, a process in which a substantial part of said metal oxide is transformed ex situ into a metallic element and or potentially a part and reduced re-oxidation of part of the reduced metal to make the catalyst manipulated under air. process at the end of which the reactivation of the catalyst is carried out in situ in the presence of hydrogen at a temperature and for a period of time much lower than the temperature and the period of time which would have been necessary if the mufti-stage process according to the invention had not been carried out.
  • a commercial catalyst of the Ni / Alumina type containing 24% by weight of NiO is impregnated with white spirit as described above until filling 70% of the pore volume (ie 0.7 ml per gram of catalyst).
  • the impregnated catalyst is left for one hour in a cold rotary flask and then 2 hours at 150 ° C. so as to evaporate the hydrocarbons.
  • the dried catalyst is then treated in a crossed bed at 450 ° C. in a vertical oven with pure hydrogen for 4 hours in order to reduce the unsulfurized nickel and to eliminate the hydrocarbons.
  • a commercial catalyst of the Ni / Alumina type containing 24% by weight of NiO is sulfurized, generally at ordinary temperature, with sulfur contents corresponding to 22% of the theoretical stoichiometric value of the sulfur Ni 3 S 2 .
  • This catalyst is impregnated with a ditertiononyl polysulfide solution dissolved in white spirit.
  • a ditertiononyl polysulfide solution dissolved in white spirit.
  • TPS 37 mixed with 56 g of white spirit as described above.
  • Catalyst B is obtained. It has only undergone one step of impregnating the sulfur compound called step (a).
  • the impregnated catalyst B is left for one hour in a cold rotary flask and then 2 hours at 150 ° C. so as to evaporate the hydrocarbons and fix the sulfur of the organic polysulfide.
  • the system is cooled and purged for 4 hours under nitrogen and flushed with a mixture of 1% oxygen in nitrogen for 2 hours,
  • Catalyst C which has undergone steps (a) of sulfurization and (c) of passivation.
  • Example 3 According to the invention: here successive realization of steps (a), (b) and
  • step (a) is activated under hydrogen in a tubular rotary oven under the following conditions: Temperature 450 ° C - Time 6h - Gas 100% Hydrogen - Normal pressure
  • the system is cooled and purged for 4 hours under nitrogen and flushed with a mixture of 1% oxygen in nitrogen for 2 hours, then at 5%.
  • Catalyst D is obtained, which has successively undergone steps (a) of sulfurization, (b) of reduction and (c) of passivation.
  • Example 4 According to the invention: here successive realization of steps (a), (b) and o
  • Catalyst B having therefore undergone step (a) is activated under hydrogen in a tubular rotary furnace under the following conditions: Temperature 450 ° C - Time 6h - Gas 100% Hydrogen - Normal pressure At the end of the activation period, the system is cooled and purged for 4 hours under nitrogen. At this stage, the catalyst having undergone stages (a) of sulfurization and (b) of reduction is brought into contact with a heavy hydrocarbon of the white oil type (Marcol 82 from Exxon Mobil) so as to fill the entire pore volume. of said catalyst. The amount of oil used is 58 g per 100 g of catalyst. Catalyst E is obtained, which has successively undergone steps (a) of sulfurization, (b) of reduction and (c ') of passivation.
  • a heavy hydrocarbon of the white oil type Marcol 82 from Exxon Mobil
  • Example 5 according to the invention: here successive completion of steps (b). (c) and (a)
  • Example 2 The same commercial catalyst as Example 2 is reduced under hydrogen in a tubular rotary oven under the following conditions: Temperature 450 ° C - Time 6h - Gas 100% Hydrogen - Normal pressure. It is then passive by being cooled and purged for 4 hours under nitrogen and swept by a mixture of 1% oxygen in nitrogen for 2 hours, then 5% oxygen for 2 hours and then in air for one hour. . The passive reduced catalyst is then treated with 6 g of TPS37 and 56 g of white spirit per 250 g of catalyst as described in Example 3. The impregnated catalyst is left for one hour in a cold rotary flask then 2 h at 150 ° C. so as to evaporate the hydrocarbons and fix the sulfur of the organic polysulfide. Catalyst F is obtained having successively undergone steps (b) of reduction, (c) of passivation and (a) of sulfurization.
  • Example 6 According to the invention: here successive completion of steps (b), (a) and
  • Example 2 The same commercial catalyst as Example 2 is reduced under hydrogen in a tubular rotary oven under the following conditions: Temperature 450 ° C, time 6h, gas 100% Hydrogen, Normal pressure.
  • the catalyst based on metallic nickel is purged and cooled under nitrogen for 4 hours.
  • DMDS is nebulized on the catalyst.
  • the mass flow rate of DMDS (0.6 g / h per 100 g of catalyst) is determined so that during the 4 hours of purging / cooling of the catalyst, the amount of sulfur introduced is 1.5 g per 100 g of reduced catalyst.
  • the reduced and sulfurized catalyst is then passive with a mixture of nitrogen and air at 1% oxygen in nitrogen for 2 hours, then at 5% oxygen for 2 hours then air for an hour.
  • Catalyst G is obtained having successively undergone steps (b) of reduction, (a) of sulfurization and (c) of passivation.
  • Example 7 According to the invention: here simultaneous realization of steps (a - b) then
  • Example 2 The same commercial catalyst as Example 2 is reduced under hydrogen in a tubular rotary oven. At the same time as the introduction of hydrogen, TPS37 is sprayed into the oven by a metering pump.
  • the treatment conditions are as follows: temperature 450 ° C, time 6h, 100% hydrogen gas, normal pressure.
  • the flow rate of TPS37 is 40.5 g / h for 1 kg / h of catalyst.
  • the catalyst based on metallic nickel is purged and cooled under nitrogen for 4 hours.
  • the reduced and sulfurized catalyst is then passive by a mixture of nitrogen and air with 1% oxygen in nitrogen for 2 hours, then with 5% oxygen for 2 hours then with air for one hour. .
  • Catalyst H is obtained having simultaneously undergone steps (a) of sulfurization and
  • Example 8 (against example): successive completion of steps (a), (b) with step (c) not in conformity
  • Catalyst B having therefore undergone step (a) of sulfurization is activated under hydrogen as in Example 3.
  • the product is poured into heptane under inert without passivation step.
  • the non-passive catalyst I is obtained, stored under heptane.
  • the product will be tested like the other catalysts. We will see that here the organic liquid used (heptane) is not heavy enough, unlike Example 4 where (c ') is conducted in the presence of a heavy hydrocarbon.
  • Sulfurized catalysts reduced, passive or not, are characterized by:
  • a sulfur analysis (as is and after leaching with toluene), a magnetic measurement of the reduction rate Ni 0 and a weight balance on Nickel to know the reduction rates (number of metallic nickel atoms divided by the total number nickel atom), sulfurization rate (number of nickel atoms bound to sulfur assuming stoichiometry of Ni 3 S 2 type divided by the total number of nickel atoms) and the passivation rate (Number of nickel atom in NiO form divided by the total number of nickel atoms).
  • T. CC 180> 200 190> 200 25 185 190 25
  • Catalyst A is not selective and converts toluene too much because the excessively reactive nickel atoms have not been passive with sulfur.
  • Catalyst C is not active in the hydrogenation of diolefins because the metallic Ni phase is not present.
  • Catalysts D, F, G and H are active and selective.
  • D subject to steps (a), (b) and (c)
  • F subject to steps (b) (c) and (a)
  • G subject to steps (b) (a) and (c)
  • H subject to steps (ab) and (c).
  • Catalyst E is active and selective.
  • E subject to steps (a), (b) and (c ').
  • Step (c ') is the passivation step with a white oil.
  • Catalyst I provides satisfactory results in terms of activity and selectivity. But unlike catalyst E, catalyst I is highly self-heating. If it can, on a small laboratory scale, be handled with air with care, on the other hand there are safety problems on an industrial scale, with a light solvent like heptane impregnated in the porosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention concerne un procéde de traitement 'ex situ' d'un catalyseur d'hydrogénation contenant du nickel avant emploi, consistant à effectuer trois étapes, à savoir la mise en contact du catalyseur par au moins un composé ou agent soufre (étape dite de sélectivation), le traitement de ce catalyseur par de I'hydrogène à une température supérieure à 250°C (étape dite de réduction), et une passivation de ce catalyseur.

