WO2004092610A1 - Federkonstruktion - Google Patents

Federkonstruktion Download PDF

Info

Publication number
WO2004092610A1
WO2004092610A1 PCT/EP2004/003953 EP2004003953W WO2004092610A1 WO 2004092610 A1 WO2004092610 A1 WO 2004092610A1 EP 2004003953 W EP2004003953 W EP 2004003953W WO 2004092610 A1 WO2004092610 A1 WO 2004092610A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping element
spring
mounting pot
construction according
spring construction
Prior art date
Application number
PCT/EP2004/003953
Other languages
English (en)
French (fr)
Inventor
Ansgar Schräder
Uwe Meyer
Tim Bauer
Frank Wiese
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE112004000405.5T priority Critical patent/DE112004000405B4/de
Publication of WO2004092610A1 publication Critical patent/WO2004092610A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material

Definitions

  • the invention relates to spring constructions containing a hollow cylindrical damping element (i) based on cellular polyisocyanate polyaddition products, preferably based on cellular polyurethane elastomers, which may optionally contain polyurea structures, particularly preferably based on cellular polyurethane elastomers, preferably with a tensile strength according to DIN 53571 of ⁇ 2, preferably 2 to 8 N / mm 2 , an elongation according to DIN 53571 of ⁇ 300, preferably 300 to 700% and a tear resistance according to DIN 53515 of ⁇ 8, preferably 8 to 25 N / mm, and a hollow, preferably cylindrical mounting pot (v) with a height (xii) between 10 mm and 80 mm, preferably between 15 mm and 50 mm, particularly preferably between 20 mm and 40 mm, in particular between 26 mm and 30 mm, the over has a central, continuous bore (ii), which is in axial extension to the cavity of the damping element
  • Suspension elements made from polyurethane elastomers are used in automobiles, for example, within the chassis and are generally known. They are used in particular in motor vehicles as vibration-damping spring elements.
  • the spring elements take on an end stop function and influence the force-displacement identification of the wheel by forming or reinforcing a progressive characteristic of the vehicle suspension.
  • the pitching effects of the vehicle can be reduced and the roll support is strengthened.
  • the starting stiffness is optimized in particular by the geometric design, this has a significant influence on the suspension comfort of the vehicle.
  • the targeted design of the geometry results in almost constant component properties over the service life. This function increases driving comfort and ensures maximum driving safety.
  • the spring elements can be individually adapted to the various automobile models in order to achieve an ideal chassis adjustment.
  • the weight of the vehicle, the chassis of the special model, the shock absorbers provided and the desired spring characteristics can be taken into account when developing the spring elements.
  • Individual solutions that are tailored to the building structure can be invented for different automobiles due to the available installation space.
  • the object of the present invention was therefore to develop a suitable additional spring with the above-mentioned functions for a special, new automobile model, which does justice to the specific requirements of this particular model and ensures the best possible driving comfort and excellent driving safety.
  • a spring construction should be developed which, with regard to the force-displacement characteristic curve, compresses at maximum force, ie compression in the axial direction, of preferably 30% -75%, particularly preferably 55% -70%, in particular 60% -65 % based on the total length of the spring construction, - with a very soft start, ie initially has low spring resistance.
  • noise generation between the metal spring plate and the additional spring should be avoided as much as possible.
  • FIGS. 1 to 4 Exemplary, preferred spring constructions according to the invention or the spring elements and mounting pots are shown in detail in FIGS. 1 to 4.
  • Figure 1 shows the spring construction containing the spring element (i) and the mounting pot (v).
  • Figure 2 shows a particularly preferred mounting pot.
  • Figure 3 shows the spring construction in cross section,
  • Figure 4 shows the spring construction together with piston rod (xx), damper cap (xxi) and spring plate (xxii). In all figures, the dimensions are given given in [mm].
  • the spatial design of the spring constructions ie their three-dimensional shape and the combination of materials, has a decisive influence on their function in addition to their material. Be about the shape of the spring elements specifically controls the above functions. This three-dimensional shape of the spring element must therefore be developed individually for each automobile model. It is essential for the present invention that the preferably microcellular foam of the damping element (i), ie the elastic spring element, is produced in contact with the mounting pot, preferably by reaction of the reactive ones
  • the individual openings (iii) are separated by webs of the mounting pot, which connect the outer jacket of the mounting pot (v) with the wall, which connect the inner cavity of the bore (ii).
  • these webs (vi) of the mounting pot (v), which separate the openings (iii) from one another and preferably also the central bore (ii) from the openings (iii) have a height, i.e. Length in the axial direction, between 5 mm and 70 mm, particularly preferably between 15 mm and 30 mm, in particular between 18 mm and 22 mm.
  • the axial direction is the direction in which the central bore (ii) of the mounting pot (v) and the cavity of the damping element (i) are aligned.
  • the webs (vi) preferably have a thickness between 1.5 mm and 6 mm, particularly preferably between 2 mm and 4 mm, in particular between 3 mm and 3.8 mm.
