WO2004087902A2 - Neue pflanzliche acyltransferasen spezifisch für langkettige mehrfach ungesättigte fettsäuren - Google Patents

Neue pflanzliche acyltransferasen spezifisch für langkettige mehrfach ungesättigte fettsäuren Download PDF

Info

Publication number
WO2004087902A2
WO2004087902A2 PCT/EP2004/003224 EP2004003224W WO2004087902A2 WO 2004087902 A2 WO2004087902 A2 WO 2004087902A2 EP 2004003224 W EP2004003224 W EP 2004003224W WO 2004087902 A2 WO2004087902 A2 WO 2004087902A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
fatty acids
acyl
coa
Prior art date
Application number
PCT/EP2004/003224
Other languages
English (en)
French (fr)
Other versions
WO2004087902A3 (de
Inventor
Andreas Renz
Jörg BAUER
Margit Frentzen
Nursen SÖZER
Stobart Keith
Thomas Fraser
Colin M. Lazarus
Baoxiu Qi
Amine Abbadi
Ernst Heinz
Original Assignee
University Of Bristol
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Bristol filed Critical University Of Bristol
Priority to ES04723591T priority Critical patent/ES2421138T3/es
Priority to EP04723591A priority patent/EP1613746B1/de
Priority to CA2520795A priority patent/CA2520795C/en
Priority to AU2004225838A priority patent/AU2004225838B2/en
Priority to US10/552,013 priority patent/US7855321B2/en
Publication of WO2004087902A2 publication Critical patent/WO2004087902A2/de
Publication of WO2004087902A3 publication Critical patent/WO2004087902A3/de
Priority to AU2010200180A priority patent/AU2010200180B2/en
Priority to US12/844,938 priority patent/US8354569B2/en
Priority to US13/707,068 priority patent/US20130084611A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Definitions