Description

TRAITEMENT HORS SITE DE CATALYSEURS D'HYDROGENATION OBJET DE L'INVENTION
Description Dans le domaine du raffinage et de la pétrochimie, et notamment, à titre d'exemple, dans les réactions de reformage catalytique ou d'hydrogénations sélectives des essences, il convient parfois d'atténuer l'activité des catalyseurs pour une réaction particulière pour favoriser la promotion de la réaction recherchée. Ainsi on citera le cas des catalyseurs au nickel dans l'application d'hydrogénation sélective des dioléfines d'essence de pyrolyse ou dans l'application des hydrogénations d'hydrocarbures aromatiques. Ces catalyseurs sont réactifs à un point tel qu'ils peuvent provoquer des emballements lors des démarrages de catalyseurs neufs, ou régénérés, avec même des incidents de démarrage, voire la destruction du réacteur. Il est nécessaire donc de procéder à des traitements de passivation permettant d'éviter ces emballements (run away). Ces traitements consistent généralement à empoisonner irréversiblement par du soufre les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf ou régénéré.
Ainsi en ce qui concerne plus particulièrement le raffinage et les catalyseurs d'hydrogénation à base de nickel, de fer ou de cobalt, les catalyseurs adéquats sont commercialisés et chargés dans les réacteurs sous forme d'oxydes alors que leur forme activée et stable est la forme métallique. Dans l'art antérieur, on commence donc, dans une première étape, par réduire à l'hydrogène dans le réacteur ("in situ") les oxydes à l'état métallique puis pour parer aux inconvénients indiqués ci-dessus, dans une deuxième étape, on sélective l'activité du catalyseur, in situ, par introduction d'une quantité déterminée de soufre, généralement 0,1 à 1 ,2 % en poids de soufre par rapport au poids de catalyseur. Généralement on opère à l'aide d'un composé sulfuré tel que le sulfure de carbone, les mercaptans, l'hydrogène sulfuré, les composés thiophéniques, les sulfures et les disulfures, par exemple le diméthylsulfure DMS ou le diméthyldisulfure DMDS. Dans ces procédés de l'art antérieur, la réduction à l'hydrogène (première étape) est effectuée à température assez haute pendant assez longtemps (par exemple pour la réduction de l'oxyde de nickel en nickel métallique, on opère vers 400 °C pendant 10 à 15 heures). Dans EP 466 568 B1 est décrit un procédé de sélectivation/pré-réduction de catalyseur comprenant une étape simultanée (a) d'imprégnation du catalyseur par un composé soufré et (b) de pré-réduction de ce catalyseur à l'aide d'un composé réducteur organique, donc en l'absence d'hydrogène frais.
L'objet de l'invention permet d'améliorer les techniques de l'art antérieur et de travailler dans des conditions simplifiées et moins contraignantes pour l'opérateur de l'unité industrielle.
Selon l'invention décrite ci-après, on effectue simultanément ou successivement dans un ordre variable (a) l'imprégnation du catalyseur par au moins un composé ou agent soufré et (b) la réduction de ce catalyseur par de l'hydrogène à chaud (c'est à dire à une température supérieure à la température ambiante et de préférence supérieure à 250°C) et (c) soit une passivation, de préférence oxydante, de ce catalyseur, soit une mise en contact de ce catalyseur avec un liquide organique lourd. On aurait pu concevoir de réaliser la mise en contact de ce deuxième choix, s'il est substitué à une passivation (dite premier choix) soit en stockant le catalyseur, préalablement sélective et réduit, sous atmosphère gazeuse inerte (N2 par exemple), soit en stockant le catalyseur sous liquide organique inerte et lourd (comme par exemple une huile blanche, un gas oil ou un hexadécane ou tout produit équivalent. Mais cette possibilité de mise en contact du catalyseur ne s'avère pas recommandable industriellement quand de grandes quantités de catalyseur sont utilisées sauf si l'on utilise un liquide organique inerte lourd comme un hexadécane ou un hydrocarbure plus lourd comme par exemple une huile blanche, un gas oil ou ou tout produit équivalent.
Cette manipulation, conforme à la présente invention, est réalisée "ex situ" c'est-à- dire hors du réacteur ce qui permet à l'opérateur (c'est à dire au raffineur) de ne pas avoir à l'effectuer lui-même mais de la faire faire à l'extérieur par un spécialiste des traitements, des préconditionnements ou des régénérations de catalyseurs. Ensuite, à l'issue d'un procédé de passivation d'un catalyseur, l'utilisateur du catalyseur, c'est-à-dire l'opérateur ou le raffineur, disposera le catalyseur ainsi prétraité dans son ou dans ses réacteurs et c'est ensuite dans ce ou ces réacteurs, c'est- à-dire "in situ" qu'il pourra procéder éventuellement à une dépassivation à l'hydrogène avec l'avantage de ne pas avoir alors à chauffer son catalyseur aux hautes températures et pendant les longues périodes qui sont exigées lorsque l'on n'effectue pas ledit pré-traitement. Ainsi, à titre d'exemple, un catalyseur au nickel réduit selon les techniques de l'art antérieur doit être traité en présence d'hydrogène à 400° C pendant 14 heures, ou encore 300° C et pendant 3 heures dans le cas d'une pré-réduction organique conventionnelle alors qu'à l'issue du procédé selon la présente invention, l'opérateur pourra, par exemple, se contenter de réactiver à l'hydrogène son catalyseur au nickel à 150° C et pendant 3 heures seulement.
Le procédé selon l'invention concerne un procédé de traitement "ex situ" d'un catalyseur ayant besoin d'être réduit avant emploi, ce catalyseur contenant au moins un métal du groupe VIII de la classification périodique des éléments et exempt de métaux du groupe VI, déposé sur un support, consistant à effectuer trois étapes (a) (b) (c)
(a) Une mise en contact du catalyseur avec au moins un composé ou agent soufré (étape dite de sélectivation).
(b) Un traitement de ce catalyseur par de l'hydrogène à une température supérieure à la température ambiante (étape dite de réduction).
(c) Une passivation de ce catalyseur réalisé par mise en contact avec un liquide organique inerte lourd ou par traitement oxydant réalisée avant, pendant ou après les étapes (a) et (b).
Selon l'invention, on traitera des catalyseurs à base d'au moins un métal du groupe VIII de la classification périodique des éléments, (ce métal étant de préférence le nickel et plus particulièrement sous forme d'oxyde de nickel) déposé sur un support approprié, notamment l'alumine, en particulier lorsque ce catalyseur a besoin d'être réduit avant emploi ou réemploi. Ces catalyseurs sont sensiblement exempts des métaux du groupe VI. Ces catalyseurs sont notamment utilisés dans les hydrogénations des hydrocarbures aromatiques et les hydrogénations des hydrocarbures oléfiniques. Les supports sur lesquels sont déposés le ou les métaux utilisés peuvent donc être des supports amorphes (alumine, etc.) ou cristallins (zéolithes, etc.). L'alumine est le support préféré.
