WO2004098257A1 - Multilayer printed wiring board and method for manufacturing same - Google Patents

Multilayer printed wiring board and method for manufacturing same Download PDF

Info

Publication number
WO2004098257A1
WO2004098257A1 PCT/JP2004/006049 JP2004006049W WO2004098257A1 WO 2004098257 A1 WO2004098257 A1 WO 2004098257A1 JP 2004006049 W JP2004006049 W JP 2004006049W WO 2004098257 A1 WO2004098257 A1 WO 2004098257A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
build
flexible
composite
conductor
Prior art date
Application number
PCT/JP2004/006049
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Kishimoto
Toshinori Nozaki
Michiaki Miura
Toshiyuki Kijima
Hiroshi Iwachido
Original Assignee
Nippon Carbide Kogyo Kabushiki Kaisha
Nci Electronics Co., Ltd.
Micro Integrated Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Kogyo Kabushiki Kaisha, Nci Electronics Co., Ltd., Micro Integrated Corporation filed Critical Nippon Carbide Kogyo Kabushiki Kaisha
Publication of WO2004098257A1 publication Critical patent/WO2004098257A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties

Definitions

  • the present invention relates to a multilayer wiring board and a method of manufacturing the same. More specifically, in a multilayer wiring board having a flexible portion and a rigid portion, a wiring density is improved by providing a build-up layer, so The present invention relates to a flexible composite 'build-up multilayer wiring board and a method for manufacturing the same, which enable mounting of small electronic components and eliminate the need for filling the inside of the via hole with resin or the like, thereby greatly improving the yield.
  • Background art
  • a flex-rigid wiring board As a multilayer wiring board having a flexible part and a rigid part, a flex-rigid wiring board is known.
  • the above-mentioned flex-rigid wiring board generally has a structure in which a flexible layer 1 is used as an intermediate layer, and a composite layer 2 and a composite layer 2 are laminated on both sides of the flexible layer 1, respectively.
  • a flexible layer 1 is used as an intermediate layer
  • a composite layer 2 and a composite layer 2 are laminated on both sides of the flexible layer 1, respectively.
  • FIG. 7 11 is a flexible board
  • 1a is a conductor circuit
  • 2a and 2a' are conductor circuits
  • 4 is a through hole
  • 6 is a bonding sheet
  • 8 is a solder resist.
  • a multilayer wiring board having a structure in which a plurality of rigid printed circuit boards are connected by a flexible printed board is also known (for example, Japanese Patent Application Laid-Open No. H08-116147 (paragraph [0000], FIG. 5 (b)) and Japanese Patent Application Laid-Open No. 8-186380 (paragraph [001], FIG. 3).
  • a multilayer wiring board (build-up multilayer wiring board) using a build-up method
  • the build-up method sequentially repeats a process of forming an insulating layer, a process of forming a via hole in the insulating layer, and a process of forming a conductor circuit (wiring circuit pattern) in the insulating layer including the inside of the via hole. That is what we do.
  • the flexible layer 1 is not arranged on the surface layer, and is used only for the wiring between the composite layers 2, 2, because of its structure. It is not possible to mount electronic components on the flexible layer 1.
  • a multilayer printed circuit board having a structure in which a rigid printed circuit board is connected by a flexible printed circuit board has a flexible printed circuit board disposed on a surface layer, and thus electronic components can be mounted on the flexible printed circuit board.
  • this multilayer wiring board has a structure in which a flexible printed board and a rigid printed board composed of a composite layer are laminated, it is not possible to simultaneously perform through-hole and via-hole plating. For this reason, as shown in Fig. 8, for example, the thickness of the plating layer on the surface side of the composite layer 2 increases, making it difficult to make the conductor circuit of the composite layer 2 thinner, and mounting small electronic components on the composite layer 2. Can not.
  • the above-mentioned “multi-layer wiring board having a structure in which a plurality of rigid printed boards are connected by a flexible printed board” has a structure in which a resin 9 is provided inside the via hole 5 of the composite layer 2. Need to be filled. This resin filling is not possible after lamination with the flexible layer 1, and therefore must be performed before laminating with the flexible layer 1. The filling of the resin is performed by a method such as roll coating or a printing method. In either case, the filled resin protrudes from the inside of the nozzle hole 5 and is polished. Must be removed.
  • 21 is a rigid board
  • 2a is a conductor circuit
  • 4 is a through hole
  • 5 is a via hole
  • 6 is a bonding sheet
  • 7 is a plating layer
  • 8 is a solder layer.
  • Zist 9 is a resin filled in the via hole 5.
  • the build-up method is a method that improves the degree of freedom of wiring and is relatively suitable for finer wiring and higher density wiring.
  • a conductive material such as copper paste.
  • the same problem as the problem caused by the filling of the resin occurs in the “multi-layer wiring board having the structure in which the rigid printed board is connected by the flexible printed board”. Disclosure of the invention
  • An object of the present invention is to increase the wiring density, enable mounting of small electronic components on both front and back surfaces of a wiring board, and eliminate the need for filling the inside of the via hole with a resin or the like, thereby dramatically improving the yield.
  • An object of the present invention is to provide a multilayer wiring board having a flexible portion and a rigid portion, and a method of manufacturing the same.
  • a multilayer wiring board that can achieve the above object can be obtained by arranging a build-up layer on a composite layer of a substrate obtained by laminating a rigid substrate and a flexible substrate material. did.
  • the present invention has been made based on the above findings, and has a rigid substrate and a composite layer formed of a conductor circuit formed on at least the surface of the rigid substrate on the build-up layer side as an intermediate layer, and one of the composite layers.
  • a flexible substrate made of a conductive circuit formed on a surface of the flexible substrate and a surface layer of the flexible substrate, and an insulating layer and a surface of the surface of the insulating layer on the other surface of the composite layer.
  • the present invention provides the above-described flexible composite / build-up of the present invention.
  • a method for manufacturing a multilayer wiring board a method for forming a composite layer by forming a predetermined conductor circuit on at least the surface of the rigid board on the build-up layer side, the method for forming a conductor circuit of a flexible layer
  • the conductor layer and the plating layer of the flexible layer, and the conductor layer and the plating layer of the build-up layer A flexible composite comprising a step of forming a predetermined wiring circuit and a turn, and a step of coating a predetermined portion of each of the flexible layer and the build-up layer on which the wiring circuit pattern is formed with a solder resist.
  • a method for manufacturing a build-up multilayer wiring board hereinafter, referred to as a first manufacturing method of the present invention).
  • the present invention provides the flexible composite build-up of the present invention described above.
  • a flexible layer having a conductor layer for forming a conductor circuit on a surface on a surface layer side of the flexible board; and a flexible board having at least a surface on a build-up layer side.
  • a step of manufacturing a laminate comprising a composite layer having a conductor circuit; a step of forming an insulating layer of a build-up layer on the surface of the composite layer on the side of the build-up layer; a step of forming a via hole in the insulating layer Forming a through hole in the laminated plate on which the insulating layer is formed, and covering a through layer with the through hole, the via hole, the conductor layer of the flexible layer, and the insulating layer of the build-up layer.
  • the process, the conductor layer and the plating layer of the flexible layer, and the plating layer of the build-up layer are respectively connected to predetermined wirings. Michino,.
  • a flexible 'composite build-up multi-layer wiring comprising a step of forming a turn, a step of covering a predetermined portion of each of the flexible layer and the build-up layer where the turn circuit is formed and the turn-formed layer with a solder resist.
  • Another object of the present invention is to provide a method for manufacturing a substrate (hereinafter, referred to as a second manufacturing method of the present invention).
  • FIG. 1 is a schematic sectional view showing a first embodiment of the FCB wiring board of the present invention.
  • FIG. 2 is a schematic sectional view showing a second embodiment of the FCB wiring board of the present invention.
  • FIG. 3 is a schematic sectional view showing a third embodiment of the FCB wiring board of the present invention.
  • FIG. 4 is a schematic sectional view showing a fourth embodiment of the FCB wiring board of the present invention.
  • FIG. 5 is a schematic cross-sectional view illustrating an example of a step of manufacturing the FCB wiring board of the first embodiment shown in FIG.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a step of manufacturing the FCB wiring board of the third embodiment shown in FIG.
  • FIG. 7 is a schematic sectional view showing an example of a conventional flex-rigid wiring board.
  • FIG. 8 is a schematic cross-sectional view showing an example of a multilayer wiring board having a structure in which a plurality of rigid printed boards are connected by a flexible printed board.
  • FCB wiring board a flexible composite build-up multilayer wiring board (hereinafter, also referred to as an FCB wiring board) and a method of manufacturing the same according to the present invention will be described in detail with reference to the drawings.
  • the FCB wiring board A of the first embodiment shown in FIG. 1 has a composite layer composed of a rigid substrate 21 and conductor circuits 2 a and 2 a ′ having a predetermined pattern formed on both surfaces of the rigid substrate 21.
  • 2 is an intermediate layer, a flexible substrate 11 and a conductor circuit having a predetermined pattern formed on the surface of the flexible substrate 11 on the surface of the composite layer on which the conductor circuit 2 a is formed.
  • the flexible layer 1 made of 1a is laminated, and the insulating layer 31 and the predetermined layer formed on the surface of the insulating layer 31 on the surface of the composite layer 2 on which the conductor circuit 2a is formed are formed.
  • It has a layer structure in which a build-up layer 3 composed of a conductor circuit 3a of a pattern is laminated.
  • a through hole 4 is formed at a predetermined location of the FCB wiring board A so as to penetrate the thickness direction of the FCB wiring board A, and a via hole 5 is formed at a predetermined location of the build-up layer 3. .
  • the flexible layer 1 and the composite layer 2 are laminated via a bonding sheet 6, and the surface of the flexible layer 1 on the surface side and the surface of the buildup layer 3 on the surface side are solder resist 8 respectively. A predetermined part is covered with.
  • the conductor circuit 1 a of the flexible layer 1, the conductor circuits 2 a and 2 a of the composite layer 2, and the conductor circuit 3 a of the build-up layer 3 are formed by a through hole passing through the FCB wiring board A. It is electrically connected by a plating layer 7 through a metal layer 4.
  • the conductor circuit 2a of the composite layer 2 and the conductor circuit 3a of the build-up layer 3 are electrically connected by the plating layer 7 via the via hole 5 formed in the insulating layer 3a of the build-up layer 3. It is connected to the.
