WO2004092007A1 - Propulseur retractable par rotation - Google Patents

Propulseur retractable par rotation Download PDF

Info

Publication number
WO2004092007A1
WO2004092007A1 PCT/FR2004/000743 FR2004000743W WO2004092007A1 WO 2004092007 A1 WO2004092007 A1 WO 2004092007A1 FR 2004000743 W FR2004000743 W FR 2004000743W WO 2004092007 A1 WO2004092007 A1 WO 2004092007A1
Authority
WO
WIPO (PCT)
Prior art keywords
hull
propulsion
slide
propulsion assembly
guide
Prior art date
Application number
PCT/FR2004/000743
Other languages
English (en)
Other versions
WO2004092007A9 (fr
Inventor
Guy Fontanille
Yan Turner
Patrick Delalandre
Original Assignee
Max Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Power filed Critical Max Power
Priority to EP04742351A priority Critical patent/EP1611007B1/fr
Priority to DK04742351T priority patent/DK1611007T3/da
Priority to US10/507,022 priority patent/US7146921B2/en
Priority to DE602004008244T priority patent/DE602004008244T2/de
Publication of WO2004092007A1 publication Critical patent/WO2004092007A1/fr
Publication of WO2004092007A9 publication Critical patent/WO2004092007A9/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • B63H2025/425Propulsive elements, other than jets, substantially used for steering or dynamic anchoring only, with means for retracting, or otherwise moving to a rest position outside the water flow around the hull

Definitions

  • the present invention relates to a retractable thruster inside the hull of a floating or submersible vehicle.
  • This thruster is particularly intended to be installed at the level of the bow of the bow and / or the stern of a boat.
  • These thrusters have the function of providing a lateral or longitudinal thrust according to the arrangement of the axis of the propeller relative to the longitudinal direction of the craft. They allow a bi-directional propulsion making possible the omnidirectional movements of a machine especially during maneuvers, correction of offset due to wind and current or residual wandering.
  • the present invention relates to a retractable propellant for floating or submersible machine comprising a propulsion assembly comprising a rigid structure containing or capable of containing an engine driving in rotation at least one propeller placed inside a turbine, by the intermediate of at least one rotating shaft between said engine and said propeller, and preferably a hull closure plate placed under said turbine and integral with said turbine, said propulsion assembly being able to be moved using displacement means between a retracted position A of rest inside the hull and a deployed propulsion position B in which the propeller is immersed under the hull.
  • the axis of the propeller is generally perpendicular to the axis of the engine, and the engine cooperates with the propeller by means of a gear angle transmission device comprising a first shaft rotating in the extension d 'A drive shaft located in the axis of the engine, said first rotating shaft rotating a second shaft perpendicular to said first rotating shaft and on which is mounted the propeller.
  • the angle transmission device also called “base” is therefore essentially contained in the turbine.
  • the bevel gear device comprises a casing inside which two rotating shafts respectively with respect to two perpendicular axes of rotation including a first shaft driven in rotation directly or indirectly by said motor and a second shaft driving at least a rotating propeller, as well as mechanical elements such as gears comprising toothed wheels, ball bearings or plain bearings allowing the transmission of the rotation of said first shaft to said second shaft.
  • the first rotary shaft driven in rotation at its upper end by a motor can cooperate in the angle transmission device with one or two perpendicular shafts each driving in rotation a propeller whose axes of rotation are in the same direction perpendicular to said ( s) first axis (s) touching.
  • the propeller is provided with two propellers in a known manner, the first propeller is tractor, supercharging the second propeller which is propulsive, and vice versa by reversing the rotation, making the whole very effective with a symmetrical thrust in both directions .
  • Retractable thrusters have been described in the FR patents
  • the retractable thrusters include a device for re-entering and leaving the propeller relative to the hull.
  • EP 863837 a displacement device has been described generating a rectilinear movement of raising and lowering of the propulsion assembly allowing entry and exit under the propeller hull inside a well in the shell.
  • An “anti-torque or anti-rotation” transverse plate integral with the propellant is located inside the well and is complementary to said well which prevents the propellant from rotating relative to the boat during propulsion, rotation which may result from a torque effect, this is why it is called "anti-torque plate”.
  • the device described in EP 863837 also comprises means of preventing the blocking or jamming of the propellant during rectilinear movements of ascent and descent
  • the propellant re-entry and exit device described in FR 2652559 involves a reduced space requirement of the propellant, in particular in height, since the propellant can be disposed in an inclined manner inside the hull and be deployed outside the hull while remaining tilted.
  • a propulsion assembly in which the disengagement of the propeller does not take place in a vertical rectilinear movement of the axis of the propeller but in a circular movement by pivoting the propulsion unit on itself with respect to a fixed material axis of rotation situated in height inside the hull.
  • the propulsion assembly is like a pivoting arm at the end of which the propeller is driven in a circular movement relative to the pivot axis at the other end of said arm.
  • the object of the present invention is to provide a propellant with an input and output device for the propeller relative to the hull which combines the advantages of the various devices described in the prior art without having the disadvantages.
  • the aim of the present invention is to provide a device for re-entry and exit to the thruster: - which is mechanically reliable, in particular which avoids blocking or jamming phenomena during movement, and
  • another object of the present invention is to provide a propellant comprising a device for re-entering and leaving the propulsion assembly which involves a minimum number of components which are easy to assemble and install on the floating object. , and maintenance.
  • the present invention provides a retractable propellant for floating or submersible machine comprising a propulsion assembly comprising a rigid structure integral with a cylindrical turbine, said structure containing or being capable of obtaining a motor, said rotating motor being capable of driving in rotation at least one propeller inside said turbine, by means of at least one rotating shaft between said engine and said turbine, and preferably a hull closure plate placed under said turbine and secured to the latter, said propulsion assembly being able to be displaced by means of displacement between a retracted position of rest inside the hull and a deployed propulsion position in which the propeller is immersed under the hull, characterized in that said displacement means allow displacement of said propulsion assembly between said retracted and dep loyed in a uniform circular motion of said propulsion assembly with respect to an immaterial axis of rotation situated substantially
  • said displacement means comprise guide elements capable of cooperating with said propulsion assembly to allow the displacement of said propulsion assembly between said retracted (A) and deployed (B) positions according to said uniform circular movement of said propulsion assembly with respect to said immaterial axis of rotation substantially situated at the level of said shell or below said shell, said uniform circular movement being determined by the shape of said guide elements.
  • uniform circular movement of the propulsion unit means that all the points of said propulsion unit move simultaneously and at the same angular speed, circularly with respect to the same axis of rotation, so that said propulsion unit n 'is animated by no substantial movement relative to the main movement of circular movement of its center of gravity or any other point.
  • the propulsion assembly does not pivot on itself because it does not have a fixed element, in particular no material axis of rotation.
  • the positioning of the axis of rotation of said propulsion assembly at the level of the shell or outside thereof allows instantaneous clearance with respect to the opening of the shell, the cover plate and the propulsion assembly which is integral with it via the turbine, by a circular movement while allowing the smallest possible opening in the hull.
  • the dematerialization of the axis of rotation finds its optimal efficiency when said axis of rotation is ideally located on the outer skin of the shell or below it, so that there is no point on the plate. obturation which does not return towards the interior of the hull during the deployment of the propulsion unit.
  • a positioning of the axis of rotation slightly above the level of the hull can be tolerated.
  • level of the hull means the level of the continuous surface of the hull in direct contact with the water when said machine floats on the surface of the water, and not the level of any recesses or housings that may form the hull and which are not in contact with water when said machine floats on the surface of the water.
  • the expression “substantially at the level of the shell” means that the center of rotation may be situated slightly above the interior level of the shell, in particular a height corresponding to not more than 50% of the diameter of the cylindrical turbine, and more particularly - in practice - a few cm above the hull, that is to say a few cm inside the volume of the hull, more particularly still up to 10 cm above the interior level of the hull.
  • the propulsion assembly is not integral with its axis of rotation. From a mechanical point of view, the absence of elements materializing the axis of rotation of the mobile propulsion assembly on the one hand and on the other hand, the generation of said circular movement by means of guide elements, that is to say in the absence of any link arm in particular of pivoting arms ensuring the connection, between said axis of rotation and the propulsion assembly guarantees reliability and the simplicity of operation and construction of the propellant displacement device. It also allows the simplicity of the implementation and installation of the propellant during its installation on the vehicle and an ideal positioning of the propellant in the hull.
  • the deployment by rotation of said propulsion assembly makes it possible to arrange it in an inclined manner inside the volume of the hull when it is in the retracted and deployed position so that, in total, the space required for this propellant to the interior of the hull, in particular in height, can be three to four times lower compared to a conventional retractable propellant for deployment by vertical rectilinear movement.
  • inclined position is understood here to mean that the longitudinal axis of said rigid structure perpendicular to the transverse axis of said turbine is inclined and / or that the axial plane of symmetry comprising the one or two rotating shafts is inclined.
  • said shutter plate seals said orifice in the shell when said propulsion assembly is in the retracted position.
  • said guide elements comprise at least a first movable guide element integral with said propulsion assembly, animated by the same uniform circular movement as said propulsion assembly, and able to cooperate with at least one second fixed guide member integral with said shell, said first and second guide members cooperating with each other by relative movement of said first guide member with respect to said second guide member to allow said movement of the assembly of propulsion between the retracted (A) and deployed (B) positions.
  • integral with the hull is understood here to mean that when said propulsion assembly is installed inside the hull of the machine, in particular by being included in a box supporting the propulsion assembly and fitting on the edge upper part of a well itself adapted to the interior of said shell and framing at its base said opening of the shell, said second guide elements are integral with the walls of said box and if necessary with the walls of said well, this is to say of the hull of the craft itself.
  • This embodiment allows said guide elements also to provide a support function for said propulsion unit and / or a connection function between said propulsion unit and the hull.
  • Said second guide element can be supported, in particular by a frame integral with said shell.
  • the connection between the propulsion unit and said first movable guide element prohibits any substantial relative movement of said propulsion unit with respect to said first guide element and allows the homogeneity of the circular movement of the propulsion assembly.
  • the circular trajectory of the movement of the propulsion assembly is imposed by the respective shape of said first and second guide elements, which makes this movement mechanically reliable and simple to perform.
  • said first movable guide element is constituted by a male part forming a slide and integral with said propulsion assembly and said second guide element is constituted by a female part forming a slide, said slide forming an arc of a circle allowing said circular movement of said first guide member inside said second guide member.
  • said first movable guide element integral with said propulsion assembly is constituted by a female part forming a slide and said second guide element is constituted by a male part forming a slide, said slide forming an arc of circle allowing said circular movement of said second guide member inside said first guide member.
  • Said slide can be made up of guide rails, notches or perforations and the slide (s) can (can) be made up of finger-shaped elements but also according to an alternative embodiment of wheels. It is the shape of the slide which defines the trajectory of said circular movement and the male part forming a slide constitutes a guided element.
  • first and second guide elements there are in fact guided elements (hereinafter called male part) and guiding elements (hereinafter called female part).
  • said propulsion assembly is partially included inside a box and integral with it, said box coming to fit on the upper edge of a well, the well being itself even adapted to the interior of said shell and framing at its base said opening of said shell.
  • said wells and wells comprise lateral walls substantially defining a parallelepipedal space.
  • said propulsion assembly is inclined so that a plane comprising the longitudinal axis of said rigid structure containing said rotary shaft is inclined by an angle ⁇ relative to the junction plane of said box and said well, in the retracted position (A) of a value of 10 to 60 ° preferably 10 to 30 ° and of an angle ⁇ relative to the same said junction plane in the deployed position (B) with a value of 45 to 100 °, preferably 60 to 90 °.
  • said guide elements comprise a plurality of said first and said second guide elements disposed laterally on each side of said propulsion assembly on either side of a vertical plane comprising the longitudinal axis of said structure rigid.
  • Said guide elements may comprise a plurality of slides arranged on each side of said propulsion assembly cooperating with a plurality of slides arranged on each side of said propulsion assembly, these being integral with said shell.
  • the term “plurality” of the first and second guide elements means that said guide elements comprise at least two said first guide elements and at least two said second guide elements, with at least one said first guide element or at least one said second guide element on each side of said propulsion assembly. More particularly still the (or) said (s) second (s) guide element (s) and (or are) included or associated (s) with one (or more) plate (s) fixedly mounted (s) on a side wall of said box or opposite side walls of said box.
  • said first guide elements comprise at least three male parts, preferably three slides, arranged in a triangle, symmetrically on each side of said propulsion unit, so as to cooperate respectively with at least two female parts forming slideways defining concentric and homothetic arcs of circle arranged symmetrically on each side of said propulsion assembly, at least two said male parts preferably of said sliders being able to slide inside a first slide of larger radius and at least a third male part preferably a third slide being able to slide inside at least a second slide of smaller radius.
  • the term “homothetic” is understood here to mean that the two arcs of a circle are inscribed in the same angular sector.
  • This embodiment provides guidance for the high-performance propulsion assembly which confers rigidity and mechanical reliability when the assembly is set in motion, while being very simple to produce.
  • This embodiment also provides high-performance mechanical stability to counter the torque effect generated by the propulsion when the propellant is in the active propulsion phase, which makes it possible to overcome the fatigue stresses usually encountered on retractable propellants and keep a satisfactory, even exact, coincidence between the closing hatch and the opening in the hull and therefore keep all the hydrodynamic performance at the hull of the boat.
  • said guide elements cooperate with drive means making it possible to generate said circular movement of the propulsion assembly relative to the hull.
  • said first or second guide element is driven in rotation relative to said second or respectively first guide element, according to a said circular movement, by a motor cooperating if necessary with said first or respectively second guide element by through connecting elements, so as to block said propulsion assembly in the retracted position (A) or in the deployed position (B) if necessary.
  • said rigid structure containing the motor may consist in particular of a parallelepipedic structure ensuring the sealed connection between on the one hand a cover covering said motor and on the other hand said turbine, said first guide elements being mounted against opposite side faces of said parallelepiped structure.
  • FIGS. 1A and 1B show a perspective view of the interior of the hull with a propellant integrated inside a box and a well, said propulsion assembly (without propeller) being in the retracted position inside the hull ( Figure 1 A) and in the deployed position outside the hull ( Figure 1B).
  • Figures 2A and 2B are views corresponding to Figures 1A and
  • Figure 3 is a view showing the different components of the propellant at the hull and the propulsion assembly.
  • FIGS. 4A, 4B and 4C represent a schematic view in longitudinal section with respect to the axis of the boat of a thruster according to the invention in the retracted position (FIG. 4A), intermediate position (FIG. 4B) and deployed position (FIG. 4C ).
  • FIGS. 5A, 5B and 5C represent the propulsion assembly in longitudinal view respectively in the positions of FIGS. 4A, 4B and 4C.
  • Figure 6 is a longitudinal sectional view of a propellant comprising the propulsion assembly integrated in a box and a well at the hull of a boat.
  • FIG. 7 is a cross-sectional view along A-A of FIG. 6.
  • FIGS 8A and 8B show an alternative embodiment of a slide according to the invention.
  • a propulsion unit 1 according to the invention comprises a rigid structure of 2.2 étanche closed and sealed integral with a tubular turbine 4.
  • Said rigid structure 2,2 ⁇ contains a motor (not shown and a rotary shaft (not shown) driving in rotation at least one propeller 3, said propeller 3 being contained inside said tubular turbine 4.
  • Said rigid structure 2,2 ⁇ consists of a parallelepipedic structure 2 consisting of a housing with 4 solid faces defining a parallelepiped and one open face of which is tightly secured to the tubular casing of the turbine 4 and the other open face ensures the tight connection with a 2 ⁇ parallelepiped cover covering the engine of the propulsion unit and the turbine 4.
  • the parallelepipedic structure 2 defines a column having an axis of longitudinal symmetry LL 'corresponding substantially to the axis of the main rotating shaft directly driven by the motor inside the structure 2,2 ⁇ and connected at its other end to a angle return device inside the turbine 4 as described below.
  • the tubular structure constituting the turbine 4 has a transverse axis ZZ 'perpendicular to the longitudinal axis LL' of the parallelepiped structure 2.
  • the turbine 4 comprises at its center a base or casing 3 ⁇ containing an angle return device ensuring the junction between the main rotating shaft of the housing 2 in the direction ZZ 'connected to the engine in the hood 2 ⁇ and one or two rotating shafts in the transverse direction ZZ ′ connected to one or two propellers 3 contained in the turbine 4.
  • a first propeller can be a supercharging tractor, a second propeller which is propulsive or the reverse when the direction of rotation is reversed.
  • This two-propeller system makes propulsion very efficient with a symmetrical thrust in the two opposite directions corresponding to the direction ZZ 'transverse to the longitudinal direction LL' of the propulsion unit and the longitudinal direction XX 'of the boat.
  • the propulsion assembly 1 is mounted inside a substantially parallelepipedic box 12 ⁇ , which cooperates by sealed junction along a junction plane 12 3 with a substantially parallelepipedic well 12 2 produced inside the hull and inside which a cutout 8 is provided in said shell 7.
  • the propulsion assembly 1 is supported by the upper box 12 ⁇ whose lower edge 12 4 of the side walls is tightly fixed on the upper edge 12s of the walls sides of well 12 2 .
  • the propulsion assembly 1 is integral with the box 12 ⁇ but movable relative to the latter, according to a uniform circular movement as will be explained below.
  • a closure plate 6 reproducing the shape of the shell cooperates with a rebate 8 1 (4B) at the periphery of the opening 8 in the shell 7 so that in the retracted position (FIGS. 2A and 4A) the plate 6 is in perfect continuity with the rest of the shell 7.
  • the closure plate 6 is connected to the turbine 4 by support elements 61.
  • the propulsion assembly 1 is retractable or retractable using a rotation device which will be explained below and which generates a circular movement of exit from the well and the hull or re-entry into the well around an immaterial axis of rotation 11 (FIGS. 4A to
  • the rotation device between a retracted position A inside the hull and a deployed propulsion position B in which the propeller exits outside the well and protrudes from the hull 7 below it comprises:
  • sliders 9 ⁇ , 9 2 , 9 3 mounted on opposite faces in the transverse direction ZZ 'of the rigid parallelepiped structure 2 ensuring the junction between the turbine 4 and the cover 2-_. More specifically, sliders 9 ⁇ , 9 2 , 9 3 are supported by a triangular plate 16 mounted on either side of the parallelepipedic housing 2. These sliders 9- ⁇ , Qz, 9 3 are arranged on the plates 16 in a triangle and cooperate with slideways formed by circular recesses 10 ⁇ , IO2 provided in support plates 15 disposed opposite the plates 16.
  • the two pairs of slides 1O ⁇ and 10 2 are arranged symmetrically on each side of said propulsion assembly cooperating with the slides 9-I-93 supported by the two plates 16 each also arranged on each side of said rigid structure 2 parallelepiped.
  • the two slides 10 ⁇ , 10 therefore constitute female parts cooperating with the male parts 9 ⁇ , 9 2 , 9 3 .
  • the slides 10 ⁇ , 10 2 define arcs of concentric and homothetic circles of the same angular sector, that is to say inscribed in the same circular section. More precisely still, a first slide 9 ⁇ is able to circulate inside a first slide 10 ⁇ and the other two slides 9 2 , 9 3 slide inside a second slide IO2 defining an arc located above of the first slide 10 ⁇ and defining a circular arc concentric with the first slide but of larger radius and according to the same angular sector (homothetic).
  • the plates 15 in which the circular guides 10 ⁇ and 10 2 are defined are fixed to opposite lateral edges of the box 12 2 by means of second plates 15 ⁇ .
  • the positioning of the plates 15 and 15 ⁇ in the box 12 ⁇ is carried out so that the circular slides 10 ⁇ and IO 2 have a circular center of symmetry (which corresponds to the center of rotation of the slides 9 ⁇ , 9 2 , 9 3 inside slides 10 ⁇ and 10 2 ), located at the level of the shell 11 (see FIGS. 4A and 4B).
  • the slides 9 ⁇ , 9 2 , 9 3 consist of cylindrical fingers surrounded by rings 9 4 (see Figure 3) facilitating the sliding inside the circular recesses constituting the slides 10 ⁇ and IO 2 .
  • the guide elements comprise a single slide 9 whose circular shape corresponds to the shape of the slide formed by a circular recess 10. It is understood that in this embodiment of the Figure 8, we can consider that the plates 15 ⁇ comprising the recesses 10 are integral with the rigid parallelepipedal structure 2 connecting the cover 2_ to the turbine 4 and that the triangular plates 16 supporting the slider 9 is fixedly mounted on the side walls inside the box 12 ⁇ .
  • uniform circular movement is understood here to mean that the propulsion assembly does not have a relative movement of rotation with respect to the main circular movement of rotation around the immaterial center of rotation 11, imposed by the shape of the guide elements 9, 9 9 3 and 10,10- 1 -10 2 , which have as a center of circular symmetry said immaterial center of rotation 11 of the propulsion unit 1.
  • the propulsion unit 1 moves uniformly in its circular motion. This uniform circular movement allows when the propulsion assembly passes from the retracted position inside the hull (A, FIG. 4A) to the deployed position outside the hull (B, FIG. 4C) that the plate d the shutter 6 immediately emerges from the opening 8, allowing only the turbine 4 and the propeller 3 to pass, which explains why the opening 3 can be of relatively small size.
  • the circular movement of the propulsion assembly 1 inside the slides IO 1 O 2 or 10 is achieved by a displacement device comprising: - a motor 13 of the geared motor type cooperating with pulleys 13 ⁇ ,
  • Said pulleys 13 ⁇ , 13 2 receive straps 14- ⁇ , 14 2 .
  • a first strap 14 ⁇ called the descent strap is fixed at one end to a said pulley 13 ⁇ and at the other end to the upper cover 2-.
  • Two second straps 14 2 called lifting straps provide the connection between pulleys 13 2 to which are fixed at one end and the turbine 4 to which they are fixed at their second end.
  • the output or re-entry operation of the propulsion unit is controlled outside the box by a hydraulic, electric or compressed air system (not shown) which acts on the motor 13.
  • the actuation of the motor 13 rotates the pulleys 13 ⁇ , 132 so as to ensure simultaneously the unwinding or winding of the descent straps 14- ⁇ and vice versa the winding or respectively the unwinding of the lifting straps 14 2 thus causing the descent of the turbine 4 and therefore the output of the propulsion assembly in the deployed position B or respectively the lifting of the turbine 4 and therefore the deployment in the position B or respectively the retraction in position A of the propulsion assembly inside the hull 7.
  • the non-reversible nature of the motor 13 ensures that the propellant is blocked either in the retracted position A, or in the deployed position B at the end of the unwinding or winding of the straps 14 ⁇ , 14 2 .
  • the rigidity imparted to the propulsion assembly according to the invention on the one hand by said rigid structure 2 and on the other hand by the guidance of said propulsion assembly 1 secured to the male elements 9 9 3 in pivoting to the inside the female elements 10- ⁇ , fixed IO 2 ensures the absence of deformation usually due to the torque effect generated during the active propulsion phase and thus makes it possible to overcome the fatigue stresses usually encountered on retractable thrusters. It also makes it possible to keep the exact coincidence between the closing hatch 6 and its housing 8-8 1 in the hull 7 thus preserving the hull 7 of the boat all its hydrodynamic performance.
  • the motor, not shown, of the propulsion assembly, contained in the cover 2- ⁇ can be an electric motor, with compressed air or a hydraulic motor.
  • this propulsion unit 1 is not subject to seizure during its outgoing or reentry movements in the well.
  • the movement of circular displacement of the propulsion assembly makes it possible to reduce the bulk thereof within the hull insofar as it makes it possible to arrange it inside the hull in an inclination in retracted position A by an angle ⁇ with respect to the junction plane 12 3 (XOZ) between the box 12 .
  • the design of the mounting of the propulsion assembly inside the hull mounted integrally on the box 12- ⁇ facilitates its installation inside the hull.
  • FIGS. 4A, 4C there is shown an axis of rotation 11 situated at the level of the shell, but this can also be located below the shell insofar as the positioning allows instantaneous release of the closure plate 6 relative to the rim 8 1 of the opening 8 of the shell 7.
  • FIG. 1 to 8 there is shown the propulsion assembly arranged inside the hull so that the propeller is of transverse axis of rotation ZZ 'perpendicular to the longitudinal direction XX' of the boat; however, obviously the propulsion assembly can be arranged differently inside the hull, in particular with a turbine with an axis parallel to the longitudinal direction of the boat to create a longitudinal propulsion rather than a transverse propulsion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Transmission Devices (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Bridges Or Land Bridges (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Colloid Chemistry (AREA)
  • Toys (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Mechanical Operated Clutches (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

La présente invention concerne un propulseur rétractable pour engin flottant ou submersible comprenant un ensemble de propulsion (1) comprenant une structure rigide (2,21) solidaire d'une turbine cylindrique (4), ladite structure rigide (2,21) contenant ou étant apte à contenir un moteur, ledit moteur entraînant en rotation au moins une hélice (3) à l'intérieur de ladite turbine (4), par l'intermédiaire d'au moins un arbre tournant entre ledit moteur et ladite hélice, et de préférence une plaque (6) d'obturation de la coque (7) placée sous ladite turbine et solidaire de celle-ci, ledit ensemble de propulsion (1) pouvant être déplacé à l'aide de moyens de déplacement (91-93,101-102) entre une position rétractée (A) de repos à l'intérieur de la coque et une position déployée (B) de propulsion dans laquelle l'hélice (3) est immergée dessous la coque (7). Selon la présente invention lesdits moyens de déplacement permettent un déplacement dudit ensemble de propulsion entre lesdites positions rétractée (A) et déployée (B) selon un mouvement circulaire uniforme dudit ensemble de propulsion (1) par rapport à un centre de rotation (11) situé sensiblement au niveau de la coque ou dessous ladite coque.

Description

PROPULSEUR RETRACTABLE PAR ROTATION.
La présente invention concerne un propulseur rétractable à l'intérieur de la coque d'un engin flottant ou submersible. Ce propulseur est particulièrement destiné à être installé au niveau de l'étrave de la proue et/ou de la poupe d'un bateau. Ces propulseurs ont comme fonction de fournir une poussée latérale ou longitudinale selon la disposition de l'axe de l'hélice par rapport à la direction longitudinale de l'engin. Ils permettent une propulsion bi-directionnelle rendant possible les déplacements omnidirectionnels d'un engin notamment lors des manœuvres, correction de déport dû au vent et courant ou erre résiduelle.
Plus particulièrement, la présente invention concerne un propulseur rétractable pour engin flottant ou submersible comprenant un ensemble de propulsion comprenant une structure rigide contenant ou apte à contenir un moteur entraînant en rotation au moins une hélice placée à l'intérieur d'une turbine, par l'intermédiaire d'au moins un arbre tournant entre ledit moteur et ladite hélice, et de préférence une plaque d'obturation de la coque placée sous ladite turbine et solidaire de celle-ci, ledit ensemble de propulsion pouvant être déplacé à l'aide de moyens de déplacement entre une position rétractée A de repos à l'intérieur de la coque et une position déployée B de propulsion dans laquelle l'hélice est immergée dessous la coque.
L'axe de l'hélice est en général perpendiculaire à l'axe du moteur, et le moteur coopère avec l'hélice par l'intermédiaire d'un dispositif de renvoi d'angle à engrenage comprenant un premier arbre tournant dans la prolongation d'un arbre moteur situé dans l'axe du moteur, ledit premier arbre tournant entraînant en rotation un deuxième arbre perpendiculaire au dit premier arbre tournant et sur lequel est montée l'hélice.
Le dispositif de renvoi d'angle, aussi dénommé « embase » est donc essentiellement contenu dans la turbine. De façon connue le dispositif de renvoi d'angle comprend un carter à l'intérieur duquel deux arbres tournants par rapport respectivement à deux axes de rotation perpendiculaires dont un premier arbre entraîné en rotation directement ou indirectement par ledit moteur et un deuxième arbre entraîne au moins une hélice en rotation, ainsi que des éléments mécaniques tels que des engrenages comprenant des roues dentées, roulements à billes ou des paliers lisses permettant la transmission de la rotation dudit premier arbre au dit deuxième arbre.
Des carters de ce type ont été décrits dans le brevet au nom de la demanderesse FR2798184.
Le premier arbre tournant entraîné en rotation à son extrémité supérieure par un moteur peut coopérer dans le dispositif de renvoi d'angle avec un ou deux arbres perpendiculaires entraînant en rotation chacun une hélice dont les axes de rotation sont dans la même direction perpendiculaire aux dit(s) premier(s) axe(s) toumant(s). Lorsque le propulseur est pourvu de deux hélices de façon connue, la première hélice est tractrice, suralimentant la seconde hélice qui est propulsive, et vice et versa par inversion de la rotation, rendant l'ensemble très efficace avec une poussée symétrique dans les deux sens. Des propulseurs rétractables ont été décrits dans les brevets FR
2652559 et FR 2741854 et EP 863837.
Les propulseurs rétractables comportent un dispositif de rentrée et de sortie de l'hélice par rapport à la coque.
Dans EP 863837, on a décrit un dispositif de déplacement engendrant un mouvement rectiligne de montée et de descente de l'ensemble de propulsion permettant l'entrée et la sortie sous la coque de l'hélice à l'intérieur d'un puits dans la coque. Une plaque transversale « anti-couple ou anti- rotatoire » solidaire du propulseur est située à l'intérieur du puits et de forme complémentaire audit puits qui empêche la rotation du propulseur par rapport au bateau lors de la propulsion, rotation pouvant résulter d'un effet de couple, c'est pourquoi on la dénomme « plaque anti-couple ». Le dispositif décrit dans EP 863837 comporte également des moyens d'éviter le blocage ou coincement du propulseur lors des mouvements rectilignes de montée et descente
Les dispositifs de déplacement de l'ensemble de propulsion décrits dans EP 863837 présentent un inconvénient majeur, à savoir que le développement rectiligne de l'ensemble de propulsion entraîne un encombrement important dans les volumes de la coque.
Dans FR 2652559 on a proposé un dispositif trapézoïdal à rotation déformante engendrant un mouvement rectiligne de sortie ou de rentrée à l'intérieur de l'ensemble de propulsion à l'intérieur d'un puits permettant de réduire l'encombrement total nécessaire à ce propulseur, notamment en hauteur. Toutefois ce dispositif trapézoïdal avec des bras pivotants assymétriquement coopérant avec un étrier solidaire de la turbine, permet d'obtenir un mouvement rectiligne de l'axe de l'hélice lors de la sortie ou rentrée à l'intérieur du puits ce qui permet d'obtenir un dégagement immédiat de l'hélice par la mise en action du mécanisme.
Le dispositif de rentrée et de sortie du propulseur décrit dans FR 2652559 implique un encombrement du propulseur réduit, notamment en hauteur, car le propulseur peut être disposé de manière inclinée à l'intérieur de la coque et être déployé en dehors de la coque tout en restant incliné. On connaît également les dispositifs d'entrée et de sortie d'ensemble de propulsion dans lequel le dégagement de l'hélice ne se fait pas selon un mouvement rectiligne vertical de l'axe de l'hélice mais selon un mouvement circulaire par pivotement de l'ensemble de propulsion sur lui-même par rapport à un axe de rotation matériel fixe situé en hauteur à l'intérieur de la coque. Dans ce dispositif l'ensemble de propulsion est comme un bras pivotant à l'extrémité duquel l'hélice est animée d'un mouvement circulaire par rapport à l'axe de pivotement à l'autre extrémité dudit bras.
Il est nécessaire de sortir partiellement « le bras » de la coque pour permettre la sortie complète de l'hélice ce qui nécessite une ouverture dans la coque plus importante que celle nécessaire pour le seul passage de la turbine.
Cette ouverture importante implique des volumes et poids de l'eau à déplacer ou contenir qui sont excessifs et qui mettent en péril la fiabilité mécanique du système de propulsion dans son ensemble en augmentant en outre le poids à l'avant de l'engin de façon désavantageuse.
Le but de la présente invention est de fournir un propulseur avec un dispositif d'entrée et de sortie de l'hélice par rapport à la coque qui cumule les avantages des différents dispositifs décrits dans la technique antérieure sans en présenter les inconvénients.
Plus particulièrement, le but de la présente invention est de fournir un dispositif de rentrée et de sortie au propulseur : - qui soit fiable mécaniquement, en particulier qui évite les phénomènes de blocage ou de coincement lors du mouvement, et
- qui permette un dégagement rapide de l'hélice hors du puits à l'intérieur de la coque en autorisant une ouverture dans la coque la plus petite possible.
Plus particulièrement, un autre but de la présente invention est de fournir un propulseur comprenant un dispositif de rentrée et de sortie de l'ensemble de propulsion qui implique un nombre de composants minimums et faciles d'assemblage, d'installation sur l'engin flottant, et d'entretien.
Jusqu'à présent on pensait que cette double exigence impliquait de prévoir un mouvement rectiligne vertical de l'axe de l'hélice, toutefois les systèmes proposés à mouvement rectiligne vertical de l'axe de l'hélice, dans la technique antérieure, impliquent soit une complexité de réalisation au plan mécanique comme dans FR2652559, soit un encombrement à l'intérieur du volume de la coque important comme dans EP 863837, soit les inconvénients dus aux encombrements générés notamment au niveau des développements de parties mobiles au travers de la carène.
C'est pourquoi un autre but de la présente invention est de fournir un dispositif de rentrée et de sortie du propulseur qui permette aussi de réduire l'encombrement total nécessaire à ce propulseur, notamment en hauteur, à l'intérieur de la coque Pour ce faire, la présente invention fournit un propulseur rétractable pour engin flottant ou submersible comprenant un ensemble de propulsion comprenant une structure rigide solidaire d'une turbine cylindrique, ladite structure contenant ou étant apte à obtenir un moteur, ledit moteur tournant étant apte à entraîner en rotation au moins une hélice à l'intérieur de ladite turbine, par l'intermédiaire d'au moins un arbre tournant entre ledit moteur et ladite turbine, et de préférence une plaque d'obturation de la coque placée sous ladite turbine et solidaire de celle-ci, ledit ensemble de propulsion pouvant être déplacé à l'aide de moyens de déplacement entre une position rétractée de repos à l'intérieur de la coque et une position déployée de propulsion dans laquelle l'hélice est immergée dessous la coque, caractérisé en ce que lesdits moyens de déplacement permettent un déplacement dudit ensemble de propulsion entre lesdites positions rétractée et déployée selon un mouvement circulaire uniforme dudit ensemble de propulsion par rapport à un axe de rotation immatériel situé sensiblement au niveau de ladite coque ou dessous ladite coque.
Plus particulièrement, lesdits moyens de déplacement comprennent des éléments de guidage aptes à coopérer avec ledit ensemble de propulsion pour permettre le déplacement dudit ensemble de propulsion entre lesdites positions rétractée (A) et déployée (B) selon un dit mouvement circulaire uniforme dudit ensemble de propulsion par rapport audit axe de rotation immatériel sensiblement situé au niveau de ladite coque ou dessous ladite coque, ledit mouvement circulaire uniforme étant déterminé par la forme des dits éléments de guidage. On entend par « mouvement circulaire uniforme de l'ensemble de propulsion » que tous les points dudit ensemble de propulsion se déplacent simultanément et à la même vitesse angulaire, circulairement par rapport à un même axe de rotation, de sorte que ledit ensemble de propulsion n'est animé d'aucun mouvement substantiel relatif par rapport au mouvement principal de déplacement circulaire de son centre de gravité ou de tout autre point. En particulier l'ensemble de propulsion ne pivote pas sur lui-même car il ne comporte pas d'élément fixe, notamment pas d'axe de rotation matériel. Le positionnement de l'axe de rotation dudit ensemble de propulsion au niveau de la coque ou à l'extérieur de celle-ci permet un dégagement instantané par rapport à l'ouverture de la coque, de la plaque d'obturation et de l'ensemble de propulsion qui lui est solidaire par l'intermédiaire de la turbine, par un mouvement circulaire tout en autorisant une ouverture dans la coque la plus petite possible.
La dématérialisation de l'axe de rotation trouve son efficacité optimale lorsque ledit axe de rotation se situe idéalement sur la peau extérieure de la coque ou au dessous de celle-ci, de sorte que il n'y ait aucun point de la plaque d'obturation qui ne rentre vers l'intérieur de la coque lors du déploiement de l'ensemble de propulsion. Toutefois, en pratique, compte tenu du jeu fonctionnel de la plaque d'obturation par rapport à son logement dans l'ouverture de la coque, notamment par rapport à une feuillure périphérique éventuelle de l'ouverture de la coque, un positionnement de l'axe de rotation légèrement au dessus du niveau de la coque peut être toléré.
On entend par "niveau de la coque", le niveau de la surface continue de la coque en contact direct avec l'eau lorsque ledit engin flotte à la surface de l'eau, et non le niveau des éventuels renfoncements ou logements que peut former la coque et qui ne sont pas en contact avec l'eau lorsque ledit engin flotte à la surface de l'eau.
On entend donc ici par « sensiblement au niveau de la coque » que le centre de rotation peut se situer légèrement au dessus du niveau intérieur de la coque, notamment une hauteur correspondant à pas plus de 50% du diamètre de la turbine cylindrique, et plus particulièrement - en pratique - quelques cm au-dessus de la coque, c'est à dire quelques cm à l'intérieur du volume de la coque, plus particulièrement encore jusqu'à 10 cm au-dessus du niveau intérieur de la coque.
En outre, du fait que ledit axe de rotation est immatériel, l'ensemble de propulsion n'est pas solidaire de son axe de rotation. D'un point de vue mécanique, l'absence d'éléments matérialisant l'axe de rotation de l'ensemble mobile de propulsion d'une part et d'autre part, la génération dudit mouvement circulaire par l'intermédiaire d'éléments de guidage, c'est à dire en l'absence de tout bras de liaison notamment de bras pivotants assurant la liaison, entre ledit axe de rotation et l'ensemble de propulsion garantit la fiabilité et la simplicité du fonctionnement et de la réalisation du dispositif de déplacement du propulseur. Elle permet aussi la simplicité de la mise en œuvre et mise en place du propulseur lors de son installation sur l'engin et un positionnement idéal du propulseur dans la coque.
Le déploiement par rotation dudit ensemble de propulsion permet de disposer celui-ci de manière inclinée à l'intérieur du volume de la coque lorsqu'il est en position rétractée et déployée de sorte que, au total, l'encombrement nécessaire à ce propulseur à l'intérieur de la coque, notamment en hauteur, peut être inférieur de trois à quatre fois par rapport à un propulseur rétractable classique à déploiement par mouvement rectiligne vertical. On entend ici par « position inclinée » que l'axe longitudinal de ladite structure rigide perpendiculaire à l'axe transversal de ladite turbine est incliné et/ou que le plan axial de symétrie comportant le ou les deux arbres tournants est incliné.
On comprend que ladite plaque d'obturation vient obturer ledit orifice dans la coque lorsque ledit ensemble de propulsion est en position rétractée.
On comprend également que la forme de ladite trappe reproduit celle de la coque respectant ainsi parfaitement les lois de l'hydrodynamique afin d'annuler les sources de turbulences parasites éventuelles.
Dans un mode préféré de réalisation d'un propulseur selon l'invention lesdits éléments de guidage comprennent au moins un premier élément de guidage mobile et solidaire dudit ensemble de propulsion, animé du même mouvement circulaire uniforme que ledit ensemble de propulsion, et apte à coopérer avec au moins un deuxième élément de guidage fixe et solidaire de ladite coque, lesdits premier et deuxième éléments de guidages coopérant entre eux par déplacement relatif dudit premier élément de guidage par rapport au dit second élément de guidage pour permettre ledit déplacement de l'ensemble de propulsion entre les positions rétractées (A) et déployées (B). On entend ici par « solidaire de la coque » que lorsque ledit ensemble de propulsion est installé à l'intérieur de la coque de l'engin notamment en étant inclus dans un caisson supportant l'ensemble de propulsion et venant s'adapter sur la bordure supérieure d'un puits lui-même adapté à l'intérieur de ladite coque et encadrant à sa base ladite ouverture de la coque, lesdits seconds éléments de guidage sont solidaires des parois dudit caisson et le cas échéant des parois dudit puits, c'est à dire de la coque de l'engin en elle-même.
Ce mode de réalisation permet que lesdits éléments de guidage assurent également une fonction de support dudit ensemble de propulsion et/ou une fonction de liaison entre ledit ensemble de propulsion et la coque.
Ledit deuxième élément de guidage peut être soutenu, notamment par un bâti solidaire de ladite coque. La liaison entre l'ensemble de propulsion et ledit premier élément de guidage mobile interdit tout mouvement relatif substantiel dudit ensemble de propulsion par rapport au dit premier élément de guidage et permet l'homogénéité du mouvement circulaire de l'ensemble de propulsion. La trajectoire circulaire du mouvement de l'ensemble de propulsion est imposée par la forme respective desdits premier et deuxième éléments de guidage ce qui rend ce mouvement mécaniquement fiable et simple à réaliser.
Dans un mode de réalisation plus particulier, ledit premier élément de guidage mobile est constitué par une partie mâle formant coulisseau et solidaire dudit ensemble de propulsion et ledit deuxième élément de guidage est constitué par une partie femelle formant glissière, ladite glissière formant un arc de cercle permettant ledit mouvement circulaire dudit premier élément de guidage à l'intérieur dudit deuxième élément de guidage. Dans une variante de réalisation inversée, ledit premier élément de guidage mobile solidaire dudit ensemble de propulsion est constitué par une partie femelle formant glissière et ledit deuxième élément de guidage est constitué par une partie mâle formant coulisseau, ladite glissière formant un arc de cercle permettant ledit mouvement circulaire dudit second élément de guidage à l'intérieur dudit premier élément de guidage. On comprend que lesdits premier et second éléments de guidage constitués des dits parties mâle et femelle forment des parties complémentaires coopérant entre elles pour assurer le guidage. Ladite glissière peut-être constituée de rails de guidage, d'échancrures ou de perforations et le(s) coulisseau(x) peut(peuvent) être constitué(s) d'éléments en forme de doigts mais aussi selon une variante de réalisation de roulettes. C'est la forme de la glissière qui définit la trajectoire dudit mouvement circulaire et la partie mâle formant coulisseau constitue un élément guidé. Ainsi parmi ledit premier et deuxième éléments de guidage il y a en fait des éléments guidés (appelé ci- avant partie mâle) et des éléments guidants (appelé ci-avant partie femelle).
Avantageusement encore et comme mentionné ci-dessus ledit ensemble de propulsion est partiellement inclus à l'intérieur d'un caisson et solidaire de celui-ci, ledit caisson venant s'adapter sur la bordure supérieure d'un puits, le puits étant lui-même adapté à l'intérieur de ladite coque et encadrant à sa base ladite ouverture de ladite coque. Plus particulièrement, lesdits caissons et puits comprennent des parois latérales définissant sensiblement un espace parallélépipédique.
Dans un mode de réalisation avantageux et afin de réduire l'encombrement à l'intérieur du volume de la coque ledit ensemble de propulsion est incliné de sorte que un plan comprenant l'axe longitudinal de ladite structure rigide contenant ledit arbre tournant est incliné d'un angle α par rapport au plan de jonction dudit caisson et dudit puits, en position rétractée (A) d'une valeur de 10 à 60° de préférence 10 à 30° et d'un angle β par rapport au même dit plan de jonction en position déployée (B) d'une valeur de 45 à 100°, de préférence 60 à 90°.
Dans un mode préféré de réalisation, lesdits éléments de guidage comprennent une pluralité desdits premiers et dits deuxièmes éléments de guidage disposés latéralement de chaque côté dudit ensemble de propulsion de part et d'autre d'un plan vertical comprenant l'axe longitudinal de ladite structure rigide. Lesdits éléments de guidage peuvent comprendre une pluralité de coulisseaux disposés de chaque côté dudit ensemble de propulsion coopérant avec une pluralité de glissières disposées de chaque côté dudit ensemble de propulsion celles-ci étant solidaires de ladite coque. On entend par « pluralité » desdils premier et deuxième élément de guidage, que lesdits éléments de guidage comprennent au moins deux dits premiers éléments de guidage et au moins deux dits deuxièmes éléments de guidage, avec au moins undit premier élément de guidage ou au moins undit deuxième élément de guidage de chaque côté dudit ensemble de propulsion. Plus particulièrement encore le (ou les) dit(s) deuxième(s) élément(s) de guidage et (ou sont) inclus ou associé(s) à une (ou des) plaque(s) montée(s) de manière fixe sur une paroi latérale dudit caisson ou de parois latérales opposées dudit caisson.
Dans un mode préféré de réalisation, lesdits premiers éléments de guidage comprennent au moins trois parties mâles, de préférence trois coulisseaux, disposés en triangle, symétriquement de chaque côté dudit ensemble de propulsion, de manière à coopérer respectivement avec au moins deux parties femelles formant glissières définissant des arcs de cercle concentriques et homothétiques disposés symétriquement de chaque côté dudit ensemble de propulsion, au moins deux dites parties mâles de préférence desdits coulisseaux étant aptes à coulisser à l'intérieur d'une première glissière de plus grand rayon et au moins une troisième partie mâle de préférence un troisième coulisseau étant apte à coulisser à l'intérieur d'au moins une deuxième glissière de plus petit rayon. On entend ici par « homothétique » que les deux arcs de cercle sont inscrits dans un même secteur angulaire.
Ce mode de réalisation fournit un guidage de l'ensemble de propulsion très performant qui confère rigidité et fiabilité mécanique lors de la mise en mouvement de l'ensemble, tout en étant d'une grande simplicité de réalisation. Ce mode de réalisation assure également une stabilité mécanique performante pour contrer l'effet de couple généré par la propulsion lorsque le propulseur est en phase active de propulsion, ce qui permet de s'affranchir des contraintes de fatigue habituellement rencontrées sur les propulseurs rétractables et de conserver une coïncidence satisfaisante, voire exacte entre la trappe de fermeture et l'ouverture dans la carène et donc de conserver à la coque du bateau toutes ses performances hydrodynamiques.
Avantageusement, lesdits éléments de guidage coopèrent avec des moyens d'entraînement permettant de générer ledit mouvement circulaire de l'ensemble de propulsion par rapport à la coque.
Plus particulièrement encore, ledit premier ou second élément de guidage est entraîné en rotation par rapport au dit second ou respectivement premier élément de guidage, selon un dit mouvement circulaire, par un moteur coopérant le cas échéant avec ledit premier ou respectivement second élément de guidage par l'intermédiaire d'éléments de liaison, de manière à permettre de bloquer ledit ensemble de propulsion en position rétractée (A) ou en position déployée (B) le cas échéant.
On comprend que l'on peut avantageusement entraîner en rotation des éléments formant partie mâle qu'il s'agisse des premiers ou second éléments de guidage, en les faisant coopérer par l'intermédiaire des dits éléments de liaison avec des moyens de motorisation.
Enfin, dans un mode de réalisation particulier ladite structure rigide contenant le moteur peut consister notamment dans une structure parallélépipédique assurant la liaison étanche entre d'une part un capot recouvrant ledit moteur et d'autre part ladite turbine, lesdits premiers éléments de guidage étant montés contre des faces latérales opposées de ladite structure parallélépipédique.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description détaillé d'un mode de réalisation fait en référence aux figures suivantes dans lesquelles : - les figures 1A et 1 B représentent une vue en perspective de l'intérieur de la coque avec un propulseur intégré à l'intérieur d'un caisson et d'un puits, ledit ensemble de propulsion (sans hélice) étant en position rétractée à l'intérieur de la coque (figure 1 A) et en position déployée en dehors de la coque (figure 1B).
Les figures 2A et 2B sont des vues correspondantes aux figures 1A et
1 B respectivement dans lesquelles on a retiré le caisson supportant l'ensemble de propulsion pour ne montrer que le puits situé au-dessus de l'ouverture dans la coque avec la position de l'ensemble de propulsion (sans l'hélice) en position rétractée (figure 2A) et déployée (figure 2B).
La figure 3 est une vue montrant les différents éléments constitutifs du propulseur au niveau de la coque et de l'ensemble de propulsion.
Les figures 4A, 4B et 4C représentent une vue schématique en coupe longitudinale par rapport à l'axe du bateau d'un propulseur selon l'invention en position rétractée (figure 4A), position intermédiaire (figure 4B) et position déployée (figure 4C).
Les figures 5A, 5B et 5C représentent l'ensemble de propulsion en vue longitudinale respectivement dans les positions des figures 4A, 4B et 4C.
La figure 6 est une vue en coupe longitudinale d'un propulseur comprenant l'ensemble de propulsion intégré dans un caisson et un puits au niveau de la coque d'un bateau.
La figure 7 est une vue en coupe transversale selon A-A de la figure 6.
Les figures 8A et 8 B représentent une variante de réalisation d'un coulisseau selon l'invention. Un ensemble de propulsion 1 selon l'invention comprend une structure rigide de 2,2ι fermée et étanche solidaire d'une turbine tubulaire 4.
Ladite structure rigide 2,2ι contient un moteur (non représenté et un arbre tournant (non représenté) entraînant en rotation au moins une hélice 3, ladite hélice 3 étant contenu à l'intérieur de ladite turbine tubulaire 4. Ladite structure rigide 2,2ι est constituée d'une structure parallélépipédique 2 consistant en un boîtier avec 4 faces pleines définissant un parallélépipède et dont une face ouverte est solidaire de manière étanche de l'enveloppe tubulaire de la turbine 4 et l'autre face ouverte assure la liaison étanche avec un capot 2ι parallélépipédique recouvrant le moteur de l'ensemble de propulsion et la turbine 4.
La structure parallélépipédique 2 définit une colonne présentant un axe de symétrie longitudinale LL' correspondant sensiblement à l'axe de l'arbre tournant principal directement entraîné par le moteur à l'intérieur de la structure 2,2ι et relié à son autre extrémité à un dispositif de renvoi d'angle à l'intérieur de la turbine 4 tel que décrit ci-après. La structure tubulaire constitutive de la turbine 4 présente un axe transversal ZZ' perpendiculaire à l'axe longitudinale LL' de la structure parallélépipédique 2.
La turbine 4 comprend en son centre une embase ou carter 3ι contenant un dispositif de renvoi d'angle assurant la jonction entre l'arbre tournant principal du boîtier 2 selon la direction ZZ' relié au moteur dans le capot 2ι et un ou deux arbres tournants dans la direction transversale ZZ' reliés à une ou deux hélices 3 contenues dans la turbine 4. une première hélice peut être tractrice suralimentant une seconde hélice qui est propulsive ou l'inverse lorsque l'on inverse le sens de la rotation. Ce système à deux hélices rend la propulsion très efficace avec une poussée symétrique dans les deux sens opposés correspondant à la direction ZZ' transversale à la direction longitudinale LL' de l'ensemble de propulsion et la direction longitudinale XX' du bateau. L'ensemble de propulsion 1 est monté à l'intérieur d'un caisson sensiblement parallélépipédique 12ι, lequel coopère par jonction étanche le long d'un plan de jonction 123 avec un puits sensiblement parallélépipédique 122 réalisé à l'intérieur de la coque et à l'intérieur duquel est prévue une découpe 8 dans ladite coque 7. L'ensemble de propulsion 1 est supporté par le caisson supérieur 12ι dont le bord inférieur 124 des parois latérales est fixé de manière étanche sur le bord supérieur 12s des parois latérales du puits 122. L'ensemble de propulsion 1 est solidaire du caisson 12ι mais mobile par rapport à celui-ci, selon un mouvement circulaire uniforme comme il sera exposé ci-après.
Dessous la turbine 4, une plaque d'obturation 6 reproduisant la forme de la coque coopère avec une feuillure 81 (4B) à la périphérie de l'ouverture 8 dans la coque 7 de manière à ce qu'en position rétractée (figures 2A et 4A) la plaque 6 soit dans la parfaite continuité du reste de la coque 7. La plaque d'obturation 6 est reliée à la turbine 4 par des éléments supports 61.
L'ensemble de propulsion 1 selon l'invention est rétractable ou escamotable à l'aide d'un dispositif de rotation qui sera explicité ci-après et qui engendre un mouvement circulaire de sortie hors du puits et de la coque ou de rentrée dans le puits autour d'un axe de rotation immatériel 11 (figures 4A à
4C) situé au niveau de la coque 7.
Lorsque l'ensemble de propulsion 1 est rétracté à l'intérieur du puits 12-ι, l'ouverture 8 de la coque est obturée automatiquement par la trappe 6 solidaire de la tuyère tubulaire de la turbine 4 et la forme extérieure de la trappe reproduit celle de la coque 7 respectant ainsi parfaitement les lois de l'hydrodynamique par la surpression totale de toute source de turbulences parasites. Le dispositif de rotation entre une position rétractée A à l'intérieur de la coque et une position déployée B de propulsion dans laquelle l'hélice est sortie à l'extérieur du puits et dépasse de la coque 7 en dessous de celle-ci comprend :
- des éléments de guidage mâles 9-ι, 92, 93 montés sur des faces opposées dans la direction transversale ZZ' de la structure rigide parallélépipédique 2 assurant la jonction entre la turbine 4 et le capot 2-_. Plus précisément, des coulisseaux 9ι, 92, 93 sont supportés par une platine triangulaire 16 montée de part et d'autre du boîtier parallélépipédique 2. Ces coulisseaux 9-ι, Qz, 93 sont disposés sur les platines 16 en triangle et coopèrent avec des glissières formées par des evidements circulaires 10ι, IO2 prévus dans des plaques support 15 disposées en vis à vis des platines 16. Les deux paires de glissières 1Oι et 102 sont disposés symétriquement de chaque côté dudit ensemble de propulsion coopérant avec les coulisseaux 9-I-93 supportées par les deux platines 16 disposées chacune elles aussi de chaque côté de ladite structure rigide 2 parallélépipédique. Les deux glissières 10ι, 10 constituent donc des parties femelles coopérant avec les parties mâles 9ι, 92, 93.
Plus précisément, les glissières 10ι, 102 définissent des arcs de cercles concentriques et homothétiques de même secteur angulaire, c'est à dire inscrits dans une même section circulaire. Plus précisément encore, un premier coulisseau 9ι est apte à circuler à l'intérieur d'une première glissière 10ι et les deux autres coulisseaux 92, 93 coulissent à l'intérieur d'une deuxième glissière IO2 définissant un arc situé au-dessus de la première glissière 10ι et définissant un arc circulaire concentrique à la première glissière mais de plus grand rayon et selon un même secteur angulaire (homothétique). Les plaques 15 dans lesquelles sont définies les glissières circulaires 10ι et 102 sont fixées sur des bords latéraux opposés du caisson 122 par l'intermédiaire de secondes plaques 15ι. Le positionnement des plaques 15 et 15ι dans le caisson 12ι est réalisé de telle sorte que les glissières circulaires 10ι et IO2 présentent un centre de symétrie circulaire (qui correspond au centre de rotation des coulisseaux 9ι, 92, 93 à l'intérieur des glissières 10ι et 102), situé au niveau de la coque 11 (voir figures 4A et 4B).
Les coulisseaux 9ι, 92, 93 sont constitués par des doigts cylindriques entourés de bagues 94 (voir figure 3) facilitant le coulissement à l'intérieur des evidements circulaires constituants les glissières 10ι et IO2. Dans une variante de réalisation représentée sur les figures 8A, 8B, les éléments de guidage comportent un unique coulisseau 9 dont la forme circulaire correspond à la forme de la glissière formée par un évidement circulaire 10. On comprend que dans ce mode de réalisation de la figure 8, on peut envisager que les plaques 15ι comprenant les evidements 10 soient solidaires de la structure rigide parallélépipédique 2 reliant le capot 2_ à la turbine 4 et que les platines triangulaires 16 supportant le coulisseau 9 soit monté fixement sur les parois latérales à l'intérieur du caisson 12ι.
On comprend que la disposition de la pluralité des coulisseaux 9ι, 92, 93 coopérants avec la pluralité de glissières 10ι et IO2 dans la première variante de réalisation et la forme de l'unique coulisseau 9 coopérant avec une unique glissière 10 (figure 8) dans la seconde variante de réalisation permettent dans les deux cas d'obtenir un mouvement circulaire uniforme de l'ensemble de propulsion qui est déterminé par la forme desdits éléments de guidage 9ι, 92, 9s d'une part, et 10-ι,102 d'autre part. On entend ici par « mouvement circulaire uniforme » que l'ensemble de propulsion n'a pas de mouvement relatif de rotation par rapport au mouvement circulaire principal de rotation autour du centre de rotation immatériel 11 , imposé par la forme des éléments de guidage 9, 9 93 et 10,10-1-102, lesquels présentent comme centre de symétrie circulaire ledit centre de rotation immatériel 11 de l'ensemble de propulsion 1. En d'autres termes, l'ensemble de propulsion 1 se déplace uniformément dans son mouvement circulaire. Ce mouvement circulaire uniforme permet lorsque l'ensemble de propulsion passe de la position rétractée à l'intérieur de la coque (A, figure 4A) à la position déployée à l'extérieur de la coque(B, figure 4C) que la plaque d'obturation 6 dégage immédiatement de l'ouverture 8 en ne laissant passer que la turbine 4 et l'hélice 3 qui explique que l'ouverture 3 puisse être d'une dimension relativement réduite.
Le mouvement circulaire de l'ensemble de propulsion 1 à l'intérieur des glissières IO1 O2 ou 10 est réalisé par un dispositif de déplacement comprenant : - un moteur 13 du type moto réducteur coopérant avec des poulies 13ι,
132 celles-ci étant disposées côte à côte selon un même axe de rotation selon la direction transversale ZZ' perpendiculaire à la direction longitudinale LL' de l'ensemble de propulsion 1.
Lesdites poulies 13ι, 132 reçoivent des sangles 14-ι, 142. Une première sangle 14ι appelée sangle de descente est fixée à une extrémité à une dite poulie 13ι et à l'autre extrémité au capot supérieur 2- . Deux deuxièmes sangles 142 appelées sangles de relevage assurent la liaison entre des poulies 132 auxquelles sont fixées à une première extrémité et la turbine 4 auxquelles elles sont fixées à leur deuxième extrémité.
L'opération de sortie ou de rentrée de l'ensemble de propulsion est commandée à l'extérieur du caisson par un système hydraulique, électrique ou à air comprimé (non représenté) qui agit sur le moteur 13. La mise en action du moteur 13 entraîne en rotation les poulies 13ι, 132 de manière à assurer concomitamment le déroulement ou l'enroulement des sangles de descente 14-ι et inversement l'enroulement ou respectivement le déroulement des sangles de relevage 142 entraînant ainsi la descente de la turbine 4 et donc la sortie de l'ensemble de propulsion en position déployée B ou respectivement le relevage de la turbine 4 et donc le déploiement en position B ou respectivement la rétractation en position A de l'ensemble de propulsion à l'intérieur de la coque 7. Le caractère non réversible du moteur 13 assure le blocage du propulseur soit en position rétractée A, soit en position déployée B en fin de déroulement ou enroulement des sangles 14ι, 142.
On notera que la rigidité conférée à l'ensemble de propulsion selon l'invention d'une part par ladite structure rigide 2 et d'autre part par le guidage dudit ensemble de propulsion 1 solidaire des éléments mâles 9 93 en pivotement à l'intérieur des éléments femelles 10-ι, IO2 fixes assure l'absence de déformation due habituellement à l'effet de couple généré durant la phase active de propulsion et permet ainsi de s'affranchir des contraintes de fatigue habituellement rencontrées sur des propulseurs rétractables. Il permet également de conserver l'exacte coïncidence entre la trappe 6 de fermeture et son logement 8-81 dans la carène 7 en conservant ainsi à la coque 7 du bateau toutes ses performances hydrodynamiques.
Le moteur non représenté de l'ensemble de propulsion, contenu dans le capot 2-ι peut être un moteur électrique, à air comprimé ou un moteur hydraulique. De par sa conception, cet ensemble de propulsion 1 n'est pas sujet au grippage lors de ses mouvements de sortie ou de rentrée dans le puits. Enfin, le mouvement de déplacement circulaire de l'ensemble de propulsion permet de réduire l'encombrement de celui-ci à l'intérieur de la coque dans la mesure où il permet de le disposer à l'intérieur de la coque dans une inclinaison en position rétractée A d'un angle α par rapport au plan de jonction 123 (XOZ) entre le caisson 12. et le puits 12a d'une valeur de 10 à 60°, de préférence 10 à 30° et d'un angle β en position déployée B d'une valeur de 45 à 100° de préférence 60 à 90° par rapport au même plan de jonction (XOZ) sensiblement parallèle à la coque.
La conception du montage de l'ensemble de propulsion à l'intérieur de la coque monté solidaire sur le caisson 12-ι facilite son implantation à l'intérieur de la coque.
Sur les figures 4A, 4C, on a représenté un axe de rotation 11 situé au niveau de la coque, mais celui-ci peut être situé également dessous la coque dans la mesure où le positionnement autorise le dégagement instantané de la plaque d'obturation 6 par rapport au rebord 81 de l'ouverture 8 de la coque 7.
Sur les figures 1 à 8, on a représenté l'ensemble de propulsion disposé à l'intérieur de la coque de manière telle que l'hélice est d'axe de rotation transversale ZZ' perpendiculaire à la direction longitudinale XX' du bateau ; toutefois, bien évidemment l'ensemble de propulsion peut être disposé différemment à l'intérieur de la coque, notamment avec une turbine d'axe parallèle à la direction longitudinale du bateau pour créer une propulsion longitudinale plutôt que une propulsion transversale.

Claims

REVENDICATIONS
1. Propulseur rétractable pour engin flottant ou submersible comprenant un ensemble de propulsion (1) comprenant une structure rigide (2,2ι) solidaire d'une turbine cylindrique (4), ladite structure rigide (2,2-ι) contenant ou apte à contenir un moteur, ledit moteur étant apte à entraîner en rotation au moins une hélice (3) à l'intérieur de ladite turbine (4), par l'intermédiaire d'au moins un arbre tournant entre ledit moteur et ladite hélice, et de préférence une plaque (6) d'obturation de la coque (7) placée sous ladite turbine et solidaire de celle- ci, ledit ensemble de propulsion (1) pouvant être déplacé à l'aide de moyens de déplacement (9 93,10 1 θ2) entre une position rétractée (A) de repos à l'intérieur de la coque et une position déployée (B) de propulsion dans laquelle l'hélice (3) est immergée dessous la coque (7), caractérisé en ce que lesdits moyens de déplacement permettent un déplacement dudit ensemble de propulsion entre lesdites positions rétractée (A) et déployée (B) selon un mouvement circulaire uniforme dudit ensemble de propulsion (1) par rapport à un axe de rotation immatériel (11) situé sensiblement au niveau de ladite coque ou dessous ladite coque.
2. Propulseur selon la revendication 1 caractérisé en ce que lesdits moyens de déplacement comprennent des éléments de guidage (9,9r 93,10,10r1θ2) aptes à coopérer avec ledit ensemble de propulsion (1) pour permettre le déplacement dudit ensemble de propulsion entre lesdites positions rétractée (A) et déployée (B) selon un dit mouvement circulaire uniforme dudit ensemble de propulsion (1) par rapport audit axe de rotation immatériel (11) sensiblement situé au niveau de ladite coque ou dessous ladite coque, ledit mouvement circulaire uniforme étant déterminé par la forme des dits éléments de guidage (9,9r93,10,10r102).
3. Propulseur selon la revendication 2 caractérisé en ce que lesdits éléments de guidage (9,9 93,10,10ι-1θ2) comprennent au moins un premier élément de guidage (9,9r93) mobile et solidaire dudit ensemble de propulsion (1) comme du même mouvement circulaire uniforme que ledit ensemble de propulsion est apte à coopérer avec au moins un deuxième élément de guidage (10,1 OH 02) fixe et solidaire de ladite coque, ledit mouvement circulaire uniforme étant imposé par la forme desdits éléments de guidage, lesdits premier et deuxième éléments de guidages coopérant entre eux par déplacement relatif dudit premier élément de guidage (9,9 93) par rapport au dit second élément de guidage (10,10r102) pour permettre ledit déplacement de l'ensemble de propulsion entre les positions rétractées (A) et déployées (B).
4. Propulseur selon la revendication 3 caractérisé en ce que ledit premier élément de guidage mobile est constitué par une partie mâle formant coulisseau (9,9 93)et solidaire dudit ensemble de propulsion et ledit deuxième élément de guidage est constitué par une partie femelle formant glissière (10,10ι-102), la dite glissière formant un arc de cercle permettant ledit mouvement circulaire dudit premier élément de guidage à l'intérieur dudit deuxième élément de guidage.
5. Propulseur selon la revendication 3 caractérisé en ce que ledit premier élément de guidage mobile solidaire dudit ensemble de propulsion constitué par une partie femelle formant glissière et ledit deuxième élément de guidage est constitué par une partie mâle formant coulisseau, ladite glissière formant un arc de cercle permettant ledit mouvement circulaire dudit second élément de guidage à l'intérieur dudit premier élément de guidage.
6. Propulseur selon l'une des revendications 2 à 5 caractérisé en ce que desdits éléments de guidage comprennent une pluralité de dits premiers (9 93) et dits deuxièmes (10ι-102) éléments de guidage disposés latéralement de chaque côté dudit ensemble de propulsion (1) de part et d'autre d'un plan vertical comprenant à l'axe longitudinal (LU) de ladite structure rigide (2) contenant ledit arbre tournant situé entre ledit moteur et ladite turbine.
7. Propulseur selon l'une des revendications 1 à 6 caractérisé en ce que ledit ensemble de propulsion (1) est partiellement inclus à l'intérieur d'un caisson (12-ι) et solidaire de celui-ci, ledit caisson venant s'adapter sur la bordure supérieure (125) d'un puits (122) lui-même adapté à l'intérieur de ladite coque et encadrant à sa base ladite ouverture (8) de ladite coque (7).
8. Propulseur selon la revendication 7 caractérisé en ce que ledit ensemble de propulsion est incliné de sorte qu'un plan comprenant l'axe longitudinal (LL') de ladite structure rigide (2) contenant ledit arbre tournant est incliné d'un angle α par rapport à la direction longitudinale XX' de l'engin flottant et/ou par rapport au plan de jonction (12 ) dudit caisson (12ι) et dudit puits (122), en position rétractée (A) d'une valeur de 10 à 60° de préférence 10 à 30° et d'un angle β par rapport à la même direction longitudinale XX' de l'engin flottant et ou par rapport au plan de jonction (12a) entre ledit caisson (12ι) et ledit puits (122) en position déployée (B) d'une valeur de 45 à 100°, de préférence 60 à 90°.
9. Propulseur selon l'une des revendications 3 à 8 caractérisé en ce que le (ou les) dit(s) deuxième(s) élément(s) de guidage (10,10 1θ2) et (ou sont) inclus ou associé(s) à une (ou des) plaque(s) (15) montée(s) de manière fixe sur une paroi latérale dudit caisson (ou des parois latérales opposées dudit caisson).
10. Propulseur selon l'une des revendications 2 à 9 caractérisé en ce que lesdits premiers éléments de guidage comprennent au moins trois parties mâles, de préférence trois coulisseaux (9-ι, 92, 93), disposés en triangle, symétriquement de chaque côté dudit ensemble de propulsion (1), de manière à coopérer respectivement avec au moins deux parties femelles formant glissières (10ι,1θ2), définissant des arcs de cercle concentriques et homothétiques disposés symétriquement de chaque côté dudit ensemble de propulsion, au moins deux dites parties mâles de préférence desdits coulisseaux (92, 93) étant aptes à coulisser à l'intérieur d'une première glissière (10ι) de plus grand rayon et au moins une troisième partie mâle de préférence un troisième coulisseau (9ι) étant apte à coulisser à l'intérieur d'au moins une deuxième glissière (IO2) de plus petit rayon.
11. Propulseur selon l'une des revendications précédentes caractérisé en ce que lesdits éléments de guidage (9,9 93,10,10 1θ2) coopèrent avec des moyens d'entraînement (13,13r132, 14,14r142) permettant de générer ledit mouvement circulaire de l'ensemble de propulsion (1) par rapport à la coque (7).
12. Propulseur selon les revendications 3 et 10 caractérisé en ce que ledit premier ou second élément de guidage est entraîné en rotation par rapport au dit second ou respectivement premier élément de guidage, selon un dit mouvement circulaire, par un moteur (13,13-1-132) coopérant le cas échéant avec ledit premier ou respectivement second élément de guidage par l'intermédiaire d'éléments de liaison (14-ι,142), de manière à permettre de bloquer ledit ensemble de propulsion (1) en position rétractée (A) ou en position déployée (B) le cas échéant.
13. Propulseur selon les revendications 1 à 12 caractérisé en ce que ladite structure rigide comprend une structure parallélépipédique (2) assurant la liaison étanche entre d'une part un capot (2ι) recouvrant ledit moteur et d'autre part ladite turbine (4), lesdits premiers éléments de guidage (9 93) étant montés (16) contre des faces latérales opposées de ladite structure parallélépipédique (2).
PCT/FR2004/000743 2003-04-09 2004-03-25 Propulseur retractable par rotation WO2004092007A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04742351A EP1611007B1 (fr) 2003-04-09 2004-03-25 Propulseur retractable par rotation
DK04742351T DK1611007T3 (da) 2003-04-09 2004-03-25 Ved rotation tilbagetrækkeligt fremdrivningsmiddel
US10/507,022 US7146921B2 (en) 2003-04-09 2004-03-25 Rotationally retractable propeller
DE602004008244T DE602004008244T2 (de) 2003-04-09 2004-03-25 Dreheinziehbarer propeller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304375A FR2853620B1 (fr) 2003-04-09 2003-04-09 Propulseur retractable par rotation
FR03/04375 2003-04-09

Publications (2)

Publication Number Publication Date
WO2004092007A1 true WO2004092007A1 (fr) 2004-10-28
WO2004092007A9 WO2004092007A9 (fr) 2004-12-29

Family

ID=33041726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000743 WO2004092007A1 (fr) 2003-04-09 2004-03-25 Propulseur retractable par rotation

Country Status (8)

Country Link
US (1) US7146921B2 (fr)
EP (1) EP1611007B1 (fr)
AT (1) ATE370062T1 (fr)
DE (1) DE602004008244T2 (fr)
DK (1) DK1611007T3 (fr)
ES (1) ES2290731T3 (fr)
FR (1) FR2853620B1 (fr)
WO (1) WO2004092007A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012062699A1 (fr) * 2010-11-10 2012-05-18 Siemens Aktiengesellschaft Bateau avec un entraînement à propulsion transversale

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20060088A1 (it) * 2006-04-04 2007-10-05 Navale Quaiat S R L Off Apparato di propulsione di tipo retrattile per imbarcazione a vela
US7717054B2 (en) * 2007-04-24 2010-05-18 Tevlin Timothy J Moving mechanism for cruiser arch
US7765946B1 (en) * 2008-02-13 2010-08-03 Boston Whaler, Inc. Integrated bow thrusters
KR101078427B1 (ko) 2008-11-26 2011-10-31 삼성중공업 주식회사 선박용 추진장치
WO2010092211A1 (fr) * 2009-02-12 2010-08-19 Miquel Pasqual Cifre Marti Système de propulsion pour embarcations
US7852985B2 (en) * 2009-03-13 2010-12-14 General Electric Company Digital image detector with removable battery
DE102009019539B3 (de) * 2009-04-30 2010-11-25 Howaldtswerke-Deutsche Werft Gmbh Unterseeboot
EP2477888B1 (fr) * 2009-09-14 2015-04-29 Itrec B.V. Bateau à ensemble propulseur rétractable
US8701581B2 (en) 2010-05-02 2014-04-22 Delphi Acquisition Holding I B.V. System and method for thruster protection during transport
EP2548797B1 (fr) 2011-07-18 2014-07-23 Sleipner Motor As Propulseur rétractable
RU2516892C2 (ru) * 2012-06-26 2014-05-20 Открытое акционерное общество "Центр судоремонта "Звездочка" (ОАО "ЦС "Звездочка") Вспомогательный движительный комплекс плавательного средства
EP2757037A1 (fr) 2013-01-22 2014-07-23 Sleipner Motor As Élément pliable pour propulseur rétractable et procédé de production d'un tel élément
US10167069B2 (en) * 2015-03-18 2019-01-01 Sideshift Inc. Mounting and actuation device
GB2544467A (en) * 2015-11-12 2017-05-24 Lewmar Ltd Retractable thruster
US9738364B2 (en) 2016-01-15 2017-08-22 Kenneth Abney Hull-mountable retractable thruster apparatus and method
US10696390B2 (en) 2016-09-08 2020-06-30 Hop Flyt Inc Aircraft having independently variable incidence channel wings with independently variable incidence channel canards
GB2574889A (en) 2018-06-22 2019-12-25 Lewmar Ltd Retractable thruster and drive shaft for retractable thruster
CN109178262A (zh) * 2018-10-30 2019-01-11 苍南亚加新能源科技有限公司 一种机器人的耐压材料装置
DE102020107040A1 (de) * 2020-03-13 2021-09-16 Torqeedo Gmbh Antriebsanordnung zum Antreiben eines Boots
US11873071B2 (en) 2021-02-25 2024-01-16 Brunswick Corporation Stowable propulsion devices for marine vessels and methods for making stowable propulsion devices for marine vessels
US11851150B2 (en) 2021-02-25 2023-12-26 Brunswick Corporation Propulsion devices with lock devices and methods of making propulsion devices with lock devices for marine vessels
US11801926B2 (en) 2021-02-25 2023-10-31 Brunswick Corporation Devices and methods for making devices for supporting a propulsor on a marine vessel
US11572146B2 (en) 2021-02-25 2023-02-07 Brunswick Corporation Stowable marine propulsion systems
US11603179B2 (en) 2021-02-25 2023-03-14 Brunswick Corporation Marine propulsion device and methods of making marine propulsion device having impact protection
US11591057B2 (en) 2021-02-25 2023-02-28 Brunswick Corporation Propulsion devices and methods of making propulsion devices that align propeller blades for marine vessels
NO346005B1 (en) 2021-03-23 2021-12-20 Sleipner Motor As Retractable thruster
USD983838S1 (en) 2021-06-14 2023-04-18 Brunswick Corporation Cowling for an outboard motor
US11939036B2 (en) 2021-07-15 2024-03-26 Brunswick Corporation Devices and methods for coupling propulsion devices to marine vessels
USD1023888S1 (en) 2022-01-14 2024-04-23 Brunswick Corporation Cowling on a deployable thruster for a marine vessel
USD1023889S1 (en) 2022-01-14 2024-04-23 Brunswick Corporation Cowling on a deployable thruster for a marine vessel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700535A (nl) * 1987-03-05 1988-10-03 Meijer Sjoerd Vaartuig met intrekbare schroef.
FR2652559A1 (fr) 1989-09-29 1991-04-05 Fontanille Guy Propulseur retractable ou escamotable utilisant un dispositif trapezouidal a rotation deformante engendrant un mouvement rectiligne a l'interieur d'un puits.
US5257952A (en) * 1990-09-20 1993-11-02 Westinghouse Electric Corp. Deployment system for secondary propulsor unit
EP0612658A1 (fr) * 1989-03-08 1994-08-31 Yamaha Hatsudoki Kabushiki Kaisha Unité de propulsion à jet d'eau
FR2741854A1 (fr) 1995-12-01 1997-06-06 Fontanille Guy Propulseur retractable pour bateau ou navire muni de moyens de blocage en rotation
WO1997026181A1 (fr) * 1996-01-15 1997-07-24 Gerd Elger Dispositif de pilotage d'un bateau a l'aide d'un dispositif produisant un jet d'eau dirige
WO1998030440A1 (fr) * 1997-01-09 1998-07-16 Ulstein Propeller As Dispositif de direction et/ou de propulsion pour navire
FR2798184A1 (fr) 1999-09-07 2001-03-09 Guy Fontanille Carter de dispositif de renvoi d'angle de moteur de propulsion pour bateau

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1422160A (en) * 1972-04-25 1976-01-21 Scott C W Marine propulsion apparatus
US3918389A (en) * 1974-11-26 1975-11-11 Kiyoshi Shima Marine steering and propulsion device
CA1098384A (fr) * 1977-11-09 1981-03-31 Kiyoshi Shima Helice de bateau sans moyeu
US4294186A (en) * 1980-01-25 1981-10-13 Wardell Gerald S Retractable bow thruster
DE3718222A1 (de) * 1987-05-29 1988-02-18 Zikeli Friedrich Dipl Ing Th Wendbar angeordneter wasserfahrzeugantrieb insbesondere fuer motor-bzw. segelyachten und amphibienfahrzeuge
US5108323A (en) * 1990-09-20 1992-04-28 Westinghouse Electric Corp. Deployment system for secondary propulsor unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700535A (nl) * 1987-03-05 1988-10-03 Meijer Sjoerd Vaartuig met intrekbare schroef.
EP0612658A1 (fr) * 1989-03-08 1994-08-31 Yamaha Hatsudoki Kabushiki Kaisha Unité de propulsion à jet d'eau
FR2652559A1 (fr) 1989-09-29 1991-04-05 Fontanille Guy Propulseur retractable ou escamotable utilisant un dispositif trapezouidal a rotation deformante engendrant un mouvement rectiligne a l'interieur d'un puits.
US5257952A (en) * 1990-09-20 1993-11-02 Westinghouse Electric Corp. Deployment system for secondary propulsor unit
FR2741854A1 (fr) 1995-12-01 1997-06-06 Fontanille Guy Propulseur retractable pour bateau ou navire muni de moyens de blocage en rotation
EP0863837A1 (fr) 1995-12-01 1998-09-16 Guy Fontanille Propulseur retractable pour bateau ou navire muni de moyens de blocage en rotation
WO1997026181A1 (fr) * 1996-01-15 1997-07-24 Gerd Elger Dispositif de pilotage d'un bateau a l'aide d'un dispositif produisant un jet d'eau dirige
WO1998030440A1 (fr) * 1997-01-09 1998-07-16 Ulstein Propeller As Dispositif de direction et/ou de propulsion pour navire
FR2798184A1 (fr) 1999-09-07 2001-03-09 Guy Fontanille Carter de dispositif de renvoi d'angle de moteur de propulsion pour bateau

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012062699A1 (fr) * 2010-11-10 2012-05-18 Siemens Aktiengesellschaft Bateau avec un entraînement à propulsion transversale

Also Published As

Publication number Publication date
DK1611007T3 (da) 2008-01-07
ATE370062T1 (de) 2007-09-15
FR2853620A1 (fr) 2004-10-15
EP1611007B1 (fr) 2007-08-15
ES2290731T3 (es) 2008-02-16
EP1611007A1 (fr) 2006-01-04
DE602004008244D1 (de) 2007-09-27
DE602004008244T2 (de) 2008-05-08
WO2004092007A9 (fr) 2004-12-29
FR2853620B1 (fr) 2006-05-05
US20060060127A1 (en) 2006-03-23
US7146921B2 (en) 2006-12-12

Similar Documents

Publication Publication Date Title
EP1611007B1 (fr) Propulseur retractable par rotation
EP3309380B1 (fr) Nacelle d'un turboréacteur comportant un volet inverseur
EP0503206B1 (fr) Propulseur rétractable ou escamotable utilisant un dispositif trapézoidal à rotation déformante engendrant un mouvement rectiligne à l'intérieur d'un puits
EP0822327B1 (fr) Inverseur de poussée de turboréacteur à portes formant écopes
EP2697497B1 (fr) Inverseur de poussée pour turboréacteur d'aéronef
EP3283366B1 (fr) Propulseur pour un bateau
EP0851111A1 (fr) Inverseur de poussée de turboréacteur à double flux à coquille aval
EP0863837B1 (fr) Propulseur retractable pour bateau ou navire muni de moyens de blocage en rotation
EP0321372B1 (fr) Véhicules submersibles habités et autopropulsés pour promenades sous-marines
FR2709469A1 (fr) Ensemble de propulsion pour véhicule sous-marin sans équipage.
FR2954409A1 (fr) Dispositif d'inverseur de poussee
EP1516836B1 (fr) Dispositif de vidange d'un silo à fond sensiblement plat
EP3978730B1 (fr) Turboréacteur double flux d'un aéronef comportant un capot articulé en rotation et un système de déploiement dudit capot
FR2868054A1 (fr) Dispositif pour faire pivoter un convoyeur, convoyeur equipe d'un tel dispositif, et vehicule du type betonniere equipe d'un tel convoyeur
FR2815602A1 (fr) Engin marin a propulseur d'etrave obturable et propulseur d'etrave obturable
FR2570670A1 (fr) Dispositif d'entrainement d'un enrouleur de voile
FR3078397A1 (fr) Dispositif de protection pour un viseur orientable en site
EP3527483A1 (fr) Navire dont la carène présente au moins une ouverture conformée pour être obturée par un volet mobile
EP4378816A1 (fr) Dispositif de propulsion pour un navire, comprenant au moins une aile creuse présentant un axe longitudinal destiné à s'étendre verticalement
FR3125014A1 (fr) Dispositif de direction a pivot vertical et appareil de propulsion de bateau comprenant celui-ci
WO2023119244A1 (fr) Navire avec au moins un propulseur velique
WO1992019495A1 (fr) Dispositif de propulsion orientable par reaction a jet d'eau
BE332189A (fr)
CH374581A (fr) Submersible de plaisance
FR2734784A1 (fr) Embarcation a propulsion musculaire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGE 5, DESCRIPTION, REPLACED BY A NEW PAGE 5 AFTER RECTIFICATION OF OBVIOUS ERRORS AUTHORIZED BY THE INTERNATIONAL SEARCH AUTHORITY; PAGE 7/7, DRAWINGS, REPLACED BY A NEW PAGE 7/7 AFTER RECTIFICATION OF OBVIOUS ERRORS AUTHORIZED BY THE INTERNATIONAL SEARCH AUTHORITY

ENP Entry into the national phase

Ref document number: 2006060127

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10507022

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004742351

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004742351

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10507022

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004742351

Country of ref document: EP