L'invention concerne ainsi un procédé de traitement "ex situ" d'un catalyseur avant emploi ou réemploi de ce catalyseur, caractérisé en ce qu'il consiste à effectuer trois étapes (a) , (b) , (c) effectuées indifféremment dans un ordre ou dans un autre sur ce catalyseur, lequel contient au moins un métal du groupe VIII de la classification périodique des éléments, et étant sensiblement exempt d'un métal du groupe VI, (le catalyseur contenant de préférence du nickel, notamment sous forme d'un oxyde de nickel) déposé sur un support, ces trois étapes étant les suivantes :
(a) Une mise en contact du catalyseur avec au moins un composé ou agent soufré (étape dite de sélectivation). Dans cette étape, on peut opérer en présence d'au moins un solvant c'est à dire en solution aqueuse ou organique, ou en suspension dans la solution aqueuse ou organique.
(b) Un traitement de ce catalyseur par de l'hydrogène à une température supérieure à la température ambiante et de préférence à 250°C (étape dite de réduction).
(c) une passivation de ce catalyseur, soit de préférence oxydante, soit par une mise en contact avec un liquide organique lourd.
Le catalyseur est donc de préférence essentiellement constitué d'oxyde de nickel déposé sur une alumine. Les étapes (a) et (b) sont effectuées par exemple dans l'ordre (a) et (b) ou dans l'ordre (b) et (a). Elles peuvent également être effectuées simultanément. De préférence, au cours de l'étape (a) on opère par mélange de la masse catalytique et d'au moins un solvant et d'au moins un agent soufré ou sulfuré. Cet agent ou ce composé sulfuré ou soufré est choisi dans le groupe constitué par le diéthanoldisulfure (D.E.O.D.S.), le DMDS (diméthyl disulfure), les polysulfures et le soufre élémentaire.
Comme indiqué plus haut, notre procédé s'applique au traitement des catalyseurs d'hydrogénation des hydrocarbures aromatiques et des hydrocarbures oléfiniques. Ajoutons qu'au cours de l'étape (a), le taux de sulfuration du métal est compris de préférence entre 10 et 30%. Au cours de cette sulfuration, on incorpore de préférence dans le catalyseur de 0,05 à 10% et plus particulièrement de 0,2 à 2% de soufre exprimé en poids de soufre par rapport à la masse du catalyseur. Au cours de l'étape (b), le taux de réduction du catalyseur est de préférence d'au moins 40%.
Il a déjà été proposé dans l'art antérieur des méthodes de traitement d'un catalyseur comportant une sulfuration, une réduction et une passivation de catalyseur. On citera la demande de brevet européen de la demanderesse EP-A-707890 et la demande de brevet européen EP-A-904839. Mais la demande EP-A-707890 concerne essentiellement un traitement de catalyseurs d'hydrotraitement de coupes pétrolières, le catalyseur étant donc d'un type différent de celui que nous utilisons ici
5 qui est un catalyseur à base d'oxyde de nickel. Et dans la demande EP-A-904839, relative à une passivation précédée d'une sulfuration, la sulfuration est effectuée par mise en contact du catalyseur avec un composé sulfuré en présence d'hydrogène et non en solution ou en suspension dans une solution aqueuse ou organique. L'invention est réalisée plus particulièrement de la façon suivante : o On procède "hors site" (ex-situ) à l'imprégnation du catalyseur par au moins un composé soufré en présence d'au moins un solvant, c'est à dire que l'on opère en solution aqueuse ou en solution organique ou en suspension dans la solution aqueuse ou organique, entre 0 et 50° C, de préférence entre 10 et 40° C, plus particulièrement à température ambiante sauf quand l'étape (a) est conduite
5 simultanément avec l'étape (b). Cette imprégnation est généralement réalisée par brassage de la masse catalytique avec au moins un solvant et au moins un agent soufré ou sulfuré. Ce brassage est effectué par tout moyen adéquat. A titre d'exemple on peut utiliser un imprégnateur rotatif où le solide est progressivement mis en contact avec la solution injectée par des buses. o
A titre d'exemple, l'agent soufré ou sulfuré utilisé dans l'étape (a) peut être le diéthanol disulfure ou 2,2, dithiobis éthanol de formule HO-C2H4-S-S-C2H4-OH
(appelé souvent D.E.O.D.S.) ou le DMDS (diméthyl disulfure). Ces disulfures peuvent être utilisés éventuellement en mélange avec du soufre élémentaire, notamment en
5 poudre. Les polysulfures comme par exemple le ditertiododecylpolysulfure (TPS 32 d'ATOFINA) ou le ditertiononylpolysulfure (TPS 37 d'ATOFINA), de préférence en solution dans un solvant, peuvent être utilisés.
Lorsque l'on n'opère pas en solution ou en suspension aqueuse mais en solution ou o suspension organique, on utilisera à titre de solvant organique de préférence un white spirit tel que défini dans US-4,530,917 de la demanderesse, ou éventuellement également tout autre solvant adéquat tel qu'un alcool ou polyalcool, glycol ou polyglycol, voire un solvant aliphatique ou aromatique. A l'issue de l'étape (a), il peut être avantageux d'éliminer au moins la majeure partie du solvant utilisé : ainsi lorsque l'imprégnation décrite ci-dessus est terminée, on peut procéder alors à un traitement thermique de la masse catalytique entre 100 et 200°C, généralement entre 130 et 170°C, et plus particulièrement autour de 150°C, pendant 30 minutes à 3 heures, de préférence pendant environ 1 à 2 heures pour éliminer la majeure partie du solvant. On utilisera de préférence un four à lit mobile. A titre d'exemple on peut utiliser un four rotatif du genre four à louvres décrit dans le brevet US-4,551 ,437 de la demanderesse ou du genre four Louisville (décrit dans le brevet: FR-2649623 de la demanderesse). Pour effectuer la réduction du catalyseur (étape (b) ), le catalyseur est généralement réduit sous hydrogène, par exemple en four tournant, entre 250 et 600°C, généralement entre 350 et 500°C, et plus particulièrement autour de 450°C pendant 2 à 4heures.
Au cours de l'étape (c), le catalyseur est de préférence passive pour permettre une manipulation sous air. Dans cette étape (c), on procède avantageusement à une passivation oxydante du catalyseur. Cette passivation oxydante s'effectue par oxydation partielle et superficielle des atomes de métal réduit du catalyseur et de préférence en lit en mouvement, par exemple en lit mobile ou dans un four rotatif. Cette oxydation s'effectue par une mise en contact du lit catalytique par une pression partielle d'oxygène dans un gaz inerte, par exemple l'azote. Cette pression partielle peut être initialement comprise entre 1 et 20% d'oxygène (ou 0.001 ou 0.02 Mpa) et préférentiellement de 5% d'O2. Cette pression partielle est progressivement augmentée jusqu'à atteindre la valeur nominale de l'oxygène dans l'air. Cette passivation s'effectue entre 0 et 150°C et préférentiellement entre 20 et 120°C. Le catalyseur passive peut être mis à l'air libre.