  • the openings (iii), which preferably pull through the entire mounting pot (v) in the axial direction, i.e. break through, are used to fix the mounting pot (v) preferably intensively with the foams of the damping element (i), preferably to foam in the axial direction both below and above the mounting pot.
  • spring structures are preferred in which the damping element (i) is present both below and above the fastening pot (v), i.e. encloses the mounting pot at both axial ends of the mounting pot.
  • a defined block dimension increase is achieved without the need to use auxiliary elements such as support rings, which would increase the stiffness, as well as a positive connection between the foamed damping element (i) and the mounting pot (v).
  • the layer of the damping element (i) above the mounting pot (v) prevents noise between the mounting pot (v) and the spring plate (xxii), which is usually made of metal, from occurring.
  • the damping element (i) preferably has a height, ie length in the axial direction, between 50 mm and 180 mm, particularly preferably between 70 mm and 120 mm, in particular between 80 mm and 100 mm.
  • the density of the damping element (i) is preferably between 150 kg / m 3 and 800 kg / m 3 , particularly preferably between 350 kg / m 3 and 600 kg / m 3 , in particular between 400 kg / m 3 and 450 kg / m 3
  • the spring construction according to the invention preferably contains (i) and (v) in an automobile chassis, which additionally has a piston rod (xx), for example a shock absorber, a damper cap (xxi) and a spring plate (xxii), on which a metal spiral spring can preferably be positioned , contains.
  • FIG. 4 Such a spring construction is shown in FIG. 4.
  • Spring constructions according to the invention are preferred in which a piston rod (xx) is positioned in the central bores of the damping element (i) and the fastening pot (v), in which the end of the damping element (i) facing away from the fastening pot is attached to a damper cap (xxi) of a shock absorber in which a spring plate (xxii) is attached to the end of the piston rod facing the mounting pot, on which a metal spiral spring can be positioned, and in which between the mounting pot (v) and spring plate (xxii) between 1 mm and 50 mm, particularly preferred between 3 mm and 20 mm, in particular between 4 mm and 6 mm, of the damping element (i).
  • the spring construction can usually be fixed by undersized diameter of the foam in the inner bore to the piston rod (xx).
  • the undersize in relation to the piston rod diameter can be between 0.5 and 10 mm, particularly preferably between 1 mm and 4 mm, in particular between 1.5 mm and 2.5 mm.
  • the spring construction is fixed on the shock absorber via a
  • the excess in relation to the inside diameter of the spring cup can be between 0.5 and 10 mm, particularly preferably between 1 mm and 4 mm, in particular between 1.5 mm and 2.5 mm.
  • the mounting pot (v) is hollow. tet.
  • the cavity of the fastening element (v) is preferably in a direct extension of the cavity of the damping element (i).
  • the cavity of (v) preferably has a diameter which approximately corresponds to the diameter of the cavity of the damping element (i).
  • the fastening pot (v) preferably encloses part of the damping element (i) below the openings (iii), for example by a peripheral edge.
  • the damping element (i) preferably has at least one circumferential constriction (x) on the outer surface.
  • the damping element (i) preferably has a circumferential lip (xi) at the end facing away from the mounting pot (v), which particularly preferably abuts the damper cap.
  • the bodies (i) according to the invention are preferably based on elastomers based on polyisocyanate polyadducts, for example polyurethanes and / or polyureas, for example polyurethane elastomers, which may optionally contain urea structures.
  • the elastomers are preferably microcellular elastomers based on polyisocyanate polyaddition products, preferably with cells with a diameter of 0.01 mm to 0.5 mm, particularly preferably 0.01 to 0.15 mm.
  • the elastomers particularly preferably have the physical properties shown at the beginning.
  • Elastomers based on polyisocyanate polyaddition products and their preparation are generally known and can be described in many ways, for example in EP-A 62835, EP-A 36994, EP-A 250 969, DE-A 19548770 and DE-A 19548771.
  • the preparation is usually carried out by reacting isocyanates with compounds which are reactive toward isocyanates.
  • the elastomers based on cellular polyisocyanate polyadducts are usually produced in a form in which the reactive starting components are reacted with one another.
  • generally customary shapes are considered as shapes, for example metal shapes which, because of their shape, ensure the three-dimensional shape of the spring element according to the invention.
  • the polyisocyanate polyaddition products can be prepared by generally known processes, for example by using the following starting materials in a one- or two-stage process:
  • catalysts for example, catalysts, (e) blowing agents and / or (f) auxiliaries and / or additives, for example polysiloxanes and / or fatty acid sulfonates.
  • the surface temperature of the mold inner wall is usually 40 to 95 ° C, preferably 50 to 90 ° C.
  • the production of the molded parts is advantageously carried out at an NCO / OH ratio of 0.85 to 1.20, the heated starting components being mixed and brought into a heated, preferably tight-closing mold in an amount corresponding to the desired molded part density.
  • the molded parts are hardened after 5 to 60 minutes and can therefore be removed from the mold.
  • the amount of the reaction mixture introduced into the mold is usually such that the moldings obtained have the density already shown.
  • the starting components are usually introduced into the mold at a temperature of 15 to 120 ° C., preferably 30 to 110 ° C.
  • the degrees of compaction for the production of the shaped bodies are between 1.1 and 8, preferably between 2