  • Electronic components (not shown) are mounted on the conductive circuit 1 a of the flexible layer 1 exposed from the solder resist 8 and the plating layer of the via hole 5 of the build-up layer 3.
  • the FCB wiring board B of the second embodiment shown in FIG. 2 has a composite layer 2 in which a conductor circuit 2a is formed only on the surface of the rigid board 21 on the side of the build-up layer. Except for this, the configuration is the same as that of the FCB wiring board A of the first embodiment.
  • the FCB wiring board C of the third embodiment shown in FIG. 3 has the same structure as that of the third embodiment except that the wiring circuit pattern on the surface layer side of the insulating layer 31 of the build-up layer 3 is formed only by the plating layer 7.
  • the configuration is the same as that of the FCB wiring board A of the first embodiment.
  • the FCB wiring board D of the fourth embodiment shown in FIG. 4 has the same configuration as that of the fourth embodiment except that the composite layer 2 has a conductor circuit 2 a formed only on the surface of the rigid board 21 on the side of the buildup layer.
  • the configuration is the same as that of the FCB wiring board C of the third embodiment.
  • the above-mentioned flexible substrate 11, rigid substrate 21, conductor circuits 1a, 2a, 2a 'and 3a, bonding sheet 6, plating layer 7, and solder resist 8 are a multilayer wiring board of this type. Any of those usually used may be used, and the forming material and thickness thereof are not particularly limited.
  • a foldable film material made of polyimide resin, polyester resin, or the like is used as the flexible substrate 11, a foldable film material made of polyimide resin, polyester resin, or the like is used.
  • the rigid substrate 21 is made of a composite material such as FR-4 or BT resin, and has a thickness of 50 to 1,000 m. It is about.
  • a material for forming the conductor circuit copper, silver, gold, nigel, chromium, zinc, tin, platinum or the like is used.
  • an insulating material containing glass cloth (examples of insulating materials: FR_4, FR-5, BT resin, polyimide resin, etc.),
  • thermosetting liquid resin, UV-curing liquid resin, photo-forming liquid resin, etc. are used as a material for forming the insulating layer 31 of the build-up layer 3.
  • the thickness of the insulating layer 31 is about 80-1 or 200 m.
  • the FCB wiring board of the present invention is not limited to the above-described first to fourth embodiments, and may have a configuration in which, for example, a composite layer is further multilayered as necessary.
  • the FCB wiring board of the present invention configured as described above has a single plating layer, it is easy to make the circuit on both the front and back surfaces of the FCB wiring board thin, and the FCB wiring board can be formed on both the front and back surfaces. Small electronic components can be mounted.
  • the FCB wiring board of the present invention since the circuit thickness of the flexible layer 1 (the total thickness of the conductor circuit thickness and the plating layer thickness) and the circuit thickness of the build-up layer 3 are the same, the FCB wiring The design value of the minimum line width on which a circuit can be formed on both the front and back surfaces of the substrate can be made the same.
  • the FCB wiring board of the present invention does not require filling of the via holes with resin or the like.
  • the embodiment shown in FIG. 5 is a production example in which a bonding sheet made of an epoxy resin, a polyimide resin, a BT resin, or the like is used as a forming material of the insulating layer 31 of the build-up layer 3.
  • the formation of the conductor circuits 2a and 2a 'in the composite layer 2 may be performed by a known method such as a subtractive method, an additive method, and a semi-additive method.
  • a copper foil 3 b as a conductor layer for forming a conductor circuit of the build-up layer 3 are used. Then, they are arranged in this order and laminated to produce a laminate.
  • the flexible layer 1 and the composite layer 2 are bonded by a bonding sheet 6, and the composite layer 2 and the build-up layer 3 are bonded by a bonding sheet 3 having insulation.
  • the bonding sheet 6 is a perforated sheet in which unnecessary portions are cut out.
  • the formation of the through hole 4 may be performed by a known means, for example, drilling, laser drilling, etching, or the like.
  • a via hole 5 is formed at a predetermined position of the build-up layer 3 of the laminate.
  • the formation of the via hole 5 may be performed by the same means as the formation of the through hole 4.
  • the through hole 4, the via hole 5, the conductor layer (copper foil) 1b of the flexible layer 1 and the conductor layer (copper foil) 3b of the build-up layer 3 are removed. Cover with plating layer 7.
  • the plating layer 7 may be formed by a known means such as electroless plating or vapor deposition.
  • the conductor layer 1 b of the flexible layer 1 By the plating layer 7, the conductor layer 1 b of the flexible layer 1, the conductor circuits 2 a and 2 a of the composite layer 2, and the conductor layer 3 b of the build-up layer 3,
  • the conductive circuit 2 a of the composite layer 2 and the conductive layer 3 b of the build-up layer 3 are electrically connected by the plating layer 7 of the via hole 5.
  • the above-mentioned flexible The conductor layer 1b of the metal layer 1 and the conductor layer 3b of the build-up layer 3 are formed in predetermined wiring circuit patterns, respectively, to produce the conductor circuit 1a and the conductor circuit 3a.
  • the formation of the wiring circuit patterns of the conductor layers 1b and 3b is performed by using a photosensitive etching resist film and removing the conductor other than the wiring portion by etching.
  • predetermined portions of the flexible layer 1 and the build-up layer 3 on which the wiring circuit patterns are formed are covered with a solder register 8.
  • the first manufacturing method of the present invention is not limited to the embodiment shown in FIG. 5.
  • the conductor circuit 1 a of the flexible layer 1 and the conductor circuit 3 a of the build-up layer 3 It may be formed before lamination with the composite layer 2 instead of after the formation of the through-hole 4, and the formation of the through-hole 4 and the formation of the via-hole 5 may be performed first.
  • the plating on the surfaces of the flexible layer 1 and the build-up layer 3 is performed once, and the circuit thickness of the flexible layer 1 (the total thickness of the conductor circuit thickness and the plating layer thickness) Since the circuit thickness of the build-up layer 3 is the same and the plating of the through hole 4 and the via hole 5 can be performed simultaneously, the design value of the minimum line width that can form a circuit on both the front and back sides of the FCB wiring board Can be the same. Also, since the connection between the build-up layer 3 and the composite layer 2 can be performed by the via hole 5 formed in the insulating layer 31 of the build-up layer 3, there is no need to fill the inside of the via hole with resin or the like. .
  • FIG. 6 illustrates an example of a process of manufacturing the FCB wiring board C of the third embodiment.
  • thermosetting liquid resin a thermosetting liquid resin, a UV-curable liquid resin, a photo-imaging liquid resin, or the like is used as a material for forming the insulating layer 31 of the build-up layer 3.
  • a thermosetting liquid resin a UV-curable liquid resin, a photo-imaging liquid resin, or the like is used as a material for forming the insulating layer 31 of the build-up layer 3.
  • This is a production example when a mold liquid resin is used.
  • the copper foil on the flexible layer side of the rigid board 21 on which the copper foil b as the conductor layer for forming the conductor circuit is formed on both surfaces is formed in a predetermined wiring circuit pattern. Then, a composite layer 2 as shown in Fig. 6 (2), which is a conductor circuit 2a, is formed.
  • the formation of the conductor circuit 2 a ′ of the composite layer 2 is performed by a method of removing a conductor other than the wiring portion by etching using a photosensitive etching resist film.
  • the composite layers 2 are arranged in this order and laminated to produce a laminate.
  • the flexible layer 1 and the composite layer 2 are bonded by a bonding sheet 6.
  • the bonding sheet 6 is a perforated sheet in which unnecessary portions are cut out.
  • the copper foil on the surface of the rigid board 21 on the side of the build-up layer is formed in a predetermined wiring circuit pattern by the same method as the method of forming the conductor circuit 2a '. Circuit 2a is produced.
  • the insulating layer 31 of the build-up layer 3 is formed on the surface of the composite layer 2 on the side of the build-up layer.
  • the formation of the insulating layer 31 of the build-up layer 3 is performed by applying and curing the above-mentioned curable liquid resin.
  • via holes 5 are formed at predetermined locations in the insulating layer 31 of the build-up layer 3.
  • the formation of the via hole 5 may be performed by a known means, for example, drilling, laser drilling, or etching.
  • a through hole 4 is formed at a predetermined position of the laminate on which the insulating layer 31 is formed.
  • the formation of the through hole 4 can be performed by the same means as the formation of the via hole 5. Good.
  • the plating layer 7 may be formed by a known means such as electroless plating or vapor deposition.
  • the flexible layer 1, the composite layer 2, and the build-up layer 3 are electrically connected by the plating layer 7.
  • the conductor layer 1b and the plating layer 7 of the flexible layer 1 and the plating layer 7 of the build-up layer 3 are formed in a predetermined wiring circuit pattern, respectively.
  • the body circuit 1a and the conductor circuit 3a are produced.
  • the wiring circuit; The formation of the turns is performed by using a photosensitive etching resist film and removing a conductor other than the wiring portion by etching.
  • the second manufacturing method of the present invention is not limited to the embodiment shown in FIG. 6.
  • the formation of the conductor circuit 2a of the composite layer 2 is performed at the time of forming the conductor circuit 2a.
  • the formation of the through hole 4 and the formation of the via hole 5 may be performed in any order.
  • the circuit on both the front and back sides of the FCB wiring board can be easily thinned,
  • the connection between the build-up layer 3 and the composite layer 2 can be established by the via hole 5 formed in the insulating layer 31 of the build-up layer 3, there is no need to fill the inside of the via hole with resin or the like.
  • the wiring density is improved, small electronic components can be mounted on both the front and back surfaces of the wiring board, and it is not necessary to fill the inside of the via hole with resin or the like, and the yield is dramatically improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A multilayer printed wiring board is disclosed which has a layered structure comprising a composite layer (2) as an intermediate layer which is composed of a rigid substrate (21) and a conductor circuit (2a) formed on at least one surface of the rigid substrate on the buildup layer side, a flexible layer (1) which is put on top of one surface of the composite layer and composed of a flexible substrate (11) and a conductor circuit (1a) formed on the front side surface of the flexible substrate, and a buildup layer (3) which is put on top of the other surface of the composite layer and composed of an insulating layer (31) and a conductor circuit (3a) formed on the front side surface of the insulating layer. The conductor circuit of the flexible layer (1), the conductor circuit of the composite layer (2) and the conductor circuit of the buildup layer (3) are electrically connected via a through hole (4) penetrating the multilayer printed wiring board. The conductor circuit of the composite layer (2) and the conductor circuit of the buildup layer (3) are electrically connected through a via hole (5) which is formed in the buildup layer.