Une alternative à la passivation oxydante est de plonger le catalyseur dans un liquide inerte lourd comme par exemple un hexadécane ou une huile paraffinique exempte d'impuretés. Cette technique permet aux sites actifs constitués de nickel métallique de ne pas réagir trop rapidement avec l'oxygène de l'air. Cependant, on verra dans les exemples que cette technique ne s'avère judicieuse à l'échelle industrielle pour manipuler des quantités importantes de catalyseur que si ce liquide inerte est suffisamment lourd. Lorsque le catalyseur soumis aux trois étapes (a), (b) et (c) (ce catalyseur dont l'activité initiale a été sélectivée par empoisonnement des sites les plus actifs) est prêt à être livré à l'utilisateur (l'opérateur ou le raffineur), celui ci pourra alors "in situ », c'est à dire dans la zone de réaction où le catalyseur sera utilisé ultérieurement, procéder éventuellement, à la réactivation à l'hydrogène du catalyseur, par exemple pour un catalyseur à base d'oxyde de nickel, entre 100 et 250°C pendant 2 à 4 heures et de préférence entre 150 et 200°C pendant 2 à 3 heures.
Le procédé peut s'appliquer au traitement d'un catalyseur à base d'au moins un oxyde d'un métal actif (déposé sur une matrice amorphe ou cristalline) dont on cherche à modifier la sélectivité par empoisonnement d'une partie au moins de ses sites actifs par exemple par un agent contenant du soufre, procédé au cours duquel on transforme ex situ une partie substantielle dudit oxyde de métal en élément métallique et ou potentiellement on ré oxyde partiellement et superficiellement une partie du métal réduit pour rendre le catalyseur manipulable sous air. procédé à l'issue duquel on réalise in situ la réactivation du catalyseur en présence d'hydrogène à une température et pendant une durée de temps bien inférieure à la température et à la durée de temps qui eussent été nécessaires si le procédé mufti- étapes selon l'invention n'avait pas été effectué.
Exemple 1. (contre exemple) : Absence de soufre
Un catalyseur commercial de type Ni/Alumine contenant 24%poids de NiO est imprégné de white spirit tel que décrit précédemment jusqu'à remplir 70% du volume poreux (soit 0.7ml par gramme de catalyseur). Le catalyseur imprégné est laissé une heure dans un ballon rotatif à froid puis 2h à 150°C de façon à évaporer les hydrocarbures. Le catalyseur séché est ensuite traité en lit traversé à 450°C dans un four vertical par de l'hydrogène pur pendant 4h afin de réduire le nickel non sulfuré et d'éliminer les hydrocarbures. A la fin de la période d'activation, et toujours dans le ballon rotatif, le système est refroidi et purgé 4 heures sous azote et balayé, généralement à température ordinaire, par un mélange à 1% d'oxygène dans l'azote pendant 2 heures, puis à 5% d'oxygène pendant 2 heures puis à l'air pendant une heure. On obtient le catalyseur A. Exemple 2. (contre exemple) : Absence de la phase de réduction
Un catalyseur commercial de type Ni/Alumine contenant 24%poids de NiO est sulfuré, généralement à température ordinaire, avec des teneurs en soufre correspondant à 22% de la valeur théorique stœchiométrique du sulfure Ni3S2. Une
5 stœchiométrie de 100% correspond à 6.81% poids de soufre exprimé sur valeur sèche corrigée de la perte au feu.
Ce catalyseur est imprégné d'une solution de ditertiononyl polysulfure dissous dans du white spirit. A 250g de catalyseur on ajoute 6g de TPS 37 en mélange avec 56g de white spirit tel que décrit précédemment. On obtient le catalyseur B. Il n'a subi o qu'une étape d'imprégnation de composé sulfuré dite étape (a).
Le catalyseur imprégné B est laissé une heure dans un ballon rotatif à froid puis 2h à 150°C de façon à évaporer les hydrocarbures et fixer le soufre du polysulfure organique. A la fin de la période de séchage le système est refroidi et purgé 4 heures sous azote et balayé par un mélange à 1% d'oxygène dans l'azote pendant 2 heures,
5 puis à 5% d'oxygène pendant 2 heures puis à l'air pendant une heure. On obtient le catalyseur C qui a subi les étapes (a) de sulfuration et (c) de passivation
Exemple 3. : Selon l'invention : ici réalisation successive des étapes (a), (b) et
(ç) o Le catalyseur B ayant donc subi l'étape (a) est activé sous hydrogène dans un four rotatif tubulaire dans les conditions suivantes : Température 450°C - Temps 6h - Gaz 100% Hydrogène - Pression normale
A la fin de la période d'activation le système est refroidi et purgé 4 heures sous azote et balayé par un mélange à 1 % d'oxygène dans l'azote pendant 2 heures, puis à 5%
5 d'oxygène pendant 2 heures puis à l'air pendant une heure. On obtient le catalyseur D qui a subi successivement les étapes (a) de sulfuration, (b) de réduction et (c) de passivation.
Exemple 4. : Selon l'invention : ici réalisation successive des étapes (a), (b) et o
Le catalyseur B ayant donc subi l'étape (a) est activé sous hydrogène dans un four rotatif tubulaire dans les conditions suivantes : Température 450°C - Temps 6h - Gaz 100% Hydrogène - Pression normale A la fin de la période d'activation le système est refroidi et purgé 4 heures sous azote. A cette étape, le catalyseur ayant subi les étapes (a) de sulfuration et (b) de réduction est mise en contact avec un hydrocarbure lourd du type huile blanche (Marcol 82 d'Exxon Mobil) de façon à remplir la totalité du volume poreux dudit catalyseur. La quantité d'huile mise en œuvre est de 58 g pour 100g de catalyseur. On obtient le catalyseur E qui a subi successivement les étapes (a) de sulfuration, (b) de réduction et (c') de passivation.
Exemple 5. : selon l'invention : ici réalisation successive des étapes (b). (c) et (a)
Le même catalyseur commercial que l'exemple 2 est réduit sous hydrogène dans un four rotatif tubulaire dans les conditions suivantes : : Température 450°C - Temps 6h - Gaz 100% Hydrogène - Pression normale. Il est ensuite passive en étant refroidi et purgé 4 heures sous azote et balayé par un mélange à 1% d'oxygène dans l'azote pendant 2 heures, puis à 5% d'oxygène pendant 2 heures puis à l'air pendant une heure. Le catalyseur réduit passive est traité alors avec 6g de TPS37 et 56 g de white spirit pour 250g de catalyseur tel que décrit dans l'exemple 3. Le catalyseur imprégné est laissé une heure dans un ballon rotatif à froid puis 2h à 150°C de façon à évaporer les hydrocarbures et fixer le soufre du polysulfure organique. On obtient le catalyseur F ayant subi successivement les étapes (b) de réduction, (c) de passivation et (a) de sulfuration.