  • New plant-based acyltransferases specifically for long-chain polyunsaturated fatty acids specifically for long-chain polyunsaturated fatty acids
  • the present invention relates to a method for producing long-chain polyunsaturated fatty acids in an organism by introducing nucleic acids into the organism which code for polypeptides with acyltransferase activity.
  • these nucleic acid sequences can optionally be expressed in the organism together with further nucleic acid sequences which code for polypeptides of the biosynthesis of the fatty acid or lipid metabolism.
  • the invention further relates to a process for the production of oils and / or triacylglycerides with an increased content of long-chain polyunsaturated fatty acids.
  • the invention further relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms containing the nucleic acid sequences according to the invention, vectors containing the nucleic acid sequences and / or the nucleic acid constructs and transgenic organisms containing the aforementioned nucleic acid sequences, nucleic acid constructs and / or vectors.
  • Another part of the invention relates to oils, lipids and / or fatty acids produced by the process according to the invention and their use.
  • Fatty acids and triacylglycerides have a variety of applications in the food industry, animal nutrition, cosmetics and pharmaceuticals. Depending on whether it is free saturated and unsaturated fatty acids or triacylglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications.
  • Polyunsaturated ⁇ -3 fatty acids and ⁇ -6 fatty acids are an important part of animal and human food. Due to the composition of human food that is common today, the addition of polyunsaturated ⁇ -3 fatty acids is preferred in Fish oils occur, particularly important for food.
  • DHA docosahexaenoic acid
  • EPA icosapentaenoic acid
  • polyunsaturated fatty acids are referred to as PUFA, PUFAs, LCPUFA or LCPUFAs (fioly unsaturated fatty acids, PUFA.
  • PUFA polyunsaturated fatty acids
  • PUFAs polyunsaturated fatty acids
  • LCPUFA long-chain polyunsaturated fatty acids
  • the free fatty acids are advantageously produced by saponification.
  • Common natural sources of these fatty acids are fish such as herring, salmon, sardine, goldfish, eel, carp, trout, halibut, mackerel, pikeperch or tuna or algae.
  • oils with saturated or unsaturated fatty acids are preferred, for example lipids with unsaturated fatty acids, especially polyunsaturated fatty acids, are preferred in human nutrition.
  • the polyunsaturated ⁇ -3 fatty acids are said to have a positive effect on the blood choiesterin level and thus on the possibility of preventing heart disease. Adding these ⁇ -3 fatty acids to food can significantly reduce the risk of heart disease, stroke, or high blood pressure. Inflammatory, particularly chronic inflammatory processes in the context of immunological diseases such as rheumatoid arthritis can also be positively influenced by ⁇ -3 fatty acids. They are therefore added to foods, especially dietary foods, or are used in medicines.
  • ⁇ -6 fatty acids such as arachidonic acid tend to have a negative effect on these diseases due to our usual food composition.
  • ⁇ -3 and ⁇ -6 fatty acids are precursors of tissue hormones, the so-called eicosanoids such as prostaglandins, which are derived from dihomo- ⁇ -linolenic acid, arachidonic acid and eicosapentaenoic acid, the thromoxanes and leucotienes, which are derived from Derive arachidonic acid and eicosapentaenoic acid.
  • Eicosanoids which are formed from ⁇ -6 fatty acids, generally promote inflammatory reactions, while eicosanoids (so-called PG 3 series) from ⁇ -3 fatty acids have little or no inflammation-promoting effect. Due to their positive properties, there has been no lack in the past of making genes involved in the synthesis of fatty acids or triglycerides available for the production of oils in various organisms with a modified content of unsaturated fatty acids. Thus, a ⁇ -9 desaturase is described in WO 91/13972 and its US equivalent. In WO 93/11245 a ⁇ -15 desaturase is claimed in WO 94/11516 a ⁇ -12 desaturase.
  • membrane-bound desaturases are characterized by introduction into a suitable organism, which is then examined for enzyme activity by means of starting material and product analysis.
  • ⁇ -6 desaturases are described in WO 93/06712, US 5,614,393, US 5,614,393, WO 96/21022, WO 00/21557 and WO 99/27111 and also the use for production in transgenic organisms as described in WO 98/46763, WO 98/46764, WO 9846765.
  • microorganisms for the production of PUFAs are microorganisms such as microalgae such as Phaeodactylum tricornutum, Porphoridium species, Thraustochytria species, Schizochytria species or Crypthecodinium species, ciliates, such as Stylonychia or Colpidium, fungi, such as Mortierella or Moomorthora or Entomophthora such as Physcomitrella, Ceratodon and Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al.
  • microalgae such as Phaeodactylum tricornutum, Porphoridium species, Thraustochytria species, Schizochytria species or Crypthecodinium species
  • ciliates such as Stylonychia or
  • LCPUFAs are present in microorganisms and lower plants either exclusively in the form of membrane lipids, as in Physcomitrella and Phaeodactylum, or they are present in membrane lipids and triacylglycerides, as in Schizochytrium and Mortierella.
  • the incorporation of LCPUFAs in lipids and oils is catalyzed by various acyl transferases and transacylases. These enzymes are already known for the incorporation of saturated and unsaturated fatty acids [AR Slabas (2001) J. Plant Physiology 158: 505-513; M. Frentzen (1998) Fat / Lipid 100: 161-166); S. Gases et al. (1998) Proc. Nat.
  • acyltransferases are enzymes of the so-called Kennedy pathway, which are located on the cytoplasmic side of the membrane system of the endoplasmic reticulum, hereinafter referred to as "ER".
  • ER membranes can be isolated experimentally as so-called "microsomal fractions" from various organisms [DS Knutzon et al. (1995) Plant Physiology 109: 999-1006; S. Mishra & Y Kamisaka (2001) Biochemistry 355: 315-322; US 5968791].
  • These ER-linked acyltransferases in the microsomal fraction use acyl-CoA as the activated form of the fatty acids.
  • Glycerin-3-phosphate acyltransferase catalyzes the incorporation of acyl groups at the sn-1 position of glycerol-3-phosphate.
  • 1-Acylglycerol-3-phosphate acyltransferase (EG2.3.1.51), also called lysophosphatidic acid acyltransferase, hereinafter referred to as LPAAT, catalyzes the incorporation of acyl groups at the sn-2 position of lysophosphatidic acid, hereinafter abbreviated as LPA.
  • diacylglycerol acyltransferase After dephosphorylation of phosphatidic acid by phosphatidic acid phosphatase, diacylglycerol acyltransferase, hereinafter called DAGAT, catalyzes the incorporation of acyl groups at the sn-3 position of diacylglycerol.
  • DAGAT diacylglycerol acyltransferase
  • other enzymes are involved in the incorporation of fatty acids in triacylglycerides that can incorporate acyl groups from membrane lipids into triacylglycerides.
  • Phospholipid diacylglycerol acyltransferase hereinafter referred to as PDAT
  • LPCAT lysophosphatidylcholine acyltransferase
  • lecithin cholesterol acyl transferase can also be involved in the transfer of acyl groups from membrane lipids to triacylglycerides.
  • LCAT lecithin cholesterol acyl transferase
  • a human lysophosphatidic acid acyltransferase discloses and its possible use for the treatment of diseases, as a diagnostic agent and a method for identifying modulators of human LPAAT.
  • Leung et al. are described in WO 98/54303 mammalian lysophosphatidic acid acyltransferases.
  • Leung et al. a method of screening pharmaceutical compounds for use, for example, in the treatment of inflammation.
  • acyltransferases with the most varied enzymatic functions have been described in the literature and patents, for example WO 98/55632 and WO 93/10241 describe fatty acid-alcohol acyltransferases which are involved in the wax synthesis.
  • WO 98/55631 describes a DAGAT (diacylglycerol acyltransferase) from Mortierella ramanniana and a wax synthase derived from jojoba, which also has DAGAT activity. Slabas et al.
  • WO 94/13814 discloses a membrane-bound sn2-specific acyl transferase, which has a different selectivity when incorporating monounsaturated erucic acid for the sn2 position and thus enables an increased yield of erucic acid in rapeseed.
  • a corresponding enzyme or gene from Limnanthes douglasii is described in WO 96/24674.
  • Davies et al. describe in WO 95/27791 LPAATs which are specific for medium-length fatty acids and incorporate them into the sn2 position of triglycerides.
  • Further new plant acyltransferase sequences that were found via homology comparisons with sequences from public databases are described by Lassner et al. (WO 00/18889). Information about the specific function of these acyltransferase sequences or biochemical data on the corresponding enzymes cannot be found in WO 00/18889.
  • LPGAT The enzymatic activity of an LPGAT was first described in rats [Land (1960) Journal of Biological Ghemistry 235: 2233-2237].
  • a plastid isoform of LPGAT exists in plants [ ⁇ kermoun et al. (2000) Biochemical Society Transactions 28: 713-715] and an ER-bound isoform [Tumaney and Rajasekharan (1999) Biochimica et Biophysica Acta 1439: 47-56; Fraser and Stobart, Biochemical Society Transactions (2000) 28: 715-7718].
  • LPCAT is involved in the biosynthesis and transacylation of polyunsaturated fatty acids in both animals and plants [Stymne and Stobart (1984) Biochem.
  • LPCAT lysophospholipid acyltransferase
  • LPLAT lysophospholipid acyltransferase
  • LCPUFAs in higher plants, preferably in oilseeds such as rapeseed, linseed, sunflower and soybeans, since large quantities of high-quality LCPUFAs for the food industry, animal nutrition and for pharmaceutical purposes can be obtained inexpensively in this way.
  • genes coding for enzymes of the biosynthesis of LCPUFAs are advantageously introduced and expressed in oilseeds using genetic engineering methods. These are genes coding for ⁇ -6-desaturase, ⁇ -6-elongase, ⁇ -5-desaturase, ⁇ -5-elongase and ⁇ -4-desaturase. These genes can advantageously be isolated from microorganisms and lower plants that produce LCPUFAs and in the membranes or triacylglycerides Install. ⁇ -6-desaturase genes from the moss Physcomitrella patens and ⁇ -6-elongase genes from P. patens and the nematode C. elegans have already been isolated.
  • Transgenic plants which express genes coding for LCPUFA biosynthesis enzymes are suitable for producing small amounts of these LCPUFAs, but there is a risk that they will not be incorporated into triacylglycerides but into membranes because the endogenous acyltransferases and transacylases LCPUFAs may not be recognized as a substrate and consequently not incorporated into triacylglycerides. This is undesirable for the following reasons: (i) The major lipid content in oilseeds is triacylglycerides. From an economic point of view, it is therefore necessary to enrich LCPUFAs in triacylglycerides. LCPUFAs installed in membranes can change the physical properties of the membranes and thus have harmful effects on the integrity and transport properties of the membranes and on the stress tolerance of plants.
  • the first transgenic plants which contain and express genes coding for enzymes of LCPUFA biosynthesis and which produce LCPUFAs were described for the first time in DE 102 19203 (process for the production of polyunsaturated fatty acids in plants).
  • these plants produce LCPUFAs in quantities that have to be further optimized for processing the oils contained in the plants.
  • the object was therefore to develop a process for producing polyunsaturated fatty acids in an organism, advantageously in a eukaryotic organism, preferably in a plant.
  • This object was achieved by the method according to the invention for producing polyunsaturated fatty acids in an organism, characterized in that the method comprises the following steps: a) introducing at least one nucleic acid sequence into the organism with that in SEQ ID NO: 1, SEQ ID NO: 3 , SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 or SEQ ID NO: 20 shown sequence which codes for a polypeptide with a lysophosphatidic acid acyltransferase activity; or b) introducing at least one nucleic acid sequence into the organism with the sequence shown in SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26, which codes for a polypeptide
  • SEQ ID NO: 18 SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 can be derived, or f) introducing at least one derivative of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11,
  • SEQ ID NO: 13 SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 nucleic acid sequence shown in the organism for polypeptides with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 5 , SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,
  • SEQ ID NO: 15 encodes amino acid sequence shown and at least 40% homology at the amino acid level with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,
  • SEQ ID NO: 15 SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 or SEQ ID NO: 37 and have an equivalent lysophosphatidic acid acyltransferase activity, glycerin-3-phosphate acyltransferase activity, diacylglycerol acyltransferase activity or lecithin
  • the polyunsaturated fatty acids produced in the process according to the invention advantageously contain at least two, advantageously three, four or five, double bonds.
  • the fatty acids particularly advantageously contain four or five double bonds.
  • Fatty acids produced in the process advantageously have 18, 20, 22 or 24 carbon atoms in the fatty acid chain, preferably the fatty acids contain 20, 22 or 24 carbon atoms in the fatty acid chain.
  • Saturated fatty acids are advantageously reacted little or not at all with the nucleic acids used in the process. Little is understood to mean that, compared to polyunsaturated fatty acids, the saturated fatty acids with less than 5% of the activity, advantageously less than 3%, can be implemented particularly advantageously with less than 2%.
  • These fatty acids produced can be produced as the only product in the process or can be present in a fatty acid mixture.
  • nucleic acid sequences used in the method according to the invention are isolated nucleic acid sequences which code for polypeptides with lysophosphatidic acid acyltransferase activity, glycerol-3-phosphate acyltransferase activity, diacylglycerol acyltransferase activity and / or lecithin cholesferin acyltransferase activity.
  • the polyunsaturated fatty acids produced in the process are advantageously bound in membrane lipids and / or triacylglycerides, but can also occur in the organism as free fatty acids or bound in the form of other fatty acid esters. As said, they can be present as “pure products” or advantageously in the form of mixtures of different fatty acids or mixtures of different glycerides.
  • the different fatty acids bound in the triacylglycerides can be derived from short-chain fatty acids with 4 to 6 C-atoms, medium-chain fatty acids with 8 to 12 C-atoms or long-chain fatty acids with 14 to 24 C-atoms; the long-chain fatty acids are particularly preferred the long-chain fatty acids LCPUFAs of C 8 -, C 2 o-, C22- and / or C 2 - fatty acids are preferred.
  • fatty acid esters with polyunsaturated C 18 , C 20 , C 22 and / or C 2 fatty acid molecules with at least two double bonds are advantageously produced in the fatty acid ester.
  • the fatty acid esters with polyunsaturated C 18 , C 20 , C 22 and / or C 2 fatty acid molecules can be obtained from the organisms used for the production of the fatty acid esters, for example in the form of an oil or lipid Form of compounds such as sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipid, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidyiglycerol, phosphatidylinositol or diphosphatidylglycerol, diacylacylglycerol, dieoacylylglyceryl diecylglycerol, diacylacylglycerol diecodiacylglycerol, diacylacylglycerol diecylglycidylglycerol, diacylacylglycerol, diacidacylglycidy
  • the plants also advantageously contain the polyunsaturated fatty acids as free fatty acids or bound in other compounds in the organisms.
  • the various aforementioned compounds (fatty acid esters and free fatty acids) in the organisms in an approximate distribution of 80 to 90% by weight triglycerides, 2 to 5% by weight diglycerides, 5 to 10% by weight monoglycerides, 1 to 5% by weight free fatty acids, 2 to 8% by weight of phospholipids, the sum of the various compounds adding up to 100% by weight.
  • the LCPUFAs produced are at least 3% by weight, advantageously at least 5% by weight, preferably at least 8% by weight, particularly preferably at least 10% by weight, very particularly preferably from at least 15% by weight, based on the total fatty acids in the transgenic organisms, advantageously produced in a transgenic plant.
  • the fatty acids are advantageously produced in bound form. With the aid of the nucleic acids used in the method according to the invention, these unsaturated fatty acids can be brought to the sn1, sn2 and or sn3 position of the advantageously produced triglycerides.
  • the starting compounds hexadecadienoic acid (C16: 2), linoleic acid (G18: 2) or linolenic acid (C18: 3) go through several reaction steps, the end products of the process such as arachidonic acid (ERA) or eicosapentaenoic acid (EPA ) not as absolute pure products, there are always minor traces of the precursors in the end product. If, for example, both linoleic acid and linolenic acid are present in the starting organism or in the starting plant, the end products such as ERA and EPA are present as mixtures.
  • the precursors should advantageously not more than 20% by weight, preferably not more than 15% by weight, particularly preferably not more than 10% by weight, very particularly preferably not more than 5% by weight, based on the amount of the particular Final product.
  • ERA or only EPA are bound as end products in a transgenic plant in the process according to the invention or produced as free acids. If both compounds (ERA + EPA) are produced simultaneously, they are advantageously produced in a ratio of at least 1: 2 (EPA: ARA), advantageously at least 1: 3, preferably 1: 4, particularly preferably 1: 5.
  • the nucleic acid sequences according to the invention can increase the yield of polyunsaturated fatty acids by at least 50%, advantageously by at least 80%, particularly advantageously by at least 100%, very particularly advantageously by at least 150% compared to the non-transgenic starting organism when compared in the GC analysis see examples can be achieved.
  • the yield of polyunsaturated fatty acids can be increased by at least 200%, preferably by at least 250%, very particularly preferably by at least 300%.
  • Chemically pure polyunsaturated fatty acids or fatty acid compositions can also be prepared using the methods described above.
  • the fatty acids or the fatty acid compositions from the organism such as the microorganisms or the plants or the culture medium in or on which the organisms were grown, or from the organism and the culture medium in a known manner, for example via extraction, distillation, crystallization, Chromatography or combinations of these methods isolated.
  • These chemically pure fatty acids or fatty acid compositions are advantageous for applications in the food industry, the cosmetics industry and especially the pharmaceutical industry.
  • all organisms such as microorganisms, non-human animals or plants are suitable as organisms for the production in the process according to the invention.
  • Transgenic organisms such as fungi such as Mortierella or Traustochytrium, yeasts such as Saccharomyces or Schizosaccharomyces, mosses such as Physcomitrella or Ceratodon, non-human animals such as Gaenorhabditis, algae such as Grypthecodinium or Phaeodactylum or plants such as dicotyledonous or monocotyledonous or monocotyledonous or monocotyledonous or monotree or Organisms which belong to the oil-producing organisms, that is to say are used for the production of oils, such as fungi such as Mortierella or Traustochytrium, algae such as Grypthecodinium, Phaeodactylum or plants, in particular Rlanzen, preferably oil-fruit plants, are used particularly advantageously in the process according to the invention , which contain large amounts of lipid compounds, such as peanut, rapeseed, canola, sunflower, safflower (saf
  • Preferred plants according to the invention are oil fruit plants such as peanut, rapeseed, canola, sunflower, safflower (safflower), poppy, mustard, hemp, castor oil, calendula, punica, evening primrose, pumpkin, flax, soybean, borage, trees (oil palm, coconut) , Plants rich in C18: 2 and / or C18: 3 fatty acids such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin, poppy, evening primrose, walnut, flax, hemp, thistle or safflower are particularly preferred. Plants such as safflower, sunflower, poppy, evening primrose, walnut, flax or hemp are particularly preferred.
  • nucleic acids introduced in method step (a) to (f) it is advantageous to introduce in addition to the nucleic acids introduced in method step (a) to (f), further nucleic acids which code for enzymes of the fatty acid or lipid metabolism in addition to the nucleic acids introduced in method step (a).
  • acyl GoA lysophospholipid acyltransferase in the process for the production of polyunsaturated fatty acids.
  • Genes are particularly preferably selected from the group of the acyl-CoA: lysophospholipid acyltransferases, ⁇ -4-desaturases, ⁇ -5-desaturases, ⁇ -6-desaturases, ⁇ -8-deaases, ⁇ -9-desaturases, ⁇ -12-Desa urasen, ⁇ -5-elongases, ⁇ -6-elongases or ⁇ -9-elongases in combination with the aforementioned genes for the lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase used , whereby single genes or several genes can be used in combination.
  • nucleic acids used in the method according to the invention which code for polypeptides with lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase activity, advantageously in combination with nucleic acid sequences for polypeptides Fatty acid or lipid metabolism such as the acyl-CoA: lysophospholipid acyltransferase activity, the ⁇ -4, ⁇ -5, ⁇ -6, ⁇ -8 desaturase or ⁇ -5, ⁇ -6 or ⁇ -9 Encode lonase activity, a wide variety of polyunsaturated fatty acids can be produced in the method according to the invention.
  • mixtures of the various polyunsaturated fatty acids or individual polyunsaturated fatty acids such as EPA or ERA can be prepared in free or bound form.
  • fatty acids are derived that are derived from C18: 2 fatty acids, such as GLA, DGLA or ERA or that are derived from C18: 3 fatty acids derive, such as SDA, ETA or EPA.
  • linoleic acid LA, C18: 2 ⁇ 9 '12
  • GLA, DGLA and ERA can arise as products of the process, which can be present as free fatty acids or bound.
  • ⁇ -linolenic acid ALA, C18: 3 ⁇ 9, 12, 15
  • SDA, ETA and EPA can be produced as products of the process which are as described above can be present as free fatty acids or bound.
  • lysophosphatidic acid acyltransferase glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase
  • acyl-CoA lysophospholipid acyltransferase, ⁇ -5-, ⁇ -6- Desaturase and / or ⁇ -6-elongase
  • the acyl-CoA lysophospholipid acyltransferase, ⁇ -5, ⁇ -8-desaturase and / or ⁇ -9-elongase or in combination with only the first three genes acyl -CoA: lysophospholipid acyltransferase, ⁇ -6-desaturase and / or ⁇ -6-elongase or acyl-GoA: lysophospholipid acyltrans
  • the activity of the ⁇ -6-desaturase and ⁇ -6-elongase produces, for example, GLA and DGLA or SDA and ETA, depending on the starting plant and unsaturated fatty acid.
  • DGLA or ETA or mixtures thereof are preferably formed.
  • additional ERA or EPA arise. This also applies to organisms into which the ⁇ -8 desaturase and ⁇ -9 elongase have previously been introduced.
  • Only ERA or EPA or their mixtures are advantageously synthesized, depending on the fatty acid present in the organism or in the plant, which serves as the starting substance for the synthesis. Since these are biosynthetic chains, the respective end products are not present as pure substances in the organisms. There are always small amounts of the precursor compounds in the end product. These small amounts are less than 20% by weight, advantageously less than
  • Nucleic acids used in the method according to the invention advantageously come from plants such as algae such as isochrysis or Crypthecodinium, algae / diatoms such as Phaeodactylum, mosses such as Physcomitrella or Ceratodon or higher magazines such as the Primulaceae such as Aleuritia, Calendula stellata, Osteospermum spinescens or Ostezenermium organisms such as Pilzen, microorganisms such as hyoseroids such as Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor or Mortierella, bacteria such as Shewanella, yeast or animals such as nematodes such as Gaenorhabditis, insects or humans.
  • the nucleic acids advantageously come from fungi, animals or from plants such as algae or moss, preferably from nematodes such as Caenorhabditis.
  • nucleic acid sequences or their derivative or homologs which code for polypeptides which still have the enzymatic activity of the proteins coded by nucleic acid sequences are advantageous in the process according to the invention. These sequences are cloned individually or in combination with the nucleic acid sequences coding for the lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase and / or lecithin cholesterol acyltransferase in expression constructs and for introduction and expression in organisms.
  • the method further comprises the step of obtaining a cell or an entire organism which contains the nucleic acid sequences used in the method, the cell and / or the organism having a nucleic acid sequence according to the invention which is suitable for the lysophosphatidic acid acyltransferase, glycerol-3 phosphate acyltransferase, diacylglycerol acyltransferase and / or lecithin cholesterol acyltransferase, a gene construct or a vector as described below, alone or in combination with other nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism, is transformed.
  • this method further comprises the step of extracting the fine chemical from the culture.
  • the culture can be, for example, a fermentation culture, for example in the case of the cultivation of microorganisms such as Mortierella, Saccharomyces or Traustochytrium, or a greenhouse or field culture of a plant.
  • the cell or organism thus produced is advantageously a cell of an oil-producing organism, such as an oil crop, such as, for example, peanut, rapeseed, canola, flax, hemp, peanut, soy, safflower, hemp, sunflower or borage.
  • Cultivation means, for example, cultivation in the case of plant cells, tissues or organs on or in a nutrient medium or the whole plant on or in a substrate, for example in hydroponics, potting compost or on a soil.
  • Expression cassette or vector all such constructions which have been obtained by genetic engineering methods, in which either a) the nucleic acid sequence according to the invention, or b) a genetic control sequence functionally linked to the nucleic acid sequence according to the invention, for example a promoter, or c) (a) and (b) are not in their natural, genetic environment or have been modified by genetic engineering methods, the modification being, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues.
  • Natural genetic environment means the natural genomic or chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially preserved.
  • the environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
  • a naturally occurring expression cassette for example the naturally occurring combination of the natural promoter of the nucleic acid sequences according to the invention with the corresponding lysophosphatidic acid acyltransferase-, glycerol-3-phosphate acyltransferase-, / diacylglycerol acyltransferase- and / or lecithin cholesterol acyltransferase genes if expression becomes an expression if a gene this is changed by non-natural, synthetic ("artificial") methods such as Mufagenization.
  • transgenic organism or transgenic plant in the sense of the invention is to be understood to mean that the nucleic acids used in the method are not in their natural position in the genome of an organism, and the nucleic acids can be expressed homologously or heterologously.
  • transgene also means that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or that the regulatory sequences of the natural sequences have been changed.
  • Transgenic is preferably to be understood as meaning the expression of the nucleic acids according to the invention at a non-natural location in the genome, that is to say that the nucleic acids are homologous or preferably heterologous.
  • Preferred transgenic organisms are fungi such as Mortierella, mosses such as Physcomitrella, algae such as Cryptocodinium or plants such as the oil crop plants.
  • all organisms which are able to synthesize fatty acids, especially unsaturated fatty acids or are suitable for the expression of recombinant genes are advantageously suitable as organisms or host organisms for the nucleic acids, the expression cassette or the vector used in the method according to the invention.
  • Examples include plants such as Arabidopsis, Asteraceae such as Calendula or crops such as soybean, peanut, castor oil, sunflower, corn, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as fungi, for example the genus Mortierella, Thrausto chytrium, saprolegnia or pythium, bacteria such as the genus Escherichia or Shewanella, yeasts such as the genus Saccharomyces, cyanobacteria, ciiiates, algae or protozoa such as dinoflagellates such as crypthecodinium.
  • fungi for example the genus Mortierella, Thrausto chytrium, saprolegnia or pythium
  • bacteria such as the genus Escherichia or Shewanella
  • yeasts such as the genus Sacchar
  • Organisms which can naturally synthesize oils in large quantities such as fungi such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rapeseed, coconut, oil palm, safflower, flax, hemp, castor oil, calendula, peanut, cocoa bean or sunflower or yeast are preferred such as Saccharomyces cerevisiae, soy, flax, rape, safflower, sunflower, calendula, Mortierella or Saccharomyces cerevisiae are particularly preferred.
  • transgenic animals are advantageously suitable as host organisms, for example G. elegans.
  • Transgenic plants which contain the polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without the oils, lipids or fatty acids synthesized having to be isolated.
  • Lances in the process according to the invention include whole lances and all parts of plants, plant organs or parts of leaves, such as leaf, stem, seeds, roots, tubers, anthers, fibers, root hairs, stems, embryos, calli, kotelydones, petioles, harvested material, plant tissue, reproductive tissue, Cell cultures that are derived from the transgenic plant and / or can be used to produce the transgenic plant.
  • the semen comprises all parts of the semen such as the seminal shell, epidermal and sperm cells, endosperm or embyro tissue.
  • the compounds produced in the process according to the invention can, however, also advantageously be used to isolate plants from the organisms in the form of their oils, fat, lipids and / or free fatty acids.
  • Polyunsaturated fatty acids produced by this method can be harvested by harvesting the organisms either from the culture in which they grow or from the field. This can be done by pressing or extracting the plant parts, preferably the plant seeds.
  • the oils, fats, lipids and / or free fatty acids can be obtained by cold pressing or cold pressing without the addition of heat by pressing. So that the plant parts, especially the seeds, can be more easily broken down, they are crushed, steamed or roasted beforehand. The seeds pretreated in this way can then be pressed or extracted with solvents such as warm hexane.
  • the sack slime and turbidity are removed.
  • the so-called degumming can be carried out enzymatically or, for example, chemically / physically by adding acid such as phosphoric acid.
  • the free fatty acids are then removed by treatment with a base, for example sodium hydroxide solution.
  • the product obtained is washed thoroughly with water to remove the lye remaining in the product and dried.
  • the products are bleached with, for example, bleaching earth or activated carbon. pulled. Finally, the product is still deodorized with steam, for example.
  • the PUFAs or LCPUFAs produced by this process are preferably G- I8 , C 2 o, C2 2 or Ga fatty acid molecules with at least two double bonds in the fatty acid molecule, preferably three, four, five or six double bonds.
  • G 18 , C 2 Q, G 22 or G 24 fatty acid molecules can be isolated from the organism in the form of an oil, lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants.
  • One embodiment of the invention is therefore oils, lipids or fatty acids or fractions thereof which have been produced by the process described above, particularly preferably oil, lipid or a fatty acid composition which comprise PUFAs and originate from transgenic plants.
  • a further embodiment according to the invention is the use of the oil, lipid, the fatty acids and / or the fatty acid composition in animal feed, food, cosmetics or pharmaceuticals.
  • oil is understood to mean a fatty acid mixture which contains unsaturated, saturated, preferably esterified fatty acid (s). It is preferred that the oil, lipid or fat has a high proportion of polyunsaturated free or advantageously esterified fatty acid (s), in particular linoleic acid, ⁇ -linolenic acid, dihomo-Y-linolenic acid, arachidonic acid, ⁇ -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, Has docosapentaenoic acid or docosahexaenoic acid.
  • s polyunsaturated free or advantageously esterified fatty acid
  • the proportion of unsaturated esterified fatty acids is about 30%, more preferred is 50%, more preferred is 60%, 70%, 80% or more.
  • the proportion of fatty acid after conversion of the fatty acids into the methyl esters can be determined by gas chromatography by transesterification.
  • the oil, lipid or fat can be various other saturated or unsaturated fatty acids, e.g. Calendulic acid, palmitic, palmitoleic, stearic, oleic acid etc. contain.
  • the proportion of the different fatty acids in the oil or fat can vary depending on the starting organism.
  • the polyunsaturated fatty acids produced in the process with advantageously at least two double bonds are, for example, sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.
  • the polyunsaturated fatty acids containing can be released, for example via an alkali treatment, for example aqueous KOH or NaOH or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol or via an enzymatic elimination isolate via, for example, phase separation and closing acidification via e.g. H 2 S0 4 .
  • the fatty acids can also be released directly without the workup described above.
  • the nucleic acids used in the method can, after introduction into an organism, advantageously be located on a plant or plant either on a separate plasmid or integrated into the genome of the host cell.
  • the integration can be random or by recombination such that the native gene is replaced by the inserted copy, thereby modulating the production of the desired compound by the cell, or by using a gene in trans so that the The gene is functionally linked to a functional expression unit which contains at least one sequence ensuring the expression of a gene and at least one sequence ensuring the polyadenylation of a functionally transcribed gene.
  • the nucleic acids are advantageously brought into the plants via multi-expression cassettes or constructs for multiparallel expression in the organisms for the multiparallel seed-specific expression of genes.
  • Mosses and algae are the only known plant systems that produce significant amounts of polyunsaturated fatty acids such as arachidonic acid (ERA) and / or eicosapentaenoic acid (EPA) and / or docosahexaenoic acid (DHA).
  • ERA arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Mosses contain PUFAs in membrane lipids while algae, algae-related organisms and some fungi also accumulate significant amounts of PUFAs in the triacylglycerol fraction.
  • nucleic acid molecules which are isolated from those strains which also accumulate PUFAs in the triacylglycerol fraction are particularly advantageous for the process according to the invention and thus for modifying the lipid and PUFA production system in a host, in particular plants, such as oil-fruit plants, for example Rapeseed, canola, flax, hemp, soybeans, sunflowers, borage. They can therefore be used advantageously in the process according to the invention.
  • the fatty acids converted as substrates in the process are preferably converted in the form of their acyl-CoA esters.
  • the polyunsaturated C 6 or C 8 fatty acids must first be desaturated by the enzymatic activity of a desaturase and then extended by at least two carbon atoms via an elongase. After one round of elongation, this enzyme activity leads to C 18 or C 20 fatty acids, and after two or three rounds of elongation to G 22 or C 24 fatty acids.
  • the activity of the desaturases and elongases used according to the invention preferably leads to G 8 , G 20 , G22 and / or C 24 fatty acids, advantageously with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds, particularly preferably G 2 o- and / or C 22 fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds in the molecule.
  • Particularly preferred as products of the process according to the invention are dihomo- ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapetaenic acid and / or docosahesaenoic acid.
  • the C 18 fatty acids with at least two double bonds in the fatty acid can be extended by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
  • the preferred biosynthesis site for fatty acids, oils, lipids or fats in the plants advantageously used is, for example, generally the seeds or cell layers of the seeds, so that a seed-specific expression of the nucleic acids used in the method is useful.
  • the bio-synthesis of fatty acids, oils or lipids does not have to be restricted to the seed tissue, but can also be tissue-specific in all other parts of the plant - for example in epidermal cells or in the tubers.
  • microorganisms such as yeasts such as Saccharomyces or Schizosaccharomyces, fungi such as Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor or Thraustochytrium algae such as isochrysis, Phaeodactylum or Grypthecodinium are used as organisms in the process according to the invention, these organisms are advantageously fermentatively grown.
  • the polyunsaturated fatty acids produced in the process can be at least 5%, preferably at least 10% , particularly preferably by at least 20%, very particularly preferably by at least 50%, compared to the wild type of organisms which do not contain the nucleic acids recombinantly.
  • the polyunsaturated fatty acids produced in the organisms used in the process can be reduced to two by the process according to the invention Species are increased.
  • the pool of free polyunsaturated fatty acids and / or the proportion of the esterified polyunsaturated fatty acids produced by the process can advantageously be increased.
  • the pool of esterified polyunsaturated fatty acids in the transgenic organisms is advantageously increased by the process according to the invention.
  • microorganisms are used as organisms in the process according to the invention, they are grown or cultivated in a manner known to the person skilled in the art, depending on the host organism.
  • Microorganisms are usually in a liquid medium that contains a carbon source mostly in the form of sugars, a nitrogen source mostly in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese, magnesium salts and possibly vitamins, at temperatures attracted between 0 and 100 ° G, preferably between 10 to 60 ° G with gassing with oxygen.
  • the pH of the nutrient liquid can be kept at a fixed value, that is to say it can be regulated during cultivation or not.
  • the cultivation can take place batchwise, semi batchwise or continuously.
  • Nutrients can be added at the beginning of the fermentation or fed semi-continuously or continuously.
  • the polyunsaturated fatty acids produced can be isolated from the organisms by methods known to those skilled in the art, as described above. For example, via extraction, distillation, crystallization, salt precipitation and / or chromatography, if necessary.
  • the organisms can be advantageously digested beforehand.
  • the process according to the invention is advantageously entirely at a temperature between 0 ° C. to 95 ° C., preferably between 10 ° C. to 85 ° C., particularly preferably between 15 ° C. to 75 ° C. carried out particularly preferably between 15 ° C to 45 ° C.
  • the pH is advantageously kept between pH 4 and 1, preferably between pH 6 and 9, particularly preferably between pH 7 and 8.
  • the process according to the invention can be operated batchwise, semi-batchwise or continuously.
  • a summary of known cultivation methods can be found in the textbook by Chmiel (bioprocess technology 1st introduction to bioprocess engineering (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994)) Find.
  • the culture medium to be used has to meet the requirements of the respective strains in a suitable manner. Descriptions of culture media of various microorganisms are contained in the manual "Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington DC, USA, 1981).
  • these media which can be used according to the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and / or trace elements.
  • Preferred carbon sources are sugars, such as mono-, di- or polysaccharides.
  • Very good carbon sources are, for example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or gellulose.
  • Sugar can also be added to the media through complex compounds such as molasses or other by-products of sugar refining. It may also be advantageous to add mixtures of different carbon sources.
  • oils and fats such as soybean oil, sunflower oil, peanut oil and / or coconut fat, fatty acids such as palmitic acid, stearic acid and / or linoleic acid, alcohols and / or polyalcohols such as glycerol, methanol and / or ethanol and / or organic acids such as eg acetic acid and / or lactic acid.
  • Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds.
  • Exemplary nitrogen sources include ammonia in liquid or gas form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as corn steep liquor, soy flour, soy protein, yeast extract, meat extract and others.
  • the nitrogen sources can be used individually or as a mixture.
  • Inorganic salt compounds that may be included in the media include the chloride, phosphorus or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.
  • Inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides, but also organic sulfur compounds, such as mercaptans and thiols, can be used as the sulfur source for the production of sulfur-containing fine chemicals, in particular methionine.
  • Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus.
  • Chelating agents can be added to the medium to keep the metal ions in solution.
  • Particularly suitable chelating agents include dihydroxyphenols, such as catechol or protocatechuate, or organic acids, such as citric acid.
  • the fermentation media used for the cultivation of microorganisms usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine.
  • Growth factors and salts often come from complex media components such as yeast extract, molasses, corn steep liquor and the like. Suitable precursors can also be added to the culture medium.
  • the exact composition of the media connections strongly depends on the respective experiment and is fishing case decided individually. Information on media optimization is available from the textbook "Applied Microbiol. Physiology, A Practical Approach" (Ed. PM Rhodes, PF Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 199635773).
  • Growth media can also be obtained from commercial suppliers, such as Standard 1 (Merck) or BHI (Brain heart infusion, DIFCO) and the like.
  • All media components are sterilized either by heat (20 min at 1.5 bar and 121 ° G) or by sterile filtration.
  • the components can be sterilized either together or, if necessary, separately. All media components can be present at the beginning of the cultivation or optionally added continuously or in batches.
  • the temperature of the culture is usually between 15 ° G and 45 ° G, preferably 25 ° G to 40 ° G and can be kept constant or changed during the experiment.
  • the pH of the medium should be in the range from 5 to 8.5, preferably around 7.0.
  • the pH for cultivation can be checked during the cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid.
  • Anti-foam agents such as e.g. Fatty acid polyglycol esters can be used.
  • suitable selectively acting substances e.g. Antibiotics.
  • oxygen or oxygen-containing gas mixtures e.g.
  • the temperature of the culture is usually 20 ° C to 45 ° C and preferably 25 ° C to 40 ° C.
  • the culture is continued until a maximum of the desired product has formed. This goal is usually achieved within 10 hours to 160 hours.
  • the fermentation broths obtained in this way in particular those containing polyunsaturated fatty acids, usually have a dry matter of 7.5 to 25% by weight.
  • the fermentation broth can then be processed further.
  • the biomass can be wholly or partly separated using separation methods such as Centrifugation, filtration, decanting or a combination of these methods can be removed from the fermentation broth or left completely in it.
  • separation methods such as Centrifugation, filtration, decanting or a combination of these methods can be removed from the fermentation broth or left completely in it.
  • the biomass is advantageously processed after separation.
  • the fermentation broth can also be used without cell separation using known methods, e.g. with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis, or by nanofiltrate, thickened or concentrated. This concentrated fermentation broth can finally be worked up to obtain the fatty acids contained therein.
  • the fatty acids obtained in the process are also suitable as starting materials for the chemical synthesis of other valuable products.
  • the fatty acids obtained in the process are also suitable as starting materials for the chemical synthesis of other valuable products.
  • a further subject of the invention are isolated nucleic acid sequences which code for polypeptides with lysophosphatidic acid acyltransferase activity, glycerol-3-phosphate acyltransferase activity, diacylglycerol acyltransferase activity or lecithin cholesterol acyltransferase activity, the glycerol encoded by the nucleic acid transphosphate acids -phosphate acyltransferases, diacylglycerol acyltransferases and / or lecithin cholesterol acyltransferases specifically convert G 18 -, C 20 -, C 22 - or G 2 -fatty acids with at least one double bond in the fatty acid molecule and ultimately advantageously incorporate them into diacylglycerides and / or triacylglycerides.
  • Advantageous isolated nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO:
  • SEQ ID NO: 13 SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 or SEQ ID NO: 20 sequence, b) nucleic acid sequences which result as a result of the degenerate genetic code from that shown in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14,
  • SEQ ID NO: 16 SEQ ID NO: 18 or SEQ ID NO: 20 c) derivatives of the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6 , SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 or SEQ ID NO: 20 shown nucleic acid sequence that are for polypeptides with the SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 or SEQ ID NO: 21 encode and at least 40% homology at the amino acid level with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 , SEQ ID NO:
  • SEQ ID NO: 15 SEQ ID NO: 17, SEQ ID NO: 19 or SEQ ID NO: 21 and have a lysophosphatidic acid acyltransferase activity.
  • nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26, b) nucleic acid sequences which can be derived as a result of the degenerate genetic code from the coding sequence contained in SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26 c) derivatives of the SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26 nucleic acid sequence shown for polypeptides with that in SEQ ID NO: 23,
  • SEQ ID NO: 25 or SEQ ID NO: 27 encode and have at least 40% homology at the amino acid level with SEQ ID NO: 23, SEQ ID NO: 25 or SEQ ID NO: 27 and a glycerol-3-phosphate acyltransferase activity exhibit.
  • Additional advantageous isolated nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32, b) nucleic acid sequences which result from the degenerate genetic Allow codes to be derived from the coding sequence containing SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32 c) Derivatives of the nucleic acid sequence shown in SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32 which code for polypeptides with the amino acid sequence shown in SEQ ID NO: 29, SEQ ID NO: 31 or SEQ ID NO: 33 and at least 40% homology at the amino acid level with SEQ ID NO: 29,
  • SEQ ID NO: 31 or SEQ ID NO: 33 and have a diacylglycerol acyltransferase activity.
  • nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 34 or SEQ ID NO: 36, b) nucleic acid sequences which differ from that in the result of the degenerate genetic code SEQ ID NO: 34 or SEQ ID NO: 36 containing coding sequence can be derived c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 34 or SEQ ID NO: 36, which for polypeptides with the in SEQ ID NO: 35 or SEQ ID NO : 37 encode the amino acid sequence shown and have at least 40% homology at the amino acid level with SEQ ID NO: 35 or SEQ ID NO: 37 and have lecithin cholesterol acyltransferase activity.
  • LCPUFAs can be found at all positions in LCPUFA-producing organisms, for example one Incorporate triacylglycerol, as the position analysis of the lipids of LCPUFA-producing organisms showed.
  • nucleic acid sequences according to the invention can advantageously be combined with the following nucleic acid sequences which code for polypeptides with acyl-GoA: lysophospholipid acyltransferase activity, selected from the group: a) a nucleic acid sequence with the one in SEQ ID NO: 39, SEQ ID NO: 41 , SEQ ID NO: 43 or SEQ ID NO: 45, b) nucleic acid sequences which, as a result of the degenerate genetic code, differ from that in SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43 or SEQ ID
  • SEQ ID NO: 40 Have amino acid level with SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44 or SEQ ID NO: 46 and have an acyl-CoA: lysophospholipid acyltransferase activity.
  • nucleic acid sequences used in the process according to the invention advantageously come from a eukaryotic organism.
  • the nucleic acids used in the method are advantageously subjected to amplification and ligation in a known manner.
  • the procedure is preferably based on the protocol of Ru-DNA polymerase or a Ru / Taq-DNA polymerase mixture.
  • the primers are chosen based on the sequence to be amplified.
  • the primers should expediently be chosen such that the amplificate comprises the entire codogenic sequence from the start to the stop codon.
  • the amplificate is expediently analyzed. For example, the analysis can be carried out after gel electrophoretic separation with regard to quality and quantity.
  • the amplificate can then be used after a Standard protocol can be cleaned (e.g. Qiagen).
  • Suitable cloning vectors are generally known to the person skilled in the art. These include, in particular, vectors that can be replicated in microbial systems, in particular vectors that ensure efficient cloning in yeasts or fungi and enable the stable transformation of plants. In particular, various binary and co-integrated vector systems suitable for T-DNA-mediated transformation are to be mentioned. Such vector systems are generally characterized in that they contain at least the vir genes required for the Agrobacterium-mediated transformation and the sequences which limit the T-DNA (T-DNA border).
  • vector systems preferably also comprise further cis-regulatory regions such as promoters and terminators and / or selection markers with which appropriately transformed organisms can be identified.
  • vir genes and T-DNA sequences are arranged on the same vector
  • binary systems are based on at least two vectors, one of which is vir genes, but no T-DNA and a second T-DNA, however does not carry a vir gene.
  • the latter vectors are relatively small, easy to manipulate and can be replicated in both E. coli and Agrobacterium.
  • binary vectors include vectors from the pBIB-HYG, pPZP, pBecks, pGreen series.
  • Bin19, pBI101, pBinAR, pGPTV and pCAMBIA are preferably used according to the invention.
  • An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Science (2000) 5, 446-451.
  • the vectors can first be linearized with restriction endonuclease (s) and then enzymatically modified in a suitable manner. The vector is then cleaned and an aliquot used for the cloning. During the cloning, the enzymatically cut and, if necessary, purified amplificate is cloned with similarly prepared vector fragments using ligase.
  • a certain nucleic acid construct or vector or plasmid construct can have one or more codogenic gene segments.
  • the codogenic gene segments in these constructs are preferably functionally linked to regulatory sequences.
  • the regulatory sequences include, in particular, plant sequences such as the promoters and terminators described above.
  • the constructs can advantageously be stably propagated in microorganisms, in particular Escherichia coli and Agrobacterium tumefaciens, under selective conditions and enable transfer of heterologous DNA in plants or microorganisms.
  • nucleic acids used in the method can be introduced into organisms such as microorganisms or advantageously plants and can thus be used in plant transformation, such as those published in and cited in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Chapter 6/7, pp. 71-119 (1993); FF White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds .: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol.
  • nucleic acids used in the method, the inventive nucleic acids and nucleic acid constructs and / or vectors can thus advantageously be used on plants for the genetic engineering modification of a broad spectrum of organisms, so that they become better and / or more efficient producers of PUFAs.
  • acyl-CoA lysophospholipid acyltransferases or desaturases and / or be increased, so that larger amounts of the compounds produced are produced de novo because the organisms lacked this activity and ability to biosynthesize before the introduction of the corresponding gene (s).
  • acyl-CoA lysophospholipid acyltransferases or desaturases and / or be increased
  • acyltransferase glycerol-3-phosphate
  • acyltransferase diacylglycerol
  • acyltransferase lecithin cholesterol
  • acyltransferase acyl-CoA: lysophospholipid-acyltransferase, desaturase and / or elongaseyltransferase gene
  • Glycerol-3-phosphate acyltransferase diacylglycerol acyltransferase, lecithin cholesterol acyltransferase
  • acyl-CoA Lysophospholipid acyltransferase, desaturase and /
  • the number or activity of other genes involved in the import of nutrients necessary for the biosynthesis of one or more fine chemicals can be increased, so that the concentration of these precursors, cofactors or intermediate compounds within of the cells or within the storage compartment is increased, thereby further increasing the ability of the cells to produce PUFAs as described below.
  • Fatty acids and lipids are desirable even as fine chemicals; by optimizing the activity or increasing the number of one or more lysophosphatidic acid acyltransferase-, glycerol-3-phosphate acyltransferase-, diacylglycerol acyltransferase-, lecithin cholesterol acyltransferase-, acyl-CoA: lysophospholipid-acyltransferase-, Desaturase and / or elongase genes involved in the biosynthesis of these compounds, or by destroying the activity of one or more genes involved in the degradation of these compounds, it may be possible to reduce the yield, production and / or efficiency of the Increase production of fatty acid and lipid molecules from organisms and advantageously from plants.
  • the isolated nucleic acid molecules used in the method according to the invention code for proteins or parts thereof, the proteins or the individual protein or parts thereof containing an amino acid sequence which is sufficiently homologous to an amino acid sequence of the sequence SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO : 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 or SEQ ID NO: 37, so that the protein or part thereof has one and maintains equivalent lysophosphatidic acid acyltransferase activity, glycerol-3-phosphate acyltransferase activity, diacylglycerol acyltransferase activity or lecithin cholesterol acyltransferase activity.
  • the protein or the part thereof which is encoded by the nucleic acid molecule preferably still has its essential enzymatic activity and the ability to metabolize compounds which are necessary for building up cell membranes or lipid bodies in organisms, advantageously in plants, or to transport them of molecules still have to participate across these membranes.
  • the protein encoded by the nucleic acid molecules is at least about 40%, preferably at least about 60%, and more preferably at least about 70%, 80% or 90%, and most preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an amino acid sequence of the sequence SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 or SEQ ID NO: 37.
  • homology or homologous, identity or identical is to be understood. With essential enzymatic activity of the inventive used
  • Lysophosphatidic acid acyltransferases glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases or lecithin cholesterol acyltransferases is to be understood as being opposite to those identified by the sequence with SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 and their derivatives encoded proteins / enzymes in comparison still have at least an enzymatic activity of at least 10%, preferably 20%, particularly preferably 30% and very particularly 40% and thus on the metabolism of fatty acids, fatty acid esters such as diacyl
  • Nucleic acids which can advantageously be used in the process come from bacteria, fungi or plants, such as algae or mosses, such as the genera Shewanella, Physco-mitrella, Thraustochytrium, Fusarium, Phytophtora, Geratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, or Grypthehabematin gau , specifically from the genera and species Shewanella hanedai, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Gryptocodinium cohnii, Geratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalhabitis especially elegae.
  • the isolated nucleotide sequences used for lysophosphatidic acid acyltransferases, glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases or lecithin cholesterol acyltransferases which code to a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: Hybridize 36, e.g. hybridize under stringent conditions.
  • the nucleic acid sequences used in the method are advantageously introduced in an expression cassette which enables the expression of the nucleic acid
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present in front of the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct may advantageously also comprise one or more so-called £ 'enhancer sequences "funkfionell linked to the promoter which allow enhanced expression of the nucleic acid sequence.
  • lysophosphatidic acid acyltransferase glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase genes
  • the expression cassette only one copy of the genes is present in the expression cassette.
  • This gene construct or the gene constructs can s are expressed together in the host organism.
  • the gene construct or the gene constructs can be inserted in one or more vectors and freely present in the cell or else inserted in the genome. It is advantageous for the insertion of further genes in the host genome if the genes to be expressed are present together in one gene construct.
  • the regulatory sequences or factors can preferably have a positive influence on the gene expression of the introduced genes and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • Another embodiment of the invention is one or more gene constructs which contain one or more sequences which are represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 or their derivatives and for polypeptides according to SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35
  • Advantageous regulatory sequences for the new method are present, for example, in promo forums such as the cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, laclq, T7, T5, T3, gal, trc, ara, SP6, ⁇ -PR or ⁇ -PL promoter and are advantageously used in Gram-negative bacteria.
  • promo forums such as the cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, laclq, T7, T5, T3, gal, trc, ara, SP6, ⁇ -PR or ⁇ -PL promoter and are advantageously used in Gram-negative bacteria.
  • Further advantageous regulatory sequences are, for example, in the Gram-positive promoters amy and SP02, in the yeast or fungal promoters ADG1, MF ⁇ , AG, P-60, GYC1, GAPDH, TEF, rp28, ADH or in the plant promoters GaMV / 35S [Franck et al., Gell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter.
  • inducible promoters such as those in EP-A-0388 186 (benzylsulfonamide-inducible), Plant J.2, 1992: 397-404 (Gatz et al., Tetracycline-inducible), EP-A-0335528 Promoters described (inducible acid) or WO 93/21334 (inducible ethanol or cyclohexenol).
  • inducible promoters are the cytosolic FBPase promoter or the potato ST-LSI promoter (Stockhaus et al., EMBO J.
  • promoters which enable expression in tissues which are involved in fatty acid biosynthesis.
  • seed-specific promoters such as the USP promoter according to the embodiment, but also other promoters such as the LeB4, DC3, phaseolin or napin promoter are very particularly advantageous.
  • promoters are seed-specific promoters which can be used for monocotyledon or dicotyledon lances and in US 5,608,152 (napin promoter from rapeseed), WO 98/45461 (oleosin promoter from Arobidopsis), US 5,504,200 (phaseolin promoter from Phaseolus vulgaris ), WO 91/13980 (Bce4 promoter from Brassica), by Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LeB4 promoter from a legume), these promoters being for dicotyledons suitable.
  • promoters are suitable, for example, for monocotyledons lpt-2 or lpt-1 promoter made from barley (WO 95/15389 and WO 95/23230), hordein promoter made from barley and other suitable promoters described in WO 99/16890.
  • the PUFA biosynthesis genes should advantageously be expressed seed-specifically in oilseeds.
  • seed-specific promoters can be used, or those promoters that are active in the embryo and / or in the endosperm.
  • seed-specific promoters can be isolated from both dicotolydonous and monocotolydonous plants.
  • WO 95/23230 seed-specific promoters from rice, maize and the like.
  • Wheat [WO 99/16890], Amy32b, Amy 6-6 and Aleurain [US 5,677,474], Bce4 (rapeseed) [US 5,530,149], glycinin (soy) [EP 571 741], phosphoenol pyruvate carboxylase (soy) [JP 06 / 62870], ADR12-2
  • Plant gene expression can also be facilitated via a chemically inducible promoter (see an overview in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108).
  • Chemically inducible promoters are particularly suitable if it is desired that the gene expression be carried out in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
  • each of the nucleic acids used in the method which are suitable for the lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase and / or the lecithin cholesterol acyltransferase, CoA: Lysophospholipid acyltransferase, ⁇ -4-desaturase, the ⁇ -5-desaturase, the ⁇ -6-desaturase, the ⁇ -8-desaturase and / or the ⁇ -5-elonase gases, the ⁇ -6-elongase and / or encode the ⁇ -9 elongase, are preferably expressed under the control of one's own, preferably a different promoter, since repeating sequence motifs can lead to instability of the T-DNA or to recombination events.
  • the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable interface for inserting the nucleic acid to be expressed, advantageously in a polylinker, and optionally a terminator behind the polylinker.
  • This sequence is repeated several times, preferably three, four or five times, so that up to five genes are brought together in one construct and can thus be introduced into the transgenic plant for expression.
  • the sequence is advantageously repeated up to three times.
  • the nucleic acid sequences are inserted for expression via the suitable interface, for example in the polylinker behind the promoter.
  • Each nucleic acid sequence advantageously has its own promoter and possibly its own terminator. It is also possible to insert several nucleic acid sequences behind a promoter and possibly in front of a terminator.
  • the insertion point or the sequence of the inserted nucleic acids in the expression cassette is not of critical importance, ie a nucleic acid sequence can be inserted in the first or last position in the cassette without the expression being significantly influenced thereby.
  • Different promoters such as the USP, LegB4 or DG3 promoter and different terminators can advantageously be used in the expression cassette.
  • this can lead to undesirable recombination events.
  • the transcription of the introduced genes should advantageously be terminated by suitable terminators at the 3 'end of the introduced biosynthesis genes (behind the stop codon).
  • the OCS1 terminator can be used here, for example.
  • the gene construct can also comprise further genes which are to be introduced into the organisms. It is possible and advantageous to introduce and express regulatory genes, such as genes for inducers, repressors or enzymes, which intervene in the regulation of one or more genes of a biosynthetic pathway due to their enzyme activity. These genes can be heterologous or homologous in origin. Furthermore, other biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct, or these genes can be located on one or more further nucleic acid constructs.
  • Acyl transferase (s), acyl CoA lysophospho lipid acyl transferase (s), fatty acid synthase (s), fatty acid hydroxylase (s), acetyl coenzyme A carboxylase (s), acyl coenzyme A oxidase (n ), Fatty acid desaturase (s), fatty acid acetylenase (s), lipoxygenase (s), triacylglycerol lipase (s), allen oxide synthase (s), hydroperoxide lyase (s) or fatty acid elongase (s) or their Combinations used.
  • nucleic acid sequences are biosynthesis genes of the fatty acid or lipid metabolism selected from the group of acyl-CoA: lysophospholipid acyltransferase, ⁇ -4-desaturase-, ⁇ -5-desaturase-, ⁇ -6-desaturase-, ⁇ -8- Desatuase, ⁇ -9 desaturase, ⁇ -12 desaturase, ⁇ -5 elongase, ⁇ -6 elongase or ⁇ -9 elongase.
  • acyl-CoA lysophospholipid acyltransferase, ⁇ -4-desaturase-, ⁇ -5-desaturase-, ⁇ -6-desaturase-, ⁇ -8- Desatuase, ⁇ -9 desaturase, ⁇ -12 desaturase, ⁇ -5 elongase, ⁇ -6 elongase or ⁇ -9 elongase.
  • nucleic acids or genes in combination with other elongases and desaturases can be cloned in expression cassettes according to the invention and used to transform plants with the aid of Agrobacterium.
  • the regulatory sequences or factors can preferably have a positive influence on the gene expression of the introduced genes thereby increasing.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • the expression cassettes can be used directly for insertion into the ligament or can be inserted into a vector.
  • These advantageous vectors contain the nucleic acids used in the method which code for lysophosphatidic acid acyltransferases, glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases or lecithin cholesterol acyltransferases, or a nucleic acid construct which the nucleic acid used, alone or in combination with other B gene or in combination with other Fatty acid or lipid metabolism such as the acyl GoA: lysophospholipid acyltransferases, ⁇ -4-desaturase, ⁇ -5-desaturase, ⁇ -6-desaturase, ⁇ -8-desatuase, ⁇ -9-desaturase, ⁇ - 12-desaturase, ⁇ -5 elongase, ⁇ -6 elongase and / or ⁇ -9 elongase.
  • vector refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached.
  • plasmid which stands for a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector, whereby additional DNA segments can be ligated into the viral genome.
  • Certain vectors can replicate autonomously in a host cell into which they have been introduced (e.g. bacterial vectors with a bacterial origin of replication). Other vectors are advantageously integrated into the genome of a host cell when introduced into the host cell and are thereby replicated together with the host genome.
  • certain vectors can control the expression of genes to which they are operably linked.
  • vectors are referred to here as "expression vectors".
  • expression vectors suitable for recombinant DNA techniques are in the form of plasmids.
  • plasmid and “vector” can be used interchangeably because the plasmid is the most commonly used vector form.
  • the invention is intended to encompass these other expression vector forms, such as viral vectors, which perform similar functions.
  • vector is also intended to include other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • the recombinant expression vectors advantageously used in the method comprise the nucleic acids described below or the gene construct described above in a form which is suitable for the expression of the nucleic acids used in a host cell, which means that the recombinant expression vectors are selected on the basis of one or more regulatory sequences of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
  • "operably linked” means that the nucleotide sequence of interest is linked to the regulatory sequence (s) in such a way that expression of the nucleotide sequence is possible and they are linked to each other so that both Sequences perform the predicted function ascribed to the sequence (e.g.
  • regulatory sequence is intended to encompass promoters, enhancers and other expression control elements (for example polyadenylation signals). These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Grosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton , Florida, eds .: Glick and Thompson, Chapter 7, 89-108, including the references therein.
  • Regulatory sequences include those that control the constitutive expression of a nucleotide sequence in many host cell types and those that control the direct expression of the nucleotide sequence only in certain host cells under certain conditions.
  • the person skilled in the art knows that the design of the expression vector can depend on factors such as the selection of the host cell to be transformed, the extent of expression of the desired protein, etc.
  • the recombinant expression vectors used can be used to express lysophosphatidic acid acyltransferases, glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases or lecithin cholesterol acyltransferases, acyl-CoA: lysophospholipid acyltransferases, desaturases and elongases in eukaryotic cells. This is advantageous since intermediate steps of vector construction are often carried out in microorganisms for the sake of simplicity.
  • lysophosphatidic acid acyltransferase glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, lecithin cholesterol acyltransferase, acyl-CoA: lysophospholipid acyltransferase, desaturase and / or elongase genes in bacterial cells using bacterial cells, ins -Expression vectors), yeast and other fungal cells (see Romanos, MA, et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, CAMJJ, et al.
  • Proteins are mostly expressed in prokaryotes using vectors which contain constitutive or inducible promoters which control the expression of fusion or non-fusion proteins.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith, DB, and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), in which Glutathion-S Transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST Glutathion-S Transferase
  • Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69: 301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).
  • Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter.
  • the target gene expression from the pET 11d vector is based on the transcription from a T7-gn10-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is provided by BL21 (DE3) or HMS174 (DE3) host strains from a resident ⁇ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.
  • vectors suitable in prokaryotic organisms are known to the person skilled in the art, these vectors are, for example, in E. coli pLG338, pACYC184, the pBR series, such as pBR322, the pUC series, such as pUC18 or pUC19, the M113mp series, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-111113-B1, ⁇ gt11 or pBdCI, in Streptomyces plJ101, plJ364, plJ702 or plJ361, in Bacillus pUB110, pC194 or pBD2Aium, in Cory777.
  • the expression vector is a yeast expression vector.
  • yeast expression vectors for expression in the yeast S. cerevisiae include pYeDesaturased (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, CAMJJ, & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, JF Peberdy et al., eds., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi [JW Bennet & LL Lasure, Ed., Pp. 396-428: Academic Press: San Diego].
  • Other suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23.
  • lysophosphatidic acid acyltransferases glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases, lecithin cholesterol acyltransferases, acyl-GoA: lysophospholipid acyltransferases, desaturases and / or elon gases are expressed in insect cells using virus expressions using expressions.
  • Baculovirus vectors available for expression of proteins in cultured insect tents include the pAc series (Smith et al. (1983) Mol. Cell Biol .. 3: 2156-2165) and the pVL- Series (Lucklow and Summers (1 89) Virology 170: 31-39).
  • the lysophosphatidic acid can acyltransferases, glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases, lecithin cholesterol acyltransferases, acyl-CoA: lysophospholipid-acyltransferases, desaturases and / or elongases in unicellular allyl cells, see Falcon cells et al., 1999, Marine Biotechnology 1 (3): 239-251 and literature references cited therein, and plant cells from higher plants (eg spermatocytes, such as crops) are expressed.
  • Rance expression vectors include those that are described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, ed .: Kung and R. Wu, Academic Press, 1993, pp. 15-38.
  • a plant expression cassette preferably contains regulatory sequences which can control gene expression in plant cells and are operatively linked so that each sequence can fulfill its function, such as termination of the transcription, for example polyadenylation signals.
  • Preferred polyadenylation signals are those derived from Agrobacterium tumefaciens T-DNA, such as gene 3 of the Ti plasmid pTiAGH ⁇ (Gielen et al., EMBO J. 3 (1984) 835ff.) Known as octopine synthase or functional equivalents thereof , but also all other terminators which are functionally active in plants are suitable.
  • a plant expression cassette preferably contains other functionally linked sequences, such as translation enhancers, for example the overdrive sequence, which is the 5'-untranslated leader sequence from tobacco mosaic virus which contains the protein / RNA ratio increased (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • translation enhancers for example the overdrive sequence, which is the 5'-untranslated leader sequence from tobacco mosaic virus which contains the protein / RNA ratio increased (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • Plant gene expression must, as described above, be functionally linked to a suitable promoter that carries out gene expression in a timely, cell- or tissue-specific manner.
  • useful promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those derived from plant viruses such as 35S GAMV (Franck et al., Cell 21 (1980) 285-294), 19S GaMV (see also US 5352605 and WO 84/02913) or Rlan ⁇ enpromotoren, such as that of the small subunit of the Rubisco described in US 4,962,028.
  • telomeres are preferred sequences which are necessary for directing the gene product into its corresponding cell compartment (see an overview in Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285 -423 and references cited therein), for example into the vacuole, the cell nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
  • plastids such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
  • Plant gene expression can also be facilitated as described above using a chemically inducible promoter (see an overview in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108).
  • Chemically inducible promoters are particularly suitable if it is desired that the gene expression be carried out in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
  • Promoters which react to biotic or abiotic stress conditions are also suitable promoters, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible hsp80 promoter Tomato (US 5,187,267), the cold-inducible alpha amylase promoter from potato (WO 96/12814) or the wound-inducible pin III promoter (EP-A-0375091).
  • Those promoters which bring about gene expression in tissues and organs in which the fatty acid, lipid and oil biosynthesis takes place, in sperm cells, such as the cells of the endosperm and the developing embryo, are particularly preferred.
  • Suitable promoters are the Napingen promoter from rapeseed (US 5,608,152), the USP promoter from Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), the oleosin promoter from Arabidopsis ( WO 98/45461), the Phaseolin promoter from Phaseolus vulgaris (US 5,504,200), the Bce4 promoter from Brassica (WO 91/13980) or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2): 233-9) and promoters which promote seed-specific expression in monocot plants, such as Bring corn, barley, wheat, rye, rice, etc.
  • Suitable noteworthy promoters are the lpt2 or Ipt1 gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene , the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat gluteiin gene, the sorghum kasirin gene, the rye secalin gene).
  • lysophosphatidic acid acyltransferases glycerol-3-phosphate acyltransferases
  • diacylglycerol acyltransferases or lecithin cholesterol acyltransferases alone or in combination with acyl-GoA: lysophospholipid acyltransferases, desaturases and / or elongases
  • Such expression cassettes can be introduced via a simultaneous transformation of several individual expression constructs or preferably by combining several expression cassettes on one construct.
  • Several vectors, each with several expression cassettes can also be transformed and transferred to the host cell.
  • Promoters which bring about plastid-specific expression are also particularly suitable, since plastids are the compartment in which the precursors and some end products of lipid biosynthesis are synthesized.
  • Suitable promoters such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the clpP promoter from Arabidopsis, described in WO 99/46394.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells using conventional transformation or transfection techniques.
  • 'transformation' and 'transfection', conjugation and transduction are intended to mean a variety of methods known in the art for introducing foreign nucleic acid (eg DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE- Dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment ..
  • Suitable methods for transforming or transfecting host cells, including plant cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual. , 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory manuals, such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, eds .: Gartland and Davey, Humana Press, Totowa, New Jersey.
  • Host cells which are suitable in principle for taking up the nucleic acid according to the invention, the gene product according to the invention or the vector according to the invention are all prokaryotic or eukaryotic organisms.
  • the host organisms which are advantageously used are microorganisms, such as fungi or yeasts Plant cells preferably plants or parts thereof.
  • Mushrooms, yeasts or lances are preferably used, particularly preferably plants, very particularly preferably lances, such as oil fruit plants, which contain large amounts of lipid compounds, such as rape, evening primrose, hemp, diesel, peanut, canola, flax, soybean, safflower, sunflower, borage , or Rlanzen, such as maize, wheat, rye, oats, triticale, rice, barley, cotton, manioc, reef er, tagetes, solanaceae plants, such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bush plant ⁇ en (coffee, cocoa, tea), salix species, trees (oil plant, coconut) as well as perennial grasses and forage crops.
  • Particularly preferred plants according to the invention are oil fruit plants, such as soybean, peanut, rapeseed, canola, flax, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut).
  • a further subject of the invention are, as described above, isolated nucleic acid sequences which code for polypeptides with lysophosphatidic acid acyltransferase activity, glycerol-3-phosphate acyltransferase activity, diacylglycerol acyltransferase activity or lecithin cholesterol acyltransferase activity, the nucleic acid lysophosphate sequences encoded by the nucleic acid React glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases or lecithin cholesterol acyltransferases specifically C 8 -, C 20 -, C 22 - or C 2 fatty acids with at least one double bond in the fatty acid molecule.
  • Advantageous isolated nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO : 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 or SEQ ID NO: 20, b) nucleic acid sequences which result as a result of the degenerate genetic codes of the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 or SEQ ID NO: 20 containing coding sequence derived, c) derivatives of the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ
  • SEQ ID NO: 17, SEQ ID NO: 19 or SEQ ID NO: 21 encode amino acid sequence shown and at least 40% homology at the amino acid level with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 or SEQ ID NO: 21 and have a lysophosphatidic acid acyltransferase activity.
  • nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26, b) nucleic acid sequences which result from the degenerate genetic code can be derived from the coding sequence contained in SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26, c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26 which code for polypeptides with the amino acid sequence shown in SEQ ID NO: 23, SEQ ID NO: 25 or SEQ ID NO: 27 and at least 40% homology at the amino acid level with SEQ ID NO: 23, SEQ ID NO: 25 or SEQ ID NO : 27 and have glycerin-3-phosphate acyltransferase activity.
  • nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32, b) nucleic acid sequences which are the result of the degenerate genetic code can be derived from the coding sequence contained in SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32 c) derivatives of those shown in SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32 Nucleic acid sequence coding for polypeptides with the amino acid sequence shown in SEQ ID NO: 29, SEQ ID NO: 31 or SEQ ID NO: 33 and at least 40% homology at the amino acid level with SEQ ID NO: 29, SEQ ID NO: 31 or SEQ ID NO: 33 and have diacylglycerol acyltransferase activity.
  • nucleic acid sequences are sequences selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 34 or SEQ ID NO: 36, b) nucleic acid sequences which, as a result of the degenerate genetic code, differ from that in SEQ ID NO : 34 or SEQ ID NO: 36 containing coding sequence can be derived c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 34 or SEQ ID NO: 36, which for polypeptides with the in SEQ ID NO: 35 or SEQ ID NO: 37 amino acid sequence shown encode and at least 40% homology
  • SEQ ID NO: 35 or SEQ ID NO: 37 amino acid sequence shown encode and at least 40% homology
  • nucleic acids according to the invention originate from organisms such as animals, giliates, fungi, lances such as algae or dinoflagellates, which can synthesize PUFAs.
  • nucleic acid (molecule) also encompasses the untranslated sequence located at the 3 'and 5' ends of the coding gene region: at least 500, preferably 200, particularly preferably 100 nucleotides of the sequence upstream the 5 'end of the coding region and at least 100, preferably 50, particularly preferably 20 nucleotides of the sequence downstream of the 3' end of the coding gene region.
  • An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid.
  • An "isolated" nucleic acid preferably does not have any sequences that naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid originates (e.g. sequences located at the 5 'and 3' ends of the nucleic acid).
  • the isolated lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and / or lecithin cholesterol acyltransferase molecule may be, for example, less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 contain kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in the genomic DNA of the line from which the nucleic acid originates.
  • nucleic acid molecules used in the process e.g. a nucleic acid molecule with a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13,
  • SEQ ID NO: 14 SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 or a part thereof, can be isolated using standard molecular biological techniques and the sequence information provided here.
  • a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level can also be identified with the aid of comparison algorithms. These can be used as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual.
  • nucleic acid molecule comprising a complete sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7,
  • SEQ ID NO 9 SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO : 24, SEQ ID NO: 26, SEQ ID NO 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 or a part thereof, by polymerase chain reaction, with oligonucleotide tid primers used based on this sequence or parts thereof (eg, a nucleic acid molecule comprising the complete sequence or part thereof can be isolated by polymerase chain reaction using oligonucleotide primers made based on this same sequence are).
  • oligonucleotide tid primers used based on this sequence or parts thereof (eg, a nucleic acid molecule comprising the complete sequence or part thereof can be isolated by polymerase chain reaction using oligonucleotide primers made based on this same sequence are).
  • mRNA can be isolated from cells (for example by the guanidinium thiocyanate traction method from Ghirgwin et al. (1 79) Biochemistry 18: 5294-5299) and cDNA using reverse transcriptase (for example Moloney-MLV reverse transcriptase, available from Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St.Petersburg, FL).
  • reverse transcriptase for example Moloney-MLV reverse transcriptase, available from Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St.Petersburg, FL.
  • Synthetic oligonucleotide primers for amplification by means of the polymerase chain reaction can be based on one of the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 or using the sequences shown in SEQ ID NO: 2, SEQ ID NO : 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 , SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO:
  • a nucleic acid according to the invention can be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques.
  • the nucleic acid amplified in this way can be cloned into a suitable vector and characterized by means of DNA sequence analysis.
