WO2004094434A2 - Titanium chelate dispersions - Google Patents
Titanium chelate dispersions Download PDFInfo
- Publication number
- WO2004094434A2 WO2004094434A2 PCT/US2004/012563 US2004012563W WO2004094434A2 WO 2004094434 A2 WO2004094434 A2 WO 2004094434A2 US 2004012563 W US2004012563 W US 2004012563W WO 2004094434 A2 WO2004094434 A2 WO 2004094434A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dispersion
- stabilizer
- titanium chelate
- polymer
- produce
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G79/00—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
Definitions
- This invention relates to a composition and a process therefor, in which the composition comprises a stable aqueous polymeric dispersion of titanium chelates.
- the polymers of chelated titanium orthoesters with water have a number of industrial uses. They are valuable in a variety of applications such as in pigments, catalysts, and surface modifiers.
- the term "polymer” refers to both lower molecular weight oligomers and higher molecular weight polymers.
- the polymers made by reacting titanium chelates with water are typically solid materials, which makes them difficult to prepare and use without specialized solids processing equipment. For many applications, a ready-made aqueous dispersion of such polymers would be preferable and easier to manufacture and handle, but generally the solid polymers quickly settle out of the water. This results in multiple layers and settled solids, which can be very difficult to resuspend and distribute uniformly throughout the water. A uniform distribution is necessary for uniform feeding to a continuous or multi-batch process.
- JP 53036449, JP 530364450, JP 1999293171, JP 48034132, US 3694475, US 4313851, US 4609746, US 5423380, US 5478802, US 4861500, US 4749040, and US 4470915 disclose titanium chelate polymers and/or dispersions thereof. However, none discloses how to stabilize such a suspension in water, especially alcohol-free.
- a composition comprises a titanium chelate polymer and a stabilizer in which the polymer comprises repeat units derived from a titanium chelate.
- a process comprises (1) contacting a tetraalkyl titanate with a chelating agent to produce a product mixture comprising a titanium chelate and an alcohol; (2) contacting the product mixture with water under a condition effective to produce a dispersion of a titanium chelate polymer; (3) optionally reducing the alcohol content in the dispersion of titanium chelate polymer; and (4) contacting the dispersion with a stabilizing amount of a stabilizer to produce a stable dispersion of titanium chelate polymer.
- stable dispersion refers to a dispersion or suspension that remains substantially soluble or dispersible or suspended, or does not form a hardened or cemented settled solid layer, in a liquid, preferably aqueous, and more preferably water at about 25°C for at least 1 day, preferably at least 3 days, and more preferably at least 5 days.
- the term further refers to a dispersion or suspension comprising suspended or dispersed solids that, upon settlement, are easily re-dispersed or resuspended.
- the dispersion preferably contains about 1 to about 75%, about 5 to about 75%, more preferably 10 to 50% by weight of the polymer. These dispersions preferably do not settle readily and are easily redispersed.
- the number of repeat units can be from 2 to about 2000.
- titanium chelate polymer refers to a polymer comprising repeat units derived from a titanium chelate having the formula of TiX m (OR) n , where X is a radical derived from a chelating agent, m represents an average of the integral numbers which individually range from 0 and to 2 but at least one m that cannot be 0, and n represents an average of the integral numbers which range from 2 to 4; and R is independently H, or an alkyl or aryl group which may be further substituted.
- this polymer generally comprises one or more repeat units selected from the formula selected from the group consisting of TiX 2 O, TiX 2 (OR)O, TiX(O) 2 , TiX(OR)O, TiX(OR) 2 O, Ti(O) 2 , Ti(OR)(O) 2 , and Ti(OR) 2 (O) 2 .
- the polymer may also contain unpolymerized monomers or intermediates such as, for example, Ti(X) 2 (OR) 2 , TiX(OR) 3 , Ti(OR) 4 , and units arising from other reactive species present during the polymerization.
- a preferred chelating agent is an organic 1,3-dicarbonyl compound such as a diketone, a diester, a ketoester, and combinations of two or more thereof.
- a radical derived from any 1,3-diketone can be used.
- the preferred diketones include, but are not limited to, 2,4-pentanedione, 1,4-hexanedione, 1,3-pentanedione, 2,4- hexanedione, dipivaloyl methane, or combinations of two or more thereof.