Description

多層配線基板及びその製造方法 技術分野  FIELD OF THE INVENTION
本発明は、 多層配線基板及びその製造方法に関し、 詳しくは、 フレキシブル部 及びリジッ ド部を有する多層配線基板において、 ビルドアップ層を設けることに より、 配線密度を向上させ、 配線基板の表裏両面への小型電子部品の搭載を可能 にし、 且つバイァホール内部への樹脂などの充塡が不要となり、 収率が飛躍的に 向上し得るフレキシブル ·コンポジット ' ビルドアップ多層配線基板及びその製 造方法に関する。 背景技術  The present invention relates to a multilayer wiring board and a method of manufacturing the same. More specifically, in a multilayer wiring board having a flexible portion and a rigid portion, a wiring density is improved by providing a build-up layer, so The present invention relates to a flexible composite 'build-up multilayer wiring board and a method for manufacturing the same, which enable mounting of small electronic components and eliminate the need for filling the inside of the via hole with resin or the like, thereby greatly improving the yield. Background art
フレキシブル部及びリジッド部を有する多層配線基板としては、 フレックスリ ジッド配線基板が知られている。  As a multilayer wiring board having a flexible part and a rigid part, a flex-rigid wiring board is known.
上記フレックスリジッ ド配線基板としては、 図 7に示すような、 フレキシブル 層 1を中間層とし、該フレキシブル層 1の両面にそれぞれコンポジット層 2及び コンポジット層 2, を積層した構造のものが一般的である (例えば、 特開 2 0 0 0 - 9 1 7 4 5号公報 (図 1 ) を参照) 。 図 7中、 1 1はフレキシブル基板、 1 aは導電体回路、 2 1及び 2 1 ' はリジッ ド基板、 2 a及び 2 a ' は導電体回路 、 4はスルーホール、 6はボンディングシート、 7はメツキ層、 8はソルダーレ ジストである。 As shown in FIG. 7, the above-mentioned flex-rigid wiring board generally has a structure in which a flexible layer 1 is used as an intermediate layer, and a composite layer 2 and a composite layer 2 are laminated on both sides of the flexible layer 1, respectively. (See, for example, Japanese Patent Application Laid-Open No. 2000-91745 (FIG. 1)). In FIG. 7, 11 is a flexible board, 1a is a conductor circuit, 21 and 21 'are rigid boards, 2a and 2a' are conductor circuits, 4 is a through hole, 6 is a bonding sheet, 7 Is a plating layer, and 8 is a solder resist.
また、 複数のリジッドブリント基板をフレキシブルプリント基板により接続し た構造の多層配線基板も知られている (例えば、 特開平 8— 1 1 6 1 4 7号公報 (段落 〔 0 0 0 5〕 、 図 5 ( b ) ) 及び特開平 8— 1 8 6 3 8 0号公報 (段落 〔 0 0 1 3〕 、 図 3 ) を参照) 。  Further, a multilayer wiring board having a structure in which a plurality of rigid printed circuit boards are connected by a flexible printed board is also known (for example, Japanese Patent Application Laid-Open No. H08-116147 (paragraph [0000], FIG. 5 (b)) and Japanese Patent Application Laid-Open No. 8-186380 (paragraph [001], FIG. 3).
また、 多層配線基板は、軽量化、 小型ィ匕の要請に伴い、 小型電子部品を高密度 で搭載すべく、 配線の微細化及び高密度化が要求されている。 配線の微細化及び 高密度化を達成する多層配線基板として、 ビルドアツプ工法を用いた多層配線基 板 (ビルドアップ多層配線基板) が提案されている (例えば、 特開 2 0 0 3 - 2 3 2 5 4号公報を参照) 。 ビルドアップ工法は、絶縁層の形成工程、 該絶縁層に バイァホールを形成する工程及び該バイァホールの内部を含めた上記絶縁層に導 電体回路 (配線回路パターン) を形成する工程を順次繰り返して積層していくも のである。 Further, with the demand for weight reduction and miniaturization of multilayer wiring boards, finer wiring and higher density are required to mount small electronic components at high density. As a multilayer wiring board that achieves finer wiring and higher density wiring, a multilayer wiring board (build-up multilayer wiring board) using a build-up method has been proposed (see, for example, Japanese Patent Application Laid-Open No. 2003-032). See Japanese Patent Publication No. 3254). The build-up method sequentially repeats a process of forming an insulating layer, a process of forming a via hole in the insulating layer, and a process of forming a conductor circuit (wiring circuit pattern) in the insulating layer including the inside of the via hole. That is what we do.
図 7に示すような従来のフレックスリジッド配線基板は、 その構造上、 フレキ シブル層 1が、表層に配置されておらず、 コンポジット層 2, 2, 間の配線にの み使用されているため、 フレキシブル層 1に電子部品を搭載することができない また、 特開平 8 _ 1 1 6 1 4 7号公報及び特開平 8— 1 8 6 3 8 0号公報に記 載されているような 「複数のリジッドプリント基板をフレキシブルプリント基板 により接続した構造の多層配線基板」 は、 フレキシブルプリント基板が表層に配 置されているので、 フレキシブルプリント基板への電子部品の搭載が可能である 。 しかし、 この多層配線基板は、 フレキシブルプリント基板と、 コンポジッ ト層 からなるリジッドプリント基板とが、積層された構造のものであるため、 スルー ホールとバイァホールのメツキを同時に行うことができない。 そのため、 例えば 図 8に示すように、 コンポジット層 2の表層側のメッキ層厚が厚くなるため、 コ ンポジット層 2の導電体回路の細線化が困難となり、 コンポジット層 2への小型 電子部品の搭載ができない。  In the conventional flex-rigid wiring board as shown in Fig. 7, the flexible layer 1 is not arranged on the surface layer, and is used only for the wiring between the composite layers 2, 2, because of its structure. It is not possible to mount electronic components on the flexible layer 1. In addition, as described in Japanese Patent Application Laid-Open Nos. H08-11616-47 and A multilayer printed circuit board having a structure in which a rigid printed circuit board is connected by a flexible printed circuit board has a flexible printed circuit board disposed on a surface layer, and thus electronic components can be mounted on the flexible printed circuit board. However, since this multilayer wiring board has a structure in which a flexible printed board and a rigid printed board composed of a composite layer are laminated, it is not possible to simultaneously perform through-hole and via-hole plating. For this reason, as shown in Fig. 8, for example, the thickness of the plating layer on the surface side of the composite layer 2 increases, making it difficult to make the conductor circuit of the composite layer 2 thinner, and mounting small electronic components on the composite layer 2. Can not.
また、 図 8に示すように、 上記の 「複数のリジッドプリント基板をフレキシブ ' ルプリント基板により接続した構造の多層配線基板」 は、 その構造上、 コンポジ ット層 2のバイァホール 5内部に樹脂 9を充塡する必要がある。 この樹脂の充塡 は、 フレキシブル層 1 との積層後は不可能であるため、 フレキシブル層 1と積層 する前に行わなければならない。 そして、 この樹脂の充塡は、 ロールコート、 印 刷法などの方法によりネ亍われている 、何れの方法により行っても、 充塡した樹 脂がノ ィァホール 5内部からはみ出るため、 これを研磨除去しなければならない 。 この研磨除去によりコンポジット層 2の基板の伸縮が発生し、 フレキシブル層 1との積層において回路の位置精度が悪く、 収率が著しく悪いとの問題が生じて いる。 尚、 図 8中、 2 1はリジッ ド基板、 2 aは導電体回路、 4はスルーホール 、 5はバイァホール、 6はボンディングシート、 7はメツキ層、 8はソルダーレ ジスト、 9はバイァホール 5内部に充塡された樹脂である。 Further, as shown in FIG. 8, the above-mentioned “multi-layer wiring board having a structure in which a plurality of rigid printed boards are connected by a flexible printed board” has a structure in which a resin 9 is provided inside the via hole 5 of the composite layer 2. Need to be filled. This resin filling is not possible after lamination with the flexible layer 1, and therefore must be performed before laminating with the flexible layer 1. The filling of the resin is performed by a method such as roll coating or a printing method. In either case, the filled resin protrudes from the inside of the nozzle hole 5 and is polished. Must be removed. The removal of the polishing causes expansion and contraction of the substrate of the composite layer 2, causing a problem that the lamination with the flexible layer 1 has a poor positional accuracy of the circuit and a remarkably poor yield. In FIG. 8, 21 is a rigid board, 2a is a conductor circuit, 4 is a through hole, 5 is a via hole, 6 is a bonding sheet, 7 is a plating layer, and 8 is a solder layer. Zist 9 is a resin filled in the via hole 5.
また、 ビルドァップェ法は、 配線自由度が向上し、 配線の微細化及び高密度化 に比較的適した方法である。 しかし、特開 2 0 0 3— 2 3 2 5 4号公報に記載さ れたビルドアツプ多層プリント配線板では、 バイァホール内部に銅ペーストなど の導電性物質を充塡する必要があり、上記の 「複数のリジッドブリント基板をフ レキシブルプリント基板により接続した構造の多層配線基板」 における樹脂の充 塡による問題と同様の問題が生じる。 発明の開示  Also, the build-up method is a method that improves the degree of freedom of wiring and is relatively suitable for finer wiring and higher density wiring. However, in the build-up multilayer printed wiring board described in Japanese Patent Application Laid-Open No. 2003-232534, it is necessary to fill the inside of the via hole with a conductive material such as copper paste. The same problem as the problem caused by the filling of the resin occurs in the “multi-layer wiring board having the structure in which the rigid printed board is connected by the flexible printed board”. Disclosure of the invention
