WO2004091094A1 - 歪補償装置 - Google Patents

歪補償装置 Download PDF

Info

Publication number
WO2004091094A1
WO2004091094A1 PCT/JP2004/003966 JP2004003966W WO2004091094A1 WO 2004091094 A1 WO2004091094 A1 WO 2004091094A1 JP 2004003966 W JP2004003966 W JP 2004003966W WO 2004091094 A1 WO2004091094 A1 WO 2004091094A1
Authority
WO
WIPO (PCT)
Prior art keywords
distortion
signal
amplifier
amplified
frequency
Prior art date
Application number
PCT/JP2004/003966
Other languages
English (en)
French (fr)
Inventor
Naoki Hongo
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to EP04722711A priority Critical patent/EP1612933A4/en
Publication of WO2004091094A1 publication Critical patent/WO2004091094A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3282Acting on the phase and the amplitude of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits

Definitions

  • the present invention relates to a distortion compensating device for compensating for distortion generated in an amplifier for amplifying a signal, and more particularly to a distortion compensating device including first distortion generating means and second distortion generating means for improving the efficiency of distortion compensation. It relates to compensation devices.
  • a base station device provided in a mobile communication system employing a W-CDMA (Wide-band Code Division Multiple Access) system as a mobile communication system.
  • the radio signal must reach a physically distant mobile station device (CDMA mobile station device). Therefore, the signal to be transmitted is greatly amplified by an amplifier (amplifier) and the transmission output is transmitted. It is necessary to do.
  • an amplifier is an analog device, its input / output characteristics are a non-linear function. In particular, after the amplification limit called the saturation point, the output power increases even if the power input to the amplifier increases.
  • a base station apparatus includes a transmission power amplification unit (adaptive predistortion) having a function of performing distortion compensation using an adaptive predistortion (APD) technique.
  • ACP adjacent channel leak power
  • a base station apparatus includes a transmission power amplification unit (adaptive predistortion) having a function of performing distortion compensation using an adaptive predistortion (APD) technique.
  • APD adaptive predistortion
  • Patent Document 1
  • the present invention has been made in view of the above-described conventional circumstances, and has as its object to provide a distortion compensating device capable of improving efficiency in compensating for distortion generated in an amplifier for amplifying a signal. Aim.
  • the present invention provides a distortion compensator capable of lowering the clock frequency of a digital device, for example, when compensating for distortion generated in an amplifier that amplifies a signal, as compared with the related art.
  • a distortion compensation device compensates for distortion generated in an amplifier for amplifying a signal as follows.
  • the first distortion generating means generates distortion for reducing the distortion generated in the amplifier for the signal to be amplified by the amplifier. Further, the second distortion generating means reduces the distortion generated in the amplifier by the distortion generated by the first distortion generating means with respect to the signal based on the signal to be amplified by the amplifier. Generates distortion to reduce components other than components. '
  • the order of the process of generating distortion by the first distortion generating unit for the signal amplified by the amplifier and the process of generating distortion by the second distortion generating unit for the signal is as follows. There is no limitation, as long as the configuration is practically effective.
  • the second distortion generating means may be provided before the first distortion generating means, or the second distortion generating means may be provided after the first distortion generating means. Two distortion generating means may be provided.
  • the configuration including the first distortion generating unit and the second distortion generating unit has been described.
  • a configuration in which one or more other distortion generating units are provided may be used. .
  • the first signal and the second signal are used to generate distortion for the signal to be amplified by the amplifier, and the sum of these distortions is calculated.
  • the distortion generated in the amplifier it is possible to increase the efficiency of distortion compensation.
  • a distortion () for canceling distortion generated in the amplifier by the distortion generating unit is used. It is necessary to generate distortion having inverse characteristics), but in a configuration using a plurality of distortion generating means as in the present invention, the sum of the distortion generated by each of the distortion generating means is equal to the distortion generated by the amplifier. Distortion for canceling (distortion having inverse characteristics) is sufficient, and the distortion generated by each distortion generating means can be set to various characteristics.
  • various signals may be used as signals to be amplified by the amplifier.
  • various amplifiers may be used, for example, one amplifier may be used, or a combination of a plurality of amplifiers may be used.
  • examples of distortion generated in the signal when the signal is amplified by the amplifier include amplitude distortion and phase distortion.
  • the accuracy for compensating the distortion for example, various accuracy may be used as long as it is practically effective.
  • the first distortion generating means various constitutions may be used, for example, a means for generating distortion in a fixedly set mode, or a method for generating distortion based on feedback control. What is generated can be used. Further, for example, a mode in which distortion is generated based on a signal to be amplified by the amplifier can be used.
  • generating distortion in a fixedly set manner refers to, for example, a non-adaptive one, and generating distortion based on feedback control means, for example, an adaptive one. Represents.
  • the second distortion generating means those having various configurations may be used.
  • a means that generates distortion based on feedback control may be used.
  • the distortion compensating apparatus according to the present invention has the following configuration as one configuration example.
  • the first distortion generating means is configured using an analog device.
  • the first distortion generating means generates distortion in a fixed manner in the signal to be amplified by the amplifier.
  • the second distortion generating means includes a digital device that operates based on a clock signal. Further, in the second distortion generation means, the distortion generation mode control means controls the distortion generation mode based on the signal to be amplified by the amplifier, and the distortion generation execution means controls the distortion generation mode. In the distortion generation mode controlled by the control means, Distortion is generated for a signal to be amplified by the width unit.
  • the second distortion is generated.
  • the sampling frequency required for the digital device included in the generating means can be reduced, thereby reducing the frequency of the digital signal required for the digital device included in the second distortion generating means. Can be lower.
  • the first-order frequency component included in the component obtained by removing the component reduced by the distortion generated by the first distortion generating means from the distortion generated by the amplifier is reduced so that the first-order frequency component is reduced.
  • the generation mode of the distortion generated by the distortion generating means is set.
  • higher-order frequency components for example, fifth-order distortion, seventh-order distortion, and higher-order frequency components are used.
  • the broadband property is reduced, that is, the width of the frequency band is reduced.
  • the first distortion generating means is configured using, for example, only an analog device.
  • the second distortion generating means may be configured using, for example, both a digital device and an analog device, or may be configured using only a digital device.
  • Various devices may be used as digital devices and analog devices. Further, as a distortion generation mode, for example, an amplitude distortion generation mode, a phase distortion generation mode, or a generation mode of both amplitude and phase distortions can be used.
  • a distortion generation mode for example, an amplitude distortion generation mode, a phase distortion generation mode, or a generation mode of both amplitude and phase distortions can be used.
  • Various means may be used as the distortion generation executing means.
  • means for changing the amplitude of the signal means for changing the phase of the signal, or a method for changing the amplitude and the phase of the signal may be used. Means for changing both can be used.
  • the distortion compensating apparatus according to the present invention has the following configuration as one configuration example.
  • the signal level detection means detects the level of the signal to be amplified by the amplifier, and the signal level distortion generation mode correspondence storage means stores the correspondence between the signal level and the distortion generation mode. Then, the distortion generation control execution means, based on the content stored in the signal level distortion generation mode correspondence storage means, generates the distortion corresponding to the level of the signal detected by the signal level detection means, and Distortion is generated for the signal to be amplified.
  • the signal level distortion generation mode correspondence content change means changes the level and distortion of the signal stored by the signal level distortion generation mode correspondence storage section based on the signal amplified by the amplifier. The content of the correspondence with the generation mode is changed.
  • the second distortion generating means compensates for the distortion generated in the amplifier based on the correspondence between the signal level and the distortion generation mode, the content of the correspondence is updated based on the signal amplified by the amplifier.
  • the accuracy of distortion compensation can be improved by feedback control.
  • various levels may be used as the signal level detected by the signal level detecting means.
  • an amplitude level, a power level, and an envelope level may be used. Can be.
  • an amplifier outputs according to the level of the input signal.
  • the level and phase of the input signal can change.
  • the signal level distortion occurrence mode correspondence storage means can be configured using, for example, a memory for storing information.
  • the distortion compensating apparatus according to the present invention has the following configuration as one configuration example.
  • a radio frequency analog signal is input to the distortion compensator as a signal to be amplified by the amplifier.
  • the signal level detection means detects the level of the analog signal to be amplified by the amplifier, and the digital control signal output means outputs the signal level and the distortion generation mode.
  • a signal level distortion generation mode corresponding to the correspondence is stored, and a digital control signal for realizing a distortion generation mode corresponding to the level of the signal detected by the signal level detection means is output.
  • the control signal DZA conversion means converts the digital control signal output from the digital control signal output means into an analog control signal
  • the amplitude / phase distortion generation means converts the control signal DZA Based on the analog control signal obtained by the conversion means, one or both of amplitude and phase are generated for the analog signal to be amplified by the amplifier.
  • the first distortion generating means generates a distortion with respect to the analog signal which has been distorted by the amplitude / phase distortion generating means constituting the second distortion generating means, and generates the analog signal which has generated the distortion. Is output to the amplifier.
  • the first distortion generating means and the amplifier may be directly connected, for example, or may be indirectly connected via another circuit element.
  • the distortion generated by the amplitude and phase distortion generating means constituting the second distortion generating means is made to be mainly composed of relatively low-order frequency components.
  • the frequency bandwidth of the control signal for the amplitude and phase distortion generating means Can be made relatively narrow, whereby the sampling frequency required for the control signal D / A conversion means can be reduced.
  • the low-order frequency component for example, a third-order distortion frequency component is used.
  • the broadband characteristic is reduced, that is, the width of the frequency band is reduced.
  • radio frequency various frequencies may be used as the radio frequency.
  • the amplitude / phase distortion generating means generates distortion based on the analog control signal, for example, generates higher-order distortion by higher-order frequency components included in the analog control signal, and includes the same in the analog control signal.
  • the low-order frequency components generate low-order distortion.
  • the amplitude-phase distortion generating means may generate, for example, an amplitude distortion, a phase distortion, or may generate both an amplitude distortion and a phase distortion. ,.
  • various means may be used as the amplitude and phase distortion generating means.
  • an attenuator (variable attenuator) capable of variably controlling the amount of signal attenuation or a signal amplifying amount may be used.
  • An amplifier that can be variably controlled (variable amplifier) and a phase shifter that can variably control the amount of phase change (phase shift) of a signal can be used.
  • a combination of a variable attenuator and a variable phase shifter can be used.
  • the distortion compensating apparatus according to the present invention has the following configuration as another configuration example.
  • a digital signal including an I component and a Q component is input to the distortion compensator as a signal to be amplified by the amplifier.
  • the signal level detection means detects the level of the digital signal to be amplified by the amplifier
  • the digital control signal output means A signal level distortion generation mode correspondence storage unit for storing a correspondence between a signal level and a distortion generation mode for realizing a distortion generation mode corresponding to a signal level detected by the signal level detection unit; Outputs digital control signal.
  • the amplitude and phase distortion generating means converts the amplitude and phase distortion with respect to the digital signal to be amplified by the amplifier based on the digital control signal output from the digital control signal output means. And distortion of one or both of the phases.
  • the signal DA conversion means converts the digital signal, which has been distorted by the amplitude / phase distortion generation means constituting the second distortion generation means, into an analog signal
  • the signal frequency conversion means converts the frequency of the analog signal obtained by the signal DZA conversion means into a radio frequency.
  • the first distortion generating means generates a distortion for the analog signal of the radio frequency obtained by the signal frequency converting means, and outputs the analog signal having the distortion generated to the amplifier.
  • the first distortion generating means and the amplifier may be directly connected, for example, or may be indirectly connected via another circuit element.
  • the frequency bandwidth of the signal to the DZA conversion means can be relatively narrowed, and thereby the sampling frequency and clock frequency required for the signal D / A conversion means can be reduced.
  • the low-order frequency component for example, a third-order distortion frequency component is used.
  • the broadband characteristic is reduced, that is, the width of the frequency band is reduced.
  • a band (BB: Base Band) signal is used as the digital signal composed of the I component and the Q component.
  • the amplitude / phase distortion generating means may generate, for example, an amplitude distortion, a phase distortion, or may generate both the amplitude distortion and the phase distortion. .
  • amplitude / phase distortion generating means various means may be used as the amplitude / phase distortion generating means.
  • a vector calculator that applies amplitude distortion or phase distortion to a digital signal composed of an I component and a Q component can be used.
  • the amplified signal part obtaining means obtains a part of the signal amplified by the amplifier, and the distortion component extracting means is obtained by the amplified signal part obtaining means.
  • the distortion component contained in the signal is extracted, and the signal level distortion generation mode correspondence content changing means is stored by the signal level distortion generation mode correspondence storage means so that the distortion component extracted by the distortion component extraction means is reduced. Change the content of the correspondence between the signal level and the distortion generation mode.
  • the signal frequency lowering unit lowers the frequency of the signal acquired by the amplified signal partial acquiring unit
  • the distortion component extracting unit reduces the distortion included in the signal whose frequency is reduced by the signal frequency lowering unit.
  • the A / D conversion means converts the distortion component extracted by the distortion component extraction means from an analog signal to a digital signal
  • the signal level distortion generation mode correspondence content changing means outputs the distortion component A / D Based on the digital signal of the distortion component obtained by the D conversion means, the content of the correspondence between the signal level stored by the signal level distortion generation mode correspondence storage unit and the generation mode of the distortion is changed.
  • various means may be used as the amplified signal partial acquisition means, for example, a coupler may be used.
  • the distortion component extracting means may be used as the distortion component extracting means.
  • a filter that extracts a signal component having a frequency corresponding to the distortion component generated by the amplifier may be used.
  • the signal level distortion generation mode correspondence content changing means as an example of a mode in which the extracted distortion component is controlled to be small, a mode in which the extracted distortion component is controlled to be minimized is used. preferable.
  • the signal frequency lowering means may use, for example, a mode in which the frequency of a signal is reduced from a radio frequency to an intermediate frequency (IF) or a baseband frequency.
  • IF intermediate frequency
  • the signal to be amplified by the amplifier is a quadrature-modulated signal.
  • the amplified signal part obtaining means obtains a part of the signal amplified by the amplifier
  • the signal demodulation means performs quadrature demodulation of the signal obtained by the amplified signal part obtaining means
  • the level of the signal stored in the signal level distortion occurrence mode correspondence storage means is adjusted so that the content changing means reduces the difference between the signal to be amplified by the amplifier and the signal obtained by the quadrature demodulation by the signal demodulation means. Change the content of the correspondence between and distortion generation mode.
  • the signal frequency lowering means lowers the frequency of the signal acquired by the amplified signal part acquiring means, and the signal filtering means filters the signal whose frequency has been decreased by the signal frequency lowering means, Filtering signal
  • the AD conversion means converts the signal filtered by the signal filtering means from an analog signal to a digital signal. Then, the signal demodulation unit performs quadrature demodulation based on the digital signal of the distortion component obtained by the filtering signal A / D conversion unit.
  • various methods may be used as the modulation method applied to the signal to be amplified by the amplifier, for example, QPSK (Quadrature Phase Shift Keying) and QAM (Quadrature Amplitude Modulation).
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the data to be transmitted is converted into an I signal (I component signal) and a Q signal (Q component signal) by modulation such as QPSK and QAM, and this is modulated by orthogonal modulation.
  • the signal is converted to an intermediate frequency (IF) signal, which is up-converted and converted to a radio frequency (RF) signal.
  • IF intermediate frequency
  • RF radio frequency
  • a received radio frequency (RF) signal is down-converted and converted into an intermediate frequency (IF) signal, which is converted into an I signal and a Q signal by orthogonal demodulation and demodulated. And convert it to data.
  • the signal to be amplified by the amplifier and the signal obtained by quadrature demodulation by the signal demodulation means are used. Detecting the difference is performed.
  • a coupler may be used.
  • the signal level distortion generation mode correspondence content changing unit is an example of a mode in which the difference between the signal to be amplified by the amplifier and the signal obtained by quadrature demodulation by the signal demodulation unit is controlled to be small.
  • a mode in which control is performed so that the difference is minimized can be used.
  • the signal frequency lowering means for example, a mode in which the frequency of a signal is reduced from a radio frequency to an intermediate frequency can be used.
  • signal filtering means may be used.
  • a filter that extracts a signal component having a frequency corresponding to a component of a signal to be amplified by an amplifier can be used.
  • the distortion compensating device is provided in, for example, a wireless or wired communication device, a transmitter, a transceiver, and the like, and a signal to be transmitted is used as a signal to be amplified by an amplifier.
  • the distortion compensating apparatus employs a wireless communication system employing a CDMA method or the like.
  • FIG. 1 is a diagram showing a configuration example of an amplifier according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a characteristic of a distortion compensation table.
  • FIG. 3 is a diagram showing an example of a spectrum of a control signal output from the DZA converter.
  • FIG. 4 is a diagram showing an example of a spectrum of a control signal output from the D / A converter.
  • FIG. 5 is a diagram showing an example of a comparison of the spectrum of the control signal output from the DZA converter.
  • FIG. 6 is a diagram showing a configuration example of an amplifying device according to a second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of comparison of the spectrum of a signal output from the D / A converter.
  • FIG. 8 is a diagram showing a configuration example of an amplifier according to a third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of characteristics of an ideal distortion compensation table.
  • FIG. 10 is a diagram showing an example of a characteristic of a distortion compensation table when a fixed predistortion and an adaptive predistortion are used.
  • FIG. 11 is a diagram showing an example of a spectrum of a control signal output from the DZA converter.
  • FIG. 11 (a) shows a case of adaptive PD only
  • FIG. 11 (b) shows a case of fixed PD + adaptive PD. Show.
  • FIG. 12 is a diagram showing an example of a spectrum of a signal output from the D / A converter. Yes, (a) shows the case of adaptive PD only, (b) shows the case of fixed PD + adaptive PD.
  • FIG. 13 is a diagram showing a configuration example of a transmission power amplifier with an adaptive predistorter.
  • FIG. 14 is a diagram showing a configuration example of a transmission power amplifier with an adaptive predistorter.
  • FIG. 15 is a diagram illustrating an example of characteristics of an output from the DZA converter.
  • FIG. 16 is a diagram showing an example of a spectrum of a control signal output from the D / A converter, where (a) shows a case where the sampling frequency is fsl (fsl ⁇ fs2), and (b) shows a sampler. It shows the case where the switching frequency fs2 (fsl ⁇ fs2).
  • FIG. 17 is a diagram showing an example of the spectrum of a signal output from the DZA converter, where (a) shows the case of the sampling frequency fsl (fsl ⁇ fs2), and (b) shows the case of the sampling frequency. Shows the case of f s2 (fsl ⁇ fs2).
  • BEST MODE FOR CARRYING OUT THE INVENTION An embodiment according to the present invention will be described with reference to the drawings.
  • FIG. 13 shows a configuration example of a transmission power amplifier with an adaptive predistorter that performs analog predistortion.
  • FIG. 5 shows an operation example of the transmission power amplifier with an adaptive predistorter shown in FIG. That is, an analog signal of a radio frequency (R F: Radio Frequency) is input to the power detection unit 51 and the delay unit 58.
  • R F Radio Frequency
  • the power detector 51 detects the power of the input signal by performing, for example, envelope detection.
  • a voltage representing the detection result is converted from an analog signal to a digital signal by an A / D (Analog to Digital) converter 52, and is configured by, for example, a memory 53. It is associated as a reference argument of the distortion compensation table.
  • the distortion compensation table of the memory 53 stores a table for performing distortion compensation by a pre-distortion method.
  • the table describes information on the inverse characteristic of the nonlinear characteristic in the amplitude and phase planes to be compensated.
  • AM Amplitude Modulation
  • AM-AM conversion using the power of the input signal as an index
  • AM-PM Phase Modulation