  • Oligonucleotides that correspond to a desaturase nucleotide sequence can be produced by standard synthesis methods, for example using an automatic DNA synthesizer.
  • SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 means, for example, all variants with at least about 40 to 60%, preferably at least about 60 to 70%, stronger preferably at least about 70 to 80%, 80 to 90% or 90 to 95% and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homology to one in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO : 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO
  • isolated nucleic acid molecules of a nucleotide sequence which are attached to one of the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SE- SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 or a part thereof hybridize, for example hybridized under stringent conditions.
  • Allelic variants include, in particular, functional variants which are characterized by deletion, insertion or substitution of nucleotides from / in the SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36, but with the intention is that the enzyme activity of the resulting synthesized proteins is advantageously maintained for the insertion of one or more genes.
  • Proteins which still have the enzymatic activity of the lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase, that is to say whose activity is essentially not reduced means proteins with at least 10%, preferably 20%, particularly preferably 30%, very particularly preferably 40% of the original enzyme activity, compared to that by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 , SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 encoded protein.
  • Homologues of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 also mean, for example, bacterial, fungal and plant homologues, shortened sequences, single-stranded DNA or RNA of the coding and non-coding DNA sequence.
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 also means derivatives, such as promoter variants.
  • the promoters upstream of the specified nucleotide sequences can be modified by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), without however impairing the functionality or activity of the promoters. It is also possible that the activity of the promoters is increased by modifying their sequence or that they are completely replaced by more active promoters, even from heterologous organisms.
  • nucleic acids and protein molecules with lysophosphatidic acid acyltransferase activity, glycerol-3-phosphate acyltransferase activity, diacylglycerol acyltransferase activity or lecithin cholesterol acyltransferase activity which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or on the transport of lipophils
  • Membranes are involved in the process according to the invention for modulating the production of PUFAs in transgenic organisms advantageously in plants such as corn, wheat, rye, oats, trificale, rice, barley, soybean, peanut, cotton, linum species such as oil or fiber flax, Brassica species, such as rapeseed, canola and turnip, reefers, sunflower, borage, evening primrose and tagetes, Solanacaen plants, such as potato, tobacco, eggplant and tomato, Vicia species, pea, cassava,
  • PUFAs polyunsaturated fatty acids
  • Lipid synthesis can be divided into two sections: the synthesis of fatty acids and their binding to sn-glycerol-3-phosphate and the addition or modification of a polar head group.
  • Common lipids used in membranes include phospholipids, glycolipids, sphingolipids and phosphoglycerides.
  • Fatty acid synthesis begins with the conversion of acetyl-CoA into malonyl-CoA by the acetyl-CoA carboxylase or in acetyl-ACP by the acetyl transacylase.
  • Precursors for PUFA biosynthesis are, for example, oleic acid, linoleic and linolenic acid. These C 8 carbon fatty acids must be extended to G 2 o and G 2 2 so that fatty acids of the Eicosa and Docosa chain type are obtained.
  • acyltransferases glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases, lecithin cholesterol acyltransferases, advantageously in combination with acyl-GoA: lysophospholipid acyltransferases, desaturases such as the ⁇ -4, ⁇ -5, ⁇ -6 - and ⁇ -8-desaturases and / or the ⁇ -5-, ⁇ -6-, ⁇ - 9-elongases can arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid as well as various other long-chain PUFAs be obtained, extracted and for various purposes in food, Feed, cosmetic or pharmaceutical applications can be used.
  • lysophospholipid acyltransferases desaturases such as the ⁇ -4, ⁇ -5, ⁇ -6 - and ⁇ -8-desaturases and / or the
  • C 18 -, C 20 -, C ⁇ - and / or C 2 fatty acids with at least two advantageously at least three, four, five or six double bonds in the fatty acid molecule, preferably to C 20 -, C 22 - And / or C 2 fatty acids with advantageously three, four or five double bonds in the fatty acid molecule.
  • Desaturation can take place before or after elongation of the corresponding fatty acid.
  • Substrates of lysophosphatidic acid acyltransferases, glycerol-3-phosphate acyltransferases, diacylglycerol acyltransferases or lecithin cholesterol acyltransferases in the process according to the invention are C 18 -, C 2 o- or C22-fatty acids such as, for example, linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid, dihomo- ⁇ -acid -linolenic acid, eicosatetraenoic acid or stearidonic acid.
  • Preferred substrates are linoleic acid, Y-linolenic acid and / or ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid.
  • the C 18 -, C 2 o- or C ⁇ -fatty acids with at least two double bonds in the fatty acid are obtained in the process according to the invention in the form of the free fatty acid or in the form of its esters, for example in the form of its glycerides.
  • glycolide means a glycerol esterified with one, two or three carboxylic acid residues (mono-, di- or triglyceride). “Glyceride” is also understood to mean a mixture of different glycerides. The glyceride or the gyiceride mixture can contain further additives, for example free fatty acids, antioxidants, proteins, carbohydrates, vitamins and / or other substances.
  • a “glyceride” in the sense of the method according to the invention is further understood to mean derivatives derived from glycerol. In addition to the fatty acid glycerides described above, this also includes glycerophospholipids and glyceroglycolipids.
  • Glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids may be mentioned here by way of example.
  • fatty acids then have to be transported to different modification sites and incorporated into the triacylglycerol storage lipid.
  • Another important step in lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol-fatty acid acyltransferase (see Frentzen, 1998, Lipid, 100 (4-5): 161-166).
  • the PUFAs produced in the process comprise a group of molecules which higher animals can no longer synthesize and therefore have to take up or which higher animals can no longer produce themselves sufficiently and therefore have to take up, although they are easily synthesized by other organisms, such as bacteria cats, for example, can no longer synthesize arachidonic acid.
  • lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase in the sense of the invention encompasses proteins which are involved in the biosynthesis of fatty acids and their homologs, derivatives or analogs.
  • Phospholipids in the context of the invention are understood to mean phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and / or phosphatidylinositol, advantageously phosphatidylcholine.
  • lysophosphatidic acid acyltransferase-, glycerol-3-phosphate acyltransferase-, diacylglycerol acyltransferase- or lecithin cholesterol acyltransferase nucleic acid sequences ⁇ include nucleic acid sequences containing a lysophosphatidic acid acyltransferase, glyceryltransferase, acylyltransferase, dacylglyceryl acylate, and acyltransferase acylate transferase at some of which can be a coding region and also corresponding 5 'and 3' untranslated sequence regions.
  • production or productivity are known in the art and include the concentration of the fermentation product (compounds of the formula I) which is formed in a certain time period and a certain fermentation volume (for example kg product per hour per liter).
  • the term production efficiency encompasses the time it takes to achieve a certain production quantity (e.g. how long it takes the cell to set up a certain throughput rate of a fine chemical).
  • yield or product / carbon yield is known in the art and encompasses the efficiency of converting the carbon source into the product (ie the fine chemical). This is usually expressed, for example, as kg of product per kg of carbon source. Increasing the yield or production of the compound increases the amount of molecules or suitable molecules of this compound obtained in a given amount of culture over a given period of time.
  • biosynthesis or biosynthetic pathway are known in the art and encompass the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds, for example in a multi-step and highly regulated process.
  • degradation or degradation pathway are known in the art and include the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), for example in a multi-step and highly regulated process.
  • metabolism is known in the specialist field and encompasses all of the biochemical reactions that take place in an organism. The metabolism of a certain compound (for example the metabolism of a fatty acid) then encompasses the entirety of the biosynthetic, modification and degradation pathways of this compound in the cell which affect this compound.
  • SEQ ID NO; 10 SEQ ID NO:: 12, SEQ ID NO 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO 21, SEQ ID NO:: 23, SEQ ID NO 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO 31, SEQ ID NO:: 33, SEQ ID NO 35 or SEQ ID NO: 37.
  • the homology was calculated over the entire amino acid or nucleic acid sequence range.
  • the PileUp program was used for the sequence comparisons (J. Mol. Evolution. 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFil [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) and Smith and Waterman (Adv.
  • SEQ ID NO 11 SEQ ID NO: 13, SEQ ID NO 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO 20, SEQ ID NO): 22, SEQ ID NO 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO 30, SEQ ID NO): 32, SEQ ID NO 34 or SEQ ID NO: 36 different nucleotide sequences shown (and parts thereof) due to the degenerate genetic code and thus the same lysophosphatidic acid acyltransferase, Glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase encode like that of those in SEQ ID NO: 1,
  • SEQ ID NO 3 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36
  • SEQ ID NO: 1 SEQ ID NO: 3
  • SEQ ID NO: 4 SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 shown lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase nucleotide sequences
  • SEQ ID NO: 34 SEQ ID NO: 36 shown lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol
  • Nucleic acid molecules which are advantageous for the method according to the invention can, on the basis of their homology to the lysophosphatidic acid disclosed here Acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase nucleic acids can be isolated using the sequences or a part thereof as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
  • isolated nucleic acid molecules can be used that are at least 15 nucleotides long and under stringent conditions with the nucleic acid molecules that have a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO:
  • nucleic acids of at least 25, 50, 100, 250 or more nucleotides can also be used.
  • hybridizes under stringent conditions is intended to describe hybridization and washing conditions under which nucleotide sequences which are at least 60% homologous to one another usually remain hybridized to one another.
  • the conditions are preferably such that sequences that are at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to one another usually remain hybridized to one another.
  • stringent conditions are known to the person skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6.
  • a preferred, non-limiting example of stringent hybridization conditions are hybridizations in 6 x sodium chloride / sodium citrate (SSC) at approximately 45 ° C., followed by one or more washing steps in 0.2 x SSC, 0.1% SDS 50 to 65 ° C.
  • hybridization conditions differ depending on the type of nucleic acid and, if organic solvents are present, for example, with regard to the temperature and the concentration of the buffer.
  • the temperature differs, for example, under "standard hybridization conditions” depending on the type of nucleic acid between 42 ° C and 58 ° C in aqueous buffer with a concentration of 0.1 to 5 x SSC (pH 7.2). If organic solvent is present in the above buffer, for example 50% formamide, the temperature is about 42 ° C under standard conditions.
  • the hybridization conditions for DNA DNA hybrids are preferably, for example, 0.1 ⁇ SSC and 20 ° C. to 45 ° C., preferably between 30 ° C. and 45 ° C.
  • RNA hybrids are preferably, for example, 0.1 ⁇ SSC and 30 ° C. to 55 ° C., preferably between 45 ° C. and 55 ° C.
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36) the sequences become Written for the purpose of optimal comparison (for example, gaps can be inserted in the sequence of a protein or a nucleic acid to produce an optimal alignment with the other protein or the other nucleic acid).
  • amino acid residues or nucleotides at the corresponding amino acid positions or nucleotide positions are then compared. If a position in a sequence is occupied by the same amino acid residue or the same nucleotide as the corresponding position in the other sequence, then the molecules at this position are homologous (ie amino acid or nucleic acid ologieomology ", as used here corresponds to amino acid- or nucleic acid "identity.”
  • Mutations can be in one of the sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO : 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 or SEQ ID NO: 36 by standard techniques such as site-specific mutagenesis and PGR-mediated mutagenesis. Conservative amino acid Substitutions are made on one or more of the predicted non-essential amino acid residues.
  • amino acid residue is exchanged for an amino acid residue with a similar side chain.
  • Families of amino acid residues with similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine, histidine), acidic side chains (e.g. aspartic acid, glutamic acid), uncharged polar side chains (e.g. glycine, asparagine, glufamine, serine, threonine, tyrosine, gysteine), non-polar side chains, (e.g.
  • a predicted non-essential amino acid residue in a lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase is therefore preferably replaced by another amino acid residue from the same side chain family.
  • the mutations can be introduced randomly over all or part of the lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase coding sequence, for example by saturation mutagenesis, and the resulting mutants can be according to the here described Lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase or lecithin cholesterol acyltransferase activity are screened to identify mutants that are the lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, acyltransferase, -Have maintained activity.
  • the encoded protein can be expressed recombinantly, and the activity of the protein can be determined, for example, using the tests described here become.
  • Cloning processes such as restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, connection of DNA fragments, transformation of Escherichia coli and yeast cells, bacterial growth and sequence analysis of recombinant DNA were carried out as described in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994) "Methods in Yeast Genetics” (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3) , b) chemicals
  • DNA-modifying enzymes and molecular biological kits were obtained from AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach / Taunus) , Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) and Stratagene (Amsterdam, Netherlands). Unless otherwise stated, they were used according to the manufacturer's instructions.
  • erevisiae was at 30 ° C either in YPG medium or in a complete minimal medium without uracil (CMdum; see in: Ausubel, FM, Brent, R., Kingston, RE, Moore, DD, Seidman, JG, Smith, J, Struhl, K., Albright, LB., Coen, DM, and Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) with either 2% (w / v) raffinose or cultivated glucose. For solid media, 2% (w / v) Bacto TM agar (Difco) was added.
  • the plasmids used for cloning and expression are pUC18 (Pharmacia) and pYES2 (Invitrogen Co.).
  • d) Cloning and Expression of PUFA-Specific Desaturases and Elongases cDNA clones from SEQ ID NO: 46 (Physcomitrella patens ⁇ -6-Desaturase), 48 (Physcomitrella patens ⁇ -6-Elongase) or 50 (Phaedactylum tricornutum) were used for expression in Rlanzen ⁇ -5-desaturase) modified so that only the coding region is amplified by means of the polymerase chain reaction with the aid of two oligonucleotides.
  • the PCR reaction was performed using plasmid DNA as a template in a thermal cycler
  • the annealing temperature was varied depending on the oligonucleotides chosen.
  • the correct size of the amplified DNA fragment was confirmed by agarose TBE gel electrophoresis.
  • the amplified DNA was extracted from the gel with the QIAquick gel extraction kit (QIAGEN) and ligated into the Smal restriction site of the dephosphorylated vector pUC18 using the Sure Clone Ligation Kit (Pharmacia) to obtain the pUC derivatives.
  • QIAGEN QIAquick gel extraction kit
  • Sure Clone Ligation Kit Pharmacia
  • rape can be transformed by means of cotyledon or hypocotyl transformation (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701).
  • the use of antibiotics for Agrobacterium and plant selection depends on the binary vector and Agrobacterium strain used for the transformation. Rapeseed selection is usually carried out using kanamycin as a selectable plant marker.
  • Soybean transformation can be performed using, for example, a technique described in EP-A-00424047 (Pioneer Hi-Bred International) or in EP-A-00397687, US 5,376,543, US 5,169,770 (University Toledo).
  • Plasmids for Plant Transformation For vector transformation, binary vectors based on the vectors pBinAR (Höfgen and Willmitzer, Plant Science 66 (1990) 221-230) or pGPTV (Becker et al 1992, Plant Mol. Biol. 20: 1195-1197) were used. used.
  • the binary vectors which contain the nucleic acids to be expressed are constructed by ligation of the cDNA in the sense orientation into the T-DNA.
  • a plant promoter activates the transcription of the cDNA.
  • a polyadenylation sequence is located 3 'from the cDNA.
  • the binary vectors can carry different marker genes such as the acetolactate synthase gene (AHAS or ALS) [Ott et al., J. Mol. Biol. 1996, 263: 359-360], which confers resistance to the imidazolinones or the nptII marker gene , which codes for a kanamycin resistance mediated by neomycin phosphotransferase.
  • AHAS or ALS acetolactate synthase gene
  • Tissue-specific expression of the nucleic acids can be achieved using a tissue-specific promoter. Unless otherwise described, the LeB4 or the USP promoter or the phaseolin promoter 5 'of the cDNA is cloned in. The NOS terminator and the OCS terminator were used as terminators (see FIG. 1).
  • FIG. 1 shows a vector map of the vector pSUNSCeLPLAT used for expression.
  • Any other seed-specific promoter element such as the Napin or Arcelin promoter Goossens et al. 1999, Plant Phys. 120 (4): 1095-1103 and Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490 (1 -2): 87-98) can be used.
  • the CaMV-35S promoter or a v-ATPase C1 promoter can be used for constitutive expression in the entire plant.
  • nucleic acids used in the process which are used for the acyl-CoA: lysophospholipid acyltransferases; Coding desaturases or elongases were cloned into a binary Veictor by constructing several expression cassettes in order to simulate the metabolic pathway in plants.
  • the protein to be expressed can be directed into a cellular compartment using a signal peptide, for example for plastids, mitochondria or the endoplasmic reticulum (Kermode, Grit. Rev. Plant Sei. 15, 4 (1996) 285-423).
  • the signal peptide is cloned 5 'in frame with the cDNA in order to achieve the subcellular localization of the fusion protein.
  • Expression cassettes consist of at least two functional units such as a promoter and a terminator. Further desired gene sequences such as targeting sequences, coding regions of genes or parts thereof, etc. can be inserted between the promoter and terminator.
  • promoters and terminators USP promoter: Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67
  • OCS terminator Gielen et al. EMBO J. 3 (1984) 835ff.
  • oligonucleotides can be used, for example: USP1 front:
  • a promoter and a terminator were amplified via PCR. Then the terminator was cloned into a recipient plasmid and in a second step the promoter was inserted in front of the terminator. As a result, an expression cassette was cloned into the base plasmid. Based on the plasmid pUC19, the plasmids pUT1, 2 and 3 were created.
  • the corresponding constructs or plasmids are defined in SEQ ID NO: 52, 53 and 54. They contain the USP promoter and the OCS terminator.
  • the construct pUT12 was created on the basis of these plasmids by cutting pUT1 using Sall / Scal and cutting pUT2 using Xhol / Scal. The fragments containing the expression cassettes were ligated and transformed into E. coli XL1 blue MRF. After separating ampicillin-resistant colonies, DNA was prepared and those clones which contained two expression cassettes were identified by restriction analysis. The Xhol / Sall ligation of compatible ends has eliminated the two interfaces Xhol and Sall between the expression cassettes.
  • the resulting plasmid pUT12 is shown in SEQ ID NO: 55. Then pUT12 was cut again using Sal / Scal and pUT3 cut using Xhol / Scal. The fragments containing the expression cassettes were ligated and transformed into E. coli XLI blue MRF. After separation from ampicillin-resistant colonies, DNA was again prepared and such by restriction analysis
  • multi-expression cassettes can be generated using the i) USP promoter or using the ii) 700 base pairs 3 'fragment of the LeB4 promoter or using the iii) DC3 promoter and used for seed-specific gene expression ,
  • the DC3 promoter is described in Thomas, Plant Cell 1996, 263: 359-368 and consists only of the region -117 to +26 which is why it is one of the smallest known seed-specific promoters.
  • the expression cassettes can contain the same promoter several times or can be constructed using three different promoters.
  • Polylinker or polylinker terminator polylinkers which are advantageously used can be found in the sequences SEQ ID NO: 60 to 62.
  • Table 2 Multiple expression cassettes
  • EcoRV interface cuts in the 700 base pair fragment of the LeB4 promoter (LeB4-700).
  • further promoters for multigen constructs can be generated, in particular using the a) 2.7 kB fragment of the LeB4 promoter or using the b) phaseolin promoter or using the c) constitutive v-ATPase c1 promoter. It may be particularly desirable to use other particularly suitable promoters to build seed-specific multi-expression cassettes, e.g. to use the Napin promoter or the Arcelin-5 promoter.
  • Ce_des5 ⁇ -5 desaturase from Gaenorhabditis elegans (Genbank Acc. No. AF078796)
  • Ce_des6 ⁇ -6-Desaturase from Caenorhabditis elegans (Genbank Acc. No. AF031477,
  • Ce_PSE1 ⁇ -6-elongase from Caenorhabditis elegans (Genbank Acc. No. AF244356,
  • the polylinker was newly synthesized as two double-stranded oligonucleotides, with an additional Asel DNA sequence being inserted.
  • the oligonucleotide was inserted into the Veictor pGPTV using EcoRI and Hindill. The necessary cloning techniques are known to the person skilled in the art and can easily be read as described in Example 1.
  • nucleic acid sequences for the ⁇ -5-desaturase SEQ ID NO: 50
  • the ⁇ -6-desaturase SEQ ID NO: 46
  • the ⁇ -6-elongase SEQ ID NO: 48
  • the corresponding amino acid sequences can be found in the sequences SEQ ID NO: 47, SEQ ID NO: 49 and SEQ ID NO: 51.
  • a victor containing all of the aforementioned genes is shown in SEQ ID NO: 56.
  • the corresponding amino acid sequences of the genes can be found in SEQ ID NO: 57, SEQ ID NO: 58 and SEQ ID NO: 59.
  • MsLPAAT Accession No. NP_O61350 An LPAAT protein sequence from Mus musculus
  • LPLAT catalyzes the ATP-independent synthesis of acyl-CoAs from phospholipids using CoA as a cofactor by means of a reversible transferase reaction (Yamashita et al., J. Biol. Chem. 2001, 20: 26745-26752). Sequence comparisons identified two putative ceLPLAT sequences (Accession No. T06E8.1 and F59F4.4). The identified sequences have the greatest similarity to each other and to MsLPAATs ( Figure 2). The alignment was created with the Clustal program. b) Cloning the CeLPLATs
  • Primer pairs were synthesized on the basis of the ceLPLAT nucleic acid sequences (Table 4) and the associated cDNAs were isolated from a C. elegans cDNA library by means of the PCR method. The corresponding primer pairs were selected so that they carried the yeast consensus sequence for highly efficient translation (Kozak, Cell 1986, 44: 283-292) next to the start codon.
  • the amplification of the LPLAT cDNAs was carried out in each case with 2 ⁇ l cDNA bank solution as template, 200 ⁇ M dNTPs, 2.5 U “proof-reading” pfty polymerase and 50 pmol of each primer in a total volume of 50 ⁇ l.
  • the conditions for the PCR were as follows: first denaturation at 95 ° C.
  • Example 3 Analysis of the effect of the recombinant proteins on the production of the desired product a) Processing options
  • the effect of the genetic modification in fungi, algae, ciliates or in yeasts as described in the examples above on the production of the polyunsaturated fatty acids or plants can be determined by the modified microorganisms or the modified plant under suitable conditions (such as those described above) ) are grown and the medium and / or the cellular components are examined for the increased production of lipids or fatty acids.
  • suitable conditions such as those described above
  • These analysis techniques are known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see, for example, Ullman, Encyelopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and p.
  • the unambiguous detection of the presence of fatty acid products can be obtained by analysis of recombinant organisms according to standard analysis methods: GC, GC-MS or TLC, as described variously by Christie and the literature therein (1997, in: Advances on Lipid Methodology, Fourth Ed. : Christie, Oily Press, Dundee, 119-169; 1998, gas chromatography mass spectrometry method, lipids 33: 343-353).
  • the plant material to be analyzed can be broken up either by ultrasound treatment, grinding in a glass mill, liquid nitrogen and grinding or by other applicable methods.
  • the material is then centrifuged after breaking up.
  • the sediment is then distilled in aqua dest. resuspended, heated at 100 ° C for 10 min, cooled on ice and centrifuged again, followed by extraction in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane for 1 hour at 90 ° C, which leads to hydrolyzed oil and lipid compounds, which result in transmethylated lipids.
  • fatty acid methyl esters can then be extracted into petroleum ether and finally a GC analysis using a capillary column (chrome pack, WCOT fused silica, CP-Wax-52 CB, 25 microm, 0.32 mm) at a temperature gradient between 170 ° C and 240 ° C be subjected for 20 min and 5 min at 240 ° C.
  • the identity of the fatty acid methyl esters obtained can be defined using standards available from commercial sources (i.e. Sigma).
  • the total fatty acids were extracted from plant seeds and analyzed by gas chromatography. The seeds were taken up with 1% sodium methoxide in methanol and
  • the samples were separated on a ZEBRON-ZB-Wax capillary column (30 m, 0.32 mm, 0.25 micron; Phenomenex) in a Hewlett Packard 6850 gas chromatograph with a flame ion isafione dioiclor.
  • the oven temperature was raised from 70 ° C (hold 1 min) to 200 ° C at a rate of 20 ° C / min, then to 250 ° C (hold 5 min) at a rate of 5 ° C / min and finally to 260 ° C programmed at a rate of 5 ° C / min.
  • Nitrogen was used as the carrier gas (4.5 ml / min at 70 ° C).
  • the fatty acids were identified by comparison with retention times of FAME standards (SIGMA).
  • the double construct pESCLeu-PpD6-Pse1 was further produced, which contains the open reading frames of a ⁇ 6-desaturase (PpD6) and a ⁇ 6-elongase (PSE1) from Physcomitrella patens ( see DE 102 19203).
  • the nucleic acid sequence of the ⁇ 6 desaturase (PpD6) and the ⁇ 6 elongase (Pse1) are given in SEQ ID NO: 46 and SEQ ID NO: 48, respectively.
  • the corresponding amino acid sequences can be found in SEQ ID NO: 47 and SEQ ID NO: 49.
  • the Saccharomyces cerevisiae strains C13ABYS86 (protease deficient) and INVSd were analyzed simultaneously with the vectors pYes2-T06E8.1 and pESCLeu-PpD6-Pse1 or pYes2-F59F4.4 and pESCLeu-PpD6-P using a modified PEG / lithium acetate protocol transformed.
  • a yeast was used as a control, which was transformed with the vector pESCLeu-PpD6-Pse1 and the empty vector pYes2.
  • the transformed yeasts were selected on complete minimal medium (CMdum) agar plates with 2% glucose, but without uracil and leucine.
  • CeLPAATs For the expression of the CeLPAATs, precultures from 2 ml GMdum liquid medium with 2% (w / v) raffinose, but without uracil and leucine, were inoculated with the selected transformants and incubated for 2 days at 30 ° C, 200rpm.
  • the yeast cells from the main cultures were harvested by centrifugation (100 xg, 10 min, 20 ° C) and washed with 100 mM NaHC0 3 , pH 8.0 to remove residual medium and fatty acids.
  • Fatty acid methyl esters (FAMEs) were produced from the yeast cell sediments by acidic methanolysis. For this purpose, the cell sediments were incubated with 2 ml of 1N methanolic sulfuric acid and 2% (v / v) dimethoxypropane for 1 h at 80 ° G.
  • the FAMES were extracted by extraction twice with petroleum ether (PE).
  • the organic phases were each once with 2 ml of 100 mM NaHC0 3 , pH 8.0 and 2 ml of distilled water. washed.
  • the PE phases were then dried with Na 2 S0 4 , evaporated under argon and taken up in 100 ⁇ l PE.
  • the samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 ⁇ m, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector.
  • the conditions for the GLC analysis were as follows: The oven temperature was programmed from 50 ° C to 250 ° C at a rate of 5 ° C / min and finally 10 minutes at 250 ° C (hold).
  • the signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma).
  • acyl-CoA analysis was carried out as described by Larson and Graham (2001; Plant Journal 25: 115-125).
  • FIGS. 2A and B and 3A and B show the fatty acid profiles of transgenic C13ABYS86 yeasts which were fed with 18: 2 ⁇ 9.12 and 18: 3 ⁇ 9 ' 12 ' 15 , respectively.
  • the fed substrates can be detected in large quantities in all transgenic yeasts.
  • All four transgenic yeasts show a synthesis of 18: 3 ⁇ 6 ' 9.12 and 20: 3 ⁇ 8 ' 11 M and
  • Figure 3 gives the fatty acid profiles of transgenic C13ABYS86 S. cerevisiae ZeWen as described above.
  • the fatty acid methyl esters were synthesized by acid methanolysis of intact cells, which were transformed either with the vectors pESCLeu-PpD6-Pse1 / pYes2 ( ⁇ ) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B) were.
  • the yeasts were grown in minimal medium in the presence of 18: 2 ⁇ 9.12 .
  • the fatty acid methyl esters were then analyzed by GLC.
  • the LPLAT T06E8.1 is able to convert the ⁇ 6-desatured acyl groups back into CoA thioesters very efficiently. Interestingly, the elongation of the fed fatty acids 18: 2 ⁇ 9.12 and 18: 3 ⁇ 9.12.15 could also be improved. ( Figure 2 A and B or 5 A and B).
  • Figure 5 gives the fatty acid profiles of transgenic C13ABYS86 S. cerevisiae ZeWen.
  • the fatty acid methyl esters were synthesized by acid methanolysis of intact cells which had been transformed either with the vectors pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B).
  • the yeasts were cultivated in minimal medium in the presence of 18: 3 ⁇ 9, 12, 15 .
  • the fatty acid methyl esters were then analyzed by GLC.
  • FIG. 4 shows the elongation of exogenously applied 18: 2 ⁇ 9.12 or 18: 3 ⁇ 9.12.15 after their endogenous ⁇ -6 desaturation (data from FIGS. 2 and 5).
  • the exogenously fed fatty acids are first incorporated into phospholipids and there to 18: 3 ⁇ 6 '9,12 and 18: 4 ⁇ 6' 9 '12.15 desaturated.
  • FIG. 6 shows the acyl-CoA composition of transgenic INVSd yeasts which had been transformed with the vectors pESCLeu PpD6Pse1 / pYes2 (A) or pESCLeu-PpD6-Pse1 / pYes2-T06E8.1 (B).
  • the yeast cells were cultivated in minimal medium without uracil and leucine in the presence of 250 ⁇ M 18: 2 ⁇ 9.12 .
  • the acyl-CoA derivatives were analyzed by HPLC.
  • Table 5 shows that the additional expression of CeLPLAT surprisingly showed an 8-fold increase in the content of 20: 3 ⁇ 8,11,14 (when feeding 18: 2) or 20: 4 ⁇ 8 ' 11 ' 14 '17 (when feeding of 18: 3). It also shows that C16: 2 ⁇ 69 is elongated more efficiently to C18: 2 ⁇ 69 .
  • FIG. 7 shows the fatty acid profile of transgenic INVSd S. cerevisiae cells.
  • the fatty acid methyl esters were synthesized by acid methanolysis of intact cells which had been transformed either with the vectors pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B).
  • the yeasts were grown in minimal medium in the presence of 18: 2 ⁇ 9.12 .
  • the fatty acid methyl esters were then analyzed by GLC.
  • Figure 8 shows the fatty acid profiles of transgenic INVSd S. cerevisiae ZeWen.
  • the fatty acid methyl esters were synthesized by acid methanolysis of intact cells which had been transformed either with the vectors pESCLeu-PpD6-Pse1 / pYes2 (A) or pYes2-T06E8.1 / pESCLeu-PpD6-Pse1 (B).
  • the yeasts were cultivated in minimal medium in the presence of 18: 3 ⁇ , 12.1S .
  • the fatty acid methyl esters were then analyzed by GLC.
  • Table 5 Fatty acid composition (in mol%) of transgenic yeasts which had been transformed with the vectors pESCLeu PpD6Pse1 / pYes2 (PpD6 Psel) or pESCLeu- PpD6-Pse1 / pYes2-T06E8.1 (PpD6 Psel + T06E8).
  • the yeast cells were cultivated in minimal medium without uracil and leucine in the presence of 250 ⁇ M 18: 2 ⁇ 9.12 or 18: 3 ⁇ 9.12.15 .
  • CeLPLAT not only hosts an increase in the elongation products mentioned 20: 3 ⁇ 8,11,14 and 20: 4 ⁇ 8 '11, 14,17 , but also an increase in the ratio 20: 3 ⁇ 8 ' 11 - 14 : 20: 2 ⁇ 11 '14 or 20: 4 ⁇ 8 ' 11 ' H17 : 20: 3 ⁇ 11 ' H17 .
  • the ⁇ -6-elongase preferably uses polyunsaturated fatty acids (18: 3 ⁇ 6,9,12 and 18: 4 ⁇ 6 ' 9,12,15 ) as the substrate, whereas in the absence of the LPLAT none is pronounced Substrate specificity can be seen (also 18: 2 ⁇ 9,12 and 18: 3 ⁇ 9,12 '15 are elongated).
  • the reason for this may be protein-protein interactions between ⁇ -6-elongase, ⁇ -6-desturase and LPLAT or post-translational modifications (eg partial proteolysis). This would also explain why the increase in ⁇ -6 elongation products described above is less with co-expression of ⁇ -6-desaturase, ⁇ -6-elongase and LPLAT when using a protease-deficient yeast strain.
  • Table 6 shows the primers that were used to clone another clone of ceLPLAT into binary vectors.
  • the PCR product was cloned into a pENTRY vector between the USP promoter and the OCS terminator.
  • the expression cassette was then cloned into the binary vectors pSUN300.
  • the resulting vector was designated pSUN3CeLPLAT ( Figure 1).
  • the coding region of CeLPLAT was amplified and cloned between the LegB4 promoter and the OCS terminator. This vector was designated pGPTVCeLPLAT ( Figure 9A).
  • CeLPLAT was amplified by PCR and cloned between the LegB4 promoter and OCS terminator.
  • the PCR primers used for this were selected so that an efficient cossack sequence was introduced into the PCR product.
  • the DNA sequence of CeLPLAT was changed so that it was adapted to the codon usage of higher Rlanzen.
  • the PCR product was cloned into the cloning vector pCR Script and cloned into the vector pGPTV LegB4-700 via the restriction enzymes Xmal and Sacl.
  • the resulting plasmid was designated pGPTV LegB4-700 + T06E8.1 ( Figure 9A).
  • the same PCR product was also cloned into a multigen expression vector which already identified the genes for a delta-6 desaturase from Phaeodactylum tricornutum (SEQ ID NO: 69, amino acid sequence SEQ ID NO: 70) and a delta-6 elongase P. patens contained.
  • the resulting plasmid was designated pGPTV USP / OCS-1,2,3 PSE1 (Pp) + D6-Des (Pt) + 2AT (T06E8-1) ( Figure 9B).
  • the sequences of the vector and of the genes are SEQ ID NO: .71, SEQ ID NO: 72, SEQ ID NO: 73 and SEQ ID NO: 74.
  • the ⁇ -6 desaturase from Phaeodactylum tricornutum ranges from nucleotide 4554 to 5987 in SEQ ID NO: 71.
  • the ⁇ -6 elongase from Physcomitrella patens ranges from nucleotide 1026 to 1898 and that of the LPLAT from Caenorhabditis elegans ranges from nucleotide 2805 to 3653 in SEQ ID NO: 71.
  • Tobacco plants were co-transformed with the Veictor pSUNSCeLPLAT and the Veictor described in DE 102 19203 and SEQ ID NO: 56 containing genes coding for ⁇ -6-desaturase, ⁇ -6-elongase and ⁇ -5-desaturase, the selection of transgenic plants with kanamycin. Tobacco plants were also transformed with the vector pGPTV USP / OCS-1, 2.3 PSE1 (Pp) + D6-Des (Pt) + 2AT (T06E8-1) [see SEQ ID NO: .71, SEQ ID NO: 72, SEQ ID NO: 73 and SEQ ID NO: 74].
  • Lein was transformed with the vector pSUN3CeLPLAT.
  • the resulting transgenic plants were crossed with those transgenic linseed plants which already contained small amounts of ERA and EPA due to the functional gene expression of ⁇ -6-desaturase, ⁇ -6-elongase and ⁇ -5-desaturase.
  • Lein was also transformed with the vector pGPTV LegB4-700 + T06E8.1.
  • the resulting transgenic lances were crossed with those transgenic linseed plants which already contained small amounts of ERA and EPA due to the functional expression of ⁇ -6-desaturase, ⁇ -6-elongase and ⁇ -5-desaturase.
  • acyl-CoA lysophospholipid acyltransferase (LPLAT) can be derived from the work here, as shown in FIGS. 10A and 10B.
  • LCPUFAS biosynthetic pathway is as follows.
  • Desaturases catalyze the introduction of double bonds in lipid-coupled fatty acids (sn2-acyl-phosphatidylcholine), while the elongases exclusively catalyze the elongation of coenzyme A-esterified fatty acids (acyl-CoAs).
  • acyl-CoAs coenzyme A-esterified fatty acids
  • the alternating action of desaturases and elongases requires a constant exchange of acyl substrates between phospholipids and acyl-CoA pool and thus the existence of an additional activity which converts the acyl substrates into the substrate form required in each case, ie lipids (for desaturases ) or CoA thioester (for elongases).
  • ⁇ RA ( ⁇ ) is biosynthesized analogously to EPA (B), with the difference that in EPA the ⁇ -6 desaturation is preceded by a ⁇ -15 desaturation, so that ⁇ 18: 3-PG as substrate for the ⁇ - 6-desaturase acts.
  • microsomal fractions were isolated from the LCPUFA-producing organism Mortierella alpina and from sunflower.
  • the GPAT and LPAAT activities were tested with various acyl CoAs as substrates.
  • LCPUFA-specific acyltransferases In order to isolate LCPUFA-specific acyltransferases, Thraustochytrium, Physcomitrella, Crypte-codinium cohnii and Fusarium cDNA libraries, and a Shewanella genomic library, based on mRNA of the LCPUFA-producing organisms, and a Shewanella genomic library were created and these were analyzed in more detail using DNA sequencing. Acyltransferase clones were identified using sequence homologies. Alternatively, acyltransferases were amplified using PCR techniques. Transgenic E. coli cells, yeasts, insect cells and Lancel cells with increased expression of at least one LCPUFA-specific acyltransferase have an increased content of LCPUFAs in their lipids.
  • Example 6 Isolation of microsomal fractions from Mortierella, sunflower and linseed and analysis of the substrate specificity of acyltransferases for various acyl-CoAs.
  • oilseeds such as sunflower, linseed, rapeseed or soybean can incorporate LCPUFAs into their lipids
  • microsomes were prepared from sunflower and linseed and various acyltransferase activities were examined with regard to their substrate specificity for LCPUFA-CoAs.
  • GPAT, LPAAT and LPCAT activities were examined in detail.
  • microsomal membranes were washed with 0.1 M sodium phosphate buffer (pH 7.2) and resuspended in a small volume of buffer using a glass homogenizer.
  • the microsomal membrane preparations were either used immediately or stored at -80 ° C.
  • acyl-CoAs myristoyl-CoA (14: 0-CoA), palmitoyl-CoA (16: 0-CoA ), Palmitoleoyl-CoA (16: 1-CoA), stearoyl-CoA (18: 0-CoA), oleoyl-CoA (18: 1-CoA), linoleoyl-CoA (18: 2-CoA), dihomo-gamma linolenoyl-CoA (20: 3-CoA) or arachidonyl-CoA (20: 4-CoA) and 5 mM [ 14 C] G3P.
  • Microsomal membranes (equivalent to 50 ⁇ g protein in sunflower and Mortierella or 150 ⁇ g protein in linseed) were added to the reaction mixture to start the reaction. After an incubation period of 5 minutes, the lipids were extracted according to Bligh & Dyer and the radioactivity built into complex lipids was determined.
  • Figure 11 and Tables 7a and 7b show the GPAT activities of Mortierella, sunflower and linseed at various acyl-CoA substrates.
  • Mortierella's GPAT incorporates unsaturated fatty acids more efficiently than saturated fatty acids.
  • Oleate and linoleate were implemented with similar installation rates (100% and 90%, respectively).
  • the incorporation of polyunsaturated fatty acids (20: 3 CoA and 20: 4 CoA) was only slightly lower (80% and 75%).
  • oleate and linoleate are also the best substrates for GPAT (100% and 85% activity, respectively).
  • Acyl-CoAs of the saturated fatty acids stearate and palmitate are only about half as well incorporated (40% and 64%, respectively). The same applies to 20: 3 CoA (55%).
  • Arachidonyl-CoA is a relatively poor substrate for sunflower GPAT (23%).
  • the GPAT in microsomal membranes of linseed has the lowest specific activity of all GPAT enzymes examined. With 6 nmol / min / mg protein, it is only half as active as sunflower GPAT and 5 times less active than the enzyme from Mortierella. With regard to substrate specificities, the most efficient acyl-CoA substrates of the flax seed GPAT are like sunflower oleate and linoleate (100% and 90%). At 65% and 90%, the incorporation rates of the saturated fatty acids stearate and palmitate are significantly higher than for sunflower. Arachidonyl-CoA, on the other hand, is an extremely poor substrate (5%) for flax seed GPAT.
  • LPAAT activity was determined in a continuous spectrophotometric assay using 5,5-dithio-bis-2-nitrobenzoate (DTNB) and monitoring the change in absorption at 409 nm and 25 ° C (FM Jackson et al. ( 1998) Microbiology 144: 2639-2645).
  • DTNB 5,5-dithio-bis-2-nitrobenzoate
  • the assay contained sn-1-oleoyl-lysophosphatidic acid (30 nmol), DTNB (50 nmol) and 20 nmol of one of the following acyl-CoAs: palmitoyl-CoA (16: 0-CoA), stearoyl-CoA (18: 0-CoA) ), Oleoyl-CoA (18: 1-CoA), Linoleoyl-CoA (18: 2-CoA), Dihomo-gamma-linolenyl-CoA (20: 3-CoA) or Arachidonyl-CoA (20: 4-CoA) in 1 ml 0.1 M phosphate buffer, pH 7.2.
  • the CoA released in the reaction was quantified using the initial slope and the extinction coefficient of 13.6 mM-1 x cm-1.
  • Microsomal membranes (equivalent to 10 ⁇ g protein for Mortierella or 40 ⁇ g protein for sunflower and linseed) were added to the reaction mixture to start the reaction.
  • FIG. 11 and Tables 7a and 7b show the LPAAT activities of Mortierella, sunflower and linseed at various acyl-CoA substrate rates.
  • Mortierella's LPAAT is the most efficient way of incorporating oleoyl-CoA (100%). Linoleoyl-CoA is also implemented very well (90%). Only 40% and 36% of the saturated fatty acid substrates 16: 0-CoA and 18: 0-CoA are incorporated, however, the LCPUFA substrates 20: 3-CoA and 20: 4-CoA with a relatively high efficiency (65% each ).
  • linoleoyl-CoA is the most efficient substrate of LPAAT incorporated in phosphatidic acid (250% relative to oleoyl-CoA). Both saturated and polyunsaturated acyl-CoA were poor substrates for LPAAT sunflowers (relative activities less than 20%). A very similar picture emerges for LPAAT from linseed: Linoleoyl-CoA is the best substrate (120% relative to Oleoyl-CoA). Saturated fatty acids are poor LPAAT substrates (25% and 30% for 16: 0 CoA and 18: 0 CoA). Arachidonyl-CoA is poorly implemented (19% relative activity). Acyl-CoA substrate specificity of LPCAT: Implementation of individual acyl-CoA substrates in the acylation of lysophosphatidylcholine
  • PC phosphatidylcholine
  • LPCAT This transfer of the acyl group from acyl-CoA to the sn-2 position of the PC is believed to be catalyzed by LPCAT.
  • the specificity of LPCAT was examined to check whether the enzyme has a preference for certain acyl-CoAs, in particular to determine whether the LPCAT of oilseeds converts LCPUFA-CoAs.
  • LPCAT activity was determined in a continuous spectrophotometric assay using 5,5-dithio-bis-2-nitrobenzoate (DTNB) and monitoring the change in absorption at 409 nm and 25 ° C.
  • the assay contained sn-1-palmitoyl-lysophosphatidylcholine (30 nmol) as the acyl acceptor, DTNB (50 nmol) and 20 nmol of one of the following acyl-CoAs: myristoyl-CoA (14: 0-CoA), palmitoyl-CoA (16 : 0-CoA), palmitoleoyl-CoA (16: 1-CoA), stearoyl-CoA (18: 0-CoA), oleoyl-CoA (18: 1-CoA), linoleoyl-CoA (18: 2-CoA), Dihomo-gamma-linolenoyl-CoA (20: 3-CoA) or arachidonyl-CoA (20:
  • the reaction was started by adding microsomal membrane preparation.
  • the amount of microsomal membrane preparation added was 5 ⁇ g (Mortierella and sunflower) and 30 ⁇ g (linseed).
  • the CoA released in the reaction was quantified using the initial slope and the extinction coefficient of 13.6 mM-1 x cm-1 at 409 nm.
  • Figure 12 and Tables 7a and 7b show the LPCAT activities of Mortierella, sunflower and linseed at various acyl-CoA substrate rates.
  • LPCAT is much more active in microsomal membranes of sunflower and Mortierella than in linseed (see Tables 10a and 10b).
  • Mortierella LPCAT also converts 18: 2 (40%), 20: 3 (85%) and 20: 4 (90%) very efficiently. Saturated fatty acids are practically not converted (relative activity less than 25%).
  • Sunflowers LPCAT converts Oleoyl-CoA and Linoeoyl-CoA equally well (100% and 120% relative activities, respectively). Palmitoyl-CoA and stearoyl-CoA are bad Substrates (relative activity less than 20%). 20: 3 CoA and 20: 4 CoA are practically not implemented (relative activities less than 5%).
  • LPCAT from linseed behaves similarly: Oleoyl-CoA and linoleoyl-CoA are implemented equally well, however, no LPCAT activity could be detected for 20: 3-CoA and 20: 4-CoA.
  • the substrate specificity of G3P acylating enzymes has been studied intensively to understand the mechanism of the distribution of fatty acids in phospholipids and triacylglycerol.
  • Mammalian microsomal GPAT uses saturated and unsaturated acyl-CoAs (Yamada & Okuyama, 1978; Haldar et al., 1979; Tamai & Lands, 1974). The same has been shown for plant microsomal GPATs (Frentzen, 1993; Bafor et al. 1990). Jackson et al. (1998) also showed that neither GPAT nor LPAAT of the Mucor circinelloides fungus has a pronounced substrate specificity for acyl-CoAs.
  • Saturated and unsaturated fatty acids are acylated at both positions in Mucor.
  • a purified GPAT of the membrane fraction from Mortierella ramanniana showed a clear preference for oleoyl-CoA over palmitoyl-CoA (Mishra & Kamisaka, 2001).
  • Mortierella's GPAT is similar to other plant, animal and fungal GPATs in that it has broad specificity for acyl CoAs, i.e. saturated and unsaturated fatty acids are acylated at the sn-1 position of G3P.
  • the sunflower and flaxseed microsomal membrane GPATs also use saturated and unsaturated acyl donors, in a manner similar to that shown for safflower and turnip rape (Bafor et al., 1990), but with a preference for unsaturated fatty acids.
  • the Mortierella GPAT is less discriminatory than the sunflower and linseed enzyme. It is striking, however, that sunflowers and linseed GPATs practically do not convert arachidonyl-CoA, whereas the Mortierella enzyme arachidonyl-CoA acylates very efficiently.
  • LPAAT from Mortierella, sunflower and linseed is active with sn-1-oleoyl lysophosphatidic acid as the acyl acceptor. Similar to the GPAT, Mortierella's LPAAT has a broad specificity for acyl-CoAs. These data are similar to those from guinea pigs and rat liver microsomes, where, with the exception of stearoyl-CoA LPAAT, all acyl-CoAs with 16 and 18 C atoms were esterified regardless of the degree of saturation (Hill and Lands, 1968).
  • the sunflower and linseed LPAATs showed a strong specificity for linoleate and oleate. Saturated fatty acids, however, were hardly implemented. These data are consistent with the observation that LPAAT is more specific for unsaturated fatty acids in most oilseeds (Griffiths et al., 1985; Ichihara et al., 1987). With sunflower and linseed, arachidonyl-CoA is also a bad one for LPAAT Substrate. Compared to GPAT, the LPAAT activity of sunflower and linseed is somewhat higher.
  • LPCAT The specificity of LPCAT in microsomal preparations of Mortierella and sunflower was also examined. In Mortierella, LPCAT showed a broad spectrum of substrate specificity. The activity of the enzyme with various acyl CoAs decreased in the order 18: 1 CoA> 20: 4 CoA> 20: 3 CoA> 16: 1 CoA> 18: 2 CoA. LPCAT from sunflower and linseed showed little activity with 20: 3 and 20: 4 CoA. LPCAT in bovine brain microsomes also showed weak activity with saturated acyl-CoAs and greater activity with linoleoyl and oleoyl-CoA (Deka et al. , 1986).
  • Bovine myocardial microsome LPCAT accept a wide range of substrates, although activity is particularly high with arachidonyl, linoleoyl and oleoyl-CoA substrates (Sanjawara et al., 1988).
  • Lance the acyl specificity and selectivity of LPCAT in microsomes of safflower (Stymne et al., 1983; Griffith et al., 1985) and linseed (Stymne & Stobart, 1985a) were examined. Oleate and linoleate were acylated to the sn-2 position of PC at approximately the same conversion rate. Alpha linoleate activity was only about half.
  • Palmitate and stearate were much poorer LPCAT substrates when offered as single acyl CoAs. If a mixture of saturated and unsaturated acyl-CoAs was offered, palmitate and stearate were completely excluded from the PC.
  • LPCAT in microsomal membranes from Mucor circinelloides also uses oleoyl and linoeoyl CoA much more efficiently than saturated fatty acids. So there is a great deal of agreement on the specificity of plant, animal and fungal LPCATs.
  • Mortierella microsomal membrane LPCAT has poor activity with stearoyl-CoA and good activity with oleoyl and linoleoyl-CoA could indicate that phosphatidylcholine serves as a substrate for desaturases. It has been demonstrated that oleate at the sn-1 and sn-2 positions of PC serves as a substrate for ⁇ -12 desaturase in oilseeds (Stymne & Stobart, 1986; Griffiths et al., 1988). Similar results have been reported for Mucor circinelloides (Jackson et al., 1998).
  • the ⁇ -6 desaturase also uses linoleate at the sn-2 position of PC in microsomal membrane preparations from Mucor (Jackson et al., 1998). Borretsch's ⁇ -6 desaturase also only uses linoleate at the sn-2 position of the phospholipid (Stymne & Stobart, 1986; Griffiths et al., 1988).
  • Example 6 The results described in Example 6 show that sunflower and flax acyltransferases cannot efficiently incorporate LCPUFAs such as dihomo- ⁇ -linolenate and arachidonate into the membrane and storage lipids.
  • LCPUFAs can be produced in oilseeds such as sunflower, linseed or soybeans by functionally expressing the corresponding biosynthesis genes, it can be assumed that the LCPUFAs formed are not efficiently incorporated into triacylglycerol due to the lack of acyltransferase activities, which leads to a low yield.
  • acyltransferases with a high specificity for LCPUFA-CoAs in oil seeds must be transformed.
  • Acyltransferases are suitable for this of LCPUFA-producing organisms such as Mortierella, Phaeodactylum, Crypthecodinium, Physcomitrella, Euglena and Thraustochytrium.
  • Tables 7a and 7b show the activity and acyl specificity of flax, sunflower and Mortierella alpina acyltransferases.
  • Table 7a Activity and acyl specificity of linseed and sunflower acyltransferases
  • Table 7b Activity and acyl specificity of Mortierella alpina acyltransferases
  • Example 7 Position analysis of the lipids of Thraustochytrium
  • LCPUFA producers like Mortierella have membrane-bound acyltransferase activities that incorporate LCPUFA-CoAs into membrane and storage lipids. Position analyzes of the lipids from LCPUFA producers allow conclusions to be drawn about the in vivo activities of the individual acyltransferases. It was therefore examined below which fatty acids are esterified at the individual positions of the lipids of the DHA producer Thraustochytrium. a) Cultivation of Thraustochytrium spec. (TS) ATCC 26185
  • Solution B was sterile filtered.
  • 10x solution C (g / l) 2 g / l CaC0 3
  • the solution was autoclaved.
  • the cell residues were then sedimented again and the supernatant was stored at 8 ° C.
  • the second extraction took place according to the first, but with trichloromethane / methanol 2: 1 (v / v) overnight.
  • the cell residues were sedimented again and the supernatant was combined with that of the first extraction.
  • the combined extracts were then adjusted to the ratio trichloromethane / methanol / 0.45% NaCl 2: 1: 0.7 and shaken. Unwanted, co-extracted substances such as sugar are shaken out and get into the aqueous phase.
  • the extract was then centrifuged until the phases separated, the organic lower phase removed and filtered through cotton wool in a round-bottom flask to remove suspended matter.
  • Isolated Thraustochytrium membranes were transferred to a cut tube and taken up in 0.45% NaCl and boiled in a water bath for 5 minutes to inactivate lipid-degrading enzymes. After centrifugation (5 minutes, 3000 x g) the aqueous supernatant was decanted. The lipids were extracted for one hour at 4 ° C. in trichloromethane / methanol (2: 1). After adding 1/3 volume of 0.45% NaCl, the samples were centrifuged for better phase separation (5 minutes, 3000 x g). The lower, lipid-containing phase was removed and concentrated under vacuum. The lipids were taken up in a suitable volume of trichloromethane.
  • the lipids were applied to silica gel plates (silica gel 60, 20 ⁇ 20 cm, 0.25 mm layer thickness; Merck, Darmstadt) with suitable standards for thin-layer chromatographic separation of the phospholipids.
  • Trichloromethane / methanol / glacial acetic acid / H 2 091/30/4/4 (v / v / v / v) was used as the eluent.
  • the run time was 1.5 hours.
  • the plates were stained with 2 ' , 7 ' dichlorofluorescein (Merck, Darmstadt; in 0.3% isopropanol) and visualized under UV light (366 nm).
  • lipid 50 mg was weighed into a glass tube. After adding 0.5 ml of Tris buffer, 0.1 ml of CaCl 2 solution and 0.25 ml of bile salt solution (0.05% (w / v) bile salt; Sigma, Deisenhofen), the cut tube was closed. The mixture was mixed for one minute and then preheated in a water bath at 40 ° C. for one minute in order to emulsify the sample.
  • the hydrolysis was carried out after adding pancreatic lipase (EC 3.1.1.3; Sigma, Deisenhofen; 2 mg lipase per 5 mg lipid; freshly dissolved lipase in 0.5 ml Tris buffer) at 38 ° C and high shaking frequency (1200 rpm if possible) ). After 30 minutes, the reaction was stopped by adding 1 ml of HCl (6 N) and 1 ml of ethanol.
  • the reaction mixture was extracted twice in a centrifuge glass with 4 ml of dietyl ether each time.
  • the upper ethereal phase was removed.
  • the remaining aqueous phase was extracted again with diethyl ether.
  • the formation of emulsions was additionally prevented by centrifugation in each extraction step.
  • the combined ethereal phases were washed by shaking with 3 ml of water (dist.).
  • the organic phase was transferred to a new tube and dried with sodium sulfate. After centrifugation at 3000 ⁇ g for 2 minutes, the clear supernatant was removed and the sodium sulfate pellet was shaken out again with diethyl ether, centrifuged as indicated above and the organic phases were combined.
  • the individual lipid fractions were separated in the following order: monoacylglycerols (sn-2 MAGs, immediately above the start line), diacylglycerols (s ⁇ -1, 2- and s / ⁇ -2,3-DAGs) free fatty acids (FFA) and the unconverted TAGs.
  • the MAG band was scraped off the silica gel plate.
  • the fatty acid composition of the TAGs was determined by transmethylation and subsequent gas chromatographic separation of the fatty acid methyl esters (FAME).
  • Tris buffer 1 M Tris / HCI, adjust pH to 8.0 with HCI
  • the positional analysis of the membrane lipids was carried out by enzymatic hydrolysis of the sn-2 ester bond with phospholipase A 2 (EC 3.1.1.4).
  • the isolated membrane lipids were concentrated in vacuo, mixed with 0.5 ml of hydrolysis buffer and dispersed with the ultrasound rod for 5 minutes.
  • the hydrolysis was carried out at RT after adding 50 U of phospholipase A 2 .
  • the reaction was stopped by adding 4 ml trichloromethane / methanol 2: 1 (v / v) and 0.45% NaCl.
  • the organic Unfer phase was transferred to a new vessel, concentrated on a rotary evaporator and taken up in 200 ⁇ l trichloromethane / methanol 2: 1 (v / v).
  • the solution was placed on silica gel plates (silica gel 60,
  • lipid samples were mixed with 2 ml Na methylate solution for the transesterification. The mixture was shaken well and incubated at room temperature for about 30 minutes to transmethylate the fatty acids. Then 1.5 ml iso-octane was added and carefully shaken twice. The mixture was stored at 4 ° C. for 30 minutes, the fatty acid methyl esters (FAME) going into the iso-octane phase. After the phases had clearly separated, the upper iso-octane phase was pipetted off into a GC vial and the sample was measured on a gas chromatograph.
  • FAME fatty acid methyl esters
  • Thraustochytrium has a high DHA content in its lipids.
  • DHA is the main component of the triacylglycerols and is the dominant fatty acid of the membrane lipids. It is striking that DHA is significantly enriched at the sn-2 position of both the triacylclycerol and the membrane lipids: 36-43% of the fatty acids at the sn-2 position is DHA. Based on this data, it can be assumed that Thraustochytrium has an active LPAAT, which has a high specificity for DHA-CoA.
  • Example 8 Isolation of total RNA and poly (A) + RNA
  • RNA isolation from plants such as linseed and rapeseed etc. was carried out according to a method described by Logemann et al. described method (Anal. Biochem. (1987) 163: 21).
  • the total RNA from Protonema tissue can be obtained from the moss Physcomitrella patens by the GTC method (Reski et al. (1994) Mol. Gen. Genet.244: 351-359).
  • RNA isolation from Thraustochytrium, Cryptecodinium and Shewanella Frozen algae samples (-70 ° C) were ground into fine powder in an ice-cold mortar under liquid nitrogen.
  • the mixture was centrifuged at 10,000 g for 30 min and the supernatant was sucked off. A washing step with 70% EtOH followed and centrifugation again.
  • the sediment was in Tris-borate buffer (80 mM Tris-borate buffer, 10 mM EDTA, pH 7.0). Then the supernatant was mixed with 1/3 vol 8 M LiCl, mixed for 30 min at 4 ° C. After centrifuging again, the sediment was washed with 70% ethanol, centrifuged and the sediment was then dissolved in RNAse-free water.
  • RNA was isolated using Dyna Beads (Dynal, Oslo, Finland) following the instructions in the manufacturer's protocol. After determining the RNA or poly (A ⁇ + - RNA concentration, the RNA was analyzed precipitated by adding 1/10 volumes of 3 M sodium acetate, pH 4.6, and 2 volumes of ethanol and stored at -70 ° C. For the analysis, 20 ⁇ g RNA were separated in a 1.5% agarose gel containing formaldehyde and transferred to nylon membranes (Hybond, Amersham). The detection of specific transcripts was carried out as described for Amasino (Amasino (1986) Anal. Biochem. 152: 304).
  • Example 9 Construction of cDNA banks
  • Ligase (Röche, 12 ° C, overnight) ligated to the cDNA ends, cut with Xhol and phosphorylated by incubation with polynucleotide kinase (Röche, 37 ° C, 30 min). This mixture was subjected to separation on a low-melting agarose gel. DNA molecules over 300 base pairs were eluted from the gel, phenol-extracted, concentrated on Elutip-D columns (Schleicher and Schüll, Dassel, Germany) and ligated to vector arms and in lambda-ZAPII phage or lambda-ZAP- Express phage packaged using the Gigapack Gold kit (Stratagene, Amsterdam, The Netherlands) using manufacturer's material and following its instructions.
  • Example 10 DNA sequencing and computer analysis cDNA libraries as described in Example 9 were used DNA sequencing according to standard methods, in particular by the chain termination method using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction-Kit (Perkin-Elmer, Rothstadt, Germany), was used -Banks carried out via in vivo mass excision and retransformation of DH10B on agar plates (details on material and pro tokoll from Stratagene, Amsterdam, Netherlands). Plasmid DNA was obtained from overnight grown E. coli cultures grown in Luria broth with ampicillin (see Sambrook et al.
  • sequences were processed and annotated using the standard EST-MAX software package commercially available from Bio-Max (Munich, Germany).
  • the BLAST program was used to search for homologous genes using comparison algorithms and a search sequence
  • Gene sequences can be used to identify homologous or heterologous genes from cDNA or genomic banks.
  • Homologous genes ie full-length cDNA clones that are homologous or homologs
  • cDNA libraries Depending on the frequency of the gene of interest, 100,000 to 1,000,000 recombinant bacteriophages are plated and onto a nylon - membrane transferred. After denaturing with alkali, the DNA on the membrane is e.g. immobilized by UV crosslinking. Hybridization takes place in highly stringent conditions. In aqueous solution, the hybridization and the washing steps are carried out at an ionic strength of 1 M NaCl and a temperature of 68 ° C. Hybridization probes were e.g. prepared by labeling using radioactive (32P) nick transcription (High Prime, Röche, Mannheim, Germany). The signals are detected by means of autoradiography.
  • 32P radioactive
  • Partially homologous or heterologous genes which are related but not identical, can be identified analogously to the method described above using low-stringent hybridization and washing conditions.
  • the ionic strength was usually kept at 1 M NaCl, the temperature being gradually reduced from 68 to 42 ° C.
  • oligonucleotide probes The isolation of gene sequences which only have homologies to a single domain of, for example, 10 to 20 amino acids can be carried out using synthetic, radioactively labeled oligonucleotide probes.
  • Radioactively labeled oligonucleotides are produced by phosphorylation of the 5 'end of two complementary oligonucleotides with T4 polynucleotide kinase.
  • the complementary oligonucleotides are hybridized to one another and ligated so that concatemers are formed.
  • the double-stranded concatems are radioactively labeled, for example, by nick transcription. Hybridization is usually carried out under low-stringent conditions using high oligonucleotide concentrations.
  • Oligonucleotide hybridization solution is usually carried out under low-stringent conditions using high oligonucleotide concentrations.
  • the washing was carried out with extremely low stringency, for example 3 washing steps using 4 x SSC. Further details are as described by Sambrook, J., et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, or Ausubel, F.M., et al. (1994) Current Protocols in Molecular Biology, John Wiley & Sons.
  • Example 12 Isolation and cloning of a full length clone for LPAAT from Thraustochytrium
  • a cDNA library from Thraustochytrium was created as described in Example 9.
  • the phage bank was converted into a plasmid bank using a helper phage.
  • the plasmid library was plated on LB medium, 0.8% agar, 100 mg / L ampicillin and incubated. Grown bacterial colonies were selected at random, grown in liquid medium (LB, 100 mg / L ampicillin) and subjected to sequencing as described in Example 10.
  • PCR experiments the components of a standard PCR batch specified below were pipetted onto ice into a PCR reaction vessel, placed in the thermoblock and the temperature profile shown below was started.
  • Taq polymerase Gibco BRL
  • Pfu polymerase (Stratagene) was only used for amli- cations in the context of functional expression in E. coli JC201.
  • the polymerase was added via a so-called "hot start", in which the enzyme is only added after 5 minutes of denaturation of the DNA template.
  • the annealing temperatures (T a ) were chosen 3-5 ° C below the average melting temperature T m of the primer pairs.
  • Steps 3 to 5 were repeated 25 to 30 times cyclically.
  • DNA probes were labeled non-radioactively with the "PCR DIG PROBE SYNTHESIS KIT" (Boehringer Mannheim). DNA fragments were labeled in a PCR reaction with digoxigenin-labeled deoxyuridine triphosphate (DIG-dUTP). The detection was then carried out using an anti-digoxygenin antibody conjugated to alkaline phosphatase and adding chemiluminescent or color substrates.
  • the desired DNA was first amplified for the PCR labeling in a first PCR with unlabelled dNTPs, the linear fragment was purified using an agarose gel and used as a template for the actual PCR labeling, in which the primer pair of the first PCR was used again.
  • the implementation of the labeling reaction was based on the information provided by the manufacturer.
  • the selected primer combinations are summarized in the following table.
  • Thraustochytrium cDNA library (in ⁇ TriplEx2) was searched with the DIG-labeled probe.
  • the probe was created with the primers LPAAT069-3 ' and LPAAT069-5, derived from the EST clone s_t002038069 known cDNA sequence which possibly codes for an LPAAT from Thraustochytrium. 5 x 10 4 PIaques were plated onto 10 large NZY plates in accordance with the manufacturer's instructions (Stratagene).
  • nitrocellulose filters Hybond TM -C, Amersham
  • the filters were placed on the plates for 1 min their exact location is marked by 3 punctures with a cannula.
  • the filters were then treated with the impression side up first for 5 min with denaturing solution, then for 5 min with neutralizing solution and finally for 15 min with 2 x SSC solution. This was done on 3 sheets of Whatman 3 MM paper soaked in the solutions. After the filters had dried for five minutes, the DNA was fixed by UV treatment with 0.12 joules / cm 2 (UV large linker, Hoefer Scientific Instruments).
  • Hybridization and colorimetric detection were carried out with the "Dig System for Filter Hybridization" from Boehringer (Mannheim) according to the manufacturer's instructions. Standard buffer was used as hybridization buffer, the hybridization being carried out in 80 ml hybridization buffer with 15 ⁇ l of the probe-PCR approach. After detection, the exact position of the signals and the three points of orientation of the filters were transferred to plastic foils in order to identify the positive patches on the plates as a template. These were then cut out with a flamed cork borer (diameter 5 mm), transferred to 1 ml SM buffer with 20 ⁇ l CHCI 3 and the phages were eluted from the agar pieces overnight at 4 ° C.
  • phage lysates were examined for fragments of approx. 570 bp by means of PCR and the primers LPAAT069-3 ' and LPAAt-5.
  • aliquots of the phage lysates were mixed with EDTA (final concentration 10 mM) and 1 ⁇ l was used as a template for the PCR.
  • Example 13 Isolation and cloning of full-length clones for PUFA-specific acyltransferases from Physcomitrella patens, Mortierella alpina and Shewanella hanedai
  • RNA was isolated from Physcomitrella patens and Mortierella alpina and a cDNA library was prepared.
  • the phage bank was converted into a plasmid bank using a helper phage.
  • the plasmid library was plated on LB medium, 0.8% agar, 100 mg / L ampicillin and incubated. Grown Bacteria Colonies were selected at random, grown in liquid medium (LB, 100 mg / L ampicillin) and subjected to sequencing as described in Example 10.
  • acyltransferase from Shewanella hanedai the public database of Shewanella putrefaciens MR1 (TIGR database http://tigrblast.tigr.org/ufmg/) was searched for acyltransferasesn. A sequence with homology to acyltransferases could be found. A PCR fragment was generated from this sequence using standard primers T7 and T3. The product obtained was labeled as described in Example 10 a) and b) and used to search a genomic Shewanella hanedai bank.
  • Genomic DNA from Shewanella hanedai was isolated according to the following protocol: A 100 ml culture was grown to an optical density of 1.0 at 30 ° C. 60 ml were centrifuged off at 3000 xg for 3 min. The pellet was resuspended in 6 ml of double-distilled H2O and distributed into 1.5 ml tubes, centrifuged and the supernatant discarded. The pellets were resuspended with 200 ⁇ l solution A, 200 ⁇ L phenol / chloroform (1: 1) and 0.3 g glass balls by vortexing and lysed. After adding 200 ⁇ l TE buffer pH 8.0, the mixture was centrifuged for 5 min.
  • the supernatant was subjected to ethanol precipitation with 1 ml of ethanol.
  • the pellet obtained after precipitation was dissolved in 400 ⁇ L TE buffer pH 8.0 + 30 ⁇ g / mL RNaseA. After incubation for 5 min at 37 ° C., 18 ⁇ L of 3 M sodium acetate solution pH 4.8 and 1 ml of ethanol were added and the precipitated DNA was pelleted by centrifugation.
  • the DNA pellet was dissolved in 25 ⁇ L of double-distilled H2O. The concentration of the genomic DNA was determined by its absorption at 260 nm.
  • the genomic DNA obtained was incubated for 1 hour at 25 ° C. with the restriction enzyme SauSA (New England Biolabs) according to the manufacturer's instructions.
  • the fragments obtained were then ligated into a BamHI-digested pUC18 plasmid using T4 ligase (Röche).
  • the bank obtained was then searched in the same manner as described in Example 10. A clone with a 1.7 kb genomic fragment was found, which shows a 687 bp coding sequence with similarity to acyltransferases.
  • the sequence from Shewanella hanedai shows a particularly high similarity to the LPCAT from Chaenorabdidis elegans.
  • the similarity of the two sequences at the amino acid level is 26%.
  • GSP TCT CTTTTT CGT GCT GCTCCA GCC GAT (Are 297)
  • PCR machine Biometra Trio Thermoblock First PCR on the RACE bank Moos with AP1 and GSP, with the correct size PCR with nested AP2 and GSP, positive ones are cloned in pCRII-TOPO-TA cloning vector for sequencing.
  • Example 14 Expression of Thraustochytrium LPAAT (ThLPAAT) in yeast
  • ThLPAAT the coding region of the cDNA was cloned in a yeast expression vector and expressed in S. cerevisiae.
  • the LPAAT produced in yeast should be detected in microsomal fractions via acyltransferase activity.
  • the ThLPAAT cDNA was cut from the vector pGEM-T by restriction digestion with HindIII / BamHI, cloned into the HindIII / BamHI cut shuttle vector pYES2 (Invitrogen, Carlsbad, USA) and the resulting victor pYES2-ThLPAAT in E. coli XL1 blue transformed.
  • pYES2-ThLPAAT was transformed using the LiAc method into S. cerevisiae INCS (Invitrogen, Carlsbad, USA), where the expression of the ThLPAAT cDNA was under the control of the GAL1 promoter.
  • ThLPAAT in S. cerevisiae INVSd was modified according to Avery et al. (Appl. Environ. Microbiol., 62, 1996: 3960-3966) and Girke et al. (The Plant Journal, 5, 1998: 39-48).
  • 20 ml of SD medium with glucose and amino acid solution without histidine were inoculated with a yeast single colony and incubated at 30 ° C. at 140 rpm overnight.
  • the cell culture was washed twice by centrifuging and resuspending in SD medium without supplements and without sugar.
  • a main culture was inoculated with the washed cells to an OD 600 of 0.1 to 0.3.
  • the main culture was grown in 25 ml of SD medium with 2% (w / v) galactose, amino acid solution without histidine, 0.02%
  • Linoleic acid (2% stock solution in 5% Tergitol NP40), 10% Tergitol NP4072 at 30 ° C.
  • the main culture was harvested by centrifugation.
  • the cell pellet was frozen at -20 ° C. and then lyophilized for approx. 18 h.
  • pDest15-GST-ThLPAAT pDest15 vector from Invitrogen
  • 1 ⁇ l dNTP mix (10 mM dATP, dGTP, dTTP and dCTP)
  • the PCR product was transferred into the vector pDONOR221 by a gateway reaction (BP reaction; Invitrogen) according to the manufacturer's instructions and the sequence was checked by sequencing.
  • the ThLPAAT sequence was then transferred into the vector pDES15 by the LR reaction and used for expression in E. coli BL21 cells.
  • the ThLPAAT sequence was attached to the open reading frame of the plasmid-encoded glutathione-S-transferase (GST) according to the manufacturer's instructions (Invitrogen). This enabled a fusion protein to be generated from GST and ThLPAAT.
  • expressed protein could be detected (FIG. 21 A) and this was purified on a glutathione column.
  • the purified fusion protein showed LPAAT activity as shown in Figure 21B.
  • the highest activity was obtained for DHA-CoA (22: 6), which enables this acyltransferase to be used to produce PUFA.
  • FIG. 21A shows the Western blot analyzes of the Thraustochytrium LPAAT expressed in E. coli as a fusion protein (LPAAT-FP) with N-terminal GST and C-terminal His-tag (lanes E: 7 ⁇ g soluble protein fraction, lane M : Size standard).
  • FIG. 21B shows the acyl-CoA specificity of the Thraustochytrium-LP AT expressed as GST fusion protein in E. coli.
  • the genomic DNA from Shewanella hanedai was isolated, partially digested with Sau3a and ligated into the Veictor pUC18.
  • This genomic library was screened for LPA ⁇ T genes by PCR using various primer combinations. With this method it was possible to identify a 1486 bp long clone whose open reading frame encodes a 25.2 kDa LPAAT protein.
  • the ShLPAAT sequence was introduced into the vector pQE70 (Qiagen) according to the manufacturer's instructions. The resulting plasmid pQE70-Sh and pQE70-ShHis and the empty vector pQE70 were transformed in E.
  • FIG. 22 A shows the Western blot analysis of the Shewanella LPAAT expressed in E. coli as a fusion protein with C-terminal His-tag. (Lane E: 7 ⁇ g inclusion body fraction, Lane F: 7 ⁇ g membrane fraction, Lane M: size standard).
  • Figure 22B gives the functional expression of the Shewanella LPAAT in E. coli. Enzyme tests again.
  • the assays were carried out with extracts (1 ⁇ g) from E coli which contained the empty vector (pQE70) or a Shewanella construct without (pQE-Sh) or with His tag sequence at the 3 'end (pQE-ShHis), carried out in the presence of 30 ⁇ M 1-oleoyl- [U- 14 C] glycerol-3-phosphate and 30 ⁇ M of the specified thioster.
  • the MaLPAAT cDNA was amplified by PCR with the specified primers MaLPAAT2.1, the PCR product in the vector pENTR-SD-D-TOPO (Invitrogen, Carlsbad, USA) cloned according to the manufacturer's instructions and transformed into E. coli XL1 blue.
  • the MaLPAAT fragment was transferred into the vector pYES54Dest via gateway reaction according to the manufacturer's instructions (Invitrogen, Carlsbad, USA), resulting in the vector pYES52Dest-MaLPAAT.
  • PY-ES52Dest-MaLPAAT was transformed using the LiAc method into S. cerevisiae INCSd (Invitrogen, Carlsbad, USA).
  • Yeast cells that were transformed with the plasmid pYES52Dest-MaLPAAT were analyzed as follows: Yeast colonies that were able to grow on minimal medium without uracil after the transformation were again spread on minimal medium without uracil and then grown on liquid minimal medium to an OD600 of 0.8 , The main culture was then inoculated from this preculture, which in addition to the minimal medium also contains 2% (w / v) galactose and 250 ⁇ M of the fatty acids. After the main culture had been incubated at 30 ° C.
  • FAMEs Fatty acid methyl esters
  • the FAMES were extracted by extraction twice with petroleum ether (PE).
  • the organic phases were each once with 2 ml of 100 mM NaHC0 3 , pH 8.0 and 2 ml of distilled water. washed.
  • the PE phases were then dried with Na 2 S0 4 , evaporated under argon and taken up in 100 ⁇ l PE.
  • the samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 ⁇ m, Agilent) in a Hewlett-Packard 6850 gas chromatograph with flame ionization detector.
  • the conditions for the GLC analysis were as follows: The oven temperature was programmed from 50 ° C to 250 ° G at a rate of 5 ° C / min and finally 10 minutes at 250 ° C (hold).
  • the signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma).
  • FIG. 23 shows the results of the feeding experiments with the yeast cells which contain the plasmid pYES52Dest-MaLPAAT (MaB4_AT).
  • Fig. 23 A / B, the yeast cultures were fed with linoleic acid (18: 2 ⁇ 9.12). Compared to the control culture (FIG.
  • the yeast cells with the MaLPAAT showed a significantly higher conversion (4-fold increase) of 18: 2 to ⁇ -linolenic acid (18: 3 ⁇ 6,9,12), as well as a 3, 5-fold increase in the fatty acid elongated from 18: 2 20: 2 ⁇ 11, 14. Accordingly, a significantly higher conversion to stearidonic acid (18: 4 ⁇ 6,9,12,15) and iso-arachidonic acid (20: 4 ⁇ 8,11,14,17) was possible when feeding with linolenic acid (18: 3 ⁇ 9,12,15) ) compared to the controls ( Figure 24).
  • FIG. 25 and FIG. 26 show that the observed increased conversions of the substrates by the desaturase and elongase also lead to an increase in the polyunsaturated fatty acids in the neutral lipid (oil).
  • the yeast cells were extracted in chloroform: methanol (2: 1) and applied to a thin-layer silica plate (Machery & Nagel, Düren). The thin layer plate was incubated in a chamber with chloroform-methanol-H20 (65: 25: 4) for 45 min.
  • the neutral lipids (triacylglycerides) migrate with the solvent front.
  • Binary vectors such as pBinAR can be used for plant transformation (Höfgen and Willmitzer (1990) Plant Science 66: 5221-230).
  • the binary vectors can be constructed by ligating the cDNA in sense or antisense orientation in T-DNA. 5 'of the cDNA, a plant promoter activates the transcription of the cDNA. A polyadenylation sequence is located 3 'from the cDNA.
  • Tissue-specific expression can be achieved using a tissue-specific promoter.
  • seed-specific expression can be achieved by cloning in the napin or LeB4 or USP promoter 5 'of the cDNA. Any other seed-specific promoter element can also be used.
  • the CaMV 35S promoter can be used for constitutive expression in the whole plant.
  • the expressed protein can be directed into a cellular compartment using a signal peptide, for example for plastids, mitochondria or the endoplasmic reticulum (Kermode (1996) Crit. Rev. Plant Sei. 15: 285-423).
  • the signal peptide is cloned 5 'in frame with the cDNA in order to achieve the subcellular localization of the fusion protein.
  • the Agrobacterium -mediated Roman transformation can e.g. using the GV3101 (pMP90) (Koncz and Schell (1986) Mol. Gen. Genet. 204: 383-396) or LBA4404 (Clontech) Agrobacterium tumefaciens strain.
  • the transformation can be performed by standard transformation techniques (Debiaere et al. (1984) Nucl. Acids. Res. 13: 4777-4788).
  • Example 18 Plant transformation and expression of PUFA-specific acyltransferases in plants
  • LCPUFA-specific acyltransferases in transgenic plants is advantageous in order to increase the LCPUFA content in these plants.
  • the acyltransferase cDNAs according to the invention were cloned into binary vectors and transferred via Agrobacterium -mediated DNA transfer into Arabidopsis thaliana, Nicotiana tabacum, Brassica napus and Linum usitatissimum. Expression of the acyltrans ferase cDNA was under the control of the constitutive CaMV 35 S promoter or the seed-specific USP promoter.
  • Transgenic plants which already express the desaturases and elongases necessary for the synthesis of LCPUFAs and which produce small amounts of these LCPUFAs are particularly preferred.
  • the resulting binary vectors with acyltransferase genes were transformed into Agrobacterium tumefaciens (Höfgen and Willmitzer, Nucl. Acids Res., 16, 1988: 9877).
  • the transformation of A. thaliana was carried out using "floral dip" (Clough and Bent, Plant Journal, 16, 1998: 735-743), that of N. tabacum via cocultivation of tobacco leaf pieces with transformed A. tumefaciens cells, that of linseed and rapeseed by coculturing hypocotyl pieces with transformed A. tumefaciens cells.
  • acyltransferase genes in transgenic Arabidopsis, tobacco, rapeseed and linseed plants was examined by Northern blot analysis. Selected plants were examined for their content of punicic acid or other conjugated fatty acids such as CLA in the seed oil.
  • the napin promoter can also be used to achieve a seed-specific expression of PuFADX and PuFAD12.
  • the Agrobacterium -mediated transformation of atoms can be carried out using standard transformation and regeneration techniques (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2nd ed., Dordrecht: Kluwer Academic Publ., 1995, in Sect, Ringbuc Central signature: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, B. Raton: CRC Press, 1993, 360 S., ISBN 0-8493- 5164-2).
  • rapeseed can be transformed using cotyledon or hypocotyl transformation (Moloney et al., Plant Cell Report 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701).
  • the use of antibiotics for Agrobacterium and plant selection depends on the binary vector and Agrobacterium strain used for the transformation. Rapeseed selection is usually carried out using kanamycin as a selectable plant marker.
  • the Agrobacterium -mediated gene transfer in linseed (Linum usitatissimum) can be done under Using, for example, one of Mlynarova et al. (1994) Plant Cell Report 13: 282-285 perform the technique described.
  • Soybean transformation can be performed using, for example, a technique described in EP-A-00424047 (Pioneer Hi-Bred International) or in EP-A-0 0397687, US 5,376,543, and 5,169,770 (University Toledo).
  • the plant transformation using particle bombardment, polyethylene glycol-mediated DNA recording or using silicon carbon fiber technology is described, for example, by Freeling and Walbot "The maize handbook” (1993) ISBN 3-540-97826-7, Springer Verlag New York) ,
  • Example 19 Examination of the expression of a recombinant gene product in a transformed organism
  • the activity of a recombinant gene product in the transformed host organism was measured at the transcription and / or the translation level.
  • a suitable method for determining the amount of transcription of the gene is to carry out a Northem blot as outlined below (for reference see Ausubel et al. (1988 ) Current Protocols in Molecular Biology, Wiley: New York, or the sample portion mentioned above) wherein a primer designed to bind to the gene of interest is labeled with a detectable label (usually radioactive or chemiluminescent), so that if the
  • Total RNA of a culture of the organism is extracted, separated on a gel, transferred to a stable matrix and incubated with this probe, the binding and the extent of binding of the probe indicate the presence and also the amount of mRNA for this gene. This information indicates the degree of transcription of the transformed gene.
  • Total cellular RNA can be derived from cells, tissues or organs by several methods, all of which are known in the art, such as that of Bormann, E.R., et al. (1992) Mol. Microbiol. 6: 317-326.
  • RNA hybridization For the RNA hybridization, 20 ⁇ g of total RNA or 1 ⁇ g of poly (A) + RNA were analyzed by gel electrophoresis in agarose gels with a strength of 1.25% using formaldehyde, as described in Amasino (1986, Anal Biochem. 152, 304), transferred by capillary attraction using 10 ⁇ SSC to positively charged nylon membranes (Hybond N + , Amersham, Braunschweig), immobilized by means of UV light and 3 hours at 68 ° C. using hybridization buffer (10% dextran sulfate w / o., 1 M NaCl, 1% SDS, 100 mg herring sperm DNA) prehybridized.
  • hybridization buffer 10% dextran sulfate w / o., 1 M NaCl, 1% SDS, 100 mg herring sperm DNA
  • the DNA probe was labeled with the Highprime DNA labeling kit (Röche, Mannheim, Germany) during the pre-hybridization using alpha-32P-dCTP (Amersham, Braunschweig, Germany).
  • the hybridization was carried out after adding the labeled DNA probe in the same buffer 68 ° C carried out overnight.
  • the washing steps were carried out twice for 15 min using 2 X SSC and twice for 30 min using 1 X SSC, 1% SDS at 68 ° C.
  • the exposure of the closed filter was carried out at -70 ° C for a period of 4 hours to 3 days.
  • Standard techniques such as Western blot, can be used to examine the presence or relative amount of profine translated from this mRNA (see, e.g., Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York).
  • the total cellular proteins are extracted, separated by means of gel electrophoresis, transferred to a matrix such as nitrocellulose and with a
  • Probe such as an antibody that specifically binds to the desired protein.
  • This probe is usually provided with a chemiluminescent or colorimetric label that is easy to detect. The presence and amount of the label observed indicates the presence and amount of the desired mutant protein present in the cell.
  • Example 20 Analysis of the effect of the recombinant proteins on the production of the desired product
  • the effect of the genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a fatty acid) can be determined by growing the modified microorganisms or the modified plant under suitable conditions (such as those described above) and that Medium and / or the cellular components for the increased production of the desired product (ie lipids or a fatty acid) is examined.
  • suitable conditions such as those described above
  • These analysis techniques are known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see, for example, Ullman, Encyelopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al.,
  • the analysis methods include measurements of the amount of nutrients in the medium (e.g. sugar, hydrocarbons, nitrogen sources, phosphate and other ions), measurements biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways and measurements of gases generated during fermentation, standard procedures for these measurements are in Applied Microbial Physiology; A Practical Approach, PM Rhodes and PF Stanbury, ed., IRL Press , 10 pp. 131-163 and 165-192 (ISBN: 0199635773) and the literatures specified therein described.
  • nutrients in the medium e.g. sugar, hydrocarbons, nitrogen sources, phosphate and other ions
  • measurements biomass composition and growth analysis of the production of common metabolites of biosynthetic pathways and measurements of gases generated during fermentation, standard procedures for these measurements are in Applied Microbial Physiology; A Practical Approach, PM Rhodes and PF Stanbury, ed., IRL Press , 10 pp. 131-163 and 165-192 (ISBN: 0199635773)
  • fatty acids abbreviations: FAME, fatty acid methyl ester; GC-MS, gas-liquid chromatography-mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography.
  • FAME fatty acid methyl ester
  • GC-MS gas-liquid chromatography-mass spectrometry
  • TAG triacylglycerol
  • TLC thin-layer chromatography
  • the material to be analyzed can be broken up by sonication, glass mill grinding, liquid nitrogen and grinding, or other applicable methods.
  • the material must be centrifuged after breaking up.
  • the sediment is in aqua dest. resuspended, heated at 100 ° C for 10 min, cooled on ice and centrifuged again, followed by