本発明の目的は、 配線密度を向上させ、 配線基板の表裏両面への小型電子部品 の搭載を可能にし、 且つバイァホール内部への樹脂などの充塡が不要となり、 収 率が飛躍的に向上し得る、 フレキシブル部及びリジッド部を有する多層配線基板 及びその製造方法を提供することにある。  An object of the present invention is to increase the wiring density, enable mounting of small electronic components on both front and back surfaces of a wiring board, and eliminate the need for filling the inside of the via hole with a resin or the like, thereby dramatically improving the yield. An object of the present invention is to provide a multilayer wiring board having a flexible portion and a rigid portion, and a method of manufacturing the same.
本発明者らは、 種々検討した結果、 リジッド基板とフレキシブル基板材を重ね 合わせた基板のコンポジット層に、 ビルドアツプ層を配置することにより、 上記 目的を達成し得る多層配線基板が得られることを知見した。  As a result of various studies, the present inventors have found that a multilayer wiring board that can achieve the above object can be obtained by arranging a build-up layer on a composite layer of a substrate obtained by laminating a rigid substrate and a flexible substrate material. did.
本発明は、 上記知見に基づいてなされたもので、 リジッド基板及び該リジッド 基板の少なくともビルドァップ層側の表面に形成された導電体回路からなるコン ポジット層を中間層とし、 上記コンポジット層の一方の面に、 フレキシブル基板 及び該フレキシブル基板の表層側の表面に形成された導電体回路からなるフレキ シブル層が積層され、 上記コンポジット層の他方の面に、 絶縁層及び該絶縁層の 表層側の表面に形成された導電体回路からなるビルドアップ層が積層されている 層構造を有する多層配線基板であって、 上記フレキシブル層の導電体回路、 上記 コンポジット層の導電体回路及び上記ビルドアップ層の導電体回路;^、 上記多層 配線基板を貫通するスルーホールを介して電気的に接続され、 上記コンポジット 層の導電体回路と上記ビルドアツプ層の導電体回路が、上記ビルドアツプ層に形 成されたバイァホールを介して電気的に接続されている、 フレキシブル ·コンポ ジット . ビルドアップ多層配線基板を提供するものである。  The present invention has been made based on the above findings, and has a rigid substrate and a composite layer formed of a conductor circuit formed on at least the surface of the rigid substrate on the build-up layer side as an intermediate layer, and one of the composite layers. A flexible substrate made of a conductive circuit formed on a surface of the flexible substrate and a surface layer of the flexible substrate, and an insulating layer and a surface of the surface of the insulating layer on the other surface of the composite layer. A multilayer wiring board having a layered structure in which a build-up layer made of a conductor circuit formed on the substrate is laminated, wherein the conductor circuit of the flexible layer, the conductor circuit of the composite layer, and the conductivity of the build-up layer Body circuit; ^, electrically connected through through-holes penetrating the multilayer wiring board and conducting the composite layer Conductor circuit body circuit and the Birudoatsupu layer are electrically connected via the Baiahoru been made form above Birudoatsupu layer, there is provided a flexible Composite. Build-up multilayer wiring board.
また、 本発明は、 上記の本発明のフレキシブル 'コンポジット · ビルドアップ 多層配線基板の製造方法の好ましい一例として、 リジッド基板の少なくともビル ドアップ層側の表面に所定の導電体回路を形成してコンポジット層を作製するェ 程、 フレキシブル層の導電体回路を形成するための導電体層、 フレキシブル基板 、 上記コンポジット層、 ビルドァップ層の絶縁層、 ビルド了ップ層の導電体回路 を形成するための導電体層の順の層構造を有する積層板を作製する工程、 上記積 層板にスルーホールを形成する工程、 上記ビルドアップ層にバイァホールを形成 する工程、 上記スルーホール、上記バイァホール、 上記フレキシブル層の導電体 層及び上記ビルドアツプ層の導電体層にメッキ層を被覆する工程、 上記フレキシ ブル層の導電体層及びメツキ層、 並びに上記ビルドアップ層の導電体層及びメッ キ層をそれぞれ所定の配線回路ノ、'ターンに形成する工程、 上記配線回路パターン が形成された上記フレキシブル層及び上記ビルドアツプ層のそれぞれの所定箇所 を、 ソルダーレジストによって被覆する工程を有する、 フレキシブル ·コンポジ ット · ビルドアップ多層配線基板の製造方法 (以下、 本発明の第 1の製造方法と いう) を提供するものである。 In addition, the present invention provides the above-described flexible composite / build-up of the present invention. As a preferred example of a method for manufacturing a multilayer wiring board, a method for forming a composite layer by forming a predetermined conductor circuit on at least the surface of the rigid board on the build-up layer side, the method for forming a conductor circuit of a flexible layer A step of producing a laminate having a layer structure of a conductor layer, a flexible substrate, a composite layer, an insulating layer of a build-up layer, and a conductor layer for forming a conductor circuit of a build-up layer; Forming a through hole in the layer plate; forming a via hole in the build-up layer; coating a plating layer on the through hole, the via hole, the conductor layer of the flexible layer, and the conductor layer of the build-up layer. The conductor layer and the plating layer of the flexible layer, and the conductor layer and the plating layer of the build-up layer A flexible composite comprising a step of forming a predetermined wiring circuit and a turn, and a step of coating a predetermined portion of each of the flexible layer and the build-up layer on which the wiring circuit pattern is formed with a solder resist. · It is intended to provide a method for manufacturing a build-up multilayer wiring board (hereinafter, referred to as a first manufacturing method of the present invention).
また、 本発明は、 上記の本発明のフレキシブル ·コンポジット · ビルドアッフ。 多層配線基板の製造方法の他の好ましい一例として、 フレキシブル基板の表層側 の表面に導電体回路を形成するための導電体層を有するフレキシブル層と、 リジ ッド基板の少なくともビルドァップ層側の表面に導電体回路を有するコンポジッ ト層とからなる積層板を作製する工程、 上記コンポジット層のビルドアップ層側 の表面に、 ビルドアップ層の絶縁層を形成する工程、 上記絶縁層にバイァホール を形成する工程、 上記絶縁層の形成された上記積層板にスル一ホールを形成する 工程、 上記スル一ホール、上記バイァホール、 上記フレキシブル層の導電体層及 び上記ビルドアップ層の絶縁層にメツキ層を被覆する工程、上記フレキシブル層 の導電体層及びメツキ層、 並びに上記ビルドアップ層のメツキ層をそれぞれ所定 の配線回路ノ、。ターンに形成する工程、 上記配線回路ノ、'ターンが形成された上記フ レキシブル層及び上記ビルドアツプ層のそれぞれの所定箇所を、 ソルダーレジス 卜によって被覆する工程を有する、 フレキシブル 'コンポジット · ビルドアップ 多層配線基板の製造方法 (以下、 本発明の第 2の製造方法という) を提供するも のである。 図面の簡単な説明 Further, the present invention provides the flexible composite build-up of the present invention described above. As another preferable example of the method for manufacturing a multilayer wiring board, a flexible layer having a conductor layer for forming a conductor circuit on a surface on a surface layer side of the flexible board; and a flexible board having at least a surface on a build-up layer side. A step of manufacturing a laminate comprising a composite layer having a conductor circuit; a step of forming an insulating layer of a build-up layer on the surface of the composite layer on the side of the build-up layer; a step of forming a via hole in the insulating layer Forming a through hole in the laminated plate on which the insulating layer is formed, and covering a through layer with the through hole, the via hole, the conductor layer of the flexible layer, and the insulating layer of the build-up layer. The process, the conductor layer and the plating layer of the flexible layer, and the plating layer of the build-up layer are respectively connected to predetermined wirings. Michino,. A flexible 'composite build-up multi-layer wiring comprising a step of forming a turn, a step of covering a predetermined portion of each of the flexible layer and the build-up layer where the turn circuit is formed and the turn-formed layer with a solder resist. Another object of the present invention is to provide a method for manufacturing a substrate (hereinafter, referred to as a second manufacturing method of the present invention). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の F C B配線基板の第 1の実施形態を示す概略断面図である。 図 2は、 本発明の F C B配線基板の第 2の実施形態を示す概略断面図である。 図 3は、 本発明の F C B配線基板の第 3の実施形態を示す概略断面図である。 図 4は、 本発明の F C B配線基板の第 4の実施形態を示す概略断面図である。 図 5は、 図 1に示す第 1の実施形態の F C B配線基板を製造する工程の一例を 説明する概略断面図である。  FIG. 1 is a schematic sectional view showing a first embodiment of the FCB wiring board of the present invention. FIG. 2 is a schematic sectional view showing a second embodiment of the FCB wiring board of the present invention. FIG. 3 is a schematic sectional view showing a third embodiment of the FCB wiring board of the present invention. FIG. 4 is a schematic sectional view showing a fourth embodiment of the FCB wiring board of the present invention. FIG. 5 is a schematic cross-sectional view illustrating an example of a step of manufacturing the FCB wiring board of the first embodiment shown in FIG.
図 6は、 図 3に示す第 3の実施形態の F C B配線基板を製造する工程の一例を 説明する概略断面図である。  FIG. 6 is a schematic cross-sectional view illustrating an example of a step of manufacturing the FCB wiring board of the third embodiment shown in FIG.