  • one of the digital control signals is D / A (Digital to Digital) according to the input from the AZD converter 52 (in this example, the power of the input signal) by referring to the distortion compensation table. Analog) is output to the converter 54, and the other digital control signal is output to the D / A converter 56.
  • D / A Digital to Digital
  • One digital control signal is converted to an analog signal by a D / A converter 54, band-limited to a required frequency component by an LPF 55, and a voltage variable attenuator 5 for compensating AM-AM conversion. 9 to control the voltage variable attenuator 59.
  • the other digital control signal is converted to an analog signal by the D / A converter 56, and the band is limited to the required frequency component by the LPF 57, and the voltage variable phase shifter compensates for AM-PM conversion. 60 to control the voltage variable phase shifter 60.
  • the input signal is given a delay time by the delay unit 58 and is input to the variable voltage attenuator 59.
  • the delay time is, for example, the time at which the input signal is input to the voltage variable attenuator 59 and the output (control signal) from the DZA converter 54 based on the power of the input signal. 5
  • the time to reach 9 is set to match.
  • the signal pre-distorted by the pre-distortion method in the variable voltage attenuator 59 and the variable voltage phase shifter 60 corresponding to the predistortion is amplified by the amplifying unit 61.
  • the output signal (amplified signal) from the amplifying unit 61 becomes a signal without distortion when ideal distortion compensation is performed.
  • a part of the output signal from the amplifier 61 is extracted by the directional coupler 62.
  • a part of the signal is down-converted by the mixer 64 using the transmission signal from the transmitter 63 controlled by the adaptive table control unit 67.
  • the frequency band component of the distortion is extracted from the downconverted signal by a band pass filter (BPF) 65, and the extraction result is converted from an analog signal to a digital signal by an AZD converter 66. Then, it is inputted to the adaptive table controller 67.
  • BPF band pass filter
  • the adaptive table control unit 67 receives the information on the power of distortion from the AZD converter 66. Then, the adaptive table control unit 67 updates the contents of the distortion compensation table stored in the memory 53 and controls the distortion compensation table adaptively so that the power of the distortion is reduced. As a result, the distortion component remaining in the output signal from the amplification section 61 is reduced.
  • FIG. 14 shows an example of the configuration of a transmission power amplifier with an adaptive predistorter for performing digital predistortion.
  • FIG. 5 shows an operation example of the transmission power amplifier with an adaptive predistorter shown in FIG.
  • a digital signal composed of an I-phase component (I component) and a Q-phase component (Q component) is input to the power calculation unit 71, the vector calculation unit 73, and the adaptive table control unit 83.
  • the input signal is, for example, a signal that handles multicarriers, and is quadrature-modulated before being input to the transmission power amplifier with an adaptive predistorter.
  • the power calculator 71 detects the power of the input signal.
  • the detection result is associated as a reference argument of the distortion compensation table configured by the memory 72.
  • the distortion compensation table of the memory 72 stores a table for performing distortion compensation by a predistortion method.
  • the table describes information on the inverse characteristic of the nonlinear characteristic in the amplitude and phase planes to be compensated, and generally relates to AM_AM conversion or AM_PM conversion using the power of the input signal as an index. Information is described Have been.
  • the AM-AM conversion is for amplitude
  • the AM-PM conversion is for phase
  • the distortion compensation table uses, for example, a rectangular coordinate format (for example, a format such as (x, y) or (1, Q)) in order to perform a vector operation relating to AM-AM conversion or AM-PM conversion. Control information is stored.
  • a rectangular coordinate format for example, a format such as (x, y) or (1, Q)
  • the digital control signal is sent to the vector operation unit 73 according to the input from the power operation unit 71 (in this example, the power of the input signal) by referring to the distortion compensation table. Is output.
  • a vector operation unit 73 corresponding to a predistorter controls the amplitude and phase of an input signal according to a digital control signal that is a reference result of a distortion compensation table.
  • the input signal pre-distorted by the vector operation unit 73 in this manner is converted from a digital signal to an analog signal by the D / A converter 74, and the radio frequency (RF) is converted by the up-converter 75.
  • the frequency-converted signal is converted into a signal of the same frequency, and unnecessary signals outside the required frequency band are removed from the signal after the frequency conversion by a band-pass filter (BPF) 76.
  • BPF band-pass filter
  • the signal power S pre-distorted by the predistortion method is amplified by the amplification unit 77 in the beta calculation unit 73 as described above.
  • the output signal (amplified signal) from the amplification unit 77 becomes a signal without distortion when ideal distortion compensation is performed.
  • a part of the output signal from the amplifier 77 is obtained by the directional coupler 78.
  • the part of the signal is frequency-converted to a lower frequency by the down-converter 79, and unnecessary signals outside the necessary frequency band are removed from the frequency-converted signal by a low-pass filter (LPF) 80. Is done.
  • the signal from which unnecessary signals outside the band have been removed by the LPF 80 is converted to the AZD converter 8 1 Is converted from an analog signal to a digital signal.
  • the quadrature demodulation unit 82 performs quadrature demodulation based on the digital signal, and the result of the quadrature demodulation is input to the adaptive table control unit 83 as a feedback signal.
  • the adaptive table control unit 83 receives the input signal and the feed pack signal from the quadrature demodulation unit 82 and stores it in the memory 72 so that the error between the input signal and the feedback signal is reduced.
  • the contents of the distortion compensation table thus updated are updated, and the distortion compensation table is adaptively controlled. As a result, the distortion component remaining in the output signal from the amplifier 77 is reduced.
  • FIG. 15 shows an example of the characteristics of the output from the DZA converter.
  • the spectrum of the signal output from the D / A converter when the signal whose frequency bandwidth is W [Hz] is input to the DZA converter and the sampling frequency is fs [Hz] is shown.
  • An example of a torque is shown.
  • the horizontal axis of the graph shown in the figure represents the frequency [H z], and the vertical axis represents the intensity of the spectrum.
  • n represents an arbitrary integer of 1 or more.
  • sampling theorem is satisfied by the condition that “sampling frequency f s ⁇ frequency bandwidth W of input signal”.
  • the input signal after predistortion is the same as the frequency band of the input signal before predistortion.
  • the required sump is wider than The ring frequency becomes very high, and the required click frequency becomes very high.
  • the frequency band of the input signal after predistortion is at least three times the frequency band of the input signal before predistortion, so the required sampling frequency is also tripled. That is all.
  • the frequency band of the input signal after predistortion is at least five times the frequency band of the input signal before predistortion. More than double.
  • FIG. 16 (a) shows an example of a spectrum of a control signal output from the D / A converters 54 and 56 when a relatively low sampling frequency fsi [Hz] is used. .
  • FIG. 16 (b) shows an example of a control signal pattern output from the D / A converters 54 and 56 when a relatively high sampling frequency fs 2 [Hz] is used. It is. Where f s i and f s 2.
  • the horizontal axis of the graphs shown in FIGS. 7A and 7B indicates frequency [Hz], and the vertical axis indicates the intensity of the spectrum.
  • FIGS. 3A and 3B the spectrum of the control signal (shown by the solid line) having a center frequency of 0 [Hz] and the center frequency of fs 1 [Hz] and fs 2 [Hz] are shown.
  • the spectrum of the image signal (shown by the dotted line) is shown.
  • the sampling frequency fs1 is smaller than the sufficient value. If it is low, the control signals output from the D / A converters 54 and 56 and the image signal overlap, which is not preferable. For this reason, it is necessary to use a very high sampling frequency fs 2 as shown in FIG.
  • Fig. 17 (a) shows an example of the spectrum of the input signal after predistortion output from the DZA converter 74 when a relatively low sampling frequency fsi [Hz] is used. is there.
  • FIG. 17 (b) shows an example of the spectrum of the input signal after predistortion output from the DZA converter 74 when a relatively high sampling frequency fs 2 [Hz] is used. Is shown. Here, fs1 and fs2.
  • the horizontal axis of the graphs shown in FIGS. 7A and 7B indicates the frequency [Hz], and the vertical axis indicates the intensity of the spectrum.
  • the sampling frequency fs1 is smaller than the sufficient value. If it is low, the input signal after pre-distortion output from the D / A converter 74 and the image signal overlap, which is not preferable. For this reason, it is necessary to use a very high sampling frequency fs 2 as shown in FIG.
  • the clock frequency of the other digital parts also needs to be very high. Higher clock frequencies make devices more expensive, technically more difficult, or impossible to implement.
  • FIG. 1 shows a first embodiment according to the present invention.
  • This example shows a case where the distortion compensator according to the present invention is applied to an amplifier having a distortion compensation function (a transmission power amplifier with an adaptive pre-distorter) as shown in FIG.
  • a distortion compensation function a transmission power amplifier with an adaptive pre-distorter
  • the frequency (clock frequency) of the clock signal required for the digital system is reduced, for example, as compared with the conventional system.
  • FIG. 1 shows a configuration example of the amplifying device of the present example.
  • the amplifying device of this example includes a power detector 1, an AZD converter 2, a memory 3 for storing a distortion compensation table, a D / A converter 4, a low-pass filter (LPF) 5, / A transformer 6, low-pass filter (LPF) 7, delay unit 8, variable voltage attenuator 9, variable voltage phase shifter 10, fixed predistorter 11, amplifier 12 A directional coupler 13, a transmitter 14, a mixer 15, a band-pass filter (BPF) 16, an AZD converter 17, and an adaptive table controller 18 are provided.
  • LPF low-pass filter
  • LPF low-pass filter
  • LPF low-pass filter
  • the configuration and operation of the amplifying apparatus of this example are the same as those of the above-described first to third embodiments except that the clock frequency required for the digital system is reduced by using the fixed predistorter 11, for example. This is the same as the configuration and operation of the amplification device shown in the figure.
  • the signals input from the preceding processing unit (not shown) to the amplifying device of this example are two signals.
  • the first distribution signal is input to the power detection unit 1 and the second distribution signal is input to the delay unit 8.
  • the power detection unit 1 detects the power of a radio frequency (RF) signal to be transmitted, which is input from a processing unit (not shown) at the preceding stage, and outputs the detection result to the A / D converter 2 I do.
  • RF radio frequency
  • the AZD converter 2 converts the detection result of the power input from the power detection unit 1 from an analog signal to a digital signal and outputs the signal to the memory 3.
  • the memory 3 outputs a result obtained by referring to the distortion compensation table to the DZA converters 4 and 6 using the digital signal input from the AZD converter 2 as an index based on the contents of the stored distortion compensation table.
  • the distortion compensation table stores the value of the digital signal representing the detection result of the power, the control value to the voltage variable attenuator 9 and the control value to the voltage variable phase shifter 10 in association with each other. are doing.
  • the memory 3 outputs the control value (digital control signal) to the voltage variable attenuator 9 corresponding to the value of the digital signal input from the AZD converter 2 to the DZA converter 4 with reference to the distortion compensation table.
  • the control value (digital control signal) to the voltage variable phase shifter 10 corresponding to the value of the digital signal input from the A / D converter 2 is output to the DZA converter 6.
  • the DZA converter 4 converts the digital control signal input from the memory 3 into an analog control signal and outputs the analog control signal to the LPF 5.
  • the LPF 5 filters the analog control signal input from the D / A converter 4 and outputs the filtered signal to the control terminal of the voltage variable attenuator 9.
  • the D / A converter 6 converts the digital control signal input from the memory 3 into an analog control signal and outputs the analog control signal to the LPF 7.
  • the LPF 7 filters the analog control signal input from the D / A converter 6 and outputs the filtered signal to the control terminal of the voltage variable phase shifter 10.
  • the delay unit 8 is configured to transmit a radio signal to be transmitted from a preceding processing unit (not shown).
  • the signal of the frequency (RF) is delayed so as to match the timing at which the control signal based on the input signal is input to the variable voltage attenuator 9 and the variable voltage phase shifter 10 and output to the variable voltage attenuator 9 I do.
  • the delay unit 8 converts the input radio frequency (RF) signal into a control signal based on the input signal by the DZA converter 4 and converts it into an analog signal by the same time. Delay.
  • variable voltage attenuator 9 controls the amplitude of the delayed input signal input from the delay unit 8 with the amount of attenuation according to the analog control signal input from the LPF 5, and converts the controlled signal to a voltage. Output to variable phase shifter 10.
  • variable voltage attenuator 9 it is also possible to use, for example, a variable voltage amplifier that controls the amplitude of the signal with an amplification amount according to the analog control signal.
  • variable voltage phase shifter 10 controls the phase of the signal input from the variable voltage attenuator 9 with the amount of phase change in accordance with the analog control signal input from the LPF 7, and converts the signal after the control. Output to fixed predistorter 1 1
  • variable voltage phase shifter 10 is provided at the subsequent stage of the variable voltage attenuator 9 .
  • an order reverse to that of the present example may be used as the order of these arrangements.
  • the fixed predistorter 11 is configured using, for example, a non-linear element.
  • the fixed predistorter 11 generates a distortion for a signal input from the voltage variable phase shifter 10 and amplifies the signal having the distortion to an amplifying unit 1. Output to 2.
  • the fixed predistorter 11 generates a distortion in the input signal according to the level of the signal.
  • the adaptive predistortion using the variable voltage attenuator 9 and the variable voltage phase shifter 10 and the fixed predistortion using the fixed predistorter 11 (non-adaptive ), Distortion compensation is performed by the pre-distortion method.
  • the amplification unit 12 amplifies the signal input from the fixed predistorter 11 and The amplified signal is output to, for example, a subsequent antenna (not shown).
  • the signal is distorted in the amplifier 12.
  • the signal is distorted by the amplitude distortion generated by the variable voltage attenuator 9 and the phase distortion generated by the variable voltage phase shifter 10. Also, it is reduced by the amplitude distortion and the phase distortion generated by the fixed predistorter 11.
  • the directional coupler 13 extracts a part of the amplified signal output from the amplifier 12 and outputs the extracted signal to the mixer 15.
  • the oscillator 14 oscillates a signal having a frequency controlled by the adaptive table controller 18 and outputs the signal to the mixer 15.
  • the mixer 15 mixes the amplified signal input from the directional coupler 13 and the signal input from the oscillator 14 to convert the frequency of the amplified signal, and the amplified signal after the frequency conversion. Is output to BPF 16.
  • the BPF 16 limits the band of the signal input from the mixer 15 and outputs the signal after the band limitation to the A / D converter 17.
  • the AZD converter 17 converts the signal input from the BP 16 from an analog signal to a digital signal, and outputs the signal to the adaptive table controller 18.
  • the adaptive table controller 18 updates the contents of the distortion compensation table stored in the memory 3 based on the digital signal input from the A / D converter 17 and causes the oscillator 14 to oscillate. Controls the frequency of the signal.
  • the distortion component included in the amplified signal is extracted by the BPF 16 and the content of the distortion compensation template is updated by the adaptive table control unit 18 so that the level of the distortion component is reduced. Control is being performed, and the characteristics of the pass band of the BPF 16 and the frequency of the signal oscillated by the transmitter 14 are set or controlled so that such control is appropriately performed.
  • the distortion compensation table generally has a table relating to amplitude and a table relating to phase, here, for simplicity of description, description will be made focusing on only the table relating to amplitude.
  • the table for the phase is the same as the table for the amplitude.
  • Figure 9 shows the characteristics of the ideal distortion compensation table of the adaptive predistorter using the variable voltage attenuator 9 and the variable voltage phase shifter 10 when the fixed predistorter 11 is not provided.
  • An example is shown.
  • the horizontal axis of the graph shown in the figure represents the power, and the vertical axis represents the voltage of the control signal (control voltage).
  • FIG. 10 shows an example of distortion compensation characteristics by the fixed predistorter 11 when the fixed predistorter 11 is provided, and the voltage variable attenuator 9 and the variable voltage phase shifter 10.
  • 3 shows an example of characteristics of an ideal distortion compensation table of an adaptive predistorter using the above.
  • the horizontal axis of the graph shown in the figure represents power, and the vertical axis represents the voltage (control voltage) of the control signal.
  • FIG. 11 (a) shows that when the fixed predistorter 11 is not provided, when the distortion compensation table of the memory 3 has the ideal characteristic shown in FIG.
  • FIG. 11 (b) shows that when the fixed predistorter 11 is provided, the distortion compensation table of the memory 3 has an ideal adaptive predistortion (adaptive predistortion) shown in FIG. PD), the DZA converter 4 (or D / A An example of the spectrum of the control signal output from the converter 6) is shown.
  • the horizontal axis of the graphs shown in FIGS. 11 (a) and (b) indicates the frequency [Hz], and the vertical axis indicates the spectrum intensity.
  • the control signal output from the DZA converter 4 and the image signal may overlap. Even if the sampling frequency fs is low, the provision of the fixed predistorter 11 makes it possible to make the frequency bandwidth of the control signal output from the DZA converter 4 relatively small (narrow). It is possible to prevent the control signal and the image signal from overlapping.
  • the sampling frequency fs is lower than in the case without the fixed predistorter, for example, as shown in Fig. 13 above. This makes it possible to lower the digital frequency of the digital system such as the DZA converters 4 and 6.
  • the fixed predistorter 11 an analog device is used as the fixed predistorter 11, and therefore has no relation to the sampling rate (sampling frequency).
  • the use of such a fixed predistorter 11 attenuates the spectral intensity of the distortion component generated by the adaptive predistorter, thereby reducing the sampling frequency fs and the clock frequency. are doing.
  • the distortion compensation table generally has a table relating to the amplitude and a table relating to the phase.
  • the following description focuses on only the table relating to the amplitude.
  • the table relating to the phase is the same as the table relating to the amplitude.
  • FIG. 2 shows a characteristic example (a) of the distortion compensation table according to the comparative example and a characteristic example (b) of the distortion compensation table stored in the memory 3 of the present example.
  • the horizontal axis of the graph shown in the figure represents power, and the vertical axis represents the voltage of the control signal (control voltage).
  • An example of the spectrum (a) is shown, and an example of the spectrum of the control voltage from the DZA converter 4 (or the same applies to the D / A converter 6) of the present example (b) Is shown.
  • the horizontal axis of the graph shown in the figure represents the frequency [MHz], and the vertical axis represents the spectrum intensity (level) [dB].
  • the direct current (DC) component has the same spectral intensity, and the other frequency components have the same spectral intensity.
  • the spectrum intensity is about 10 [dB] lower than in comparative example (a). This is because the characteristics of the distortion compensation table of this example are closer to a straight line than the characteristics of the distortion compensation table according to the comparative example.
  • components required for distortion compensation are included even at 15 [MHz] or higher, but in this example (b), attenuation is sufficient.
  • FIG. 4 shows the control from the D / A converter 54 (or the same applies to the zero converter 56) according to the comparative example when the sampling frequency fs is set to about 40 [MHz].
  • An example of the voltage spectrum (a) is shown and this example
  • An example (b) of the spectrum of the control voltage from the D / A converter 4 (or the same for the DZA converter 6) is shown.
  • the horizontal axis of the graph shown in the figure represents frequency [MHz]
  • the vertical axis represents spectrum intensity (level) [dB].
  • the spectrum intensity is attenuated to about 140 [dB] at about 20 [MHz] where the spectrum of the control signal and the image signal overlaps.
  • the signal component required for distortion compensation is as large as about 1.25 [dB], and is affected by the image signal.
  • Fig. 5 shows the control voltage of the DZA converter 54 (or the same for the 0 converter 56) when the sampling frequency fs is set to about 40 [M Hz] in the comparative example.
  • An example (a) of the spectrum is shown, and from the D / A converter 54 (or the same applies to the D / A converter 56) when the sampling frequency fs is set to about 60 [MHz].
  • An example (b) of the spectrum of the control voltage is shown.
  • the horizontal axis of the graph shown in the figure represents the frequency [MHz], and the vertical axis represents the spectrum intensity (level) [dB].
  • the difference in spectrum due to the difference in sampling frequency can be confirmed.
  • f s about 40 [MHz]
  • the amplifying apparatus of the present example includes the adaptive predistorter including the variable voltage attenuator 9, the variable voltage phase shifter 10, the DZA converters 4, 6, and the like, and the wideband signal. Another predistorter was provided to reduce the effects.
  • an adaptive control distorter such as the adaptive predistorter may be used, but in this example, distortion is compensated in advance.
  • (Fixed pre-distorter 11 1) in which distortion information is set.
  • the input / output characteristics of the fixed predistorter 11 were adjusted and set so that the distortion generated in the amplifier constituting the amplifying unit 12 was compensated. Then, the fixed predistorter 11 compensates for the distortion generated in the amplifying unit 12 by a predistortion method. As a result, for example, compared to the conventional case, the fixed predistorter 11 stores the distortion compensation table of the memory 3 in the adaptive predistorter. Nonlinearity is reduced, and the spectrum intensity of the output (control signal) from D / A converters 4 and 6 on the high frequency side and low frequency side is reduced.
  • the distortion is broadly compensated by the fixed predistorter 11 composed of analog depises, thereby reducing the influence of the distortion component spreading over a wide band and reducing the influence of the wideband signal.
  • an adaptive pre-distorter with digital processing will perform accurate distortion compensation in response to environmental changes such as temperature and aging.
  • the load is distributed by using the fixed predistorter 11, and the spectrum intensity of the control signal in the adaptive predistorter is reduced, so that the digital sampling rate ( Sampling frequency), and the clock frequency in the adaptive predistorter can be reduced.
  • the amplifying apparatus of this example it is not always necessary to use a high-speed device as compared with the conventional example, and the circuit configuration can be easily implemented technically and can be implemented at low cost. Further, in the amplifying device of this example, for example, the convergence speed of the distortion compensation by the adaptive predistorter that updates the contents of the distortion compensation table can be increased as compared with the conventional case. Further, in the amplifying device of this example, for example, the pass frequency band of the LPFs 5 and 7 through which the control signal passes can be narrowed as necessary. This Thus, the amplifying device of this example is very effective.