Exemple 6. : selon l'invention : ici réalisation successive des étapes (b), (a) et
Le même catalyseur commercial que l'exemple 2 est réduit sous hydrogène dans un four rotatif tubulaire dans les conditions suivantes : Température 450°C, temps 6h, gaz 100% Hydrogène, Pression normale.
A la fin de la phase de réduction (b) sous hydrogène, le catalyseur à base de nickel métallique est purgé et refroidi sous azote pendant 4 heures. Lors de cette étape de purge / refroidissement sous azote, du DMDS est nebulisé sur le catalyseur. Le débit massique de DMDS (0.6 g/h pour 100g de catalyseur) est déterminé de sorte que durant les 4 heures de purge / refroidissement du catalyseur, la quantité de soufre introduite est de 1.5g pour 100g de catalyseur réduit. Après cette étape (a) de sulfuration, le catalyseur réduit et sulfuré est ensuite passive par un mélange d'azote et d'air à 1% d'oxygène dans l'azote pendant 2 heures, puis à 5% d'oxygène pendant 2 heures puis à l'air pendant une heure. On obtient le catalyseur G ayant subi successivement les étapes (b) de réduction, (a) de sulfuration et (c) de passivation
Exemple 7. : selon l'invention : ici réalisation simultanée des étapes (a - b) puis
Le même catalyseur commercial que l'exemple 2 est réduit sous d'hydrogène dans un four rotatif tubulaire. Simultanément à l'introduction de l'hydrogène, du TPS37 est pulvérisé dans le four par une pompe doseuse. Les conditions de traitement sont les suivantes : température 450°C, temps 6h, gaz 100% Hydrogène, pression normale.
Le débit de TPS37 est de 40.5 g/h pour 1 kg/h de catalyseur.
A la fin de l'étape simultanée de réduction sulfuration, le catalyseur à base de nickel métallique est purgé et refroidi sous azote pendant 4 heures. Le catalyseur réduit et sulfuré est ensuite passive par un mélange d'azote et d'air à 1% d'oxygène dans l'azote pendant 2 heures, puis à 5% d'oxygène pendant 2 heures puis à l'air pendant une heure.
On obtient le catalyseur H ayant subi simultanément les étapes (a) de sulfuration et
(b) de réduction et enfin (c) de passivation
Exemple 8.(contre exemple) : réalisation successive des étapes (a), (b) avec étape (c) non conforme
Le catalyseur B ayant donc subi l'étape (a) de sulfuration est activé sous hydrogène comme dans l'exemple 3. A la fin de la période d'activation, le produit est coulé dans l'heptane sous inerte sans étape de passivation. On obtient le catalyseur I non passive conservé sous heptane. Le produit sera testé comme les autres catalyseurs. On verra qu'ici le liquide organique utilisé (l'heptane) n'est pas assez lourd, contrairement à l'exemple 4 où (c') est conduite en présence d'un hydrocarbure lourd. Exemple 9. : Les tests et caractérisation
Les catalyseurs sulfurés, réduits, passives ou non sont caractérisés par :
- Une analyse de soufre (tel quel et après lixiviation au toluène), une mesure magnétique du taux de réduction Ni0 et un bilan poids sur le Nickel pour connaître les taux de réduction (nombre d'atomes de nickel métallique divisé par le nombre total d'atome de nickel), taux de sulfuration (nombre d'atomes de nickel lié à du soufre en supposant une stœchiométrie de type Ni3S2 divisé par le nombre total d'atome de nickel) et le taux de passivation (Nombre d'atome de nickel sous forme NiO divisé par le nombre total d'atome de nickel). - Une évaluation du caractère auto échauffant des catalyseurs pour quantifier l'efficacité de la passivation : Température à laquelle le catalyseur doit être porté pour que sa température intrinsèque dépasse 200°C (T,).
- Température maxi observée lorsque le catalyseur est remis à l'air après une dépassivation à 150°C sous hydrogène pendant 4h (T2). Une élévation importante de la température est caractéristique d'une dépassivation suffisante.
- Test catalytique vis à vis de 2 réactions : a) L'hydrogénation des aromatiques (par exemple conversion du toluène). On choisit une réaction modèle qui est l'hydrogénation du toluène dans les conditions suivantes : 10% poids de toluène dans l'heptane - Température : 70°C - Pression : 30bar - Vitesse volumique horaire :
2h'1 (2 litres de charge par litre de catalyseur et par heure). b) L'hydrogénation des dioléfines mesurée sur une essence de pyrolyse par la variation de la MAV (indice d'anhydride maléique caractéristique de la teneur en dioléfines) dans les conditions suivantes : Pression : 30bar - Température : 100°C - Vitesse volumique horaire :
8h"1 - MAV de la charge : 87. Les tests catalytiques sont réalisés sur des échantillons dépassivés in situ par un traitement sous hydrogène à 150°C pendant 4h.
Les résultats sont notés dans le tableau récapitulatif suivant. Exemple 1 2 3 4 5 6 7 8
Catalyseur A C D E F G H I
Nombre d'étapes8 2 2 3 3 3 3 3 2
(a) (a) (b) (b)
(b) (a) (ab) (a)
Etape et chronologie (b) (b) (c) (a) (c) (c) (c) (b) (c) (C) (a) (c)
%pds de soufre sur brut (%) 0 1.5 1.5 1.5 1.5 1.4 1.6 1.5
%pds de soufre sur lixivié (%) 0 1.5 1.5 1.5 1.5 1.4 1.4 1.5
Taux de sulfuration (%) 0 22 22 22 22 21 21 22
Taux de réduction 75 0 60 75 62 65 70 75
Taux de passivation (%) 20 NA 15 0 13 15 16 0
T. CC) 180 >200 190 >200 25 185 190 25
T2(°C) 304 25 315 25 310 307 305 310
Conversion du toluène (% pds) 16 0 0 0 0 4 2 0
MAV du produit obtenu 21 83 40 42 41 41 41 41 a hors étape de réactivation in-situ avant utilisation finale, (a) Etape de sulfuration sélective, (b) Etape de réduction à chaud sous hydrogène, (c) Etape de passivation oxydante, (c') Etape de passivation à l'huile
Le catalyseur A n'est pas sélectif et convertit trop le toluène car les atomes de nickel trop réactifs n'ont pas été passives par le soufre. Le catalyseur C n'est pas actif en hydrogénation de dioléfines car la phase Ni métallique n'est pas présente. Les catalyseurs D, F, G et H sont actifs et sélectifs. D soumis aux étapes (a), (b) et (c), F soumis aux étapes (b) (c) et (a), G soumis aux étapes (b) (a) et (c), H soumis aux étapes (ab) et (c). Le catalyseur E est actif et sélectif. E soumis aux étapes (a), (b) et (c'). L'étape (c') est l'étape de passivation par une huile blanche. Le catalyseur I fournit des résultats satisfaisant en terme d'activité et sélectivité. Mais contrairement au catalyseur E, le catalyseur I est fortement auto-échauffant. S'il peut, à une petite échelle laboratoire, être manipulé à l'air avec précaution, par contre il y a des problèmes de sécurité à une échelle industrielle, avec un solvant léger comme l'heptane imprégné dans la porosité.