図 7は、 従来のフレツクスリジッ ド配線基板の一例を示す概略断面図である。 図 8は、 複数のリジッドプリント基板をフレキシブルプリント基板により接続 した構造の多層配線基板の一例を示す概略断面図である。 発明を実施するための最良の形態  FIG. 7 is a schematic sectional view showing an example of a conventional flex-rigid wiring board. FIG. 8 is a schematic cross-sectional view showing an example of a multilayer wiring board having a structure in which a plurality of rigid printed boards are connected by a flexible printed board. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のフレキシブル .コンポジット · ビルドアップ多層配線基板 (以 下、 F C B配線基板ともいう) 及びその製造方法を、 それらの好ましい実施の形 態について図面を参照しながら詳しく説明する。  Hereinafter, a flexible composite build-up multilayer wiring board (hereinafter, also referred to as an FCB wiring board) and a method of manufacturing the same according to the present invention will be described in detail with reference to the drawings.
図 1に示す第 1の実施形態の F C B配線基板 Aは、 リジッド基板 2 1及び該リ ジッド基板 2 1の両面にそれぞれ形成された所定パターンの導電体回路 2 a及び 2 a ' からなるコンポジット層 2を中間層とし、上記コンポジット層の導電体回 路 2 a, が形成されている面に、 フレキシブル基板 1 1及び該フレキシブル基板 1 1の表層側の表面に形成された所定パターンの導電体回路 1 aからなるフレキ シブル層 1が積層され、 上記コンポジット層 2の導電体回路 2 aが形成されてい る面に、絶縁層 3 1及び該絶縁層 3 1の表層側の表面に形成された所定パターン の導電体回路 3 aからなるビルドアヅプ層 3が積層されている層構造を有する。 そして、 F C B配線基板 Aの所定箇所には、 F C B配線基板 Aの厚さ方向を貫 通するスルーホール 4が形成され、 またビルドアップ層 3の所定箇所には、 バイ ァホール 5が形成されている。  The FCB wiring board A of the first embodiment shown in FIG. 1 has a composite layer composed of a rigid substrate 21 and conductor circuits 2 a and 2 a ′ having a predetermined pattern formed on both surfaces of the rigid substrate 21. 2 is an intermediate layer, a flexible substrate 11 and a conductor circuit having a predetermined pattern formed on the surface of the flexible substrate 11 on the surface of the composite layer on which the conductor circuit 2 a is formed. The flexible layer 1 made of 1a is laminated, and the insulating layer 31 and the predetermined layer formed on the surface of the insulating layer 31 on the surface of the composite layer 2 on which the conductor circuit 2a is formed are formed. It has a layer structure in which a build-up layer 3 composed of a conductor circuit 3a of a pattern is laminated. A through hole 4 is formed at a predetermined location of the FCB wiring board A so as to penetrate the thickness direction of the FCB wiring board A, and a via hole 5 is formed at a predetermined location of the build-up layer 3. .
スル一ホール 4、 バイァホール 5、 フレキシブル層 1の導電体回路 1 a及びビ ルドアップ層 3の導電体回路 3 aは、 メツキ層 7により被覆されている。 Through hole 4, via hole 5, flexible layer 1 conductor circuit 1a and via The conductor circuit 3 a of the build-up layer 3 is covered with the plating layer 7.
また、 フレキシブル層 1とコンポジット層 2とは、 ボンディングシ一ト 6を介 して積層され、 またフレキシブル層 1の表層側の表面及びビルドアップ層 3の表 層側の表面は、 それぞれソルダーレジスト 8により所定箇所が被覆されている。 フレキシブル層 1の導電体回路 1 aと、 コンポジット層 2の導電体回路 2 a及 び 2 a, と、 ビルドァップ層 3の導電体回路 3 aとは、 F C B配線基板 Aを貫通 するスル一ホ一ル 4を介してメツキ層 7により電気的に接続されている。  The flexible layer 1 and the composite layer 2 are laminated via a bonding sheet 6, and the surface of the flexible layer 1 on the surface side and the surface of the buildup layer 3 on the surface side are solder resist 8 respectively. A predetermined part is covered with. The conductor circuit 1 a of the flexible layer 1, the conductor circuits 2 a and 2 a of the composite layer 2, and the conductor circuit 3 a of the build-up layer 3 are formed by a through hole passing through the FCB wiring board A. It is electrically connected by a plating layer 7 through a metal layer 4.
また、 コンポジッ ト層 2の導電体回路 2 aと、 ビルドアップ層 3の導電体回路 3 aとは、 ビルドアツプ層 3の絶縁層 3 aに形成されたバイァホール 5を介して メツキ層 7により電気的に接続されている。  In addition, the conductor circuit 2a of the composite layer 2 and the conductor circuit 3a of the build-up layer 3 are electrically connected by the plating layer 7 via the via hole 5 formed in the insulating layer 3a of the build-up layer 3. It is connected to the.
ソルダ一レジスト 8から露呈しているフレキシブル層 1の導電体回路 1 a及び ビルドアツプ層 3のバイァホール 5のメッキ層上には、 電子部品 (図示せず) が 搭載される。  Electronic components (not shown) are mounted on the conductive circuit 1 a of the flexible layer 1 exposed from the solder resist 8 and the plating layer of the via hole 5 of the build-up layer 3.
図 2に示す第 2の実施形態の F C B配線基板 Bは、 コンポジット層 2が、 リジ ッド基板 2 1のビルド了ップ層側の表面のみに導電体回路 2 aが形成されたもの である以外は、 上記の第 1の実施形態の F C B配線基板 Aと同様に構成されてい る。  The FCB wiring board B of the second embodiment shown in FIG. 2 has a composite layer 2 in which a conductor circuit 2a is formed only on the surface of the rigid board 21 on the side of the build-up layer. Except for this, the configuration is the same as that of the FCB wiring board A of the first embodiment.
図 3に示す第 3の実施形態の F C B配線基板 Cは、 ビルド了ップ層 3の絶縁層 3 1の表層側の表面の配線回路パターンが、 メツキ層 7のみにより形成されてい る以外は、 上記の第 1の実施形態の F C B配線基板 Aと同様に構成されている。 図 4に示す第 4の実施形態の F C B配線基板 Dは、 コンポジット層 2が、 リジ ッ ド基板 2 1のビルドアップ層側の表面のみに導電体回路 2 aが形成されたもの である以外は、 上記の第 3の実施形態の F C B配線基板 Cと同様に構成されてい る。  The FCB wiring board C of the third embodiment shown in FIG. 3 has the same structure as that of the third embodiment except that the wiring circuit pattern on the surface layer side of the insulating layer 31 of the build-up layer 3 is formed only by the plating layer 7. The configuration is the same as that of the FCB wiring board A of the first embodiment. The FCB wiring board D of the fourth embodiment shown in FIG. 4 has the same configuration as that of the fourth embodiment except that the composite layer 2 has a conductor circuit 2 a formed only on the surface of the rigid board 21 on the side of the buildup layer. The configuration is the same as that of the FCB wiring board C of the third embodiment.
尚、 上記のフレキシブル基板 1 1、 リジッド基板 2 1、 導電体回路 1 a、 2 a 、 2 a ' 及び 3 a、 ボンディングシート 6、 メツキ層 7及びソルダ一レジスト 8 は、 この種の多層配線基板に通常使用されているものでよく、 それらの形成材ゃ 厚みなどが特に制限されるものではない。 例えば、 フレキシブル基板 1 1として は、 ポリイミ ド樹脂、 ポリエステル樹脂などからなる折り曲げ可能なフィルム材 が用いられ、 厚みは 1 2〜 1 0 0〃 m程度であり、 リジッド基板 2 1としては、 F R— 4、 B Tレジンなどのコンポジット材が用いられ、 厚みは 5 0〜1, 0 0 0 m程度である。 また、上記導電体回路の形成材としては、 銅、 銀、 金、 ニッ ゲル、 クロム、亜鉛、 錫、 白金などが用いられる。 The above-mentioned flexible substrate 11, rigid substrate 21, conductor circuits 1a, 2a, 2a 'and 3a, bonding sheet 6, plating layer 7, and solder resist 8 are a multilayer wiring board of this type. Any of those usually used may be used, and the forming material and thickness thereof are not particularly limited. For example, as the flexible substrate 11, a foldable film material made of polyimide resin, polyester resin, or the like is used. The rigid substrate 21 is made of a composite material such as FR-4 or BT resin, and has a thickness of 50 to 1,000 m. It is about. Further, as a material for forming the conductor circuit, copper, silver, gold, nigel, chromium, zinc, tin, platinum or the like is used.
また、 ビルド了ップ層 3の絶縁層 3 1の形成材としては、 ガラスクロス入り絶 縁材料 (絶縁材料の例: F R _ 4、 F R— 5、 B Tレジン、 ポリイミ ド樹'脂など ) 、 エポキシ樹脂、 ポリイミ ド樹脂、 B Tレジン、 P E Tなどからなるシ一ト材 又はフィルム材が用いられる他、 熱硬化型液状樹脂、 U V硬化型液状樹脂、 フォ トイメ一ジング型液状樹脂などが用いられ、 該絶縁層 3 1の厚みは 8 0 - 1 , 2 0 0 m程度である。  In addition, as a material for forming the insulating layer 31 of the build-up layer 3, an insulating material containing glass cloth (examples of insulating materials: FR_4, FR-5, BT resin, polyimide resin, etc.), In addition to sheet materials or film materials made of epoxy resin, polyimide resin, BT resin, PET, etc., thermosetting liquid resin, UV-curing liquid resin, photo-forming liquid resin, etc. are used. The thickness of the insulating layer 31 is about 80-1 or 200 m.
本発明の F C B配線基板は、 上記の第 1〜第 4の実施形態に限定されるもので はなく、例えば、 必要に応じてコンポジット層を更に多層化した構成としてもよ い。  The FCB wiring board of the present invention is not limited to the above-described first to fourth embodiments, and may have a configuration in which, for example, a composite layer is further multilayered as necessary.