  • the fixed predistorter 11 is provided between the voltage variable phase shifter 10 and the amplifying unit 12, but the position where the fixed predistorter 11 is provided is, for example, an analog port.
  • the same effect can be obtained even if an arbitrary position is used as long as the signal is a position where the signal in the preceding stage of the amplification section 12 is processed in the green area, and a pre-distortion method is applied to the input signal to the amplification section 12. Provided that the distortion compensation characteristic is given.
  • the fixed predistorter 11 is, for example, a position before the input signal is branched to the power detection unit 1 side and the delay unit 8 side (the position of “a” in FIG. 1), After the input signal is split into the power detection unit 1 and the delay unit 8 and before the delay unit 8 (the position "b” in Fig. 1), the delay unit 8 and the voltage The position between the variable attenuator 9 (the position “c” in FIG. 1) and the position between the variable voltage attenuator 9 and the variable phase shifter 10 (“d” in FIG. 1) It is also possible to prepare for
  • variable voltage attenuator 9 and the variable voltage phase shifter 10 have the distortion compensation characteristic of the fixed predistorter 11.
  • variable voltage attenuator 9 instead of the variable voltage attenuator 9, it is also possible to use a variable voltage amplifier or the like.
  • the adaptive predistorter is not limited to the one in this example, and various types may be used.
  • the amplifier of the amplifying unit 12 is subjected to distortion compensation, and a radio frequency analog signal is used as a signal to be amplified by the amplifying unit 12.
  • the function of the fixed predistorter 11 constitutes first distortion generating means
  • the function of the adaptive predistorter constitutes second distortion generating means.
  • the signal level detecting means is constituted by the function of the power detecting section 1
  • the signal level distortion generating mode correspondence storage means and the digital control signal output are provided by the function of the memory 3 for storing the distortion compensation table.
  • Control signal is constituted by the functions of the D / A converters 4 and 6.
  • the D / A converter is constituted by the function of the variable voltage attenuator 9 and the function of the variable voltage phase shifter 10. Phase distortion generating means is configured.
  • the function of the directional coupler 13 constitutes a part of the amplified signal
  • the function of the oscillator 14 and the function of the mixer 15 constitute the signal frequency lowering means.
  • the function of the BPF 16 constitutes the distortion component extraction means
  • the function of the AZD converter 17 constitutes the distortion component A / D conversion means
  • the function of the adaptive table controller 18 This constitutes a signal level distortion generation mode correspondence content changing unit.
  • the adaptive predistorter provided in the amplifying device of the present example includes, for example, a distortion generation mode control unit that controls a distortion generation mode based on an input signal, and a distortion generation execution unit that generates a distortion according to the control.
  • a distortion generation control execution unit that generates distortion in a distortion generation mode based on an input signal.
  • FIG. 2 shows a second embodiment according to the present invention.
  • This example shows a case where the distortion compensator according to the present invention is applied to an amplifier having a distortion compensation function (a transmission power amplifier with an adaptive predistorter) as shown in FIG.
  • a distortion compensation function a transmission power amplifier with an adaptive predistorter
  • FIG. 6 shows a configuration example of the amplification device of the present example.
  • the amplifying device of this example includes a power operation unit 21, a memory 22 for storing a distortion compensation table, a vector operation unit 23, a D / A converter 24, an up converter 25, Bandpass filter (BPF) 26, fixed predistorter 27, amplifier 28, directional coupler 29, downconverter 30, low-pass filter (LPF) 31, and A A / D converter 32, a quadrature demodulation unit 33, and an adaptive table control unit 34 are provided.
  • BPF Bandpass filter
  • LPF low-pass filter
  • the configuration and operation of the amplifying apparatus of the present example are the same as those of the above-described first to fourth embodiments except that the clock frequency required for the digital system is reduced by using a fixed predistorter 27, for example. This is the same as the configuration and operation of the amplification device shown in the figure.
  • the signal input from the preceding processing unit (not shown) to the amplifying device of this example is divided into three signals, the first distribution signal is input to the power calculation unit 21, and the second distribution signal is distributed.
  • the signal is input to the vector operation unit 23, and the third distribution signal is input to the adaptive table control unit 34.
  • the power calculation unit 21 detects the power of the I component and Q component signals to be transmitted input from the preceding processing unit (not shown), and outputs the detection result to the memory 22.
  • the input signal is assumed to be modulated by the quadrature modulation method before being input.
  • the signal between the vector operation unit 23 and the DZA converter 24 is used. It is also possible to provide a configuration in which a quadrature modulation means is provided in the amplifying device at a position such as a position, and a signal that is not quadrature-modulated is input and the signal is quadrature-modulated by the quadrature modulation means.
  • the memory 22 uses the digital signal input from the power calculator 21 as an index based on the contents of the stored distortion compensation table, and uses the result obtained by referring to the distortion compensation table as a vector calculator 2 3 Output to Specifically, the distortion compensation table stores the value of the digital signal representing the detection result of the power and the control value for the beta calculator 23 in association with each other. Then, the memory 22 refers to the distortion compensation table, A control value (digital control signal) corresponding to the value of the digital signal input from the arithmetic unit 21 is output to the vector arithmetic unit 23.
  • the vector operation unit 23 calculates the amplitude change amount and the phase change amount according to the digital control signal input from the memory 22, and outputs the I component to be transmitted, It controls the amplitude and phase of the Q component signal and outputs the signal after the control to the D / A converter 24.
  • the DZA converter 24 converts the signal input from the beta operation unit 23 from a digital signal to an analog signal, and outputs the signal to the up-converter 25.
  • the up-converter 25 converts the frequency of the signal input from the D / A converter 24 into a radio frequency (R F), and outputs the frequency-converted signal to the BP 26.
  • the BPF 26 limits the band of the signal input from the up-converter 25, and outputs the signal after the band limitation to the fixed predistorter 27.
  • the fixed predistorter 27 is configured by using, for example, a non-linear element, and generates distortion for a signal input from the electric BPF 26, and amplifies the signal generated by the distortion to an amplifier 28. Output to The fixed predistorter 27 generates a distortion in the input signal according to the level of the signal.
  • both adaptive predistortion using the beta operation unit 23 and fixed predistortion (non-adaptive predistortion) using the fixed predistorter 27 provide: Performs distortion compensation using the pre-distortion method.
  • the amplifying unit 28 amplifies the signal input from the fixed predistorter 27 and outputs the amplified signal to, for example, a subsequent antenna (not shown).
  • the signal is distorted in the amplifying unit 28, and in this example, the distortion is the amplitude distortion or the phase distortion generated by the beta operation unit 23, or the fixed predistorter 27. It is reduced by the amplitude distortion and the phase distortion generated by.
  • Directional coupler 29 extracts a part of the amplified signal output from amplifying section 28, and outputs the extracted signal to down converter 30.
  • Downconverter 30 converts the frequency of the amplified signal input from directional coupler 29 to a lower frequency, and outputs the amplified signal after the frequency conversion to LPF 31.
  • LPF 31 limits the band of the signal input from down converter 30 and outputs the signal after the band limitation to A / D converter 32.
  • the AZD converter 32 converts the signal input from the LPF 31 from an analog signal to a digital signal and outputs the signal to the quadrature demodulation unit 33.
  • the orthogonal demodulation unit 33 orthogonally demodulates the signal input from the A / D converter 32, and outputs a digital signal corresponding to the orthogonal demodulation result to the adaptive table control unit 34.
  • the adaptive table control unit 34 includes a signal of an I component and a Q component to be transmitted input from a preceding processing unit (not shown) and a signal of a quadrature demodulation result input from the quadrature demodulation unit 33. (I-component and Q-component signals), the content of the distortion compensation table stored in the memory 22 is updated.
  • the signal component corresponding to the input signal is extracted by the LPF 31 and the distortion is adjusted by the adaptive table control unit 34 so that the error between the extracted signal component and the original input signal is reduced.
  • Control for updating the contents of the compensation table is performed, and the characteristics of the frequency conversion by the downconverter 30 and the characteristics of the pass band of the LPF 31 are set or adjusted so that such control is appropriately performed. Controlled.
  • the distortion compensation table generally comprises a table relating to the amplitude of the tape and a table relating to the phase. It is assumed that the configuration is made using the polar coordinate expression equivalent to R22, and only the table relating to the amplitude will be described.
  • the phase table is the same as the amplitude table.
  • Figure 9 above shows an example of the characteristics of the ideal distortion compensation table of an adaptive predistorter using the vector operation unit 23 when the fixed predistorter 27 is not provided. It is.
  • the horizontal axis of the graph shown in the figure represents the power, and the vertical axis represents the control signal value (amplitude control value) related to the amplitude.
  • FIG. 10 shows an example of the characteristic of the distortion compensation by the fixed predistorter 27 when the fixed predistorter 27 is provided, and the adaptive predistorter using the betatle operation unit 23.
  • An example of characteristics of an ideal distortion compensation table is shown.
  • the horizontal axis of the graph shown in the figure represents power, and the vertical axis represents a control signal value (amplitude control value) related to amplitude.
  • Fig. 10 the combination of the characteristics of the fixed predistortion (fixed PD) and the characteristics of the adaptive predistortion (adaptive PD) is shown in Fig. 9 above. Ideally and preferably, it matches the characteristics of an ideal pre-distortion (ideal PD).
  • FIG. 12 (a) shows that, when the fixed predistorter 27 is not provided, when the distortion compensation table of the memory 22 has the ideal characteristic shown in FIG. An example of the spectrum of a signal output from the D / A converter 24 is shown.
  • FIG. 12 (b) shows the case where the fixed predistorter 27 is provided and the distortion compensation table of the memory 22 is the ideal adaptive predistortion (adaptive adaptive distortion) shown in FIG. 10 shows an example of a spectrum of a signal output from the 0 / converter 24 when it has a characteristic of (PD).
  • PD characteristic of
  • the horizontal axis of the graphs shown in Fig. 12 (a) and (b) indicates the frequency [Hz].
  • the vertical axis indicates the intensity of the spectrum.
  • the sampling frequency fs is lower than in the case without the fixed predistorter as shown in Fig. 14, for example. This makes it possible to lower the digital frequency of the digital system such as the DZA converter 24.
  • the fixed predistorter 27 has no relation to the sampling rate (sampling frequency).
  • the spectrum intensity of the distortion component generated by the adaptive predistorter is attenuated, thereby reducing the sampling frequency fs and the clock frequency. Has been realized.
  • the distortion compensation table generally comprises a table relating to the amplitude and a table relating to the phase, but here, for simplicity of description, it is assumed that the distortion compensation table is configured using a polar coordinate equivalent to the memory 22.
  • the explanation focuses only on the amplitude related tables.
  • the table for the phase is the same as the table for the amplitude.
  • FIG. 2 shows a characteristic example (a) of the distortion compensation table according to the comparative example and a characteristic example (b) of the distortion compensation table stored in the memory 22 of the present example.
  • the horizontal axis of the graph shown in Fig. 7 shows the power, and the vertical axis shows the value of the control signal related to the amplitude (amplitude; control value).
  • FIG. 7 shows an example (a) of a spectrum of a signal from the D / A converter 74 according to the comparative example when processing a two-carrier signal modulated by the CDMA method.
  • An example (b) of a spectrum of a signal from the D / A converter 24 of the present example is shown.
  • the horizontal axis of the graph shown in the figure indicates frequency [MHz], and the vertical axis indicates spectrum intensity (level) [dB].
  • the spectrum intensity of the distortion component generated by the adaptive predistorter is attenuated as compared with the comparative example (a).
  • the accuracy of distortion compensation is determined by the characteristics required for the device, such as adjacent channel leakage power (ACP), and the output from the D / A converter 24 is thereby determined.
  • the required accuracy eg, power to carrier [dB c] is determined.
  • the comparative example (a) requires a frequency band of about 90 [MHz], and the DZA converter 74 A clock frequency of about 180 [MHz], which is twice that of the above, is required, but in this example (b), only a frequency band of about 60 [MHz] is required, and the clock frequency of the DZA converter 24 is You need about 120 [MHz], twice that. It is.
  • the intermediate frequency (IF) can be lowered, and the band of the filter (for example, BPF26) can be narrowed.
  • the clock frequency of the DZA converter 24 and other digital processing systems can be reduced, and even if the clock frequency is reduced, for example, the same as in the comparative example (a) A degree of distortion compensation accuracy can be obtained.
  • the amplifying device of the present example includes the adaptive predistorter including the beta operation unit 23 and the like, and also includes the other predistorter to reduce the influence of the wideband signal.
  • an adaptive predistorter for adaptive control like the adaptive predistorter may be used, but in this example, distortion information for compensating distortion is set in advance.
  • the fixed one (fixed predistorter 27) was used.
  • an analog fixed predistorter 27 that does not perform digital processing is used.
  • the input / output characteristics of the fixed predistorter 27 were adjusted and set so that the distortion generated in the amplifier constituting the amplifying unit 28 was compensated.
  • the fixed predistorter 27 compensates for the distortion generated in the amplifier 28 by a predistortion method, and as a result, for example, the distortion compensation of the memory 22 in the adaptive predistorter is performed as compared with the conventional case.
  • the non-linearity of the table is reduced, and the spectrum intensity of the output from the D / A converter 24 (the signal after adaptive predistortion) on the high frequency side and the low frequency side is reduced.
  • the predistorter 27 As described above, in the amplifying apparatus of this example, by performing coarse distortion compensation by the fixed pre-distorter 27 composed of an analog device, the influence of the distortion component spread over a wide band is reduced, and the influence of a wide band signal is reduced. With digital processing The predistorter adapts to environmental changes such as temperature and aging, and performs accurate distortion compensation. In the amplifying apparatus of this example, the load is distributed by using the fixed predistorter 27, and the spectrum intensity of the signal distorted by the adaptive predistorter is reduced. The sampling rate (sampling frequency) can be reduced, and the cut-off frequency in an adaptive predistorter can be reduced.
  • the amplifying apparatus of this example it is not always necessary to use a device having a higher speed than that of the conventional device, and the circuit configuration can be easily implemented technically and can be implemented at low cost. Further, in the amplifying device of the present example, for example, the convergence speed of distortion compensation by the adaptive predistorter that updates the contents of the distortion compensation table can be increased as compared with the related art. Further, in the amplifying device of the present example, for example, it is possible to narrow the pass frequency band of the BPF 26 through which the pre-distorted signal passes, if necessary. Thus, the amplifying device of this example is very effective.
  • the fixed predistorter 27 is provided between the BPF 26 and the amplifying unit 28, but the position where the fixed predistorter 27 is provided is, for example, an analog region and The same effect can be obtained even if an arbitrary position is used as long as it is a position that processes the signal at the previous stage of the unit 28, and the distortion signal is compensated by the pre-distortion method for the input signal to the amplifier 28. If you are given.
  • the fixed predistorter 27 includes a position between the DZA converter 24 and the upconverter 25 (the position “a” in FIG. 6) and an upconverter 25. It is also possible to provide at a position between BPF26 and BPF26 (position “b” in FIG. 6).
  • the adaptive predistorter is not limited to the one in this example, and various types may be used.
  • the amplifier of the amplifying unit 28 is subject to distortion compensation, and As a signal to be amplified by the width section 28, for example, a digital signal including an I component and a Q component of a baseband (BB) or an intermediate frequency (IF) is used.
  • BB baseband
  • IF intermediate frequency
  • the function of the fixed predistorter 27 constitutes first distortion generating means
  • the function of the adaptive predistorter constitutes second distortion generating means.
  • signal level detecting means is constituted by the function of the power calculation section 21, and signal level distortion generation mode correspondence storage means and digital control are provided by the function of the memory 22 for storing the distortion compensation table.
  • the signal output means is configured, the function of the vector operation section 23 forms the amplitude and phase distortion generation means, and the function of the DZA converter 24 forms the signal D / A conversion means.
  • the function of the comparator 25 constitutes a signal frequency conversion means.
  • the function of the directional coupler 29 constitutes a part of the amplified signal
  • the function of the down converter 30 constitutes the signal frequency lowering means.
  • the function of the A / D converter 32 constitutes the filtering signal AZD means
  • the function of the quadrature demodulation section 33 constitutes the signal filtering means.
  • the function of the adaptive table control section 34 constitutes a signal level distortion occurrence mode correspondence content changing means.
  • the adaptive predistorter provided in the amplifying apparatus of the present example includes, for example, a distortion generation mode control unit that controls the generation mode of the distortion based on the input signal, and a distortion generation mode that generates the distortion according to the control. It can be considered as being configured using an execution means, or as being configured using a distortion generation control execution means that generates distortion in a distortion generation mode based on an input signal, for example. is there.
  • FIG. 3 shows a third embodiment according to the present invention.
  • FIG. 8 shows a configuration example of the amplifying device of this example.
  • the amplification device of this example has an adaptive predistortion section (adaptive PD section) 41 for performing adaptive predistortion processing, and a fixed predistortion section (fixed PD section) for performing fixed predistortion processing 4 2 And an amplification unit 43 to be subjected to distortion compensation, and a control unit 44 for controlling the adaptive PD unit 41.
  • adaptive PD section adaptive PD section
  • fixed PD section fixed predistortion section
  • the signal input from the preceding processing unit is divided into two signals, the first distribution signal is input to the adaptive PD unit 41, and the second distribution signal is input to the control unit 44. Is forced.
  • the adaptive PD unit 41 generates distortion by an adaptive pre-distortion method for a signal input from a processing unit (not shown) in a preceding stage, and fixes the signal that caused the distortion to a fixed PD unit 4. Output to 2.
  • the fixed PD unit 42 generates distortion by a fixed predistortion method for the signal input from the adaptive PD unit 41, and outputs the signal that has caused the distortion to the amplification unit 43.
  • the amplifying unit 43 amplifies the signal input from the fixed PD unit 42 and outputs the amplified signal to, for example, a subsequent antenna (not shown).
  • the control unit 44 performs an operation by the adaptive PD unit 41 based on one or both of a signal input from a previous processing unit (not shown) and an amplified signal fed back from the amplifier unit 43.
  • the adaptive pre-distortion process is controlled.
  • the adaptive PD unit 41 and the other PD In the example, by providing the fixed PD unit 42), for example, the clock frequency required for the adaptive PD unit 41 and the like can be reduced, and the efficiency of distortion compensation can be increased.
  • the amplifier of the amplifying unit 43 is subjected to distortion compensation
  • the first distortion generating means is configured by the function of the fixed PD unit 42
  • the function of the adaptive PD unit 41 is configured by the function of the adaptive PD unit 41.
  • Second distortion generating means is configured.
  • a distortion generation mode control unit that controls the generation mode of the distortion based on the input signal is configured by the function of the control unit 44, and It is also possible to consider that the distortion generation executing means for generating the distortion according to the following is configured by the adaptive PD unit 41.
  • the device that gives analog non-linearity to the input to the amplifier has been described as a “fixed predistorter”.
  • the device is described as a “linearizer” or another name. Even if it is performed, similar devices are included in the present invention.
  • the configurations of the distortion compensating device, the amplifying device, the communication device, and the like according to the present invention are not necessarily limited to those described above, and various configurations may be used.
  • the present invention can be provided as, for example, a method or a method for executing the processing according to the present invention, or a program for realizing such a method or method.
  • the application field of the present invention is not necessarily limited to the above-mentioned fields, and the present invention can be applied to various fields.
  • a processor is stored in a ROM (Read Only Memory) in a hardware resource including a processor and a memory.
  • a configuration controlled by executing the control program may be used.
  • each functional unit for executing the process may be configured as an independent hardware circuit. Oh good.
  • the present invention can be understood as a computer-readable recording medium such as a floppy (registered trademark) CD (Compact Disc) -ROM storing the above-described control program, or the program itself.
  • a computer-readable recording medium such as a floppy (registered trademark) CD (Compact Disc) -ROM storing the above-described control program, or the program itself.
  • the processing according to the present invention can be performed.
  • Industrial Applicability As described above, according to the distortion compensator according to the present invention, for example, the first distortion generating unit composed of an analog device applies an amplifier to a signal to be amplified by the amplifier.
  • a second distortion generator including, for example, a digital device is amplified by an amplifier at a stage before and after the first distortion S generator.
  • the distortion generated by the amplifier for the target signal cannot be reduced by the distortion generated by the first distortion generator.
  • the distortion generated by the amplifier that amplifies the signal is generated by generating distortion to reduce the components.
  • By compensating it is possible to improve the efficiency of distortion compensation. Specifically, for example, the sampling frequency required for digital devices is reduced compared to the conventional one, It is possible to realize the current is easy and inexpensive implementation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