Claims

Revendications
1/ Procédé de traitement "ex situ" d'un catalyseur ayant besoin d'être réduit avant emploi, ce catalyseur contenant au moins un métal du groupe VIII de la classification périodique des éléments et exempt de métaux du groupe VI, déposé sur un support, consistant à effectuer trois étapes (a) (b) (c)
(a) Une mise en contact du catalyseur avec au moins un composé ou agent soufré (étape dite de sélectivation).
(b) Un traitement de ce catalyseur par de l'hydrogène à une température supérieure à la température ambiante (étape dite de réduction).
(c) Une passivation de ce catalyseur réalisé par mise en contact avec un liquide organique inerte lourd ou par traitement oxydant réalisée avant, pendant ou après les étapes (a) et (b).
2/ Procédé selon la revendication 1 dans lequel le liquide organique inerte lourd est choisi dans le groupe constitué par une huile blanche, un gasoil, un hexadécane.
3/ Procédé selon l'une des revendications 1 à 2 dans lequel le catalyseur contient du nickel.
4/ Procédé selon l'une des revendications 1 à 3 dans lequel le catalyseur, contient du nickel déposé sur un support, et dans lequel les trois étapes sont :
(a)Une mise en contact du catalyseur avec au moins un composé ou agent soufré (étape dite de sélectivation), étape au cours de laquelle on opère en présence d'au moins un solvant. (b)Un traitement de ce catalyseur par de l'hydrogène à une température supérieure à la température ambiante (étape dite de réduction). (c)Une passivation oxydante dudit catalyseur. 5/ Procédé selon l'une des revendications 1 à 4 dans lequel le catalyseur est constitué d'oxyde de nickel déposé sur une alumine.
6/ Procédé selon l'une des revendications 1 à 5 dans lequel les étapes (a) et (b) sont effectuées dans l'ordre (a) et (b).
Il Procédé selon l'une des revendications 1 à 5 dans lequel les étapes (a) et (b) sont effectuées dans l'ordre (b) et (a).
8/ Procédé selon l'une des revendications 1 à 5 dans lequel les étapes
(a) et (b) sont effectuées simultanément.
9/ Procédé selon l'une des revendications 1 à 6 dans lequel les étapes sont dans l'ordre (a) (b) (c).
10/Procédé selon l'une des revendications 1 à 5 et 7 dans lequel les étapes sont dans l'ordre (b) (a) (c).
11/ Procédé selon l'une des revendications 1 à 5 et 7 dans lequel les étapes sont dans l'ordre (b) (c) (a).
12/ Procédé selon l'une des revendications 1 à 6 et 8 dans lequel les étapes (a) (b) sont effectuées simultanément et sont suivies de l'étape (c).
13/ Procédé selon l'une des revendications 1 à 12 dans lequel au cours de l'étape (a) on opère par brassage de la masse catalytique et d'au moins un solvant et d'au moins un agent sulfuré à une température de 0-50°C.
14/ Procédé selon l'une des revendications 1 à 13 dans lequel, à l'étape (a), dans le cas d'une solution ou suspension organique, on utilise un white spirit, un alcool, un polyalcool, un glycol ou un polyglycol . 15/ Procédé selon l'une des revendications 1 à 14 dans lequel l'étape (b) dite de réduction est effectuée sous hydrogène entre 250 et 600°C.
16/ Procédé selon l'une des revendications 1 à 15, dans lequel au cours de la dite étape (c), on procède à une passivation oxydante du catalyseur sélective et réduit, entre 0 et 150°C, de préférence dans un lit en mouvement, sous une pression partielle d'oxygène initialement comprise entre 0.001 et 0.02 MPa et étant progressivement augmentée jusqu'à atteindre la valeur nominale de l'oxygène dans l'air.
17/ Procédé selon l'une des revendications 1 ou 16 dans lequel le dit agent ou composé soufré est choisi dans le groupe constitué par le diéthanoldisulfure (D.E.O.D.S.), le DMDS, les polysulfures et le soufre élémentaire.
18/ Procédé selon l'une des revendications 1 à 17 dans lequel le taux de sulfuration du métal est compris entre 10 et 30%.
19/ Procédé selon l'une des revendications 1 à 18 dans lequel le taux de réduction du catalyseur avant passivation est d'au moins 40%.
20/ Procédé selon l'une des revendications 1 à 19 dans lequel à l'issue de l'étape (a), on élimine au moins la majeure partie du solvant utilisé pour la mise en contact du catalyseur avec le composé ou l'agent soufré ou sulfuré.
21/ Procédé selon l'une des revendications 1 à 20 dans lequel, à l'issue des étapes (a), (b) et (c), on procède « in situ », à la réactivation à l'hydrogène de ce catalyseur.
22/ Utilisation du catalyseur obtenu dans le procédé selon l'une des revendications 1 à 21 dans un procédé d'hydrogénation des hydrocarbures aromatiques ou oléfiniques.
PCT/FR2004/001047 2003-04-30 2004-04-28 Traitement hors site de catalyseurs d’hydrogenation WO2004098774A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/554,873 US7713905B2 (en) 2003-04-30 2004-04-28 Off-site treatment for hydrogenation catalysts
JP2006505825A JP4958545B2 (ja) 2003-04-30 2004-04-28 水素化触媒の現場外処理
EP04742613.5A EP1622720B1 (fr) 2003-04-30 2004-04-28 Traitement hors site de catalyseurs d'hydrogenation
CA2523698A CA2523698C (fr) 2003-04-30 2004-04-28 Traitement hors site de catalyseurs d'hydrogenation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/05470 2003-04-30
FR0305470A FR2854335B1 (fr) 2003-04-30 2003-04-30 Traitement hors site de catalyseurs d'hydrogenation