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von langkettigen mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Acyltransferaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure­oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Weiter hin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren. Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemässen Nukleinsäure sequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren. Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung.

Description

Neue pflanzliche Acyltransferasen spezifisch für langkettige mehrfach ungesättigte Fettsäuren
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von langkettigen mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Acyltransferaseaktivität codieren. Vorteilhaft können diese Nukleins uresequenzen gegebenenfalls zusammen mit weiteren Nukleinsauresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Weiter- hin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacyl- glyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.
Die Erfindung betrifft weiterhin die Nukleinsauresequenzen, Nukleinsaurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäure- Sequenzen, Vektoren enthaltend die Nukleinsauresequenzen und/oder die Nukleinsaurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsauresequenzen, Nukleinsaurekonstrukte und/oder Vektoren.
Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfach ungesättigte ω-3-Fett- säuren und ω-6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6Δ4'7'10'13'16,19) oder Eisosapentaensäure (= EPA, C20:5Δ5'8'11'1417) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.
Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (fioly unsaturated fatty acids, PUFA. mehrfach ungesättigte Fettsäuren;Jong chain Qoy unsaturated fatty acids, LCPUFA, langkettige mehrfach ungesättigte Fettsäuren).
Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseif ung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ÄRA, G20:4Δ5,8'11,14), Dihomo-y-linolensäure (G20:3Δ8'11'14) oder Docosapentaensäure (DPA, C22:5Δ7,10,13,16'19) lassen sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder anderen isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen. Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω-3-Fettsäuren wird dabei ein positiver Effekt auf den Choiesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω-3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω-3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten. ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leuko- trienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosa- noide (sog. PG2-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG3-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben. Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ-15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0794250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der ver- schiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71 , 1981 : 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US 5,614,393, WO 96/21022, WO 00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO 98/46763, WO 98/46764, WO 9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO 99/64616 oder WO 98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. B∑gl. der Effektivität der Expression von Desa- turasen und ihren Einf luss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω-3- und ω-6-Fettsäuren erhalten. Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricornutum, Porphoridium-Arten, Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41 : 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060- 1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278).. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ÄRA her- stellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und DHA anfallen.
Die Biosynthese von LCPUFAs und der Einbau von LCPUFAs in Membranen oder Triacylglyceride erfolgt über verschiedene Stoffwechselwege (A. Abbadi et al. (2001) European Journal of Lipid Science & Technology 103:106-113). In Bakterien wie Vibrio und Mikroalgen wie Schizochytrium wird Malonyl-CoA über eine LCPUFA- produzierende Polyketidsynthase zu LCPUFAs umgesetzt (J.G. Metz et al. (2001) Science 293: 290-293; WO 00/42195; WO 98/27203; WO 98/55625). In Mikroalgen wie Phaeodactylum und Moosen wie Physcomitrella werden ungesättigte Fettsäuren wie Linolsäure oder Linolensäure in Form ihrer Acyl-CoÄs in mehreren Desaturierungs- und Elongationsschritten zu LCPUFAs umgesetzt (T.K. Zank et al. (2000) Biochemical Society Transactions 28: 654-658). Bei Säugetieren beinhaltet die Biosynthese von DHA zusätzlich zu Desaturierungs- und Elongationsschritten eine Kettenverkürzung über beta-Oxidafion. LCPUFAs liegen in Mikroorganismen und niederen Pflanzen entweder ausschließlich in Form von Membranlipiden vor, wie bei Physcomitrella und Phaeodactylum, oder sie sind in Membranlipiden und Triacylglyceriden vorhanden, wie bei Schizochytrium und Mortierella. Der Einbau von LCPUFAs in Lipide und Öle wird durch verschiedene Acyl- transferasen und Transacylasen katalysiert. Diese Enzyme sind bereits bekannt für den Einbau von gesättigten und ungesättigten Fettsäuren [A.R. Slabas (2001) J. Plant Physiology 158: 505-513; M. Frentzen (1998) Fett/Lipid 100: 161-166); S. Gases et al. (1998) Proc. Nat. Acad. Sei. USA 95: 13018-13023]. Bei den Acyltransferasen handelt sich um Enzyme des sogenannten Kennedy-Pathways, die an der cytoplasmatischen Seite des Membransystems des Endoplasmatischen Reticulums, nachfolgend als ,ER' bezeichnet, lokalisiert sind. Experimentell können Membranen des ER als sogenannte .mikrosomale Fraktionen' aus verschiedenen Organismen isoliert werden [D.S. Knutzon et al. (1995) Plant Physiology 109: 999-1006; S. Mishra & Y Kamisaka (2001) Biochemistry 355: 315-322; US 5968791]. Diese ER-gebundenen Acyltrans- ferasen in der mikrosomalen Fraktion verwenden Acyl-CoA als aktivierte Form der Fettsäuren. Glycerin-3-phosphat Acyltransferase, im folgenden GPAT genannt, katalysiert den Einbau von Acylgruppen an der sn-1 Position von Glycerin-3-phosphat. 1 -Acylglycerin-3-phosphat Acyltransferase (E.G.2.3.1.51), auch Lysophosphatidsäure Acyltransferase, im folgenden LPAAT genannt, katalysiert den Einbau von Acylgruppen an der sn-2 Position von Lysophosphatidsäure, nachfolgend als LPA abgekürzt. Nach Dephosphorylierung von Phosphatidsäure durch Phosphatidsäure Phosphatase katalysiert Diacylglycerin Acyltransferase, im folgenden DAGAT genannt, den Einbau von Acylgruppen an der sn-3 Position von Diacylglycerins. Neben diesen Kennedy Pathway Enzymen sind weitere Enzyme am Einbau von Fettsäuren in Triacylglyceride beteiligt, die Acylgruppen aus Membranlipiden in Triacylglyceride einbauen können. Phospho- lipid Diacylglycerin Acyltransferase, nachfolgend PDAT genannt und Lysophosphatidyl- cholin Acyltransferase, nachfolgend LPCAT genannt. Auch andere Enzyme wie Leci- thin Cholesterin Acyltransferase (LCAT) können am Transfer von Acylgruppen aus Membranlipiden in Triacylglyceride beteiligt sein. In WO 98/54302 wird von Tjoelker et al. eine humane Lysophosphatidsäure Acyltransferase offenbart sowie ihre mögliche Verwendung zur Therapie von Krankheiten, als diagnostisches Agens sowie eine Methode zur Identifizierung von Modulatoren der humanen LPAAT. Von Leung et al. werden in WO 98/54303 Säuger Lysophosphatidsäure Acyltransferasen beschrieben. Weiterhin offenbaren Leung et al. ein Verfahren zum Screening von pharmazeutischen Verbindungen für die Anwendung beispielsweise bei der Behandlung von Entzündungen.
Weiterhin sind in der Literatur und Patenten eine Vielzahl von Acyltransferasen mit den verschiedensten enzymatischen Funktionen beschrieben worden, so werden z.B. in WO 98/55632 und WO 93/10241 Fettsäure-Alkohol-Acyltransferasen beschrieben, die an der Wachssynthese beteiligt sind. In WO 98/55631 wird eine DAGAT (Diacylglycerin Acyltransferase) aus Mortierella ramanniana beschrieben sowie eine aus Jojoba stammende Wachssynthase, die auch DAGAT-Aktivität hat. Slabas et al. (WO 94/13814) offenbart eine membrangebundene sn2-spezifιsche Acyltransferase, die eine andere Selektivität beim Einbau von einfach ungesättigter Erukasäure für die sn2-Position hat und so in Raps eine erhöhte Ausbeute an Erukasäure ermöglicht. In WO 96/24674 wird ein entsprechendes Enzym bzw. Gen aus Limnanthes douglasii beschrieben. Davies et al. beschreiben in WO 95/27791 LPAATs, die spezifisch für mittellange Fettsäuren sind und diese in die sn2-Position von Triglyceriden einbauen. Weitere neue pflanzliche Acyltransferasesequenzen, die über Homologievergleiche mit Sequenzen aus öffentlichen Datenbanken gefunden wurden, werden von Lassner et al. (WO 00/18889) beschrieben. Angaben über die spezifische Funktion dieser Acyltransferasesequenzen oder biochemische Daten zu den entsprechenden Enzymen sind WO 00/18889 nicht zu entnehmen.
Die enzymatische Aktivität einer LPGAT wurde erstmals in Ratten beschrieben [Land (1960) Journal of Biological Ghemistry 235: 2233-2237]. In Pflanzen existiert eine plastidäre Isoform der LPGAT [Äkermoun et al. (2000) Biochemical Society Trans- actions 28: 713-715] sowie eine ER gebundene Isoform [Tumaney und Rajasekharan (1999) Biochimica et Biophysica Acta 1439: 47-56; Fräser und Stobart, Biochemical Society Transactions (2000) 28: 715-7718]. LPCAT ist in Tieren wie auch in Pflanzen an der Biosynthese und der Transacylierung von mehrfach ungesättigten Fettsäuren beteiligt [Stymne und Stobart (1984) Biochem. J.223: 305-314; Stymne und Stobart (1987) in The Biochemistry of Plants: a Comprehensive Treatise', Vol. 9 (Stumpf, P.K. ed.) pp. 175-214, Academic Press, New York]. Eine wichtige Funktion der LPCAT oder allgemeiner gesagt einer Acyl-CoA:Lysophospholipid Acyltransferase, nachfolgend LPLAT genannt, bei der ATP-unabhängigen Synthese von Acyl-CoA aus Phospho- lipiden wurde von Yamashita et al. (2001 ; Journal of Biological Chemistry 276: 26745- 26752) beschrieben. Trotz vieler biochemischer Daten konnten bisher keine Gene kodierend für LPCAT identifiziert werden. Gene anderer verschiedener pflanzlicher Acyltransferasen konnten isoliert werden und werden in WO 00/18889 (Novel Plant Acyltransferases) beschrieben.
Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). ÄRA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Vege- tales. Technique & Documentation - Lavoisier, 1995. ISBN: 2-7430-0009-0). Es ist vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hoch- wertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu werden vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind Gene kodierend für Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase und Δ-4-Desaturase. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits Δ-6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ-6-Elongase-Gene aus P. patens und dem Nematoden C. elegans isoliert.
Transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese exprimieren, sind geeignet, geringe Mengen dieser LCPUFAs zu produzieren, aller- dings besteht die Gefahr, dass diese nicht in Triacylglyceride, sondern in Membranen eingebaut werden, weil die endogenen Acyltransferasen und Transacylasen LCPUFAs eventuell nicht als Substrat erkennen und folglich nicht in Triacylglyceride einbauen. Dies ist aus folgenden Gründen unerwünscht: (i) der Hauptlipidanteil in Ölsaaten sind Triacylglyceride. Daher ist es aus wirtschaftlicher Sicht notwendig, LCPUFAs in Triacylglyceriden anzureichern. In Membranen eingebaute LCPUFAs können die physikalischen Eigenschaften der Membranen verändern und so schädliche Wirkungen auf die Integrität und Transporteigenschaften der Membranen sowie die Stresstoieranz von Pflanzen haben.
Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen. Um eine Anreicherung der Nahrung und des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.
Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättig- ten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in einem Organismus gelöst, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Sequenz, die für ein Poly- peptid mit einer Lysophosphatidsäure Acyltransferase-Aktivität codiert; oder b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Sequenz, die für ein Polypeptid mit einer Glycerin-3-phosphat Acyltransferase-Aktivität codiert; oder c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Sequenz, die für ein Polypeptid mit einer Diacylglycerin Acyltransferase-Aktivität codiert; oder d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Sequenz, die für ein Polypeptid mit einer Lecithin Gholes erin Acyltransferase-Aktivität codiert; oder e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID
NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 enthaltenden codierenden Sequenz ableiten lässt, oder f) Einbringen mindestens eines Derivates der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 ,
SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Nukleinsäuresequenz in den Organismus, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,
SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID HO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,
SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 aufweisen und eine äquivalente Lysophosphatidsäure Acyltransferase-Aktivität, Giycerin-3-phosphat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin
Cholesterin Acyltransferase-Aktivität aufweisen, und g) kultivieren und ernten des Organismus.
Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier oder fünf Doppel- bindungen. Besonders vorteilhaft enthalten die Fettsäuren vier oder fünf Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20-, 22- oder 24 C-Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20, 22 oder 24 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.
Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsauresequenzen handelt es sich um isolierte Nukleinsauresequenzen, die für Polypeptide mit Lysophosphatidsäure Acyltransferase-Aktivität, Glycerin-3-phosphat Acyltransferase- Aktivität, Diacylglycerin Acyltransferase-Aktivität und/oder Lecithin Cholesferin Acyltransferase-Aktivität codieren.
Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie wie gesagt als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Dabei lassen sich die in den Triacylglyceriden gebundenen verschieden Fettsäuren von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittel- kettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von Cι8-, C2o-, C22- und/oder C2 - Fettsäuren. Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C18-, C20-, C22- und/oder C2 -Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäure- moleküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von Hexadecadiensäure (C16:2Δ9'12), γ-Linolensäure (= GLA, C18:3Δ6'9,12), Stearidonsäure (= SDA, C18:4Δ6'9'12'15)' Dihomo-γ-Linolensäure (= DGLA, 20:3Δ8,11'14), Eicosatetraen- säure (= ETA, C20:4Δ5'8'11'14), Arachidonsäure (ÄRA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ÄRA.
Die Fettsäureester mit mehrfach ungesättigten C18-, C20-, C22-, und/oder C2 -Fett- säuremolekülen können aus den Organismen, die für die Herstellung der Fettsäure- ester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycos- phingolipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phos- phatidylserin, Phosphatidyiglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden, vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, besonders bevorzugt in der Form der Triacylglyceride. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäure- ester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt. Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Organismen vorteilhaft in einer transgenen Pflanze her- gestellt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt. Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und oder sn3-Position der vorteilhaft hergestellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Hexadecadiensäure (C16:2), Linolsäure (G18:2) bzw. Linolen- säure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ÄRA) oder Eicosapentaensäure (EPA) nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ÄRA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ÄRA oder nur EPA im erfindungs- gemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden beide Verbindungen (ÄRA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1 :2 (EPA:ARA), vorteilhaft von mindestens 1 :3, bevorzugt von 1 :4, besonders bevorzugt von 1 :5 hergestellt.
Durch die erfindungsgemäßen Nukleinsauresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden. In einer weiteren vorteilhaften Ausführungsform kann die Ausbeute an mehrfach ungesättigten Fett- säuren um mindestens 200 %, bevorzugt um mindestens 250 %, ganz besonders bevorzugt um mindestens 300 % gesteigert werden.
Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in bekannterweise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft. Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wi© Mikroorganismen, nicht-humane Tiere oder Pflanzen in Frage. Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizo- saccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Gaenorhabditis, Algen wie Grypthecodinium oder Phaeodactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl- produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Traustochytrium, Algen wie Grypthe- codinium, Phaeodactylum oder Pflanzen, insbesondere Rlanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen- Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.
Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (f) eingebrachten Nukleinsäuren zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.
Im Prinzip können alle Gene des Fettsäure- oder Lipidstoffwechsels vorteilhaft in Kombination mit der erfinderischen Acyl-GoA:Lysophospholipid-Acyltransferase im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-AGP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospho- lipid-Acyltransferasen, Fettsäure-Synlhase(n), Fettsäure-Hydroxylasβ(n), Acetyl- Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Syn- thasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) in Kombination mit der Acyl-CoA:Lysophospholipid-Acyltransferase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferasen, Δ-4-Desaturasen, Δ-5-Desaturasen, Δ-6-Desaturasen, Δ-8-Desa uasen, Δ-9-Desa- turasen, Δ-12-Desa urasen, Δ-5-Elongasen, Δ-6-Elongasen oderΔ-9-Elongasen in Kombination mit den vorgenannten Genen für die Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Leci- thin Cholesterin Acyltransferase verwendet, wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können.
Durch die enzymafische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Lysophosphatidsäure Acyltransferase-, Gly- cerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Aktivität codieren, vorteilhaft in Kombination mit Nukleinsauresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie der Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität, der Δ-4-, Δ-5-, Δ-6-, Δ-8-Desaturase- oder Δ-5-, Δ-6-oder Δ-9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ÄRA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ÄRA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2Δ9'12) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ÄRA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3Δ9,12,15) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme Lysophosphatidsäure Acyltransferase, Glycerin- 3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase vorteilhaft in Kombination mit der Acyl-CoA:Lysophospholipid-Acyl- transferase, Δ-5-, Δ-6-Desaturase und/oder Δ-6-Elongase, oder der Acyl-CoA:Lyso- phospholipid-Acyltransferase, Δ-5-, Δ-8-Desaturase und/oder Δ-9-Elongase oder in Kombination mit nur den ersten drei Gene Acyl-CoA:Lysophospholipid-Acyltransferase, Δ-6-Desaturase und/oder Δ-6-Elongase oder Acyl-GoA:Lysophospholipid-Acyltrans- ferase, Δ-8-Desaturase und/oder Δ-9-Elongase der Synthesekette lassen sich gezielt in den vorgenannten Organismen vorteilhaft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangs- pflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ-5-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ÄRA oder EPA. Dies gilt auch für Organismen in die vorher die Δ-8-Desaturase und Δ-9-Elongase eingebracht wurde. Vorteilhaft werden nur ÄRA oder EPA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz ür die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstan∑en in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als
15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ÄRA, EPA oder deren Mischungen.
Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nuklein- säure in den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie Raps, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961 , 678 - 681) ist die Verwendung der genannten Δ-12-Desa- turasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft.
Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Algen/Diatomeen wie Phaeodactylum, Moose wie Physcomitrella oder Ceratodon oder höheren Rlanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteo- spermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Gaenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Nematoden wie Caenorhabditis.
Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsauresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsauresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase und/oder Lecithin Cholesterin Acyltransferase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren. Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsauresequenzen enthält, wobei die Zelle und/oder der Organismus mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase und/oder Lecithin Cholesterin Acyltransferase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsauresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Saccharomyces oder Traustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.
Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.
"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsauresequenzen,
Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder a) die erfindungsgemäße Nukleinsäuresequenz, oder b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktioneil verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder c) (a) und (b) sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotid- reste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsauresequenzen mit den entsprechenden Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- und/oder Lecithin Cholesterin Acyltransferase-Genen - wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mufagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815. Unter transgenen Organismus bzw. transgener RIanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella, Moose wie Physcomitrella, Algen wie Cryptocodinium oder Pflanzen wie die Ölfruchtpflanzen.
Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell unge- sättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, Färbersafflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Thrausto- chytrium, Saprolegnia oder Pythium, Bakterien wie die Gattung Escherichia oder Shewanella, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciiiaten, Algen oder Protozoen wie Dinof lagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokos- nuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, Färbersafflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nicht-humane Tiere geeignet beispielsweise G. elegans.
Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, GA (1990). Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
Hierzu gehören Rlanzenzellen und bestimmte Gewebe, Organe und Teile von Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen RIanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen. Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren enthalfen, können vorteilhaft direkt vermarktet werden ohne dass, die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Rlanzen im erfindungsgemäßen Verfahren sind ganze Rlanzen sowie alle Pflanzenteile, Pflanzenorgane oder Rlanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene RIanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren her- gestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen
Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Rlanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behand- lung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unter- zogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.
Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs G-I8-, C2o-, C22- oder Ga -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese
G18-, C2Q-, G22- oder G24-Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen. Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.
Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomo- Y-Iinolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.
Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipi- de, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester. Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und an- schließender Ansäuerung über z.B. H2S04. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.
Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Rlanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktioneil transkribierten Gens gewährleistende Sequenz enthält, funkfionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samen- spezifischen Expression von Genen in die Pflanzen gebracht.
Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ÄRA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfrucht- pflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.
Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Lysophosphatidsäure Acyltransferase-Aktivität, Glycerin-3-phos- phat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin Cholesterin Acyltransferase-Aktivität codieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl- Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Syn- thase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl- Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid- Lyase(n) oder Fettsäure-Elongase(n) codieren eignen sich vorteilhaft C16-, Gι8-, C20- oder C22-Fettsäuren. Bevorzugt werden die im Verfahren als Substrate umgesetzten Fettsäuren in Form ihere Acyl-CoA-Ester umgesetzt. Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten Cι6- oder Cι8-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C18- oder C20-Fettsäuren, und nach zwei oder drei Elongations- runden zu G22- oder C24-Fettsäuren. Die Aktivität der erfindungsgβmäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu Gι8-, G20-, G22- und/oder C24-Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevorzugt zu G2o- und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturierungsschritte wie z.B. eine solche in Δ-5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ- linolensäure, Arachidonsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C18-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.
Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Bio- synthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epi- dermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.
Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Thraustochytrium Algen wie Isochrysis, Phaeodactylum oder Grypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.
Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglyce- rin Acyltransferase und/oder Lecithin Cholesterin Acyltransferase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 % , bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden. Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.
Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0 und 100°G, bevorzugt zwischen 10 bis 60°G unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.
Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0°C bis 95°C, bevorzugt zwischen 10°C bis 85°C, besonders bevorzugt zwischen 15°C bis 75°C, ganz besonders bevorzugt zwischen 15°C bis 45°C durchgeführt
Der pH-Wert wird dabei vorteilhaft zwischen pH 4 und 1 , bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten.
Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.
Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der American Society für Bacteriology (Washington D. C., USA, 1981) enthalten.
Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoff quellen, anorganische Salze, Vitamine und/oder Spurenelemente. Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Gellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z.B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z.B. Essigsäure und/oder Milchsäure.
Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger Form oder Gasform oder Ammonium- salze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammonium- carbonat oder Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.
Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikalium- hydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.
Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vita- mine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medien- Verbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spe∑i- fischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 199635773). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.
Sämtliche Medienkomponenten werden, entweder durch Hitze (20 rnin bei 1 ,5 bar und 121°G) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.
Die Temperatur der Kultur liegt normalerweise zwischen 15°G und 45°G, vorzugsweise bei 25°G bis 40°G und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z.B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z.B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.
Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z.B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.
Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z.B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fall- filmverdampfers, durch Umkehrosmose, oder durch Nanofiltratton, eingedickt beziehungsweise auf konzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.
Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.
Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsauresequenzen, die für Polypeptide mit Lysophosphatidsäure Acyltransferase-Aktivität, Glycerin- 3-phosphat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin Cholesterin Acyltransferase-Aktivität codieren, wobei die durch die Nukleinsauresequenzen codierten Lysophosphatidsäure Acyltransferasen, Glycerin-3-phos- phat Acyltransferasen, Diacylglycerin Acyltransferasen und/oder Lecithin Cholesterin Acyltransferasen spezifisch G18-, C20-, C22- oder G2 -Fettsäuren mit mindestens einer Doppelbindungen im Fettsäuremolekül umsetzen und vorteilhaft letztlich in Diacylglyceride und/oder Triacylglyceride einbauen.
Vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID
NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14,
SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 oder SEQ ID NO: 21 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 oder SEQ ID NO: 21 aufweisen und eine Lysophosphatidsäure Acyltransferase-Aktivität aufweisen.
Weitere vorteilhafte erfindungsgemäßen isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 darge- stellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 23,
SEQ ID NO: 25 oder SEQ ID NO: 27 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 23, SEQ ID NO: 25 oder SEQ ID NO: 27 aufweisen und eine Glycerin-3-phosphat Acyltransferase-Aktivität aufweisen. Zusätzliche vorteilhafte erfindungsgemäßen isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 29, SEQ ID NO: 31 oder SEQ ID NO: 33 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 29,
SEQ ID NO: 31 oder SEQ ID NO: 33 aufweisen und eine Diacylglycerin Acyltransferase-Aktivität aufweisen.
Eine weitere Gruppe vorteilhafter erfindungsgemäßer isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 34 oder SEQ ID NO: 36 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 35 oder SEQ ID NO: 37 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 35 oder SEQ ID NO: 37 aufweisen und eine Lecithin Cholesterin Acyltransferase-Aktivität aufweisen. Mit Hilfe dieser erfindungsgemäßen isolierten Nukleinsäuren lassen sich in LCPUFA- produzierende Organismen LCPUFAs an allen Positionen beispielsweise eines Triacylglycerins einbauen, wie die Positionsanalysen der Lipide von LCPUFA- produzierenden Organismen zeigten.
Die vorgenannten erfindungsgemäßen isolierten Nukleinsauresequenzen lassen sich vorteilhaft mit den folgenden Nukleinsauresequenzen kombinieren, die für Polypeptide mit Acyl-GoA:Lysophospholipid-Acyltransferaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 39, SEQ ID NO: 41 , SEQ ID NO: 43 oder SEQ ID NO: 45 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 39, SEQ ID NO: 41 , SEQ ID NO: 43 oder SEQ ID
NO: 45 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 39, SEQ ID NO: 41 , SEQ ID NO: 43 oder SEQ ID NO: 45 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44 oder SEQ ID NO: 46 dar- gestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf
Aminosäureebene mit SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44 oder SEQ ID NO: 46 aufweisen und eine Acyl-CoA:Lysophospholipid-Acyltransferase- aktivität aufweisen.
Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nuklein- Säuresequenzen aus einem eukaryontischen Organismus.
Die im Verfahren verwendeten Nukleinsauresequenzen, die für Proteine mit Lysophosphatidsäure Acyltransferase-Aktivität, Glycerin-3-phosphat Acyltransferase- Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin Cholesterin Acyltransferase-Aktivität codieren oder für Proteine des Fettsäure- oder Lipidstoffwechsels vorteilhaft für Proteine mit Acyl-CoA:Lysophospholipid-Acyltransferase-, Δ-4-Desa- turase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase-Aktivität, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht, eingebracht.
Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Ru-DNA-Polymerase oder eines Ru/Taq-DNA-Poly- merasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Ampli- ikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonie- rungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermitlelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Veklorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Veklor- systemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101 , pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktions- endonuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regula- torischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.
Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsaurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Rlanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechno- logy (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1 , Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1 , Engineering and Utili- zation, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol.42 (1991), 205-225)). Die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsaurekonstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.
Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungs- emäßen Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Proteins oder -Gens sowie von Genkombinationen mit z.B. Acyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen und/oder Elon- gasen kann erhöht sein, so dass größere Mengen der produzierten Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des/der entsprechenden Gens/Gene fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoff Wechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichemden Gewebes ermöglicht. Durch das Einbringen eines Lysophosphatidsäure Acyltransferase-, Glycerin-3-phos- phat Acyltransferase-, Diacylglycerin Acyltransferase-, Lecithin Cholesterin Acyltransferase-, Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturase- und/oder Elongase-Gens oder mehrerer Lysophosphatidsäure Acyltransferase-, Glycerin- 3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase-, Lecithin Cholesterin Acyltransferase-, Acyl-CoA:Lysophospholipid-Acyltransferasen-, Desaturase- und/oder Elongase-Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nähr- Stoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z.B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fett- säuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase-, Lecithin Cholesterin Acyltransferase-, Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturase- und/oder Elongase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.
Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Äminosäuresequenz der Sequenz SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 ist, so dass das Protein oder der Teil davon eine aufweisen und eine äquivalente Lysophosphatidsäure Acyltransferase-Aktivität, Glycerin-3-phosphat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin Cholesterin Acyltransferase- Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörper- chen in Organismen vorteilhaft in Rlanzen notwendigen Verbindungen oder am Trans- port von Molekülen über diese Membranen teilzunehmen noch hat. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 40 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen. Unter wesentlicher enzymatischer Aktivität der verwendeten erfindungsgemäßen
Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanzenzelie notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C18-, C20-, G22- oder C24-Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint sind.
Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien Pilzen oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physco- mitrella, Thraustochytrium, Fusarium, Phytophtora, Geratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Grypthecodinium oder aus Nematoden wie Gaenorhabditis, speziell aus den Gattungen und Arten Shewanella hanedai, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Gryptocodinium cohnii, Geratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum oder besonders vorteilhaft aus Gaenorhabditis elegans.
Alternativ können die verwendeten isolierten Nukleotidsequenzen für Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen codieren, die an eine Nukleo- tidsequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 hybridisieren, z.B. unter stringenten Bedingungen hybridisieren. Die im Verfahren verwendeten Nukleinsauresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.
Dabei werden die Nukleinsauresequenzen, die für die erfinderischen Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyl- transferasen oder Lecithin Cholesterin Acyltransferasen codieren sowie die Nukleinsauresequenzen, die für die in Kombination verwendeten Acyl-CoA:Lysophospholipid- Acyltransferasen, die Desaturasen und/oder die Elongasen codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nuklein- säuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte £'enhancer Sequenzen" funkfionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Gene sowie die vorteilhaft verwendeten Acyl-CoA:Lysophospholipid-Acyltransferase-, Δ-4-Desaturase-, Δ5-Desa- turase-, Δ-6-Desaturase- und/oder Δ-8-Desaturase-Gene und/oder die Δ-5-Elongase-, Δ-6-Elongase- und/oder Δ-9-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.
Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31 , SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 kodieren. Die genannten Lyso- phosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen führen dabei vorteilhaft zu einem Austausch bzw. Einbau der Fettsäuren zwischen dem Mono-, Di- und/oder Triglyceridpool der Zelle und dem CoA-Fettsäureester-Pool, wobei das Substrat vorteilhaft ein, zwei, drei, vier oder fünf Doppelbindungen aufweist und vorteilhaft 18, 20, 22 oder 24 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.
Vorteilhafte Regulationssequen∑en für das neue Verfahren liegen beispielsweise in Promoforen vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, Λ-PR- oder Λ-PL-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADG1, MFα, AG, P-60, GYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren GaMV/35S [Franck et al., Gell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, Iib4, usp, STLS1 , B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0388 186 (Benzylsulfonamid-induzierbar), Plant J.2, 1992:397-404 (Gatz et al., Tetracyclin-induzierbar), EP-A-0335528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank- Zugangsnr. U87999) oder der in EP-A-0249676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz be- sonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Rlanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1 -Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.
Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890. Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samen- spezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promoforen aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabi- dopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO 95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2
(Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849].
Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor. Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase und/oder die Lecithin Cholesterin Acyltransferase, die vorteilhafte Acyl-CoA:Lysophospholipid-Acyltransferase, Δ-4-Desaturase, die Δ-5-Desaturase, die Δ-6-Desaturase, die Δ-8-Desaturase und/oder die Δ-5-Elon- gase, die Δ-6-Elongase und/oder die Δ-9-Elongase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsauresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsauresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DG3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen. Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden. Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsaureoder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]- Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl- CoA:Lysophosphoiipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure- Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol- Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsauresequenzen sind Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferase, Δ-4-Desaturase-, Δ-5-Desa- turase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5- Elongase-, Δ-6-Elongase- oder Δ-9-Elongase.
Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen Elongasen und Desaturasen in erfindungsgemäßen Expressionskassetten kloniert werden und zur Transformation von Pflanzen mithilfe von Agrobakterium eingesetzt werden. Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die RIanze verwendet werden oder aber in einen Vektoren eingebracht werden.
Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-GoA:Lysophospholipid-Acyltrans- ferasen, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-8-Desatuase, Δ-9-Desa- turase, Δ-12-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder Δ-9-Elongase. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktions- fähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.
Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem ln-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z.B. Polyadeny- lierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Grosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.
Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen, Acyl-CoA:Lyso- phospholipid-Acyltransferasen, Desaturasen und Elongasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase-, Lecithin Cholesterin Acyltransferase-, Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturase- und/oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressions- vektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & LL Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant
Molecular Biology and Biotechnology, G Press, Boca Raton, Florida, Kapitel 6/7, S.71- 119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205- 225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzy- mology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulations- Sequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.
Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitu- tive oder indu∑ierbare Promotoren enthalten, welche die Expression von Fusionsoder nichf-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Ine; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.
Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc- Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d- Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA- Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5- Promotors birgt.
Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR- Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-111113-B1 , λgt11 or pBdCI, in Streptomyces plJ101, plJ364, plJ702 oder plJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667. Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturased (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1 , YEp6, YEp13 oder pEMBLYe23.
Alternativ können die Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen, Lecithin Cholesterin Acyltrans- ferasen, Acyl-GoA:Lysophospholipid-Acyltransferasen, Desaturasen und/oder Elon- gasen in Insβkten∑ellen unter Verwendung von Baeulovirus-Expressionsvekioren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzelten (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1 89) Virology 170:31 -39).
Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Gloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam- New York-Oxford, 1985, ISBN 0444904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von
Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Gold Spring Harbor, NY, 1989.
Bei einer weiteren Ausführungsform des Verfahrens können die Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen, Lecithin Cholesterin Acyltransferasen, Acyl-CoA:Lysophospholipid-Acyl- transferasen, Desaturasen und/oder Elongasen in einzelligen Rlanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermato- phyten, wie Feldfrüchten) exprimiert werden. Beispiele für Rlanzen-Expressions- vektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711 -8721 ; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.
Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig ver- bunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadeny- lierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiAGHδ (Gielen et al., EMBO J. 3 (1984) 835ff.) oder f unktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet. Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/ RNA- Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693- 8711).
Die Pflan∑engenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespe∑ifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promoforen (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S GAMV (Franck et al., Cell 21 (1980) 285-294), 19S GaMV (siehe auch US 5352605 und WO 84/02913) oder Rlan∑enpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.
Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Piastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mito- chondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.
Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.
Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1 -Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80- Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alphaamylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinll-Promotor (EP-A-0375091). Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbio- synthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991 , 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461 ), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder Ipt1- Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Θen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen- Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Gluteiin-Gen, dem Sorghum-Kasirin- Gen, dem Roggen-Secalin-Gen). Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen allein oder in Kombination mit Acyl-GoA:Lysophospholipid-Acyltransferasen, Desaturasen und/oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.
Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Piastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394. Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe 'Transformation" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipo- fektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Labora- tory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.
Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Rlanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Rlanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Rlanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Reff er, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflan∑en (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflan∑en, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume (Ölpalme, Kokosnuß).
Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsauresequenzen, die für Polypeptide mit Lysophosphatidsäure Acyltransferase- Aktivität, Glycerin-3-phosphat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase- Aktivität oder Lecithin Cholesterin Acyltransferase-Aktivität codieren, wobei die durch die Nukleinsauresequenzen codierten Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen spezifisch Cι8-, C20-, C22- oder C2 -Fettsäuren mit mindestens einer Doppelbindungen im Fettsäuremolekül umsetzen. Vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 enthaltenden codierenden Sequenz ableiten lassen, c) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID
NO: 17, SEQ ID NO: 19 oder SEQ ID NO: 21 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 oder SEQ ID NO: 21 aufweisen und ei- ne Lysophosphatidsäure Acyltransferase-Aktivität aufweisen. Weitere vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 enthaltenden codierenden Sequenz ableiten lassen, c) Derivate der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 23, SEQ ID NO: 25 oder SEQ ID NO: 27 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 23, SEQ ID NO: 25 oder SEQ ID NO: 27 aufweisen und eine Glycerin-3-phosphat Acyltransferase-Aktivität aufweisen.
Weitere vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 ent- haltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 29, SEQ ID NO: 31 oder SEQ ID NO: 33 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 29, SEQ ID NO: 31 oder SEQ ID NO: 33 aufweisen und eine Diacylglycerin Acyltransferase-Aktivität aufweisen.
Weitere vorteilhafte isolierte Nukleinsauresequenzen sind Sequenzen ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 34 oder SEQ ID NO: 36 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Nukleinsäure- sequenz, die für Polypeptide mit der in SEQ ID NO: 35 oder SEQ ID NO: 37 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 35 oder SEQ ID NO: 37 aufweisen und eine Lecithin Cholesterin Acyltransferase-Aktivität aufweisen.
Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie Tieren, Giliaten, Pilzen, Rlanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.
Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- und/oder Lecithin Cholesterin Acyltransferasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zeile, aus der die Nukleinsäure stammt flankieren.
Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13,
SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenz- Information isoliert werden. Auch kann mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungs- sonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Labora- tory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsauresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7,
SEQ ID NO 9, SEQ ID NO: 11 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleo- tidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidpri- mern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthio- cyanat- traktionsverfahren von Ghirgwin et al. (1 79) Biochemistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. Synthetische Oligonukleo- tidprimer zur Amplifizierung mitteis Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 , SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 dargestellten Aminosäuresequenzen erstellen. Eine erfindungs- gemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard- PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.
Homologe der verwendeten Lysophosphatidsäure Acyltransferase-, Glycerin-3-phos- phat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyl- transferase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 ,
SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 bedeutet beispielsweise alle- lische Varianten mit mindestens etwa 40 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 %, stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 % oder 90 bis 95 % und noch stärker bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Homologie zu einer in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SE- SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyl- transferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 kodierten Protein.
Homologen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.
Homologen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch lnsertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modi- fikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden. Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Lysophosphatidsäure Acyltransferase-Aktivität, Glycerin-3-phosphat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin Cholesterin Acyltransferase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Trificale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Reffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Ver- änderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).
Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoieküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.
Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydra- tisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.G. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeier et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.
Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese Cι8-Kohlenstoff-Fettsäuren müssen auf G2o und G22 verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Lysophosphatidsäure Acyltransferasen, Glycerin-3-phosphat Acyltransferasen, Diacylglycerin Acyltransferasen, Lecithin Cholesterin Acyltransferasen, vorteilhaft in Kombination mit Acyl-GoA:Lysophospholipid-Acyltransferasen, Desaturasen wie der Δ-4-, Δ-5-, Δ-6- und Δ-8-Desaturasen und/oder der Δ-5-, Δ-6-, Δ- 9-Elongase können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure sowie verschiedene andere langkettige PUFAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können vorzugsweise C18-, C20-, C^- und/oder C2 -Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremole- kül, vorzugsweise zu C20-, C22- und/oder C2 -Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren,zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-iinolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate der Lysophosphatidsäure Acyltransferasen, Glycerin-3- phosphat Acyltransferasen, Diacylglycerin Acyltransferasen oder Lecithin Cholesterin Acyltransferasen im erfindungsgemäßen Verfahren sind C18-, C2o- oder C22-Fettsäuren wie zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo-γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, Y-Linolensäure und/oder α-Linolensäure, Dihomo-γ-linoleηsäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die C18-, C2o- oder C^-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Ver- fahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.
Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gyiceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten. Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.
Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (s. Frentzen, 1998, Lipid, 100(4-5):161-166).
Veröffentlichungen über die Rlanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Beta- oxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16. Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.