信号を増幅する増幅器12で発生する歪を補償する歪補償装置で、歪補償の効率化を図る。例えば、増幅器12により増幅される対象となる信号に対して増幅器12で発生する歪を低減するための歪を発生させる第1の歪発生手段をアナログの固定プリディストータ11により構成し、増幅器12により増幅される対象となる信号に基づいて当該信号に対して増幅器12で発生する歪について第1の歪発生手段により発生させられる歪により低減させられる成分以外の成分を低減するための歪を発生させる第2の歪発生手段を電圧可変減衰器9や電圧可変移相器10やデジタルのD/A変換器4、6などを用いて構成し、デジタル系のクロック周波数を低下させることを実現する。

Description

技術分野 本発明は、 信号を増幅する増幅器で発生する歪を補償する歪補償装置に関し、 特に、第 1の歪発生手段と第 2の歪発生手段を備えて、歪補償の効率化を図る歪補 償装置に関する。
明 田
背景技術 例えば、 W— C DMA (Wide-band Code Division Multiple Access:広帯 域符号分割多元接続)方式を移動通信方式として採用する移動通信システムに備え られた基地局装置(C DMA基地局装置)では、物理的に遠く離れた移動局装置(C DMA移動局装置) の所まで無線信号を到達させる必要があるため、送信対象とな る信号を増幅器 (アンプ) で大幅に増幅して送信出力することが必要となる。 しかしながら、増幅器はアナログデバイスであるため、その入出力特 I"生は非 線形な関数となる。 特に、飽和点と呼ばれる増幅限界以降では、増幅器に入力され る電力が増大しても出力電力がほぼ一定となる。そして、 この非線形な出力によつ て非線形歪が発生させられる。 例えば、増幅前の送信信号では希望信号帯域外の信号成分が帯域制限フィル タによつて低レベルに抑えられられる力 増幅器通過後の信号では非線形歪が発生 して希望信号帯域外 (隣接チャネル) へ信号成分が漏洩する。 特に、 基地局装置で は上記したように送信電力が高いため、このような隣接チャネルへの漏洩電力の大 きさは厳しく規定されており、 こうしたことから、 このような隣接チャネル漏洩電 力 (A C P : Adjacent Channel leak Power) をいかにして削減するかが大きな問 題となっている。 上記のような隣接チャネル漏洩電力を削減するものとして、基地局装置には、 適応プリディストーション (A P D: Adaptive PreDistortion) の技術を用いて歪 補償を行う機能が付された送信電力増幅部(適応プリディストータ付き送信電力増 幅部) が備えられる。適応プリディストーションについては、高効率な増幅器を実 現するための歪補償方式として、種々な検討が為されている (例えば、特許文献 1 参照)。
特許文献 1
特開 2 0 0 2— 7 6 7 8 5号公報
しかしながら、上記従来例で述べたような適応プリディストータ付き送信電 力増幅部では、プリディストーション方式により予め歪が与えられる信号を扱うと ころ、 このような歪を含む信号は広帯域の信号となってしまうため、 DZA変換器 や A/ D変換器などのデジタル系のクロック信号の周波数(クロック周波数) を非 常に速くしなければならないといつた不具合があつた。
本発明は、上記のような従来の事情に鑑み為されたもので、信号を増幅する 増幅器で発生する歪を補償することに関して、効率化を図ることができる歪補償装 置を提供することを目的とする。
具体的には、本発明は、例えば、信号を増幅する増幅器で発生する歪を補償す るに際して、従来と比べて、デジタルのデバイスのクロック周波数を低めることが 可能な歪補償装置を提供することを目的とする。 発明の開示 上記目的を達成するため、 本発明に係る歪補償装置では、 次のようにして、 信号を増幅する増幅器で発生する歪を補償する。
すなわち、第 1の歪発生手段が、増幅器により増幅される対象となる信号に対 して、 増幅器で発生する歪を低減するための歪を発生させる。 また、第 2の歪発生手段が、増幅器により増幅される対象となる信号に基づい て、 当該信号に対して、増幅器で発生する歪について第 1の歪発生手段により発生 させられる歪により低減させられる成分以外の成分を低減するための歪を発生さ せる。 '
なお、増幅器により増幅される信号に対して第 1の歪発生手段により歪を発 生させる処理と、当該信号に対して第 2の歪発生手段により歪を発生させる処理と の順序としては、 特に限定はなく、 実用上で有効な構成であれば、 例えば、 第 1の 歪発生手段の前段に第 2の歪発生手段が備えられてもよく、或いは、第 1の歪発生 手段の後段に第 2の歪発生手段が備えられてもよい。
また、本発明では、第 1の歪発生手段と第 2の歪発生手段を備える構成を示し たが、例えば、更に他の歪発生手段が 1又は複数備えられるような構成が用いられ てもよい。
従って、本発明に係る歪補償装置では、増幅器により増幅される対象となる 信号に対して第 1の歪発生手段と第 2の歪発生手段によりそれぞれ歪を発生させ て、 これらの歪の総和により増幅器で発生する歪を低減することにより、歪補償の 効率化を図ることが可能である。
具体的には、例えば、理想的な歪補償を行う場合には、従来のように 1つの 歪発生手段のみを用いる構成では当該歪発生手段により増幅器で発生する歪を打 ち消すための歪 (逆特性を有する歪) を発生させることが必要であるが、本発明の ように複数の歪発生手段を用いる構成では、それぞれの歪発生手段により発生させ る歪の総和が増幅器で発生する歪を打ち消すための歪(逆特性を有する歪) となれ ばよく、それぞれの歪発生手段により発生させる歪については種々な特性のものに 設定することが可能である。
ここで、増幅器により増幅される対象となる信号としては、種々な信号が用 いられてもよい。 また、 増幅器としては、種々なものが用いられてもよく、例えば、 1つの増巾: 器が用いられてもよく、 或いは、 複数の増幅器の組み合わせが用いられてもよい。
また、増幅器により信号を増幅するに際して当該増幅器で当該信号に発生する 歪としては、 例えば、 振幅の歪や、 位相の歪がある。
また、歪を補償する精度としては、例えば実用上で有効な程度で、種々な精 度が用いられてもよい。
また、 第 1の歪発生手段としては、種々な構成のものが用いられてもよく、例 えば、 固定的に設定された態様で歪を発生させるものや、或いは、 フィードバック 制御に基づいて歪を発生させるものなどを用いることができる。 また、例えば、増 幅器により増幅される対象となる信号に基づいて歪を発生させるような態様を用 いることができる。
なお、 固定的に設定された態様で歪を発生させるとは、例えば、非適応的なも のを表しており、 フィードバック制御に基づいて歪を発生させるとは、例えば、適 応的なものを表している。
また、 第 2の歪発生手段としては、種々な構成のものが用いられてもよく、例 えば、 フィードバック制御に基づいて歪を発生させるものを用いることもできる。
また、本発明に係る歪補償装置では、一構成例として、次のような構成とし た。
すなわち、 第 1の歪発生手段は、 アナログのデバイスを用いて構成される。 ま た、第 1の歪発生手段は、増幅器により増幅される対象となる信号に対して、 固定 的に設定された態様で歪を発生させる。
また、第 2の歪発生手段は、 クロック信号に基づいて動作を行うデジタルのデ パイスを含んで構成される。また、第 2の歪発生手段では、歪発生態様制御手段が、 増幅器により増幅される対象となる信号に基づいて、歪の発生態様を制御し、そし て、歪発生実行手段が、歪発生態様制御手段により制御される歪の発生態様で、増 幅器により増幅される対象となる信号に対して歪を発生させる。
従って、例えば、第 2の歪発生手段により発生させる歪に含まれる高次の周 波数成分が小さくなるように、第 1の歪発生手段により発生させる歪を設定するこ とにより、第 2の歪発生手段に含まれるデジタルのデバイスに必要となるサンプリ ング周波数を低くすることができ、 これにより、第 2の歪発生手段に含まれるデジ タルのデバイスに必要となるク口ック信号の周波数を低くすることができる。
この場合、例えば、増幅器で発生する歪から第 1の歪発生手段により発生さ せられる歪により低減させられる成分が除かれた成分に含まれる高次の周波数成 分が小さくなるように、第 1の歪発生手段により発生させる歪の発生態様が設定さ れる。
また、例えば、増幅器で発生する歪を可能な限りで或いは実用上で有効な程度 で補償する歪を第 1の歪発生手段により発生させるような設定を用いることも可 能である。
なお、高次の周波数成分としては、例えば、 5次歪や 7次歪やそれ以上の次 数の周波数成分が用いられる。
また、 高次の周波数成分が小さくなると、 広帯域性が低減されて、 つまり、 周 波数帯域の幅が狭くなるとみなすことができる。
ここで、第 1の歪発生手段は、例えば、 アナログのデバイスのみを用いて構 成される。
また、 アナログのデバイスとしては、 種々なものが用いられてもよい。
また、第 2の歪発生手段は、例えば、 デジタルのデバイスとアナログのデバイ スとの両方を用いて構成されてもよく、或いは、デジタルのデバイスのみを用いて 構成されてもよい。
また、デジタルのデパイスや、 アナログのデバイスとしては、種々なものが用 いられてもよい。 また、 歪の発生態様としては、 例えば、 振幅歪の発生態様や、位相歪の発生 態様や、 或いは、 振幅と位相との両方の歪の発生態様を用いることができる。
また、 歪発生実行手段としては、 種々なものが用いられてもよく、 例えば、信 号の振幅を変化させる手段や、 信号の位相を変化させる手段や、 或いは、信号の振 幅と位相との両方を変化させる手段を用いることができる。
また、本発明に係る歪ネ甫償装置では、一構成例として、 次のような構成とし た。
すなわち、第 2の歪発生手段では、信号レベル検出手段が増幅器により増幅さ れる対象となる信号のレベルを検出し、信号レベル歪発生態様対応記憶手段が信号 のレベルと歪の発生態様との対応を記憶し、 そして、歪発生制御実行手段が、信号 レベル歪発生態様対応記憶手段の記憶内容に基づいて、信号レベル検出手段により 検出される信号のレベルに対応する歪の発生態様で、増幅器により増幅される対象 となる信号に対して歪を発生させる。
また、第 2の歪発生手段では、信号レベル歪発生態様対応内容変更手段が、増 器により増幅された信号に基づいて、信号レベル歪発生態様対応記憶手段により 記憶される信号のレベルと歪の発生態様との対応の内容を変更する。
従って、第 2の歪発生手段において、信号のレベルと歪の発生態様との対応 に基づいて増幅器で発生する歪を補償するに際して、増幅器により増幅された信号 に基づいて当該対応の内容を更新することにより、フィードバック制御により歪補 償の精度を向上させることが可能である。
ここで、信号レベル検出手段により検出される信号のレベルとしては、種々 なレベルが用レヽられてもよく、 例えば、 振幅のレベルや、 電力のレベルや、 ェンべ ロープのレベルなどを用いることができる。
また、信号のレベルと歪の発生態様との対応としては、種々な内容のものが用 いられてもよい。 なお、 一般に、増幅器では、 入力される信号のレベルに応じて出 力される信号のレベルや位相が変化し得る。
また、信号レベル歪発生態様対応記憶手段としては、例えば、情報を記憶する メモリなどを用いて構成することができる。
また、本発明に係る歪補償装置では、一構成例として、次のような構成とし た。
すなわち、 当該歪補償装置には、増幅器により増幅される対象となる信号とし て、 無線周波数のアナログ信号が入力される。
また、第 2の歪発生手段では、信号レベル検出手段が増幅器により増幅される 対象となるアナログ信号のレベルを検出し、 また、 デジタル制御信号出力手段が、 信号のレベルと歪の発生態様との対応を記憶する信号レベル歪発生態様対応記憶 手段を有して、信号レベル検出手段により検出される信号のレベルに対応する歪の 発生態様を実現するためのデジタル制御信号を出力する。そして、第 2の歪発生手 段では、制御信号 DZA変換手段がデジタル制御信号出力手段により出力されるデ ジタル制御信号をアナログ制御信号へ変換し、 また、振幅位相歪発生手段が、制御 信号 DZA変換手段により得られるアナログ制御信号に基づいて、増幅器により増 幅される対象となるアナ口グ信号に対して、振幅及び位相の一方又は両方の歪を発 生させる。
また、第 1の歪発生手段では、第 2の歪発生手段を構成する振幅位相歪発生 手段により歪が発生させられたアナログ信号に対して歪を発生させ、当該歪を発生 させた当該アナログ信号を増幅器に対して出力する。
なお、 第 1の歪発生手段と増幅器とは、 例えば、 直接的に接続されてもよく、 或いは、 他の回路素子を介して間接的に接続されてもよい。
従って、例えば、第 1の歪発生手段を用いて、第 2の歪発生手段を構成する 振幅位相歪発生手段により発生させる歪を比較的に低次の周波数成分が主となる ものとすることにより、当該振幅位相歪発生手段に対する制御信号の周波数帯域幅 を比較的に狭くすることができ、 これにより、制御信号 D/A変換手段に必要なサ ンプリング周波数ゃク口ック周波数を低くすることができる。
なお、低次の周波数成分としては、 例えば、 3次歪の周波数成分が用いられ る。
また、低次の周波数成分が主となって、高次の周波数成分が小さくなると、 広 帯域性が低減されて、 つまり、 周波数帯域の幅が狭くなるとみなすことができる。
ここで、 無線周波数としては、 種々な周波数が用いられてもよレ、。
また、振幅位相歪発生手段は、 アナログ制御信号に基づいて歪を発生させ、一 例として、アナログ制御信号に含まれる高次の周波数成分により高次の歪を発生さ せ、 アナログ制御信号に含まれる低次の周波数成分により低次の歪を発生させる。
また、 振幅位相歪発生手段では、 例えば、振幅の歪を発生させてもよく、位相 の歪を発生させてもよく、或いは、振幅の歪と位相の歪との両方を発生させてもよ レ、。
また、振幅位相歪発生手段としては、種々なものが用いられてもよく、例え ば、信号の減衰量を可変に制御することが可能な減衰器 (可変減衰器) や、 信号の 増幅量を可変に制御することが可能な増幅器(可変増幅器) や、信号の位相変化量 (移相量) を可変に制御することが可能な移相器(可変移相器) などを用いること ができ、 また、例えば、 可変減衰器と可変移相器との組み合わせなどを用いること もできる。
また、本発明に係る歪補償装置では、他の構成例として、次のような構成と した。
すなわち、 当該歪補償装置には、増幅器により増幅される対象となる信号とし て、 I成分及び Q成分から成るデジタル信号が入力される。
また、第 2の歪発生手段では、信号レベル検出手段が増幅器により増幅される 対象となるデジタル信号のレベルを検出し、 また、 デジタル制御信号出力手段が、 信号のレベルと歪の発生態様との対応を記憶する信号レベル歪発生態様対応記憶 手段を有して、信号レベル検出手段により検出される信号のレベルに対応する歪の 発生態様を実現するためのデジタル制御信号を出力する。そして、第 2の歪発生手 段では、振幅位相歪発生手段が、デジタル制御信号出力手段により出力されるデジ タル制御信号に基づいて、増幅器により増幅される対象となるデジタル信号に対し て、 振幅及び位相の一方又は両方の歪を発生させる。
また、 当該歪補償装置では、信号 D A変換手段が、第 2の歪発生手段を構 成する振幅位相歪発生手段により歪が発生させられたデジタル信号をァナ口グ信 号へ変換し、 また、信号周波数変換手段が、信号 DZA変換手段により得られるァ ナログ信号の周波数を無線周波数へ変換する。
また、第 1の歪発生手段では、信号周波数変換手段により得られる無線周波 数のアナログ信号に対して歪を発生させ、当該歪を発生させた当該アナログ信号を 増幅器に対して出力する。
なお、 第 1の歪発生手段と増幅器とは、 例えば、 直接的に接続されてもよく、 或いは、 他の回路素子を介して間接的に接続されてもよい。
従って、例えば、第 1の歪発生手段を用いて、 第 2の歪発生手段により歪が 発生させられた信号を比較的に低次の周波数成分が主となるものとすることによ り、信号 DZA変換手段に対する信号の周波数帯域幅を比較的に狭くすることがで き、 これにより、信号 D/A変換手段に必要なサンプリング周波数やクロック周波 数を低くすることができる。
なお、 低次の周波数成分としては、 例えば、 3次歪の周波数成分が用いられ る。
また、低次の周波数成分が主となって、 高次の周波数成分が小さくなると、 広 帯域性が低減されて、 つまり、 周波数帯域の幅が狭くなるとみなすことができる。
ここで、 I成分及び Q成分から成るデジタル信号としては、例えば、ベース パンド (B B : Base Band) の信号が用いられる。
また、 振幅位相歪発生手段では、 例えば、 振幅の歪を発生させてもよく、位相 の歪を発生させてもよく、或いは、振幅の歪と位相の歪との両方を発生させてもよ い。
また、振幅位相歪発生手段としては、種々なものが用いられてもよく、例えば、
I成分及び Q成分から成るデジタル信号に対して振幅の歪や位相の歪を与えるベ クトル演算器などを用いることができる。
以下で、 更に、 本発明に係る構成例を示す。
本発明に係る歪補償装置では、一構成例として、増幅信号一部取得手段が増幅 器により増幅された信号の一部を取得し、歪成分抽出手段が増幅信号一部取得手段 により取得される信号に含まれる歪成分を抽出し、そして、信号レベル歪発生態様 対応内容変更手段が、歪成分抽出手段により抽出される歪成分が小さくなるように、 信号レベル歪発生態様対応記憶手段により記憶される信号のレベルと歪の発生態 様との対応の内容を変更する。
更に、一構成例として、信号周波数低下手段が増幅信号一部取得手段により 取得される信号の周波数を低下させ、歪成分抽出手段は信号周波数低下手段により 周波数が低下させられた信号に含まれる歪成分を抽出し、歪成分 A/D変換手段が 歪成分抽出手段により抽出される歪成分をアナログ信号からデジタル信号へ変換 し、 そして、信号レベル歪発生態様対応内容変更手段は、歪成分 A/D変換手段に より得られる歪成分のデジタル信号に基づいて、信号レベル歪発生態様対応記憶手 段により記憶される信号のレベルと歪の発生態様との対応の内容を変更する。 . ここで、 増幅信号一部取得手段としては、 種々なものが用いられてもよく、 例えば、 結合器を用いることができる。
また、 歪成分抽出手段としては、 種々なものが用いられてもよく、 例えば、増 幅器で発生する歪の成分に対応する周波数の信号成分を抽出するフィルタを用い ることができる。
また、信号レベル歪発生態様対応内容変更手段では、抽出される歪成分が小 さくなるように制御する態様の一例として、抽出される歪成分が最小となるように 制御する態様が用いられるのが好ましい。
また、信号周波数低下手段では、例えば、信号の周波数を無線周波数から中間 周波数 (I F : Intermediate Frequency) やベースバンド周波数へ低下させるよう な態様を用いることができる。
また、本発明に係る歪補償装置では、一構成例として、増幅器により増幅さ れる対象となる信号は、 直交変調された信号である。
また、 増幅信号一部取得手段が増幅器により増幅された信号の一部を取得し、 信号復調手段が増幅信号一部取得手段により取得される信号を直交復調し、そして、 信号レベル歪発生態様対応内容変更手段が、増幅器により増幅される対象となる信 号と信号復調手段による直交復調により得られる信号との差が小さくなるように、 信号レベル歪発生態様対応記憶手段により記憶される信号のレベルと歪の発生態 様との対応の内容を変更する。
更に、一構成例として、信号周波数低下手段が増幅信号一部取得手段により 取得される信号の周波数を低下させ、信号フィルタリング手段が信号周波数低下手 段により周波数が低下させられた信号をフィルタリングし、フィルタリング信号 A D変換手段が信号フィルタリング手段によりフィルタリングされた信号をアナ ログ信号からデジタル信号へ変換する。 そして、信号復調手段は、 フィルタリング 信号 A/D変換手段により得られる歪成分のデジタル信号に基づいて、直交復調を 行う。
ここで、増幅器により増幅される対象となる信号に施される変調の方式とし ては、種々な方式が用いられてもよく、例えば、 Q P S K (Quadrature Phase Shift Keying) や Q AM (Quadrature Amplitude Modulation) などの変調方式を用いる ことができる。
なお、一般的な例として、送信対象となるデータを Q P S Kや Q AMなどの変 調により I信号 (I成分の信号) 及び Q信号 (Q成分の信号) へ変換し、 これを直 交変調により中間周波数( I F ) 信号へ変換し、 これをアップコンパ一トして無線 周波数 (R F ) 信号へ変換する。 また、 一般的な例として、 受信される無線周波数 (R F ) 信号をダウンコンバートして中間周波数 (I F ) 信号へ変換し、 これを直 交復調により I信号及び Q信号へ変換し、 これを復調してデータへ変換する。