- a radical derived from any 1,3 -diester can be used.
- the preferred diesters include, but are not limited to, dimethyl malonate, diethyl malonate, or combinations thereof.
- a radical derived from any 1,3-ketoester can be used.
- the preferred ketoester include, but are not limited to, methyl acetoacetate, ethyl acetoacetate, isopropyl acetoacetate, butyl acetoacetate, and combinations of two or more thereof.
- the most preferred chelating agent is 2,4-pentanedione, ethyl acetoacetate, or combinations thereof. Especially preferred are those in which X is an acetylacetonato group and m averages about 2.
- titanium chelate polymers include, but are not limited to, oxybis(2,4-pentanedionato)titanium homopolymer, oxybis(2,4- hexanedionato)titanium polymer, oxybis(2,2,6,6-tetramethyl-3,5- heptanedionato)titanium homopolymer, oxybis(diethylmalonato)titanium homopolymer, oxybis(ethyl 3-oxobutanoato-O ,O3)titanium homopolymer, and combinations of two or more thereof.
- any compounds that, when combined with a titanium chelate polymer disclosed above, produce a stable dispersion of a titanium chelate polymer can be a stabilizer.
- stabilizers include hydroxy carboxylic acids, alkoxylated (for example, ethoxylated) quaternary ammonium salts, aminocarboxylic acid, alkanolamines, inorganic phosphate salts, or combinations of two or more thereof.
- hydroxy carboxylic acids include citric acid, lactic acid, glycolic acid, tartaric acid, malic acid, or combinations of two or more thereof.
- suitable alkoxylated quaternary ammonium salts include E-sperse 100 ® , available from Ethox Chemicals Co.
- alkanolamines include ethanolamine, diethanolamine, triethanolamine, or combinations of two or more thereof.
- aminocarboxylic acid include tetrahydroxyisopropylethylenediamine, glycine, bis-hydroxyethyl glycine, hydroxyethyl glycine, or combinations of two or more thereof.
- inorganic phosphorus-containing salts include tetrapotassium pyrophosphate, potassium tripolyphosphate, sodium tripolyphosphate, potassium tetra phosphate, sodium pentapolyphosphate, sodium hexapolyphosphate, potassium pyrophosphate, potassium pyrophosphite, sodium pyrophosphate, sodium pyrophosphate decahydrate, sodium pyrophosphite, ethyl phosphonate, propyl phosphonate, hydroxymethyl phosphonate, di(polyoxyethylene) hydroxymethyl phosphonate, methylphosphonoacetate, ethyl methylphosphonoacetate, methyl ethylphosphonoacetate, ethyl ethylphosphoiioacetate, propyl dimethylphosphonoacetate, methyl diethylphosphonoacetate, triethyl phosphonoacetate, or combinations of two or more thereof.
- stabilizers may also be used, as readily determined by, for example, simply mixing them with a titanium chelate polymer composition slurry.
- the preferred stabilizers are hydroxy carboxylic acids.
- the most preferred stabilizer is citric acid.
- the above dispersions may optionally contain other components such as nonionic, cationic, or anionic surfactants, in the range of from about 0.001 to about 50 percent by weight of the dispersion.
- a stabilizing amount of the stabilizer can be present in a composition.
- the term "stabilizing amount” means an amount that can produce a stable dispersion disclosed above and can range from about 0.001%> to about 20%, preferably about 0.01% to about 10%, more preferably 0.01% to 5%, and most preferably 0.05% to 2%, by weight relative to the weight of aqueous dispersion.
- the titanium chelate polymer may readily be produced by any means known to one skilled in the art.
- the polymer is produced by reacting water with a titanium chelate having the general formula TiX m (OR) n , wherein R, X, m and n are the same as those disclosed above.
- titanium chelates examples include dibutoxybis(2,4-pentanedionato)titanium, dipropoxybis(2,4-pentanedionato)titanium, diisopropoxybis(2,4-pentanedionato)titanium, diethoxybis(2,4- pentanedionato)titanium, dibutoxybis(ethyl 3 -oxobutanoato-01 ' ,O3)titanium, dipropoxybis(ethyl 3-oxobutanoato-O ,O3)titanium, diisopropoxybis(ethyl 3- oxobutanoato-Ol ',O3)titanium, diethoxybis(ethyl 3-oxobutanoato-Or,O3)titanium, dibutoxybis(2,2,6,6-tetramethyl-3,5-heptanedionato)titanium, dipropoxybis(2,2,2,
- X is an acetylacetonato group and m averages about 2.
