WO2004089532A1 - Dreidimensionaler chip - Google Patents

Dreidimensionaler chip Download PDF

Info

Publication number
WO2004089532A1
WO2004089532A1 PCT/EP2004/003720 EP2004003720W WO2004089532A1 WO 2004089532 A1 WO2004089532 A1 WO 2004089532A1 EP 2004003720 W EP2004003720 W EP 2004003720W WO 2004089532 A1 WO2004089532 A1 WO 2004089532A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
molecules
units
chip
chip according
Prior art date
Application number
PCT/EP2004/003720
Other languages
English (en)
French (fr)
Inventor
Dimitrij Plachov
Alexander Gavrushkin
Original Assignee
Dimitrij Plachov
Alexander Gavrushkin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dimitrij Plachov, Alexander Gavrushkin filed Critical Dimitrij Plachov
Priority to EP04726150A priority Critical patent/EP1615717A1/de
Publication of WO2004089532A1 publication Critical patent/WO2004089532A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00319Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks the blocks being mounted in stacked arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/0043Means for dispensing and evacuation of reagents using masks for direct application of reagents, e.g. through openings in a shutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00475Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00639Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
    • B01J2219/00641Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being continuous, e.g. porous oxide substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00664Three-dimensional arrays
    • B01J2219/00668Two-dimensional arrays within three-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00673Slice arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00707Processes involving means for analysing and characterising the products separated from the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the invention relates to a chip for examining biological samples and a method for producing these chips and claims the priority of German patent application 103 16 689.0, to which reference is made in terms of content.
  • Biochips have recently been used extensively, for example in gene analysis, mutation detection or the study of protein / protein interactions, and - generally - in the diagnosis of diseases or the assessment of the corresponding genetic disposition.
  • the known chips consist of a carrier and the "Targef 'molecules immobilized on the carrier (hereinafter also referred to as reference molecules).
  • the reference molecules are selected depending on the purpose of the investigation.
  • the principle of the biochip is the interaction between the known reference molecule and one more unknown Detect sample molecule - for example from a patient or another biological material - and draw conclusions for the purpose of the investigation from this detection.
  • the sample molecules must first hybridize with the reference molecules.
  • protein chips protein-protein interactions are examined, for example the interactions between an immobilized antigen as a reference molecule and an antibody from the patient sample. The interactions that are carried out are often made visible by means of fluorescent or isotope labels. The evaluation of the chips presupposes that the position of the reference molecules on the chip is known.
  • biochips Compared to other methods of detection, biochips have the particular advantage that they allow a complex question to be dealt with.
  • the determination of the samples on the carrier also enables a largely automated evaluation of the results, which is supported by the possibilities of information technology. Nevertheless, the known biochips have not yet achieved the desired level of sensitivity and specificity.
  • sensitivity is understood to mean the smallest concentration of sample molecules that can still be detected using the chip according to the invention.
  • the present invention is based on the idea of using a porous material as a carrier of the biochip and immobilizing the reference molecules on this porous material.
  • the manufacturing processes are all based on arranging these polymers in such a way that they represent a three-dimensional chip.
  • the chip according to the invention has the advantage that an enlarged surface is available for the immobilization of the reference molecules.
  • the density of the reference molecules per carrier unit can thus be increased.
  • porous material can make it possible to warp onto a further solid carrier substance in the sense of a support layer.
  • This not only has advantages in terms of production technology and costs, but also enables all-round access of the sample molecules from the test sample to the reference molecules. In contrast to this, access to the sample molecules is only possible on one side with known chips. The easier access improves the sensitivity of the chip.
  • One or more polymers from the following group can be selected as the carrier material: polyethylene, polyvinyl chloride, polypropylene, polyethylene terephthalate (PET), polyamide, polyimide, polystyrene, polyvinylidene chloride (PVDC), polycarbonate, cellophane, acetate or polysulfonate.
  • Table 1 provides an overview of the advantageous properties of these polymers.
  • the chip according to the invention can only consist of one layer of the carrier material.
  • the necessary stability of the layer can be achieved by choosing a suitable layer thickness.
  • different layers are advantageously combined.