また、 増幅器の歪補償においては、 例えば、 I信号及び Q信号を用いて、 適応 的な制御のために、増幅器により増幅される対象となる信号と信号復調手段による 直交復調により得られる信号との差を検出することが行われる。
また、増幅信号一部取得手段としては、 種々なものが用いられてもよく、 例 えば、 結合器を用いることができる。
また、信号レベル歪発生態様対応内容変更手段では、増幅器により増幅される 対象となる信号と信号復調手段による直交復調により得られる信号との差が小さ くなるように制御する態様の一例として、当該差が最小となるように制御する態様 を用いることができる。
また、信号周波数低下手段では、例えば、信号の周波数を無線周波数から中 間周波数へ低下させるような態様を用いることができる。
また、信号フィルタリング手段としては、種々なものが用いられてもよく、例 えば、増幅器により増幅される対象となる信号の成分に対応する周波数の信号成分 を抽出するフィルタを用いることができる。
また、本発明に係る歪補償装置は、 例えば、 無線又は有線の通信装置、 送信 機、送受信機などに設けられ、増幅器により増幅される対象となる信号として送信 対象となる信号が用いられる。
一例として、本発明に係る歪補償装置は、 C DMA方式などを採用する無線通 信システムの基地局装置に設けられ、増幅器により増幅される対象となる信号とし て移動局装置などに対して送信する対象となるマルチキャリアの信.号が用いられ る。
また、本発明に係る歪補償装置は、例えば、増幅器を備えた増幅装置に設けら れる。 図面の簡単な説明 第 1図は、 本発明の第 1実施例に係る増幅装置の構成例を示す図である。 第 2図は、 歪補償テーブルの特性の一例を示す図である。
第 3図は、 DZA変換器から出力される制御信号のスぺクトルの一例を示す図 である。
第 4図は、 D/A変換器から出力される制御信号のスぺクトルの一例を示す図 である。
第 5図は、 DZ A変換器から出力される制御信号のスぺク トルの比較の一例を 示す図である。
第 6図は、 本発明の第 2実施例に係る増幅装置の構成例を示す図である。 第 7図は、 D/A変換器から出力される信号のスぺク トルの比較の一例を示す 図である。
第 8図は、 本発明の第 3実施例に係る増幅装置の構成例を示す図である。 第 9図は、 理想的な歪捕償テーブルの特性の一例を示す図である。
第 1 0図は、固定プリディストーシヨンと適応プリディストーシヨンを用いる 場合における歪捕償テ一ブルの特性の一例を示す図である。
第 1 1図は、 DZA変換器から出力される制御信号のスぺクトルの一例を示す 図であり、(a)は適応 PDのみの場合を示し、(b)は固定 PD+適応 PDの場合を示す。
第 1 2図は、 D/A変換器から出力される信号のスぺクトルの一例を示す図で あり、 (a)は適応 PDのみの場合を示し、 (b)は固定 PD+適応 PDの場合を示す。 第 1 3図は、適応プリディストータ付き送信電力増幅部の構成例を示す図であ る。
第 1 4図は、適応プリディストータ付き送信電力増幅部の構成例を示す図であ る。
第 1 5図は、 D ZA変換器からの出力の特性の一例を示す図である。
第 1 6図は、 D/A変 から出力される制御信号のスぺクトルの一例を示す 図であり、 (a)はサンプリング周波数 fsl (fsl〈fs2)の場合を示し、 (b)はサンプリ ング周波数 f s2 (fsl<fs2)の場合を示す。
第 1 7図は、 DZA変換器から出力される信号のスぺク トルの一例を示す図で あり、 (a)はサンプリング周波数 fsl (fsl<fs2)の場合を示し、 (b)はサンプリング 周波数 f s2 (fsl<fs2)の場合を示す。 発明を実施するための最良の形態 本発明に係る実施例を図面を参照して説明する。
まず、本発明を適用することが可能な適応プリディストータ付き送信電力増幅 部の構成例や動作例を示す。
第 1 3図には、アナログのプリディストーションを行う適応プリディストータ 付き送信電力増幅部の一構成例を示してある。
同図に示した適応プリディストータ付き送信電力増幅部の動作例を示す。 すなわち、 無線周波数 (R F : Radio Frequency) のアナログ信号が、 電力 検出部 5 1及び遅延部 5 8に入力される。
電力検出部 5 1では、例えば包絡線検波が行われて、入力信号の電力が検出さ れる。 当該検出結果を表す電圧が、 A/D (Analog to Digital) 変換器 5 2によ りアナログ信号からデジタル信号へ変換され、例えばメモリ 5 3により構成される 歪補償テーブルの参照引数として対応付けられる。
メモリ 5 3の歪補償テーブルには、プリディストーシヨン方式により歪補償 を行うためのテーブルが格納されている。 当該テーブルには、捕償対象となる振幅 及ぴ位相平面における非線形特性の逆特性の情報が記述されており、 一般的には、 入力信号の電力を指標とする AM (Amplitude Modulation) 一 AM変換や AM— P M (Phase Modulation) 変換に関する情報が記述されている。 ここで、 AM— AM 変換は振幅に関するものであり、 AM _ P M変換は位相に関するものである。
メモリ 5 3では、歪補償テーブルが参照されることにより、 AZD変換器 5 2からの入力 (本例では、 入力信号の電力) に対応して、 一方のデジタル制御信号 が D/A (Digital to Analog) 変換器 5 4へ出力され、 他方のデジタル制御信号 が D/A変換器 5 6へ出力される。
一方のデジタル制御信号は、 D/A変換器 5 4によりアナログ信号へ変換さ れて、 L P F 5 5により必要な周波数成分に帯域制限されて、 AM— AM変換を補 償する電圧可変減衰器 5 9に入力されて、 当該電圧可変減衰器 5 9を制御する。
他方のデジタル制御信号は、 D/A変換器 5 6によりアナ口グ信号へ変換され て、 L P F 5 7により必要な周波数成分に帯域制限されて、 AM— PM変換を補償 する電圧可変移相器 6 0に入力されて、 当該電圧可変移相器 6 0を制御する。
また、入力信号は、遅延部 5 8により遅延時間が与えられて、電圧可変減衰 器 5 9に入力される。 当該遅延時間は、例えば、入力信号が電圧可変減衰器 5 9に 入力される時刻と、 当該入力信号の電力に基づく DZ A変換器 5 4からの出力 (制 御信号)が当該電圧可変減衰器 5 9に到達する時刻とがー致するように設定される。
上記のようにして、プリディストークに相当する電圧可変減衰器 5 9及び電 圧可変移相器 6 0においてプリディス トーション方式により予め歪が与えられた 信号は、増幅部 6 1により増幅される。当該増幅部 6 1からの出力信号(増幅信号) は、 理想的な歪補償が行われる場合には、 歪の無い信号となる。 また、 フィードバック制御を行うために、増幅部 6 1からの出力信号の一部 が方向性結合器 6 2により取り出される。 当該一部の信号が、適応テーブル制御部 6 7により制御される発信器 6 3からの発信信号を用いてミキサ 6 4によりダウ ンコンバートされる。 当該ダウンコンバート後の信号から帯域通過フィルタ (B P F : Band Pass Filter) 6 5により歪の周波数帯域の成分が抜き出され、 当該抽出 結果が AZD変換器 6 6によりアナ口グ信号からデジタル信号へ変換されて適応 テ一ブル制御部 6 7に入力される。
このように、適応テーブル制御部 6 7では、 AZD変換器 6 6から歪の電力 に関する情報が取り込まれる。 そして、適応テーブル制御部 6 7では、 当該歪の電 力が小さくなるように、メモリ 5 3に記憶された歪補償テーブルの内容を更新して、 歪補償テーブルを適応的に制御する。 これにより、増幅部 6 1からの出力信号に残 存する歪の成分が低減させられていく。
第 1 4図には、デジタルのプリディストーションを行う適応プリディストー タ付き送信電力増幅部の一構成例を示してある。
同図に示した適応プリディストータ付き送信電力増幅部の動作例を示す。
すなわち、 I相の成分 (I成分) 及び Q相の成分 (Q成分) から構成されるデ ジタル信号が、電力演算部 7 1とべクトル演算部 7 3と適応テーブル制御部 8 3に 入力される。 また、 当該入力信号は、 例えば、 マルチキャリアを扱う信号であり、 適応プリディストータ付き送信電力増幅部に入力される前に直交変調されている。
電 Λ演算部 7 1では、入力信号の電力が検出される。 当該検出結果が、 メモ リ 7 2により構成される歪捕償テーブルの参照引数として対応付けられる。
メモリ 7 2の歪補償テーブルには、プリディストーション方式により歪補償を 行うためのテーブルが格納されている。 当該テーブルには、補償対象となる振幅及 ぴ位相平面における非線形特性の逆特性の情報が記述されており、一般的には、入 力信号の電力を指標とする AM_ AM変換や AM_ P M変換に関する情報が記述 されている。
ここで、 AM— AM変換は振幅に関するものであり、 AM— P M変換は位相 に関するものである。
歪補償テーブルでは、例えば、 AM— AM変換や AM— P M変換に関するベタ トル演算を行うために、 直交座標の形態 (例えば、 (x 、 y ) や (1 、 Q) などの 形態) を用いて制御情報が格納されている。
メモリ 7 2では、歪補償テーブルが参照されることにより、電力演算部 7 1 からの入力 (本例では、 入力信号の電力) に対応して、 デジタル制御信号がべクト ル演算部 7 3 へ出力される。
プリディストータに相当するべクトル演算部 7 3では、歪補償テーブルの参照 結果であるデジタル制御信号に従って、 入力信号の振幅や位相を制御する。
このようにしてべク トル演算部 7 3によりプリディストーシヨンされた入 力信号が、 D/A変換器 7 4によりデジタル信号からアナログ信号へ変換されて、 アップコンバータ 7 5により無線周波数(R F ) の信号へ周波数変換されて、 当該 周波数変換後の信号から帯域通過フィルタ (B P F ) 7 6により必要な周波数帯域 外の不要信号が除去される。
このような処理の後に、上記のようにしてベタトル演算部 7 3においてプリ デイストーション方式により予め歪を与えられた信号力 S、増幅部 7 7により増幅さ れる。 当該増幅部 7 7からの出力信号 (増幅信号) は、 理想的な歪補償が行われる 場合には、 歪の無い信号となる。
また、 フィードバック制御を行うために、増幅部 7 7からの出力信号の一部 が方向性結合器 7 8により取得される。当該一部の信号がダウンコンバータ 7 9に より低い周波数へ周波数変換され、当該周波数変換後の信号から低域通過フィルタ ( L P F : Low Pass Filter) 8 0により必要な周波数帯域外の不要信号が除去さ れる。 L P F 8 0により帯域外の不要信号が除去された信号が、 AZD変換器 8 1 によりアナログ信号からデジタル信号へ変換される。当該デジタル信号に基づいて 直交復調部 8 2により直交復調が行われ、当該直交復調の結果がフィ一ドバック信 号として適応テーブル制御部 8 3に入力される。
適応テーブル制御部 8 3では、入力信号が入力されるとともに、直交復調部 8 2からフィードパック信号が入力され、当該入力信号と当該フィードバック信号 との誤差が小さくなるように、メモリ 7 2に記憶された歪補償テーブルの内容を更 新して、歪補償テーブルを適応的に制御する。 これにより、増幅部 7 7からの出力 信号に残存する歪の成分が低減させられていく。
次に、上記第 1 3図や上記第 1 4図に示したような適応プリディストータ付 き送信電力増幅部に関して、本発明が解決しようとする課題に係る不具合を詳しく 説明する。
第 1 5図には、 DZ A変換器からの出力の特性の一例を示してある。
同図には、 周波数帯域幅が W [H z ] である信号が DZA変換器に入力され、 サンプリング周波数が f s [H z ]である場合において、 D/A変換器から出力さ れる信号のスペク トルの一例を示してある。 同図に示したグラフの横軸は周波数 [H z ] を示しており、 縦軸はスペク トルの強度を示している。
同図に示されるように、 説明の便宜上から、 入力信号 (実線で示す) の中心 周波数が 0 [H z ] であるとみなすと、 f s [H z ] , 2 f s [H z ] , - · ·、 n f s [H z ] の周波数にイメージ信号 (点線で示す) が現れる。 ここで、 nは、 1 以上の任意の整数を表している。
そして、 「サンプリング周波数 f s≥入力信号の周波数帯域幅 W」 という条 件によりサンプリング定理が満たされる。
当該条件を考慮すると、上記第 1 3図や上記第 1 4図に示した適応プリディス トータ付き送信電力増幅部では、プリディストーシヨン後の入力信号は、プリディ ストーション前の入力信号の周波数帯域と比べて広帯域になるため、必要なサンプ リング周波数が非常に高くなってしまい、必要なク口ック周波数が非常に高くなつ てしまう。
例えば、 3次歪の成分を考慮した場合には、プリディストーション後の入力 信号の周波数帯域は、プリディストーシヨン前の入力信号の周波数帯域の 3倍以上 となるため、必要なサンプリング周波数も 3倍以上となってしまう。 同様に、 5次 歪の成分を考慮した場合には、プリディストーション後の入力信号の周波数帯域は、 プリディストーション前の入力信号の周波数帯域の 5倍以上となるため、必要なサ ンプリング周波数も 5倍以上となってしまう。
次に、具体的に、上記第 13図に示した適応プリディストータ付き送信電力 増幅部について説明する。
同図に示した適応プリディストータ付き送信電力増幅部では、 DZA変換器 5 4、 56や AZD変換器 52をはじめとするデジタル系のクロック周波数を非常に 速くしなければならないといつた不具合があつた。
第 16図 (a) には、 比較的に低いサンプリング周波数 f s i [Hz] が用 いられる場合において D/A変換器 54、 56から出力される制御信号のスぺクト ルの一例を示してある。
また、 第 16図 (b) には、 比較的に高いサンプリング周波数 f s 2 [Hz] が用いられる場合において D/A変換器 54、 56から出力される制御信号のスぺ タ トルの一例を示してある。 ここで、 f s iく f s 2である。
なお、同図(a)、 (b)に示したグラフの横軸は周波数 [Hz]を示しており、 縦軸はスぺク トルの強度を示している。
また、 同図 (a)、 (b) では、 0 [Hz] を中心周波数とする制御信号 (実 線で示す) のスぺクトノレと、 f s 1 [Hz] や f s 2 [Hz] を中心周波数とする イメージ信号 (点線で示す) のスペク トルを示してある。
同図 (a) に示されるように、サンプリング周波数 f s 1が十分な値と比べて 低い場合には D/A変換器 54、 5 6から出力される制御信号とイメージ信号とが 重なってしまって好ましくない。 このため、 同図 (b) に示されるように、 非常に 高いサンプリング周波数 f s 2を用いることが必要となる。
すると、 D/A変換器 54、 5 6において非常に高いサンプリング周波数を 用いることに伴って、その他のデジタル部についてもク口ック周波数を非常に高く することが必要となる。 クロック周波数が高くなると、デバイスが高価となってし まい、 技術的にも困難となってしまい、 或いは、 実現が不可能となってしまう。
次に、具体的に、上記第 1 4図に示した適応プリディス トータ付き送信電力 増幅部について説明する。
同図に示した適応プリディストータ付き送信電力増幅部では、 DZA変換器 7
4や A/D変換器 8 1をはじめとするデジタル系のクロック周波数を非常に速く しなければならないといつた不具合があつた。
第 1 7図 (a) には、 比較的に低いサンプリング周波数 f s i [H z] が用 いられる場合において DZA変換器 74から出力されるプリディス トーション後 の入力信号のスぺクトルの一例を示してある。
また、 第 1 7図 (b) には、 比較的に高いサンプリング周波数 f s 2 [H z] が用いられる場合において DZA変換器 74から出力されるプリディス トーショ ン後の入力信号のスぺクトルの一例を示してある。ここで、 f s 1く f s 2である。
なお、同図(a)、 (b)に示したグラフの横軸は周波数 [H z]を示しており、 縦軸はスぺクトルの強度を示している。
また、 同図 (a)、 (b) では、 0 [H z] と比べて高い周波数に位置するプ リディストーション後の入力信号 (実線で示す) のスぺクトノレと、 f s 1 [Hz] や f s 2 [H z] と比べて低い周波数に位置するイメージ信号 (点線で示す) のス ぺクトノレを示してある。
同図 (a) に示されるように、 サンプリング周波数 f s 1が十分な値と比べて 低い場合には D/A変換器 7 4から出力されるプリディストーション後の入力信 号とイメージ信号とが重なってしまって好ましくない。 このため、 同図 (b ) に示 されるように、 非常に高いサンプリング周波数 f s 2を用いることが必要となる。
すると、 D /A変換器 7 4において非常に高いサンプリング周波数を用いる ことに伴って、その他のデジタル部についてもクロック周波数を非常に高くするこ とが必要となる。 クロック周波数が高くなると、 デバイスが高価となってしまレ、、 技術的にも困難となってしまい、 或いは、 実現が不可能となってしまう。
次に、 本発明に係る実施例を説明する。
本発明に係る第 1実施例を示す。
本例では、上記第 1 3図に示したような歪補償機能付きの増幅装置(適応プリ デイストータ付き送信電力増幅部)に本発明に係る歪補償装置を適用した場合を示 し、固定プリディストータを用いることでデジタル系に必要となるクロック信号の 周波数 (クロック周波数) を例えば従来と比べて低下させることを図る。
第 1図には、 本例の増幅装置の構成例を示してある。
本例の増幅装置には、電力検出部 1と、 AZD変換器 2と、歪補償テーブルを格 納するメモリ 3と、 D/ A変換器 4と、 低域通過フィルタ (L P F ) 5と、 D/A 変 « 6と、低域通過フィルタ (L P F ) 7と、遅延部 8と、電圧可変減衰器 9と、 電圧可変移相器 1 0と、 固定プリディス トータ 1 1と、増幅部 1 2と、方向性結合 器 1 3と、 発信器 1 4と、 ミキサ 1 5と、 帯域通過フィルタ (B P F ) 1 6と、 A ZD変換器 1 7と、 適応テーブル制御部 1 8が備えられている。
なお、本例の増幅装置の構成や動作は、'例えば固定プリディストータ 1 1を 用いることでデジタル系に必要となるクロック周波数を低下させた点に関する部 分を除いては、 上記第 1 3図に示した増幅装置の構成や動作と同様である。
本例の増幅装置の動作例を示す。
前段の処理部 (図示せず) から本例の増幅装置に入力される信号は、 2つの信 号に分配されて、第 1の分配信号が電力検出部 1に入力され、第 2の分配信号が遅 延部 8に入力される。
電力検出部 1は、前段の処理部 (図示せず) から入力される送信対象となる無 線周波数(R F ) の信号の電力を検出して、 当該検出結果を A/D変換器 2へ出力 する。
AZD変換器 2は、電力検出部 1から入力される電力の検出結果を、アナログ 信号からデジタル信号へ変換して、 メモリ 3へ出力する。
メモリ 3は、格納している歪補償テーブルの内容に基づいて、 AZD変換器 2から入力されるデジタル信号を指標として、当該歪補償テーブルを参照した結果 を DZA変換器 4、 6へ出力する。 具体的には、 歪補償テーブルは、 電力の検出結 果を表すデジタル信号の値と、電圧可変減衰器 9への制御値及び電圧可変移相器 1 0への制御値とを対応付けて記憶している。 そして、 メモリ 3は、歪補償テーブル を参照して、 AZD変換器 2から入力されるデジタル信号の値に対応する電圧可変 減衰器 9への制御値 (デジタル制御信号) を DZA変換器 4へ出力するとともに、 当該 Aノ D変換器 2から入力されるデジタル信号の値に対応する電圧可変移相器 1 0への制御値 (デジタル制御信号) を DZA変換器 6へ出力する。
DZA変換器 4は、メモリ 3から入力されるデジタル制御信号をアナログ制 御信号へ変換して L P F 5へ出力する。