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Federkonstruktion enthaltend ein hohles zylindrisches Dämpfungselement (i) auf der Basis von zelligen Polyisocyanat-Polyadditionsprodukten sowie einen hohlen Befestigungstopf (v) mit einer Höhe (xii) zwischen 10 mm und 80 mm, der über eine mittige, durchgängige Bohrung (ii) verfügt, die sich in axialer Verlängerung zu dem Hohlraum des Dämpfungselementes (i) befindet, sowie über mindestens zwei weitere Durchbrüche (iii) in axialer Richtung des Befestigungstopfes, wobei das Dämpfungselement (i) in Kontakt mit dem Befestigungstopf (v) hergestellt wird und die Durchbrüche (iii) ausfüllt.

Description

Federkonstruktion
Beschreibung
Die Erfindung betrifft Federkonstruktionen enthaltend ein hohles zylindrisches Dämpfungselement (i) auf der Basis von zelligen Polyisocyanat-Polyadditionsprodukten, bevorzugt auf der Basis von zelligen Polyurethanelastomeren, die ggf. Polyhamstoff- strukturen enthalten können, besonders bevorzugt auf der Basis von zelligen Polyurethanelastomeren bevorzugt mit einer Zugfestigkeit nach DIN 53571 von ≥ 2, bevor- zugt 2 bis 8 N/mm2, einer Dehnung nach DIN 53571 von ≥ 300, bevorzugt 300 bis 700 % und einer Weiterreißfestigkeit nach DIN 53515 von ≥ 8, bevorzugt 8 bis 25 N/mm, sowie einen hohlen, bevorzugt zylindrischen Befestigungstopf (v) mit einer Höhe (xii) zwischen 10 mm und 80 mm, bevorzugt zwischen 15 mm und 50 mm, besonders bevorzugt zwischen 20 mm und 40 mm, insbesondere zwischen 26 mm und 30 mm, der über eine mittige, durchgängige Bohrung (ii) verfügt, die sich in axialer Verlängerung zu dem Hohlraum des Dämpfungselementes (i) befindet, sowie über mindestens zwei, bevorzugt 2 bis 15, besonders bevorzugt 3 bis 10, insbesondere 6 bis 8 weitere Durchbrüche (iii) in axialer Richtung des Befestigungstopfes. Außerdem betrifft die Erfindung Automobile, bevorzugt Automobilfahrwerke enthaltend die erfindungsgemäße Federkonstruktion.
Aus Polyurethanelastomeren hergestellte Federungselemente werden in Automobilen beispielsweise innerhalb des Fahrwerks verwendet und sind allgemein bekannt. Sie werden insbesondere in Kraftfahrzeugen als schwingungsdämpfende Federelemente eingesetzt. Dabei übernehmen die Federelemente eine Endanschlagfunktion, beeinflussen die Kraft-Weg-Kennung des Rades durch das Ausbilden oder Verstärken einer progressiven Charakteristik der Fahrzeugfederung. Die Nickeffekte des Fahrzeuges können reduziert werden und die Wankabstützung wird verstärkt. Insbesondere durch die geometrische Gestaltung wird die Anlaufsteifigkeit optimiert, dies hat maßgeblichen Einfluss auf den Federungskomfort des Fahrzeuges. Durch die gezielte Auslegung der Geometrie ergeben sich über der Lebensdauer nahezu konstante Bauteileigenschaften. Durch diese Funktion wird der Fahrkomfort erhöht und ein Höchstmaß an Fahrsicherheit gewährleistet.
Aufgrund der sehr unterschiedlichen Charakteristika und Eigenschaften einzelner Automobilmodelle können die Federelemente individuell an die verschiedenen Automobilmodelle angepasst werden, um eine ideale Fahrwerksabstimmung zu erreichen. Beispielsweise können bei der Entwicklung der Federelemente das Gewicht des Fahrzeugs, das Fahrwerk des speziellen Modells, die vorgesehenen Stoßdämpfer sowie die gewünschte Federcharakteristik berücksichtigt werden. Hinzu kommt, dass für verschiedene Automobile aufgrund des zur Verfügung stehenden Bauraums individuelle, auf die Baukonstruktion abgestimmte Einzellösungen erfunden werden können.
Aus den vorstehend genannten Gründen können die bekannten Lösungen für die Ausgestaltung einzelner Federelemente nicht generell auf neue Automobilmodelle übertragen werden. Bei jeder neuen Entwicklung eines Automobilmodells kann eine neue Form des Federelements entwickelt werden, das den spezifischen Anforderungen des Modells gerecht wird.