- X is an acetylacetonato group and m averages about 2.
- Tyzor ® AA a propanol solution of titanium acetylacetonate, is available from E. I. du Pont de Nemours and Company, Wilmington, Delaware
- a titanium chelate polymer can be produced by a process comprising (1) contacting a tetraalkyl titanate with a chelating agent to produce a product mixture comprising a titanium chelate and an alcohol; (2) contacting the product mixture with water under a condition effective to produce a dispersion or slurry of a titanium chelate polymer; (3) optionally reducing the alcohol content in the dispersion; and (4) contacting the dispersion with a stabilizing amount of a stabilizer to produce a stable dispersion of titanium chelate polymer.
- the tetraalkyl titanate which can also be referred to by one skilled in the art as titanium tetraalkoxide, can have the formula of Ti(OR) 4 where each R is individually a hydrocarbyl radical, as disclosed above, and can contain from 1 to about 10, preferably 1 to about 8, and most preferably 2 to 5 carbon atoms per radical and each R can be the same or different.
- Suitable tetraalkyl titanates include, but are not limited to, tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetrahexyl titanate, and combinations of two or more thereof.
- the preferred tetraalkyl titanate is tetraethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, or combinations thereof.
- the chelating agent is the same as that disclosed above.
- the product mixture comprises a titanium chelate and an alcohol.
- the alcohol produced is derived from the tetralkyl titanate and therefore has the same carbon number as the titanate.
- the alcohol is ethanol and if tetraisopropyl titanate is used, it is isopropanol.
- Alcohol in the product mixture can be reduced to less than 10%, preferably less than 5%, and most preferably less than 1% by weight.
- the molar ratio of tetraalkyl titanate to the chelating agent can be any ratio so long as the ratio can produce a composition having the characteristics disclosed in the first embodiment of the invention.
- the ratio is the one that produces mixed chelate polymers having the numbers of m disclosed above, preferably m is about 2.
- the molar ratio of water to the tetraalkyl titanate can be any ratio so long as the ratio can produce a dispersion or slurry of a titanium chelate polymer.
- the ratio in the final slurry or dispersion can be in the range of from about 1 : 1 to about 500:1, preferably about 10:1 to about 250:1, and most preferably about 20:1 to about 100: 1.
- the water is at least n/2 equivalents in which n is the same as disclosed above.
- a suitable condition for producing a titanium chelate from a tetraalkyl titanate and for producing a dispersion or slurry can include a temperature below about 80°C, preferably below about 70°C, and most preferably below about 65°C under any pressure that can accommodate the temperature, preferably atmospheric pressure, for a period in the range of from about 0.1 to about 100, preferably about 0.5 to about 50, more preferably about 0.5 to about 30, and most preferably about 0.5 to about 20 minutes.
- contacting of the product mixture and water is carried out using a high shear mixer to disperse the titanium chelate into small particles prior to polymerization.
- This serves to reduce and narrow the particle size distribution of solid polymer particles in the slurry or dispersion, probably through initial formation of smaller solid particles, and possibly through the breaking up of agglomerated solid polymer particles in the slurry. This step improves the stability of the resulting dispersions.
- the slurry is stripped of alcohol solvent and liberated alcohol.
- the stripping is carried out at a temperature below the decomposition temperature of the resulting polymer. This may require the use of pressures below atmospheric pressure. If foaming occurs, it may be controlled by the addition of a defoaming agent at any time before or during the stripping operation. While any defoaming agent may then be used, we have found that satisfactory results can be obtained using a commercially available defoamer, Pluronic L-31, an oxirane-methyloxirane copolymer available from BASF Corporation (Ludwigshafen, Germany). One or more stabilizers disclosed above can be used before or after the stripping.
- a titanium chelate polymer produced by the above- described process can be separated and recovered by any means known to one. skilled in the art such as, for example, centrifugation, decantation, filtration, and other means.
- the titanium chelate polymer so produced can be ground to produce ground polymer.