L P F 5は、 D/A変換器 4から入力されるアナログ制御信号をフィルタリン グして電圧可変減衰器 9の制御端へ出力する。
D/A変換器 6は、メモリ 3から入力されるデジタル制御信号をアナ口グ制御 信号へ変換して L P F 7へ出力する。
L P F 7は、 Dノ A変換器 6から入力されるアナ口グ制御信号をフィルタリン グして電圧可変移相器 1 0の制御端へ出力する。
遅延部 8は、前段の処理部 (図示せず) から入力される送信対象となる無線 周波数(R F ) の信号を、 当該入力信号に基づく制御信号が電圧可変減衰器 9ゃ電 圧可変移相器 1 0へ入力されるタイミングに合わせるように遅延させて、電圧可変 減衰器 9へ出力する。 一例として、 遅延部 8は、 入力される無線周波数 (R F ) の 信号を、当該入力信号に基づく制御信号が DZA変換器 4によりアナ口グ信号へ変 換されるまでに要する時間と同じ時間だけ遅延させる。
電圧可変減衰器 9は、 L P F 5から入力されるアナ口グ制御信号に従つた減 衰量で、遅延部 8から入力される遅延した入力信号の振幅を制御し、当該制御後の 信号を電圧可変移相器 1 0へ出力する。
なお、電圧可変減衰器 9の代わりに、例えばアナログ制御信号に従った増幅量 で信号の振幅を制御する電圧可変増幅器などを用いることも可能である。
電圧可変移相器 1 0は、 L P F 7から入力されるアナ口グ制御信号に従った 位相変化量で、電圧可変減衰器 9から入力される信号の位相を制御し、 当該制御後 の信号を固定プリディストータ 1 1へ出力する。
なお、本例では、電圧可変減衰器 9の後段に電圧可変移相器 1 0を備える構成 を示したが、例えば、電圧可変移相器 1 0の後段に電圧可変減衰器 9を備える構成 のように、 これらの並び順序として本例とは逆の順序が用いられてもよい。
固定プリディス トータ 1 1は、例えば非線形な素子を用いて構成されており、 電圧可変移相器 1 0から入力される信号に対して歪を発生させ、当該歪を発生させ た信号を増幅部 1 2へ出力する。 なお、 固定プリディストータ 1 1は、入力される 信号のレベルに応じた歪を当該信号に発生させる。
このように、本例では、電圧可変減衰器 9及ぴ電圧可変移相器 1 0を用いた適 応的なプリディストーションと、固定プリディストータ 1 1を用いた固定的なプリ ディストーション (非適応的なプリディストーション) との両方により、 プリディ ストーション方式で歪補償を行う。
増幅部 1 2は、 固定プリディス トータ 1 1から入力される信号を増幅して、 当該増幅信号を例えば後段のアンテナ (図示せず) へ出力する。
なお、 増幅部 1 2では、 信号に歪が発生し、 本例では、 当該歪が、 電圧可変減 衰器 9により発生させられる振幅歪や、電圧可変移相器 1 0により発生させられる 位相歪や、固定プリディストータ 1 1により発生させられる振幅歪や位相歪により、 低減させられる。
方向性結合器 1 3は、増幅部 1 2から出力される増幅信号の一部を取り出し、 当該取り出した信号をミキサ 1 5へ出力する。
発信器 1 4は、適応テーブル制御部 1 8により制御される周波数の信号を発振 してミキサ 1 5へ出力する。
ミキサ 1 5は、方向性結合器 1 3から入力される増幅信号と発信器 1 4から入 力される信号とを混合して、 当該増幅信号の周波数を変換し、 当該周波数変換後の 増幅信号を B P F 1 6へ出力する。
B P F 1 6は、 ミキサ 1 5から入力される信号の帯域を制限して、 当該帯域 制限後の信号'を A/D変換器 1 7へ出力する。
AZD変換器 1 7は、 B P F 1 6から入力される信号を、アナログ信号からデ ジタル信号へ変換して、 適応テーブル制御部 1 8へ出力する。
適応テーブル制御部 1 8は、 A/D変換器 1 7から入力されるデジタル信号に 基づいて、 メモリ 3に格納される歪捕償テーブルの内容を更新し、 また、発信器 1 4により発振させる信号の周波数を制御する。
ここで、本例では、 B P F 1 6により増幅信号に含まれる歪成分を抽出して、 当該歪成分のレベルが小さくなるように適応テーブル制御部 1 8により歪補償テ 一プルの内容を更新する制御が行われており、 B P F 1 6の通過帯域の特性や、発 信器 1 4により発振させる信号の周波数は、このような制御が適切に為されるよう に設定或いは制御される。
次に、第 9図〜第 1 1図を参照して、本例の増幅装置において、 固定プリデ イストータ 1 1を用いてクロック周波数を低下させる原理を示す。
なお、歪補償テーブルでは一般に振幅に関するテーブル及び位相に関するテー プルを有するが、 ここでは説明を簡略ィ匕するために、振幅に関するテーブルのみに 着目して説明する。位相に関するテーブルについても、振幅に関するテーブルと同 様である。
第 9図には、固定プリディストータ 1 1が備えられないとした場合における、 電圧可変減衰器 9や電圧可変移相器 1 0を用いた適応プリディストータの理想的 な歪補償テーブルの特性例を示してある。同図に示したグラフの横軸は電力を示し ており、 縦軸は制御信号の電圧 (制御電圧) を示している。
また、第 1 0図には、固定プリディストータ 1 1が備えられた場合における、 固定プリディストータ 1 1による歪捕償の特性例と、電圧可変減衰器 9や電圧可変 移相器 1 0を用いた適応プリディストータの理想的な歪補償テーブルの特性例を 示してある。 同図に示したグラフの横軸は電力を示しており、縦軸は制御信号の電 圧 (制御電圧) を示している。
上記第 1 0図に示した特性では、固定的なプリディストーシヨン(固定 P D) の特性と、適応的なプリディストーション(適応 P D)の特性とを合わせたものが、 上記第 9図に示した理想的なプリディストーシヨン(理想 P D) の特性と一致する のが理¾1的であり好ましい。
第 1 1図 (a ) には、 固定プリディストータ 1 1が備えられないとした場合 において、メモリ 3の歪補償テーブルが上記第 9図に示した理想的な特性を有する ときに、 D/A変換器 4 (或いは、 D/A変換器 6についても同様) から出力され る制御信号のスぺク トルの一例を示してある。
また、 第 1 1図 (b ) には、 固定プリディストータ 1 1が備えられた場合にお いて、メモリ 3の歪補償テーブルが上記第 1 0図に示した理想的な適応プリディス トーシヨン (適応 P D) の特性を有するときに、 DZA変換器 4 (或いは、 D/A 変換器 6についても同様)から出力される制御信号のスぺク トルの一例を示してあ る。
なお、 第 1 1図 (a )、 ( b ) に示したグラフの横軸は周波数 [H z ] を示し ており、 縦軸はスペク トルの強度を示している。
また、 同図 (a:)、 (b ) では、 0 [H z ] を中心周波数とする制御信号 (実線 で示す) のスペク トルと、 サンプリング周波数 f s [H z ] を中心周波数とするィ メージ信号 (点線で示す) のスペク トルを示してある。
上記第 1 1図 (a )、 ( b ) に示されるように、 固定プリディストータ 1 1を 備えない場合には DZA変換器 4から出力される制御信号とイメージ信号とが重 なってしまうようなサンプリング周波数 f sであっても、固定プリディストータ 1 1を備えることにより、 DZA変換器 4から出力される制御信号の周波数帯域幅を 比較的に小さく (狭く) することが可能であり、 当該制御信号とイメージ信号とが 重なってしまうことを回避することが可能である。
このため、本例のように固定プリディストータ 1 1を備えた構成では、例え ば上記第 1 3図に示したように固定プリディストータを備えない場合と比較して、 サンプリング周波数 f sを低くすることが可能であり、 これにより、 DZA変換器 4、 6などのデジタル系のク口ック周波数を低くすることが可能である。
なお、固定プリディストータ 1 1としては、アナログのデバイスが用いられ ており、 このため、 サンプリングレート (サンプリング周波数) とは特に関係がな い。本例では、 このような固定プリディストータ 1 1を用いることにより、適応プ リデイストータにより発生させる歪成分のスぺクトル強度を減衰させ、これにより、 サンプリング周波数 f s及びクロック周波数を低下させることを実現している。
次に、第 2図〜第 5図を参照して、本例の増幅装置により得られる効果の具 体例として、 計算機シミュレーシヨンにより得られた結果を示す。
なお、ここでは、固定プリディストータ 1 1を備えた本例の増幅装置に対して、 上記第 1 3図に示した増幅装置のように固定プリディストータを備えないものを 比較例として、 説明する。
また、歪捕償テーブルでは一般に振幅に関するテーブル及び位相に関するテ 一ブルを有するが、 ここでは説明を簡略ィ匕するために、振幅に関するテーブルのみ に着目して説明する。位相に関するテーブルについても、振幅に関するテーブルと 同様である。
第 2図には、 比較例に係る歪補償テーブルの特性例 (a) と、 本例のメモリ 3 に格納される歪ネ甫償テーブルの特性例 (b) を示してある。 同図に示したグラフの 横軸は電力を示しており、 縦軸は制御信号の電圧 (制御電圧) を示している。
第 3図には、サンプリング周波数 f s =約 60 [MH z ] と設定した場合に おける、 比較例に係る DZ A変換器 54 (或いは、 D/A変換器 56についても同 様) からの制御電圧のスぺクトルの一例 (a) を示してあるとともに、本例の DZ A変換器 4 (或いは、 D/A変換器 6についても同様) からの制御電圧のスぺクト ルの一例 (b) を示してある。 同図に示したグラフの横軸は周波数 [MHz] を示 しており、 縦軸はスペクトルの強度 (レベル) [d B] を示している。
同図において、比較例(a)と本例(b)とでは、直流(DC: Direct Current) の成分については同一のスぺクトル強度を有しており、それ以外の周波数成分につ いては本例 (b) の方が比較例 (a) と比較してスペクトル強度が約 10 [dB] 低くなつている。 この理由は、本例の歪補償テーブルの特性の方力 比較例に係る 歪補償テーブルの特性と比較して、 直線に近いためである。 例えば、 比較例 (a) では 15 [MHz] 以上においても歪補償に必要な成分を含むが、 本例 (b) では 十分に減衰している。
また、 第 4図には、 サンプリング周波数 f s =約 40 [MHz] と設定した 場合における、比較例に係る D/A変換器 54 (或いは、 0 変換器56にっぃ ても同様) からの制御電圧のスぺクトルの一例 (a) を示してあるとともに、本例 の D/A変換器 4 (或いは、 DZA変換器 6についても同様) からの制御電圧のス ぺクトルの一例(b) を示してある。同図に示したグラフの横軸は周波数 [MHz] を示しており、 縦軸はスペクトルの強度 (レベル) [dB] を示している。
サンプリング周波数 f s =40 [MHz] である場合には、サンプリング周 波数 f s = 60 [MHz] である場合と比べて、 D/A変換器からの出力のィメー ジ信号の影響が強くなる。
同図において、本例 (b) では制御信号とイメージ信号とのスぺクトルが重な る約 20 [MHz] において約一 40 [dB] にまでスペク トル強度が減衰してい るが、 比較例 (a) では約一25 [dB] と大きく、 歪補償に必要な信号成分がィ メージ信号の影響を受けてしまう。 ' なお、第 5図には、比較例に関して、サンプリング周波数 f s =約 40 [M Hz] と設定した場合における DZA変換器 54 (或いは、 0 変換器56にっ いても同様) からの制御電圧のスぺクトルの一例 (a) を示してあるとともに、 サ ンプリング周波数 f s =約 60 [MHz] と設定した場合における D/A変換器 5 4 (或いは、 D/A変換器 56についても同様) からの制御電圧のスペク トルの一 例 (b) を示してある。 同図に示したグラフの横軸は周波数 [MHz] を示してお り、 縦軸はスペク トルの強度 (レベル) [dB] を示している。 約 20 [MHz] において、サンプリング周波数の違いによるスぺクトルの違いが確認できる。 f s =約 40 [MHz] では約 20 [MHz] で、 すでにイメージ信号の影響を受けて いることが分かる。
以上のように、本例の増幅装置では、電圧可変減衰器 9や電圧可変移相器 1 0や DZA変換器 4、 6などから構成される適応プリディストータを備えるととも に、 広帯域信号の影響を低減するために他のプリディストータを備えた。
ここで、 当該他のプリディストータとしては、例えば当該適応プリディストー タのように適応制御用のものが用いられてもよレ、が、本例では、予め歪を補償する ための歪の情報が設定された固定用のもの(固定プリディストータ 1 1 )を用いた。 また、本例では、デジタル処理を行わないアナログ用の固定プリディストータ 1 1 を用いた。
また、本例の増幅装置では、 固定プリディストータ 1 1の入出力特性を、増 幅部 1 2を構成する増幅器で発生する歪が補償されるように調節して設定した。そ して、 固定プリディス トータ 1 1は、 プリディス 卜ーシヨン方式により、増幅部 1 2で発生する歪を補償し、 この結果として、例えば従来と比べて、適応プリディス トータにおけるメモリ 3の歪補償テーブルの非線形性が小さくなり、 D/A変換器 4、 6からの出力 (制御信号) の高周波数側及ぴ低周波数側のスペク トル強度が小 さくなる。
このように、本例の増幅装置では、アナログのデパイスから成る固定プリデ イストータ 1 1により粗く歪補償を行うことで、歪成分が広帯域に広がる影響を低 減させて広帯域信号の影響を軽減し、 これとともに、デジタル処理を伴う適応プリ ディストータにより、温度などの環境変化や経年変化に適応して、精度の良い歪補 償を行う。 そして、本例の増幅装置では、 固定プリディストータ 1 1を用いること により負荷が分散されて、適応プリディストータにおける制御信号のスぺクトル強 度が小さくなることにより、デジタル系のサンプリングレート (サンプリング周波 数) を低下させることができ、適応プリディストータなどにおけるクロック周波数 を低くすることができる。
従って、本例の増幅装置では、例えば従来と比べて、 高速なデバイスを用い ることが必ずしも必要ではなくなり、回路構成が技術的に容易に実施できて安価に 実施が可能なものとなる。 また、 本例の増幅装置では、 例えば従来と比べて、 歪補 償テーブルの内容を更新する適応プリディストータによる歪補償の収束速度を速 くすることができる。 また、 本例の増幅装置では、 例えば、 必要に応じて、 制御信 号が通過する L P F 5、 7の通過周波数帯域を狭くすることも可能である。 このよ うに、 本例の増幅装置は、 非常に有効性が高い。
ここで、本例では、電圧可変移相器 1 0と増幅部 1 2との間に固定プリディ ストータ 1 1を備えたが、固定プリディストータ 1 1を備える位置としては、例え ば、アナ口グ镇域であって増幅部 1 2の前段の信号を処理する位置であれば任意の 位置が用いられても同様な効果を得ることができ、増幅部 1 2への入力信号にプリ ディストーション方式による歪補償特性が与えられればよレ、。
具体的には、 固定プリディストータ 1 1は、例えば、入力信号が電力検出部 1側と遅延部 8側とに分岐される前における位置 (第 1図中の " a " の位置) や、 入力信号が '電力検出部 1側と遅延部 8側とに分岐された後であって遅延部 8の前 段の位置 (第 1図中の " b " の位置) や、 遅延部 8と電圧可変減衰器 9との間の位 置 (第 1図中の " c " の位置) や、 電圧可変減衰器 9と電圧可変移相器 1 0との間 の位置 (第 1図中の " d " の位置) に、 備えることも可能である。
また、例えば、 固定プリディストータ 1 1の歪補償特性を、電圧可変減衰器 9と電圧可変移相器 1 0とのいずれか一方或いは両方に持たせるような構成とす ることも可能である。
また、電圧可変減衰器 9の代わりに、電圧可変増幅器などを用いることも可能 である。
また、適応プリディストータとしては、本例のものに限られず、種々なものが 用いられてもよい。
なお、本例の増幅装置では、増幅部 1 2の増幅器が歪補償対象となり、増幅 部 1 2により増幅される対象となる信号として無線周波数のアナログ信号が用い られている。
また、本例の増幅装置では、固定プリディストータ 1 1の機能により第 1の歪 発生手段が構成されており、適応プリデイストータの機能により第 2の歪発生手段 が構成されている。 また、本例の増幅装置では、電力検出部 1の機能により信号レベル検出手段 が構成されており、歪補償テーブルを格納するメモリ 3の機能により信号レベル歪 発生態様対応記憶手段やデジタル制御信号出力手段が構成されており、 D/A変換 器 4、 6の機能により制御信号 D/A変換手段が構成されており、電圧可変減衰器 9の機能及び電圧可変移相器 1 0の機能により振幅位相歪発生手段が構成されて いる。
また、本例の増幅装置では、方向性結合器 1 3の機能により増幅信号一部取 得手段が構成されており、発信器 1 4の機能やミキサ 1 5の機能により信号周波数 低下手段が構成されており、 B P F 1 6の機能により歪成分抽出手段が構成されて おり、 AZD変換器 1 7の機能により歪成分 A/D変換手段が構成されており、適 応テーブル制御部 1 8の機能により信号レベル歪発生態様対応内容変更手段が構 成されている。
また、本例の増幅装置に備えられた適応プリディストータは、例えば、入力 信号に基づいて歪の発生態様を制御する歪発生態様制御手段と、当該制御に従つて 歪を発生させる歪発生実行手段を用いて構成されるととらえることや、或いは、例 えば、入力信号に基づく歪の発生態様で歪を発生させる歪発生制御実行手段を用レ、 て構成されるととらえることも可能である。
本発明に係る第 2実施例を示す。
本例では、上記第 1 4図に示したような歪補償機能付きの増幅装置(適応プリ ディストータ付き送信電力増幅部)に本発明に係る歪補償装置を適用した場合を 示し、固定プリディストータを用いることでデジタル系に必要となるクロック信 号の周波数 (クロック周波数) を例えば従来と比べて低下させることを図る。
第 6図には、 本例の増幅装置の構成例を示してある。
本例の増幅装置には、電力演算部 2 1と、歪補償テーブルを格納するメモリ 2 2と、べクトル演算部 2 3と、 D/A変換器 2 4と、アップコンバータ 2 5と、 帯域通過フィルタ (B P F ) 2 6と、 固定プリディストータ 2 7と、 増幅部 2 8 と、方向性結合器 2 9と、ダウンコンバータ 3 0と、低域通過フィルタ (L P F ) 3 1と、 A/D変換器 3 2と、直交復調部 3 3と、適応テーブル制御部 3 4が備 えられている。
なお、本例の増幅装置の構成や動作は、例えば固定プリディストータ 2 7 を用いることでデジタル系に必要となるクロック周波数を低下させた点に関す る部分を除いては、 上記第 1 4図に示した増幅装置の構成や動作と同様である。
本例の増幅装置の動作例を示す。
前段の処理部 (図示せず) から本例の増幅装置に入力される信号は、 3つの 信号に分配されて、第 1の分配信号が電力演算部 2 1に入力され、第 2の分配信 号がベタ トル演算部 2 3に入力され、第 3の分配信号が適応テーブル制御部 3 4 に入力される。
電力演算部 2 1は、前段の処理部 (図示せず) から入力される送信対象とな る I成分及び Q成分の信号の電力を検出して、当該検出結果をメモリ 2 2へ出力 する。
なお、本例の増幅装置では、入力信号は入力されるまでに直交変調方式に より変調されているとする力 他の構成例として、べクトル演算部 2 3と DZA 変換器 2 4との間の位置などの当該増幅装置内に直交変調手段を備えて、直交変 調されていない信号を入力して当該信号を直交変調手段により直交変調するよ うな構成とすることも可能である。
メモリ 2 2は、格納している歪補償テーブルの内容に基づいて、電力演算 部 2 1から入力されるデジタル信号を指標として、当該歪捕償テーブルを参照し た結果をべクトル演算部 2 3へ出力する。 具体的には、歪補償テーブルは、電力 の検出結果を表すデジタル信号の値と、ベタトル演算部 2 3への制御値とを対応 付けて記憶している。 そして、 メモリ 2 2は、 歪捕償テーブルを参照して、 電力 演算部 2 1から入力されるデジタル信号の値に対応する制御値(デジタル制御信 号) をべクトル演算部 2 3へ出力する。