Aufgabe der vorliegenden Erfindung war es somit, für ein spezielles, neues Automobilmodell eine geeignete Zusatzfeder mit den oben genannten Funktionen zu entwickeln, die den spezifischen Anforderungen gerade dieses Modells gerecht wird und einen möglichst guten Fahrkomfort und eine ausgezeichnete Fahrsicherheit gewähr- leistet. Insbesondere sollte eine Federkonstruktion entwickelt werden, die hinsichtlich der Kraft-Weg-Kennlinie eine Zusammendrückung bei maximaler Krafteinwirkung, d.h Stauchung in axialer Richtung, von bevorzugt 30 %-75 %, besonders bevorzugt von 55 %-70 %, insbesondere von 60 %-65 % bezogen auf die Gesamtlänge der Federkonstruktion, - bei gleichzeitig sehr weichem Anlauf, d.h. anfänglich geringem Federwi- derstand aufweist. Außerdem sollte im Alltagsbetrieb eine Geräuschentwicklung zwischen Metallfederteller und Zusatzfeder möglichst vermieden werden.
Diese Anforderungen werden bei den eingangs dargestellten Federkonstruktionen dadurch erfüllt, dass das Dämpfungselement (i) in Kontakt mit dem Befestigungstopf (v) hergestellt wird und die Durchbrüche (iii) ausfüllt. Die mittige Bohrung (ii) kann zwischen verwendeter Kolbenstange (xx) und dem Befestigungstopf (v) ausgefüllt oder nicht ausgefüllt werden.
Beispielhafte, bevorzugte erfindungsgemäße Federkonstruktionen bzw. die Federele- mente und Befestigungstöpfe sind im Detail in den Figuren 1 bis 4 dargestellt. Die Figur 1 zeigt die Federkonstruktion enthaltend das Federelement (i) und den Befestigungstopf (v). Die Figur 2 stellt ein besonders bevorzugten Befestigungstopf dar. Die Figur 3 offenbart die Federkonstruktion im Querschnitt, die Figur 4 stellt die Federkonstruktion zusammen mit Kolbenstange (xx), Dämpferkappe (xxi) und Federteller (xxii) dar. In allen Figuren sind die angegebenen Maße in [mm] angegeben.
Gerade die räumliche Ausgestaltung der Federkonstruktionen, d.h. ihre dreidimensionale Form und die Kombination der Materialien, hat neben ihrem Material eine entscheidenden Einfluss auf ihre Funktion. Über die Form der Federelemente werden die oben genannten Funktionen gezielt gesteuert. Diese dreidimensionale Form des Federelements muss somit individuell für jedes Automobilmodell entwickelt werden. Wesentlich für die vorliegende Erfindung ist, dass der bevorzugt mikrozellige Schaumstoff des Dämpfungselementes (i), d.h. des elastischen Federelementes in Kontakt mit dem Befestigungstopf hergestellt wird, bevorzugt durch Reaktion der reaktiven
Ausgangstoffe zur Herstellung des Schaumstoffes, und bevorzugt nach vollständiger Reaktion an dem Befestigungstopf haftet. Die einzelnen Durchbrüche (iii) werden durch Stege des Befestigungstopfes getrennt, die den äußeren Mantel des Befestigungstopfes (v) mit der Wand, die den inneren Hohlraum der Bohrung (ii) verbinden. Bevorzugt weisen diese Stege (vi) des Befestigungstopfes (v), die die Durchbrüche (iii) untereinander sowie bevorzugt auch die mittige Bohrung (ii) von den Durchbrüchen (iii) trennen, eine Höhe, d.h. Länge in axialer Richtung, zwischen 5 mm und 70 mm, besonders bevorzugt zwischen 15 mm und 30 mm, insbesondere zwischen 18 mm und 22 mm auf. Die axiale Richtung ist die Richtung, in der die mittige Bohrung (ii) des Befestigungstopfes (v) sowie der Hohlraum des Dämpfungselementes (i) ausgerichtet sind. Die Stege (vi) weisen bevorzugt eine Dicke zwischen 1,5 mm und 6 mm, besonders bevorzugt zwischen 2 mm und 4 mm, insbesondere zwischen 3 mm und 3,8 mm auf.