Publications (1)

Publication Number Publication Date
WO2004098774A1 true WO2004098774A1 (fr) 2004-11-18

Family

ID=33155627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001047 WO2004098774A1 (fr) 2003-04-30 2004-04-28 Traitement hors site de catalyseurs d’hydrogenation

Country Status (7)

Country Link
US (1) US7713905B2 (fr)
EP (1) EP1622720B1 (fr)
JP (1) JP4958545B2 (fr)
CN (1) CN100415377C (fr)
CA (1) CA2523698C (fr)
FR (1) FR2854335B1 (fr)
WO (1) WO2004098774A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022851A1 (fr) 2010-07-29 2012-02-23 IFP Energies Nouvelles Procede d'hydrogenation selective en presence d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un oligosaccharide cyclique
WO2013093231A1 (fr) 2011-12-21 2013-06-27 IFP Energies Nouvelles Procédé de préparation d'un catalyseur a base d'un métal du groupe viii prépare avec imprégnation au moyen d'au moins un additif organique et procède d'hydrogénation sélective mettant en oeuvre ledit catalyseur
WO2013175085A1 (fr) 2012-05-24 2013-11-28 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii et contenant du silicium et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
WO2015189193A1 (fr) 2014-06-13 2015-12-17 IFP Energies Nouvelles Catalyseur mesoporeux et macroporeux a phase active de nickel obtenu par comalaxage et ayant un diametre median macroporeux compris entre 50 et 300 nm et son utilisation en hydrogenation d'hydrocarbures
WO2016037830A1 (fr) 2014-09-11 2016-03-17 IFP Energies Nouvelles Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d'hydrocarbures
WO2018114396A1 (fr) 2016-12-22 2018-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en oeuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction acide carboxylique
DE102017130369A1 (de) 2016-12-22 2018-06-28 IFP Energies Nouvelles Verfahren zur selektiven hydrierung unter verwendung eines nickel-katalysators, hergestellt mittels eines additivs, umfassend eine amin- oder amid-funktion, oder eine aminosäure
WO2018114399A1 (fr) 2016-12-22 2018-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
WO2018114398A1 (fr) 2016-12-22 2018-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool
WO2018177709A1 (fr) 2017-03-29 2018-10-04 IFP Energies Nouvelles Catalyseur en multicouches pour l'hyrogénation sélective, sa préparation et son utilisation
WO2019011568A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par comalaxage comprenant un support specifique
WO2019011567A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2019011566A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique
WO2019011569A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2019137836A1 (fr) 2018-01-15 2019-07-18 IFP Energies Nouvelles Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
WO2020083714A1 (fr) 2018-10-25 2020-04-30 IFP Energies Nouvelles Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050148456A1 (en) * 2003-11-20 2005-07-07 Pierre Dufresne Off-site regeneration of reforming catalysts
US7407909B2 (en) * 2004-10-01 2008-08-05 Exxonmobil Research And Engineering Company Ex-situ reduction and dry passivation of noble metal catalysts
US7776129B2 (en) * 2007-04-24 2010-08-17 Chemical Vapour Metal Refining Inc. Apparatus and process for making high purity nickel
GB2449280B (en) * 2007-05-17 2012-12-19 Cvmr Corp Apparatus and process for making high purity nickel
CN102284299B (zh) * 2010-06-18 2013-03-27 中国石油化工股份有限公司 一种加氢催化剂的硫化方法及其应用
CN103805235B (zh) 2012-11-03 2015-07-22 中国石油化工股份有限公司 加氢装置的湿法开工方法、低能耗加氢工艺及加氢设备
CN104226375B (zh) * 2013-06-21 2016-06-08 中国石油天然气股份有限公司 一种镍系选择性加氢催化剂初活性水热钝化方法
WO2016061307A1 (fr) 2014-10-16 2016-04-21 Wene Douglas G Procedes de sulfuration de particules contenant du metal
CN104841493A (zh) * 2015-05-15 2015-08-19 中国石油大学(华东) 一种加氢催化剂的现场外硫化处理方法
CN107344122A (zh) * 2016-05-06 2017-11-14 南京工业大学 一种提高金属纳米粒子/多孔配位聚合物复合催化剂催化选择性的方法及其应用
CN107955643A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 一种镍系芳烃加氢催化剂的钝化处理方法
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
CN107126976B (zh) * 2017-04-25 2021-11-16 广东新华粤树脂科技有限公司 裂解碳九加氢催化剂蒸汽吹扫-氢气热气提联合再生法
KR102300823B1 (ko) * 2017-12-29 2021-09-09 한화솔루션 주식회사 수소화 반응용 촉매 및 이의 제조방법
CN110354913B (zh) * 2018-04-11 2021-09-21 中国石油化工股份有限公司 一种轻烃加氢催化剂的器内活化方法
KR102311346B1 (ko) 2018-12-31 2021-10-08 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
KR20210001781A (ko) * 2019-06-28 2021-01-06 한화솔루션 주식회사 수소화 반응용 촉매 및 이의 제조방법
KR20210001783A (ko) * 2019-06-28 2021-01-06 한화솔루션 주식회사 수소화반응용 니켈 촉매 및 그 제조방법
KR102528310B1 (ko) * 2019-06-28 2023-05-02 한화솔루션 주식회사 수소화반응용 촉매 및 이의 제조방법
CN113751081B (zh) * 2020-06-03 2024-04-02 中国石油化工股份有限公司 生产负载型催化剂的系统和加氢催化剂的生产方法
CN114073991B (zh) * 2020-08-14 2024-03-12 中国石油化工股份有限公司 一种硫化态加氢催化剂的制备方法、由该方法制备的催化剂及应用
CN112570037A (zh) * 2020-11-18 2021-03-30 中国石油天然气股份有限公司 经还原后部分硫化的体相催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466567A1 (fr) * 1990-07-13 1992-01-15 Institut Français du Pétrole Hydrogénation sélective des dioléfines dans les essences de vapocraquage sur des catalyseurs à base d'un métal supporte dans lesquels un composé organique soufré a été incorporé avant chargement dans le réacteur
EP0707890A1 (fr) * 1994-10-07 1996-04-24 Eurecat Europeenne De Retraitement De Catalyseurs Procédé de prétraitement hors site d'un catalyseur de traitement d'hydrocarbures
EP0904839A2 (fr) * 1997-09-30 1999-03-31 KataLeuna GmbH Catalysts Procédé de préparation de catalyseurs sulfurés