ベタトル演算部 2 3は、メモリ 2 2から入力されるデジタル制御信号に従 つた振幅変化量及び位相変化量で、前段の処理部 (図示せず) 力 入力される送 信対象となる I成分及び Q成分の信号の振幅及び位相を制御し、当該制御後の信 号を D/A変換器 2 4へ出力する。
DZA変換器 2 4は、ベタトル演算部 2 3から入力される信号を、デジタル 信号からアナログ信号へ変換して、 アップコンバータ 2 5へ出力する。
アップコンバータ 2 5は、 D/A変換器 2 4から入力される信号の周波数 を無線周波数 (R F ) へ変換し、 当該周波数変換後の信号を B P F 2 6へ出力す る。
B P F 2 6は、アップコンバータ 2 5から入力される信号の帯域を制限して、 当該帯域制限後の信号を固定プリディストータ 2 7へ出力する。
固定プリディストータ 2 7は、例えば非線形な素子を用いて構成されて おり、電 B P F 2 6から入力される信号に対して歪を発生させ、当該歪を発生さ せた信号を増幅部 2 8へ出力する。 なお、 固定プリディストータ 2 7は、入力さ れる信号のレベルに応じた歪を当該信号に発生させる。
このように、本例では、ベタトル演算部 2 3を用いた適応的なプリディスト ーションと、固定プリディストータ 2 7を用いた固定的なプリディストーション (非適応的なプリディストーション) との両方により、プリディストーション方 式で歪補償を行う。
増幅部 2 8は、固定プリディストータ 2 7から入力される信号を増幅して、 当該増幅信号を例えば後段のアンテナ (図示せず) へ出力する。
なお、 増幅部 2 8では、 信号に歪が発生し、 本例では、 当該歪が、 ベタトル 演算部 2 3により発生させられる振幅歪や位相歪や、固定プリディストータ 2 7 により発生させられる振幅歪や位相歪により、 低減させられる。
方向性結合器 2 9は、増幅部 2 8から出力される増幅信号の一部を取り出 し、 当該取り出した信号をダウンコンバータ 3 0へ出力する。
ダウンコンバータ 3 0は、方向性結合器 2 9から入力される増幅信号の周波 数を低い周波数へ変換し、当該周波数変換後の増幅信号を L P F 3 1 へ出力する。
L P F 3 1は、ダウンコンバータ 3 0から入力される信号の帯域を制限し て、 当該帯域制限後の信号を A/D変換器 3 2へ出力する。
AZD変換器 3 2は、 L P F 3 1から入力される信号を、アナログ信号から デジタル信号へ変換して、 直交復調部 3 3 へ出力する。
直交復調部 3 3は、 A/D変換器 3 2から入力される信号を直交復調し、 当 該直交復調結果に相当するデジタル信号を適応テーブル制御部 3 4へ出力する。
適応テーブル制御部 3 4は、前段の処理部 (図示せず) から入力される送 信対象となる I成分及び Q成分の信号と、直交復調部 3 3から入力される直交復 調結果の信号( I成分及ぴ Q成分の信号) とに基づいて、 メモリ 2 2に格納され る歪補償テーブルの内容を更新する。
ここで、本例では、 L P F 3 1により入力信号に対応する信号成分を抽出 して、当該抽出される信号成分と元の入力信号との誤差が小さくなるように適応 テーブル制御部 3 4により歪補償テーブルの内容を更新する制御が行われてお り、ダウンコンバータ 3 0による周波数変換の特性や、 L P F 3 1の通過帯域の 特性は、 このような制御が適切に為されるように設定或いは制御される。
次に、 上記第 9図、 上記第 1 0図及び第 1 2図を参照して、本例の増幅装 置において、固定プリディストータ 2 7を用いてクロック周波数を低下させる原 理を示す。
なお、歪補償テーブルでは一般に振幅に関するテープノレ及び位相に関するテ 一ブルを構成するが、 ここでは説明を簡略化するために、歪補償テーブルがメモ リ 2 2と等価な極座標表現を用いて構成されているとし、振幅に関するテーブル のみに着目して説明する。位相に関するテーブルについても、振幅に関するテー ブルと同様である。
上記第 9図には、固定プリディストータ 2 7が備えられないとした場合に おける、べクトル演算部 2 3を用いた適応プリディストータの理想的な歪補償テ 一ブルの特性例を示してある。 同図に示したグラフの横軸は電力を示しており、 縦軸は振幅に関する制御信号の値 (振幅制御値) を示している。
また、上記第 1 0図には、固定プリディストータ 2 7が備えられた場合に おける、固定プリディストータ 2 7による歪補償の特性例と、ベタトル演算部 2 3を用いた適応プリディストータの理想的な歪ネ甫償テーブルの特性例を示して ある。 同図に示したグラフの横軸は電力を示しており、縦軸は振幅に関する制御 信号の値 (振幅制御値) を示している。
上記第 1 0図に示した特性では、固定的なプリディストーシヨン(固定 P D) の特性と、適応的なプリディストーション (適応 P D) の特性とを合わせた ものが、 上記第 9図に示した理想的なプリディストーシヨン (理想 P D ) の特性 と一致するのが理想的であり好ましい。
第 1 2図 (a ) には、 固定プリディストータ 2 7が備えられないとした場 合において、メモリ 2 2の歪補償テーブルが上記第 9図に示した理想的な特性を 有するときに、 D/ A変換器 2 4から出力される信号のスぺク トルの一例を示し てある。
また、 第 1 2図 (b ) には、 固定プリディス トータ 2 7が備えられた場合に おいて、メモリ 2 2の歪補償テーブルが上記第 1 0図に示した理想的な適応プリ ディストーション (適応 P D) の特¾^を有するときに、 0/ 変換器2 4から出 力される信号のスぺクトルの一例を示してある。
なお、 第 1 2図 (a )、 ( b ) に示したグラフの横軸は周波数 [H z ] を示 しており、 縦軸はスペク トルの強度を示している。
また、 同図 (a )、 ( b ) では、 0 [H z ] と比べて高い周波数に位置する信 号 (実線で示す) のスぺクトノレと、 サンプリング周波数 f s [H z ] と比べて低 い周波数に位置するイメージ信号 (点線で示す) のスペク トルを示してある。
上記第 1 2図 (a )、 ( b ) に示されるように、 固定プリディストータ 2 7 を備えない場合には D/A変換器 2 4から出力される信号とイメージ信号とが 重なってしまうようなサンプリング周波数 f sであっても、固定プリディストー タ 2 7を備えることにより、 D/A変換器 2 4から出力される信号の周波数帯域 幅を比較的に小さく (狭く) することが可能であり、 当該信号とイメージ信号と が重なってしまうことを回避することが可能である。
このため、本例のように固定プリディストータ 2 7を備えた構成では、例 えば上記第 1 4図に示したように固定プリディストータを備えない場合と比較 して、 サンプリング周波数 f sを低くすることが可能であり、 これにより、 DZ A変換器 2 4などのデジタル系のク口ック周波数を低くすることが可能である。
なお、固定プリディストータ 2 7としては、アナログのデバイスが用いら れており、 このため、 サンプリングレート (サンプリング周波数) とは特に関係 がない。 本例では、 このような固定プリディス トータ 2 7を用いることにより、 適応プリディストータにより発生させる歪成分のスぺクトル強度を減衰させ、こ れにより、サンプリング周波数 f s及ぴクロック周波数を低下させることを実現 している。
次に、上記第 2図及ぴ第 7図を参照して、本例の増幅装置により得られる 効果の具体例として、 計算機シミュレーシヨンにより得られた結果を示す。
なお、 ここでは、固定プリディストータ 2 7を備えた本例の増幅装置に対し て、上記第 1 4図に示した増幅装置のように固定プリディストータを備えないも のを比較例として、 説明する。 また、歪補償テーブルでは一般に振幅に関するテーブル及び位相に関する テーブルを構成するが、 ここでは説明を簡略化するために、歪補償テーブルがメ モリ 22と等価な極座標表現を用いて構成されているとし、振幅に関するテープ ルのみに着目して説明する。位相に関するテーブルについても、振幅に関するテ 一ブルと同様である。
上記第 2図には、 比較例に係る歪補償テーブルの特性例 (a) と、 本例の メモリ 22に格納される歪補償テーブルの特^"生例 (b) を示してある。 同図に示 したグラフの横軸は電力を示しており、縦軸は振幅に関する制御信号の値(振巾; 制御値) を示している。
第 7図には、 CDMA方式により変調された 2キャリアの信号を処理する 場合における、 比較例に係る D/A変換器 74からの信号のスぺクトルの一例 (a) を示してあるとともに、本例の D/A変換器 24からの信号のスペク トル の一例 (b) を示してある。 同図に示したグラフの横軸は周波数 [MHz] を示 しており、 縦軸はスペク トルの強度 (レベル) [dB] を示している。
同図に示されるように、 本例 (b) では、 比較例 (a) と比較して、 適応 プリディストータにより発生させる歪成分のスぺクトル強度が減衰する。
ここで、 サンプリング周波数について考えると、 まず、 隣接チャネル漏洩電 力 (ACP) 等のように装置に要求される特性により歪補償の精度が決定され、 これにより、 D/A変換器 24からの出力に必要な精度 (例えば、対キャリア電 力 [dB c]) が決定される。
一例として、 歪補償に必要な精度が一 60 [dB c] である場合には、 比 較例 ( a ) では、 約 90 [MH z ] の周波数帯域が必要であり、 DZA変換器 7 4のクロック周波数としてはその 2倍の約 180 [MHz] が必要となるが、本 例 (b) では、 約 60 [MHz] の周波数帯域が必要となるだけで、 DZA変換 器 24のクロック周波数としてはその 2倍の約 120 [MHz]が必要となるだ けである。
また、 本例 (b ) では、 例えば、 中間周波数 (I F ) を低くすることが可 能であり、 また、 フィルタ (例えば、 B P F 2 6 ) の帯域を狭くすることが可能 である。
また、 本例 (b ) では、 DZA変換器 2 4及び他のデジタル処理系のクロッ ク周波数を低下させることが可能であり、 クロック周波数を低下させても、例え ば比較例 (a ) と同程度の歪補償精度を得ることができる。
以上のように、本例の増幅装置では、ベタトル演算部 2 3などから構成さ れる適応プリディス トータを備えるとともに、広帯域信号の影響を低減するため に他のプリディストータを備えた。
ここで、当該他のプリディス トータとしては、例えば当該適応プリディス ト ータのように適応制御用のものが用いられてもよいが、本例では、予め歪を補償 するための歪の情報が設定された固定用のもの(固定プリディス トータ 2 7 ) を 用いた。 また、本例では、デジタル処理を行わないアナログ用の固定プリディス トータ 2 7を用いた。
また、 本例の増幅装置では、 固定プリディス トータ 2 7の入出力特性を、 増幅部 2 8を構成する増幅器で発生する歪が補償されるように調節して設定し た。 そして、 固定プリディストータ 2 7は、 プリディストーション方式により、 増幅部 2 8で発生する歪をネ唐償し、 この結果として、例えば従来と比べて、適応 プリディストータにおけるメモリ 2 2の歪補償テーブルの非線形性が小さくな り、 D/A変換器 2 4からの出力 (適応プリディス トーション後の信号) の高周 波数側及び低周波数側のスぺク トル強度が小さくなる。
このように、本例の増幅装置では、アナログのデバイスから成る固定プリ ディストータ 2 7により粗く歪補償を行うことで、歪成分が広帯域に広がる影響 を低減させて広帯域信号の影響を軽減し、 これとともに、デジタル処理を伴う適 応プリディストータにより、温度などの環境変化や経年変化に適応して、精度の 良い歪補償を行う。 そして、本例の増幅装置では、 固定プリディストータ 2 7を 用いることにより負荷が分散されて、適応プリディストータにより歪が与えられ た信号のスぺクトル強度が小さくなることにより、デジタル系のサンプリングレ ート (サンプリング周波数) を低下させることができ、適応プリディストータな どにおけるク口ック周波数を低くすることができる。
従って、本例の増幅装置では、例えば従来と比べて、 高速なデバイスを用 いることが必ずしも必要ではなくなり、回路構成が技術的に容易に実施できて安 価に実施が可能なものとなる。また、本例の増幅装置では、例えば従来と比べて、 歪補償テーブルの内容を更新する適応プリディストータによる歪捕償の収束速 度を速くすることができる。また、本例の増幅装置では、例えば、必要に応じて、 プリディス トーション後の信号が通過する B P F 2 6の通過周波数帯域を狭く することも可能である。 このように、 本例の増幅装置は、 非常に有効性が高い。
ここで、本例では、 B P F 2 6と増幅部 2 8との間に固定プリディスト一 タ 2 7を備えたが、 固定プリディストータ 2 7を備える位置としては、 例えば、 アナログ領域であって増幅部 2 8の前段の信号を処理する位置であれば任意の 位置が用いられても同様な効果を得ることができ、増幅部 2 8への入力信号にプ リディストーション方式による歪ネ甫償特性が与えられればよレ、。
具体的には、 固定プリディストータ 2 7は、例えば、 D ZA変換器 2 4と アップコンバータ 2 5との間の位置 (第 6図中の " a " の位置) や、 アップコン バータ 2 5と B P F 2 6との間の位置 (第 6図中の " b " の位置) に、 備えるこ とも可能である。
また、適応プリディストータとしては、本例のものに限られず、種々なもの が用いられてもよい。
なお、本例の増幅装置では、増幅部 2 8の増幅器が歪補償対象となり、増 幅部 2 8により増幅される対象となる信号として例えばベースバンド(B B )や 中間周波数( I F )の I成分及び Q成分から成るデジタル信号が用いられている。
また、本例の増幅装置では、固定プリディストータ 2 7の機能により第 1の 歪発生手段が構成されており、適応プリディス トータの機能により第 2の歪発生 手段が構成されている。
また、本例の増幅装置では、電力演算部 2 1の機能により信号レベル検出 手段が構成されており、歪補償テーブルを格納するメモリ 2 2の機能により信号 レベル歪発生態様対応記憶手段やデジタル制御信号出力手段が構成されており、 べクトル演算部 2 3の機能により振幅位相歪発生手段が構成されており、 DZA 変換器 2 4の機能により信号 D/ A変換手段が構成されており、アップコンパ一 タ 2 5の機能により信号周波数変換手段が構成されている。
また、本例の増幅装置では、方向性結合器 2 9の機能により増幅信号一部 取得手段が構成されており、ダウンコンバータ 3 0の機能により信号周波数低下 手段が構成されており、 L P F 3 1の機能により信号フィルタリング手段が構成 されており、 A/D変換器 3 2の機能によりフィルタリング信号 AZD変換手段 が構成されており、直交復調部 3 3の機能により信号復調手段が構成されており、 適応テーブル制御部 3 4の機能により信号レベル歪発生態様対応内容変更手段 が構成されている。
また、本例の増幅装置に備えられた適応プリディストータは、例えば、入 力信号に基づいて歪の発生態様を制御する歪発生態様制御手段と、当該制御に従 つて歪を発生させる歪発生実行手段を用いて構成されるととらえることや、或い は、例えば、入力信号に基づく歪の発生態様で歪を発生させる歪発生制御実行手 段を用いて構成されるととらえることも可能である。
本発明に係る第 3実施例を示す。
本例では、本発明に係る歪補償装置を適用した増幅装置の一例として、概略 化した構成例を示す。本例の増幅装置では、概略化している構成部分については、 種々な構成を実施することが可能である。
第 8図には、 本例の増幅装置の構成例を示してある。
本例の増幅装置には、適応的なプリディストーション処理を行う適応プリデ イスト一シヨン部 (適応 P D部) 4 1と、 固定的なプリディス トーション処理を 行う固定プリディストーション部 (固定 P D部) 4 2と、歪補償の対象となる増 幅部 4 3と、 適応 P D部 4 1を制御する制御部 4 4が備えられている。
本例の増幅装置の動作例を示す。
前段の処理部 (図示せず) から入力される信号は、 2つの信号に分配され、 第 1の分配信号は適応 P D部 4 1に入力され、第 2の分配信号は制御部 4 4に入 力される。
適応 P D部 4 1は、 前段の処理部 (図示せず) 力、ら入力される信号に対して 適応プリディストーション方式による歪を発生させ、当該歪を発生させた当該信 号を固定 P D部 4 2へ出力する。
固定 P D部 4 2は、適応 P D部 4 1から入力される信号に対して固定プリ デイストーシヨン方式による歪を発生させ、当該歪を発生させた当該信号を増幅 部 4 3へ出力する。
増幅部 4 3は、固定 P D部 4 2から入力される信号を増幅し、 当該増幅信号 を例えば後段のアンテナ (図示せず) へ出力する。
また、増幅部 4 3から出力される増幅信号の一部が取得されて、制御部 4
4に入力される。
制御部 4 4は、 前段の処理部 (図示せず) 力 ら入力される信号と、 増幅部 4 3からフィードパックされる増幅信号との一方又は両方に基づいて、適応 P D部 4 1により行われる適応プリディストーション処理に関する制御を行う。
以上のように、本例の増幅装置では、適応 P D部 4 1と共に他の P D部(本 例では、 固定 P D部 4 2 ) を備えることにより、例えば適応 P D部 4 1などに必 要となるクロック周波数を低くすることができ、歪補償の効率化を図ることがで ぎる。
なお、本例の増幅装置では、増幅部 4 3の増幅器が歪補償対象となり、 固 定 P D部 4 2の機能により第 1の歪発生手段が構成されており、適応 P D部 4 1 の機能により第 2の歪発生手段が構成されている。
また、本例の増幅装置に備えられた適応プリディストータでは、例えば、入 力信号に基づいて歪の発生態様を制御する歪発生態様制御手段が制御部 4 4の 機能により構成され、当該制御に従って歪を発生させる歪発生実行手段が適応 P D部 4 1により構成されているととらえることも可能である。
ここで、本明細書では、増幅器への入力に対してアナログ的な非線形性を 与える装置を 「固定プリディストータ」 と表現して説明したが、 例えば、 「リニ ァライザ」 やその他の呼称で表現される場合であっても、 同様な装置であれば、 本発明に包含される。
また、本発明に係る歪補償装置や増幅装置や通信装置などの構成としては、 必ずしも以上に示したものに限られず、 種々な構成が用いられてもよい。 なお、 本発明は、例えば本発明に係る処理を実行する方法或いは方式や、 このような方 法や方式を実現するためのプログラムなどとして提供することも可能である。
また、 本発明の適用分野としては、 必ずしも以上に示したものに限られず、 本発明は、 種々な分野に適用することが可能なものである。
また、本発明に係る歪補償装置や増幅装置や通信装置などにおいて行われ る各種の処理としては、例えばプロセッサやメモリ等を備えたハードウエア資源 においてプロセッサが R OM (Read Only Memory) に格納された制御プログラム を実行することにより制御される構成が用いられてもよく、また、例えば当該処 理を実行するための各機能手段が独立したハードウエア回路として構成されて あよい。
また、本発明は上記の制御プログラムを格納したフロッピー (登録商標) デ イスクゃ C D (Compact Disc) 一 R OM等のコンピュータにより読み取り可能な 記録媒体や当該プログラム (自体) として把握することもでき、 当該制御プログ ラムを記録媒体からコンピュータに入力してプロセッサに実行させることによ り、 本発明に係る処理を遂行させることができる。 産業上の利用可能十生 以上説明したように、本発明に係る歪補償装置によると、例えばアナログのデ バイスから成る第 1の歪発生部が増幅器により増幅される対象となる信号に対し て増幅器で発生する歪を低減するための歪を発生させ、 これとともに、第 1の歪 S 生部の前段や後段において、例えばデジタルのデバィスを含む第 2の歪発生部が増 幅器により増幅される対象となる信号に対して増幅器で発生する歪について第 1 の歪発生部による歪では低減させられなレ、成分を低減するための歪を発生させて、 信号を増幅する増幅器で発生する歪を補償するようにしたため、歪補償の効率化を 図ることが可能であり、 具体的には、例えば従来と比べて、デジタルのデバイスに 必要となるサンプリング周波数ゃク口ック周波数を低くして、実現が容易で安価な 実施を図ることが可能である。