Die Durchbrüche (iii), die in axialer Richtung bevorzugt den gesamten Befestigungstopf (v) durchziehen, d.h. durchbrechen, werden genutzt, den Befestigungstopf (v) bevorzugt intensiv mit dem Schaumstoffe des Dämpfungselementes (i) zu fixieren, bevorzugt in axialer Richtung sowohl unterhalb als auch oberhalb des Befestigungstopf zu umschäumen. Bevorzugt sind somit Federkonstruktionen, bei denen das Dämpfungs- element (i) sowohl unterhalb als auch oberhalb des Befestigungstopfes (v) vorliegt, d.h. den Befestigungstopf an beiden axialen Enden des Befestigungstopfes umschließt.
Dadurch wird sowohl eine definierte Blockmaßerhöhung erreicht, ohne dass Hilfselemente wie Stützringe verwendet werden müssen, die die Anlaufsteifigkeit erhöhen würden, als auch ein formschlüssiger Verbund zwischen dem geschäumten Dämpfungselement (i) und dem Befestigungstopf (v) erzeugt. Außerdem wird durch die Schicht des Dämpfungselementes (i) oberhalb des Befestigungstopfes (v) verhindert, dass Geräusche zwischen Befestigungstopf (v) und Federteller (xxii), der üblicherweise aus Metall gefertigt wird, entstehen. Durch die erfindungsgemäße Erhöhung des Blockmaßes kann die Raumdichte des Schaumstoffes des Dämpfungselementes (i) vergleichsweise gering gewählt werden, wodurch zusätzlich die Anlaufsteifigkeit reduziert wird.
Das Dämpfungselement (i) weist bevorzugt eine Höhe, d.h. Länge in axialer Richtung, zwischen 50 mm und 180 mm, besonders bevorzugt zwischen 70 mm und 120 mm, insbesondere zwischen 80 mm und 100 mm auf. Die Dichte des Dämpfungselementes (i) beträgt bevorzugt zwischen 150 kg/m3 und 800 kg/m3, besonders bevorzugt zwischen 350 kg/m3 und 600 kg/m3, insbesondere zwischen 400 kg/m3 und 450 kg/m3. Bevorzugt befindet sich die erfindungsgemäße Federkonstruktion enthaltend (i) und (v) in einem Automobilfahrwerk, das zusätzlich eine Kolbenstange (xx), z.B. eines Stoßdämpfers, eine Dämpferkappe (xxi) sowie einen Federteller (xxii), auf dem bevorzugt eine Metallspiralfeder positioniert werden kann, enthält. Eine solche Federkonstruktion ist in der Figur 4 dargestellt. Bevorzugt sind erfindungsgemäße Federkonstruktionen, bei denen in den mittigen Bohrungen des Dämpfungselementes (i) und des Befestigungstopfes (v) eine Kolbenstange (xx) positioniert wird, bei denen das dem Befestigungstopf abgewandte Ende des Dämpfungselementes (i) an eine Dämpferkappe (xxi) eines Stoßdämpfers stößt, bei denen an das dem Befestigungstopf zugewandte Ende der Kolbenstange ein Federteller (xxii) befestigt ist, auf dem eine Metallspiralfeder positioniert werden kann, und bei denen zwischen Befestigungstopf (v) und Federteller (xxii) zwischen 1 mm und 50 mm, besonders bevorzugt zwischen 3 mm und 20 mm, insbesondere zwischen 4 mm und 6 mm des Dämpfungselementes (i) vorliegen.
Die Fixierung der Federkonstruktion kann üblicherweise durch untermassigem Durchmesser des Schaums in der Innenbohrung zur Kolbenstange (xx) erfolgen. Die Untermassigkeit kann im Verhältnis zum Kolbenstangendurchmesser zwischen 0,5 und 10mm, besonders bevorzugt zwischen 1mm und 4mm, insbesondere zwischen 1,5mm und 2,5mm betragen.
Weiterhin ist eine Fixierung der Federkonstruktion auf dem Stoßdämpfer über eine
Übermassigkeit des Dämpfungselementes zwischen Befestigungstopf (v) und Federteller (xxii), wenn ein Federtellertopf eingesetzt wird. Die Übermassigkeit kann im Verhältnis zum Innendurchmesser des Federtellertopfes zwischen 0,5 und 10mm, besonders bevorzugt zwischen 1mm und 4mm, insbesondere zwischen 1,5 mm und 2,5 mm betragen.
Gerade diese dreidimensionale Form erwies sich als besonders geeignet, den spezifischen Anforderungen durch das spezielle Automobilmodell gerecht zu werden, insbesondere auch im Hinblick auf die spezifischen räumlichen Anforderungen und die geforderte Federcharakteristik.