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139990A (en) * 1988-07-29 1992-08-18 Akzo Nv Process for the preparation of a resulfided catalyst
AU2001256258A1 (en) * 2000-04-11 2001-10-23 Akzo Nobel N.V. Two-step process for sulphiding a catalyst containing an s-containing additive
FR2845014B1 (fr) * 2002-09-27 2006-01-13 Eurecat Europ Retrait Catalys Passivation par traitement thermique oxydant de catalyseur d'hydrotraitement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466567A1 (fr) * 1990-07-13 1992-01-15 Institut Français du Pétrole Hydrogénation sélective des dioléfines dans les essences de vapocraquage sur des catalyseurs à base d'un métal supporte dans lesquels un composé organique soufré a été incorporé avant chargement dans le réacteur
EP0707890A1 (fr) * 1994-10-07 1996-04-24 Eurecat Europeenne De Retraitement De Catalyseurs Procédé de prétraitement hors site d'un catalyseur de traitement d'hydrocarbures
EP0904839A2 (fr) * 1997-09-30 1999-03-31 KataLeuna GmbH Catalysts Procédé de préparation de catalyseurs sulfurés

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOFFER B W ET AL: "Characterization of ex Situ Presulfided Ni/Al2O3 Catalysts for Pyrolysis Gasoline Hydrogenation", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 209, no. 1, 1 July 2002 (2002-07-01), pages 245 - 255, XP004468868, ISSN: 0021-9517 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022851A1 (fr) 2010-07-29 2012-02-23 IFP Energies Nouvelles Procede d'hydrogenation selective en presence d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un oligosaccharide cyclique
WO2013093231A1 (fr) 2011-12-21 2013-06-27 IFP Energies Nouvelles Procédé de préparation d'un catalyseur a base d'un métal du groupe viii prépare avec imprégnation au moyen d'au moins un additif organique et procède d'hydrogénation sélective mettant en oeuvre ledit catalyseur
WO2013175085A1 (fr) 2012-05-24 2013-11-28 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii et contenant du silicium et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
WO2015189193A1 (fr) 2014-06-13 2015-12-17 IFP Energies Nouvelles Catalyseur mesoporeux et macroporeux a phase active de nickel obtenu par comalaxage et ayant un diametre median macroporeux compris entre 50 et 300 nm et son utilisation en hydrogenation d'hydrocarbures
WO2016037830A1 (fr) 2014-09-11 2016-03-17 IFP Energies Nouvelles Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d'hydrocarbures
WO2018114396A1 (fr) 2016-12-22 2018-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en oeuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction acide carboxylique
DE102017130369A1 (de) 2016-12-22 2018-06-28 IFP Energies Nouvelles Verfahren zur selektiven hydrierung unter verwendung eines nickel-katalysators, hergestellt mittels eines additivs, umfassend eine amin- oder amid-funktion, oder eine aminosäure
WO2018114399A1 (fr) 2016-12-22 2018-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
WO2018114398A1 (fr) 2016-12-22 2018-06-28 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool
WO2018177709A1 (fr) 2017-03-29 2018-10-04 IFP Energies Nouvelles Catalyseur en multicouches pour l'hyrogénation sélective, sa préparation et son utilisation
WO2019011568A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par comalaxage comprenant un support specifique
WO2019011567A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2019011566A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique
WO2019011569A1 (fr) 2017-07-13 2019-01-17 IFP Energies Nouvelles Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2019137836A1 (fr) 2018-01-15 2019-07-18 IFP Energies Nouvelles Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
WO2020083714A1 (fr) 2018-10-25 2020-04-30 IFP Energies Nouvelles Procede d'hydrogenation comprenant un catalyseur prepare par addition d'un compose organique en phase gazeuse
FR3087787A1 (fr) 2018-10-25 2020-05-01 IFP Energies Nouvelles Procede d’hydrogenation comprenant un catalyseur prepare par addition d’un compose organique en phase gazeuse

Also Published As

Publication number Publication date
FR2854335B1 (fr) 2009-03-20
CN100415377C (zh) 2008-09-03
US7713905B2 (en) 2010-05-11
JP2006525110A (ja) 2006-11-09
FR2854335A1 (fr) 2004-11-05
CA2523698C (fr) 2012-01-17
CN1816392A (zh) 2006-08-09
CA2523698A1 (fr) 2004-11-18
US20070032372A1 (en) 2007-02-08
JP4958545B2 (ja) 2012-06-20
EP1622720B1 (fr) 2015-03-18
EP1622720A1 (fr) 2006-02-08

Similar Documents

Publication Publication Date Title
CA2523698C (fr) Traitement hors site de catalyseurs d'hydrogenation
EP0181254B1 (fr) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
EP0466568B1 (fr) Procédé de prétraitement d'un catalyseur par un mélange d'un agent soufre et d'un agent réducteur organique
EP0329499B1 (fr) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
EP0130850B1 (fr) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
EP0785022B2 (fr) Procédé d'incorporation de soufre dans la porosité d'un catalyseur de traitement d'hydrocarbures
EP2174711B1 (fr) Procédé de régénération de catalyseurs de traitement d'hydrocarbures.
EP2174712B1 (fr) Procédé de régénération de catalyseurs de traitement d'hydrocarbures.
EP2964732B1 (fr) Procédé pour le démarrage d'unites d'hydrotraitement ou d'hydroconversion
EP0448435B1 (fr) Procédé de présulfuration de catalyseurs de traitement d'hydrocarbures
EP0153233B1 (fr) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
WO2004091789A1 (fr) Procede de traitement de catalyseurs d’hydrotraitement par un orthophtalate et procede de sulfuration le mettant en oeuvre
EP2295522A1 (fr) Procede de sulfuration de catalyseurs de traitement d'hydrocarbures.
EP2295521B1 (fr) Procédé de sulfuration de catalyseurs de traitement d'hydrocarbures
CA2438536A1 (fr) Procede de sulfuration des catalyseurs d'hydrotraitement
EP0338897A1 (fr) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
FR2630026A1 (fr) Procede de presulfuration de catalyseur de traitement d'hydrocarbures
FR2572309A1 (fr) Procede de presulfuration de catalyseur de traitement d'hydrocarbures
FR2584311A2 (fr) Procede de presulfuration de catalyseur de traitement d'hydrocarbures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004742613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2523698

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006505825

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048186645

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004742613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007032372

Country of ref document: US

Ref document number: 10554873

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554873

Country of ref document: US