  • the layers can consist of the same or different polymers.
  • the reference molecules are advantageously immobilized on the polymers before the layers are brought together.
  • the reference molecules are immobilized on the carrier by means of the methods known to the person skilled in the art.
  • the layers, each with a quality of reference molecules, are referred to below as "carrier units”.
  • the chip consists of a multiplicity of carrier units which, like a checkerboard, lie next to one another in the X and Y directions and one above the other in the Z direction.
  • the number of different reference molecules made available for the examination can be varied.
  • individual carrier units can also be used multiple times - e.g. for control purposes - occur.
  • the individual layers of the carrier units can be 0.01 to 1 micrometer.
  • the area of the support units can be up to a few square meters.
  • the support units may be advantageous to at least partially surround the support units with proppants.
  • Additional support means on the top or bottom of the carrier can also be advantageous. These can also consist of permeable or porous material. As a rule, they are not equipped with reference molecules.
  • the layers can be connected to one another by means of holding means, for example clips.
  • the carriers according to the invention can be produced easily and inexpensively.
  • the manufacturing process begins with loading individual polymer layers with reference molecules.
  • the number of layers varies depending on the purpose of the examination.
  • the layers (carrier units) are placed on top of each other to form a first block and cut, for example, with a microtome at right angles to the layer plane. This initially results in area-like cuts with “bands” of carrier units, each of which contains different reference molecules.
  • Cuts from different blocks can be stacked again to form a second block ("multilayer blocks"). This block is also cut into thin layered units perpendicular to the plane of the layers.
  • each carrier unit can be determined without any doubt beforehand or can also be traced later.
  • the carrier according to the invention can also be produced using a second method.
  • This mask has openings through which the carrier materials can be loaded with reagents - for example also with the reference molecules.
  • the openings can be cylindrical or conical, for example.
  • the mask itself can be produced using the known methods of lithography.
  • a device can be used which comprises a mask made of a solid material with a thickness of 400 to 500 ⁇ m. It has conical openings, the upper diameter of which can be 100 ⁇ m and the lower 5 ⁇ m, for example.
  • This mask can be displaced in the X and Y directions relative to the support means 4, 2. Other dimensions are also possible.
  • the support means consist of 50 to 100 ⁇ m thick plastic units with passages of 5 to 10 ⁇ m.
  • the carrier material itself is arranged in receiving means 3, which can be 50 ⁇ m thick in the embodiment shown.
  • the receptacles for the carrier material provided in these support means also have a diameter of 5 to 10 ⁇ m. These recesses can consist entirely of the porous carrier material or can be filled with it.
  • FIGS. 4 and 5 A schematic representation of the recesses filled with different carrier materials (spherical, rod-shaped or gel-like) can be seen in FIGS. 4 and 5.
  • the mask is moved in the X and Y directions relative to the support means. This process is repeated until all the desired carrier units contain the reagent. This creates First, a chip with various carrier units that expand in the X and Y directions. This chip is therefore two-dimensional. To complete the chip, the mask and the support means opposite it, on which the carrier unit is arranged, can be removed. The carrier material is thus again accessible to the sample material from both sides.
  • the carriers located in the recesses can, for example, be successively equipped with nucleic acids using the method according to the invention (FIG. 6).
  • oligonucleotides are placed over the support in a defined order. This “growth” of the reference molecules on the carrier is also shown in FIG. 7.
  • the chips produced in this way can be placed one on top of the other in the Z direction, so that the carrier units are aligned.
  • the result is a three-dimensional chip (Fig. 2).
  • the evaluation of the carrier according to the invention presupposes that the sample molecules interacting with the reference molecules can be detected within the carrier unit.
  • LCSM confocal laser scanning microscopy
  • FIG. 3 The use of confocal laser scanning microscopy for evaluating the chip according to the invention is shown schematically in FIG. 3:
  • Steps 1 to 4 shown show the recordings of the signals along the Z axis.
  • Step 5 shows the movement along the Y axis.
  • the laser beam passes through the light-refractive plate to the microscope objective and is thus focused on points with a diameter of 5 to 10 ⁇ m. This stimulates the luminescence in the spot.
  • a second light beam is sent through the plate to the detector. The signal and its spatial coordinates are documented. Then the laser moves and focuses on another spot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Chip zur Untersuchung biologischen Materials mit einer Trägereinheit aus porösem Material, an dem die der Detektion der Probenmoleküle dienenden Referenzmoleküle immobilisiert sind.