Zum Befestigungstopf, der bevorzugt aus festen Materialien gefertigt sein kann, beispielsweise Metallen oder harten Kunststoffen, z.B. thermoplatischem Polyurethan, Polyamid, Polyethylen, Polypropylen, Polystyrol oder bevorzugt Polyoxymethylen sind folgende bevorzugte Merkmale anzufügen: Der Befestigungstopf (v) ist hohl ausgestal- tet. Dabei befindet sich der Hohlraum des Befestigungselementes (v) bevorzugt in direkter Verlängerung des Hohlraums des Dämpfungselementes (i). Der Hohlraum von (v) weist bevorzugt einen Durchmesser auf der in etwa dem Durchmesser des Hohlraums des Dämpfungselementes (i) entspricht. Bevorzugt umschließt der Befesti- gungstopf (v) unterhalb der Durchbrüche (iii) einen Teil des Dämpfungselementes (i), beispielsweise durch eine umlaufende Kante.
Bevorzugt weist das Dämpfungselement (i) mindestens eine umlaufende Einschnürung (x) auf der äußeren Oberfläche auf. Bevorzugt besitzt das Dämpfungselement (i) an dem dem Befestigungstopf (v) abgewandten Ende eine umlaufende Lippe (xi), die besonders bevorzugt auf die Dämpferkappe stößt. Die erfindungsgemäßen Körper (i) basieren bevorzugt auf Elastomeren auf der Basis von Polyisocyanat-Poly- additionsprodukten, beispielsweise Polyurethanen und/oder Polyhamstoffen, beispielsweise Polyurethanelastomeren, die gegebenenfalls Harnstoffstrukturen enthalten können. Bevorzugt handelt es sich bei den Elastomeren um mikrozellige Elastomere auf der Basis von Polyisocyanat-Polyadditionsprodukten, bevorzugt mit Zellen mit einem Durchmesser von 0,01 mm bis 0,5 mm, besonders bevorzugt 0,01 bis 0,15 mm. Besonders bevorzugt besitzen die Elastomere die eingangs dargestellten physikalischen Eigenschaften. Elastomere auf der Basis von Polyisocyanat-Polyadditions- Produkten und ihre Herstellung sind allgemein bekannt und vielfältig beschreiben, beispielsweise in EP-A 62835, EP-A 36994, EP-A 250 969, DE-A 19548770 und DE-A 19548771.
Die Herstellung erfolgt üblicherweise durch Umsetzung von Isocyanaten mit gegenüber Isocyanaten reaktiven Verbindungen.
Die Elastomere auf der Basis von zelligen Polyisocyanat-Polyadditionsprodukte werden üblicherweise in einer Form hergestellt, in der man die reaktiven Ausgangskomponenten miteinander umsetzt. Als Formen kommen hierbei allgemein übliche Formen in Frage, beispielsweise Metallformen, die aufgrund ihrer Form die erfindungsgemäße dreidimensionale Form des Federelements gewährleisten. Die Herstellung der Polyisocyanat-Polyadditionsprodukte kann nach allgemein bekannten Verfahren erfolgen, beispielsweise indem man in einem ein- oder zweistufigen Prozess die folgenden Ausgangsstoffe einsetzt:
(a) Isocyanat,
(b) gegenüber Isocyanaten reaktiven Verbindungen,
(c) Wasser und gegebenenfalls
(d) Katalysatoren, (e) Treibmittel und/oder (f) Hilfs- und/oder Zusatzstoffe, beispielsweise Polysiloxane und/oder Fettsäuresul- fonate.
Die Oberflächentemperatur der Forminnenwand beträgt üblicherweise 40 bis 95°C, bevorzugt 50 bis 90°C.
Die Herstellung der Formteile wird vorteilhafterweise bei einem NCO/OH-Verhältnis von 0,85 bis 1,20 durchgeführt, wobei die erwärmten Ausgangskomponenten gemischt und in einer der gewünschten Formteildichte entsprechenden Menge in ein beheiztes, bevorzugt dichtschließendes Formwerkzeug gebracht werden. Die Formteile sind nach 5 bis 60 Minuten ausgehärtet und damit entformbar. Die Menge des in das Formwerkzeug eingebrachten Reaktionsgemisches wird üblicherweise so bemessen, dass die erhaltenen Formkörper die bereits dargestellte Dichte aufweisen. Die Ausgangskomponenten werden üblicherweise mit einer Temperatur von 15 bis 120°C, vorzugsweise von 30 bis 110°C, in das Formwerkzeug eingebracht. Die Verdichtungsgrade zur Herstellung der Formkörper liegen zwischen 1,1 und 8, vorzugsweise zwischen 2