Claims

請 求 の 範 囲 信号を増幅する増幅器で発生する歪を補償する歪補償装置において、
増幅器により増幅される対象となる信号に対して増幅器で発生する歪を低 減するための歪を発生させる第 1の歪発生手段と、
増幅器により増幅される対象となる信号に基づいて、 当該信号に対して、 増 幅器で発生する歪について第 1の歪発生手段により発生させられる歪により 低減させられる成分以外の成分を低減するための歪を発生させる第 2の歪発 生手段と、
を備えたことを特徴とする歪補償装置。
請求の範囲第 1項に記載の歪捕償装置において、
第 1の歪発生手段は、 アナログのデバイスを用いて構成され、 増幅器により 増幅される対象となる信号に対して固定的に設定された態様で歪を発生させ る機能を有し、
第 2の歪発生手段は、 ク口ック信号に基づいて動作を行うデジタルのデバイ スを含んで構成され、
当該第 2の歪発生手段は、増幅器により増幅される対象となる信号に基づレヽ て歪の発生態様を制御する歪発生態様制御手段と、歪発生態様制御手段により 制御される歪の発生態様で増幅器により増幅される対象となる信号に対して 歪を発生させる歪発生実行手段とを用いて構成された、
ことを特徴とする歪補償装置。
請求の範囲第 1項又は請求の範囲第 2項に記載の歪補償装置において、 第 2の歪発生手段は、増幅器により増幅される対象となる信号のレベルを検 出する信号レベル検出手段と、信号のレベルと歪の発生態様との対応を記憶す る信号レベル歪発生態様対応記憶手段と、信号レベル歪発生態様対応記憶手段 の記憶内容に基づいて信号レベル検出手段により検出される信号のレベルに 対応する歪の発生態様で増幅器により増幅される対象となる信号に対して歪 を発生させる歪発生制御実行手段と、増幅器により増幅された信号に基づいて 信号レベル歪発生態様対応記憶手段により記憶される信号のレベルと歪の発 生態様との対応の内容を変更する信号レベル歪発生態様対応内容変更手段と を用いて構成された、
ことを特徴とする歪補償装置。
求の範囲第 1項乃至請求の範囲第 3項のいずれか 1項に記載の歪補償装置に おいて、
当該歪補償装置には、 増幅器により増幅される対象となる信号として、 無線 周波数のアナログ信号が入力され、
第 2の歪発生手段は、増幅器により増幅される対象となるアナ口グ信号のレ ベルを検出する信号レベル検出手段と、信号のレベルと歪の発生態様との対応 を記憶する信号レベル歪発生態様対応記憶手段を有して信号レベル検出手段 により検出される信号のレベルに対応する歪の発生態様を実現するためのデ ジタル制御信号を出力するデジタル制御信号出力手段と、デジタル制御信号出 力手段により出力されるデジタル制御信号をアナ口グ制御信号へ変換する制 御信号 D/A変換手段と、制御信号 D/A変換手段により得られるアナログ制 御信号に基づいて増幅器により増幅される対象となるアナログ信号に対して 振幅及び位相の一方又は両方の歪を発生させる振幅位相歪発生手段とを用い て構成され、
第 1の歪発生手段は、第 2の歪発生手段を構成する振幅位相歪発生手段によ り歪が発生させられたアナログ信号に対して歪を発生させ、 当該歪を発生させ た当該アナログ信号を増幅器に対して出力する、
ことを特徴とする歪補償装置。
求の範囲第 1項乃至請求の範囲第 3項のいずれか 1項に記載の歪補償装置に おいて、
当該歪補償装置には、 増幅器により増幅される対象となる信号として、 I成 分及び Q成分から成るデジタル信号が入力され、
第 2の歪発生手段は、増幅器により増幅される対象となるデジタル信号のレ ベルを検出する信号レベル検出手段と、信号のレベルと歪の発生態様との対応 を記憶する信号レベル歪発生態様対応記憶手段を有して信号レベル検出手段 により検出される信号のレベルに対応する歪の発生態様を実現するためのデ ジタル制御信号を出力するデジタル制御信号出力手段と、デジタル制御信号出 力手段により出力されるデジタル制御信号に基づいて増幅器により増幅され る対象となるデジタル信号に対して振幅及び位相の一方又は両方の歪を発生 させる振幅位相歪発生手段とを用いて構成され、
当該歪補償装置は、第 2の歪発生手段を構成する振幅位相歪発生手段により 歪が発生させられたデジタル信号をアナログ信号へ変換する信号 D /A変換 手段と、信号 D_/A変換手段により得られるアナログ信号の周波数を無線周波 数へ変換する信号周波数変換手段とを備え、
第 1の歪発生手段は、信号周波数変換手段により得られる無線周波数のアナ 口グ信号に対して歪を発生させ、 当該歪を発生させた当該アナ口グ信号を増幅 器に対して出力する、
ことを特徴とする歪補償装置。
PCT/JP2004/003966 2003-04-07 2004-03-23 歪補償装置 WO2004091094A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04722711A EP1612933A4 (en) 2003-04-07 2004-03-23 DISTORTION COMPENSATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003102798A JP2004312344A (ja) 2003-04-07 2003-04-07 歪補償装置
JP2003-102798 2003-04-07

Publications (1)

Publication Number Publication Date
WO2004091094A1 true WO2004091094A1 (ja) 2004-10-21

Family

ID=33156808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003966 WO2004091094A1 (ja) 2003-04-07 2004-03-23 歪補償装置

Country Status (4)

Country Link
EP (1) EP1612933A4 (ja)
JP (1) JP2004312344A (ja)
CN (1) CN100440727C (ja)
WO (1) WO2004091094A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501613B2 (ja) * 2005-06-13 2014-05-28 シーコア ソリューションズ 4象限リニアライザ
JP4755651B2 (ja) * 2005-10-17 2011-08-24 株式会社日立国際電気 非線形歪検出方法及び歪補償増幅装置
JP5034319B2 (ja) * 2006-05-26 2012-09-26 富士通株式会社 歪補償装置及び歪補償方法
JP2008277908A (ja) * 2007-04-25 2008-11-13 Mitsubishi Electric Corp デジタルプレディストータ
WO2008146355A1 (ja) * 2007-05-28 2008-12-04 Panasonic Corporation 歪補償装置
EP2161841B1 (en) 2008-09-08 2012-12-12 Alcatel Lucent Predistortion of a radio frequency signal
JP5121691B2 (ja) * 2008-12-22 2013-01-16 株式会社東芝 歪補償器、送信機、歪補償方法
US8737523B2 (en) * 2009-06-04 2014-05-27 Xilinx, Inc. Apparatus and method for predictive over-drive detection
US8737526B2 (en) * 2010-06-30 2014-05-27 Qualcomm Incorporated Predistortion of complex modulated waveform
US8964821B2 (en) 2011-10-14 2015-02-24 Qualcomm Incorporated Shared feedback for adaptive transmitter pre-distortion
US8837633B2 (en) 2011-10-21 2014-09-16 Xilinx, Inc. Systems and methods for digital processing based on active signal channels of a communication system
JP5782361B2 (ja) * 2011-11-01 2015-09-24 株式会社日立国際電気 ディジタル・プリディストーション方式及び増幅装置
US9219554B2 (en) * 2012-01-20 2015-12-22 Mediatek Inc. Power detection method and related communication device
JP6123497B2 (ja) 2013-06-03 2017-05-10 住友電気工業株式会社 歪補償装置および無線通信装置
JP2015099972A (ja) * 2013-11-18 2015-05-28 三菱電機株式会社 送信機モジュール
JP6565288B2 (ja) 2015-04-10 2019-08-28 富士通株式会社 無線装置
CN112763769B (zh) * 2021-04-08 2021-07-06 深圳市鼎阳科技股份有限公司 一种具有超低谐波失真的信号发生器
CN113572432A (zh) * 2021-07-09 2021-10-29 宁波大学 一种可调记忆补偿的模拟预失真器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039367A1 (en) * 1999-11-24 2001-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for generating a radio frequency signal
JP2003078360A (ja) * 2001-09-05 2003-03-14 Hitachi Kokusai Electric Inc 歪み補償装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590571B2 (ja) * 2000-08-30 2004-11-17 株式会社日立国際電気 歪補償装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039367A1 (en) * 1999-11-24 2001-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for generating a radio frequency signal
JP2003078360A (ja) * 2001-09-05 2003-03-14 Hitachi Kokusai Electric Inc 歪み補償装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1612933A4 *

Also Published As

Publication number Publication date
EP1612933A4 (en) 2006-06-21
EP1612933A1 (en) 2006-01-04
CN1751432A (zh) 2006-03-22
JP2004312344A (ja) 2004-11-04
CN100440727C (zh) 2008-12-03

Similar Documents

Publication Publication Date Title
US11095326B2 (en) Wide bandwidth digital predistortion system with reduced sampling rate
US11418155B2 (en) Digital hybrid mode power amplifier system
JP3805221B2 (ja) 歪み補償装置
US10728066B2 (en) Modulation agnostic digital hybrid mode power amplifier system and method
US8467747B2 (en) Multi-band wide band power amplifier digital predistortion system
JP5591106B2 (ja) デジタルハイブリッドモード電力増幅器システム
US6072364A (en) Adaptive digital predistortion for power amplifiers with real time modeling of memoryless complex gains
US8989307B2 (en) Power amplifier system including a composite digital predistorter
WO2004091094A1 (ja) 歪補償装置
US7321635B2 (en) Linearization of amplifiers using baseband detection and non-baseband pre-distortion
JP2014526863A (ja) マルチチャネル広帯域通信システムにおいてデジタルプリディストーションの帯域幅を増大するシステム及び方法
JP2000069098A (ja) プレディストーション回路
JPWO2006087864A1 (ja) プリディストータ
CN102939716B (zh) 多频带宽带功率放大器数字预失真系统和方法
US6654426B2 (en) Correction of nonlinearity of I/Q modulator
JP2004165900A (ja) 通信装置
JP2006135612A (ja) 送信装置及び歪み補償方法
TWI847814B (zh) 數位預失真電路以及用來在數位預失真電路中減少裁切雜訊的方法
KR100445326B1 (ko) 디지털 신호처리장치(dsp)를 이용한 전력증폭기의선형화장치
KR101688710B1 (ko) 프리디스토션 회로의 계수들을 업데이트하는 방법 및 적응 회로
LeFevre et al. RF Power Amplifier Linearization Techniques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004804343X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004722711

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004722711

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004722711

Country of ref document: EP