以上のように構成された本発明の F C B配線基板は、 メッキ層が一層であるた め、 F C B配線基板の表裏両面の回路の細線化が容易であり、 且つ F C B配線基 板の表裏両面への小型電子部品の搭載が可能である。 特に、 上記の第 1及び第 2 の実施形態では、 フレキシブル層 1の回路厚 (導電体回路厚とメツキ層厚の合計 厚) と、 ビルドアップ層 3の回路厚が同じであるため、 F C B配線基板の表裏両 面での回路形成可能な最小線幅の設計値を同じにすることができる。 また、 本発 明の F C B配線基板は、 バイァホール内部への樹脂などの充塡が不要である。 次に、 本発明の第 1の製造方法の好ましい一例を、 上記第 1の実施形態の F C B配線基板 Aを製造する工程の一例を説明する図 5に基づいて詳述する。  Since the FCB wiring board of the present invention configured as described above has a single plating layer, it is easy to make the circuit on both the front and back surfaces of the FCB wiring board thin, and the FCB wiring board can be formed on both the front and back surfaces. Small electronic components can be mounted. In particular, in the first and second embodiments described above, since the circuit thickness of the flexible layer 1 (the total thickness of the conductor circuit thickness and the plating layer thickness) and the circuit thickness of the build-up layer 3 are the same, the FCB wiring The design value of the minimum line width on which a circuit can be formed on both the front and back surfaces of the substrate can be made the same. In addition, the FCB wiring board of the present invention does not require filling of the via holes with resin or the like. Next, a preferred example of the first manufacturing method of the present invention will be described in detail with reference to FIG. 5, which illustrates an example of a step of manufacturing the FCB wiring board A of the first embodiment.
図 5に示す実施形態は、 ビルドアップ層 3の絶縁層 3 1の形成材として、 ェポ キシ樹脂、 ポリイミ ド樹脂、 B Tレジンなどからなるボンディングシートを用い た場合の製造例である。  The embodiment shown in FIG. 5 is a production example in which a bonding sheet made of an epoxy resin, a polyimide resin, a BT resin, or the like is used as a forming material of the insulating layer 31 of the build-up layer 3.
まず、 図 5①に示すようなリジッド基板 2 1の両面にそれぞれ所定の導電体回 路 2 a、 2 a ' を形成したコンポジット層 2を作製する。  First, a composite layer 2 having predetermined conductor circuits 2a and 2a 'formed on both surfaces of a rigid substrate 21 as shown in FIG.
コンポジット層 2の導電体回路 2 a、 2 a ' の形成は、 サブトラクティブ法、 アディティブ法、 セミアディティブ法などの公知の方法により行えばよい。 次に、 図 5②に示すように、 フレキシブル基板 1 1の表層側の表面に導電体回 路を形成するための導電体層としての銅范 1 bが積層されたフレキシブル層 1、 ボンディングシート 6、 上記コンポジット層 2、 ビルドアップ層 3の絶縁層を形 成する絶縁性を有するボンディングシート 3 1, 、 ビルドアップ層 3の導電体回 路を形成するための導電体層としての銅箔 3 bを、 この順に配置し、 ラミネート して、 積層板を作製する。 The formation of the conductor circuits 2a and 2a 'in the composite layer 2 may be performed by a known method such as a subtractive method, an additive method, and a semi-additive method. Next, as shown in FIG. 5②, a flexible layer 1 having a copper layer 1b as a conductor layer for forming a conductor circuit on the surface of the flexible substrate 11 on the surface layer side, a bonding sheet 6, A bonding sheet 31 having an insulating property to form an insulating layer of the composite layer 2 and the build-up layer 3, and a copper foil 3 b as a conductor layer for forming a conductor circuit of the build-up layer 3 are used. Then, they are arranged in this order and laminated to produce a laminate.
フレキシブル層 1とコンポジット層 2とは、 ボンディングシ一ト 6により接着 し、 またコンポジット層 2とビルドアッフ層 3とは、 絶縁 を有するボンディン グシ一ト 3 Γ により接着する。 また、 上記ボンディングシ一ト 6は、 不要部分 をく り抜いた穴あきシ一トとしてある。  The flexible layer 1 and the composite layer 2 are bonded by a bonding sheet 6, and the composite layer 2 and the build-up layer 3 are bonded by a bonding sheet 3 having insulation. The bonding sheet 6 is a perforated sheet in which unnecessary portions are cut out.
次いで、 図 5③に示すように、 上記積層板の所定箇所にスルーホール 4を形成 する。  Next, as shown in Fig. 5③, through holes 4 are formed at predetermined positions of the laminated plate.
該スルーホール 4の形成は、 公知の手段、例えばドリル穿孔、 レーザ穿孔、 ェ ッチングなどにより行えばよい。  The formation of the through hole 4 may be performed by a known means, for example, drilling, laser drilling, etching, or the like.
次いで、 図 5④に示すように、 上記積層板のビルドアツプ層 3の所定箇所にバ ィァホール 5を形成する。  Next, as shown in FIG. 5B, a via hole 5 is formed at a predetermined position of the build-up layer 3 of the laminate.
該バイァホール 5の形成は、 上記スルーホール 4の形成と同様の手段で行えば よい。  The formation of the via hole 5 may be performed by the same means as the formation of the through hole 4.
次いで、 図 5⑤に示すように、 上記スルーホール 4、 上記バイァホール 5、上 記フレキシブル層 1の導電体層 (銅箔) 1 b及び上記ビルドアップ層 3の導電体 層 (銅箔) 3 bをメツキ層 7で被覆する。  Next, as shown in FIG. 5⑤, the through hole 4, the via hole 5, the conductor layer (copper foil) 1b of the flexible layer 1 and the conductor layer (copper foil) 3b of the build-up layer 3 are removed. Cover with plating layer 7.
該メツキ層 7の形成は、 無電解メツキ、 蒸着などの公知の手段により行えばよ い。  The plating layer 7 may be formed by a known means such as electroless plating or vapor deposition.
上記メッキ層 7により、 フレキシブル層 1の導電体層 1 bと、 コンポジット層 2の導電体回路 2 a及び 2 a, と、 ビルドアップ層 3の導電体層 3 bとが、 上記 スル一ホール 4のメツキ層 7により電気的に接続され、 またコンポジット層 2の 導電体回路 2 aと、 ビルドアツプ層 3の導電体層 3 bとが、 上記バイァホール 5 のメツキ層 7により電気的に接続される。  By the plating layer 7, the conductor layer 1 b of the flexible layer 1, the conductor circuits 2 a and 2 a of the composite layer 2, and the conductor layer 3 b of the build-up layer 3, The conductive circuit 2 a of the composite layer 2 and the conductive layer 3 b of the build-up layer 3 are electrically connected by the plating layer 7 of the via hole 5.
次いで、 図 5⑥に示すように、 上記メッキ層 7が形成された、 上記フレキシブ ル層 1の導電体層 1 b及び上記ビルドアツプ層 3の導電体層 3 bを、 それぞれ、 所定の配線回路パターンに形成し、 導電体回路 1 a及び導電体回路 3 aを作製す る。 Next, as shown in FIG. 5⑥, the above-mentioned flexible The conductor layer 1b of the metal layer 1 and the conductor layer 3b of the build-up layer 3 are formed in predetermined wiring circuit patterns, respectively, to produce the conductor circuit 1a and the conductor circuit 3a.
上記導電体層 1 b及び 3 bの配線回路パターンの形成は、 感光性エッチングレ ジスト膜を用い、 エッチングにより配線部分以外の導電体を削除する方法などに より行われる。  The formation of the wiring circuit patterns of the conductor layers 1b and 3b is performed by using a photosensitive etching resist film and removing the conductor other than the wiring portion by etching.
次いで、 図 5⑦に示すように、 上記配線回路パターンが形成された上記フレキ シブル層 1及び上記ビルドアップ層 3のそれぞれの所定箇所を、 ソルダ一レジス ト 8によって被覆する。  Next, as shown in FIG. 5A, predetermined portions of the flexible layer 1 and the build-up layer 3 on which the wiring circuit patterns are formed are covered with a solder register 8.
該被覆後、 図 5⑧に示すように、 コンポジット層 2及びビルドアップ層 3の不 要部分をドリル加工、 レーザ加工、 エッチングなどにより削除し、 第 1の実施形 態の F C B配線基板 Aを得る。  After the coating, unnecessary portions of the composite layer 2 and the build-up layer 3 are removed by drilling, laser processing, etching, or the like, as shown in FIG. 5A, to obtain the FCB wiring board A of the first embodiment.
本発明の第 1の製造方法は、 図 5に示す実施形態に制限されるものではなく、 例えば、 フレキシブル層 1の導電体回路 1 a及びビルドアツプ層 3の導電体回路 3 aは、 メツキ層 7の形成後ではなく、 コンポジット層 2と積層する際に予め形 成しておいてもよく、 またスルーホール 4の形成及びバイァホール 5の形成は、 何れを先に行っても構わない。  The first manufacturing method of the present invention is not limited to the embodiment shown in FIG. 5. For example, the conductor circuit 1 a of the flexible layer 1 and the conductor circuit 3 a of the build-up layer 3 It may be formed before lamination with the composite layer 2 instead of after the formation of the through-hole 4, and the formation of the through-hole 4 and the formation of the via-hole 5 may be performed first.
本発明の第 1の製造方法によれば、 フレキシブル層 1及びビルドアツプ層 3の 表面へのメツキが 1回であり、 フレキシブル層 1の回路厚 (導電体回路厚とメッ キ層厚の合計厚) と、 ビルドアップ層 3の回路厚が同じとなり、 またスル一ホー ル 4とバイァホール 5のメツキを同時に行うことができるため、 F C B配線基板 の表裏両面での回路形成可能な最小線幅の設計値を同じにすることができる。 ま た、 ビルドアップ層 3とコンポジット層 2との接続を、 ビルドアップ層 3の絶縁 層 3 1に形成したバイァホール 5により行うことができるため、 バイァホール内 部への樹脂などの充填が不要である。  According to the first manufacturing method of the present invention, the plating on the surfaces of the flexible layer 1 and the build-up layer 3 is performed once, and the circuit thickness of the flexible layer 1 (the total thickness of the conductor circuit thickness and the plating layer thickness) Since the circuit thickness of the build-up layer 3 is the same and the plating of the through hole 4 and the via hole 5 can be performed simultaneously, the design value of the minimum line width that can form a circuit on both the front and back sides of the FCB wiring board Can be the same. Also, since the connection between the build-up layer 3 and the composite layer 2 can be performed by the via hole 5 formed in the insulating layer 31 of the build-up layer 3, there is no need to fill the inside of the via hole with resin or the like. .