Description

"Dreidimensionaler Chip"
Die Erfindung betrifft einen Chip zur Untersuchung biologischer Proben sowie Verfahren zur Herstellung dieser Chips und nimmt die Priorität der deutschen Patentanmeldung 103 16 689.0 in Anspruch, auf die inhaltlich Bezug genommen wird.
Biochips finden in jüngster Zeit eine umfangreiche Anwendung beispielsweise bei der Genanalyse, der Mutationsdetektion oder der Untersuchung von Protein/Protein-Interaktionen sowie - allgemein - bei der Diagnose von Erkrankungen oder der Abschätzung der entsprechenden genetischen Dis- position.
Es sind sowohl Genchips als auch Proteinchips (Mikroarrays) bekannt.
Die bekannten Chips bestehen aus einem Träger und den auf dem Träger immobilisierten "Targef'-Molekülen (nachfolgend auch Referenzmoleküle). Die Referenzmoleküle werden in Abhängigkeit von dem Untersuchungszweck ausgewählt. Das Prinzip des Biochips besteht darin, die Interaktionen zwischen dem bekannten Referenzmolekül und einem noch unbekannten Probenmolekül - beispielsweise aus einem Patienten oder einem anderen biologischen Material -nachzuweisen und aus diesem Nachweis Rückschlüsse für den Untersuchungszweck zu ziehen.
Zum Nachweis von Nukleinsäuren müssen die Probenmolekule zunächst mit den referenzmolekülen hybridisieren. Bei Proteinchips werden Protein-Proteininteraktionen untersucht, beispielsweise die Interaktionen zwischen einem immobilisierten Antigen als Referenzmolekül und einem Antikörper aus der Patientenprobe. Die erfolgten Interaktionen werden häufig durch Fluoreszenz- oder Isotopenmarkierungen sichtbar gemacht. Die Auswertung der Chips setzt voraus, daß die Position der Referenzmoleküle auf dem Chip bekannt ist.
Es ist eine Vielzahl von Methoden der Chip-Herstellung bekannt. Diese basieren häufig entweder auf der direkten Synthese der Referenzmoleküle auf dem Träger oder aber der Vorabsynthese der Referenzmoleküle und ihrem anschließenden Immobilisieren auf den Träger. Die Notwendigkeit, die Position der Referenzmoleküle auf dem Chip zu determinieren, macht die bekannten Verfahren aufwendig und kostenintensiv.
Biochips haben im Vergleich zu anderen Nachweismethoden den besonderen Vorteil, daß sie die Bearbeitung einer komplexen Fragestellung erlauben. Die Festlegung der Proben auf dem Träger ermöglicht darüber hinaus eine weitgehend automatisierte Auswertung der Ergebnisse, die von den Möglichkeiten der Informationstechnologie unterstützt wird. Gleichwohl haben die bekannten Biochips noch nicht das gewünschte Maß an Sensitivität und Spezifität erreicht.
Aufgabe der vorliegenden Erfindung ist es daher, einen Biochip bereitzu- stellen, der insbesondere hinsichtlich seiner Sensitivität einen Verbesserung gegenüber dem Stand der Technik darstellt. Des weiteren werden Verfahren vorgeschlagen, die eine möglichst einfache, schnelle und kostengünstige Herstellung dieser Chips ermöglichen.
Unter Sensitivität wird im vorliegenden Zusammenhang die kleinste Konzen- tration an Probemolekülen verstanden, die mit Hilfe des erfindungsgemäßen Chips noch detektiert werden kann.
Diese Aufgabe wird gelöst durch eine Vorrichtung gemäß dem Hauptanspruch. Die Herstellungsverfahren sind jeweils Gegenstand unabhängiger Verfahrensansprüche.
Der vorliegenden Erfindung liegt der Gedanke zugrunde, ein poröses Material als Träger des Biochips zu verwenden und die Referenzmoleküle an diesem porösen Material zu immobilisieren. Die Herstellungsverfahren basieren übereinstimmend darauf, diese Polymere derart anzuordnen, daß sie im einen dreidimensionalen Chip darstellen.
Der erfindungsgemäße Chip hat aufgrund des porösen Materials den Vorteil, daß für die Immobilisierung der Referenzmoleküle eine vergrößerte Oberflä- ehe zur Verfügung steht. Die Dichte der Referenzmoleküle pro Trägereinheit kann somit erhöht werden.