- the ground polymers can then be mixed with water to produce a dispersion followed by contacting the dispersion with a stabilizer to produce a stable dispersion of titanium chelate polymer.
- the condition can be the same as that disclosed above.
- compositions disclosed herein are useful in a variety of applications including, without limitation, fo ⁇ nation of coatings on, for example, pyrolytic glass and adhesion promotion in inks, adhesives, and sealants.
- Coating refers to the application of the composition, which may contain other additives well known to one skilled in the art, to the surface of a variety of substrates such as, for example, glass, ceramics, metal, ceramic tile, brick, concrete, wood, masonry, fiber, leather, plastics, or stone.
- substrates such as, for example, glass, ceramics, metal, ceramic tile, brick, concrete, wood, masonry, fiber, leather, plastics, or stone.
- These applications can be carried out at any temperature known to one skilled in the art such as, for example, in the range of 200°C - 600°C.
- the substrate may be optionally subject to additional heating or cooling prior or subsequent to the application of the coating composition.
- the coating composition may also be applied to the substrate at lower temperatures and subsequently heated to form the coating. Treatment of substrates
- the milky yellow slurry was transferred to a vacuum distillation apparatus using 70 mL of distilled water to assist with the transfer.
- the vacuum distillation apparatus was equipped with a 1 liter round bottom pot, magnetic stirring, vacuum still head with water-cooled condenser, and 250 mL receiver.
- the 2-propanol and excess water were stripped from the reaction mass at 100 mm Hg until 250 mL of distillate were recovered. Recovery of the residual pot material yielded 388 g of product as a yellow slurry.
- the product was analyzed for titanium (as TiO 2 ), and was found to contain 7.24% TiO2 (corresponding to 23.8% titanium polymer solids).
- Example 2 Dispersions of O ⁇ ybis(2,4-pentanedionato-O.O' titanium Homopolymer in Water
- Samples of the slurry prepared as in Example 1 were weighed into small bottles. Varying amounts of different dispersing agents were added to each bottle, the bottle was capped, and the contents were well-shaken. The bottles were then allowed to sit undisturbed for 2-5 days, at which time the degree of settling was determined. This determination involved measuring the height of the upper liquid layer (if present) divided by the total sample height, and yielded a measure of the degree of settling on a numeric scale ranging from 0 (no settling) to about 0.55 (completely settled). In addition, the bottles were slowly rotated to determine whether a firm solids layer had formed at the bottom of the bottle
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| HK06111053.5A HK1090378B (en) | 2003-04-22 | 2004-04-22 | Titanium chelate dispersions |
| JP2006513253A JP4829109B2 (ja) | 2003-04-22 | 2004-04-22 | チタンキレート分散液 |
| EP04750547A EP1615934B1 (en) | 2003-04-22 | 2004-04-22 | Titanium chelate dispersions |
| DE602004007256T DE602004007256T2 (de) | 2003-04-22 | 2004-04-22 | Titanchelatdispersionen |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/420,149 US6737485B1 (en) | 2003-04-22 | 2003-04-22 | Titanium chelate dispersions |
| US10/420,149 | 2003-04-22 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2004094434A2 true WO2004094434A2 (en) | 2004-11-04 |
| WO2004094434A3 WO2004094434A3 (en) | 2005-01-20 |
Family
ID=32298286
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/012563 Ceased WO2004094434A2 (en) | 2003-04-22 | 2004-04-22 | Titanium chelate dispersions |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6737485B1 (enExample) |