次に、 本発明の第 2の製造方法の好ましい一例を、 上記第 3の実施形態の F C B配線基板 Cを製造する工程の一例を説明する図 6に基づいて詳述する。  Next, a preferable example of the second manufacturing method of the present invention will be described in detail with reference to FIG. 6, which illustrates an example of a process of manufacturing the FCB wiring board C of the third embodiment.
図 6に示す実施形態は、 ビルドアップ層 3の絶縁層 3 1の形成材として、 熱硬 化型液状樹脂、 U V硬化型液状樹脂、 フォトィメ一ジング型液状樹脂などの硬化 型液状樹脂を用いた場合の製造例である。 In the embodiment shown in FIG. 6, as a material for forming the insulating layer 31 of the build-up layer 3, a thermosetting liquid resin, a UV-curable liquid resin, a photo-imaging liquid resin, or the like is used. This is a production example when a mold liquid resin is used.
まず、 両面に導電体回路を形成するための導電体層としての銅箔 bが積層さ れたリジッド基板 2 1のフレキシブル層側の表面の銅箔を、 所定の配線回路パ夕 —ンに形成して導電体回路 2 a, となした図 6①に示すようなコンポジット層 2 を作製する。  First, the copper foil on the flexible layer side of the rigid board 21 on which the copper foil b as the conductor layer for forming the conductor circuit is formed on both surfaces is formed in a predetermined wiring circuit pattern. Then, a composite layer 2 as shown in Fig. 6 (2), which is a conductor circuit 2a, is formed.
コンポジット層 2の導電体回路 2 a ' の形成は、 感光性エッチングレジスト膜 を用い、 エッチングにより配線部分以外の導電体を削除する方法などにより行わ れる。  The formation of the conductor circuit 2 a ′ of the composite layer 2 is performed by a method of removing a conductor other than the wiring portion by etching using a photosensitive etching resist film.
次に、 図 6②に示すように、 フレキシブル基板 1 1の表層側の表面に導電体回 路を形成するための導電体層としての銅箔 1 bが積層されたフレキシブル層 1、 ボンディングシ一ト 6、 上記コンポジット層 2を、 この順に配置し、 ラミネート して、 積層板を作製する。  Next, as shown in FIG. 6②, a flexible layer 1 in which a copper foil 1 b as a conductor layer for forming a conductor circuit is laminated on the surface of the flexible substrate 11 on the surface layer side, and a bonding sheet. 6. The composite layers 2 are arranged in this order and laminated to produce a laminate.
フレキシブル層 1 とコンポジット層 2とは、 ボンディングシ一ト 6により接着 する。 また、 上記ボンディングシート 6は、 不要部分をく り抜いた穴あきシート としてある。  The flexible layer 1 and the composite layer 2 are bonded by a bonding sheet 6. The bonding sheet 6 is a perforated sheet in which unnecessary portions are cut out.
次いで、 図 6③に示すように、 リジッド基板 2 1のビルドアツプ層側の表面の 銅箔を、 導電体回路 2 a ' の形成方法と同様な方法により所定の配線回路パター ンに形成し、 導電体回路 2 aを作製する。  Next, as shown in Fig. 6③, the copper foil on the surface of the rigid board 21 on the side of the build-up layer is formed in a predetermined wiring circuit pattern by the same method as the method of forming the conductor circuit 2a '. Circuit 2a is produced.
次いで、 図 6④に示すように、 上記コンポジット層 2のビルドアツプ層側の表 面に、 ビルドアツプ層 3の絶縁層 3 1を形成する。  Next, as shown in FIG. 6A, the insulating layer 31 of the build-up layer 3 is formed on the surface of the composite layer 2 on the side of the build-up layer.
ビルドアップ層 3の絶縁層 3 1の形成は、 上記硬化型液状樹脂を塗布し、 硬化 させることにより行われる。  The formation of the insulating layer 31 of the build-up layer 3 is performed by applying and curing the above-mentioned curable liquid resin.
次いで、 図 6⑤に示すように、 上記ビルドアップ層 3の絶縁層 3 1の所定箇所 にバイァホール 5を形成する。  Next, as shown in FIG. 6A, via holes 5 are formed at predetermined locations in the insulating layer 31 of the build-up layer 3.
該バイァホール 5の形成は、 公知の手段、例えばドリル穿孔、 レーザ穿孔、 ェ ツチングなどにより行えばよい。  The formation of the via hole 5 may be performed by a known means, for example, drilling, laser drilling, or etching.
次いで、 図 6⑥に示すように、 上記絶縁層 3 1が形成された積層板の所定箇所 にスルーホール 4を形成する。  Next, as shown in FIG. 6A, a through hole 4 is formed at a predetermined position of the laminate on which the insulating layer 31 is formed.
該スルーホール 4の形成は、 上記バイァホール 5の形成と同様の手段で行えば よい。 The formation of the through hole 4 can be performed by the same means as the formation of the via hole 5. Good.
次いで、 図 6⑦に示すように、上記スルーホール 4、 上記バイァホール 5、 上 記フレキシブル層 1の導電体層 (銅箔) 1 b及び上記ビルドアップ層 3の絶縁層 Next, as shown in FIG. 6⑦, the through-hole 4, the via-hole 5, the conductor layer (copper foil) 1b of the flexible layer 1 and the insulating layer of the build-up layer 3
3 1をメツキ層 7で被覆する。 3 1 is covered with a plating layer 7.
該メツキ層 7の形成は、 無電解メツキ、 蒸着などの公知の手段により行えばよ い。  The plating layer 7 may be formed by a known means such as electroless plating or vapor deposition.
上記メツキ層 7により、 フレキシブル層 1と、 コンポジット層 2と、 ビルドア ップ層 3とが、 電気的に接続される。  The flexible layer 1, the composite layer 2, and the build-up layer 3 are electrically connected by the plating layer 7.
次いで、 図 6⑧に示すように、上記フレキシブル層 1の導電体層 1 b及びメッ キ層 7、 並びに上記ビルドアップ層 3のメツキ層 7を、 それぞれ、 所定の配線回 路パターンに形成し、 導電体回路 1 a及び導電体回路 3 aを作製する。  Next, as shown in FIG. 6A, the conductor layer 1b and the plating layer 7 of the flexible layer 1 and the plating layer 7 of the build-up layer 3 are formed in a predetermined wiring circuit pattern, respectively. The body circuit 1a and the conductor circuit 3a are produced.
該配線回路ノ、。ターンの形成は、 感光性ェッチングレジスト膜を用い、 エツチン グにより配線部分以外の導電体を削除する方法などにより行われる。  The wiring circuit; The formation of the turns is performed by using a photosensitive etching resist film and removing a conductor other than the wiring portion by etching.
次いで、 図 6⑨に示すように、上記配線回路パターンが形成された上記フレキ シブル層 1及び上記ビルドアップ層 3のそれぞれの所定箇所を、 ソルダーレジス ト 8によって被覆する。  Next, as shown in FIG. 6A, a predetermined portion of each of the flexible layer 1 and the build-up layer 3 on which the wiring circuit pattern is formed is covered with a solder resist 8.
該被覆後、 図 6⑩に示すように、 コンポジット層 2及びビルドアップ層 3の不 要部分をドリル加工、 レーザ加工、 エッチングなどにより削除し、 第 3の実施形 態の F C B配線基板 Cを得る。  After the coating, unnecessary portions of the composite layer 2 and the build-up layer 3 are removed by drilling, laser processing, etching, or the like, as shown in FIG. 6C, to obtain the FCB wiring board C of the third embodiment.
本発明の第 2の製造方法は、 図 6に示す実施形態に制限されるものではなく、 例えば、 コンポジット層 2の導電体回路 2 aの形成は、 導電体回路 2 a, の形成 時に行ってもよく、 またスルーホール 4の形成及びバイァホール 5の形成は、 何 れを先に行つても構わない。  The second manufacturing method of the present invention is not limited to the embodiment shown in FIG. 6. For example, the formation of the conductor circuit 2a of the composite layer 2 is performed at the time of forming the conductor circuit 2a. The formation of the through hole 4 and the formation of the via hole 5 may be performed in any order.
本発明の第 2の製造方法によれば、 フレキシブル層 1及びビルド了ップ層 3の 表面へのメツキが 1回であるため、 F C B配線基板の表裏両面の回路の細線化が 容易であり、 また、 ビルドアップ層 3とコンポジット層 2との接続を、 ビルドア ップ層 3の絶縁層 3 1に形成したバイァホール 5により亍ぅことができるため、 バイァホール内部への樹脂などの充填が不要である。 産業上の利用可能性 According to the second manufacturing method of the present invention, since the surface of the flexible layer 1 and the build-up layer 3 have only one plating, the circuit on both the front and back sides of the FCB wiring board can be easily thinned, In addition, since the connection between the build-up layer 3 and the composite layer 2 can be established by the via hole 5 formed in the insulating layer 31 of the build-up layer 3, there is no need to fill the inside of the via hole with resin or the like. . Industrial applicability
本発明によれば、 配線密度を向上させ、 配線基板の表裏両面への小型電子部品 の搭載を可能にし、 且つバイァホール内部への樹脂などの充塡が不要となり、 収 率が飛躍的に向上し得る、 フレキシブル部及びリジツド部を有する多層配線基板 及びその製造方法を提供することができる。  According to the present invention, the wiring density is improved, small electronic components can be mounted on both the front and back surfaces of the wiring board, and it is not necessary to fill the inside of the via hole with resin or the like, and the yield is dramatically improved. Thus, it is possible to provide a multilayer wiring board having a flexible portion and a rigid portion, and a method of manufacturing the same.