Des weiteren kann die Verwendung von porösem Material es ermöglichen, auf eine weitere feste Trägersubstanz im Sinne einer Stützschicht zu ver- ziehten. Dies hat nicht nur produktionstechnische und kostenminimierende Vorteile, sondern ermöglicht darüber hinaus den allseitigen Zugang der Probenmolekule aus der Untersuchungsprobe zu den Referenzmolekülen. Im Gegensatz dazu ist der Zugang zu den Probenmolekülen bei bekannten Chips immer nur einseitig möglich. Durch den erleichterten Zugang wird eine Verbesserung der Sensitivität des Chips erreicht. Als Trägermaterial können ein oder mehrere Polymere aus folgender Gruppe ausgewählt werden: Polyethylen, Polyvinylchlorid, Polypropylen, Polyethylentereftalat (PET), Polyamid, Polyimid, Polystyrol, Polyvinylidenchlorid (PVDC), Polycarbonat, Cellophan, Acetat oder Polysulfonat.
Eine Übersicht über die vorteilhaften Eigenschaften dieser Polymere gibt die Tabelle 1.
45 738 K
Tabelle 1
Figure imgf000007_0001
Frostbeständigkeit der Polymere: -15°C bis -60°C elektrische Leitfähigkeit bei 50 Hz; 60 bis 600 kV/mm partieller Widerstand: 10 "9 bis 10 "18 Ohm/cm
Der erfindungsgemäße Chip kann lediglich aus einer Schicht des Trägermaterials bestehen. Die notwenige Stabilität der Schicht kann durch die Wahl einer dafür geeigneten Schichtdicke erreicht werden. Vorteilhafterweise werden aber verschiedenen Schichten kombiniert. Die Schichten können aus demselben oder aber aus verschiedenen Polymeren bestehen.
Vorteilhafterweise werden die Referenzmoleküle noch vor dem Zusammenbringen der Schichten auf den Polymeren immobilisiert. Die Immobilisierung der Referenzmoleküle auf dem Träger erfolgt mittels der dem Fachmann bekannten Methoden. Die Schichten mit jeweils einer Qualität von Referenzmolekülen werden nachfolgend als "Trägereinheiten" bezeichnet.
In einer besonders vorteilhaften Ausführungsform besteht der Chip aus einer Vielzahl von Trägereinheiten, die - schachbrettartig - in X - und Y- Richtung sowie übereinander in Z-Richtung nebeneinander liegen.
Durch die Erhöhung der Anzahl der verwendeten Trägereinheiten läßt sich die Anzahl der unterschiedlichen für die Untersuchung bereitgestellten Referenzmoleküle variieren. Selbstverständlich können einzelne Trägereinheiten auch mehrfach - z.B. zu Kontrollzwecken - vorkommen.
In einer bevorzugten Ausführungsform können die einzelnen Schichten der Trägereinheiten 0,01 bis 1 Mikrometer betragen. Die Fläche der Trägereinheiten kann bis zu einigen Quadratmetern ausgedehnt sein.
Bei einigen als poröses Trägermaterial verwendeten Polymeren, oder bei sehr geringen Schichtdicken, kann es vorteilhaft sein, die Trägereinheiten zumindest teilweise von Stützmitteln zu umgeben. Auch kann weitere Stützmittel auf der Oberseite oder Unterseite des Trägers vorteilhaft sein. Diese können ebenso aus durchlässigem oder porösem Material bestehen. Sie sind in der Regel nicht mit Referenzmolekülen bestückt. Darüber hinaus können die Schichten über Haltemittel, wie beispielsweise Klammern, miteinander verbunden sein.
Die erfindungsgemäßen Träger lassen sich leicht und kostengünstig her- stellen.
In einer ersten Alternative beginnt der Herstellungsprozeß damit, einzelne Polymerschichten mit Referenzmolekülen zu beschicken. Die Anzahl der Schichten variiert in Abhängigkeit von dem Untersuchungszweck. In einem nächsten Schritt werden die Schichten (Trägereinheiten) zu einem ersten Block aufeinandergelegt und beispielsweise mit einem Mikrotom rechtwinklig zu der Schichtebene geschnitten. Daraus ergeben sich zunächst flächenartige Schnitte mit „Bändern" aus Trägereinheiten, die jeweils unterschiedliche Referenzmoleküle enthalten.
Schnitte von unterschiedlichen Blöcken können erneut zu einem zweiten Block aufeinandergelegt werden ("Multilayerblocks"). Auch dieser Block wird in dünne schichtförmige Einheiten rechtwinklig zu der Ebene der Schichten geschnitten.
Im Ergebnis entsteht bei dieser Kombination verschiedener Trägereinheiten mit anschließendem Schnitt eine "Multimatrix", die jede Trägereinheit, die ursprünglich in den jeweiligen Blöcken eingesetzt wurde, enthält. Dieses Herstellungsprinzip ist in der Fig. 1 dargestellt.
Bei Kenntnis der eingesetzten Schichten und Kenntnis der Schnittführung sowie erneutem Zusammensetzen der Schnitte läßt sich die Position einer jeden Trägereinheit zweifelsfrei vorherbestimmen oder auch nachträglich nachvollziehen.
Der erfindungsgemäße Träger läßt sich alternativ auch über ein zweites Verfahren herstellen. Dieses wird in Fig. 2 skizziert: Dieses Verfahren besteht im Kern darin, die Trägereinheiten zunächst auf einem Stützmittel anzuordnen und am gegenüberliegenden Ende der Trägereinheiten mit einer verschieblichen Maske zu bedecken. Diese Maske weist Öffnungen auf, durch die die Trägermaterialien mit Reagenzien - beispielsweise auch mit den Referenzmolekülen - beschickt werden können. Die Öffnungen können beispielsweise zylindrisch oder konisch ausgestaltet sein. Die Maske selber kann über die bekannten Verfahren der Lithographie erzeugt werden.
Nach der in der Fig. 2 dargestellten Übersicht kann eine Vorrichtung eingesetzt werden, die eine Maske aus einem festen Material von 400 bis 500 μm Dicke umfaßt. Sie weist konische Öffnungen auf, deren oberer Durchmesser beispielsweise 100 μm und der untere 5 μm betragen kann. Diese Maske ist in X - und Y-Richtung relativ zu den Stützmitteln 4, 2 verschieblich. Es sind auch anderen Abmessungen möglich.
Die Stützmittel bestehen in dieser Ausführungsform aus 50 bis 100 μm starken Plastikeinheiten mit Durchlässen von 5 bis 10 μm. Das Trägermaterial selber ist in Aufnahmemitteln 3 angeordnet, die in der dargestellten Ausführungsform 50 μm dick sein können. Die in diesen Stützmitteln vorgesehenen Aufnahmen für das Trägermaterial haben ebenso einen Durchmesser von 5 bis 10 μm. Diese Ausnehmungen können vollständig aus dem porösen Trägermaterial bestehen oder aber mit ihm angefüllt sein.
Eine schematische Darstellung der mit verschiedenartigen Trägermaterialien gefüllten Ausnehmungen (kugelförmig, stäbchenförmig oder gelartig) ist in den Fig. 4 und 5 erkennbar.
Zur Beschickung des Chips wird die Maske in X- und Y-Richtung relativ zu den Stützmitteln bewegt. Dieser Vorgang wird solange wiederholt, bis alle gewünschten Trägereinheiten das Reagenz enthält. Dabei entsteht zunächst ein Chip mit verschiedenen Trägereinheiten, die sich in X- und Y- Richtung ausdehnen. Dieser Chip ist demnach zweidimensional. Zur Fertigstellung des Chips kann die Maske sowie das ihr gegenüberliegende Stützmittel, auf dem die Trägereinheit angeordnet sind, entfernt werden. Somit wird das Trägermaterial erneut von beiden Seiten dem Probenmaterial zugänglich.
Die in den Ausnehmungen befindlichen Träger können mittels des erfindungsgemäßen Verfahrens beispielsweise sukzessiv mit Nukleinsäuren bestückt werden (Fig. 6). Dazu werden Oligonukleotide in definierter Reihenfolge über den Träger gegeben. Dieses „Wachstum" der Referenzmoleküle auf dem Träger ist ebenso in der Fig. 7 dargestellt.
In einer weiteren Ausführungsform können die derart hergestellten Chips in Z-Richtung aufeinandergelegt werden, so daß die Trägereinheiten fluchten. Damit entsteht im Ergebnis ein dreidimensionaler Chip (Fig. 2).
Die Auswertung der erfindungsgemäßen Träger setzt voraus, daß die mit den Referenzmolekülen interagierenden Probenmolekule innerhalb der Trä- gereinheit detektierbar sind.
Die Untersuchung dreidimensionaler Anordnungen ist beispielsweise durch die konfokale Laserscanmikroskopie (LCSM) möglich. Diese erlaubt eine Auswertung auch unterhalb der Chipoberfläche.
Die Verwendung der konfokalen Laserscanmikroskopie zur Auswertung des erfindungsgemäßen Chips wird in Fig. 3 schematisch dargestellt:
Die dargestellten Schritte 1 bis 4 zeigt die Aufnahmen der Signale entlang der Z-Achse. Der Schritt 5 gibt die Bewegung entlang der Y-Achse wieder. Im Schritt 1 tritt der Laserstrahl durch die licht-brechende Platte zu dem Objektiv des Mikroskops und wird damit auf Punkte mit einem Durchmesser von 5 bis 10 μm fokussiert. Damit wird die Lumineszenz in dem Spot angeregt. Als Ergebnis dieser Anregung wird ein zweiter Lichtstrahl durch die Platte zu dem Detektor geschickt. Das Signal und deren räumliche Koordinaten werden dokumentiert. Danach bewegt sich der Laser und fokussiert auf einen weiteren Spot.

Claims

Patentansprüche
1. Chip zur Untersuchung biologischen Materials mit einer Trägereinheit aus porösem Material, an dem die der Detektion der Probenmolekule dienenden Referenzmoleküle immobilisiert sind.
2. Chip nach Anspruch 1 gekennzeichnet durch mindestens zwei Trägereinheiten mit unterschiedlichen Referenzmolekülen, die in der X- oder Y-Achse aneinander liegen.
3. Chip nach Anspruch 2, dadurch gekennzeichnet, daß mindestens einige der Trägereinheiten in der Z-Achse aneinander liegen.
4. Chip nach einem der vorherigen Ansprüche, dadurch gekennzeich- net, daß die Trägereinheiten mindestens teilweise von Stützmitteln oder Haltemitteln umgeben sind.
5. Chip nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß die Trägereinheiten eins der folgenden Polymere umfassen: Polyethylen, Polyvinylchlorid, Polypropylen, Polyethylentereftalat
(PET), Polyamid, Polyimid, Polystyrol, Polyvinylidenchlorid (PVDC), Polycarbonat, Cellophan, Acetat oder Polysulfonat.
6. Verfahren zur Herstellung eines Chips nach einem der vorherigen Ansprüche mit folgenden Schritten:
a. Immobilisieren einer Gruppe von Probenmolekülen auf einer ersten Trägereinheit und Immobilisieren einer zweiten Gruppe von Probenmolekülen auf einer zweiten Trägereinheit, b. Anordnen der Trägereinheiten zu einem Block mit gemeinsamer Z-
Achse, c. Anfertigen von Schnitten rechtwinklig zur Ebene des Blockes, d. Wiederholen der Schritte a. bis b. zur Bereitstellung eines zweiten Blockes aus Trägereinheiten sowie Schnitten davon, e. Kombinieren der Schnitte aus c. und d. zu einem Block mit gemeinsamer Z-Achse, f. Wiederholen des Schrittes von b.
7. Verfahren zur Herstellung eines Chips nach einem der Ansprüche 1 bis 5 mit folgenden Schritten:
a. Anordnen von Trägereinheiten aus porösem Material auf einem
Stützmittel, b. Bedecken der Trägereinheiten an ihrem dem Stützmittel gegenüberliegenden Ende mit einer Maske mit mindestens einer Öffnung, die einen Durchlaß zu einer unterhalb der Maske liegenden Trägereinheit ermöglichen kann, c. Verfahren der Maske, so daß die Öffnung über eine Trägereinheit liegt, d. Beschicken der Trägereinheit mit Referenzmolekülen, e. Untersuchung von biologischen Molekülen eines dreidimensiona- len Trägers gekennzeichnet durch die Verwendung der konfokalen
Laserscanmikroskopie.
8. Verwendung der konfokalen Laserscanmikroskopie zur Auswertung eines dreidimensionalen Chip.
PCT/EP2004/003720 2003-04-10 2004-04-07 Dreidimensionaler chip WO2004089532A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04726150A EP1615717A1 (de) 2003-04-10 2004-04-07 Dreidimensionaler chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003116689 DE10316689A1 (de) 2003-04-10 2003-04-10 Dreidimensionaler Chip
DE10316689.0 2003-04-10

Publications (1)

Publication Number Publication Date
WO2004089532A1 true WO2004089532A1 (de) 2004-10-21

Family

ID=33039027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003720 WO2004089532A1 (de) 2003-04-10 2004-04-07 Dreidimensionaler chip

Country Status (3)

Country Link
EP (1) EP1615717A1 (de)
DE (1) DE10316689A1 (de)
WO (1) WO2004089532A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018796A1 (en) * 2003-08-21 2005-03-03 Pamgene B.V. Microarray support for bioprobe synthesis
EP1910826A2 (de) * 2005-06-15 2008-04-16 Arizona Board of Regents, acting for and on behalf of Arizona State University Mikrostruktur- und mikrodomänen-mikroarrays, verfahrenzur herstellung und verwendung davon
EP3177707A4 (de) * 2014-08-08 2018-01-24 Applied Materials, Inc. Gemusterte abscheidung von flüssigkeitsfilmen für biomedizinische vorrichtungen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013313A1 (en) * 1997-09-11 1999-03-18 Genovations, Inc. Method of making high density arrays
WO1999060170A1 (en) * 1998-05-21 1999-11-25 Hyseq, Inc. Linear arrays of immobilized compounds and methods of using same
WO2001009607A1 (en) * 1999-07-30 2001-02-08 Large Scale Proteomics, Corp. Microarrays and their manufacture
US20020051995A1 (en) * 2000-10-30 2002-05-02 Rajan Kumar Stacked arrays
US20020094533A1 (en) * 2000-10-10 2002-07-18 Hess Robert A. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
WO2002081077A2 (en) * 2001-04-05 2002-10-17 Millennium Pharmaceuticals, Inc. System for the synthesis of spatially separated libraries of compounds and methods for the use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013313A1 (en) * 1997-09-11 1999-03-18 Genovations, Inc. Method of making high density arrays
WO1999060170A1 (en) * 1998-05-21 1999-11-25 Hyseq, Inc. Linear arrays of immobilized compounds and methods of using same
WO2001009607A1 (en) * 1999-07-30 2001-02-08 Large Scale Proteomics, Corp. Microarrays and their manufacture
US20020094533A1 (en) * 2000-10-10 2002-07-18 Hess Robert A. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US20020051995A1 (en) * 2000-10-30 2002-05-02 Rajan Kumar Stacked arrays
WO2002081077A2 (en) * 2001-04-05 2002-10-17 Millennium Pharmaceuticals, Inc. System for the synthesis of spatially separated libraries of compounds and methods for the use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018796A1 (en) * 2003-08-21 2005-03-03 Pamgene B.V. Microarray support for bioprobe synthesis
EP1910826A2 (de) * 2005-06-15 2008-04-16 Arizona Board of Regents, acting for and on behalf of Arizona State University Mikrostruktur- und mikrodomänen-mikroarrays, verfahrenzur herstellung und verwendung davon
EP1910826A4 (de) * 2005-06-15 2010-01-20 Univ Arizona State Mikrostruktur- und mikrodomänen-mikroarrays, verfahren zur herstellung und verwendung davon
EP3177707A4 (de) * 2014-08-08 2018-01-24 Applied Materials, Inc. Gemusterte abscheidung von flüssigkeitsfilmen für biomedizinische vorrichtungen

Also Published As

Publication number Publication date
DE10316689A1 (de) 2004-10-28
EP1615717A1 (de) 2006-01-18
DE10316689A8 (de) 2005-02-10

Similar Documents

Publication Publication Date Title
DE60219040T2 (de) Dielektrophoretisches verfahren und anordnung für hoch-durchsatz screening
DE69833562T2 (de) Nanoelektrodenanordnung
DE19740263C2 (de) Kachelungsverfahren zum Bauen eines chemischen Arrays
EP1277055B1 (de) Biochip zur archivierung und labormedizinischen analyse von biologischem probenmaterial
WO2002085926A2 (de) Verfahren zur herstellung stabiler, regenerierbarer antikörper-arrays
DE112007001044T5 (de) Nanoporenplattformen für Ionenkanalaufzeichnungen und Einzelmolekül-Erkennung und Analyse
DE10112505C1 (de) Sensoranordnung und Vorrichtung zur amperometrischen und/oder potentiometrischen, pharmakologischen Wirkort- und/oder Wirkstofftestung sowie Verfahren zur amperometrischen und/oder potentiometrischen, pharmakologischen Wirkort- und/oder Wirkstofftestung
WO2008122267A2 (de) Biochip für die fluoreszenzanalyse von einzelnen transportern
EP2356215A1 (de) Substrate zur selektion und spezifischen beeinflussung der funktion von zellen
WO2004089532A1 (de) Dreidimensionaler chip
WO2014206531A1 (de) Vorrichtung und verfahren zur aufbewahrung und zum transport einer körperflüssigkeitsprobe
DE10110511C1 (de) Verfahren zur Herstellung eines Arrays zur Detektion von Komponenten aus einer biologischen Probe
DE102011088741B4 (de) Verfahren und Anordnung zum Markieren und Separieren von Zellen aus einer Zellsuspension
DE602004001263T2 (de) Ausrichtstruktur von Kügelchen und deren Herstellung; Ausrichtungsmethode für Kapillarkügelchenanordnung
EP1360492B1 (de) Probenträger für chemische und biologische proben
DE10032730A1 (de) Trägerplatte und Verfahren zur Durchführung funktioneller Tests
DE10117135A1 (de) Verfahren zur Herstellung einer Vielzahl identischer Kopien einer planaren Testanordnung von Sondenmolekülen
EP3961212A1 (de) Vorrichtung und verfahren zur entfernung von freiem biotin aus einer flüssigen probe
DE102018115391A1 (de) Assay, Verfahren zu seiner Herstellung sowie seine Verwendung
WO2010075934A2 (de) Sortierung biologischer proben an nanostrukturierten grenzflächen
DE19803077C1 (de) Verfahren zur Herstellung von Testkörpern zum spezifischen Nachweis einzelner Reaktanden von Rezeptorsubstanz-Ligandensubstanz Komplexen
DE102016212834A1 (de) Verfahren, Nanopartikel und Kit zum Nachweis von Zielstrukturen
DE19933212A1 (de) Methode und Vorrichtung zur Hochdurchsatzanalyse molekularer Interaktionen über Oberflächen Plasmonen Resonanz
DE102013101138A1 (de) Verfahren und Vorrichtung zum Untersuchen einer Zellprobe
DE10326331A1 (de) Verfahren zur Kontrolle von Microarrays und/oder Überwachung von Experimenten unter Verwendung von Microarrays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004726150

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004726150

Country of ref document: EP