| EP (1) | EP1615934B1 (enExample) |
| JP (1) | JP4829109B2 (enExample) |
| CN (1) | CN100355763C (enExample) |
| DE (1) | DE602004007256T2 (enExample) |
| WO (1) | WO2004094434A2 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101665385B (zh) * | 2009-09-16 | 2012-10-31 | 钛谷(天津)科技有限公司 | 连续法生产抗水解稳定离子钛的工艺及装置 |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070187642A1 (en) * | 2006-02-14 | 2007-08-16 | Putzig Donald E | Zirconium cross-linking composition and methods of use |
| CA2662514C (en) * | 2006-09-19 | 2014-06-17 | Valspar Sourcing, Inc. | Food and beverage containers and methods of coating |
| US7763565B2 (en) * | 2007-08-31 | 2010-07-27 | Millennium Inorganic Chemicals, Inc. | Transparent, stable titanium dioxide sols |
| JP5149602B2 (ja) * | 2007-11-05 | 2013-02-20 | マツモトファインケミカル株式会社 | 水溶性チタンオリゴマー組成物 |
| US8663380B2 (en) * | 2007-11-16 | 2014-03-04 | Cristal Usa Inc. | Gas phase production of coated titania |
| US20090148605A1 (en) * | 2007-12-05 | 2009-06-11 | Akhtar M Kamal | Process for the production of coated titanium dioxide pigments |
| US7820724B2 (en) * | 2008-02-14 | 2010-10-26 | Millennium Inorganic Chemicals, Inc. | Colloidal titanium dioxide sols |
| JP5172499B2 (ja) * | 2008-06-28 | 2013-03-27 | マツモトファインケミカル株式会社 | 無機粒子バインダー組成物 |
| MX353900B (es) | 2008-11-07 | 2018-02-01 | Massachusetts Inst Technology | Lipidoides de aminoalcohol y usos de los mismos. |
| JP5885463B2 (ja) * | 2010-11-02 | 2016-03-15 | 三菱マテリアル株式会社 | カーボンナノファイバー分散液、ならびに塗料組成物およびペースト組成物 |
| US9238716B2 (en) | 2011-03-28 | 2016-01-19 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
| IN2014DN07743A (enExample) * | 2012-02-21 | 2015-05-15 | Nitto Kasei Co Ltd | |
| US9663707B2 (en) * | 2013-10-23 | 2017-05-30 | Baker Hughes Incorporated | Stimulation method using biodegradable zirconium crosslinker |
| RS64331B1 (sr) | 2015-06-19 | 2023-08-31 | Massachusetts Inst Technology | Alkenil supstituisani 2,5-piperazindioni i njihova primena u sastavima za isporuku agensa u organizam ili ćeliju subjekta |
| EP3696238B1 (en) * | 2017-10-11 | 2023-08-02 | Yuken Industry Co., Ltd. | Metal-particle dispersion composition and aqueous coating composition |
| CN112159574B (zh) * | 2020-09-23 | 2022-04-15 | 漯河市罗弗文具制造有限公司 | 钛酸酯螯合剂、环保无硼高分子聚乙烯醇基超轻粘土及其制备方法 |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1244233A (en) * | 1969-03-18 | 1971-08-25 | British Titan Ltd | Improvements in and relating to titanium chelates |
| JPS5133890B2 (enExample) | 1971-09-10 | 1976-09-22 | ||
| JPS5936955B2 (ja) * | 1977-09-12 | 1984-09-06 | 住友化学工業株式会社 | 酸化チタン被膜形成方法 |
| JPS5662830A (en) * | 1979-10-26 | 1981-05-29 | Dainichi Seika Kogyo Kk | Cross-linking agent |
| DE3008193C2 (de) | 1980-03-04 | 1982-07-08 | Dynamit Nobel Ag, 5210 Troisdorf | Kältestabile, Katalytisch wirksame Lösung von Diisopropoxy-bis(2,4-pentandionato)-titan(IV) |
| JPS5841724A (ja) * | 1981-09-02 | 1983-03-11 | Nippon Soda Co Ltd | 金属酸化被膜形成組成物 |
| US4470915A (en) | 1982-09-27 | 1984-09-11 | Halliburton Company | Method and compositions for fracturing subterranean formations |
| DE3337098A1 (de) | 1983-10-12 | 1985-05-02 | Dynamit Nobel Ag, 5210 Troisdorf | Neue titanchelate und zubereitungen, die diese chelate enthalten |
| US4749040A (en) * | 1986-02-19 | 1988-06-07 | Dowell Schlumberger Incorporated | Method of fracturing a subterranean formation using delayed crosslinker compositions containing organic titanium complexes |
| US4861500A (en) | 1986-02-19 | 1989-08-29 | Dowell Schlumberger Incorporated | Delayed crosslinker composition containing organic titanium complexes and hydroxycarboxylic acids |
| JPH02147667A (ja) * | 1988-11-30 | 1990-06-06 | Nippon Soda Co Ltd | 表面処理剤およびそれにより表面処理された充填剤粉末 |