Claims

Patentansprüche
1. Federkonstruktion enthaltend ein hohles zylindrisches Dämpfungselement (i) auf der Basis von zelligen Polyisocyanat-Polyadditionsprodukten sowie einen hohlen Befestigungstopf (v) mit einer Höhe (xii) zwischen 10 mm und 80 mm, der über eine mittige, durchgängige Bohrung (ii) verfügt, die sich in axialer Verlängerung zu dem Hohlraum des Dämpfungselementes (i) befindet, sowie über mindestens zwei weitere Durchbrüche (iii) in axialer Richtung des Befestigungstopfes, dadurch gekennzeichnet, dass das Dämpfungselement (i) in Kontakt mit dem Be- festigungstopf (v) hergestellt wird und die Durchbrüche (iii) ausfüllt.
2. Federkonstruktion gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Stege (vi) des Befestigungstopfes (v), die die mittige Bohrung (ii) von den Durchbrüchen (iii) sowie die Durchbrüche (iii) untereinander trennen, eine Höhe zwischen 5 mm und 70 mm aufweisen.
3. Federkonstruktion gemäß Anspruch 2, dadurch gekennzeichnet, dass die Stege eine Dicke zwischen 1 ,5 mm und 6 mm aufweisen.
4. Federkonstruktion gemäß Anspruch 1 , dadurch gekennzeichnet, dass das
Dämpfungselement (i) sowohl unterhalb als auch oberhalb des Befestigungstopfes (v) vorliegt.
5. Federkonstruktion gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Dämpfungselement (i) eine Höhe zwischen 50 mm und 180 mm aufweist.
6. Federkonstruktion gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Dämpfungselement (i) eine Dichte zwischen 150 kg/m3 und 800 kg/m3 aufweist.
7. Federkonstruktion gemäß Anspruch 1 , dadurch gekennzeichnet, dass in den mittigen Bohrungen des Dämpfungselementes (i) und des Befestigungstopfes (v) eine Kolbenstange (xx) positioniert wird, dass das dem Befestigungstopf abgewandte Ende des Dämpfungselementes (i) an eine Dämpferkappe (xxi) eines Stoßdämpfers stößt, dass an dem dem Befestigungstopf zugewandten Ende der Kolbenstange ein Federteller (xxii) befestigt ist, auf dem eine Metallspiralfeder positioniert werden kann, und dass zwischen Befestigungstopf (v) und Federteller (xxii) zwischen 1 mm und 50 mm des Dämpfungselementes (i) vorliegen.
8. Federkonstruktion nach Anspruch 1 , dadurch gekennzeichnet, dass das hohle zylindrische Dämpfungselement (i) auf zelligen Polyurethanelastomeren basiert.
4 Zeichn.
9. Federkonstruktion gemäß Anspruch 1 , dadurch gekennzeichnet, dass das hohle zylindrische Dämpfungselement (i) auf zelligen Polyurethanelastomeren, einer Zugfestigkeit nach DIN 53571 von ≥ 2 N/mm2, einer Dehnung nach DIN 53571 von ≥ 300 % und einer Weiterreißfestigkeit nach DIN 53515 von ≥ 8 N/mm ba-
> siert.
10. Automobile enthaltend Federkonstruktion gemäß einem der Ansprüche 1 bis 9.
PCT/EP2004/003953 2003-04-16 2004-04-14 Federkonstruktion WO2004092610A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004000405.5T DE112004000405B4 (de) 2003-04-16 2004-04-14 Federkonstruktion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10317815A DE10317815A1 (de) 2003-04-16 2003-04-16 Federkonstruktion
DE10317815.5 2003-04-16

Publications (1)

Publication Number Publication Date
WO2004092610A1 true WO2004092610A1 (de) 2004-10-28

Family

ID=33103499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003953 WO2004092610A1 (de) 2003-04-16 2004-04-14 Federkonstruktion

Country Status (2)