Der Begriff "Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase" im Sinne der Erfindung umfasst Proteine, die an der Biosynthese von Fettsäuren beteiligt sind, sowie ihre Homologen, Derivaten oder Analoga. Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin, und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Lysophosphatidsäure Acyltransferase-, Glycerin-3- phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Nukleinsäuresequen∑(en) umfassen Nukleinsauresequenzen, die eine Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5'- und 3'- untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.
Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 Proteine mit mindestens 40 %, vorteilhaft etwa 50 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 % und stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8,
SEQ ID NO; 10, SEQ ID NO: : 12, SEQ ID NO 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO 21, SEQ ID NO: : 23, SEQ ID NO 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO 31, SEQ ID NO: : 33, SEQ ID NO 35 oder SEQ ID NO: 37. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution. 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFil [Needleman and Wunsch (J. Mol. Biol.48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 8, Length Weight: 2. Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID
NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9,
SEQ ID NO 11, SEQ ID NO ): 13, SEQ ID NO 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO 20, SEQ ID NO ): 22, SEQ ID NO 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO 30, SEQ ID NO ): 32, SEQ ID NO 34 oder SEQ ID NO: 36 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase codieren wie diejenige, die von den in SEQ ID NO: 1 ,
SEQ ID NO 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 gezeigten
Nukleotidsequenzen kodiert wird.
Zusätzlich zu den in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 gezeigten Lysophosphatidsäure Acyltransferase-, Glycerin-3- phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Nukleotidsequenzen erkennt der Fachmann, dass DNA-Sequenz- polymorphismen, die zu Änderungen in den Aminosäuresequenzen der Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Lysophosphatid- säure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltrans- ferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-
Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Amino- säurepolymorphismen in der Lysophosphatidsäure Acyltransferase, Glycerin-3-phos- phat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase, die das Ergebnis natürlicher Variation sind und die funktioneile Aktivität von nicht verändern, sollen im Umfang der Erfindung enthalten sein.
Für das erfindungεgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltrans ferase- oder Lecithin Cholesterin Acyltransferase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard- Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID
NO 11, SEQ ID NO 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO 20, SEQ ID NO 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 3300,, SSEEQQ IIDD NNOO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard- Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridi- sierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungs- bedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Harnes und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können. Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31 , SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-Ηomologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"ldentität" ). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben. Ein isoliertes Nukleinsäuremolekül, das eine Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31 , SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 homolog ist, kann durch Einbringen einer oder mehrerer Nukleo- tidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 durch Standardtechniken, wie stellenspezifische Mutagenese und PGR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäure- Substitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glufamin, Serin, Threonin, Tyrosin, Gystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seifenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase- Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 kann das kodierte Protein rekombinant expri- miert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden.
Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und ver- öffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.
Beispiele
Beispiel 1 : Allgemeine Verfahren a) Allgemeine Klonierungsverfahren:
Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegelelektro- phorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitro- cellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3). b) Chemikalien
Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p.A.-Qualität von den Firmen Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Signria (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H20 bezeichnet, aus einer Milli-Q-Wassersysfem-Wasserreinigungsanlage (Millipore, Eschborn) hergestellt. Restriktionsendonukleasen, DNA-modifi∑ierende Enzyme und olekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) und Stratagene (Amsterdam, Niederlande). Wenn nicht anders angegeben, wurden sie ach den Anweisungen des Herstellers verwendet. c) Klonierung und Expression von Desaturasen und Elongasen Der Escherichia coli-Stamm XL1 Blue MRF kan (Stratagene) wurde zur Subklonierung der Δ-6-Desaturase aus Physcomitrella patens verwendet. Für die funktionelle Expression dieses Gens wurde der Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.) verwendet. E. coli wurde in Luria-Bertani-Brühe (LB, Duchefa, Haarlem, Niederlande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1 ,5 % Agar (Gew./Vol.) wurde für feste LB-Medien hinzugefügt. S. erevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimal- edium ohne Uracil (CMdum; siehe in: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J , Struhl, K., Albright, LB., Coen, D.M., und Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) mit entweder 2 % (Gew./Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2 % (Gew./Vol.) Bacto™-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.). d) Klonierung und Expression PUFA-spezifischer Desaturasen und Elongasen Für die Expression in Rlanzen wurden cDNA Klone aus SEQ ID NO: 46 (Physcomitrella patens Δ-6-Desaturase), 48 (Physcomitrella patens Δ-6-Elongase) oder 50 (Phaedactylum tricornutum Δ-5-Desaturase) so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligo- nukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensu- sequenz vor dem Startcodon zur effizienten Translation eingehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt [Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-2929]. Vor diesem Konsensustriplett wurde zusätzlich eine Restriktionsschnittstelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Pflanzen erfolgen soll.
Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler
(Biometra) mit der Pfu-DNA-(Stratagene)Polymerase und dem folgenden Temperatur- programm durchgeführt: 3 min bei 96°G, gefolgt von 30 Zyklen mit 30 s bei 96°C,
30 s bei 55°G und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°G und Stop bei 4°C.
Die Anlagerungstemperatur wurde je nach gewählten Oligonukleotiden variiert. Pro
Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen.
Weitere Parameter, die Einfluss auf die PGR haben wie z.B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach
Bedarf variiert werden.
Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE- Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIAquick-Gelextraktionskit (QIAGEN) extrahiert und in die Smal-Restriktionsstelle des dephosphorylierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XL1 Blue MRF kan wurde eine DNA-Minipräparation [Riggs, M.G., & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid mini-preparation. BioTechniques 4, 310-313] an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI-Restriktionsanalyse identifiziert. Die Sequenz des klonierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt. e) Transformation von Agrobacterium Die Agrobacterium-vermittelte Rlanzentransformation wurde, wenn nicht anders beschrieben, wie von Deblaere etal. (1984, Nucl. Acids Res. 13, 4777-4788) mit Hilfe eines Agrobacterium tumefaciens-Stamms durchgeführt. f) Pflanzentransformation
Die Agrobacterium-vermittelte Pflanzentransformation wurde, wenn nicht anders beschrieben, unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2). Nach diesen kann beispielsweise Raps mittels Kotyledonen- oder Hypokotyltrans- formation transformiert werden (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird dabei gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.
Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-00424047 (Pioneer Hi-Bred International) oder in EP-A-00397687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.
Die Pflanzentransformation unter Verwendung von Teilchenbeschuss, Polyethylen- glycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise beschrieben von Freeling und Walbot 'The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).
Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) wurde, wenn nicht anders beschrieben, wie bei Mlynarova et al. [(1994) Plant Cell Report 13:282- 285] beschriebenen Technik durchführt. g) Plasmide für die Pflanzentransformation Zur RIanzentransformation wurden binäre Vektoren auf Basis der Vektoren pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221-230) oder pGPTV (Becker et al 1992, Plant Mol. Biol. 20:1195-1197) verwendet. Die Konstruktion der binären Vektoren, die die zu exprimierenden Nukleinsäuren enthalten, erfolgt durch Ligation der cDNA in Sense-Orientierung in die T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzen- promotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen wie beispielsweise das Acetolactat Synthasegens (AHAS oder ALS) [Ott et al., J. Mol. Biol. 1996, 263:359-360], das eine Resistenz gegen die Imidazolinone vermittelt oder das nptll-Markergen, das für eine Kanamycin-Resistenz vermittelt durch Neomycinphos- photransferase codiert.
Die gewebespezifische Expression der Nukleinsäuren lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Wenn nicht anders beschrieben wurde der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA ein- kloniert wird. Als Terminatoren wurde der NOS-Terminator und der OCS-Terminator verwendet (siehe Figur 1). Figur 1 zeigt eine Vektorkarte des zur Expression verwendeten Vektor pSUNSCeLPLAT.
Auch jedes andere samenspezifische Promotorelement wie z.B. der Napin- oder Arcelin Promotor Goossens et al. 1999, Plant Phys. 120(4):1095-1103 und Gerhardt et al.2000, Biochimica et Biophysica Acta 1490(1 -2):87-98) kann verwendet werden. Zur konstitutiven Expression in der ganzen Rlanzen lässt sich der CaMV-35S- Promotor oder ein v-ATPase C1 Promotor verwenden.
Die im Verfahren verwendeten Nukleinsäuren, die für die Acyl-CoA:Lysophospholipid- Acyltransferasen; Desaturasen oder Elongasen codieren, wurden durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Veictor kloniert, um den Stoffwechselweg in Pflanzen nachzubilden.
Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Piastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Grit. Rev. Plant Sei. 15, 4 (1996) 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.
Beispiele für Multiexpressionskassetten wurden in DE 102 19203 offenbart und sind im folgenden nochmals wiedergegeben. i.) Promotor-Terminator-Kassetten
Expressionskassetten bestehen aus wenigstens zwei funktionellen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau der Expressions- kassetten wurden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Genet, 1991 , 225 (3):459-67); OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff .) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert.
Folgende Oligonukleotide können beispielsweise verwendet werden: USP1 vorne:
- CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -
USP2 vorne:
- CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -
USP3 vorne: - CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -
USP1 hinten:
- AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGGCTATGAAGAAATT -
USP2 hinten:
- CGCGGATCCGCTGGCTATGAAGAAATT - USP3 hinten:
- TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT -
OCS1 vorne:
- AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT - OCS2 vorne:
- CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT -
OCS3 vorne:
- TCCCCCGGGCCATGGCCTGCTTTAÄTGAGATAT -
OCS1 hinten: - CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA -
OCS2 hinten:
- CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA -
OCS3 hinten:
- CCCAAGCTTGGCGCGCCGAGCTCGTCGACGGACAATCAGTAAATTGA - Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.
In einem ersten Schritt wurden ein Promotor und ein Terminator über PCR amplifiziert. Dann wurde der Terminator in ein Empfängerplasmid kloniert und in einem zweiten Schritt der Promotor vor den Terminator inseriert. Dadurch wurde eine Expressions- kassette in das Basis-Plasmid cloniert. Auf Basis des Plamides pUC19 wurden so die Plasmide pUT1, 2 und 3 erstellt.
Die entsprechenden Konstrukte bzw. Plasmide sind in SEQ ID NO: 52, 53 und 54 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wurde das Konstrukt pUT12 erstellt, indem pUT1 mittels Sall/Scal ge- schnitten wurde und pUT2 mittels Xhol/Scal geschnitten wurde. Die die Expressionskassetten enthaltenden Fragmente wurden ligiert und in E. coli XL1 blue MRF transformiert. Es wurde nach Vereinzelung von ampicillinresistenten Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die Xhol/Sall Ligation kompatibler Enden hat dabei die beiden Schnittstellen Xhol und Sall zwischen den Expressionskassetten eleminiert. Das resultierende Plasmid pUT12 wird in SEQ ID NO: 55 wiedergegeben. Anschließend wurde pUT12 wiederum mittels Sal/Scal geschnitten und pUT3 mittels Xhol/Scal geschnitten. Die die Expressionskassetten enthaltenden Fragmente wurden ligiert und in E. coli XLI blue MRF transformiert. Es wurde wieder nach Vereinzelung aus ampicillinresistenten Kolonien DNA präpariert und per Restriktionsanalyse solche
Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wurde ein Set von Multiexpressionskassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann.
Diese enthalten folgende Elemente:
Tabelle 1
Figure imgf000059_0001
Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher spezifiziert weitere Multiexpressionskassetten mithilfe des i) USP-Promotors oder mithilfe des ii) 700 Basenpaare 3'-Fragmentes des LeB4-Promotors oder mithilfe des iii) DC3-Promotors erzeugen und für samenspezifische Genexpression einsetzen.
Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263:359-368 und besteht lediglich aus der Region -117 bis +26 weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.
Vorteilhaft verwendete Polylinker- bzw. Polylinker-Terminator-Polylinker sind den Sequenzen SEQ ID NO: 60 bis 62 zu entnehmen. Tabelle 2: Multiple Expressionskassetten
Figure imgf000060_0001
EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4 Promotors (LeB4-700) Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des b) Phaseolin-Promotors oder mithilfe des c) konstitutiven v-ATPase c1 -Promotors. Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressionskassetten wie z.B. den Napin- Promotor oder den Arcelin-5 Promotor zu verwenden.
Weitere in Pflanzen nutzbare Vektoren mit einer bzw. zwei oder drei Promotor- Terminator-Expressionkassetten sind den Sequenzen SEQ ID NO: 63 bis SEQ ID NO: 68 zu entnehmen. ii.) Erstellung von Expressionskonstrukten, die Promotor, Terminator und gewünschte Gensequenz zur PUFA Genexpression in pflanzlichen Expressionskassetten enthalten. In pUT123 wird zunächst über BstXI und Xbal die Δ-6-Elongase Pp_PSE1 in die erste Kassette inseriert. Dann wird die Δ-6-Desaturase aus Moos (Pp_des6) über BamHI/Nael in die zweite Kassette inseriert und schließlich die Δ-5-Desaturase aus Phaeodactylum (Pt_des5) über Bglll/Ncol in die dritte Kassette inseriert (siehe SEQ ID NO: 56). Das Dreifachkonstrukt erhält den Namen pARA1. Unter Berücksichtigung sequenzspezifischer Restriktionsschnittstellen können weitere Expressions kassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.
Tabelle 3: Kombinationen von Desaturasen und Elongasen
Figure imgf000061_0001
des5 = PUFA spezifische Δ-5-Desaturase des6 = PUFA spezifische Δ-6-Desaturase PSE = PUFA spezifische Δ-6-Elongase Pt_des5 = Δ-5-Desaturase aus Phaeodactylum tricornutum Pp_des6 oder Pt_des6 = Δ-6-Desaturase aus Physcomitrella patens bzw. Phaeodactylum tricornutum Pp = Physcomitrella patens, R = Phaeodactylum tricornutum Pp_PSE1 = Δ-6-Elongase aus Physcomitrella patens Pt_PSE1 = Δ-6-Elongase aus Phaeodactylum tricornutum
Ce_des5 = Δ-5-Desaturase aus Gaenorhabditis elegans (Genbank Acc. Nr. AF078796) Ce_des6 = Δ-6-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF031477,
Basen 11-1342) Ce_PSE1 = Δ-6-Elongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF244356,
Basen 1-867)
Auch weitere Desaturasen oder Elongasegensequenzen können in Expressionskassetten beschriebener Art inseriert werden wie z.B. Genbank Acc. Nr. AF231981 , NM_013402, AF206662, AF268031, AF226273, AF110510 oder AF110509. iii.) Transfer von Expressionskassetten in Vektoren zur Transformation von Agro- bakterium tumefaciens und zur Transformation von Rlanzen Die so erstellten Konstrukte wurden mittels Asel in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wurde zu diesem Zweck um eine Asel Schnittstelle erweitert. Zu diesem Zweck wurde der Polylinker als zwei doppelsträngige Oligo- nukleotide neu synthetisiert, wobei eine zusätzliche Asel DNA Sequenz eingefügt wird. Das Oligonukleotid wurde mittels EcoRI und Hindill in den Veictor pGPTV inseriert. Die notwendigen Kloniertechniken sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.
Für die im folgenden beschriebenen Versuche wurden als Nukleinsauresequenzen für die Δ-5-Desaturase (SEQ ID NO: 50), die Δ-6-Desaturase (SEQ ID NO: 46) und die Δ-6-Elongase (SEQ ID NO: 48), die Sequenzen aus Physcomitrella patens und Phae- dactylurn tricornutum verwendet. Die entsprechenden Aminosäuresequen∑en sind den Sequenzen SEQ ID NO: 47, SEQ ID NO: 49 und SEQ ID NO: 51 zu entnehmen. Ein Veictor der alle vorgenannten Gene enthält ist in SEQ ID NO: 56 wiedergegeben. Die korrespondierenden Aminosäurensequenzen der Gene sind SEQ ID NO: 57, SEQ ID NO: 58 und SEQ ID NO: 59 zu entnehmen.
Beispiel 2: Klonierung und Charakterisierung der ceLPLATs (SEQ ID NO: 38 - 44) a) Datenbanken-Suche
Die Identifizierung der ceLPLATs (= Acyl-CoA:Lysophospholipid-Acyltransferase aus Caenorhabditis elegans) erfolgte durch Sequenzvergleiche mit bekannten LPA-ATs. Die Suche wurde mit Hilfe des BLAST-Psi-Algorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403-410) auf das Nematodengenom (Caenorhabditis elegans) beschränkt, da dieser Organismus LCPUFAs synthetisiert. Für den Sequenzvergleich diente als Sonde eine LPAAT Proteinsequenz aus Mus musculus (MsLPAAT Accession Nr. NP_O61350). LPLAT katalysiert durch eine reversible Transferasereaktion die ATP- unabhängige Synthese von Acyl-CoAs aus Phospholipiden mit Hilfe von CoA als Cofactor (Yamashita et al., J. Biol. Chem. 2001, 20: 26745-26752). Durch Sequenzvergleiche konnten zwei putative ceLPLAT-Sequenzen identifiziert werden (Accession Nr. T06E8.1 bzw. F59F4.4). Die identifizierten Sequenzen weisen die größte Ähnlichkeit jeweils zueinander und zu MsLPAATs auf (Figur 2). Das Alignment wurde mit dem Programm Clustal erstellt. b) Klonierung der CeLPLATs
Auf der Basis der ceLPLAT-Nukleinsäuresequenzen wurden Primerpaare synthetisiert (Tabelle 4) und mittels PCR-Verfahren die zugehörigen cDNAs aus einer C. elegans- cDNA-Bank isoliert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283- 292) neben dem Startcodon trugen. Die Amplifizierung der LPLAT-cDNAs wurde jeweils mit 2 μl cDNA-Bank-Lösung als Template, 200 μM dNTPs, 2,5 U "proof- reading" pfty-Polymerase und 50 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Dena- turierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 58°C für eine Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten. Die Sequenz der LPLAT-cDNAs wurde durch DNA-Sequenzierung bestätigt. Tabelle 4: Nukleotidsequenzen der PCR-Primer zur Klonierung von CeLPLATs
Figure imgf000063_0001
* f: forward, r: reverse
Beispiel 3: Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes a) Aufarbeitungsmöglichkeiten
Die Auswirkung der genetischen Modifikation in Pilzen, Algen, Ciliaten oder wie in den Beispielen weiter oben beschrieben in Hefen auf die Produktion der mehrfach ungesättigten Fettsäuren oder Pflanzen kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte RIanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion der Lipide oder Fettsäuren untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs- Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyelopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S.443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemis- try and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream proeessing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyelopedia of Industrial Chemistry, Bd. B3; Kapitel 11 , S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification tech- niques in biotechnology, Noyes Publications).
Neben den oben erwähnten Verfahren zum Nachweis von Fettsäuren in Hefen werden Pflan∑enlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sei. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Ofher Lipids CODEN.
So kann die Analyse von Fettsäuren oder Triacylglycerin (= TAG, Abkürzungen in Klammern angegeben) z.B. mittels Fettsäuremethylester (= FAME), Gas-Flüssigkeits- chromatographie-Massenspektrometrie (= GC-MS) oder Dünnschichtchromatographie (TLC) erfolgen.
Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie- Verfahren, Lipide 33:343-353).
Das zu analysierende Pflanzenmaterial kann dazu entweder durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material wird dann anschließend nach dem Aufbrechen zentrifugiert. Das Sediment wird danach in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester können anschließend in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen werden. Die Identität der erhaltenen Fettsäuremethylester lassen sich unter Ver- wendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definieren.
Bei Fettsäuren, für die keine Standards verfügbar sind, kann die Identität über Derivati- sierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise wird die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt. b) Fettsäureanalyse in Pflanzen
Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert. Die Samen wurden mit 1 % Natriummethanolat in Methoanol aufgenommen und
20 min bei RT (ca. 22 °C) inkubiert. Anschließend wurde mit NaCI Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen.
Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard-6850-Gaschromatograph mit einem Flammenionisafionsdeieiclor aufgetrennt. Die Ofentemperafur wurde von 70°C (1 min halten) bis 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C). Die Fettsäuren wurden durch Vergleich mit Retentionεzeiten von FAME-Standards (SIGMA) identifiziert.
Beispiel 4: Funktionelle Charakterierung der CeLPLATs in Hefe a) Heteroloqe Expression in Saccharomyces cerevisiae
Zur Charakterisierung der Funktion der CeLPLATs aus C. elegans (SEQ ID NO: 38 - 44) wurden die offenen Leserahmen der jeweilgen cDNAs stromabwärts des Galacto- se-induzierbaren GAL1 -Promotors von pYes2.1Topo unter Verwendung des pY- es2.1TOPO TA Expression Kit (Invitrogen) kloniert, wobei pYes2-T06E8.1 und pYes2- F59F4.4 erhalten wurden.
Da die Expression der CeLPLATs zu einem effizienten Austausch der Acyl-Substrate führen sollte, wurde weiterhin das Doppelkonstrukt pESCLeu-PpD6-Pse1 hergestellt, das die offenen Leserahmen einer Δ6-Desaturase (PpD6) und einer Δ6-Elongase (PSE1) aus Physcomitrella patens (siehe DE 102 19203) beinhaltet. Die Nukleinsäuresequenz der Δ6-Desaturase (PpD6) und der Δ6-Elongase (Pse1 ) werden jeweils in SEQ ID NO: 46 und SEQ ID NO: 48 wiedergegeben. Die korrespondierenden Aminosäuresequenzen sind SEQ ID NO: 47 und SEQ ID NO: 49 zu entnehmen.
Die Saccharomyces cerevisiae-Stämme C13ABYS86 (Protease-defizient) und INVSd wurde mittels eines modifizierten PEG/Lithiumacetat-Protokolls gleichzeitig mit den Vektoren pYes2-T06E8.1 und pESCLeu-PpD6-Pse1 bzw. pYes2-F59F4.4 und pESCLeu-PpD6-Pse1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem Vektor pESCLeu-PpD6-Pse1 und dem leeren Vektor pYes2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil und Leucin. Nach der Selektion wurden 4 Transformanten, zwei pYes2-T06E8.1/pESCLeu-PpD6-Pse1 und zwei pYes2-F59F4.4/pESCLeu-PpD6-Pse1 und eine pESCLeu-PpD6-Pse1/ pYes2 zur weiteren funktionellen Expression ausgewählt. Die beschriebenen Experimente wurden auch im Hefestamm INVSd durchgeführt.
Für die Expresssion der CeLPAATs wurden zunächst Vorkulturen aus jeweils 2 ml GMdum-Flüssigmedium mit 2% (w/v) Raffinose, aber ohne Uracil und Leucin mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil und Leucin) mit 2% Raffinose, 1% (v/v) Tergitol NP-40 und 250 μM Linolsäure (18:2Δ9'12) oder Linolensäure (18:3Δ9'1215) wurden dann mit den Vorkulturen auf eine OD60oVon 0,08 angeimpft. Die Expression wurde bei einer OD600 von 0,2-0,4 durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 48 h bei 20°C inkubiert.
Fettsäureanalvse
Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHC03, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°G inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHC03, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na2S04 getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate 5°C/min und schließlich 10 min bei 250°C (halten) programmiert.
Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).
Acyl-CoA Analyse
Die Acyl-CoA-Analyse erfolgte wie bei Larson and Graham (2001 ; Plant Journal 25: 115-125) beschrieben.
Expressionsanalvse
Figuren 2 A und B sowie 3 A und B zeigen die Fettsäureprofile von transgenen C13ABYS86 Hefen, die mit 18:2Δ9,12 bzw. 18:3Δ9'12'15 gefüttert wurden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle vier transgenen Hefen zeigen eine Synthese von 18:3Δ6'9,12 und 20:3 Δ 8'11 M bzw.
18.4 Δ6, 9 , 12,15 und 20:4Δ8'11'14'17, den Produkten der Δ-6- Desaturase und Δ-6-Elongase Reaktionen. Dies bedeutet, dass die Gene PpD6 und Pse1 funktional exprimiert werden konnten.
Figur 3 gibt wie oben beschrieben die Fettsäureprofile von transgenen C13ABYS86 S. cerevisiae-ZeWen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6- Pse1/pYes2 (Ä) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:2Δ9,12 kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.
In den Kontroll-Hefen, die mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 transformiert wurden, ist der Anteil von 20:3Δ8,11'14, zu dem 18:3Δ6,9,12 durch Pse1 elongiert wird, wesentlich niedriger als in den Hefen, die ∑usät∑lich die LPLAT T06E8.1 exprimieren. Tafsächlich konnte die Elongation von 18:3Δ6,9,12 und -J 8:4Δ6,9'12,15 durch die zusätzliche Expression von CeLPLAT (T06E8.1) um 100-150% verbessert werden (Figur 4). Diese signifikante Erhöhung des LCPUFA-Gehalts ist nur wie folgt zu erklären: die exogen gefütterten Fettsäuren (18:2Δ9,12 bzw. 18:3Δ9,12,15) werden zunächst in Phospholipide eingebaut und dort von der Δ-6-Desaturase zu 18:3Δ6,9,12 und 18:4Δ6,9'12,15 desaturiert. Erst nach Reäquilibrierung mit dem Acyl-CoA-Pool können 18:3Δ6,9,12 und 18:4Δ6,9,12'15 durch die Elongase zu 20:3Δ8,11,14- bzw. 20:4Δ8,11,1 ,17-CoA elongiert und dann wieder in die Lipide eingebaut werden. Die LPLAT T06E8.1 ist in der Lage, die Δ6-desaturierten Acylgruppen sehr effizient in CoA-Thioester zurückzuverwandeln. Interessanterweise konnte auch die Elongation der gefütterten Fettsäuren 18:2Δ9,12 und 18:3Δ9,12,15 verbessert werden. (Figur 2 A und B bzw. 5 A und B).
Figur 5 gibt die Fettsäureprofile von transgenen C13ABYS86 S. cerevisiae-ZeWen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2- T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:3Δ9,12,15 kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.
Die Expression einer anderen CeLPLAT (F59F4.4) hat dagegen keinen Einfluss auf die Elongation (Figur 4). Offenbar kodiert F59F4.4 nicht für eine LPLAT. Nicht jede der putativen LPLAT Nukleinsauresequenzen ist also enzymatisch aktiv in der erfindungsgemäß gefundenen Reaktion.
Figur 4 gibt die Elongation exogen applizierter 18:2Λ9,12 bzw. 18:3Δ9,12,15 im Anschluss an ihre endogene Δ-6-Desaturierung (Daten aus Fig. 2 und 5) wieder. Die exogen gefütterten Fettsäuren werden zunächst in Phospholipide eingebaut und dort zu 18:3Δ6'9,12 und 18:4Δ6'9'12,15 desaturiert. Erst nach Reäquilibrierung mit dem Acyl-CoA- Pool können 18:3Δ6'9-12 und 18:4Δ6'9'12'15 durch die Elongase zu 20:3Δ8,11'14- bzw. 20:4Δ8,11,14,17-CoA elongiert und dann wieder in die Lipide eingebaut werden. Die LPLAT T06E8.1 ist in der Lage, die Δ-6-desaturierten Acylgruppen effizient in CoA- Thioester zurückzuverwandeln. Diese Ergebnisse zeigen, dass die CeLPLAT (T06E8.1) nach Co-expression mit der Δ-6-Desaturase und Δ-6-Elongase zu einer effizienten Produktion von C20-PUFAs führt. Diese Ergebnisse sind dadurch zu erklären, dass die CeLPLAT (T06E8.1) einen effizienten Austausch der neusynthetisierten Fettsäuren zwischen Lipiden und dem Acyl-CoA-Pool ermöglicht (siehe Figur 6). Figur 6 gibt die Acyl-CoA-Zusammensetzung transgener INVSd Hefen, die mit den Vektoren pESCLeu PpD6Pse1/pYes2 (A) oder pESCLeu-PpD6-Pse1/pYes2-T06E8.1 (B) transformiert worden waren, wieder. Die Hefezellen wurden in Minimalmedium ohne Uracil und Leucin in Gegenwart von 250 μM 18:2Δ9,12 kultiviert. Die Acyl-CoA- Derivate wurden über HPLC analysiert.
Bei Verwendung des Hefe-Stammes INVSd zur Co-Expression von CeLPLAT (T06E8.1) zusammen mit PpD6 und Pse1 ergibt sich folgendes Bild: Kontrollhefen, die PpD6 und Pse1 exprimieren, enthalten wie schon bei Verwendung des Stammes C13ABYS86 gezeigt nur geringe Mengen des Elongationsprodukts (20:3Δ8,11,14 bei Fütterung von 18:2 bzw. 20:4Δ8'11,14,17 bei Fütterung von 18:3; siehe Figur 7 A und 8 A). Bei zusätzlicher Expression von CeLPLAT (T06E8.1) erfolgt ein deutlicher Anstieg dieser Elongationsprodukte (siehe Figur 7 B und 8 B). Tabelle 5 zeigt, dass die zusätzliche Expression von CeLPLAT überraschenderweise eine 8-fache Erhöhung des Gehaltes an 20:3Δ8,11,14 (bei Fütterung von 18:2) bzw. 20:4Δ8'11'14'17 (bei Fütterung von 18:3) bewirkt. Daneben zeigt sich, dass auch C16:2Δ69 zu C18:2Δ69 effizienter elongiert wird.
Figur 7 ist das Fettsäure-Profile von transgenen INVSd S. cerevisiae-Zellen zu entnehmen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:2Δ9,12 kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.
Figur 8 gibt die Fettsäure-Profile von transgenen INVSd S. cerevisiae-ZeWen wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2- T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:3Δ,12,1S kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.
Tabelle 5: Fettsäure-Zusammensetzung (in mol %) transgener Hefen, die mit den Vektoren pESCLeu PpD6Pse1/pYes2 (PpD6 Psel) oder pESCLeu- PpD6-Pse1/pYes2-T06E8.1 (PpD6 Psel + T06E8) transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Uracil und Leucin in Gegenwart von 250 μM 18:2 Δ9,12 oder 18:3Δ9,12,15 kultiviert. Die Fett- säuremethylester wurden durch saure Methanolyse ganzer Zellen gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n = 4) ± Standardabweichung wieder.
Figure imgf000069_0001
Ein Maß für die Effizienz der LCPUFA-Biosynthese in transgener Hefe stellt der
Quotient aus Gehalt der erwünschten Δ-6-Elongationsprodutct nach Δ-6-Desaturierung (20:3Δ8,ιι,i4 bzw 20.4Δβ,ιι.i .i7) zu Geha,t an zugefütterter Fettsäure (18:2Δ912 bzw.
18:3Δ9,12,15) dar. Dieser Quotient beträgt 0,04 in INVSd Kontrollhefen, die PpD6 und Psel exprimieren, und 0,60 in Hefen die zusätzlich zu PpD6 und Psel CeLPLAT exprimieren. In anderen Worten: der Gehalt an erwünschtem Δ-6-Elongationsprodukt nach Δ-6-Desaturierung bei Co-Expression von CeLPLAT beträgt 60% des Gehalts der jeweils zugefütterten Fettsäure. In Kontrollhefen beträgt dieser Gehalt nur ca. 4%. Dies bedeutet eine 15-fache Erhöhung der Effizienz der LCPUFA-Biosynthese in transgener Hefe durch Co-Expression von LPLAT.
Interessanterweise bewirt t die Co-Expression von CeLPLAT nicht nur eine Erhöhung der genannten Elongationsprodukte 20:3Δ8,11,14 bzw. 20:4Δ8'11,14,17, sondern auch eine Erhöhung des Verhältnisses 20:3Δ8'11-14 : 20:2Δ11'14 bzw. 20:4Δ8'11'H17 : 20:3Δ11'H17. Dies bedeutet, dass in Anwesenheit der LPLAT die Δ-6-Elongase bevorzugt mehrfach ungesättigte Fettsäuren (18:3Δ6,9,12 und 18:4Δ6'9,12,15) als Substrat verwendet, während bei Abwesenheit der LPLAT keine ausgeprägte Substratspezifität zu erkennen ist (auch 18:2Δ9,12 und 18:3Δ9,12'15 werden elongiert). Grund hierfür können Protein-Protein- Wechselwirkungen zwischen Δ-6-Elongase, Δ-6-Desturase und LPLAT oder posttrans- lationale Modifikationen (z.B. partielle Proteolyse) sein. Dies würde auch erklären, warum der oben beschriebene Anstieg von Δ-6-Elongationsprodukten bei Co- Expression von Δ-6-Desaturase, Δ-6-Elongase und LPLAT bei Verwendung eines protease-defizienten Hefestamms geringer ausfällt.
Acyl-CoA Analysen von transgenen INVSd Hefen, die mit 18:2Δ9'12 gefüttert wurden, ergaben folgendes Ergebnis: in Kontrollhefen, die PpD6 und Psel exprimieren, ist kein 18:3Δ6'9,12-CoA und 20:3Δ8,11'14-CoA nachweisbar. Dies weist darauf hin, dass weder das Substrat (18:3Δ6'9,12-CoA) noch das Produkt (20:3Δ8'11,14-CoA) der Δ-6-Elongase in Kontrollhefen in nachweisbaren Mengen vorhanden ist. Dies lässt darauf schließen, das der Transfer von 18:3Δ6'9,12aus Membranlipiden in den Acyl-CoA Pool nicht oder nicht richtig stattfindet. Das bedeutet, dass kaum Substrat für die vorhandene Δ-6- Elongase zur Verfügung steht, was wiederum den geringen Gehalt an Elongations- produkt in Kontrollhefen erklärt. INVSd Hefen, die zusätzlich zur PpD6 und Psel die CeLPLAT exprimieren und mit 18:2Δ9,12 gefüttert worden waren, weisen keine signifikanten Mengen an 18:3Δ69'12-CoA auf, wohl aber 20:3Δ811,1 -CoA. Dies deutet darauf hin, dass LPLAT sehr effizient 18:3Λ6,9,12 aus den Membranlipiden in den Acyl-CoA- ' Pool überführt. 18:3Δ6,9,12-CoA wird dann von der Δ-6-Elongase elongiert, so dass kein 18:3 Δ6, 9 ,i2_CoA woh| aber 20:3Δ8,11'14-CoA nachweisbar ist.
b) Funktionelle Charakterierung der CeLPLATs in transgenen Pflanzen
Expression funktionaler CeLPLAT in transgenen Pflanzen
In DE 102 19203 wurden transgene Pflanzen beschrieben, deren Samenöl durch samenspezifische Expression funktioneller Gene kodierend für Δ-6-Desaturase, Δ-6- Elongase und Δ-5-Desaturase geringe Mengen an ÄRA und EPA enthält. Der zur Transformation dieser Pflanzen benutzte Veictor ist SEQ ID NO: 56 zu entnehmen. Um den Gehalt an diesen LCPUFAs zu erhöhen, wurde in den genannten transgenen Pflanzen zusätzlich das Gen CeLPLAT (T06E8.1) in Samen exprimiert. Zu diesem Zweck wurde der kodierende Bereich von CeLPLAT über PCR amplifiziert.
In Tabelle 6 sind die Primer wiedergegeben, die zur Klonierung eines weiteren Clones der ceLPLAT in binäre Vektoren verwendet wurden.
Tabelle 6: Nukleotidsequenzen der PCR-Primer zur Klonierung von CeLPLAT (T06E8.1 ) in den binären Veictor pSUN3
Figure imgf000071_0001
* f: forward, r: reverse
Das PCR-Produkt wurde in einen pENTRY Vektor zwischen USP Promotor und OCS- Terminator kloniert. Anschließend wurde die Expressionskassette in die binären Vektoren pSUN300 kloniert. Der entstandene Vektor wurde mit pSUN3CeLPLAT (Figur 1) bezeichnet. Darüber hinaus wurde der kodierende Bereiche von CeLPLAT amplifiziert und zwischen LegB4 Promotor und OCS-Terminator kloniert. Dieser Vektor wurde mit pGPTVCeLPLAT bezeichnet (Figur 9A).
Darüberhinaus wurde der kodierende Bereich von CeLPLAT über PCR amplifiziert und zwischen LegB4 Promotor und OCS-Terminator kloniert. Die hierfür verwendeten PCR Primer wurden so ausgewählt, dass in das PCR-Produkt eine effiziente Kosaksequenz eingeführt wurde. Außerdem wurde die DNA-Sequenz von CeLPLAT so verändert, dass sie der codon usage von höheren Rlanzen angepasst war.
Folgende Primer wurden für die PCR verwendet:
Forward primer: 5'-ACATAATGGAGAACTTCTGGTCTATTGTTGTG I I I I I I CTA-3' Reverse primer: 5'- CTAGCTAGCTTACTCAGATTTCTTCCCGTCTTTTGTTTCTC-3,
Das PCR Produkt wurde in den Klonierungsvektor pCR Script kloniert und über die Restriktionsenzyme Xmal und Sacl in den Vektor pGPTV LegB4-700 kloniert. Das entstandene Plasmid wurde mit pGPTV LegB4-700 + T06E8.1 bezeichnet (Figur 9A).
Das gleiche PCR Produkt wurde darüber hinaus in einen Multigen-Expressionsvektor kloniert, der bereits die Gene für eine Delta-6-Desaturase aus Phaeodactylum tricornutum (SEQ ID NO: 69, Aminosäuresequenz SEQ ID NO: 70) und einer Delta-6- Elongase aus P. patens enthielt. Das entstandene Plasmid wurde mit pGPTV USP/OCS-1,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1) bezeichnet (Figur 9B). Die Sequenzen des Vektors sowie der Gene sind SEQ ID NO:.71 , SEQ ID NO: 72, SEQ ID NO: 73 und SEQ ID NO: 74 zu entnehmen. Die Δ-6-Desaturase aus Phaeodactylum tricornutum reicht von Nukleotid 4554 bis 5987 in der SEQ ID NO: 71. Die Δ-6-Elongase aus Physcomitrella patens reicht von Nukleotid 1026 bis 1898 und die der LPLAT aus Caenorhabditis elegans reicht von Nukleotid 2805 bis 3653 in der SEQ ID NO: 71.
Tabakpflanzen wurden co-fransformiert mit dem Veictor pSUNSCeLPLAT und dem in DE 102 19203 und SEQ ID NO: 56 beschriebenen Veictor enthaltend Gene kodierend für Δ-6-Desaturase, Δ-6-Elongase und Δ-5-Desaturase, wobei die Seleiction transgener Pflanzen mit Kanamycin erfolgte. Tabakpflan∑en wurden außerdem transformiert mit dem Vektor pGPTV USP/OCS- 1 ,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1) [siehe SEQ ID NO:.71 , SEQ ID NO: 72, SEQ ID NO: 73 und SEQ ID NO: 74].
Lein wurde mit dem Vektor pSUN3CeLPLAT transformiert. Die entstandenen transgenen Pflanzen wurden mit solchen transgenen Leinpflanzen gekreuzt, die bereits geringe Mengen an ÄRA und EPA aufgrund der funktioneilen Genexpression von Δ-6-Desaturase, Δ-6-Elongase und Δ-5-Desaturase enthielten.
Weiterhin wurde Lein mit dem Vektor pGPTV LegB4-700 + T06E8.1 transformiert. Die entstandenen transgenen Rlanzen wurden mit solchen transgenen Leinpflanzen gekreuzt, die bereits geringe Mengen an ÄRA und EPA aufgrund der funktionellen Expression von Δ-6-Desaturase, Δ-6-Elongase und Δ-5-Desaturase enthielten.
Die Samen von transgenen Tabak- und Leinpflanzen wurden wie weiter vorne beschrieben [Beispiel 3 b)] auf erhöhte Gehalte an LCPUFAs in untersucht.
Aus den hier vorliegenden Arbeiten lässt sich die Funktion der Acyl-CoA: Lyso- phopholipid-Acyltranserase (LPLAT) wie in Figur 10 A und 10 B dargestellt ableiten. Der Biosynthese-Weg der LCPUFAS stellt sich damit wie folgt dar.
Desaturasen katalysieren die Einführung von Doppelbindungen in lipidgekoppelte Fettsäuren (sn2-Acyl-Phosphatidylcholin), während die Elongasen exklusiv die Elongation Coenzym A-veresterter Fettsäuren (Acyl-CoAs) katalysieren. Nach diesem Mechanismus erfordert die alternierende Wirkung von Desaturasen und Elongasen einen ständigen Austausch von Acyl-Substraten zwischen Phospholipiden und Acyl- CoA-Pool und somit die Existenz einer zusätzlichen Aktivität, die die Acyl-Substrate in die jeweils notwendige Substratform, d.h. Lipide (für Desaturasen) oder CoA-Thioester (für Elongasen), überführt. Dieser Austausch zwischen Acyl-CoA Pool und Phospholipiden wird durch LCPUFA-spezifische LPLAT ermöglicht. Die Biosynthese von ÄRA (Ä) erfolgt analog zu EPA (B), mit dem Unterschied, dass bei EPA der Δ-6- Desaturierung eine Δ-15-Desaturierung vorgeschaltet ist, so dass α18:3-PG als Substrat für die Δ-6-Desaturase fungiert. Die Biosynthese von DHA macht einen weiteren Austausch zwischen Phospholipiden und Acyl-CoA-Pool über LPLAT notwendig: 20:5Δ5,8,11'14,17 wird vom Phospholipid- zum CoA-Pool transferiert und nach erfolgter Δ-5-Elongation wird 22:5Δ7'10'13,16'19 vom CoA- zum Phospholipid-Pool transferiert und schließlich durch Δ-4-Desaturase zu DHA umgesetzt. Gleiches gilt für den Austausch im Biosyntheseweg unter Verwendung derΔ-8-Desaturase, der Δ-9-Elongase und der Δ-5-Desaturase. Beispiel 5: Funktionelle Charakterierung der Acyltransferasen
Um die Substrafspe∑ifität von Acyltransferasen höherer Pflanzen und LCPUFA-produ- ∑ierender Organismen ∑u vergleichen, wurden aus dem LCPUFA-produzierenden Organismus Mortierella alpina und aus Sonnenblume mikrosomale Fraktionen isoliert. Die GPAT- und LPAAT-Aktivitäten wurden mit verschiedenen Acyl-CoAs als Substrat getestet.
Um zu überprüfen, ob der LCPUFA-Produzent Thraustochytrium tatsächlich DHA in der sn-2 Position der Lipide einbaut, wurde eine Positionsanalyse der Lipide durchgeführt.
Um LCPUFA-spezische Acyltransferasen zu isolieren, wurde ausgehend von mRNA der LCPUFA-produzierenden Organismen Thraustochytrium, Physcomitrella, Crypte- codinium cohnii und Fusarium cDNA-Banken, sowie einer Shewanella genomischen Bank erstellt und diese über DNA-Sequenzierung näher analysiert. Über Sequenzhomologien wurden Acyltransferaseklone identifiziert. Alternativ wurden über PCR- Techniken Acyltransferasen amplifiziert. Transgene E. coli Zellen, Hefen, Insektenzellen und Rlanzenzellen mit erhöhter Expression mindestens einer LCPUFA-spezifischen Acyltransferase weisen einen erhöhten Gehalt an LCPUFAs in ihren Lipiden auf.
Beispiel 6: Isolierung mikrosomaler Fraktionen aus Mortierella, Sonnenblume und Leinsamen und Analyse der Substratspezifität von Acyltransferasen für verschiedene Acyl-CoAs.
Um herauszufinden, ob höhere Pflanzen, insbesondere Ölsaaten wie Sonnenblume, Lein, Raps oder Soja LCPUFAs in ihre Lipide einbauen können, wurden aus Sonnenblume und Leinsamen Mikrosomen präpariert und verschiedene Acyltransferase- Aktivitäten hinsichtlich ihrer Substratspezifität für LCPUFA-CoAs untersucht. Im einzelnen wurden GPAT-, LPAAT- und LPCAT-Aktivitäten untersucht. Diese Ergebnisse wurden verglichen mit den entsprechenden Acyltransferase-Aktivitäten der LCPU- FA-Produzenten Mortierella alpina, der bekanntermaßen hohe Gehalte der LCPUFA Arachidonsäure in seinen Lipiden und im Triacylglycerin enthält (C. Ming et al. (1999) Bioresource Technology 67: 101 -110). Präparation mikrosomaler Membranen aus Cotyledonen reifender Samen von Sonnenblume und Lein Alle Arbeiten wurden bei 4°C durchgeführt. Die Cotyledonen von reifenden Sonnenblumen- und Leinsamen wurden ungefähr 10 Tage nach Anthesis geerntet und in 0.1 M Natriumphosphatpuffer (pH 7,2), der 0,33 M Saccharose und 0,1 % BSA (fettsäurefrei) enthielt, suspendiert. Nach Zerkleinerung in einem Glashomogenisator wurde das Homogenat bei 20.000 x g, 30 Minuten lang zentrifugiert. Der Überstand wurde durch eine Lage Miracloth filtriert und bei 100.000 x g in einer Ultrazentrifuge 90 Minuten lang zentrifugiert. Die pelletierten mikrosomalen Membranen wurden mit 0,1 M Natriumphosphatpuffer (pH 7,2) gewaschen und in einem kleinen Volumen Puffer resuspendiert, wobei ein Glashomogenisator verwendet wurde. Die mikro- somalen Membranpräparationen wurden entweder sofort weiterverwendet oder bei -80°C gelagert.
Präparation mikrosomaler Membranen aus Mortierella
Kulturen von Mortierella wurden nach 5 Tagen geerntet und auf Eis gestellt. Alle weiteren Arbeiten wurden bei 4°C ausgeführt. Das Mycelium wurde in 0,1 M Natrium- phosphatpuffer (pH 7,2), der 0,33 M Saccharose, 0,1 % BSA (fettsäurefrei), 1000 units Katalase/ml und 1 mM Pefabloc enthielt, suspendiert. Die nachfolgenden Schritte wurden wie unter ,Präparationen mikrosomaler Membranen aus Cotyledonen reifender Samen von Sonnenblume und Lein' beschrieben durchgeführt.
Acyl-CoA Substratspezifität von GPAT: Umsetzung einzelner Acyl-CoA Substrate in der Acylierung von [14C] Glycerin-3-phosphat
Die Spezifität der GPAT wurde untersucht, um zu überprüfen ob das Enzym eine Präferenz für bestimmte Acyl-CoAs hat, insbesondere, um zu ermitteln, ob die GPAT von Ölsaaten LCPUFA-CoAs umsetzt. Mikrosomale Membranen wurden inkubiert mit 0,5 mM (Mortierella) bzw. 0,2 mM (Sonnenblume und Leinsamen) eines der folgenden Acyl-CoAs: Myristoyl-CoA (14:0-CoA), Palmitoyl-CoA (16:0-CoA), Palmitoleoyl-CoA (16:1-CoA), Stearoyl-CoA (18:0-CoA), Oleoyl-CoA (18:1-CoA), Linoleoyl-CoA (18:2- CoA), Dihomo-gamma-linolenoyl-CoA (20:3-CoA) oder Arachidonyl-CoA (20:4-CoA) und 5 mM [14C] G3P. Mikrosomale Membranen (äquivalent 50 μg Protein bei Sonnenblume und Mortierella bzw. 150 μg Protein bei Leinsamen) wurden dem Reaktions- gemisch zugesetzt, um die Reaktion zu starten. Nach 5 Minuten Inkubationszeit wurden die Lipide nach Bligh & Dyer extrahiert und die in komplexen Lipiden eingebaute Radioaktivität bestimmt.
In Figur 11 und Tabelle 7a und 7b sind die GPAT-Aktivitäten von Mortierella, Sonnenblume und Leinsamen bei verschiedenen Acyl-CoA-Sustraten dargestellt. Die GPAT von Mortierella baut ungesättigte Fettsäuren effizienter ein als gesättigte Fettsäuren. Oleat und Linoleat wurden mit ähnlichen Einbauraten umgesetzt (100% bzw. 90%). Der Einbau von polyungesättigten Fettsäuren (20:3-CoA und 20:4-CoA) war nur unwesentlich niedriger (80% bzw. 75%). In mikrosomalen Membranen von Sonnenblume sind ebenfalls Oleat und Linoleat die besten Substrate für die GPAT (100% bzw. 85% Aktivtät). Acyl-CoAs der gesättigten Fettsäuren Stearat und Palmitat werden nur ca. halb so gut eingebaut (40% bzw. 64%). Ähnliches gilt für 20:3-CoA (55%). Arachidonyl-CoA ist für GPAT von Sonnen- blume ein relativ schlechtes Substrat (23%).
Die GPAT in mikrosomalen Membranen von Leinsamen hat die niedrigste spezifische Aktivität aller untersuchten GPAT-En∑yme. Mit 6 nmol/min/mg Protein ist sie nur halb so aktiv wie Sonnenblumen GPAT und 5 mal weniger aktiv als das Enzym aus Mortierella. Bezüglich der Substratspezifitäten verhält sich Die effizientesten Acyl- CoA-Substrate der GPAT aus Leinsamen sind wie bei Sonnenblume Oleat und Linoleat (100% bzw. 90%). Die Einbauraten der gesättigten Fettsäuren Stearat und Palmitat sind mit 65% und 90% deutlich höher als bei Sonnenblume. Arachidonyl-CoA hingegen ist für GPAT von Leinsamen ein äußerst schlechtes Substrat (5%).
Acyl-CoA Substratspezifität von LPAAT: Umsetzung einzelner Acyl-CoA Substrate bei der Acylierung von Lysophosphatidsäure
Die Spezifität der LPAAT wurde untersucht, um zu überprüfen, ob das Enzym eine Präferenz für bestimmte Acyl-CoAs hat, insbesondere, um zu ermitteln, ob die LPAAT von Ölsaaten LCPUFA-CoAs umsetzt. LPAAT Aktivität wurde in einem kontinuierlichen spektralphotometrischen Assay bestimmt, bei dem 5,5-dithio-bis-2-nitrobenzoat (DTNB) verwendet wurde, und die Änderung der Absorption bei 409 nm und 25°C verfolgt wurde (F.M. Jackson et al. (1998) Microbiology 144: 2639-2645). Der Assay enthielt sn-1-Oleoyl-Lysophosphatidsäure (30 nmol), DTNB (50 nmol) und 20 nmol eines der folgenden Acyl-CoAs: Palmitoyl-CoA (16:0-CoA), Stearoyl-CoA (18:0-CoA), Oleoyl-CoA (18:1-CoA), Linoleoyl-CoA (18:2-CoA), Dihomo-gamma-linolenyl-CoA (20:3-CoA) oder Arachidonyl-CoA (20:4-CoA) in 1 ml 0,1 M Phosphatpuffer, pH 7,2. Das in der Reaktion freigesetzte CoA wurde mit Hilfe der Anfangssteigung und des Extinktionskoeffizienten von 13,6 mM-1 x cm-1 quantifiziert. Mikrosomale Membranen (äquivalent 10 μg Protein bei Mortierella bzw. 40 μg Protein bei Sonnenblume und Leinsamen) wurden dem Reaktionsansatz zugesetzt, um die Reaktion zu starten. In Figur 11 und Tabelle 7a und 7b sind die LPAAT-Aktivitäten von Mortierella, Sonnenblume und Leinsamen bei verschiedenen Acyl-CoA-Sustraten dargestellt.
Die LPAAT von Mortierella baut Oleoyl-CoA am effizientesten ein (100 %). Linoleoyl- CoA wird ebenfalls sehr gut umgesetzt (90 %). Die gesättigten Fettsäuresubstrate 16:0-CoA und 18:0-CoA werden zu nur 40 % bzw. 36 % eingebaut, die LCPUFA- Substrate 20:3-CoA und 20:4-CoA hingegen mit einer relativ hohen Effizienz (je 65 %).
In mikrosomalen Membranen von Sonnenblume ist Linoleoyl-CoA das am effizientesten in Phosphatidsäure eingebaute Substrat der LPAAT (250 % relativ zu Oleoyl- CoA). Sowohl gesättigte als auch polyungesättigte Acyl-CoA waren schlechte Substrate für Sonnenblumen LPAAT (relative Aktivtäten kleiner 20 %). Ein ganz ähnliches Bild ergibt sich für LPAAT aus Leinsamen: Linoleoyl-CoA stellt das beste Substrat dar (120% relativ zu Oleoyl-CoA). Gesättigte Fettsäuren sind schlechte LPAAT-Substrate (25% und 30% für 16:0-CoA und 18:0-CoA). Arachidonyl-CoA wird am schlechtesten umgesetzt (19% relative Aktivität). Acyl-CoA Substratspezifität von LPCAT: Umsetzung einzelner Acyl-CoA Substrate bei der Acylierung von Lysophosphatidylcholin
In höheren Rlanzen und Pilzen werden Fettsäuren zur Herstellung polyungesättigter Fettsäuren desaturiert, während sie mit Phosphatidylcholin (PC) verestert sind (A.K. Stobart und S. Stymne (1985) Planta 163: 119-125; F.M. Jackson et al. (1998) Microbiology 144: 2639-2645). Die Beteiligung von PC bei der Desaturierung von Fettsäuren auch in Pilzen setzt voraus, dass es ein funktionierendes Transfersystem von Fettsäuren zu und von der sn-2-Position des PC gibt, ähnlich dem, wie es für entwickelnde Ölsamen beschrieben wurde (Jackson et al., 1998; Stobart et al., 1983). Es wird vermutet, dass dieser Transfer des Acylgruppe von Acyl-CoA zur sn-2 Position des PC durch LPCAT katalysiert wird. Hier wurde die Spezifität von LPCAT untersucht, um zu überprüfen, ob das Enzym eine Präferenz für bestimmte Acyl-CoAs hat, insbesondere, um zu ermitteln, ob die LPCAT von Ölsaaten LCPUFA-CoAs umsetzt.
LPCAT Aktivität wurde in einem kontinuierlichen spektralphotometrischen Assay bestimmt, bei dem 5,5-dithio-bis-2-nitrobenzoat (DTNB) verwendet wurde und die Änderung der Absorption bei 409 nm und 25°C verfolgt wurde. Der Assay enthielt sn-1 -Palmitoyl-Lysophosphatidylcholin (30 nmol) als Acyl-Akzeptor, DTNB (50 nmol) und 20 nmol eines der folgenden Acyl-CoAs: Myristoyl-CoA (14:0-CoA), Palmitoyl-CoA (16:0-CoA), Palmitoleoyl-CoA (16:1-CoA), Stearoyl-CoA (18:0-CoA), Oleoyl-CoA (18:1-CoA), Linoleoyl-CoA (18:2-CoA), Dihomo-gamma-linolenoyl-CoA (20:3-CoA) oder Arachidonyl-CoA (20:4-CoA) in 1 ml 50 mM Phosphatpuffer, pH 7,2. Die Reaktion wurde durch Zugabe mikrosomaler Membranpräparation gestartet. Die Menge zugegebener mikrosomaler Membranenpräparation betrug 5 μg (Mortierella und Sonnenblume) bzw. 30 μg (Leinsamen). Das in der Reaktion freigesetzte CoA wurde mit Hilfe der Anfangssteigung und des Extinktionskoeffizienten von 13,6 mM-1 x cm-1 bei 409 nm quantifiziert.
In Figur 12 und Tabelle 7a und 7b sind die LPCAT-Aktivitäten von Mortierella, Sonnenblume und Leinsamen bei verschiedenen Acyl-CoA-Sustraten dargestellt.
Die Ergebnisse zeigen, dass LPCAT in mikrosomalen Membranen von Sonnenblume und Mortierella wesentlich aktiver ist als bei Leinsamen (siehe Tab. 10a und 10b). Mortierella LPCAT setzt neben 18:1 (100 %) auch 18:2 (40%), 20:3 (85 %) und 20:4 (90%) sehr effizient um. Gesättigte Fettsäuren werden quasi nicht umgesetzt (relative Aktivität kleiner 25 %).
Sonnenblumen LPCAT setzt Oleoyl-CoA und Linoeoyl-CoA ähnlich gut um (100 % bzw. 120 % relative Aktivitäten). Palmitoyl-CoA und Stearoyl-CoA sind schlechte Substrate (relative Aktivität kleiner 20 %). 20:3-CoA und 20:4-CoA werden quasi nicht umgesetzt (relative Aktivitäten kleiner 5 %).
Ähnlich verhält sich LPCAT aus Leinsamen: Oleoyl-CoA und Linoleoyl-CoA werden gleichermaßen gut umgesetzt, hingegen konnte für 20:3-CoA und 20:4-CoA keine LPCAT-Aktivität nachgewiesen werden.
Diskussion der Daten zur Acyl-CoA-Spezifität von GPAT, LPAAT und LPCAT
Die Substratspezifität von G3P acylierenden Enzymen wurde intensiv untersucht, um den Mechanismus der Verteilung von Fettsäuren in Phospholipiden und Triacylglycerin zu verstehen. Mikrosomale GPAT von Säugetieren verwendet gesättigte und unge- sättigte Acyl-CoAs (Yamada & Okuyama, 1978; Haldar et al., 1979; Tamai & Lands, 1974). Gleiches wurde für pflanzliche mikrosomale GPATs gezeigt (Frentzen, 1993; Bafor et al. 1990). Jackson et al. (1998) zeigten außerdem, dass weder GPAT noch LPAAT des Pilzes Mucor circinelloides eine ausgeprägte Substratspezifität für Acyl- CoAs aufweist. Gesättigte wie ungesättigte Fettsäuren werden bei Mucor an beiden Positionen acyliert. Eine gereinigte GPAT der Membranfraktion von Mortierella ramanniana zeigte jedoch eine klare Präferenz für Oleoyl-CoA gegenüber Palmitoyl- CoA (Mishra & Kamisaka, 2001).
Um zu untersuchen, ob GPAT in mikrosomalen Membranen von Mortierella, Sonnenblume und Leinsamen eine starke Spezifität für bestimmte Acyl-CoA Spezies aufweist, wurden einzelne Acyl-CoAs den Mikrosomen zugesetzt. Die GPAT von Mortierella weist insofern Ähnlichkeit zu anderen pflanzlichen, tierischen und pilzlichen GPATs auf, als sie eine breite Spezifität für Acyl-CoAs hat, d.h. gesättigte und ungesättigte Fettsäuren werden an der sn-1 Position von G3P acyliert. Auch die GPATs von Sonnenblumen und Leinsamen mikrosomalen Membranen verwenden gesättigte und ungesättigte Acyldonatoren, in ähnlicher Weise, wie dies für Färberdistel und Turnip rape (Bafor et al., 1990) gezeigt wurde, allerdings mit einer Präferenz für ungesättigte Fettsäuren. Generell ist die Mortierella GPAT weniger diskriminierend wie das Sonnenblumen- und Leinsamenenzym. Auffällig ist allerdings, dass Sonnenblumen und Leinsamen GPATs Arachidonyl-CoA quasi gar nicht umsetzt, wogegen das Mortierella- Enzym Arachidonyl-CoA sehr effizient acyliert.
Im zweiten Acylierungsschritt ist LPAAT von Mortierella, Sonnenblume und Leinsamen aktiv mit sn-1-Oleoyl Lysophosphatidsäure als Acylakzeptor. Ähnlich der GPAT weist auch LPAAT von Mortierella eine breite Spezifität für Acyl-CoAs auf. Diese Daten sind ähnlich denen aus Meerschweinchen und Rattenleber Mikrosomen, wo mit Ausnahme von Stearoyl-CoA LPAAT alle Acyl-CoAs mit 16 und 18 C-Atomen, unabhängig vom Sättigungsgrad verestert (Hill und Lands, 1968). In der vorliegenden Arbeit zeigten die Sonnenblumen- und Leinsamen-LPAATs eine starke Spezifität zu Linoleat und Oleat. Gesättigte Fettsäuren hingegen wurden kaum umgesetzt. Diese Daten stimmen überein mit der Beobachtung, dass bei den meisten Ölsaaten LPAAT eine höhere Spezifität für ungesättigte Fettsäuren zeigen (Griffiths et al., 1985; Ichihara et al., 1987). Bei Sonnenblume und Leinsamen ist Arachidonyl-CoA auch für LPAAT ein schlechtes Substrat. Verglichen mit GPAT ist die LPAAT-Aktivität von Sonnenblume und Leinsamen aber etwas höher.
Die Spezifität von LPCAT in mikrosomalen Präparationen von Mortierella und Sonnenblume wurde ebenfalls untersucht. In Mortierella zeigte LPCAT ein breites Spektrum der Substratspezifität auf. Die Aktivität des Enzyms mit verschiedenen Acyl-CoAs nahm in der Reihenfolge 18:1-CoA > 20:4-CoA > 20:3-CoA > 16:1-CoA > 18:2-CoA ab. LPCAT aus Sonnenblume und Leinsamen zeigte kaum Aktivität mit 20:3 und 20:4- CoA.LPCAT in Rinderhirn-Mikrosomen zeigten auch eine schwache Aktivität mit gesättigten Acyl-CoAs und eine größere Aktivität mit Linoleoyl- und Oleoyl-CoA (Deka et al., 1986). LPCAT von Rinder-Herzmuskel-Mikrosomen akzeptieren einen großen Bereich von Substraten, obwohl die Aktivität besonders hoch mit Arachidonyl-, Linoleoyl- und Oleoyl-CoA-Substraten ist (Sanjawara et al., 1988). In Rlanzen wurde die Acyl-Spezifität und Selektivität von LPCAT in Mikrosomen von Färberdistel (Stymne et al., 1983; Griffith et al., 1985) und Leinsamen (Stymne & Stobart, 1985a) untersucht. Oleat und Linoleat wurden mit ungefähr der gleichen Umsatzrate an die sn-2-Position von PC acyliert. Die Aktivität mit alpha-Linoleat betrug nur etwa die Hälfte. Palmitat und Stearat waren wesentlich schlechtere LPCAT-Substrate, wenn sie als einzelne Acyl- CoAs angeboten wurden. Wurde eine Mischung aus gesättigten und ungesättigten Acyl-CoAs angeboten, so wurden Palmitat und Stearat vollständig vom PC ausge- schlössen. Auch LPCAT in mikrosomalen Membranen von Mucor circinelloides verwendet Oleoyl- und Linoeoyl-CoA wesentlich effizienter als gesättigte Fettsäuren. Es gibt also eine große Übereinstimmung bei der Spezifität von pflanzlicher, tierischer und pilzlicher LPCATs. Die Tatsache, dass LPCAT aus mikrosomalen Membranen von Mortierella nur eine schwache Aktivität mit Stearoyl-CoA und eine gute Aktivität mit Oleoyl- und Linoleoyl-CoA aufweist, könnte darauf hinweisen, dass Phosphatidylcholin als Substrat für Desaturasen dient. Es wurde demonstriert, dass Oleat an der sn-1 und der sn-2 Position von PC als Substrat für die Δ-12-Desaturase in Ölsaaten dient (Stymne & Stobart, 1986; Griffiths et al., 1988). Ähnliche Ergebnisse wurden für Mucor circinelloides berichtet (Jackson et al., 1998). Die Δ-6-Desaturase verwendet auch Linoleat and der sn-2 Position von PC in mikrosomalen Membranpräparationen von Mucor (Jackson et al., 1998). Auch die Δ-6-Desaturase von Borretsch verwendet ausschließlich Linoleat an der sn-2 Position des Phospholipids (Stymne & Stobart, 1986; Griffiths et al., 1988).
Die in Beispiel 6 beschriebenen Ergebnisse zeigen, dass Acyltransferasen von Sonnenblume und Lein LCPUFAs wie Dihomo-γ-Linolenat und Arachidonat nicht effizient in die Membran- und Speicherlipide einbauen können. Obwohl LCPUFAs in Ölsaaten wie Sonnenblume, Lein oder Soja produziert werden können, indem die entsprechenden Biosynthesegene funktional exprimiert werden, ist davon auszugehen, dass die gebildeten LCPUFAs aufgrund fehlender Acyltransferase-Aktivitäten nicht effizient in Triacylglycerin eingebaut werden, was zu einem niedrigen Ertrag führt. Zusätzlich zu LCPUFA-Biosynthesegenen (z.B. Desaturasen und Elongasen oder Polyketidsynthasen) müssen also Acyltransferasen mit einer hohen Spezifität für LCPUFA-CoAs in Ölsaaten transformiert werden. Hierfür eignen sich Acyltransferasen von LCPUFA-produzierenden Organismen wie Mortierella, Phaeodactylum, Crypthe- codinium, Physcomitrella, Euglena und Thraustochytrium.
Tabelle 7a und 7b geben die AIctivität und Acyl-Spezifität von Lein, Sonnenblume und Mortierella alpina Acyltransferasen wieder.
Tabelle 7a: AIctivität und Acyl-Spezifität von Lein- und Sonnenblume- Acyltransferasen
Figure imgf000079_0001
Tabelle 7b: Aktivität und Acyl-Spezifität von Mortierella alpina -Acyltransferasen
Figure imgf000080_0001
Beispiel 7: Positionsanalyse der Lipide von Thraustochytrium
In Beispiel 6 wurde gezeigt, dass LCPUFA-Produzenten wie Mortierella über membrangebundene Acyltransferase-Aktivitäten verfügen, die LCPUFA-CoAs in Membran- und Speicherlipide einbauen. Durch Positionsanalysen der Lipide von LCPUFA-Produzenten kann man Rückschlüsse auf die in-vivo-Aktivitäten der einzelnen Acyltransferasen ziehen. Daher wurde im folgenden untersucht, welche Fettsäuren an den einzelnen Positionen der Lipide des DHA-Produzenten Thraustochytrium verestert sind. a) Kultivierung von Thraustochytrium spec.(TS) ATCC 26185
Die Kultivierung des Pilzes TS erfolgte in TS-Flüssigkultur und durch Ausstreichen auf TS-Platten. Alle drei Wochen wurden die Pilze auf neue Platten überimpft, zwei Tage bei 28°C gelagert und anschließend bei RT (ca. 23°C) aufbewahrt. Die Flüssigkultur wurde bei 30°C unter Schütteln inkubiert und nach 6 Tagen geerntet. Das Schütteln der Kultur unter Lichteinstrahlung erhöht die Lipidausbeute (Daten nicht gezeigt). I) TS-Medium: (Bajpai et al. (1991) JAOCS 68: 507-514) a ) 10x Lösung A (g/I):
250 g/l NaCI
50 g/l MgS047H20
10 g/l KCI
20 g/l Na-Glutamaf
2 g/l (NH4)2S04
20 g/l Glucose
Lösung autoklavieren. b) 10x Lösung B (g/l)
200 g/l Glucose 20 g/l Hefeextrakt
Lösung B wurde sterilfiltriert. c) 10x Lösung C (g/l) 2 g/l CaC03
Zum Lösen des CaC03 wurde die Lösung mit HCI angesäuert und anschließend autoklaviert. d) 10x Lösung D (g/l)
1 g/l KH2P04 1 g/l NaHC03
Die Lösung wurde autoklaviert.
Suplemente: Thiamin und Vitamin B12
Zu 600 ml autoklaviertem dest. Wasser wurde je 100 ml der 10X Lösungen a) bis d) und 10 μg/l Thiamin und 1 μg/l Vitamin B 2 zugegeben b) Lipidanalyse von Thraustochytrium (Bligh & Dyer (1959) Canadian J. Biochem. 37: 911-917)
Zur Extraktion der Gesamtlipide aus TS in Flüssigkultur wurden diese durch Zentrifugation bei 3000g für 10 Minuten sedimentiert. Nach Resuspension der Zellen in 10 ml 0,45% NaCI wurden diese für 10 Minuten im Wasserbad gekocht. Nach einem weiteren Zentrifugationsschritt (wie oben) der in 40 ml-Schliffgläschen umgefüllten Suspension wurde das Sediment in Trichlormethan/Methanol 1 :2 (v/v) aufgenommen. Dabei richtete sich das Volumen des Lösungsmittelgemisches nach dem Volumen des Sedimentes. Im allgemeinen wurden für die Extraktion einer 100 ml-Kultur 10 ml des Gemisches benötigt. Die erste Extraktion fand für mindestens 6 Stunden, zumeist allerdings über Nacht bei 8°C auf einem Schüttler statt. Anschließend wurden die Zellreste erneut sedimentiert und der Überstand wurde bei 8°C aufbewahrt. Die zweite Extraktion fand entsprechend der Ersten, allerdings mit Trichlormethan/Methanol 2:1 (v/v) über Nacht statt. Nach der zweiten Extraktion wurden die Zellreste erneut sedimentiert und der Überstand wurde mit dem der ersten Extraktion vereinigt. Die vereinigten Extrakte wurden dann auf das Verhältnis Trichlormethan/Methanol/0,45 % NaCI 2:1:0,7 eingestellt und geschüttelt. Dabei werden nicht erwünschte, coextrahierte Substanzen wie Zucker ausgeschüttelt und gelangen in die wässrige Phase. Daraufhin wurde der Extrakt bis zur Phasentrennung zentrifugiert, die organische Unterphase abgenommen und zur Befreiung von Schwebstoffen durch Watte in einen Rundkolben filtriert. Der Lipidextrakt wurde am Rotationsverdamfer bis zur Trockene eingeengt, die Gesamflipide wurden in Trichlormethan/Methanol 2:1 (v/v) und in ein Schliffglas- röhrchen überführt. Dann wurde der Extrakt unter Stickstoff erneut bis zur Trockene eingeengt und abschließend in Trichlormethan/Methanol 2:1 (v/v) in einem definierten Volumen aufgenommen. c) Lipidanalyse aus Thraustochytrium-Membranen
Isolierte Thraustochytrium-Membranen wurden in ein Schliffröhrchen überführt und in 0,45% NaCI aufgenommen und im Wasserbad 5 Minuten lang aufgekocht, um lipidabbauende Enzyme zu inaktivieren. Nach Zentrifugation (5 Minuten, 3000 x g) wurde der wässrige Überstand dekantiert. Die Extraktion der Lipide erfolgte eine Stunde lang bei 4°C in Trichlormethan/Methanol (2:1). Nach Zugabe von 1/3 Volumen 0,45% NaCI wurden die Proben zur besseren Phasentrennung zentrifugiert (5 Minuten, 3000 x g). Die untere, lipidhaltige Phase wurde entnommen und unter Vakuum eingeengt. Die Lipide wurden in einem geeigneten Volumen Trichlormethan aufgenommen.
Im direkten Anschluß wurden die Lipide auf Kieselgelplatten (Kieselgel 60, 20 x 20 cm, 0,25 mm Schichtdicke; Merck, Darmstadt) zur dünnschicht-chromatographischen Trennung der Phospholipide mit geeigneten Standards aufgetragen. Als Laufmittel wurde Trichlormethan/Methanol/Eisessig/H2091/30/4/4 (v/v/v/v) verwendet. Die Laufzeit betrug 1 ,5 Stunden. Nach Eindampfen des Lösungsmittels wurden die Platten mit 2',7'-Dichlorfluorescein (Merck, Darmstadt; in 0,3% iso-Propanol) angefärbt und unter UV-Licht (366 nm) sichtbar gemacht. d) Lipaseverdau der Thraustochytrium-Gesamtlipide Der enzymatische Verdau erfolgt mittels Pankreaslipase (EC 3.1.1.3). Die hydrolytische Spaltung erfolgt an der Phasengrenze zwischen Fett und Wasser, wobei das Enzym in Triacylglycerolen (TAGs) spezifisch die randständigen Esterbindungen in sπ-1 und sn-3-Position angreift. Intermediär werden 1 ,2- und 2,3-DiacyI-sπ-glycerole angereichert, die anschließend zu sn-2 Monoacylglycerolen weiter verdaut werden. Nach dünnschichtchromatographischer Auftrennung und Gewinnung der sn-2 Mono- acylglycerol- Fraktion wird die Fettsäure-Zusammensetzung der TAGs in der mittleren Position ermittelt.
In ein Glasschliffröhrchen wurden 50 mg des Gesamtlipides eingewogen. Nach Zusatz von 0,5 ml Tris-Puffer, 0,1 ml CaCI2-Lösung und 0,25 ml Gallensalzlösung (0,05 % (w/v) Gallensalz; Sigma, Deisenhofen) wurde das Schliffröhrchen verschlossen. Das Gemisch wurde eine Minute lang durchmischt und anschließend eine Minute in einem Wasserbad bei 40°C vortemperiert, um die Probe zu emulgieren.
Die Hydrolyse erfolgte nach Zusatz von Pankreaslipase (EC 3.1.1.3; Sigma, Deisenhofen; 2 mg Lipase pro 5 mg Lipid; Lipase frisch gelöst in 0,5 ml Tris-Puffer) bei 38°C und hoher Schüttelfrequenz (möglichst 1200 U/min). Nach 30 Minuten wurde die Reaktion durch Zusatz von 1 ml HCI (6 N) und 1 ml Ethanol abgebrochen.
Das Reaktionsgemisch wurde im Zentrifugenglas 2 mal mit je 4 ml Dietylether extrahiert. Dabei wurde die obere etherische Phase abgenommen. Die verbleibende wässrige Phase wurde erneut mit Diethylether extrahiert. Die Entstehung von Emul- sionen wurde bei jedem Extraktionsschritt zusätzlich durch Zentrifugation unterbunden. Die vereinigten etherischen Phasen wurden durch ausschütteln mit je 3 ml Wasser (dest.) gewaschen. Die organische Phase wurde in ein neues Röhrchen überführt und mit Natriumsulfat getrocknet. Nach 2-minütiger Zentrifugation bei 3000 x g wurde der klare Überstand abgenommen und das Natriumsulfatpellet erneut mit Diethylether aus- geschüttelt, wie oben angegeben zentrifugiert und die organischen Phasen vereinigt. Nach Einengung des Etherextraktes unter Vakuum wurde im direkten Anschluss der Extrakt auf Kieselgelplatten (Kieselgel 60, 20 x 20 cm, 0,25 mm Schichtdicke; Merck, Darmstadt) zur dünnschicht-chromatographischen Trennung der Partialglyceride aufgetragen. Als Laufmittel (mobile Phase) wurde Diisopropylether-Eisessig 40:1 (v/v) verwendet. Die Laufzeit betrug 35-45 Minuten. Nach Verflüchtigung des Lösungsmittels wurden die Platten mit 2',7'-Dichlorfluorescein (Merck, Darmstadt; in 0,3% iso-Propan- ol) angefärbt und unter UV-Licht sichtbar gemacht. Die einzelnen Lipidfraktionen wurden in folgender Reihenfolge aufgetrennt: Monoacylglycerole (sn-2 MAGs, unmittelbar über der Startlinie), Diacylglycerole (sπ-1 ,2- und s/τ-2,3-DAGs) freie Fett- säuren (FFA) und die nicht umgesezten TAGs.
Die MAG-Bande wurde von der Kieselgelplatte abgekratzt. Die Bestimmung der Fettsäurezusammensetzung der TAGs erfolgte durch Transmethylierung und anschließender gaschromatographischer Auftrennung der Fettsäure-Methylester (FAME).
Tris-Puffer: 1 M Tris/HCI, pH mit HCI auf 8,0 einstellen
CaCI-Lösung
2,2% (w/v) CaCI2 e) Lipaseverdau der Thraustochytrium-Membranlipide (Fischer et al., 1973)
Die Positionsanlyse der Membranlipide erfolgte durch enzymatische Hydrolyse der sn-2-Esterbindung mit Phospholipase A2 (EC 3.1.1.4).
Die isolierten Membranlipide wurden unter Vakuum eingeengt, mit 0,5 ml Hydrolyse- puffer versetzt und 5 min lang mit dem Ultraschallstab dispergiert. Die Hydrolyse erfolgte bei RT nach Zugabe von 50 U der Phospholipase A2. Die Reaktion wurde durch Zugabe von 4 ml Trichlormethan/Methanol 2:1 (v/v) und 0,45% NaCI gestoppt. Die organische Unferphase wurde in ein neues Gefäß überführt, am Rotationsverdampfer eingeengt und in 200 μl Trichlormethan/Methanol 2:1 (v/v) aufgenommen. Im direkten Anschluss wurde der Ansat∑t auf Kieselgelplatten (Kieselgel 60,
20 x 20 cm, 0,25 mm Schichtdicke; Merck, Darmstadt) zur dünnschicht-chromato- graphischen Trennung der Phospholipide aufgetragen. Als Laufmittel wurde Trichlor- methan/Methanol/Eisessig/H2091/30/4/4 (v/v/v/v) verwendet. Die Laufzeit betrug 1,5 Stunden. Nach Eindampfen des Lösungsmittels wurden die Platten mit 2',7'- Dichlorfluorescein (Merck, Darmstadt; in 0,3% iso-Propanol) angefärbt und unter UV- Licht sichtbar gemacht. Interessante Banden wurden von der Kieselgelplatte abgekratzt, transmethyliert und anschließend am Gaschromatographen analysiert.
Hydrolysepuffer
0,1 M Borsäure, pH 8,0 3 mM CaCI2
1 ,4 mM Na-Desoxycholat
f) Transmethylierung von Fettsäuren mit Na-Methylat (nach Lühs)
Lipidproben wurde nach Abdampfen des Lösungsmittels bzw. nach Abkratzen von der Dünnschichtplatte (z.B. bei sn-2 Analyse der Gesamtlipide) mit 2 ml Na-methylatlösung zur Umesterung versetzt. Der Ansatz wurde gut geschüttelt und zur Transmethylierung der Fettsäuren ca. 30 Minuten bei Raumtemperatur inkubiert. Anschließend wurde 1 ,5 ml iso-Octan zugegeben und vorsichtig zweimal geschüttelt. Der Ansatz wurde 30 Minuten lang bei 4°C gelagert, wobei die Fettsäure-Methylester (FAME) in die iso- Octanphase übergehen. Nachdem sich die Phasen deutlich getrennt hatten wurde die obere iso-Octanphase in ein GC-Gläschen abpipettiert und die Probe am Gaschromatographen gemessen.
Na-Methylatlösung
5 g Natriummethylat wurden in 800 ml Methanol (99%) mittels Magnetrührer bei 50°C gelöst und nach dem Abkühlen mit iso-Octan auf 1000 ml aufgefüllt. g) Methylierung freier Fettsäuren mit methanolischer Schwefelsäure
In einem Pyrexröhrchen mit Gewindedeckel wurde 1 ml 1 N methanolischer Schwefelsäure zu dem eingeengtem Lipidextrakt zugegeben. Der Ansatz wurde eine Stunde lang bei 80°C inkubiert. Nach kurzem Abkühlen wurde der Ansatz mit 1 ml 0,9% NaCI versetzt und durchmischt. Anschließend wurde gleiches Volumen Hexan zugegeben, gut gemischt und der Ansatz bei 4°C, 30 Minuten lang bis zur Phasentrennung inkubiert. Die obere Hexanphase wurde in ein GC-Gläschen überführt und am Gaschromatographen analysiert.
Methanolische Schwefelsäure Zu 100 ml Methanol (wasserfrei) wurden mit 2 ml Dimethoxypropane und 0,5 M H2S04 zugegeben. h) Gaschromatographische Analyse
Für die GC-Analysen wurden folgende Parameter des gaschromatographischen Systems eingehalten:
Gerätetyp HP 6890 GC
Injektor HP GC Injector
Detektor Flammen lonisations Detektor (FID), Temp. 250°C
Säule J&W DW23 50% Cyanopropyl/methylsiloxane, 30 m,
0,5 mm Durchmesser
Ofentemperatur 220°C
Trägergas Wasserstoff
Autosampier HP 7673, Einspritzmenge 1 μl Probe
i) Die Lipidanalyse der Thraustochytrium-Lipide lieferte folgende Ergebnisse
Figure imgf000085_0001
Die Ergebnisse zeigen, dass Thraustochytrium einen hohen Gehalt an DHA in seinen Lipiden besitzt. DHA stellt mit neben Palmitat die Hauptkomponente der Triacylglyerole dar und ist die dominierende Fettsäure der Membranlipide. Auffällig ist, dass DHA an der sn-2 Position sowohl des Triacylclycerols als auch der Membranlipide deutlich angereichert ist: 36-43% der Fettsäuren an der sn-2 Position ist DHA. Aufgrund dieser Daten kann man davon ausgehen, dass Thraustochytrium über eine aktive LPAAT verfügt, die eine hohe Spezifität für DHA-CoA aufweist.
Beispiel 8: Isolierung von Gesamt-RNA und poly(A)+-RNA
Die Isolierung von Gesamt-RNA aus Pflanzen wie Lein und Raps etc. erfolgte nach einer bei Logemann et al. beschriebenen Methode (Anal. Biochem. (1987) 163: 21). Aus dem Moos Physcomitrella patens kann die Gesamt-RNA aus Protonema-Gewebe nach dem GTC-Verfahren (Reski et al. (1994) Mol. Gen. Genet.244: 351-359) gewonnen werden. a) RNA Isolierung aus Thraustochytrium, Cryptecodinium und Shewanella: Tiefgefrorene Algenproben (-70°C) wurden in einem eiskaltem Mörser unter Flüssigstickstoff zu feinem Pulver zerreiben. 2 Volumen Homogenisationsmedium (12,024 g Sorbitol, 40,0 ml 1 M Tris-RC1, pH 9 (0,2 M); 12,0 ml 5 M NaCI (0,3 M), 8,0 ml 250 mM EDTA, 761,0 mg EGTA, 40,0 ml 10% SDS wurden auf 200 ml mit H20 aufgefüllt und der pH auf 8,5 eingestellt) und 4 Volumen Phenol mit 0,2% Mercaptoethanol wurden bei 40-50°C unter gutem Mischen zu gefrorenem Zellpulver gegeben. Danach wurden 2 Volumen Chloroform hinzufügen und für 15 min kräftig gerührt. Es wurde 10 min bei 10000g zentrifugiert und die wässrige Phase mit Phenol/Chloroform (2Vol/2Vol) und abschließend mit Chloroform extrahiert.
Das erhaltene Volumen der wässrigen Phase wurde mit 1/20 Vol 4 M Na-Acetat (pR 6) und 1 Vol Isopropanol (eiskalt) versetzt und die Nukleinsäuren bei -20°C ÜN (= über Nacht) gefällt. Es wurde 30 min bei 10000 g zentrifugiert und der Überstand abgesogen. Es folgte ein Waschschritt mit 70% EtOH und erneute Zentrifugation. Das Sediment wurde in Tris-Borat-Puffer (80 mM Tris-Borat-Puffer, 10 mM EDTA, pH 7,0). Dann wurde der Überstand mit 1/3 Vol 8 M LiCI versetzt, gemischt 30 min bei 4°C inkubiert. Nach erneutem zentrifugieren wurde das Sediment mit 70% Ethanol gewaschen, zentrifugiert und das Sediment anschließend in RNAse-freiem Wasser gelöst.
Die Isolierung von poly(A}+-RNA erfolgte unter Verwendung von Dyna Beads (Dynal, Oslo, Finnland) nach den Anweisungen im Protokoll des Herstellers. Nach der Bestimmung der RNA- oder poly(A}+-RNA-Konzentration wurde die RNA durch Zugabe von 1/10 Volumina 3 M Natriumacetat, pH 4,6, und 2 Volumina Ethanol gefällt und bei -70°C aufbewahrt. Für die Analyse wurden jeweils 20 μg RNA in einem Formaldehydhaltigen 1 ,5%igen Agarosegel aufgetrennt und auf Nylon Membranen (Hybond, Amersham) überführt. Der Nachweis spezifischer Transkripte wurde wie bei Amasino beschrieben durchgeführt (Amasino (1986) Anal. Biochem. 152: 304). Beispiel 9: Konstruktion von cDNA-Banken
Zur Konstruktion der cDNA-Banken aus Physcomitrella, Thraustochytrium und Fusarium wurde die Erststrangsynthese unter Verwendung von Reverser Transkriptase aus Maus-Leukämie- Virus (Röche, Mannheim, Deutschland} und Oligo-d(T)-Primem, die Zweitstrangsynthese durch Inkubation mit DNA-Polymerase I, Klenow-Enzym und RNAse H-Spaltung bei 12°C (2 Std.), 16°C (1 Std.) und 22°C (1 Std.) erzielt: Die Reaktion wurde durch Inkubation bei 65°C (10 min) gestoppt und anschließend auf Eis überführt. Doppelsträngige DNA-Moleküle wurde mit T4-DNA-Polymerase (Röche, Mannheim) bei 37°C (30 min) mit glatten Enden versehen. Die Nukleotide wurden durch Phenol/Chloroform-Extraktion und Sephadex-G50-Zentrifugiersäulen entfernt. EcoRI/Xhol-Adapter (Pharmacia, Freiburg, Deutschland) wurden mittels T4-DNA-
Ligase (Röche, 12°C, über Nacht) an die cDNA-Enden ligiert, mit Xhol nachgeschnitten und durch Inkubation mit Polynukleotidkinase (Röche, 37°C, 30 min) phosphoryliert. Dieses Gemisch wurde der Trennung auf einem Low-Melting-Agarose-Gel unterworfen. DNA-Moleküle über 300 Basenpaaren wurden aus dem Gel eluiert, phenol-extra- hiert, auf Elutip-D-Säulen (Schleicher und Schüll, Dassel, Deutschland) konzentriert und an Vektorarme ligiert und in lambda-ZAPII-Phagen oder lambda-ZAP-Express- Phagen unter Verwendung des Gigapack Gold-Kits (Stratagene, Amsterdam, Niederlande} verpackt, wobei Material des Herstellers verwendet und seine Anweisungen befolgt wurden. Beispiel 10: DNA-Sequenzierung und Computeranalyse cDNA-Banken, wie im Beispiel 9 beschrieben, wurden zur DNA-Sequenzierung nach Standardverfahren, insbesondere durch das Kettenterminationsverfahren unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction-Kit (Perkin-Elmer, Weiterstadt, Deutschland), verwendet. Die Sequenzierung zufälliger, vereinzelter Klone wurde anschließend an die präparative Plasmidgewinnung aus cDNA-Banken über in vivo-Massenexcision und Retransformation von DH10B auf Agarplatten durchgeführt (Einzelheiten zu Material und Protokoll von Stratagene, Amsterdam, Niederlande). Plasmid-DNA wurde aus über Nacht gezüchteten E. coli- Kulturen, die in Luria-Brühe mit Ampicillin (siehe Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6)) gezüchtet worden waren, an einem Qiagen-DNA-Präparations-Roboter (Qiagen, Hilden) nach den Protokollen des Herstellers präpariert. Sequenzierprimer mit den folgenden Nukleotidsequenzen wurden verwendet:
5'-CAGGAAACAGCTATGACC-3' 5'-CTAAAGGGAACAAAAGCTG-3' 5'-TGTAAAACGACGGCCAGT-3'
Die Sequenzen wurden unter Verwendung des Standard-Softwarepakets EST-MAX, das kommerziell von Bio-Max (München, Deutschland) geliefert wird, prozessiert und annotiert. Durch Nutzung von Vergleichsalgorithmen und unter Verwendung einer Suchsequenz wurde mit Hilfe des BLAST- Programms nach homologen Genen gesucht
(Altschul et al. (1997) "Gapped BLAST and PSI-BLAST: A new generation of profein database search programs", Nucleic Acids Res.25: 3389-3402).
Beispiel 11 : Identifikation von Genen mittels Hybridisierung
Gensequenzen lassen sich zur Identifikation homologer oder heterologer Gene aus cDNA- oder genomischen Banken verwenden.
Homologe Gene (d.h. Volllängen-cDNA-Klone, die homolog sind, oder Homologe) lassen sich über Nukleinsäurehybridisierung unter Verwendung von beispielsweise cDNA-Banken isolieren: Je nach der Häufigkeit des Gens von Interesse werden 100000 bis zu 1000000 rekombinante Bakteriophagen plattiert und auf eine Nylon- membran überführt. Nach der Denaturierung mit Alkali wird die DNA auf der Membran z.B. durch UV-Vernetzung immobilisiert. Die Hybridisierung erfolgt bei hochstringenten Bedingungen. In wässriger Lösung werden die Hybridisierung und die Waschschritte bei einer lonenstärke von 1 M NaCI und einer Temperatur von 68°C durchgeführt. Hybridisierungssonden wurden z.B. durch Markierung mittels radioaktiver (32P) Nick- transkription (High Prime, Röche, Mannheim, Deutschland) hergestellt. Die Signale werden mittels Autoradiographie nachgewiesen.
Partiell homologe oder heterologe Gene, die verwandt, aber nicht identisch sind, lassen sich analog zum oben beschriebenen Verfahren unter Verwendung niedrig- stringenter Hybridisierungs- und Waschbedingungen identifizieren. Für die wässrige Hybridisierung wurde die lonenstärke gewöhnlich bei 1 M NaCI gehalten, wobei die Temperatur nach und nach von 68 auf 42°C gesenkt wurde.
Die Isolatierung von Gensequenzen, die nur zu einer einzelnen Domäne von beispielsweise 10 bis 20 Aminosäuren Homologien aufweisen, läßt sich unter Verwendung synthetischer, radioaktiv markierter Oligonukleotidsonden durchführen. Radioaktiv markierte Oligonukleotide werden mittels Phosphorylierung des 5'-Endes zweier komplementärer Oligonukleotide mit T4-Polynukleotidkinase hergestellt. Die komplementären Oligonukleotide werden aneinander hybridisiert und ligiert, so dass Konkatemere entstehen. Die doppelsträngigen Konkatemere werden beispielsweise durch Nicktranskription radioaktiv markiert. Die Hybridisierung erfolgt gewöhnlich bei niedrig-stringenten Bedingungen unter Verwendung hoher Oligonukleotidkonzen- trationen. Oligonukleotid-Hybridisierungslösung:
6 x SSC
0,01 M Natriumphosphat 1 mM EDTA (pH 8) 0,5% SDS
100 μg/ml denaturierte Lachssperma-DNA 0,1 % fettarme Trockenmilch
Während der Hybridisierung wurde die Temperatur schrittweise auf 5-10°C unter die berechnete Oligonukleotid-Tm oder bis auf Raumtemperatur bedeutet RT = 23°C in allen Experimenten, wenn nicht anders angegeben) gesenkt, gefolgt von Waschschritten und Autoradiographie. Das Waschen wurde mit extrem niedriger Stringenz durchgeführt, zum Beispiel 3 Waschschritte unter Verwendung von 4 x SSC. Weitere Einzelheiten sind wie von Sambrook, J., et al. (1989), „Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, oder Ausubel, F.M., et al. (1994) „Current Protocols in Molecular Biology", John Wiley & Sons, beschrieben.
Beispiel 12: Isolierung und Klonierung eines Volllangenklons für LPAAT aus Thraustochytrium
Durchmustern einer cDNA-Bank von Thraustochytrium
Entsprechend unter Beispiel 9 beschrieben, wurde eine cDNA Bank von Thrausto- chytrium erstellt. Im nächsten Schritt wurde die Phagenbank nach Herstellerangaben mittels eines Helferphagen in eine Plasmidbank umgesetzt. Die Plasmidbank wurde auf LB-Medium, 0,8 % Agar, 100 mg/ L Ampicillin ausplattiert und inkubiert. Gewachsene Bakterienkolonien wurden zufällig ausgewählt, in Flüssigmedium (LB, 100 mg/ L Ampicillin) angezogen und wie in Beispiel 10 beschrieben, einer Sequenzierung unter- worfen.
Die erhaltenen Sequenzen wurden nach Redundanzen durchsucht und diese entfernt. Dadurch konnte ein Sequenzsortiment erhalten werden, dass ein Unigen-Set beschreibt. Dieses Sequenz-Set wurde in die Pedant-Datenbank (Biomax AG, Martinsried, Deutschland) eingelesen. Mittels BLAST Analyse anhand von konservierten Bereichen innerhalb von Acyltransferasen wurde ein kurzes Sequenzstück mit niedriger Ähnlichkeit zu bekannten Acyltransferasen gefunden. Die vorhandene Sequenzinformation wurde verwendet, um Primer zu generieren (LPAAT069-5' und LPAAT069-3'). Mit diesem Fragment wurde dann in der cDNA-Bank nach einem Volllänge-Klon gesucht (Tabelleδ). Tabelle 8: Sequenzen der eingesetzten Primer;
Die Schmelztemperatur Tm (°C) der Oligonukleotide wurde nach Suggs et al. (1981 ) berechnet: Tm (°C) = 4 (G+C) + 2 (A+T) Tm-Werte in Klammern beziehen sich auf tatsächlich bindende Nukleotide von Primern, deren Enden durch zusätzlich ein- geführte Schnittstellen modifiziert wurden.
Primer Sequen∑ Tm (°C)
LPAAT069-5' 5'-GCT ACA TTG CCA TGG AGC-3' 56
LPAAT069-3' 5'-GCT ACA AGA GGT GAG GTC G-3' 59
ACtrau-5' 5'-CTG GAT CCA TGA GCG GGT GGA CGA G-3' 69 (52)
ACtrau-3' 5'-TTG GAT GCG AAG AGG TCA GGT CGG A-3' 66 (54)
ACtrau-3'stop 5'-TTG GAT CCC TAC AAG AGG TCA GGT CG-3' 66 (48)
YES-HIS-5' 5'-CTG AGC TCA TGA GCG CGT GGA G-3' 69 (56)
YES-HIS-3' 5'-ATG GAT CGG TGA TGG TGA TGG TGA TGG AAG AGG 72 (40) TC-3'
Bei den PCR-Experimenten wurden die unten angegebenen Bestandteile eines PCR- Standardansatzes auf Eis in ein PCR-Reaktionsgefäß pipettiert, in den Thermoblock gestellt und das unten dargestellte Temperaturprofil gestartet. Als Polymerase wurde in fast allen Fällen die Taq-Polymerase (Gibco BRL) eingesetzt. Lediglich bei Amli- fikationen im Rahmen der funktionalen Expression in E. coli JC201 wurde die Pfu- Polymerase (Stratagene) verwendet. Die Zugabe der Polymerase erfolgte bei allen Experimenten über einen sogenannten "Heißstart", bei dem das Enzym erst nach 5 min Denaturierung des DNA-Templates zugegeben wird. Die Annealingtemperaturen (Ta) wurden 3-5°C unter der mittleren Schmelztemperatur Tm der Primerpaare gewählt.
PCR-Standardansatz (für Taq-Polymerase)
5 μl 10 x PCR-Puffer (100 mM Tri-HCI, pH 8,3; 15 mM MgCI2, 500 mM KCI) 1 μl dNTP-Mix (10 mM dATP, dGTP, dTTP u. dCTP) 1 μl Primer 1 (30 μM) 1 μl Primer 2 (30 μM) 1 U Taq-Polymerase 50-100 ng Plasmid-DNA-Template mit Aqua dest. auf 50 μl auffüllen Heißstartprogramm
1. Denaturierung 95°C, 5 min
2. Heißstart 25°C, 3 min → Zugabe der Polymerase
3. Denaturierung 94°C 30 s 4. Annealing Tm-5°C, 30 s
5. Polymerisation 72°C, 1 - 3 min (für 1 ,0 kbp ca. 60 s)
Die Schritte 3. bis 5. wurden 25 bis 30 mal zyklisch wiederholt.
6. Polymerisation 72°C, 5 min
7. Termination 4°C a) Nichtradioaktive Markierung von DNA
DNA-Sonden wurden nichtradioaktiv mit dem "PCR DIG PROBE SYNTHESIS KIT" (Boehringer Mannheim) markiert. Dabei wurden DNA-Fragmente in einer PCR- Reaktion mit Digoxigenin-markierten Desoxyuridintriphosphat (DIG-dUTP) markiert. Die Detektion erfolgte anschließend mittels eines Anti-Digoxygenin-Antikörpers, der mit alkalischer Phosphatase konjugiert ist, und Zugabe von Chemilumineszenz- oder Farbsubstraten.
Um Hintergrundsignale zu vermeiden, die auf Vektorsequenzen zurückzuführen sind, wurde für die PCR-Markierung zunächst in einer ersten PCR mit unmarkierten dNTPs die gewünschte DNA amplifiziert, das lineare Fragment über ein Agarosegel gereinigt und als Template für die eigentliche PCR-Markierung benutzt, bei der wieder das Primerpaar der ersten PCR eingesetzt wurde. Die Durchführung der Markierungsreaktion richtete sich nach den Angaben des Herstellers. Die gewählten Primer- kombinationen sind in der folgenden Tabelle zusammengefasst.
Primer Sequenz
LPAAT069-5 ' 5'- GCT ACA TTG CCA TGG AGC -3'
LPAAT069-3' 5'- GCT ACA AGA GGT CAG GTC G -3'
b) Screening einer cDNA-Bank
Zur Isolation eines vollständigen Klons wurde eine Thraustochytrium cDNA-Bank (in λTriplEx2) mit der DIG-markierten Sonde abgesucht. Die Erstellung der Sonde erfolgte mit den Primern LPAAT069-3' und LPAAT069-5, abgeleitet von dem EST-Klon s_t002038069 bekannten cDNA-Sequenz die möglicherweise für eine LPAAT aus Thraustochytrium kodiert. Es wurden je 5 x 104 PIaques auf 10 große NZY-Platten, entsprechend den Angaben des Herstellers (Stratagene) ausplattiert. Für den Transfer der Phagen auf Nitrocellu- lose-Filter (Hybond™-C, Amersham) wurden die Filter 1 min auf die Platten gelegt und ihre genaue Lage durch 3 Einstiche mit einer Kanüle markiert. Anschließend wurden die Filter mit der Abdruckseite nach oben zunächst 5 min mit Denaturierungs-Lösung, dann 5 min mit Neutralisierungs-Lösung und schließlich 15 min mit 2 x SSC-Lösung behandelt. Dies erfolgte auf 3 Bögen Whatman 3 MM Papier, die mit den Lösungen getränkt waren. Nach fünfminütigem Trocknen der Filter wurde die DNA durch UV- Behandlung mit 0,12 Joule/cm2 (UV-Grosslinker, Hoefer Scientific Instruments) fixiert. Hybridisierung und kolorimetrische Detektion erfolgten mit dem "Dig System für Filter Hybridisierung" von Boehringer (Mannheim) entsprechend den Angaben des Herstellers. Als Hybridisierungs-Puffer wurde Standard-Puffer verwendet, wobei die Hybridisierung in 80 ml Hybridisierungs-Puffer mit 15 μl des Sonden-PCR-Ansatzes durchgeführt wurde. Nach erfolgter Detektion wurden die genaue Lage der Signale sowie die drei Orientierungspunkte der Filter auf Plastikfolien übertragen, um mit diesen als Schablone die positiven PIaques auf den Platten zu identifizieren. Diese wurden dann mit einem abgeflammten Korkbohrer (Durchmesser 5 mm) ausge- stochen, in 1 ml SM-Puffer mit 20 μl CHCI3 überführt und die Phagen aus den Agar- stücken über Nacht bei 4°C eluiert. Ein exaktes Ausstechen der PIaques war durch deren hohe Dichte und geringe Größe kaum möglich. Daher werden in der Regel ein bis zwei "Rescreens" durchgeführt. In diesem Fall wurden die Phagenlysate mittels PCR und den Primern LPAAT069-3' und LPAAt-5 auf Fragmente von ca. 570 bp untersucht. Dazu wurden Aliquots der Phagenlysate mit EDTA (Endkonzentration 10 mM) versetzt und daraus 1 μl für die PCR als Template eingesetzt. Mit positiven Lysaten wurden in-vivo-Exzisionen nach Angaben des "ZAP-cDNA® Gigapack® II Gold Cloning Kit" (Stratagene) durchgeführt, wobei von den infizierten SOLR-Zellen statt der angegebenen 10-50 μl nur 2μl auf LB-Amp-Platten ausplattiert und über Nacht bei 37°C inkubiert wurden. Die Plasmide der erhaltenen Kolonien wurden direkt mittels PCR und den Primern LPAAT-3' und LPAAT-5' untersucht. Dazu wurden "Pools" erstellt, indem je 6 Kolonien mit sterilen Zahnstochern in einem Eppendorfreaktions- gefäß in 20 μl Aqua dest. eingerieben wurden, 3 x eingefroren und wieder aufgetaut, um die Zellen zu lysieren, 5 min bei 14.000 x g zentrifugiert und vom Überstand 2 μl als Template in die PCR-Reaktion eingesetzt. Positive "Pools" wurden vereinzelt, die Plasmide über Plasmid-Minipräparationen isoliert und über PCR, Restriktionsanalysen sowie DNA-Sequenzierungen analysiert.
Schließlich wurde ein Volllängenklon für LPAAT aus Thraustochytrium identifiziert, dessen DNA-Sequenz in SEQ ID NO:1 dargestellt ist. Die abgeleitete Aminosäure- sequenz ist in SEQ ID NO:2 gezeigt. NZY-Medium (pro Liter, NZY-Platten mit 15 g Agar)
5 g NaCI 5 g Hefeextrakt
10 g NZ-Amin (Caseinhydrolysat) pH 7,5 (NaOH)
2 g MgS04 (sterilfiltriert)
Denaturierungs-Lösung
0,5 M NaOH 1,5 M NaCI Neutralisierungs-Lösung
1,0 M Tris-HCI, pH 7,5 1,5 M NaCI
20 x SSC
3,0 M NaCI 0,3 M Natriumeitrat, pH 7,0
Standard-Puffer
5 x SSC
0,1% (w/v) N-Laurylsarcosin 0,02% (w/v) SDS 1% BIocking Reagens
SM-Puffer (pro Liter)
5,8 g NaCI 2, g MgS04
50 ml 1 M Tris-HCI, pH 7,5 5 ml 2% Gelatine
Beispiel 13: Isolierung und Klonierung von Volllängenklonen für PUFA spezifische Acyltransferasen aus Physcomitrella patens, Mortierella alpina und Shewanella hanedai
Wie unter Beispiel 8 und 9 beschrieben, wurde aus Physcomitrella patens und Mortierella alpina RNA isoliert und eine cDNA-Bank hergestellt.
Im nächsten Schritt wurde die Phagenbank nach Herstellerangaben mittels eines Helferphagen in eine Plasmidbank umgesetzt. Die Plasmidbank wurde auf LB-Medium, 0,8 % Agar, 100 mg/ L Ampicillin ausplattiert und inkubiert. Gewachsene Bakterien- kolonien wurden zufällig ausgewählt, in Flüssigmedium (LB, 100 mg/ L Ampicillin) angezogen und wie in Beispiel 10 beschrieben, einer Sequenzierung unterworfen.
Die erhaltenen Sequenzen wurden nach Redundanzen durchsucht und diese entfernt. Dadurch konnte ein Sequenzsortiment erhalten werden, dass ein Unigen-Set be- schreibt. Dieses Sequenz-Set wurde in die Pedant-Datenbank (Biomax AG, Martinsried, Deutschland) eingelesen. Mittels BLAST Analyse anhand von konservierten Bereichen innerhalb von Acyltransferasen wurden kurze Sequenzstücke mit niedriger Ähnlichkeit zu bekannten Acyltransferasen gefunden (Tabelle 9). Die vorhandene Sequenzinformation wurde verwendet, um Primer zu generieren (Tabelle 10). Mit diesen Primern konnten die Volllänge-Klone amplifiziert werden.
Für die Acyltransferase aus Shewanella hanedai wurde die öffentliche Datenbank von Shewanella putrefaciens MR1 (TIGR Datenbank http://tigrblast.tigr.org/ufmg/) nach Acyltransferasesn durchsucht. Es konnte eine Sequenz in der Datenbank mit Homologie zu Acyltransferasen gefunden werden. Von dieser Sequenz wurde ein PCR- Fragement generiert mittels Standard-Primer T7 und T3. Das erhaltene Produkt wurde wie in Beispiel 10 a) und b) erläutert, markiert und zum Durchsuchen einer genomischen Shewanella hanedai Bank eingesetzt.
Genomische DNA aus Shewanella hanedai wurde nach folgendem Protokoll isoliert: Eine 100 ml Kultur wurde bis zu einer optischen Dichte von 1,0 bei 30°C angezogen. Davon wurden 60 ml abzentrifugiert bei 3000 xg für 3 min. Das Pellet wurde in 6 ml doppelt-destilliertem H2O resuspendiert und auf 1 ,5 ml Gefäße verteilt, abzentrifugiert und der Überstand verworfen. Die Pellets wurden mit 200 μl Lösung A, 200 μL Phenol/ Chloroform (1:1) und 0,3 g Glaskugeln durch Vortexen resuspendiert und lysiert. Nach Zugabe von 200 μl TE-Puffer pH 8,0 wurde für 5 min zentrifugiert. Der Überstand wurde einer Ethanolfällung mit 1 ml Ethanol unterzogen. Das erhaltene Pellet nach Fällung wurde in 400 μL TE-Puffer pH 8,0 + 30 μg/mL RnaseA gelöst. Nach Inkubation für 5 min bei 37°C wurden 18 μL 3 M Natriumacetat-Lösung pH 4,8 und 1 mL Ethanol zugegeben und die präzipitierte DNA durch Zentrifugation pelletiert. Das DNA-Pellet wurde in 25 μL doppelt-destilliertem H2O gelöst. Die Konzentration der genomischen DNA wurde durch deren Absorption bei 260 nm bestimmt.
Lösung A:
2 % Trition-X100
1 % SDS
0,1 M NaCI
0,01 M Tris-HCI pH 8,0
0,001 M EDTA
Die erhaltene genomische DNA wurde 1 Stunden bei 25 °C mit dem Restriktionsenzym SauSA (New England Biolabs) nach Herstellerangaben inkubiert. Die erhaltene Fragmente wurden dann in einen mit BamHI verdautes pUC18 Plasmid mittels T4 Ligase (Röche) ligiert. Die erhaltene Bank wurde dann in gleicherweise wie in Beispiel 10 beschrieben, durchsucht. Es konnte ein Klon mit einem 1 ,7 kb grosses genomisches Fragment gefunden werden, der eine 687 bp lange codierende Sequenz mit Ähnlichkeit zu Acyltransferasen zeigt.
Die Sequenz aus Shewanella hanedai zeigt eine besonders hohe Ähnlichkeit zu der LPCAT aus Chaenorabdidis elegans. Die Ähnlichkeit der beiden Sequenzen auf Aminosäureebene beträgt 26 %.
Tabelle 9: Identifizierte Acyltransferase aus den genannten cDNA-Banken
Figure imgf000095_0001
Tabelle 10: Sequenzen der eingesetzten Primer;
Figure imgf000096_0001
Bei den PCR-Experimenten wurden die unten angegebenen Bestandteile eines PCR- Standardansatzes auf Eis in ein PCR-Reaktionsgefäß pipettiert, in den Thermoblock gestellt und das unten dargestellte Temperaturprofil gestartet. Als Polymerase wurde in fast allen Fällen die Taq-Polymerase (Gibco BRL) eingesetzt. Lediglich bei Amli- fikationen im Rahmen der funktionalen Expression in E. coli JC201 wurde die Pfu-Poly- merase (Stratagene) verwendet. Die Zugabe der Polymerase erfolgte bei allen Experimenten über einen sogenannten "Heißstart", bei dem das Enzym erst nach 5 min Denaturierung des DNA-Templates zugegeben wird. Die Annealingtemperaturen (Ta) wurden 3-5°C unter der mittleren Schmelztemperatur Tm der Primerpaare gewählt. PCR-Standardansatz (für Taq-Polymerase)
5 μl 10 x PCR-Puffer (100 mM Tri-HCI, pH 8,3; 15 mM MgCI2, 500 mM KCI) 1 μl dNTP-Mix (10 mM dATP, dGTP, dTTP u. dCTP) 1 μl Primer 1 (30 μM) 1 μl Primer 2 (30 μM) 1 U Taq-Polymerase 50-100 ng Plasmid-DNA-Template mit Aqua dest. auf 50 μl auffüllen
Heißstartprogramm 1. Denaturierung 95°C, 5 min
2. Heißstart 25°C, 3 min — > Zugabe der Polymerase
3. Denaturierung 94°C 30 s
4. Annealing Tm-5°C, 30 s
5. Polymerisation 72°C, 1 - 3 min (für 1 ,0 kbp ca. 60 s) Die Schritte 3. bis 5. wurden 25 bis 30 mal zyklisch wiederholt.
6. Polymerisation 72°C, 5 min
7. Termination 4°C
GSP: TCT CTTTTT CGT GCT GCTCCA GCC GAT (Are 297)
PCR-Programm: 10min. 95°C 1min. 95°C (40 Cycles)
1min. 65°C 2min. 72°C
10min. 72°C Pause 4°C
PCR-Maschine: Biometra Trio Thermoblock Zunächst PCR auf der RACE-Bank Moos mit AP1 und GSP, bei richtiger Größe PCR mit nested AP2 und GSP, positive werden in pCRII-TOPO-TA Cloning Vector für Sequenzierung kloniert.
Beispiel 14: Expression von Thraustochytrium LPAAT (ThLPAAT) in Hefe
Um die Funktionalität von ThLPAAT nachzuweisen, wurde in einem ersten Ansatz der kodierende Bereich der cDNA in einem Hefe-Expressionsvektor kloniert und in S. cerevisiae exprimiert. Die in der Hefe produzierte LPAAT sollte zugesetzte über Acyltransferase-Aktivität in mikrosomalen Fraktionen nachgewiesen werden.
Sämtliche Fest- und Flüssigmedien für Hefe wurden nach Protokollen von Ausubel et al. (Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1995) hergestellt. Die ThLPAAT-cDNA wurde über Restriktionsverdau mit Hindlll/BamHI aus dem Vektor pGEM-T ausgeschnitten, in den Hindlll/BamHI geschnittenen shuttle-Vektor pYES2 (Invitrogen, Carlsbad, USA) kloniert und der so entstandene Veictor pYES2-ThLPAAT in E. coli XL1 blue transformiert. pYES2-ThLPAAT wurde mit Hilfe der LiAc-Methode in S. cerevisiae INCS (Invitrogen, Carlsbad, USA) transformiert, wo die Expression der ThLPAAT-cDNA unter der Kontrolle des GAL1 -Promotors stand.
Die Expression von ThLPAAT in S. cerevisiae INVSd erfolgte modifiziert nach Avery et al. (Appl. Environ. Microbiol., 62, 1996: 3960-3966) und Girke et al. (The Plant Journal, 5, 1998: 39-48). Um eine Starterkultur herzustellen, wurden 20 ml SD-Medium mit Glucose und Aminosäurelösung ohne Histidin mit einer Hefe-Ein∑elkolonie angeimpft und über Nacht bei 30 °C bei 140 rpm inkubiert. Die Zellkultur wurde zwei mal gewaschen durch Abzentrifugieren und Resuspendieren in SD-Medium ohne Supplemente und ohne Zucker. Mit den gewaschenen Zellen wurde eine Hauptkultur auf eine OD600 von 0,1 bis 0,3 angeimpft. Die Anzucht der Hauptkultur erfolgte in 25 ml SD-Medium mit 2 % (w/v) Galaktose, Aminosäurelösung ohne Histidin, 0,02 %
Linolsäure (2%ige Stammlösung in 5 % Tergitol NP40), 10 %Tergitol NP4072 h lang bei 30°C. Die Ernte der Hauptkultur erfolgte über Zentrifugation. Das Zellpellet wurde bei -20°C eingefroren und anschließend für ca. 18 h lyophilisiert.
Nach Expression des Konstruktes pYES2-ThLPAAT in Hefe konnte kein aktives Protein gereinigt werden. Auch die subzellulären Fraktionen aus den verschiedenen transgenen Zellen zeigten keine höheren LPAAT-Aktivitäten als die entsprechenden Kontrollfraktionen.
Zur Erhöhung der Löslichkeit des exprimierten Proteins wurde ein weiteres Konstrukt pDest15-GST-ThLPAAT (pDest15-Vektor von Invitrogen) über die Gateway-Reaktion erstellt. Dazu wurden nach Herstellerangaben folgende Primer synthetisiert:
5'-Primer attl ThLPAAT:
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAGCGCGTGGACGAGGGCC
3'-Primer att2ThLPAAT:
GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGTGGTGGTGGTGGTGGTGCAA- GAGGTCAGGTCGGACGTAC Mit diesen Primern wurden folgende PCR-Reaktion durchgeführt:
PCR-Standardansatz (für Taq-Polymerase)
5 μl 10 x PCR-Puffer (100 mM Tri-HCI, pH 8,3; 15 mM MgCI2, 500 mM KCI)
1 μl dNTP-Mix (10 mM dATP, dGTP, dTTP u. dCTP)
1 μl Primer 1 (30 μM)
1 μl Primer 2 (30 μM)
1 U Taq-Polymerase
50-100 ng pYES2-ThLPAAT mit Aqua dest. auf 50 μl auffüllen
PCR-Programm: 2min. 95°C
1 min. 95°C (30 Cycles)
1 min. 65°C
2 min. 72°C 10 min. 72°C Pause 4°C
PCR-Maschine: Biometra Trio Thermoblock
Das PCR-Product wurde per Gateway-Reaktion (BP-Reaktion; Invitrogen) nach Herstellerangaben in den Vektor pDONOR221 transferiert und die Sequenz durch Sequenzierung überprüft. In einem nächsten Schritt wurde die ThLPAAT-Sequenz dann durch die LR-Reaktion in den Vektor pDES15 übertragen und zur Expression in E. coli BL21 Zellen eingesetzt. Die ThLPAAT-Sequenz wurde entsprechend der Herstellerangaben (Invitrogen) an den offenen Leserahmen der im Plasmid codierten Glutathion-S-Transferase (GST) angehängt. Dadurch konnte ein Fusionsprotein aus GST und ThLPAAT erzeugt werden.
Nach Expression unter Standardbedingungen in E. coli konnte exprimiertes Protein nachgewiesen werden (Fig. 21 A) und dieses über eine Glutathion-Säule gereinigt werden.
Das gereinigte Fusionsprotein zeigte LPAAT Aktivität, wie in Fig. 21 B gezeigt. Die höchste Aktivität konnte dabei für DHA-CoA (22:6) erhalten werden, was eine Nutzung dieser Acyltransferase zur Herstellung von PUFA ermöglicht.
Figur 21 A zeigt die Westem-Blot-Analysen der in E. coli als Fusionsprotein (LPAAT- FP) mit N-terminalem GST- und C-terminalem His-tag exprimierten Thraustochytrium- LPAAT (Spuren E: 7 μg lösliche Proteinfraktion, Spur M: Größenstandard). Figur 21 B zeigt die Acyl-CoA-Spezifität der als GST-Fusionsprotein exprimierten Thrausto- chytrium-LP AT in E. coli. Die Enzymtests wurden mit 0,4 μg löslicher Proteinf ralction in Gegenwart von 100 mM Tricine-NaOH (pH 8,2), 30 μM 1-Oleoyl-[U-14C]glycerin-3- phosphat und steigenden Konzentrationen der angegebenen Thioester ermittelt. Beispiel 15: Expression von Shewanella-LPAAT
Zur Klonierung eines LPAAT-Gens aus dem prokaryoten Organismus Shewanella wurde die genomische DNA aus Shewanella hanedai isoliert, partiell mit Sau3a verdaut und in den Veictor pUC18 ligiert. Diese genomische Bank wurde mittels PCR unter Verwendung verschiedener Primerkombinationen auf LPAÄT-Gene abgesucht. Mit dieser Methode ist es gelungen, einen 1486 bp langen Klon zu identifizieren, dessen offener Leserahmen ein 25,2 kDa LPAAT-Protein kodiert. Die ShLPAAT-Sequenz wurde gemäß Herstellerangaben in den Vektor pQE70 (Qiagen) eingebracht. Die so entstandenen Plasmid pQE70-Sh und pQE70-ShHis sowie der Leervektor pQE70 wurden in E. coli BL21 Zellen transformiert und bei 10 °C exprimiert (Figur 22 A). Nur bei dieser Temperatur konnte aktives Protein erhalten werden (Figur 22 B). Für die weiteren Versuche wurden dazu die Membranfraktionen verwendet. Diese Fraktion zeigten mit beiden Expressionsformen hohe Aktivität gegenüber dem Einbau von DHA- CoA (22:6-CoA). Die hohe Einbaurate gegenüber PUFA Acyl-CoA-Resten ist für die Verwendung zur Herstellung von PUFA notwendig.
Figur 22 A: zeigt die Western-Blot-Analyse der in E coli als Fusionsprotein mit C- terminalen His-tag exprimierten Shewanella-LPAAT. (Spur E: 7 μg Einschlusskörperfraktion, Spur F: 7 μg Membranfraktion, Spur M: Größenstandard). Figur 22 B: gibt die funktionale Expression der Shewanella-LPAAT in E. coli. Enzymtests wieder. Die Assays wurden mit Extrakten (1 μg) aus E coli, die den Leervektor (pQE70) oder ein Shewanella-Konstrukt ohne (pQE-Sh) bzw. mit His-Tag-Sequenz am 3'-Ende (pQE- ShHis) enthielten, in Gegenwart von 30 μM 1-Oleoyl-[U-14C]glycerin-3-phosphat und 30μM der angegebenen Thioster durchgeführt.
Beispiel 16: Expression von Mortierella LPAAT (MaLPAAT, MaB4) in Hefe Die MaLPAAT-cDNA wurde über PCR mit den angegebenen Primern MaLPAAT2.1 amplifiziert, das PCR Produkt in den Vektor pENTR-SD-D-TOPO (Invitrogen, Carlsbad, USA) nach Herstellerangaben kloniert und in E. coli XL1 blue transformiert. Aus dem so entstandenen Vektor pENTR-SD-D-MaLPAAT wurde über Gateway-Reaktion nach Herstellerangaben (Invitrogen, Carlsbad, USA) das MaLPAAT Fragment in den Vektor pYES54Dest transferiert, resultierend in dem Vektor pYES52Dest-MaLPAAT. PY- ES52Dest-MaLPAAT wurde mit Hilfe der LiAc-Methode in S. cerevisiae INCSd (Invitrogen, Carlsbad, USA) transformiert.
Hefezellen, die mit dem Plasmid pYES52Dest-MaLPAAT transformiert wurden, wurden folgendermaßen analysiert: Hefekolonien, die auf Minimalmedium ohne Uracil nach der Transformation wachsen konnten, wurden erneut auf Minimalmedium ohne Uracil ausgestrichen und dann auf flüssigem Minimalmedium bis zu einer OD600 von 0,8 gezogen. Aus dieser Vorkultur wurde dann die Hauptkultur inokuliert, die neben dem Minimalmedium noch 2 % (w/v) Galaktose sowie 250 μM der Fettsäuren beinhaltet. Nach 24 h Inkubation der Haupt- kultur bei 30 °C wurden die Zellen durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHC03, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methonolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHC03, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na2S04 getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromato- graphen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC- Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°G mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.
Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).
Die Methodik ist zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581 -1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218 beschrieben. In Figur 23 sind die Ergebnisse der Fütterungsversuche mit den Hefezellen, die das Plasmid pYES52Dest-MaLPAAT (MaB4_AT) enthalten, gezeigt. In Fig. 23, A/B wurden die Hefe-Kulturen mit Linolsäure (18:2 Δ9,12) gefüttert. Im Vergleich zu der Kontroll- Kultur (Fig. 23, A) zeigten die Hefezellen mit der MaLPAAT deutlich höhere Umsetzung (4fach erhöht) von 18:2 zu γ-Linolensäure (18:3 Δ6,9,12), sowie eine 3,5fache Erhöhung der aus 18:2 elongierten Fettsäure 20:2 Δ11 ,14. Entsprechend konnte bei der Fütterung mit Linolensäure (18:3 Δ9,12,15) eine deutlich höhere Umsetzung zu Stearidonsäure (18:4 Δ6,9,12,15) und iso-Arachidonsäure (20:4 Δ8,11,14,17) im Vergleich zu den Kontrollen beobachtet werden (Figur 24).
Neben dieser Aktivität konnte in beiden Fütterungsexperimenten eine verstärkte Umsetzung von 16:1 Δ9 (endogene Fettsäure in Hefe) zu cis-Vakzensäure (18:1 Δ11) beobachtet werden.
Figur 25 und Figur 26 zeigen, dass die beobachteten erhöhten Umsetzungen der Substrate durch die Desaturase und Elongase auch zu einer Erhöhung der polyungesättigten Fettsäuren in den Neutrallipid (Öl) führt. Nach Fütterung der Hefen mit Linol- bzw. Linolensäure wurden die Hefezellen in Chloroform:Methanol (2:1) extrahiert und auf eine Silica-Dünnschichtplatte (Machery&Nagel, Düren) aufgetragen. Die Dünnschichtplatte wurde in einer Kammer mit Chloroform-Methanol-H20 (65:25:4) für 45 min inkubiert. Die Neutrallipide (Triacylglyceride) wandern dabei mit der Lösungsmittelfront. Nach Ende der Inkubation wurden die Neutrallipide von der Platte abge- kratzt, mit Chloroform: Methanol extrahiert und durch Gas-Chromatographie analysiert. Deutlich kann die Erhöhung des Umsatzes an PUFA's, die in den Gesamtextrakten beobachtet wurde, auch in den Neutrallipiden verfolgt werden. Für die Fütterung mit Linolsäure (Fig. 25 A und B) konnte eine 2fache Steigerung der Umsetzung von Linolsäure zu γ-Linolensäure (18:3 Δ6,9,12) und eine 3fache Erhöhung des Gehalts an 20:2 Δ9,12 beobachtet werden. Bei der Fütterung mit Linolensäure (Fig. 26, C und D) wurden ähnliche Werte erhalten (Umsetzung von 18:3 zu 18:43fach, von 18:3 zu 20:3 3fach).
Damit konnte ge∑eigt werden, dass die Erhöhung des Gehaltes an PUFA durch die MaLPAAT zu einer Erhöhung der PUFAs im Öl (Neutrallipde) der Hefen führt. Beispiel 16: Plasmide für die Pflanzentransformation
Zur Pflanzentransformation können binäre Vektoren, wie pBinAR verwendet werden (Höfgen und Willmitzer (1990) Plant Science 66: 5221-230). Die Konstruktion der binären Vektoren kann durch Ligation der cDNA in Sense- oder Antisense-Orientierung in T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzenpromotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA.
Die gewebespezifische Expression läßt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Beispielsweise kann die samenspezifische Expression erreicht werden, indem der Napin- oder der LeB4- oder der USP-Promotor 5' der cDNA einkloniert wird. Auch jedes andere samenspezifische Promotorelement kann verwen- det werden. Zur konstitutiven Expression in der ganzen Pflanzen läßt sich der CaMV- 35S-Promotor verwenden. Das exprimierte Protein kann unter Verwendung eines Signalpeptids, beispielsweise für Piastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode (1996) Crit. Rev. Plant Sei. 15: 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA ein- kloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.
Beispiel 17: Transformation von Agrobacterium
Die Agrobacterium-vermittelte RIanzentransformation kann z.B. unter Verwendung des GV3101- (pMP90-) (Koncz und Schell (1986) Mol. Gen. Genet. 204: 383-396) oder LBA4404- (Clontech) Agrobacterium tumefaciens-Stamms durchgeführt werden. Die Transformation kann durch Standard-Transformationstechniken durchgeführt werden (Debiaere et al. (1984) Nucl. Acids. Res. 13: 4777-4788).
Beispiel 18: Pflanzentransformation und Expression von PUFA-spezifischen Acyltransferasen in Rlanzen
Die Expression von LCPUFA-spezifischen Acyltransferasen in transgenen Pflanzen ist vorteilhaft, um den LCPUFA-Gehalt in diesen Pflanzen zu erhöhen. Dazu wurden die erfindungsgemäßen Acyltransferase-cDNAs in binäre Vektoren kloniert und über Agrobacterium-vermittelten DNA-Transfer in Arabidopsis thaliana, Nicotiana tabacum, Brassica napus und Linum usitatissimum übertragen. Die Expression der Acyltrans- ferase cDNA stand dabei unter der Kontrolle des konstitutiven CaMV 35 S-Promotors bzw. des samenspezifischen USP-Promotors.
Besonders bevorzugt sind hierbei transgene Pflanzen, die bereits die für Synthese von LCPUFAs notwendigen Desaturasen und Elongasen exprimieren und geringe Mengen dieser LCPUFAs herstellen.
Als Expressionsvektoren wurden der Vektor pBinAR (Höfgen und Willmitzer, Plant Science, 66, 1990: 221 - 230) b∑w. das pBinAR Derivat pBinAR-USP, bei dem der CaMV 35 S-Promotor gegen den USP-Promotor aus V. faba ausgetauscht war, verwendet. Ebenfalls verwendet wurden die Vektoren pGPTV und pGPTV-USP. Zur Um- klonierung mußte die CalDes-cDNA aus dem Vektor pGEM-T ausgeschnitten und in pBinAR bzw. pBinAR-USP kloniert werden. Ein weiterer verwendeter binärer Vektor war pSUN.
Die entstandenen binären Vektoren mit Acyltransferasegenen wurden in Agrobacterium tumefaciens transformiert (Höfgen und Willmitzer, Nucl. Acids Res., 16, 1988: 9877). Die Transformation von A. thaliana erfolgte mittels "floral dip" (Clough und Bent, Plant Journal, 16, 1998: 735 - 743), die von N. tabacum über Cokultivierung von Tabakblattstückchen mit transformierten A. tumefaciens Zellen, die von Lein und Raps durch Cokultivierung von Hypokotylstücken mit transformierten A. tumefaciens Zellen.
Die Expression der Acyltransferase-Gene in transgenen Arabidopsis-, Tabak-, Raps- und Leinpflanzen wurde über Northern-Blot Analyse untersucht. Ausgewählte Pflanzen wurden auf ihren Gehalt an Punicinsäure bzw. anderen konjugierten Fettsäuren wie CLA im Samenöl untersucht.
Analog zum USP-Promotor kann auch der Napin-Promotor verwendet werden, um eine samenspezifische Expression von PuFADX und PuFAD12 zu erreichen. Die Agrobacterium-vermittelte RIanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt werden (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect, Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Mole- cular Biology and Biotechnology, B. Raton: CRC Press, 1993, 360 S., ISBN 0-8493- 5164-2).
Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell Report 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika für die Agro- bacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacteriumstamm ab. Die Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als selektierbarem Rlanzenmarker durchgeführt. Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) läßt sich unter Verwendung von beispielsweise einer von Mlynarova et al. (1994) Plant Cell Report 13: 282-285 beschriebenen Technik durchführen.
Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-00424047 (Pioneer Hi-Bred International) oder in EP-A-0 0397687, US 5,376,543, us 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden. Die Pflanzentransformafion unter Verwendung von Teilchenbeschuss, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser- Technik ist beispielsweise beschrieben von Freeling und Walbot "The maize hand- book" (1993) ISBN 3-540-97826-7, Springer Verlag New York). Beispiel 19: Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus
Die Aktivität eines rekombinanten Genproduktes im transformierten Wirtsorganismus wurde auf der Transkriptions- und/oder der Translationsebene gemessen.
Ein geeignetes Verfahren zur Bestimmung der Menge an Transkription des Gens (ein Hinweis auf die Menge an RNA, die für die Translation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northem-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, oder den oben erwähnten Beispielteil) wobei ein Primer, der so gestaltet ist, dass er an das Gen von Interesse bindet, mit einer nachweisbaren Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so dass, wenn die
Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen anzeigt. Diese Information zeigt den Grad der Transkription des trans- formierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E.R., et al. (1992) Mol. Microbiol. 6:317-326 beschriebene, präpariert werden.
Northern-Hybridisierung: Für die RNA-Hybridisierung wurden 20 μg Gesamt-RNA oder 1 μg poly(A)+-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1 ,25% unter Verwendung von Formaldehyd, wie beschrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 x SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridi- sierungspuffer (10% Dextransulfat Gew.Λ/ol., 1 M NaCI, 1 % SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Röche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung unter Verwendung von alpha-32P-dCTP (Amersham, Braunschweig, Deutschland). Die Hybridisierung wurde nach Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 X SSC und zweimal für 30 min unter Verwendung von 1 X SSC, 1 % SDS, bei 68°C durchgeführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 4 Stunden bis zu 3 Tagen durchgeführt. Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Profein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). Bei diesem Verfahren werden die zellulären Gesamtproteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitro- Zellulose, übertragen und mit einer
Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bindet, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolori- metrischen Markierung versehen, die sich leicht nachweisen läßt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.
Beispiel 20: Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes
Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs- Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyelopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S.443-613, VCH: Weinheim (1985); Fallon, A., et al.,
(1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Bio chemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3,
Kapitel III:
"Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al.
(1988) Bioseparations: downstream proeessing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyelopedia of Industrial Chemistry, Bd. B3; Kapitel 11 , S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). Neben den oben erwähnten Verfahren werden Rlanzenlipide aus Rlanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sei. USA 96 (22) :12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, Williarn W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) -16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN. Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, 10 S. 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.
Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacyl- giycerin; TLC, Dünnschichtchromatographie). Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl. : Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie- Verfahren, Lipide 33:343-353).
Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei I00°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von
Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, GP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.
Bei Fettsäuren, für die keine Standards verfügbar sind, muss die Identität über Derivatisierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise muss die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt werden.
Äquivalente Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Claims