| JP2993928B2 (ja) | 1998-04-07 | 1999-12-27 | 日本写真印刷株式会社 | 光触媒膜形成用インキとその製造方法、成膜方法 |
| JP2000086769A (ja) * | 1998-09-14 | 2000-03-28 | Matsumoto Seiyaku Kogyo Kk | 可溶性固体ポリチタノキサンおよびその誘導体の製造方法 |
| JP2000259509A (ja) | 1999-03-12 | 2000-09-22 | Onkyo Corp | データ通信システムおよび方法 |
-
2003
- 2003-04-22 US US10/420,149 patent/US6737485B1/en not_active Expired - Lifetime
-
2004
- 2004-04-22 CN CNB2004800105328A patent/CN100355763C/zh not_active Expired - Fee Related
- 2004-04-22 EP EP04750547A patent/EP1615934B1/en not_active Expired - Lifetime
- 2004-04-22 JP JP2006513253A patent/JP4829109B2/ja not_active Expired - Fee Related
- 2004-04-22 WO PCT/US2004/012563 patent/WO2004094434A2/en not_active Ceased
- 2004-04-22 DE DE602004007256T patent/DE602004007256T2/de not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101665385B (zh) * | 2009-09-16 | 2012-10-31 | 钛谷(天津)科技有限公司 | 连续法生产抗水解稳定离子钛的工艺及装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1777615A (zh) | 2006-05-24 |
| EP1615934A2 (en) | 2006-01-18 |
| DE602004007256T2 (de) | 2008-02-28 |
| US6737485B1 (en) | 2004-05-18 |
| JP2006524745A (ja) | 2006-11-02 |
| EP1615934B1 (en) | 2007-06-27 |
| WO2004094434A3 (en) | 2005-01-20 |
| CN100355763C (zh) | 2007-12-19 |
| JP4829109B2 (ja) | 2011-12-07 |
| DE602004007256D1 (de) | 2007-08-09 |
| HK1090378A1 (zh) | 2006-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1615934B1 (en) | Titanium chelate dispersions | |
| CN112920301B (zh) | 利用水合试剂制备催化剂的方法 | |
| CA1123158A (en) | Solutions of organic magnesium compounds containing oxygen in hydrocarbons | |
| US9796738B2 (en) | Quaternary amino alcohol functional organosilicon compounds, composition containing the latter and their production and use | |
| EP1761546B1 (en) | Stable solutions of n-substituted aminopolysiloxanes, their preparation and use | |
| JPS6337148B2 (enExample) | ||
| JPH08208998A (ja) | 水性オルガノポリシロキサン含有組成物およびその製造方法 | |
| US20130040058A1 (en) | Formulation suitable for use as an anti-graffiti coating having improved coverage properties | |
| WO1994021712A1 (en) | Neutral and mixed neutral/anionic polymetallooxanes | |
| CN114409833B (zh) | 利用水合试剂制备催化剂的方法 | |
| EP0512418A1 (de) | Verfahren zur Herstellung von Beschichtungen auf Siliconharzbasis | |
| JPS582349A (ja) | 組成物および基体の疎水化方法 | |
| JP2006524745A5 (enExample) | ||
| US20010047108A1 (en) | Method for making HBED | |
| EP0705866A1 (en) | Process for producing organopolysiloxanes | |
| US8263703B2 (en) | One-component self-crosslinking reactive siloxane-terminated polypropylene oxide emulsion and process for preparing the same | |
| WO2000002885A1 (en) | Organometallic compositions | |
| HK1090378B (en) | Titanium chelate dispersions | |
| US5796117A (en) | Preparation of waterborne silane/titanium chelates composition | |
| KR102344230B1 (ko) | 지방산 티탄의 제조 방법 | |
| AU2003266231B2 (en) | Sol-gel process for the preparation of vitreous films possessing high adhesion properties and stable colloidal solutions suitable for its carrying out the same | |
| JPH11171999A (ja) | シリケートオリゴマーの製造方法 | |
| RU2813292C2 (ru) | Способы получения катализатора с использованием гидратированных реагентов | |
| RU2813341C2 (ru) | Способы получения катализатора с использованием гидратированных реагентов | |
| RU2813293C2 (ru) | Способы получения катализатора с использованием гидратированных реагентов |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2004750547 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 20048105328 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006513253 Country of ref document: JP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004750547 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2004750547 Country of ref document: EP |