Claims

請 求 の 範 囲 The scope of the claims
1 . リジッド基板及び該リジッド基板の少なくともビルドアツプ層側の表面に 形成された導電体回路からなるコンポジット層を中間層とし、 上記コンポジット 層の一方の面に、 フレキシブル基板及び該フレキシブル基板の表層側の表面に形 成された導電体回路からなるフレキシブル層が積層され、 上記コンポジット層の 他方の面に、 絶縁層及び該絶縁層の表層側の表面に形成された導電体回路からな るビルドアップ層が積層されている層構造を有する多層配線基板であって、 上記 フレキシブル層の導電体回路、 上記コンポジット層の導電体回路及び上記ビルド 了ップ層の導電体回路が、上記多層配線基板を貫通するスルーホールを介して電 気的に接続され、 上記コンポジット層の導電体回路と上記ビルドアップ層の導電 体回路が、 上記ビルドアップ層に形成されたバイァホールを介して電気的に接続 されている、 フレキシブル'コンポジット · ビルドアップ多層配線基板。 1. A rigid substrate and a composite layer composed of a conductor circuit formed on at least the surface of the rigid substrate on the side of the build-up layer are used as an intermediate layer, and one surface of the composite layer is provided with a flexible substrate and a surface of the flexible substrate on the surface side of the flexible substrate. A flexible layer composed of a conductor circuit formed on the surface is laminated, and a build-up layer composed of an insulating layer and a conductor circuit formed on the surface of the insulating layer on the other surface of the composite layer Wherein the conductor circuit of the flexible layer, the conductor circuit of the composite layer, and the conductor circuit of the build-up layer penetrate the multilayer wiring board. Are electrically connected through a through-hole, and the conductor circuit of the composite layer and the conductor circuit of the build-up layer are Through Baiahoru formed serial buildup layer are electrically connected, a flexible 'composite built-up multilayer wiring board.
2 . 上記コンポジット層が、 リジッド基板の両面に導電体回路が形成されたも のである請求項 1記載のフレキシブル 'コンポジット · ビルドアップ多層配線基 板。 2. The flexible composite build-up multilayer wiring board according to claim 1, wherein the composite layer has conductor circuits formed on both surfaces of a rigid substrate.
3 . 上記コンポジット層が、 リジッド基板のビルドアツプ層側の表面のみに導 電体回路が形成されたものである請求項 1記載のフレキシブル 'コンポジット · ビルドアップ多層配線基板。 3. The flexible composite build-up multilayer wiring board according to claim 1, wherein the composite layer has a conductor circuit formed only on the surface of the rigid board on the side of the build-up layer.
4 . リジッ ド基板の少なくともビルドアップ層側の表面に所定の導電体回路を 形成してコンポジット層を作製する工程、 フレキシブル層の導電体回路を形成す るための導電体層、 フレキシブル基板、 上記コンポジット層、 ビルドアップ層の 絶縁層、 ビルドアップ層の導電体回路を形成するための導電体層の順の層構造を 有する積層板を作製する工程、上記積層板にスルーホールを形成する工程、 上記 ビルドアップ層にバイァホールを形成する工程、 上記スルーホール、 上記バイァ ホール、 上記フレキシブル層の導電体層及び上記ビルド了ップ層の導電体層にメ ツキ層を被覆する工程、 上記フレキシブル層の導電体層及びメツキ層、 並びに上 記ビルドアップ層の導電体層及びメツキ層をそれぞれ所定の配線回路パターンに 形成する工程、上記配線回路パターンが形成された上記フレキシブル層及び上記 ビルドアツブ層のそれぞれの所定箇所を、 ソルダ一レジストによって被覆するェ 程を有する、 フレキシブル'コンポジット · ビルドアップ多層配線基板の製造方 法。 4. A step of forming a predetermined conductive circuit on at least the surface of the rigid substrate on the build-up layer side to form a composite layer; a conductive layer for forming a conductive circuit of a flexible layer; a flexible substrate; A step of producing a laminate having a layer structure of a composite layer, an insulating layer of a build-up layer, and a conductor layer for forming a conductor circuit of the build-up layer; a step of forming a through hole in the laminate; Forming a via hole in the build-up layer, forming a via hole in the through-hole, the via hole, the conductor layer of the flexible layer, and the conductor layer of the build-up layer. Forming a conductive layer and a plating layer of the flexible layer, and forming a conductive layer and a plating layer of the build-up layer into a predetermined wiring circuit pattern; and forming the wiring circuit pattern. A method of manufacturing a flexible 'composite / build-up multilayer wiring board, comprising a step of coating predetermined portions of the flexible layer and the build-up layer with a solder resist.
5 . フレキシブル基板の表層側の表面に導電体回路を形成するための導電体層 を有するフレキシブル層と、 リジッド基板の少なくともビルドアップ層側の表面 に導電体回路を有するコンポジット層とからなる積層板を作製する工程、 上記コ ンポジット層のビルドアップ層側の表面に、 ビルドアップ層の絶縁層を形成する 工程、 上記絶縁層にバイァホールを形成する工程、 上記絶縁層の形成された上記 積層板にスルーホールを形成する工程、 上記スルーホール、 上記バイァホ一ル、 上記フレキシブル層の導電体層及び上記ビルド了ップ層の絶縁層にメツキ層を被 覆する工程、 上記フレキシブル層の導電体層及びメツキ層、 並びに上記ビルドア ップ層のメツキ層をそれぞれ所定の配線回路パターンに形成する工程、 上記配線 回路パターンが形成された上記フレキシブル層及び上記ビルドアップ層のそれぞ れの所定箇所を、 ソルダ一レジストによって被覆する工程を有する、 フレキシブ ル ·コンポジット · ビルドアップ多層配線基板の製造方法。 5. Laminated plate composed of a flexible layer having a conductor layer for forming a conductor circuit on the surface side of the flexible substrate and a composite layer having a conductor circuit on at least the surface of the rigid substrate on the build-up layer side Forming an insulating layer of a build-up layer on the surface of the composite layer on the side of the build-up layer; forming a via hole in the insulating layer; Forming a through hole, covering the through hole, the via hole, the conductive layer of the flexible layer and the insulating layer of the build-up layer with a plating layer, Forming the plating layer and the plating layer of the build-up layer into a predetermined wiring circuit pattern, respectively; The flexible layer down is formed and a predetermined portion of their respective of the build-up layer has a step of coating by solder one resist Furekishibu Le composite build-up multilayer wiring board manufacturing method of.
PCT/JP2004/006049 2003-04-28 2004-04-27 Multilayer printed wiring board and method for manufacturing same WO2004098257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003124460A JP2004349277A (en) 2003-04-28 2003-04-28 Multilayer wiring board and its production process
JP2003-124460 2003-04-28

Publications (1)

Publication Number Publication Date
WO2004098257A1 true WO2004098257A1 (en) 2004-11-11

Family

ID=33410164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006049 WO2004098257A1 (en) 2003-04-28 2004-04-27 Multilayer printed wiring board and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2004349277A (en)
WO (1) WO2004098257A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417311C (en) * 2005-02-18 2008-09-03 友达光电股份有限公司 Pressure welding structure and manufacturing method of flexible printed circuit board
JP2009290193A (en) * 2008-04-28 2009-12-10 Cmk Corp Rigid flexible multilayer printed wiring board and its production method
CN101675716B (en) * 2007-05-14 2012-09-05 揖斐电株式会社 Wiring board and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799349B2 (en) * 2006-09-29 2011-10-26 株式会社フジクラ Power distribution device and manufacturing method thereof
CN101675717B (en) * 2007-05-14 2012-12-19 揖斐电株式会社 Wiring board and method of manufacturing the same
US8648263B2 (en) 2007-05-17 2014-02-11 Ibiden Co., Ltd. Wiring board and method of manufacturing wiring board
US8669480B2 (en) 2007-05-17 2014-03-11 Ibiden Co., Ltd. Wiring board and method of manufacturing wiring board
WO2009011024A1 (en) * 2007-07-13 2009-01-22 Ibiden Co., Ltd. Wiring board and manufacturing method thereof
JP5010681B2 (en) * 2007-07-13 2012-08-29 イビデン株式会社 Wiring board and manufacturing method thereof
US8178789B2 (en) 2007-07-17 2012-05-15 Ibiden Co., Ltd. Wiring board and method of manufacturing wiring board
CN103906376A (en) * 2012-12-28 2014-07-02 富葵精密组件(深圳)有限公司 Flexible circuit board and manufacturing method thereof
JP2015162626A (en) * 2014-02-28 2015-09-07 エルナー株式会社 Printed wiring board and manufacturing method of the same
KR101576840B1 (en) * 2014-08-06 2015-12-11 대덕지디에스 주식회사 A rigid-flexible circuit board and manufacturing method thereof
KR102345112B1 (en) * 2019-12-16 2021-12-30 삼성전기주식회사 Printed circuit board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590757A (en) * 1991-09-26 1993-04-09 Sharp Corp Multilayer flexible printed wiring board
JPH06244554A (en) * 1993-02-15 1994-09-02 Mitsubishi Electric Corp Multilayered wiring substrate and its manufacture
JPH0837380A (en) * 1994-07-21 1996-02-06 Hitachi Chem Co Ltd Multilayred wiring board with terminal
JPH0837373A (en) * 1994-07-21 1996-02-06 Hitachi Chem Co Ltd Film bridging multilayered wiring board and its manufacture
JP2001111216A (en) * 1999-10-05 2001-04-20 Sharp Corp Flexible printed wiring board and manufacturing method thereof
JP2003031950A (en) * 2001-07-12 2003-01-31 Sony Corp Multilayered wiring board and manufacturing method therefor
JP2003115665A (en) * 2001-10-02 2003-04-18 Nippon Mektron Ltd Method for manufacturing printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590757A (en) * 1991-09-26 1993-04-09 Sharp Corp Multilayer flexible printed wiring board
JPH06244554A (en) * 1993-02-15 1994-09-02 Mitsubishi Electric Corp Multilayered wiring substrate and its manufacture
JPH0837380A (en) * 1994-07-21 1996-02-06 Hitachi Chem Co Ltd Multilayred wiring board with terminal
JPH0837373A (en) * 1994-07-21 1996-02-06 Hitachi Chem Co Ltd Film bridging multilayered wiring board and its manufacture
JP2001111216A (en) * 1999-10-05 2001-04-20 Sharp Corp Flexible printed wiring board and manufacturing method thereof
JP2003031950A (en) * 2001-07-12 2003-01-31 Sony Corp Multilayered wiring board and manufacturing method therefor
JP2003115665A (en) * 2001-10-02 2003-04-18 Nippon Mektron Ltd Method for manufacturing printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417311C (en) * 2005-02-18 2008-09-03 友达光电股份有限公司 Pressure welding structure and manufacturing method of flexible printed circuit board
CN101675716B (en) * 2007-05-14 2012-09-05 揖斐电株式会社 Wiring board and method of manufacturing the same
JP2009290193A (en) * 2008-04-28 2009-12-10 Cmk Corp Rigid flexible multilayer printed wiring board and its production method

Also Published As

Publication number Publication date
JP2004349277A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
KR100834591B1 (en) Double sided wiring board, double sided wiring board manufacturing method, and multilayer wiring board
US7377033B2 (en) Method of making circuitized substrate with split conductive layer and information handling system utilizing same
JP4538486B2 (en) Multilayer substrate and manufacturing method thereof
US20120012379A1 (en) Printed circuit board
US7381587B2 (en) Method of making circuitized substrate
JP2006165496A (en) Parallel multi-layer printed board having inter-layer conductivity through via post
JP4768059B2 (en) Multilayer flexible printed wiring board
WO2004098257A1 (en) Multilayer printed wiring board and method for manufacturing same
JP2006049793A (en) Parallel system manufacturing method of printed circuit board
JP3892209B2 (en) Printed wiring board and manufacturing method thereof
JP4602783B2 (en) Manufacturing method of rigid flex buildup wiring board
KR100716809B1 (en) A PCB using the ACF and manufacturing method thereof
JP2009010266A (en) Printed circuit board and method of manufacturing same
US20030047355A1 (en) Printed wiring board with high density inner layer structure
JP5022750B2 (en) Multilayer printed wiring board
EP1631134B1 (en) Multilayer circuit board and method of producing the same
JP2005109299A (en) Multilayer wiring board and its manufacturing method
JPH01140698A (en) Manufacture of multi-layered printed circuit board
JP3535509B2 (en) Manufacturing method of printed wiring board
JP2001308532A (en) Printed wiring board and manufacture thereof
KR20030071112A (en) Build-up printed circuit board and process for making the same
CN116528456A (en) Wiring substrate
CN117336940A (en) Wiring substrate
JP2000091754A (en) Multi-layer circuit board and manufacture of it
JP2003133728A (en) Multi-layer wiring substrate and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application