Country Link
DE (2) DE10317815A1 (de)
WO (1) WO2004092610A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093922A3 (en) * 2014-09-24 2016-08-04 Basf Se Dampener assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031012A1 (de) * 2005-07-02 2007-01-18 Zf Friedrichshafen Ag Druckanschlag für einen Schwingungsdämpfer
DE202009018274U1 (de) 2009-07-17 2011-08-26 Basf Se Dämpfungselement mit Stütztopf
DE102009027789B4 (de) 2009-07-17 2011-09-22 Basf Se Dämpfungselement mit Stütztopf
DE102010039621A1 (de) 2010-08-20 2012-02-23 Basf Se Dämpfungselement mit wellenförmigem Stützring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7512822U (de) * 1975-04-22 1975-11-20 Elastogran Gmbh Lagerplatte mit elastischem Stoßdämpfer
US4256292A (en) * 1978-11-29 1981-03-17 General Motors Corporation Jounce bumper for suspensions
DE10034563A1 (de) * 2000-07-14 2002-01-24 Basf Ag Federelement
DE20218893U1 (de) * 2002-12-05 2003-02-13 Basf Ag, 67063 Ludwigshafen Federkonstruktion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350777A (en) * 1980-03-28 1982-09-21 Bayer Aktiengesellschaft Impermeable molded articles of cellular polyurethane elastomers produced with organofunctional polysiloxane-derivatives and their use as spring elements
DE3113690A1 (de) * 1981-04-04 1982-10-28 Elastogran GmbH, 2844 Lemförde "verfahren zur herstellung von geschlossenzelligen polyurethan-formteilen mit einer verdichteten randzone"
DE3621040A1 (de) * 1986-06-24 1988-01-07 Bayer Ag Verfahren zur herstellung und polysiloxan-ionomeren, polysiloxan-ionomere und ihre verwendung zur herstellung von zelligen polyurethanelastomeren
DE19548771A1 (de) * 1995-12-23 1997-06-26 Basf Ag Mikrozelluläres, harnstoffgruppenhaltiges Polyurethanelastomer
DE19548770A1 (de) * 1995-12-23 1997-06-26 Basf Ag Mikrozelluläres, harnstoffgruppenhaltiges Polyurethanelastomer
DE20204328U1 (de) * 2002-03-19 2002-06-06 Basf Ag, 67063 Ludwigshafen Zusatzfeder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7512822U (de) * 1975-04-22 1975-11-20 Elastogran Gmbh Lagerplatte mit elastischem Stoßdämpfer
US4256292A (en) * 1978-11-29 1981-03-17 General Motors Corporation Jounce bumper for suspensions
DE10034563A1 (de) * 2000-07-14 2002-01-24 Basf Ag Federelement
DE20218893U1 (de) * 2002-12-05 2003-02-13 Basf Ag, 67063 Ludwigshafen Federkonstruktion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093922A3 (en) * 2014-09-24 2016-08-04 Basf Se Dampener assembly

Also Published As

Publication number Publication date
DE112004000405D2 (de) 2006-03-09
DE112004000405B4 (de) 2020-09-10
DE10317815A1 (de) 2004-11-04

Similar Documents

Publication Publication Date Title
DE112004000405B4 (de) Federkonstruktion
DE20219730U1 (de) Federkonstruktion, insbesondere für Automobilfahrwerk
DE20218893U1 (de) Federkonstruktion
DE202005012531U1 (de) Zusatzfeder
WO2007012622A1 (de) Zusatzfeder
DE102004027904A1 (de) Federkonstruktion
DE202004003831U1 (de) Zusatzfeder
DE20311242U1 (de) Zusatzfeder
DE20218890U1 (de) Federkonstruktion
DE20313895U1 (de) Zusatzfeder
DE20219539U1 (de) Federelement
DE20218361U1 (de) Zusatzfeder
DE202004003830U1 (de) Zusatzfeder
DE202004000624U1 (de) Zusatzfeder
DE20215943U1 (de) Zusatzfeder
DE20307900U1 (de) Zusatzfeder
DE20307898U1 (de) Zusatzfeder
EP1505314A1 (de) Federkonstruktion
DE202004000621U1 (de) Zusatzfeder
DE202004000774U1 (de) Dämpferlager
DE202004003833U1 (de) Federkonstruktion
DE20307899U1 (de) Zusatzfeder
DE202004003832U1 (de) Federkonstruktion
DE202004003829U1 (de) Zusatzfeder
DE20319895U1 (de) Zusatzfeder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 112004000405

Country of ref document: DE

Date of ref document: 20060309

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004000405

Country of ref document: DE

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase