WO2004091121A1 - 光増幅装置および光通信システム - Google Patents

光増幅装置および光通信システム Download PDF

Info

Publication number
WO2004091121A1
WO2004091121A1 PCT/JP2003/004289 JP0304289W WO2004091121A1 WO 2004091121 A1 WO2004091121 A1 WO 2004091121A1 JP 0304289 W JP0304289 W JP 0304289W WO 2004091121 A1 WO2004091121 A1 WO 2004091121A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal light
optical
intensity
signal
Prior art date
Application number
PCT/JP2003/004289
Other languages
English (en)
French (fr)
Inventor
Kunihiko Isshiki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2004566477A priority Critical patent/JP4040044B2/ja
Priority to PCT/JP2003/004289 priority patent/WO2004091121A1/ja
Priority to US10/515,054 priority patent/US7365902B2/en
Priority to EP03816595.7A priority patent/EP1503528B1/en
Publication of WO2004091121A1 publication Critical patent/WO2004091121A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping

Definitions

  • the present invention relates to an optical amplifying device in an optical communication system, and in particular, to an optical amplifying device and an optical amplifying device used in an optical amplifying repeater transmission system for transmitting wavelength-division multiplexed main signal light (hereinafter referred to as WDM main signal light).
  • WDM main signal light wavelength-division multiplexed main signal light
  • an optical communication system that communicates by transmitting the main signal light through an optical fiber
  • the power of the WDM main signal light sent from the optical transmitter is transmitted through the optical fiber and reaches the optical receiver. In the meantime, it is reduced by transmission loss. If the power of the main signal light arriving at the optical receiver is equal to or less than the predetermined value, an error occurs because the optical receiver cannot read the signal light, and the optical communication cannot be performed normally. There is. Therefore, an optical amplifying device is provided between the optical transmitter and the optical receiver, and the power of the main signal light is amplified by the optical amplifying device to compensate for the transmission loss received by the main signal light.
  • the main signal light having a power equal to or higher than a predetermined value is input to the device.
  • FIG. 1 is a block diagram showing a schematic configuration of a conventional Raman amplifier (for example, see Patent Document 1).
  • the Raman amplifier, wavelength; i ⁇ L sn [im] silica glass to Raman amplification with ⁇ number of the main signal light ( ⁇ ⁇ ⁇ ⁇ ⁇ ) transmits a WD M main signal light wavelength division multiplexing
  • a first optical power blur 102 a for multiplexing the excitation light generated by these excitation light sources 103 a, 103 b, and the multiplexed excitation light
  • a second optical power plug 102 b for introducing the WDM main signal light into the quartz glass optical fiber 101, and an isolator 104 for preventing the backflow of the Raman-amplified WDM main signal light in the quartz glass optical fiber 101. It has.
  • two pump light sources 103a and 103b are used to flatten the wavelength characteristics of the gain of the Raman-amplified main signal light.
  • WDM main signal light is input into a silica glass optical fiber 101 which is a transmission line and a Raman amplification medium.
  • two pump lights having different wavelengths generated from the two pump light sources 103a and 103b are multiplexed by the first optical power bra 102a, and the multiplexed pump light is further converted to the second optical power.
  • the optical signal is input to the silica-based glass optical fiber 101 in a direction opposite to the traveling direction of the WDM main signal light by the plug 102b.
  • This pumping light has an optical amplifying action by a stimulated Raman scattering phenomenon in a silica glass optical fiber 101 which is an amplification medium, and the WDM main signal light is Raman amplified in the silica glass optical fiber 101, Is output.
  • FIG. 2 is a diagram showing a pump light / signal light spectrum and a Raman gain band in a silica glass optical fiber in a conventional Raman amplifier.
  • the Raman gain band for each pump light wavelength L P l, ⁇ ⁇ 2 [ ⁇ ] is, as shown in FIG. 2, about 0.1 [ U m] longer from each pump light wavelength to the longer wavelength side. It is formed as a wavelength band in which the wavelength difference between almost two pump lights is shifted.
  • the wavelength; region L pi Raman gain band for excitation light of [im] is a region shown by a solid line L 1
  • the Raman gain band for excitation light having a wavelength ⁇ ⁇ 2 ⁇ m] is represented by a dashed line L 2 It is.
  • the Raman gain band when pumped by two pump lights of wavelengths Lpl and P 2 [ ⁇ ] is indicated by a solid line L 0 in which Raman gain bands corresponding to the respective pump light wavelengths are combined. .
  • the main signal light located on the shortest wavelength side of the WDM main signal light mainly receives the contribution of the pump light having the short wavelength; Lpi, and the WDM main signal light has the highest wavelength.
  • the main signal light located on the long wavelength side mainly contributes to the pump light of the long wavelength l P 2
  • the wavelength near the center of the WDM main signal light is Raman-amplified by the contribution of the pump light of two wavelengths; L pl ,; L p2 . In other words, the magnitude of the contribution of the two pump lights received by each main signal light in the WDM main signal light differs depending on the wavelength.
  • the WDM main signal light can be obtained.
  • the Raman gain band can be broadened to include the wavelength; l sl to sn.
  • the optical amplification transmission system that performs signal light loss compensation using such a Raman amplifier is set as one transmission section, and these are connected in cascade to provide long-distance optical communication.
  • a system can be built. Even in the case of such a long-distance optical communication system, by adjusting the pumping light wavelength and the pumping light in each transmission section and maintaining the Raman gain band for each transmission section in a wide band, a wideband WDM system can be realized.
  • the main signal light can be transmitted over a long distance.
  • the control signal for remotely controlling the optical repeater constituting the optical communication system is transmitted.
  • the intensity of the digitally modulated signal light is further changed by a control signal having a relatively low frequency, and the signal is propagated through a silica glass optical fiber.
  • the intensity of the pump light is modulated with a control signal
  • the control signal in the optical transmission system is modulated by utilizing the fact that the intensity of the main signal light Raman-width modulated by the intensity-modulated pump light also varies according to the control signal.
  • a control signal superimposing device that superimposes the main signal light has been proposed (for example, refer to Patent Document 2).
  • Patent Document 1
  • Patent Document 2 Japanese Patent Application Laid-Open No. H10-3083852 (Pages 2-3, Figures 2 and 4) Patent Document 2
  • control signal superimposing apparatus disclosed in Patent Document 2
  • a control signal transmitted in an optical communication system or an optical network is superimposed on a main signal light, and a control signal component superimposed on the main signal light is excessive.
  • the purpose is to prevent the modulation state and keep the intensity modulation of the main signal light constant, that is, to keep the modulation degree of the control signal component stable.
  • the power of each pump light was not adjusted so that the level became uniform, that is, the Raman amplification gain became a predetermined value.
  • the present invention has been made in view of the above, and in an optical amplifying device of an optical communication system, an optical amplifying device capable of controlling a Raman gain so that a Raman-amplified WDM main signal light level becomes uniform.
  • An object is to obtain an optical communication system using the optical amplifier. Disclosure of the invention
  • An optical amplifying device combines Raman amplification by combining wavelength division multiplexed signal light propagating in a transmission path with pump light of different wavelengths output from a plurality of pump light sources to the wavelength division multiplexed signal light.
  • An optical amplifying apparatus wherein: an intensity modulating means for modulating the intensity of the excitation light output from the excitation light source at a predetermined frequency with respect to one of the plurality of excitation light sources; Photoelectric conversion means for converting a part of the wavelength-division multiplexed signal light into an electric signal; Gain modulation signal detection means for extracting a gain modulation signal of the frequency component; and an excitation output from an excitation light source which is intensity-modulated at the frequency so that the amplitude of the extracted gain modulation signal becomes a predetermined value.
  • Control means for controlling only the intensity of light to control the Raman amplification gain, and a pump means for sequentially obtaining the predetermined Raman amplification gain for each of the plurality of excitation light sources. It is characterized by adjusting the strength.
  • FIG. 1 is a block diagram showing a schematic configuration of a conventional Raman amplifier
  • FIG. 2 shows a pump light / signal light spectrum and a Raman gain band in a silica glass optical fiber in the conventional Raman amplifier.
  • FIG. 3 shows the configuration of an optical communication system to which the optical amplifier according to the present invention is applied;
  • FIG. 4 is a block diagram schematically showing the configuration of the optical amplifying device according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing the schematic configuration of the optical amplifying device according to the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of a second embodiment
  • FIG. 6 is a block diagram showing a schematic configuration of an optical transmitting / receiving terminal device
  • FIG. 7 is an embodiment of an optical amplifying device according to the present invention.
  • 15 is a block diagram showing a schematic configuration of Embodiment 5.
  • FIG. 3 is a diagram schematically showing a configuration of an optical communication system to which the optical amplifying device according to the present invention is applied
  • FIG. 4 is a schematic configuration of the optical amplifying device according to the first embodiment of the present invention.
  • This optical communication system converts an electric signal into an optical signal, wavelength-division multiplexes optical signals in a plurality of wavelength bands, transmits the WDM main signal light, and receives the WDM main signal light, Split into optical signals and converted to electrical signals.
  • Optical transmission / reception terminal equipment 2 2 a, 22 b power S, WDM It is connected by a transmission line 1 such as an optical fiber for transmitting the main signal light.
  • a predetermined number of optical amplifiers 21a to 2lm are connected in multiple stages in series so that the local equipment 22b can receive the WDM main signal light of a predetermined signal level.
  • the optical amplifying device 21 includes an optical fiber 1 that is a Raman gain medium that transmits a WDM main signal light in which a plurality of signal lights having wavelengths ⁇ sl to ⁇ sn are wavelength-division multiplexed and performs Raman amplification, and an optical fiber.
  • a first pump light source 3a capable of oscillating pump light having a wavelength pi for amplifying the DM main signal light propagating in 1 and intensity-modulated at a frequency f1, and an optical fiber 1
  • a second pumping light source 3b that can oscillate pumping light of wavelength ⁇ 2 that amplifies the main signal light of the WDM light propagating through it, and that can oscillate intensity modulated by frequency
  • two pumping light sources A first optical power plug 2a for multiplexing the pump light oscillated from 3a and 3b, and a second optical power bra 2b for guiding the multiplexed pump light to the optical fiber 1.
  • an optical isolator 4 that prevents the amplified WDM main signal light from reversing and stabilizes the amplification operation.
  • the optical fiber 1 for example, a silica glass optical fiber of a single mode optical fiber (SMF) can be exemplified, but the optical fiber 1 is not limited thereto, and a tellurite glass optical fiber or the like may be used. You can also.
  • SMF single mode optical fiber
  • Gas lasers or solid-state lasers can be used as the first and second pumping light sources 3a and 3b.
  • a semiconductor laser that can control the power of the pumping light by a driving current.
  • the optical amplifying device 21 also has a third optical power that branches a part (for example, 5%) of the Raman-amplified WDM main signal light downstream from the second optical power bra 2b. be converted and bra 2 c, the third optical power plug 2 by the c connection branched WDM main signal light into an electrical signal A photodetector 5, an electric finoleta 5 that extracts a frequency component obtained by intensity-modulating the excitation light from the electric signal converted into an electric signal by the photodetector 5 and separates the frequency component as a gain-modulated signal, and an electric filter 5. And a control electric circuit 7 for adjusting the intensity of the pumping light of the first and second pumping light sources 3a and 3b from the amplitude of the gain modulation signal separated by.
  • a control electric circuit 7 for adjusting the intensity of the pumping light of the first and second pumping light sources 3a and 3b from the amplitude of the gain modulation signal separated by.
  • the control electric circuit 7 obtains the drive currents of the first and second pump light sources 3a and 3b in order to obtain a predetermined Raman gain, and the first and second pump light sources 3a and 3a, It has a function to control 3b.
  • the control electric circuit 7 superimposes a modulation signal that is intensity-modulated at the frequency f1 on the drive current of the first excitation light source 3a.
  • the amplitude of the gain modulation signal is detected from a change in the waveform of the gain modulation signal at the Raman-amplified main signal light wavelength obtained by the electric filter 6 within a predetermined period.
  • the intensity (power) of the first pumping light source 3a is adjusted by the driving current so that the amplitude of the gain modulation signal falls within a predetermined value range. Then, when a drive current in which the amplitude of the gain modulation signal falls within a predetermined value range is determined, the control electric circuit 7 drives the first pumping light source 3a with this drive current. When the adjustment of the drive current for the first excitation light source 3a is completed, the control electric circuit 7 stops applying the modulation signal intensity-modulated at the frequency ⁇ 1 to the drive current of the first excitation light source 3a.
  • the modulation signal intensity-modulated at the frequency f1 is applied to the driving current, and the amplitude of the gain modulation signal falls within a predetermined value range. Find the drive current. Then, the first and second excitation light sources 3a, 3b are driven by the drive currents of the respective excitation light sources 3a, 3b obtained in this way, and Raman laser is performed.
  • the operation of the optical amplifier 21 will be described.
  • a case where semiconductor lasers are used as the first and second excitation light sources 3a and 3b will be exemplified.
  • the modulated signal whose intensity is modulated at the frequency f 1 is the first excitation light source 3 a Is superimposed on the driving current.
  • This intensity-modulated drive current is When HoIri the excitation light source 3 a, the excitation light intensity modulated wavelength lambda pi at a frequency ⁇ is emitted from the first excitation light source 3 a, the wavelength is not intensity-modulated; excitation light L p2 is the The light is emitted from the second excitation light source 3b.
  • the respective excitation lights emitted from the first and second excitation light sources 3a and 3b are combined by the first optical power plug 2a, and the combined excitation light is It is guided to the optical fiber 1 by the second optical power plug 2b.
  • the pump light travels in the optical fiber 1 in a direction opposite to the WDM main signal light, and the WDM main signal light propagating in the optical fiber 1 is Raman-amplified by stimulated Raman scattering.
  • the WDM main signal light is Raman-amplified in the optical fiber 1 with gain modulation of the same frequency f1 as the frequency f1 of the intensity-modulated excitation light.
  • the WDM main signal light having the Raman width is transmitted through the second optical power plug 2b and the optical isolator 4, and is input to the third optical power plug 2c.
  • the third optical power plug 2c most of the WDM main signal light is transmitted through and transmitted through the optical fiber 1 as it is in the direction of the optical transmitter / receiver terminal 22b on the receiving side. Part (for example, 5%) is forked.
  • the split WDM main signal light is input to the photodetector 5.
  • the photodetector 5 converts the WDM main signal light into an electric signal, and the converted electric signal is input to the electric filter 6.
  • the electric filter 6 an electric signal having a frequency component of f1 is extracted and separated.
  • the electric signal having the frequency component of f 1 separated by the electric filter 6, that is, the gain modulation signal is input to the control electric circuit 7.
  • the control electric circuit 7 detects the amplitude of the gain modulation signal at each main signal light wavelength from a change in the waveform of the gain modulation signal input within a predetermined period, and the amplitude of these gain modulation signals is set to a predetermined value.
  • the driving current of the first pumping light source 3a that performs intensity modulation of the pumping light at the frequency f1 is adjusted such that Then, the level of the excitation light output from the first excitation light source 3a is adjusted by the adjusted modulation signal or the drive current. .
  • the first pump light source 3a is controlled by the control electric circuit 7 to be constant with the adjusted drive current.
  • the intensity of the drive current of the second excitation light source 3b is modulated at frequency fi.
  • the signal is superimposed.
  • the second Raman gain is obtained, that is, the second value is set so that the amplitude value of the gain modulation signal becomes a predetermined value.
  • the drive current of the excitation light source 3b is adjusted.
  • the control electric circuit 7 causes the first and second excitation light sources 3a and 3b to drive the adjusted drive current, respectively. Is controlled to be constant.
  • the Raman gain band can be broadened so as to include the WDM main signal light wavelengths sl to ⁇ sn , and the WDM main signal light transmission band is broadened.
  • the loss of the optical fiber 1 can be compensated for.
  • the optical isolator 4 is provided on the optical fiber 1.
  • the optical isolator 4 may be omitted depending on operating conditions.
  • the WDM main signal light propagates from the optical transmitting / receiving terminal device 22a toward the optical transmitting / receiving terminal device 22b, and the optical transmitting / receiving terminal device 22a (WDM main signal).
  • the first optical amplifier 21a, the second optical amplifier 21b, ⁇ ', and the m-th optical amplifier (m is an arbitrary natural number) 21 m are installed in this order from the upstream side of the light. It is assumed that
  • the first optical amplifying device 21a installed on the optical transmitting and receiving terminal device 22a on the transmitting side is used.
  • the drive current of the pump light in the first optical amplifier 21a is controlled so that the amplitude of the gain modulation signal of the signal light becomes a predetermined value.
  • excitation to the second optical amplifying device 2 1 b A command for controlling the driving current of the light source is transmitted.
  • the second optical amplifying device 21b adjusts the drive current of the excitation light source by the method described above.
  • the optical amplifier 21 installed in the optical communication system is The drive current of the excitation light source is adjusted in order from the device arranged on the upstream side of the signal light.
  • the WDM main unit that transmits the optical fiber transmitted from the optical transmission / reception terminal 22 a with the adjusted predetermined drive currents is used.
  • the signal light is Raman-amplified, and the Raman-amplified WDM main signal light reaches the optical transmitting / receiving terminal device 22b.
  • FIG. 4 shows a case where two pumping light sources 3a and 3b are provided in the optical amplifying device 21.
  • the present invention is not limited to this, and an arbitrary number of pumping light sources may be provided. it can.
  • the pump light intensity is adjusted for each pump light source to obtain a predetermined Raman amplification gain.
  • the procedure for adjusting the excitation light intensity when the excitation wavelength is 2 s is as follows: shortest wave, longest wave, second shortest wavelength, second longest wavelength, sth shortest, wavelength, sth
  • the excitation light intensity may be set in the order of long wavelength and wavelength. Further, this may be repeated until each signal light level falls within a predetermined range.
  • the drive current of the excitation light source 3 in the optical amplifier 21 is intensity-modulated at a predetermined frequency, and the intensity of the excitation light output from the excitation light source 3 is modulated to Raman gain.
  • the gain modulation signal superimposed on the Raman-amplified main signal light is separated and detected, and the power of the pump light is adjusted by adjusting the power of the pump light so that the amplitude of the detected gain modulation signal becomes a predetermined value.
  • the control is performed using the intensity modulation signal of the same frequency at different times for each pump light source 3 that outputs pump light of different wavelengths, so that the required transmission band of the WDM main signal light is included.
  • the Raman gain can be widened, and the level of the Raman-amplified WDM main signal light can be made uniform. Further, the intensity of the pump light output from the pump light sources 3a and 3b is adjusted so that the amplitude of the gain modulation signal falls within a predetermined range. Therefore, there is also an effect that adjustment of the main signal light becomes easy.
  • the drive current of the pump light source 3 was adjusted one by one in order from the optical amplifying device 21 provided on the upstream side of the WDM main signal light propagating in the optical fiber 1, It is possible to transmit WDM main signal light with a uniform signal light level over a wide band over a long distance.
  • the excitation light source for Raman amplification is used.
  • the second embodiment relates to an optical amplifier 21 that can adjust the drive currents in the plurality of excitation light sources 3 at the same time. explain.
  • FIG. 5 is a block diagram showing a schematic configuration of a second embodiment of the optical amplifying device according to the present invention.
  • the control electric circuit 7 controls the drive currents of the first and second excitation light sources 3a and 3b by using the frequencies fi and fa. It is configured to apply the intensity-modulated signal, the electrical filter 6, from the electrical signals of the WDM main signal light having an intensity modulated Raman amplification gain, their respective frequency, f 2 component gain - modulation
  • the first and second electric filters 6a and 6b are configured to be separated into two so that signals can be extracted and separated at the same time. Note that the same components as those in FIG. 4 of Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted. In the following description, a case where semiconductor lasers are used as the first and second excitation light sources 3a and 3b will be exemplified.
  • the first electric filter 6 a extracts the gain modulation signal of the frequency fi component from the electric signal from the photodetector 5 and outputs the extracted signal to the control electric circuit 7 .
  • the second electric filter 6 b outputs A gain modulation signal having a frequency f 2 component is extracted from the electric signal from the detector 5 and output to the control electric circuit 7.
  • the control electric circuit 7 applies a modulation signal intensity-modulated at the frequency f1 to the drive current of the first excitation light source 3a, and simultaneously applies the frequency f2 to the drive current of the second excitation light source 3a.
  • a modulated signal intensity-modulated in is applied.
  • the amplitude of the gain modulation signal at each main signal light wavelength is determined using the change in the waveform of the gain modulation signal input from the first and second electric filters 6a and 6b within a predetermined period for each frequency. To detect. Thereafter, the intensities (power) of the first and second pumping light sources 3a and 3b corresponding to the respective frequencies are set so that the amplitudes of these gain modulation signals fall within a predetermined value range. Is adjusted by the drive current.
  • the control electric circuit 7 drives the first and second pump light sources 3a and 3b using these drive currents. .
  • the application of the modulation signals intensity-modulated at the frequencies f1 and f2 to the drive currents of the first and second excitation light sources 3a and 3b is stopped.
  • the drive current for driving the first and second excitation light sources 3 a, 3 b by control circuitry 7, frequency fi, modulated signal, respectively intensity-modulated at f 2 is superimposed at the same time.
  • the superimposed drive current is injected into the first and second excitation light sources 3 a, 3 b, the frequency having a predetermined modulation degree fi, 'intensity modulated wavelength f 2; L pi,; L
  • the excitation light of p2 is emitted from the first and second excitation light sources 3a and 3b, respectively.
  • the respective excitation lights emitted from the first and second excitation light sources 3a and 3b are multiplexed by the first optical power bra 2a, and the multiplexed excitation light is Is guided to the optical fiber 1 by the optical power bra 2b.
  • the pump light travels through the optical fiber 1 ⁇ in a direction opposite to the WDM main signal light, and guides the WDM main signal light input from the optical transmission / reception terminal 22a in the optical fiber 1.
  • Raman amplification is performed by the Raman scattering phenomenon.
  • the WDM main signal light is Raman-amplified in the optical fiber 1 with the gain modulation of the frequencies f 1 and f 2 of the two intensity-modulated pump lights.
  • the Raman-amplified WDM main signal light passes through the second optical power bra 2b and the optical isolator 4, and is input to the third optical power bra 2c.
  • the third optical power bra 2 c most WDM main signal light is transmitted through, but propagates to as the optical fiber 1 of a medium receiving side optical transceiver terminal apparatus 2 2 b, one WDM main signal light Branch (for example, 5%) Is done.
  • the split WDM main signal light is input to the photodetector 5.
  • the WDM main signal light is converted into an electric signal, and the converted electric signal is input to the first and second electric filters 6a and 6b.
  • the first electric filter 6 a gain modulation signal extracted with a frequency component of f J_, it is separated, in the second electrical filter 6 b, gain modulation signal having a frequency component of f 2 is extracted, separated .
  • These first and second electrical filter 6 a, 6 b in separate respective fi, gain modulation signal having a frequency component of f 2 is input to the control circuitry 7.
  • the control electric circuit 7 detects the amplitude of the gain modulation signal at each signal light wavelength from the change in the waveform of the gain modulation signal input within a predetermined period, and the amplitude of these gain modulation signals is set to a predetermined value.
  • the intensity of the drive current of the excitation light sources 3a and 3b that modulates the intensity of the excitation light at the above frequency is adjusted so that Then, the power of the pumping light output from the first and second pumping light sources 3a and 3b is adjusted by the adjusted driving current to a value at which a predetermined Raman gain can be obtained. Controlled.
  • optical isolator 4 is provided on the optical fiber 1 in the above description, the optical isolator 4 may be omitted depending on the operating conditions.
  • the optical communication system is installed on the side of the optical transmitting / receiving terminal device 22 a for transmitting the WDM main signal light.
  • the Raman amplification gain is controlled by shifting the time one by one in order from the optical amplifier 21 a to the downstream side where the WDM main signal light flows.
  • FIG. 5 shows a case where the optical amplification device 21 is provided with two pumping light sources 3a and 3b, but this is not a limitation, and an arbitrary number of pumping light sources may be provided. it can. In this case, the intensity of all pump light sources is modulated with modulation signals of different frequencies, and at the same time, the pump light intensity is adjusted to obtain a predetermined Raman gain.
  • intensity modulation is applied to the Raman amplification gain by intensity-modulating the pump light having different wavelengths at different frequencies, and the Raman amplified W
  • the gain modulation signal of each frequency superimposed on the DM main signal light is separated and detected, and the intensity modulation of the pump light is performed at the above frequency so that the amplitude of the detected gain modulation signal of each frequency becomes a predetermined value. Since the Raman amplification gain is controlled by adjusting the power of the pump light being performed, the drive current of the pump light source 3 of the optical amplifier 21 can be adjusted in a single time.
  • the so-called backward pump configuration in which the traveling direction of the pump light and the traveling direction of the WDM main signal light are opposite to each other has been described as an example.
  • the present invention is not limited to this. Instead, the pumping light travels in the same direction as the forward direction of the WDM main signal light, or the pumping light travels in the opposite direction to the traveling direction of the WDM main signal light. It may be a directional excitation configuration.
  • the distributed constant type optical amplifier 21 on the assumption that the optical fiber 1 serving as a Raman amplification medium is a transmission path for signal light has been described.
  • the present invention can be similarly applied to a lumped-constant-type optical amplifier that performs Raman amplification using an optical fiber as a Raman gain medium housed in the device 21.
  • the Raman gain medium not only an optical fiber but also an optical waveguide such as a silica glass planar lightwave circuit can be used.
  • the optical waveguide may have a photonic crystal structure.
  • the pump light that mainly contributes to Raman amplification in that wavelength band is initialized in advance.
  • the operation as the optical amplifier 21 can be maintained.
  • the pump light corresponding to the wavelength band of the missing main signal light is initialized to a predetermined value. Since the power is controlled, the operation as the optical amplifier 21 can be maintained.
  • FIG. 6 is a block diagram showing a schematic configuration of an optical transmitting / receiving terminal apparatus.
  • the optical transmission / reception terminal device 22 converts the electric signal input to the optical transmission / reception terminal device 22 into a main signal light, and outputs the main signal light.
  • the optical multiplexer 3 3 for wavelength-division multiplexing the auxiliary signal light outputted from the auxiliary signal light source 3 1 i to 3 l s of the main signal light first through s output from, provided with a structure Is done.
  • the first to n-th electrical / optical converters 3: to 3 In include a transmission code processing unit that performs transmission code processing on a digital signal from a signal source, and a semiconductor laser that outputs signal light. And a drive circuit for driving the semiconductor laser, and an output level control unit for controlling a drive current by the drive circuit in order to keep the output of the semiconductor laser at a predetermined value.
  • a digital signal is converted into an optical signal.
  • the output level control unit controls the light intensity modulator to keep the output of the laser light at a predetermined value.
  • the first to s-th auxiliary signal light sources 31 i to 31 s are wavelength bands that contribute to Raman amplification by pump light from the optical amplifiers 21 a to 2 lm provided in the optical communication system. In addition, it outputs auxiliary signal light in a wavelength band deviated from the wavelength band of each main signal light constituting the WDM main signal light.
  • the optical multiplexer 33 includes the signal lights output from the first to n-th electrical Z optical conversion units 3 l to 3 l n and the first to s-th auxiliary signal light sources 3 li to 3 I.
  • the multiplexed signal and the auxiliary signal light output from s are transmitted to the optical fiber 1 as WDM main signal light.
  • the optical amplifying device 21 the amplitude of the gain modulation signal in each auxiliary signal light of the WDM main signal light transmitted from the optical transmitting / receiving terminal device 22 a in the first or second embodiment described above. Is detected, and gain control is performed based on this amplitude value.
  • wavelength division multiplexing is performed on WDM main signal light by using, as auxiliary signal light, light in the signal light wavelength band that mainly contributes to the Raman width due to the pump light used in the optical amplifier 21.
  • the optical transmission / reception terminal devices 22a and 22b are configured so that even if some of the WDM main signal light is missing, the missing main signal light wavelength band It is possible to control the power of the excitation light that contributes to Raman amplification of the light.
  • FIG. 7 is a block diagram showing a schematic configuration of an optical amplifier according to a fifth embodiment of the present invention.
  • the optical amplifying device 21 has the same number of auxiliary signal light sources 8a and 8b as the number of the auxiliary signal light sources 8a and 8b that output the pump light of different wavelengths, An optical light source, a fourth optical power blur 2d for multiplexing a plurality of auxiliary signal lights output from 8a and 8b, and a fourth optical power blur for multiplexing the multiplexed auxiliary signal light with the WDM main signal light. It has a configuration further including five light power bras 2e.
  • the auxiliary signal light sources 8a and 8b are output from the excitation light sources 3a and 3b in the optical amplifier 21.
  • Auxiliary signal light of a wavelength band that mainly contributes to Raman amplification gain due to the pumping light that does not overlap with the wavelengths of the individual main signal lights that make up the WDM main signal light is output. It is composed of, for example, a semiconductor laser.
  • auxiliary signal light sources 8a and 8b for outputting auxiliary signal light, and the auxiliary signal light sources 8a and 8b are provided to the optical amplifier 21 having the configuration shown in FIG.
  • the auxiliary signal light light in the signal light wavelength band in which the pump light used in the optical amplifier 21 mainly contributes to Raman amplification is used as the auxiliary signal light
  • the WDM Since the optical amplifier 21 is configured to perform wavelength division multiplexing on the main signal light, even if some of the WDM main signal light is lost, the missing main signal light wavelength It is possible to control the power of the pump light that contributes to Raman amplification of the band.
  • the modulation signal is applied to the drive current of the pump light source 3 during a period in which all the optical amplifiers 21 provided in the optical communication system are not performing gain control.
  • Gain modulation means comprising a control electric circuit 7 having the function of modulating the Raman amplification gain of the WDM main signal light by applying the signal, and the gain modulation signal superimposed on the Raman-amplified WDM main signal light being separated and detected.
  • the gain modulation signal detection means consisting of the optical detector 5, the electric filter 6, and the control electric circuit 7 having the function to perform the function is used as the monitoring and control means used for monitoring in the optical communication system and for transmitting and receiving control signals. Is also good.
  • gain modulation means and gain modulation signal detection means when used for Raman width gain control of the optical amplifier 21 and monitoring and control used for monitoring and controlling the optical communication system.
  • Some of the components of the means can be shared This has the effect that the configuration of the optical communication system can be simplified.
  • the drive current of the pump light source in the optical amplifier is intensity-modulated at a predetermined frequency
  • the pump light output from the pump light source is intensity-modulated
  • the Raman amplification gain is increased. Modulation is applied, the gain-modulated signal superimposed on the Raman-amplified main signal light is separated and detected, and the power of the pump light is adjusted so that the amplitude of the detected gain-modulated signal becomes a predetermined value. Since the amplification gain is controlled by using an intensity modulation signal for each pump light source that outputs pump light of a different wavelength, Raman amplification is performed to include the required WDM main signal light transmission band.
  • the gain can be widened, and the level of the Raman-amplified WDM main signal light can be made uniform. Further, since the intensity of the pumping light output from the pumping light source is adjusted so that the amplitude of the gain modulation signal is within a predetermined range, the adjustment of the main signal light is also facilitated. Furthermore, as described above, the intensity of the pump light from the pump light source is adjusted one by one in order from the optical amplifying device provided on the upstream side of the WDM main signal light propagating in the optical fiber. WDM main signal light with a uniform main signal light level can be transmitted over long distances. Industrial applicability
  • the present invention is suitable for use as an optical repeater used in a wavelength division multiplex communication system or a high-density wavelength division multiplex communication system using an optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

伝送路中を伝送する波長分割多重信号光に、複数の励起光源から出力される異なる波長の励起光を波長分割多重信号光に合波してラマン増幅を行う光増幅装置において、複数の励起光源のうち一の励起光源に対して、所定の周波数で励起光源から出力される励起光を強度変調する強度変調手段と、励起光によってラマン増幅された波長分割多重信号光の一部を電気信号に変換し、変換された前記電気信号から上記周波数の成分の利得変調信号を抽出する利得変調信号検出手段と、抽出された利得変調信号の所定期間における振幅が所定の値となるように、上記周波数で強度変調される励起光源から出力される励起光の強度のみを調整してラマン増幅利得を制御する制御手段と、をさらに備える。

Description

明 細 書 光増幅装置および光通信システム 技術分野 .
この発明は、 光通信システムにおける光増幅装置に関し、 特に、 波長分割多重 された主信号光 (以下、 WDM主信号光という) を伝送する光増幅中継伝送シス テムに使用される光増幅装置および光通信システムに関するものである。 背景技術
主信号光を光フアイバ中を伝送させて通信を行う光通信システムにおいて、 光 送信器から送出された WDM主信号光のパワーは、 光ファイバ中を伝送して光受 信器に到達するまでの間に、 伝送損失によって低下してしまう。 そして、 光受信 器に到達した主信号光のパワーが所定値以下の場合には、 光受信器で信号光を読 み取ることができずにエラーとなり、 正常に光通信を行うことができないことが ある。 そこで、 光送信器と光受信器との間に光増幅装置を設けて、 この光増幅装 置で主信号光のパワーを増幅して、 主信号光の受けた伝送損失を補償し、 光受信 器に所定値以上のパワーの主信号光が入力されるようにしている。
このような光増幅装置として、 主信号光が伝送する増幅媒体である光ファイバ に励起光を供給し、 誘導ラマン散乱という非線形現象を利用して主信号光の増幅 を行うラマン増幅器がある。 第 1図は、 従来のラマン増幅器の概略構成を示すブ ロック図である (たとえば、 特許文献 1参照) 。 このラマン増幅器は、 波長; i 〜 L sn [ i m] ( λ Βι < λ Βα) の η個の主信号光が波長分割多重された WD M主 信号光を伝送するとともにラマン増幅する石英系ガラス光ファイバ (たとえば、 S MF ) 1 0 1と、 異なる波長; L Pi, λ ρ2 [ πι] (; L piく; L p2) の励起光を発生 させる 2つの励起光源 1 0 3 a, 1 0 3 bと、 これらの励起光源 1 0 3 a, 1 0 3 bで発生した励起光を合波する第 1の光力ブラ 1 0 2 aと、 合波された励起光 を石英系ガラス光ファイバ 1 01に導入するための第 2の光力プラ 1 02 bと、 ラマン増幅された WDM主信号光の石英系ガラス光ファイバ 1 01内での逆流を 防ぐアイソレータ 104と、 を有するものである。 この例では、 ラマン増幅さ た主信号光の利得の波長特性を平坦化させるようにするため、 2つの励起光源 1 03 a, 1 03 bを使用している。
つぎに、 このラマン増幅器の動作について説明する。 伝送路でありまたラマン 増幅媒体である石英系ガラス光ファイバ 10 1中には WDM主信号光が入力され る。 一方、 2つの励起光源 1 03 a, 1 03 bから発生した 2つの波長の異なる 励起光は第 1の光力ブラ 102 aによって合波され、 合波された励起光はさらに 第 2の光力プラ 1 02 bによって WDM主信号光の進行方向とは逆方向に、 石英 系ガラス光ファイバ 1 0 1に入力される。 この励起光は、 増幅媒体である石英系 ガラス光ファイバ 101内において、 誘導ラマン散乱現象による光増幅作用をも たらし、 WDM主信号光が石英系ガラス光ファイバ 1 0 1内でラマン増幅され、 出力される。
第 2図は、 従来のラマン増幅器における石英系ガラス光ファイバ中の励起光/ 信号光スぺクトルおょぴラマン利得帯域を示す図である。 ラマン増幅において、 各励起光波長 LPl, λρ2 [μπι] に対するラマン利得帯域は、 第 2図に示される ように、 各励起光波長から約 0. 1 [Um] だけ長波長側に、 ほぼ 2つの励起光 の波長差分ずれた波長帯として形成される。 たとえば、 波長; L pi [ i m] の励起 光に対するラマン利得帯域は、 実線 L 1で示される領域であり、 波長 λ ρ2 ίμ m ] の励起光に対するラマン利得帯域は、 破線 L2で示される領域である。 そして
、 波長 Lpl, え P2 [μΐιι] の 2つの励起光で励起した場合のラマン利得帯域は、 それぞれの励起光波長に対応するラマン利得帯域が合成された実線 L0で示され るものとなる。
この第 2図に示されるように、 WDM主信号光の最も波長の短い側に位置する 主信号光は、 短い波長; L piの励起光による寄与を主に受け、 WDM主信号光の最 も波長の長い側に位置する主信号光は、 長い波長 lP2の励起光による寄与を主に 受け、 そして、 WDM主信号光の中心付近の波長は 2つの波長; Lpl, ; L p2の励起 光による寄与を受けてラマン増幅される。 すなわち、 WDM主信号光の中の個々 の主信号光が受ける 2つの励起光の寄与の大きさは、 その波長によってそれぞれ 異な ている。 そこで、 励起光の波長; L pi、 ; L p2を適切に設定し、 かつ各励起光 源 1 0 3 a, 1 0 3 bからの励起光のパワーを調整すれば、 WDM主信号光の波 長; l sl〜 snを含むようにラマン利得帯域を広帯域化することができる。 その結 果、 所要の信号伝送帯域において広帯域に石英系ガラス光ファイバ 1 0 1の損失 を補償することができる。 ·
また、 上述した光通信システムにおいて、 このようなラマン増幅器を用いて信 号光の損失補償を行う光増幅伝送システムを 1つの伝送区間として、 これらを縦 続接続することによつて長距離光通信システムを構築することができる。 このよ うな長距離光通信システムの場合においても、 それぞれの伝送区間で各励起光波 長と励起光のパヮ一を調整して、 伝送区間ごとのラマン利得帯域を広帯域に保つ ことによって、 広帯域な WDM主信号光を長距離伝送することができる。
ところで、 主信号光を光送信器と光受信器の中間で増幅中継する光通信システ ムでは、 その光通信システムを構成する光中継器を遠隔制御するための制御信号 を伝送するために、 その光ネットワークでは、 主信号光とは別にネットワーク管 理情報を載せた制御信号を伝送する必要がある。 そのため、 デジタル変調信号光 を比較的低い周波数の制御信号でさらに強度変動させ、 石英系ガラス光ファイバ を伝搬させる構成が知られている。 たとえば、 励起光を制御信号で強度変調し、 この強度変調された励起光によってラマン增幅された主信号光の強度も制御信号 に応じて変動することを利用して、 光伝送システムにおける制御信号を主信号光 に重畳する制御信号重畳装置が提案されている (たとえば、'特許文献 2参照) 。
特許文献 1
特開平 1 0— 7 3 8 5 2号公報 (第 2〜3頁、 第 2, 4図) 特許文献 2
特開平 1 1— 3 4 4 7 3 2号公報 (第- 3〜4頁、 第 1〜2図) しかし、 従来の特許文献 1に開示されている光増幅装置においては、 ラマン増 幅された WDM主信号光レべノレが均一になるように個々の励起光のパワーを調整 する必要があるが、 第 2図に示されるように、 1つの波長の主信号光が複数の波 長の励起光による寄与を受け、 しかもその寄与がそれぞれの主信号光で異なるの で、 そのような調整が難しいという問題点があった。 特に、 複数の石英系ガラス 光ファイバの損失やラマン利得係数にばらつきがある場合、 または石英系ガラス 光フアイバの損失が変動する場合に、 ラマン增幅された WDM主信号光レベルが 均一になるように個々の励起光のパワーを調整することは容易ではない。
また、 特許文献 2に開示されている制御信号重畳装置では、 光通信システムま たは光ネットワークにおいて伝送される制御信号を主信号光に重畳し、 主信号光 に重畳された制御信号成分が過変調状態になることを防止して主信号光の強度変 調を一定に保つこと、 つまり制御信号成分の変調度を安定に保つことを目的とす るものであり、 ラマン増幅された主信号光レベルが均一になるように、 すなわち ラマン増幅利得が所定の値となるように、 個々の励起光のパワーを調整するもの ではなかった。
この発明は上記に鑑みてなされたもので、 光通信システムの光増幅装置におい て、 ラマン増幅された WDM主信号光レベルが均一になるようにラマン利得を制 御することができる光増幅装置と、 この光増幅装置を用いた光通信システムを得 ることを目的とする。 発明の開示
この発明にかかる光増幅 置は、 伝送路中を伝搬する波長分割多重信号光に、 複数の励起光源から出力される異なる波長の励起光を前記波長分割多重信号光に 合波してラマン増幅を行う光増幅装置において、 前記複数の励起光源のうち一の 励起光源に対して、 所定の周波数で前記励起光源から出力される励起光を強度変 調する強度変調手段と、 前記励起光によってラマン増幅された波長分割多重信号 光の一部を電気信号に変換する光電変換手段と、 変換された前記電気信号から前 記周波数の成分の利得変調信号を抽出する利得変調信号検出手段と、 抽出された 前記利得変調信号の振幅が所定の値となるように、 前記周波数で強度変調される 励起光源から出力される励起光の強度のみを調整してラマン増幅利得を制御する 制御手段と、 をさらに備え、 前記複数の励起光源の個々の励起光源に対して順に 、 前記所定のラマン増幅利得を得るための励起光の強度の調整を行うことを特徴 とする。 図面の簡単な説明
第 1図は、 従来のラマン増幅器の概略構成を示すブロック図であり、 第 2図は 、 従来のラマン増幅器における石英系ガラス光ファイバ中の励起光/信号光スぺ クトルおよびラマン利得帯域を示す図であり、 第 3図は、 この発明にかかる光増 幅装置を適用した光通信システムの構.成を;!寞式的に示す図であり、 第 4図は、 こ の発明にかかる光増幅装置の実施の形態 1の概略構成を示すプロック図であり、 第 5図は、 この発明にかかる光増幅装置の実施の形態 2の概略構成を示すプロッ ク図であり、 第 6図は、 光送受信端局装置の概略構成を示すプロック図であり、 . 第 7図は、 この発明にかかる光増幅装置の実施の形態 5の概略構成を示すプロッ ク図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 この発明にかかる光増幅装置および光通信システ ムの好適な実施の形態を詳細に説明する。
実施の形態 1 .
第 3図は、 この発明にかかる光増幅装置を適用した光通信システムの構成を模 式的に示す図であり、 第 4図は、 この発明にかかる光増幅装置の実施の形態 1の 概略構成を示すブロック図である。 この光通信システムは、 電気信号を光信号に 変換し、 複数の波長帯の光信号を波長分割多重して WDM主信号光として送信し 、 また逆に WDM主信号光を受信し、 各波長帯の光信号に分波して電気信号に変 換する光送受信端局装置 2 2 a , 2 2 b力 S、 WDM主信号光を伝送する光フアイ バなどの伝送路 1で接続されており、 この伝送路 1中に受信側の光送受信端局装 置 2 2 bで所定の信号レベルの WDM主信号光を受信できるように、 所定の数の 光増幅装置 2 1 a〜2 l mが直列に多段接続されている。
光増幅装置 2 1は、 波長 λ sl〜 λ snの複数の信号光が波長分割多重された WD M主信号光を伝送するとともにラマン増幅を行うラマン利得媒質である光フアイ バ 1と、 光フアイバ 1中を伝搬する" DM主信号光を増幅する波長 piの励起光 であって、 周波数 f 1で強度変調した励起光を発振することが可能な第 1の励起 光源 3 aと、 光ファイバ 1中を伝搬する WD M主信号光を増幅する波長 λ ρ2の励 起光であって、 周波数 で強度変調した励起光を発振することが可能な第 2の 励起光源 3 bと、 2つの励起光源 3 a , 3 bから発振された励起光を合波するた めの第 1の光力プラ 2 aと、 合波された励起光を光ファイバ 1へと導く第 2の光 力ブラ 2 bと、 増幅された WDM主信号光の逆進を阻止して増幅動作を安定させ る光アイソレータ 4と、 を備えて構成される。 なお、 この第 3図において、 WD M主信号光は、 光ファイバ 1の左側から入力されるものとする。
ここで、 光ファイバ 1として、 たとえば、 シングルモード光ファイバ ( S MF ) の石英系ガラス光ファイバを例示することができるが、 これに限られるもので はなく、 テルライトガラス光ファイバなどを用いることもできる。
また、 第 1および第 2の励起光源 3 a, 3 bとして、 ガスレーザや固体レーザ などを使用することができるが、 特に、 駆動電流によって励起光のパワーを制御 できる半導体レーザを使用するのが好ましい。 ここでは、 WDM主信号光として 、 たとえば、 波長 1 . 5 3 πι (= λ si) 〜 1 . 5 6 ^ m ( = λ Βη) の帯域の光 が用いられ、 励起光として、 波長 1 . 4 4 ^ 111 (= λ Ρι) 、 波長 1 . 4 6 πι ( = λ ρ2) の光が用いられるものとする。
また、 この光増幅装置 2 1は、 ラマン増幅された WDM主信号光の一部 (たと えば、 5 %) を第 2の光力ブラ 2 bより.も下流側で分岐する第3の光力ブラ 2 c と、 第 3の光力プラ 2 cによつて分岐された WDM主信号光を電気信号に変換す る光検出器 5と、 光検出器 5によって電気信号に変換された電気信号のうち、 励 起光を強度変調した周波数成分 を抽出して利得変調信号として分離する電気 フイノレタ 5と、 電気フィルタ 5によって分離された利得変調信号の振幅から第 1 および第 2の励起光源 3 a, 3 bの励起光の強度を調整する制御電気回路 7と、 を備えている。
制御電気回路 7は、 所定のラマン利得を得るために第 1および第 2の励起光源 3 a , 3 bの駆動電流を求め、 この求めた駆動電流で第 1および第 2の励起光源 3 a , 3 bを制御する機能を有する。 制御電気回路 7は、 第 1の励起光源 3 aの 駆動電流を求める場合には、 第 1の励起光源 3 aの駆動電流に周波数 f 1で強度 変調された変調信号を重畳する。 その結果、 所定の期間内に電気フィルタ 6で得 られるラマン増幅された主信号光波長における利得変調信号の波形の変化から利 得変調信号の振幅を検出する。 その後、 この利得変調信号の振幅が所定の値の範 囲内に収まるように、 第 1の励起光源 3 aの強度 (パワー) を駆動電流によって 調整する。 そして、 利得変調信号の振幅が所定の値の範囲内に収まる駆動電流が 求まると、 制御電気回路 7は、 この駆動 流をもって第 1の励起光源 3 aを駆動 する。 制御電気回路 7は、 第 1の励起光源 3 aについての駆動電流の調整が終了 すると、 第 1の励起光源 3 aの駆動電流への周波数 ί 1で強度変調された変調信 号の印加を止めた後に、 第 2の励起光源 3 bについても同様にして、 周波数 f 1 で強度変調された変調信号をその駆動電流に印加して、 利得変調信号の振幅が所 定の値の範囲内に収まる駆動電流を求める。 そして、 このようにして求められた それぞれの励起光源 3 a , 3 bの駆動電流によって、 第 1および第 2の励起光源 3 a, 3 bを駆動してラマン增 Ψ畐を行う。
つぎに、 この光増幅装置 2 1の動作について、 説明する。 なお、 以下の説明で は、 第 1およぴ第 2の励起光源 3 a, 3 bとして半導体レーザを使用する場合を 例示する。 まず、 制御電気回路 7によって第 1およぴ第 2の励起光源 3 a , 3 b を駆動するための駆動電流のうち、 周波数 f 1で強度変調された変調信号が第 1 の励起光源 3 aの駆動電流に重畳される。 この強度変調された駆動電流が第 1の 励起光源 3 aに法入されると、 周波数 ί で強度変調された波長 λ piの励起光が 第 1の励起光源 3 aから出射され、 強度変調されていない波長; L p2の励起光が第 2の励起光源 3 bから出射される。.第 1およぴ第 2の励起光源 3 a , 3 b力ら出 射されたそれぞれの励起光は、 第 1の光力プラ 2 aによって合波され、 さらに合 波された励起光は、 第 2の光力プラ 2 bによって光ファイバ 1へと導力れる。 そ して、 励起光は、 WDM主信号光とは逆方向に光ファイバ 1内を進行し、 この光 ファイバ 1中を伝搬してくる WDM主信号光を誘導ラマン散乱現象によってラマ ン増幅する。 このとき、 光ファイバ 1内で WDM主信号光は、 強度変調された励 起光の周波数 f 1と同じ周波数 f 1の利得変調を伴ってラマン増幅される。
ラマン增幅された WDM主信号光は、 第 2の光力プラ 2 bと光アイソレータ 4 を透過して、 第 3の光力プラ 2 cに入力する。 第 3の光力プラ 2 cでは、 WDM 主信号光のほとんどが透過して、 そのまま光ファイバ 1中を受信側の光送受信端 局装置 2 2 b方向へと伝搬する力 WDM主信号光の一部 (たとえば、 5 %) が 分岐される。 この分岐された WDM主信号光が光検出器 5に入力する。
光検出器 5で、 WDM主信号光は電気信号に変換され、 変換された電気信号は 、 電気フィルタ 6に入力する。 電気フィルタ 6では、 f 1の周波数成分を有する 電気信号が抽出、 分離される。 この電気フィルタ 6で分離された f 1の周波数成 分を有する電気信号、 すなわち利得変調信号は、 制御電気回路 7に入力する。 制 御電気回路 7では、 所定の期間内に入力される利得変調信号の波形の変化から、 各主信号光波長における利得変調信号の振幅が検出され、 これらの利得変調信号 の振幅が所定の値となるように、 周波数 f 1で励起光の強度変調を行っている第 1の励起光源 3 aの駆動電流が調整される。 そして、 この調整された変調信号ま たは駆動電流によって、 上述した第 1の励起光源 3 aから出力される励起光のパ ヮ一が調整される。 .
第 1の励起光源 3 aから出力される励起光のパワーが調整されると'、 制御電気 回路 7によって、 第 1の励起光源、 3 aは調整された値の駆動電流で一定に制御さ れ、 つぎに、 第 2の励起光源 3 bの駆動電流に周波数 f iで強度変調された変調 信号が重畳される。 その後、 上述した第 1の励起光源 3 aの駆動電流の調整と同 様にして、 所定のラマン利得が得られるように、 すなわち利得変調信号の振幅値 が所定の値となるように、 第 2の励起光源 3 bの駆動電流が調整される。
第 2の励起光源、 3 bから出力される励起光のパヮ一が調整されると、 制御電気 回路 7によって、 第 1および第 2の励起光源 3 a , 3 bは、 それぞれ調整された 駆動電流で一定に制御される。 その結果、 第 2図に示した光スペクトルと同様に 、 WDM主信号光波長え sl〜 λ snを含むようにラマン利得帯域を広帯域ィヒするこ とができ、 WDM主信号光伝送帯域において広帯域に光ファイバ 1の損失を補償 することができる。
なお、 上述した説明では、 光ファイバ 1上に光アイソレータ 4を設けているが 、 動ィ乍条件によってはこの光アイソレータ 4を省略してもよい。
つぎに、 この光増幅装置 2 1を備える光通信システムにおける動作について説 明する。 第 3図に示されるように、 光送受信端局装置 2 2 aから光送受信端局装 置 2 2 bに向かって WDM主信号光が伝搬し、 光送受信端局装置 2 2 a (WDM 主信号光の上流) 側から順に、 第 1の光増幅装置 2 1 a、 第 2の光増幅装置 2 1 b、 · ' 、 第 mの光増幅装置 (mは任意の自然数) 2 1 mが設置されているも のとする。
光通信システムのラマン利得の制御にあたって、 まず送信側の光送受信端局装 置 2 2 a側に設置された第 1の光増幅装置 2 1 a力 上述した方法によって、 ラ マン増幅された WDM主信号光の利得変調信号の振幅が所定の値となるように、 •第 1の光増幅装置 2 1 a内の励起光 の,駆動電流を制御する。 この第 1の光増幅 装置 2 1 aにおける励起光源のすべての駆動電流の制御が完了すると、 たとえば 、 光通信システムの監視制御を行う信号を用いて、 第 2の光増幅装置2 1 bに励 起光源の駆動電流の制御を行う指令が伝達される。 この指令を受けると、 第 2の 光増幅装置 2 1 bは、 その励起光源の駆動電流を、 上述した方法によって、 調整 する。
このようにして、 光通信システムに設置される光増幅装置 2 1が、 WDM主信 号光の上流側に配置された装置から順にその励起光源の駆動電流を調整する。 す ベての光増幅装置 2 1で駆動電流の調整が行われると、 それらの調整された所定 の駆動電流で、 光送受信端局装置 2 2 aから送信され光ファィバを伝送してくる WDM主信号光をラマン増幅し、 ラマン増幅された WD M主信号光が光送受信端 局装置 2 2 bに到達する。
なお、 第 4図では、 光増幅装置 2 1に励起光源 3 a, 3 bが 2つ設けられる場 合を示したが、 これに限られるものではなく、 任意の数の励起光源を設けること ができる。 この場合にも、 1つの励起光源ずつ、 所定のラマン増幅利得を得るた めの励起光強度の調整が行われる。 なお、 励起波長数 2 sの場合における励起光 強度の調整手順として、 最短波、 最長波、 2番目に短い波長、 2番目に長い波長 、 · · ·、 s番目に短レ、波長、 s番目に長レ、波長という順番に励起光強度を設定 してもよい。 さらに、 各信号光レベルが所定の範囲内に収まるまでそれを繰り返 すようにしてもよい。 外側の励起波長ほどラマン利得に寄与する信号波長数が少 ないため、 高い励起光強度が必要となり、 かつ短レ、励起波長ほど励起光間のラマ ン遷移で減少するため、 高い励起光強度が必要となる。 したがって、 励起光強度 が高い順番、 すなわちラマン利得への寄与が大きレ、順番に調整している前記手順 によつて効率的に制御を収束させることができる。
この実施の形態 1によれば、 光増幅装置 2 1内の励起光源 3の駆動電流を所定 の周波数で強度変調し、 励起光源 3から出力される励起光を強度変調してラマン 利得に強度変調を与え、 ラマン増幅された主信号光に重畳された利得変調信号を 分離して検出し、 この検出した利得変調信号の振幅が所定値となるように励起光 のパワーを調整してラマン利得を制御することを、 異なる波長の励起光を出力す る励起光源 3ごとに、 時間をずらして同じ周波数の強度変調信号を用いて行うよ うにしたので、 所要の WDM主信号光の伝送帯域を含むようにラマン利得を広畨 域化することができるとともに、 ラマン増幅された WDM主信号光レベルを均一 にすることが可能となる。 また、 利得変調信号の振幅が所定の範囲内となるよう に、 励起光源 3 a , 3 bから出力される励起光の強度を調整するように構成した ので、 主信号光の調整が容易になるという効果も有する。
また、 光ファイバ 1中を伝搬する WDM主信号光の上流側に設けられた光増幅 装置 2 1から順番に 1台ずつ、 上記のように励起光源 3の駆動電流を調整するよ うにしたので、 広帯域で信号光レベルが均一にされた WDM主信号光を長距離伝 送することが可能となる。
実施の形態 2 .
実施の形態 1では、 光増幅装置 2.1内の励起光源 3の駆動電流に印加する強度 変調信号の周波数 f 1を各励起光源 3で共通にするようにしたので、 ラマン増幅 を行う際の励起光源 3の駆動電流の調整を時間的にずらして行っていたが、 この 実施の形態 2では、 複数の励起光源 3における駆動電流の調整を同時期に行うこ とが可能な光増幅装置 2 1について説明する。
第 5図は、 この発明にかかる光増幅装置の実施の形態 2の概略構成を示すプロ ック図である。 この光増幅装置 2 1は、 実施の形態 1の第 4図において、 制御電 気回路 7が、 第 1およぴ第 2の励起光源 3 a , 3 bの駆動電流に、 周波数 f i, f aで強度変調された変調信号を印加するように構成され、 電気フィルタ 6は、 強度変調されたラマン増幅利得を有する WDM主信号光の電気信号から、 それぞ れの周波数 , f 2成分の利得-変調信号を同時に抽出、 分離することができるよ うに、 第 1および第 2の電気フィルタ 6 a , 6 bの 2つに分離された構成となつ ている。 なお、 実施の形態 1の第 4図と同一の構成要素については、 同一の符号 を付してその説明を省略している。 また、 以下の説明では、 第 1および第 2の励 起光源 3 a , 3 bとして半導体レーザを使用する場合を例示する。
第 1の電気フィルタ 6 aは、 光検出器 5からの電気信号から周波数 f i成分の 利得変調信号を抽出して、 制御電気回路 7に出力し、 また、 第 2の電気フィルタ 6 bは、 光検出器 5からの電気信号から周波数 f 2成分の利得変調信号を抽出し て、 制御電気回路 7に出力する。
制御電気回路 7は、 第 1の励起光源 3 aの駆動電流には周波数 f 1で強度変調 された変調信号を印加し、 同時に第 2の励起光源 3 の駆動電流には周波数 f 2 で強度変調された変調信号を印加する。 また、 第 1および第 2の電気フィルタ 6 a , 6 bから周波数ごとに所定の期間内に入力される利得変調信号の波形の変化 を用いて、 各主信号光波長における利得変調信号の振幅を検出する。 その後、 こ れらの利得変調信号の振幅が所定の値の範囲内に収まるように、 それぞれの周波 数に対応する第 1およぴ第 2の励起光源 3 a , 3 bの強度 (パワー) を駆動電流 によって調整する。 そして、 利得変調信号の振幅が所定の値の範囲内に収まる駆 動電流が求まると、 制御電気回路 7は、 これらの駆動電流をもって第 1および第 2の励起光源 3 a, 3 bを駆動する。 また、 同時に、 第 1および第 2の励起光源 3 a , 3 bの駆動電流への周波数 f 1, f 2で強度変調された変調信号の印加を止 める。
つぎに、 この光増幅装置 2 1の動作について説明する。 まず、 制御電気回路 7 によって第 1および第 2の励起光源 3 a , 3 bを駆動するための駆動電流に、 周 波数 f i, f 2でそれぞれ強度変調された変調信号が同時に重畳される。 この重畳 された駆動電流が第 1および第 2の励起光源 3 a , 3 bに注入されると、 所定の 変調度を有する周波数 f i,' f 2で強度変調された波長; L pi, ; Lp2の励起光がそれ ぞれ第 1および第 2の励起光源 3 a , 3 bから出射される。 第 1および第 2の励 起光源 3 a, 3 bから出射されたそれぞれの励起光は、 第 1の光力ブラ 2 aによ つて合波され、 さらに合波された励起光は、 第 2の光力ブラ 2 bによって光ファ ィバ 1へと導かれる。 そして、 励起光は、 WDM主信号光とは逆方向に光フアイ パ 1內を進行し、 この光ファイバ 1中で光送受信端局装置 2 2 a側から入力して きた WDM主信号光を誘導ラマン散乱現象によってラマン増幅する。 このとき、 光ファイバ 1内で WDM主信号光は、 強度変調された 2つの励起光の周波数 f 1 , f 2の利得変調を伴ってラマン増幅される。
ラマン増幅された WDM主信号光は、 第 2の光力ブラ 2 bと光アイソレータ 4 を透過して、 第 3の光力ブラ 2 cに入力する。 第 3の光力ブラ2 cでは、 WDM 主信号光のほとんどが透過して、 そのまま光ファイバ 1中を受信側の光送受信端 局装置 2 2 bへと伝播するが、 WDM主信号光の一部 (たとえば、 5 %) が分岐 される。 この分岐された WDM主信号光が光検出器 5に入力する。
光検出器 5で、 WDM主信号光は電気信号に変換され、 変換された電気信号は 、 第 1およぴ第 2の電気フィルタ 6 a, 6 bに入力する。 第 1の電気フィルタ 6 aでは、 f j_の周波数成分を有する利得変調信号が抽出、 分離され、 第 2の電気 フィルタ 6 bでは、 f 2の周波数成分を有する利得変調信号が抽出、 分離される 。 これらの第 1および第 2の電気フィルタ 6 a, 6 bで分離されたそれぞれ f i , f 2の周波数成分を有する利得変調信号は、 制御電気回路 7に入力する。
制御電気回路 7では、 所定の期間内に入力される利得変調信号の波形の変化か ら、 各信号光波長における利得変調信号の振幅が検出され、 これらの利得変調信 号の振幅が所定の値となるように、 上記周波数で励起光の強度変調を行っている 励起光源 3 a, 3 bの駆動電流の強度が調整される。 そして、 この調整された駆 動電流によって、 上述した第 1および第 2の励起光源 3 a , 3 bから出力される 励起光のパワーが調整され、 所定のラマン利得を得ることが可能な値に制御され る。
なお、 上述した説明では、 光ファイバ 1上に光アイソレータ 4を設けているが 、 動作条件によってはこの光アイソレータ 4を省略してもよい。
また、 このような構成の光増幅装置を備える光通信システムにおいては、 実施 の形態 1で説明したように、 WDM主信号光を送信する光送受信端局装置 2 2 a の側に設置されている光増幅装置 2 1 aから、 WDM主信号光が流れる下流側に 向かって、 1台ずつ順番に時間をずらして、 ラマン増幅利得の制御が行われる。 さらに、 第 5図では、 光増幅装置 2 1に励起光源 3 a , 3 bが2つ設けられる 場合を示したが、 これに限られるものではなく、 任意の数の励起光源を設けるこ とができる。 この場合には、 すべての励起光源が異なる周波数の変調信号でその 強度が変調され、 同時に所定のラマン利得を得るための励起光強度の調整が行わ れる。
この実施の形態 2によれば、 異なる波長の励起光をそれぞれ異なる周波数で強 度変調することによってラマン増幅利得に強度変調を与え、 ラマン増幅された W DM主信号光から重畳された各周波数の利得変調信号を分離して検出し、 検出し た各周波数の利得変調信号の振幅が所定の値となるように、 上記周波数で励起光 の強度変調を行っている励起光のパヮ一をそれぞれ調整することによってラマン 増幅利得を制御するようにしたので、 光増幅装置 2 1の励起光源 3の駆動電流の 調整を単時間で行うことができる。 , なお、 上述した実施の形態 1, 2では、 励起光の進行方向と WDM主信号光の 進行方向とが逆のいわゆる後方励起構成の場合を例に挙げて説明したが、 これに 限定されるものではなく、 励起光の進行方向と WDM主信号光の進行方向とが同 じ前方励起構成や、 WDM主信号光の進行方向に対して、 同じ方向と逆の方向に 励起光を進行させる双方向励起構成であつてもよレ、。
また、 上述した実施の形態 1 , 2では、 ラマン増幅媒体となる光ファイバ 1が 信号光の伝送路である場合を前提とした分布定数型の光増幅装置 2 1について説 明したが、 光増幅装置 2 1内に収納したラマン利得媒質としての光ファイバを用 いてラマン増幅を行う集中定数型の光増幅装置にも同様にして適用することがで きる。. さらに、 ラマン利得媒質として、 光ファイバだけでなく石英系ガラス平面 光波回路などの光導波路を用いることができる。 そして、 この光導波路が、 フォ トニック結晶構造を有するものであってもよい。
実施の形態 3 .
上述した実施の形態 1 , 2の光通信システムまたは光増幅装置 2 1の初期導入 時において、 WDM主信号光の一部のチャネルが未使用の場合や、 WDM主信号 光の一部が送信断となっている場合に、 その欠落している主信号光波長帯のラマ ン増幅に寄与する励起光パワーの制御が問題となる。
そこで、 一部の主信号光が欠落しているために、 所定の利得変調振幅が得られ ない波長帯が存在する場合には、 その波長帯のラマン増幅に主に寄与する励起光 が予め初期設定した所定のパワーとなるように、 その励起光源 3を駆動するよう に制御することによって、 光増幅装置 2 1としての動作を維持することが可能と なる。 この実施の形態 3によれば、 WDM主信号光の一部の主信号光が欠落している 場合には、 その欠落した主信号光の波長帯に対応する励起光を予め初期設定した 所定のパワーに制御するようにしたので、 光増幅装置 2 1としての動作を維持す ることができる。
実施の形態 4 .
第 6図は、 光送受信端局装置の概略構成を示すブロック図である。 この光送受 信端局装置 2 2は、 この光送受信.端局装置 2 2に入力される電気信号を主信号光 に変換して出力する第 1〜第 'nの電気/光変換部 (nは、 任意の自然数であり、 波長多重する主信号光波長—帯の数である) 3 l nと、 WDM主信号光を構 成する個々の主信号光の波長帯からずれた波長帯の補助信号光を出力する第 1〜 第 sの補助信号光光源 ( sは、 任意の自然数である) 3 1 i〜 3 1 sと、 第 1〜第 nの信号光光源 3 1 i〜 3 1 n.から出力される主信号光第 1〜第 sの補助信号光光 源 3 1 i〜 3 l sから出力される補助信号光とを波長分割多重する光合波器 3 3と 、 を備えて構成される。
第 1〜第 nの電気/光変換部 3 : 〜3 I nは、 図示しないが、 信号源からのデ ジタル信号に送信符号処理を行う送信符号処理部と、 信号光を出力する半導体レ 一ザと、 半導体レーザを駆動する駆動回路と、 半導体レーザの出力を所定値に保 つために、 駆動回路による駆動電流を制御する出力レベル制御部をさらに有して 構成される。 このような構成によって、 デジタル信号を光信号に変換している。 なお、 レーザ光の出力を光強度変調器によって変調する場合には、 出力レベル制 御部は、 この光強度変調器を制御して、 レーザ光の出カレべノレを所定値に保つ。 第 1〜第 sの補助信号光光源 3 1 i〜 3 1 sは、 光通信システムに備えられる光 増幅装置 2 1 a〜2 l mからの励起光によるラマン増幅に寄与する波長帯であつ て、 しかも WDM主信号光を構成する個々の主信号光の波長帯からずれた波長帯 の補助信号光を出力し、 たとえば、 半導体レーザから構成される。 この補助信号 光光源 3 l ^ S 1 Bの数は、 光通信システム内で使用される異なる励起光の波長 の数と等しレ、。 04289
16 光合波器 3 3は、 第 1〜第 nの電気 Z光変換部 3 l !~ 3 l nから出力される信 号光と、 第 1〜第 sの補助信号光光源 3 l i~ 3 I sから出力される補助信号光と を合波し、 WDM主信号光として光ファイバ 1へ送出する。
—方、 光増幅装置 2 1では、 上述した実施の形態 1または 2において、 上記光 送受信端局装置 2 2 aから送信される WDM主信号光のそれぞれの補助信号光に おける利得変調信号の振幅を検出して、 この振幅値に基づいて利得制御を行う構 成とする。
このような構成とすることによって、 "WDM主信号光の中で欠落している主信 号光波長帯が存在しても、 ラマン増幅に寄与する励起光に対応した補助信号光が 存在するので、 その欠落している主信号光波長帯のラマン増幅に寄与する励起光 のパワーを制御することが可能となる。
この実施の形態 4によれば、 光増幅装置 2 1内で使用される励起光によるラマ ン增幅に主に寄与する信号光波長帯の光を補助信号光として、 WDM主信号光に 波長分割多重するように光送受信端局装置 2 2 a , 2 2 bを構成したので、 WD M主信号光の一部の主信号光が欠落している場合でも、 その欠落している主信号 光波長帯のラマン増幅に寄与する励起光のパヮ一を制御することが可能となる。 実施の形態 5 .
実施の形態 4では、 光送受信端局装置 2 2 a, 2 2 bに補助信号光光源 3 1 1 〜3 l sを備えるように構成したが、 補助信号光光源を光送受信端局装置 2 2 a , 2 2 bではなく、 第 2図におけるそれぞれの光増幅装置 2 1内に備えるように してもよい。 第 7図は、 この発明にかかる光増幅装置の実施の形態 5の概略構成 を示すプロック図である。 この光増幅装置 2 1は、 実施の形態 1の第 4図におい て、 異なる波長の励起光を出力する励起光源 3 a , 3 bと同数の補助信号光光源 8 a , 8 bと、 補助信号光光源、 8 a, 8 bから出力される複数の補助信号光を合 波する第 4の光力ブラ 2 dと、 合波された補助信号光を WDM主信号光と波長分 割多重する第 5の光力ブラ 2 eとをさらに備える構成を有する。
補助信号光光源 8 a, 8 bは、 光増幅装置 2 1内の励起光源 3 a , 3 bから出 力される励起光によつて主にラマン増幅利得の寄与を受ける波長帯であって、 W DM主信号光を構成する個々の主信号光の波長とは重ならない波長の補助信号光 を出力し、 たとえば半導体レーザなどから構.成される。
このような構成とすることによって、 WDM主信号光の中で欠落している主信 号光波長帯が存在しても、 ラマン増幅に寄与する励起光に対応した補助信号光が 存在するので、 その欠落している主信号光波長帯のラマン増幅に寄与する励起光 'のパワーを制御することが可能となる。
なお、 実施の形態 2の第 5図に示される構成の光増幅装置 2 1に、 補助信号光 を出力する補助信号光光源 8 a, 8 bと、 この補助信号光光源 8 a , 8 b力、ら出 力される複数の補助信号光を合波する第 4の光力ブラ 2 dと、 合波された補助信 号光を WDM主信号光と合波する第 5の光力プラ 2 eを備えるようにしてもよい この実施の形態 5によれば、 光増幅装置 2 1内で使用される励起光がラマン増 幅に主に寄与する信号光波長帯の光を補助信号光として、 WDM主信号光に波長 分割多重するように光増幅装置 2 1を構成したので、 WDM主信号光の一部の主 信号光が欠落してレ、る場合でも、 その欠落している主信号光波長帯のラマン増幅 に寄与する励起光のパヮ一を制御することが可能となる。
なお、 上述した実施の形態 1〜5の光通信システムにおいて、 光通信システム 内に備えられるすべての光増幅装置 2 1が利得制御を行っていない期間に、 励起 光源 3の駆動電流に変調信号を印加して、 WDM主信号光のラマン増幅利得を変 調する機能を有する制御電気回路 7からなる利得変調手段と、 ラマン増幅された WDM主信号光に重畳された利得変調信号を分離して検出する機能を有する光検 出器 5、 電気フィルタ 6および制御電気回路 7からなる利得変調信号検出手段を .、 光通信システム内の監視や制御信号の送受信に利用する監視 ·制御手段として 利用してもよい。 このようにすることで、 光増幅装置 2 1のラマン增幅利得制御 に使用される際の利得変調手段と利得変調信号検出手段と、 光通信システムの監 視 ·制御に'使用される監視 ·制御手段の構成部品の一部を共通ィヒすることができ 、 光通信システムの構.成を簡素化することができるという効果を有する。
以上説明したように、 この発明によれば、 光増幅装置内の励起光源の駆動電流 を所定の周波数で強度変調し、 励起光源から出力される励起光を強度変調してラ マン増幅利得に強度変調を与え、 ラマン増幅された主信号光に重畳された利得変 調信号を分離して検出し、 この検出した利得変調信号の振幅が所定値となるよう に励起光のパワーを調整してラマン増幅利得を制御することを、 異なる波長の励 起光を出力する励起光源ごとに、 強度変調信号を用いて行うようにしたので、 所 要の WDM主信号光の伝送帯域を含むようにラマン増幅利得を広帯域化すること ができるとともに、 ラマン増幅された WDM主信号光レベルを均一にすることが 可能となる。 また、 利得変調信号の振幅が所定の範囲内となるように、 励起光源 から出力される励起光の強度を調整するように構成したので、 主信号光の調整が 容易になるという効果も有する。 さらに、 光ファイバ中を伝搬する WDM主信号 光の上流側に設けられた光増幅装置から順番に 1台ずつ、 上記のように励起光源 の励起光の強度を調整するようにしたので、 広帯域で主信号光レベルが均一にさ れた WDM主信号光を長距離伝送することができる。 産業上の利用可能性
この発明は、 光ファイバを利用した波長分割多重通信システムや高密度波長分 割多重通信システムに用レ、られる光中継装置として用いる場合に適している。

Claims

請 求 の 範 囲
1 . 伝送路中を伝搬する波長分割多重信号光に、 複数の励起光源から出力され る異なる波長の励起光を前記波長分割多重信号光に合波してラマン i¾幅を行う光 増幅装置において、
前記複数の励起光源のうち一の励起光源に対して、 所定の周波数で前記励起光 源から出力される励起光を強度変調する強度変調手段と、
前記励起光によってラマン増幅された波長分割多重信号光の一部を電気信号に 変換する光電変換手段と、
変換された前記電気信号から前記周波数の成分の利得変調信号を抽出する利得 変調信号検出手段と、
抽出された前記利得変調信号の振幅が所定の値となるように、 前記周波数で強 度変調される励起光源から出力される励起光の強度のみを調整してラマン増幅利 得を制御する制御手段と、
を備え、 前記複数の励起光源の個々の励起光源に対して順に、 前記所定のラマ ン増幅利得を得るための励起光の強度の調整を行うことを特徴とする光増幅装置
2 . 前記制御手段は、 前記波長分割多重信号光の一部の主信号光が欠落してい る場合に、 前記欠落している主信号光のラマン増幅に主に寄与する励起光を予め 初期設定した出力に保つように、'前記励起光を出力する励起光源を制御すること を特徴とする請求の範囲第 1項に記載の光増幅装置。
3 . 前記波長分割多重信号光には、 前記励起光源から出力される励起光による ラマン増幅の寄与が大きレヽ波長帯で、 前記波長分割多重信号光を構成する主信号 光の波長帯からずれた波長帯の補助信号光がさらに波長分割多重され、
前記制御手段は、 前記利得変調信号の前記補助信号光における振幅が所定の値 となるように、 前記補助信号光のラマン増幅に主に寄与する励起光の強度の制御 を行うことを特徴とする請求の範囲第 1項に記載の光増幅装置。
4 . 前記励起光源から出力される励起光によるラマン増幅の寄与が大きレ、波長 帯で、 前記波長分割多重信号光を構成する主信号光の波長帯からずれた波長帯の 補助信号光を出力する補助信号光光源と、
前記補助信号光を、 前記波長分割多重信号光に波長分割多重する合波手段と、 をさらに備え、
前記制御手段は、 前記利得変調信号の前記補助信号光における振幅が所定の値 となるように、 前記補助信号光のラマン増幅に主に寄与する励起光の強度の制御 を行うことを特徴とする請求の範囲第 1項に記載の光増幅装置。
5 . 伝送路中を伝搬する波長分割多重信号光に、 複数の励起光源から出力され る異なる波長の励起光を前記波長分割多重信号光に合波してラマン増幅を行う光 増幅装置において、
前記複数の励起光源に対して、 それぞれ異なる周波数で前記励起光源から出力 される励起光を強度変調する強度変調手段と、
前記励起光によってラマン増幅された波長分割多重信号光の一部を電気信号に 変換する光電変換手段と、
変換された前記電気信号から前記それぞれの周波数の成分の利得変調信号を抽 出する複数の利得変調信号検出手段と、
前記複数の利得変調信号検出手段で抽出されたそれぞれの周波数の前記利得変 調信号の振幅が所定の値となるように、 それぞれの周波数で強度変調される励起 光源から出力される励起光の強度を調整してラマン増幅利得を制御する制御手段 と、
を備え、 前記複数の励起光源に対して、 前記所定のラマン増幅利得を得るため の励起光の強度の調整が同時に行われることを特徴とする光増幅装置。
6 . 前記制御手段は、 前記波長分割多重信号光の一部の主信号光が欠落してい る場合に、 前記欠落している主信号光のラマン増幅に主に寄与する励起光を予め 初期設定した出力に保つように、 前記励起光を出力する励起光源を制御すること を特徴とする請求の範囲第 5項に記載の光増幅装置。
7 . 前記波長分割多重信号光には、 前記励起光源から出力される励起光による ラマン増幅の寄与が大きレヽ波長帯で、 前記波長分割多重信号光を構成する主信号 光の波長帯からずれた波長帯の補助信号光がさらに波長分割多重され、
前記制御手段は、 前記利得変調信号の前記補助信号光における振幅が所定の値 となるように、 前記補助信号光のラマン増幅に主に寄与する励起光の強度の制御 を行うことを特徴とする請求の範囲第 5項に記載の光増幅装置。
8 . 前記励起光 ¾1から出力される励起光によるラマン増幅の寄与が大きレヽ波長 帯で、.前記波長分割多重信号光を構成する主信号光の波長帯からずれた波長帯の 補助信号光を出力する補助信号光光源と、
前記補助信号光を、 前記波長分割多重信号光に波長分割多重する合波手段と、 をさらに備え、
前記制御手段は、 前記利得変調信号の前記補助信号光における振幅が所定の値 となるように、 前記補助信号光のラマン増幅に主に寄与する励起光の強度の制御 を行うことを特 ¾ とする請求の範囲第 5項に記載の光増幅装置。
9 . 電気信号を光信号に変換して波長分割多重信号光を、 伝送路を介して送信 する光送信器と、 前記伝送路を介して受信した前記波長分割多重信号光を電気信 号に変換する光受信器との間に、 前記伝送路中を.伝送する波長分割多重信号光に 、 複数の励起光源から出力される異なる波長の励起光を前記波長分割多重信号光 に合波してラマン増幅を行い、 波長分割多重信号光の伝送損失をラマン増幅によ つて補償する複数の光増幅装置とが縦続接続された光通信システムであって、 前記光増幅装置は、
前記複数の励起光源のうち一の励起光源に対して、 所定の周波数で前記励起光 源から出力される励起光を強度変調する強度変調手段と、
前記励起光によってラマン増幅された波長分割多重信号光の一部を電気信号に 変換する光電変換手段と、
変換された前記電気信号から前記周波数の成分の利得変調信号を抽出する利得 変調信号検出手段と、
抽出された前記利得変調信号の振幅が所定の値となるように、 前記周波数で強 度変調される励起光源から出力される励起光の強度のみを調整してラマン増幅利 得を制御する制御手段と、
を備え、 前記光送信器側に設置されている光増幅装置から、 所定のラマン増幅 利得を得るための前記光増幅装置内の前記励起光源から出力される励起光の強度 の調整が時間をずらして順に行われ、 また、 前記光増幅装置内では、 前記複数の 励起光源の個々の励起光源に対して、 前記所定のラマン増幅利得を得るための励 起光の強度の調整が時間をずらして順に行われることを特徴とする光通信システ ム。
1 0 . 前記光増幅装置の前記制御手段は、 前記光送信器から送信される波長分 割多重信号光の一部の主信号光が欠落している場合に、 前記欠落している主信号 光のラマン増幅に主に寄与する励起光を予め初期設定した出力に保つように、 前 記励起光を出力する励起光源を制御することを特徴とする請求の範囲第 9項に記 載の光通信システム。
1 1 . 前記光送信器は、
前記光増幅装置内の励起光源から出力される励起光によるラマン増幅の寄与が 大きい波長帯で、 前記波長分割多重信号光を構成する主信号光の波長帯からずれ た波長帯の補助信号光を出力する補助信号光光源と、
前記信号光と前記補助信号光とを波長分割多重して波長分割多重信号光とする 光合波手段と、
をさらに備え、
前記光増幅装置の前記制御手段は、 前記利得変調信号の前記補助信号光におけ る振幅が所定の値となるように、 前記補助信号光のラマン増幅に主に寄与する励 起光の強度の制御を行うことを特徴とする請求の範囲第 9項に記載の光通信シス テム〇 1 2 . 前記光増幅装置は、
.前記励起光源から出力される励起光によるラマン増幅の寄与が大きレ、波長帯で 、 前記波長分割多重信号光を構成する主信号光の波長帯からずれた波長帯の補助 信号光を出力する補助信号光光源と、
前記補助信号光を、 前記波長分割多重信号光に波長分割多重する合波手段と、 . をさらに備え、
前記制御手段は、 前記利得変調信号の前記補助信号光における振幅が所定の値 となるように、 前 fe補助信号光のラマン増幅に主に寄与する励起光の強度の制御 を行うことを特徴とする請求の範囲第 9項に記載の光通信システム。 1 3 . 前記光増幅装置が、 所定のラマン増幅利得を得るための前記励起光源か ら出力される励起光の強度調整を行 όていない場合に、
前記光増幅装置の前記強度変調手段を光通信システムの監視 ·制御信号の送信 に利用し、
前記光増幅装置の前記利得変調信号検出手段および前記制御手段を、 前記監視 ·制御信号の受信および制御に利用することを特徴とする請求の範囲第 9項に記 載の光通信システム。
1 4 . 電気信号を光信号に変換して波長分割多重信号光を、 伝送路を介して送 信する光送信器と、 前記伝送路を介して受信した前記波長分割多重信号光を電気 信号に変換する光受信器との間に、 前記伝送路中を伝送する波長分割多重信号光 に、 複数の励起光源から出力される異なる波長の励起光を前記波長分割多重信号 光に合波してラマン増幅を行レ、、 波長分割多重信号光の伝送損失をラマン増幅に よつて補償する複数の光増幅装置が縦続接続された光通信システムであって、 前記光増幅装置は、
前記複数の励起光源に対して、 それぞれ異なる周波数で前記励起光源から出力 される励起光を強度変調する強度変調手段と、
前記励起光によってラマン増幅された波長分割多重信号光の一部を電気信号に 変換する光電変換手段と、
変換された前記電気信号から前記それぞれの周波数の成分の利得変調信号を抽 出する複数の利得変調信号検出手段と、
前記複数の利得変調信号検出手段で抽出されたそれぞれの周波数の前記利得変 調信号の振幅が所定の値となるように、 それぞれの周波数で強度変調される励起 光源から出力される励起光の強度を調整してラマン増幅利得を制御する制御手段 と、 '
を備え、 前記光送信器側に設置されている光増幅装置から、 所定のラマン増幅 利得を得るための前記光増幅装置内の前記励起光源から出力される励起光の強度 の調整が時間をずらして順に行われ、 また、 前記光増幅装置内では、 前記複数の 励起光源に対して、 前記所定のラマン増幅利得を得るための励起光の強度の調整 が同時に行われることを特徴とする光通信システム。
1 5 . 前記光増幅装置の前記制御手段は、 前記波長分割多重信号光の一部の主 信号光が欠落している場合に、 前記欠落している主信号光のラマン増幅に主に寄 与する励起光を予め初期設定した出力に保つように、 前記励起光を出力する励起 光源を制御することを特徴とする請求の範囲第 1 4項に記載の光通信システム。
1 6 . 前記光送信器は、
前記光増幅装置内の励起光源から出力される励起光によるラマン増幅の寄与が 大きレヽ波長帯で、 前記波長分割多重信号光を構成する主信号光の波長帯からずれ た波長帯の補助信号光を出力する補助信号光光源と、
前記信号光と前記補助信号光とを波長分割多重して波長分割多重信号光とする 光合波手段と、
をさらに備え、
前記光増幅装置の前記制御手段は、 前記利得変調信号の前記補助信号光におけ る振幅が所定の値となるように、 前記補助信号光のラマン増幅に主に寄与する励 起光の強度の制御を行うことを特徴とする請求の範囲第 1 4項に記載の光通信シ ステム。
1 7 . 前記光増幅装置は、
前記励起光源から出力される励起光によるラマン増幅の寄与が大きレ、波長帯で 、 前記波長分割多重信号光を構成する主信号光の波長帯からずれた波長帯の補助 信号光を出力する補助信号光光源と、
前記補助信号光を、 前記波長分割多重信号光に波長分割多重する合波手段と、 をさらに備え、 .
前記制御手段は、 前記利得変調信号の前記補助信号光における振幅が所定の値 となるように、 前記補助信号光のラマン増幅に主に寄与する励起光の強度の制御 ' を行うことを特徴とする請求の範囲第 1 4項に記載の光通信システム。
1 8 . 前記光増幅装置が、 所定のラマン増幅利得を得るための前記励起光源か ら出力される励起光の強度調整を行っていない場合に、 '
前記光増幅装置の前記強度変調手段を光通信システムの監視 ·制御信号の送信 に利用し、 前記光増幅装置の前記利得変調信号検出手段および前記制御手段を、 前記監視 ■制御信号の受信および制御に利用することを特徴とする請求の範囲第 1 4項に ,記載の光通信システム。
PCT/JP2003/004289 2003-04-03 2003-04-03 光増幅装置および光通信システム WO2004091121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004566477A JP4040044B2 (ja) 2003-04-03 2003-04-03 光増幅装置および光通信システム
PCT/JP2003/004289 WO2004091121A1 (ja) 2003-04-03 2003-04-03 光増幅装置および光通信システム
US10/515,054 US7365902B2 (en) 2003-04-03 2003-04-03 Optical amplifier and optical communication system
EP03816595.7A EP1503528B1 (en) 2003-04-03 2003-04-03 Optical amplifier and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004289 WO2004091121A1 (ja) 2003-04-03 2003-04-03 光増幅装置および光通信システム

Publications (1)

Publication Number Publication Date
WO2004091121A1 true WO2004091121A1 (ja) 2004-10-21

Family

ID=33156425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004289 WO2004091121A1 (ja) 2003-04-03 2003-04-03 光増幅装置および光通信システム

Country Status (4)

Country Link
US (1) US7365902B2 (ja)
EP (1) EP1503528B1 (ja)
JP (1) JP4040044B2 (ja)
WO (1) WO2004091121A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180250A (zh) * 2017-04-11 2017-09-19 深圳市傲科微创有限公司 一种光通信方法及光通信系统
CN107332101A (zh) * 2017-06-28 2017-11-07 武汉光迅科技股份有限公司 一种可动态执行光时域反射检测的组件和检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415746B2 (ja) * 2004-04-23 2010-02-17 住友電気工業株式会社 ラマン増幅器
JP2008078728A (ja) * 2006-09-19 2008-04-03 Fujitsu Ltd 光伝送装置
JP5012478B2 (ja) * 2006-12-27 2012-08-29 富士通株式会社 分布ラマン増幅装置およびwdm光伝送システム
JP4431179B2 (ja) * 2008-02-04 2010-03-10 富士通株式会社 分布ラマン増幅システムおよびその立ち上げ方法ならびに光装置
US8594500B2 (en) * 2009-11-23 2013-11-26 Verizon Patent And Licensing Inc. Connection loss scheme for fiber connections in optical communication system
JP6862106B2 (ja) * 2016-06-27 2021-04-21 株式会社ミツトヨ 電流制御装置及びレーザ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183820A (ja) * 1998-12-14 2000-06-30 Kdd Corp 光中継器監視システム及び方法
JP2000358261A (ja) * 1999-06-16 2000-12-26 Nec Corp 光クロスコネクト装置及び光ネットワーク装置並びに接続状態監視方法
JP2002232048A (ja) * 2001-01-31 2002-08-16 Fujitsu Ltd 光増幅器
JP2002290332A (ja) * 2001-01-24 2002-10-04 Lucent Technol Inc 光wdm伝送システム
JP2003037562A (ja) * 2001-07-26 2003-02-07 Fujitsu Ltd 光伝送システム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073852A (ja) 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> 光増幅伝送システム
FR2764141B1 (fr) * 1997-05-29 1999-07-23 Alsthom Cge Alcatel Systeme de transmission optique a compensation dynamique de la puissance transmise
JP3858451B2 (ja) 1998-06-03 2006-12-13 Kddi株式会社 制御信号重畳装置
JP4115027B2 (ja) 1998-07-23 2008-07-09 古河電気工業株式会社 励起光発生手段と、ラマン増幅器とそれを用いた光中継器
WO2000005622A1 (fr) * 1998-07-23 2000-02-03 The Furukawa Electric Co., Ltd. Amplificateur raman, repeteur optique et procede d'amplification raman
JP3527671B2 (ja) 1999-04-23 2004-05-17 富士通株式会社 ラマン増幅による光伝送パワーの波長特性制御方法、並びに、それを用いた波長多重光通信システムおよび光増幅器
JP2002040495A (ja) 2000-07-21 2002-02-06 Sumitomo Electric Ind Ltd ラマン増幅器
JP4821037B2 (ja) * 2000-08-25 2011-11-24 富士通株式会社 ラマン増幅を用いた光増幅器およびラマン励起光源
JP2002076482A (ja) * 2000-08-31 2002-03-15 Fujitsu Ltd 光増幅器,光増幅方法及び光増幅システム
DE60044066D1 (de) * 2000-09-07 2010-05-06 Fujitsu Ltd Optischer verstärker unter ausnutzung der ramanverstärkung
JP4565794B2 (ja) * 2000-09-07 2010-10-20 富士通株式会社 光増幅装置および光通信システム
US6452716B1 (en) * 2000-10-05 2002-09-17 Nortel Networks Limited Amplitude modulation of a pump laser signal in a distributed raman amplifier
JP2003035919A (ja) * 2000-11-07 2003-02-07 Furukawa Electric Co Ltd:The 光増幅装置および光伝送システム
JP2002198599A (ja) * 2000-12-22 2002-07-12 Nec Corp 光増幅器および光増幅方法
JP3904835B2 (ja) * 2001-01-29 2007-04-11 株式会社日立製作所 光増幅器、光ファイバラマン光増幅器、及び光システム
JP3768110B2 (ja) * 2001-02-22 2006-04-19 富士通株式会社 光増幅器
JP2002344054A (ja) * 2001-05-14 2002-11-29 Furukawa Electric Co Ltd:The 光増幅装置および光伝送システム
JP4647147B2 (ja) * 2001-07-16 2011-03-09 富士通株式会社 ラマン増幅を用いた光伝送方法および光伝送システム
US6496634B1 (en) * 2001-07-17 2002-12-17 Marc David Levenson Holey fibers filled with raman active fluid
US20030123133A1 (en) * 2001-07-25 2003-07-03 Damian Flannery Distributed raman amplifier module auto-setup
US20030081307A1 (en) * 2001-09-28 2003-05-01 Fludger Christopher R. Raman amplification
US6914716B2 (en) * 2001-11-21 2005-07-05 Lucent Technologies Inc. Modulated pump source for fiber Raman amplifier
JP4007812B2 (ja) * 2002-01-18 2007-11-14 富士通株式会社 ラマン増幅器および波長多重光通信システム、並びに、ラマン増幅の制御方法
US7580183B2 (en) * 2002-03-01 2009-08-25 Sumitomo Electric Industries, Ltd. Light generator, optical amplifier, and optical communication system
JP3833564B2 (ja) * 2002-04-24 2006-10-11 富士通株式会社 ラマン増幅を用いた光ファイバ伝送のための方法及び装置
US6798563B2 (en) * 2002-07-08 2004-09-28 Nortel Networks Limited Method and device for reducing pump noise transfer in raman amplification
US20040042061A1 (en) * 2002-08-30 2004-03-04 Islam Mohammed N. Controlling ASE in optical amplification stages implementing time modulated pump signals
US7477446B2 (en) * 2002-10-04 2009-01-13 Fujitsu Limited Raman amplification system utilizing modulated second-order raman pumping
US6813067B1 (en) * 2002-11-05 2004-11-02 At&T Corp. Method and apparatus for providing a broadband raman amplifier with improved noise performance
US6859306B2 (en) * 2003-02-04 2005-02-22 Lucent Technologies Inc. Method, apparatus and system for reducing gain ripple in a raman-amplified WDM system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183820A (ja) * 1998-12-14 2000-06-30 Kdd Corp 光中継器監視システム及び方法
JP2000358261A (ja) * 1999-06-16 2000-12-26 Nec Corp 光クロスコネクト装置及び光ネットワーク装置並びに接続状態監視方法
JP2002290332A (ja) * 2001-01-24 2002-10-04 Lucent Technol Inc 光wdm伝送システム
JP2002232048A (ja) * 2001-01-31 2002-08-16 Fujitsu Ltd 光増幅器
JP2003037562A (ja) * 2001-07-26 2003-02-07 Fujitsu Ltd 光伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1503528A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180250A (zh) * 2017-04-11 2017-09-19 深圳市傲科微创有限公司 一种光通信方法及光通信系统
CN107332101A (zh) * 2017-06-28 2017-11-07 武汉光迅科技股份有限公司 一种可动态执行光时域反射检测的组件和检测方法

Also Published As

Publication number Publication date
EP1503528A1 (en) 2005-02-02
JP4040044B2 (ja) 2008-01-30
EP1503528B1 (en) 2016-05-18
US20050237600A1 (en) 2005-10-27
US7365902B2 (en) 2008-04-29
EP1503528A4 (en) 2008-10-08
JPWO2004091121A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
US6654561B1 (en) Method and apparatus for measuring optical signal-to-noise ratio, and pre-emphasis method and optical communication system each utilizing the method
US6930823B2 (en) Optical transmission method and optical transmission system utilizing Raman amplification
JP4671478B2 (ja) 波長多重光通信システムおよび波長多重光通信方法
US6882466B1 (en) Optical amplifier
JP4626918B2 (ja) ラマン光増幅中継器
JP4083444B2 (ja) ラマン増幅を利用した光伝送システムおよび光伝送方法
JP2002229084A (ja) ラマン増幅器およびそれを用いた光伝送システム
JP5305377B2 (ja) ラマン光増幅を用いた光伝送システム
JP3779691B2 (ja) 広帯域エルビウム添加光ファイバ増幅器及びこれを採用した波長分割多重化光伝送システム
JP4549591B2 (ja) 装置
JP2002196379A (ja) 光増幅伝送システム
KR100810859B1 (ko) 엘밴드 광신호의 효율적 광증폭 이득향상 장치
JP2003124889A (ja) 光中継器の監視制御方法および監視制御システム
WO2004091121A1 (ja) 光増幅装置および光通信システム
EP1468512B1 (en) Optical transmission system with raman amplifiers comprising a supervisory system
JPH1022980A (ja) 波長多重光増幅装置と波長多重光伝送装置
JP2004304382A (ja) ラマン増幅器およびそれを用いた光伝送システム
JP2001168799A (ja) 光通信システム及びそれに用いる光中継器
US7162119B2 (en) Pump energy source, method of providing pump energy to an optical transmission system, and optical transmission system
JP3960995B2 (ja) 変調2次ラマン励起を利用したラマン増幅システム
JP3833564B2 (ja) ラマン増幅を用いた光ファイバ伝送のための方法及び装置
JPH10242939A (ja) 光波長多重通信システム
JP3596403B2 (ja) 光波長分割多重送信装置及び光波長分割多重受信装置及び光中継装置及び光波長分割多重伝送システム
JP2003051791A (ja) 光増幅装置
JP2002198598A (ja) 光増幅利得制御回路および光増幅利得制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004566477

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT RO SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 10515054

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003816595

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003816595

Country of ref document: EP