Patentansprüche
1. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in einem
Organismus, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Sequenz, die für ein Polypeptid mit einer Lysophosphatid- säure Acyltransferase-Aktivität codiert; oder b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Sequenz, die für ein Polypeptid mit einer Glycerin-3-phosphat Acyltransferase-Aktivität codiert; oder c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Sequenz, die für ein Polypeptid mit einer Diacylglycerin Acyltransferase- Aktivität codiert; oder d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Sequenz, die für ein Polypeptid mit einer Lecithin Cholesterin Acyltransferase-Aktivität codiert; oder e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6,
SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34 oder SEQ ID NO: 36 enthaltenden codierenden Sequenz ableiten lässt, oder f) Einbringen mindestens eines Derivates der in SEQ ID NO: 1 ,
SEQ ID NO 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO 9, SEQ ID NO: 11 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO 16, SEQ ID NO 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO 24, SEQ ID NO 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 3322,, SSEEQQ IIDD NNOO: 34 oder SEQ ID NO: 36 dargestellten Nukleinsäuresequenz in den Organismus, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10,
26 Fig/74 Seq SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 - oder SEQ ID NO: 37 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2,
SEQ ID NO 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29,
SEQ ID NO 31, SEQ ID NO: 33, SEQ ID NO: 35 oder SEQ ID NO: 37 aufweisen und eine äquivalente Lysophosphatidsäure Acyltransferase-
Aktivität, Glycerin-3-phosphat Acyltransferase-Aktivität, Diacylglycerin Acyltransferase-Aktivität oder Lecithin Cholesterin Acyltransferase-Aktivität aufweisen, und g) kultivieren und ernten des Organismus.
2. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach Anspruch 1 , dadurch gekennzeichnet, dass zusätzlich zu den unter (a) bis (f) genannten Nukleinsauresequenzen weitere Nukleinsauresequenzen in den Organismus eingebracht wurden, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-
Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure- Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure- Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid- Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) codieren.
3. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich zu den unter (a) bis (f) genannten Nukleinsauresequenzen weitere Nukleinsauresequenzen in den Organismus eingebracht wurden, die für Polypeptide codieren ausgewählt aus der Gruppe Acyl-CoA:Lysophospholipid-Acyltransferase, Δ-4-Desaturase, Δ-5-Desaturase,
Δ-6-Desaturase, Δ-8-Desatuase, Δ-9-Desaturase, Δ-12-Desaturase, Δ-5-Elon- gase, Δ-6-Elongase oder Δ-9-Elongase.
4. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass es sich bei den hergestellten mehrfach ungesättigten Fettsäuren um Cι8-, C20-, C^- oder C24-Fettsäuren handelt.
5. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die mehrfach ungesättigten Fettsäuren aus dem Organismus in Form eines Öls, Lipids oder einer freien Fett- säure isoliert werden.
6. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den
Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass es sich bei den im Verfahren hergestellten mehrfach ungesättigten Fettsäuren um C18-, C20-, C22- oder C - Fettsäuren mit mindestens zwei Doppelbindungen im Molekül handelt.
7. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den
Ansprüchen 1 bis β, dadurch gekennzeichnet, dass im V/erfahren eine mehrfach ungesättigte Fettsäure ausgewählt aus der Gruppe Dihomo-γ-Iinolensäure, Arachidonsäure, Eisosapentaensäure, Docosapenfaensäure und Docosa- hexaensäure hergestellt wird.
8. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
9. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass der Organismus eine transgene RIanze ist.
10. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die transgene RIanze eine Ölfruchtpflanze ist.
11. Isolierte Nukleinsäuresequenz ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 , SEQ ID NO: 3,
SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten gene- tischen Codes von der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4,
SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 ,
SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 oder SEQ ID NO: 20 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 oder SEQ ID NO: 21 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 oder SEQ ID NO: 21 aufweisen und eine Lysophosphatidsäure Acyltransferase-Aktivität aufweisen.
12. Isolierte Nukleinsäuresequenz ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 22, SEQ ID NO: 24 oder SEQ ID NO: 26 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in
SEQ ID NO: 23, SEQ ID NO: 25 oder SEQ ID NO: 27 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 23, SEQ ID NO: 25 oder SEQ ID NO: 27 aufweisen und eine Glycerin-3-phosphat Acyltransferase-Aktivität aufweisen.
13. Isolierte Nukleinsäuresequenz ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in
SEQ ID NO: 29, SEQ ID NO: 31 oder SEQ ID NO: 33 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäure- ebene mit SEQ ID NO: 29, SEQ ID NO: 31 oder SEQ ID NO: 33 aufweisen und eine Diacylglycerin Acyltransferase-Aktivität aufweisen.
14. Isolierte Nukleinsäuresequenz ausgewählt aus der Gruppe: a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Sequenz, b) Nukleinsauresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 34 oder SEQ ID NO: 36 enthaltenden codierenden Sequenz ableiten lassen c) Derivate der in SEQ ID NO: 34 oder SEQ ID NO: 36 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 35 oder SEQ ID NO: 37 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 35 oder SEQ ID NO: 37 aufweisen und eine Lecithin Cholesterin Acyltransferase-Aktivität aufweisen.
15. Isolierte Nukleinsäuresequenz nach einem der Ansprüche 11 bis 14, wobei die Sequenz aus einem Eukaryont stammt.
16. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 11 bis 14 codiert wird.
17. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 11 bis 14, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
18. Genkonstrukt nach Anspruch 17, dadurch gekennzeichnet, dass das Nuklein- säurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl - carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl- Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure- Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n),
Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure- Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid- Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n).
19. Genkonstrukt nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder
Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Acyl-CoA: Lyso- phospholipid-Acyltransferase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-8-Desatuase, Δ-9-Desaturase, Δ-12-Desaturase, Δ-5-Elongase, Δ-6-Elongase oder Δ-9-Elongase.
20. Veictor, enthaltend eine Nukleinsäure nach den Ansprüchen 11 bis 14 oder ein Genkonstrukt nach den Ansprüchen 17 bis 19.
21. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 11 bis 14, ein Genkonstrukt nach den Ansprüchen 17 bis 19 oder einen Veictor nach Anspruch 20.
22. Transgener nicht-humaner Organismus nach Anspruch 21 , wobei der
Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
23. Transgener nicht-humaner Organismus nach Anspruch 21 oder 22, wobei der Organismus eine Pflanze ist.
24. Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 1 bis 10.
25. Öl-, Lipid- oder Fettsäure∑usammensetzung, die mehrfach ungesättigter Fettsäuren hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10 umfasst und von transgenen Rlanzen stammt.
26. Verwendung von Öl, Lipide oder Fettsäuren hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10 oder Öl-, Lipid- oder Fettsäurezusammen- Setzung gemäß Anspruch 25 in Futter, Nahrungsmitteln, Kosmetika oder
Pharmazeutika.
PCT/EP2004/003224 2003-03-31 2004-03-26 Neue pflanzliche acyltransferasen spezifisch für langkettige mehrfach ungesättigte fettsäuren WO2004087902A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES04723591T ES2421138T3 (es) 2003-03-31 2004-03-26 Nuevas aciltransferasas vegetales específicas para ácidos grasos poliinsaturados de cadena larga
EP04723591A EP1613746B1 (de) 2003-03-31 2004-03-26 Neue pflanzliche acyltransferasen spezifisch für langkettige, mehrfach ungesättigte fettsäuren
CA2520795A CA2520795C (en) 2003-03-31 2004-03-26 Novel plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
AU2004225838A AU2004225838B2 (en) 2003-03-31 2004-03-26 Novel plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
US10/552,013 US7855321B2 (en) 2003-03-31 2004-03-26 Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
AU2010200180A AU2010200180B2 (en) 2003-03-31 2010-01-18 Novel plant acyltransferases specific for long-chain polyunsaturated fatty acids
US12/844,938 US8354569B2 (en) 2003-03-31 2010-07-28 Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
US13/707,068 US20130084611A1 (en) 2003-03-31 2012-12-06 Novel Plant Acyltransferases Specific for Long-Chained, Multiply Unsaturated Fatty Acids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10314759 2003-03-31
DE10314759.4 2003-03-31
DE10348996.7 2003-10-17
DE10348996 2003-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10552013 A-371-Of-International 2004-03-26
US12/844,938 Division US8354569B2 (en) 2003-03-31 2010-07-28 Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids

Publications (2)

Publication Number Publication Date
WO2004087902A2 true WO2004087902A2 (de) 2004-10-14
WO2004087902A3 WO2004087902A3 (de) 2005-03-03

Family

ID=33132668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003224 WO2004087902A2 (de) 2003-03-31 2004-03-26 Neue pflanzliche acyltransferasen spezifisch für langkettige mehrfach ungesättigte fettsäuren

Country Status (6)

Country Link
US (3) US7855321B2 (de)
EP (4) EP1613746B1 (de)
AU (5) AU2004225838B2 (de)
CA (2) CA2520795C (de)
ES (1) ES2421138T3 (de)
WO (1) WO2004087902A2 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069936A2 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
US7189559B2 (en) 2004-11-04 2007-03-13 E. I. Du Pont De Nemours And Company Mortierella alpina lysophosphatidic acid acyltransferase homolog for alteration of polyunsaturated fatty acids and oil content in oleaginous organisms
US7192762B2 (en) 2004-11-04 2007-03-20 E. I. Du Pont De Nemours And Company Mortierella alpina glycerol-3-phosphate o-acyltransferase for alteration of polyunsaturated fatty acids and oil content in oleaginous organisms
EP1809756A2 (de) * 2004-11-04 2007-07-25 E.I. Dupont De Nemours And Company Docosahexaensäure-produzierende stämme von yarrowia lipolytica
WO2007136876A2 (en) * 2006-05-17 2007-11-29 E. I. Du Pont De Nemours And Company Delta-5 desaturase from peridinium sp. and its use in making polyunsaturated fatty acids
WO2008156026A1 (ja) 2007-06-18 2008-12-24 Suntory Holdings Limited グリセロール-3-リン酸アシル基転移酵素(gpat)ホモログとその利用
WO2010023202A2 (en) 2008-08-26 2010-03-04 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
EP2182071A1 (de) * 2007-07-23 2010-05-05 Suntory Holdings Limited Fettsäurezusammensetzung mit neuem fettsäuregehalt
WO2010110375A1 (ja) 2009-03-26 2010-09-30 サントリーホールディングス株式会社 新規なリゾリン脂質アシル基転移酵素
WO2010147900A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company IMPROVEMENT OF LONG CHAIN OMEGA-3 AND OMEGA-6 POLYUNSATURATED FATTY ACID BIOSYNTHESIS BY EXPRESSION OF ACYL-CoA LYSOPHOSPHOLIPID ACYLTRANSFERASES
WO2010147904A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company Improved optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
WO2010147907A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica
US7879591B2 (en) 2004-11-04 2011-02-01 E.I. Du Pont De Nemours And Company High eicosapentaenoic acid producing strains of Yarrowia lipolytica
WO2011023800A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
WO2011034199A1 (ja) 2009-09-18 2011-03-24 サントリーホールディングス株式会社 グリセロール-3-リン酸アシル基転移酵素
WO2011096481A1 (ja) 2010-02-03 2011-08-11 サントリーホールディングス株式会社 グリセロール-3-リン酸アシル基転移酵素ホモログとその利用
WO2011161093A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases and uses therof in fatty acid production
WO2012027689A1 (en) 2010-08-26 2012-03-01 E. I. Du Pont De Nemours And Company Recombinant microbial host cells for high eicosapentaenoic acid production
RU2469092C2 (ru) * 2006-05-17 2012-12-10 Е.И.Дюпон Де Немур Энд Компани Дельта-5-десатураза и ее применение для получения полиненасыщенных жирных кислот
US8524485B2 (en) 2009-06-16 2013-09-03 E I Du Pont De Nemours And Company Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases
WO2013192007A1 (en) 2012-06-19 2013-12-27 E. I. Du Pont De Nemours And Company MUTANT ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
EP2821492A2 (de) 2009-05-13 2015-01-07 BASF Plant Science Company GmbH Acyltransferasen und Verwendungen davon zur Fettsäureherstellung
EP2166089B1 (de) 2003-08-01 2015-07-01 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
WO2016075327A2 (en) 2014-11-14 2016-05-19 Basf Plant Science Company Gmbh Production of pufas in plants
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566583B1 (en) 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
US7247461B2 (en) 1999-01-14 2007-07-24 Martek Biosciences Corporation Nucleic acid molecule encoding ORFA of a PUFA polyketide synthase system and uses thereof
US7217856B2 (en) 1999-01-14 2007-05-15 Martek Biosciences Corporation PUFA polyketide synthase systems and uses thereof
US8003772B2 (en) 1999-01-14 2011-08-23 Martek Biosciences Corporation Chimeric PUFA polyketide synthase systems and uses thereof
US7211418B2 (en) 1999-01-14 2007-05-01 Martek Biosciences Corporation PUFA polyketide synthase systems and uses thereof
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
ES2421440T3 (es) 2004-02-27 2013-09-02 Basf Plant Science Gmbh Método para preparar ácidos grasos poliinsaturados en plantas transgénicas
AU2005217080B2 (en) 2004-02-27 2011-02-24 Basf Plant Science Gmbh Method for producing unsaturated omega-3 fatty acids in transgenic organisms
ES2529572T3 (es) 2004-04-22 2015-02-23 Commonwealth Scientific And Industrial Research Organisation Síntesis de ácidos grasos poliinsaturados de cadena larga por células recombinantes
CA2563875C (en) 2004-04-22 2015-06-30 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
AR059376A1 (es) 2006-02-21 2008-03-26 Basf Plant Science Gmbh Procedimiento para la produccion de acidos grasos poliinsaturados
AU2007226511A1 (en) 2006-03-15 2007-09-20 Dsm Ip Assets B.V. Plant seed oils containing polyunsaturated fatty acids
CN101578363A (zh) 2006-08-29 2009-11-11 联邦科学技术研究组织 脂肪酸的合成
BRPI0720219A2 (pt) 2006-12-08 2013-12-24 Univ Iowa State Res Found Inc Genes de planta envolvidos em absorção e metabolismo de nitrato
JP5101894B2 (ja) * 2007-01-15 2012-12-19 サントリーホールディングス株式会社 高度不飽和脂肪酸及びこれを含有する脂質の製造方法
EP2169055B1 (de) 2007-05-25 2015-04-01 Suntory Holdings Limited Neues lysophosphatidat-acyltransferase-gen
CA2717940C (en) * 2008-03-26 2019-08-13 Zhifu Zheng Algal glycerol-3-phosphate acyltransferase
US8809559B2 (en) 2008-11-18 2014-08-19 Commonwelath Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
EP3192871B1 (de) 2009-03-19 2019-01-23 DSM IP Assets B.V. Nukleinsäuremoleküle und polypeptide aus pufa-synthasen, zusammensetzungen und verfahren zur herstellung und verwendung davon
US8951762B2 (en) 2011-07-27 2015-02-10 Iowa State University Research Foundation, Inc. Materials and methods for using an acyl—acyl carrier protein thioesterase and mutants and chimeras thereof in fatty acid synthesis
US9399768B2 (en) 2011-07-27 2016-07-26 Iowa State University Research Foundation, Inc. Materials and methods for using an acyl-acyl carrier protein thioesterase and mutants and chimeras thereof in fatty acid synthesis
US9096834B2 (en) * 2012-02-24 2015-08-04 Exxonmobil Research And Engineering Company Recombinant microorganisms comprising thioesterase and lysophosphatidic acid acyltransferase genes for fatty acid production
PL2861059T3 (pl) 2012-06-15 2017-10-31 Commw Scient Ind Res Org Wytwarzanie długołańcuchowych wielonienasyconych kwasów tłuszczowych w komórkach roślinnych
CN104718282A (zh) 2012-08-10 2015-06-17 Opx生物工艺学公司 用于生产脂肪酸和脂肪酸衍生产物的微生物及方法
JP2016502852A (ja) * 2012-12-21 2016-02-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 乾燥細胞重量で少なくとも28%のエイコサペンタエン酸を産生する組換え微生物細胞
WO2014146026A1 (en) 2013-03-15 2014-09-18 Opx Biotechnologies, Inc. Bioproduction of chemicals
US11408013B2 (en) 2013-07-19 2022-08-09 Cargill, Incorporated Microorganisms and methods for the production of fatty acids and fatty acid derived products
CN106795483A (zh) 2013-07-19 2017-05-31 嘉吉公司 用于生产脂肪酸和脂肪酸衍生产物的微生物及方法
US10351868B2 (en) 2013-08-28 2019-07-16 Brookhaven Science Associates, Llc Engineering cyclopropane fatty acid accumulation in plants
KR102535223B1 (ko) 2013-12-18 2023-05-30 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 장쇄 다중불포화 지방산을 포함하는 지질
CN105219789B (zh) 2014-06-27 2023-04-07 联邦科学技术研究组织 包含二十二碳五烯酸的提取的植物脂质
EP2993228B1 (de) 2014-09-02 2019-10-09 Cargill, Incorporated Herstellung von fettsäureestern
WO2018144701A2 (en) 2017-02-02 2018-08-09 Cargill Incorporated Genetically modified cells that produce c6-c10 fatty acid derivatives
CN108384798B (zh) * 2018-02-13 2020-12-29 江南大学 一种利用根癌农杆菌转化高山被孢霉菌丝的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018889A2 (en) * 1998-09-25 2000-04-06 Calgene Llc Sequenzes of putative plant acyltransferases
WO2001059128A2 (de) * 2000-02-09 2001-08-16 Basf Aktiengesellschaft Neues elongasegen und verfahren zur herstellung mehrfach ungesättigter fettsäuren
WO2002072742A1 (en) * 2001-03-09 2002-09-19 Societe Des Produits Nestle S.A. Oil containing one or more long-chain polyunsaturated fatty acids derived from biomass, process for preparing it, foodstuff, or nutritional, cosmetic or pharmaceutical composition containing it

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352605A (en) 1983-01-17 1994-10-04 Monsanto Company Chimeric genes for transforming plant cells using viral promoters
JPH0714349B2 (ja) 1983-01-17 1995-02-22 モンサント カンパニ− 植物細胞での発現に適したキメラ遺伝子
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
US5420034A (en) 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
DK162399C (da) 1986-01-28 1992-03-23 Danisco Fremgangsmaade til ekspression af gener i baelgplanteceller, dna-fragment, rekombineret dna-fragment samt plasmid til brug ved udoevelsen af fremgangsmaaden
US4962028A (en) 1986-07-09 1990-10-09 Dna Plant Technology Corporation Plant promotors
US5110728A (en) 1986-07-31 1992-05-05 Calgene, Inc. Acyl carrier protein - DNA sequence and synthesis
JPH04501201A (ja) 1987-12-21 1992-03-05 ジ・アップジョン・カンパニー 発芽植物種子類のアグロバクテリウム媒介形質転換
US5614395A (en) 1988-03-08 1997-03-25 Ciba-Geigy Corporation Chemically regulatable and anti-pathogenic DNA sequences and uses thereof
NZ228320A (en) 1988-03-29 1991-06-25 Du Pont Nucleic acid promoter fragments of the promoter region homologous to the em gene of wheat, dna constructs therefrom and plants thereof
CA1341467C (en) 1988-07-29 2004-12-07 John C. Rogers Producing commercially valuable polypeptides with genetically transformed endosperm tissue
DE3843628A1 (de) 1988-12-21 1990-07-05 Inst Genbiologische Forschung Wundinduzierbare und kartoffelknollenspezifische transkriptionale regulation
HU218717B (hu) 1989-03-17 2000-11-28 E. I. Du Pont De Nemours And Co. Nukleinsav-termelést fokozó növényi eredetű génfragmentek és eljárás előállításukra
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
ATE205530T1 (de) 1990-03-16 2001-09-15 Calgene Llc Neue sequenzen vorzugsweise exprimiert während der frühen keimentwicklung und darauf bezogene methoden
ATE241007T1 (de) 1990-03-16 2003-06-15 Calgene Llc Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
WO1993020216A1 (en) 1991-02-22 1993-10-14 University Technologies International, Inc. Oil-body protein cis-elements as regulatory signals
AU669478B2 (en) 1991-04-09 1996-06-13 Unilever Plc Plant promoter involved in controlling lipid biosynthesis in seeds
US5614393A (en) 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
PH31293A (en) 1991-10-10 1998-07-06 Rhone Poulenc Agrochimie Production of y-linolenic acid by a delta6-desaturage.
EP0572603A1 (de) 1991-11-20 1993-12-08 Calgene, Inc. Fett Acyl-Coa: Fettalkohol O-Acyltransferasen
AU675923B2 (en) 1991-12-04 1997-02-27 E.I. Du Pont De Nemours And Company Fatty acid desaturase genes from plants
CA2084348A1 (en) 1991-12-31 1993-07-01 David F. Hildebrand Fatty acid alteration by a d9 desaturase in transgenic plant tissue
DE4208050A1 (de) 1992-03-13 1993-09-23 Bayer Ag Azolylmethyl-fluorcyclopropyl-derivate
CA2092069A1 (en) 1992-03-27 1993-09-28 Asako Iida An expression plasmid for seeds
EP0637339B1 (de) 1992-04-13 2001-10-31 Syngenta Limited Dna-konstruktionen und diese enthaltende pflanzen
JPH0662870A (ja) 1992-08-18 1994-03-08 Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk 大豆ホスホエノールピルビン酸カルボキシラーゼ遺伝子のプロモーター領域及び5’非翻訳領域
WO1994011516A1 (en) 1992-11-17 1994-05-26 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants
JP3134023B2 (ja) 1992-11-25 2001-02-13 株式会社東海理化電機製作所 コネクタ部付きスイッチ
GB9225845D0 (en) 1992-12-10 1993-02-03 Nickerson Biocem Ltd Modified plants
US7205457B1 (en) 1993-02-05 2007-04-17 Monsanto Technology Llc Altered linolenic and linoleic acid content in plants
GB9324707D0 (en) 1993-12-02 1994-01-19 Olsen Odd Arne Promoter
AU691550B2 (en) 1993-12-09 1998-05-21 Thomas Jefferson University Compounds and methods for site-directed mutations in eukaryotic cells
US5576198A (en) 1993-12-14 1996-11-19 Calgene, Inc. Controlled expression of transgenic constructs in plant plastids
ES2222462T3 (es) 1993-12-28 2005-02-01 Kirin Beer Kabushiki Kaisha Gen que codifica acido graso-desaturasa, vector que contiene dicho gen, planta que contiene dicho gen transferido a ella y procedimiento para crear dicha planta.
GB9403512D0 (en) 1994-02-24 1994-04-13 Olsen Odd Arne Promoter
US5910630A (en) 1994-04-06 1999-06-08 Davies; Huw Maelor Plant lysophosphatidic acid acyltransferases
US6310194B1 (en) 1994-09-26 2001-10-30 Carnegie Institution Of Washington Plant fatty acid hydroxylases
GB9421286D0 (en) 1994-10-21 1994-12-07 Danisco Promoter
GB9502468D0 (en) 1995-02-09 1995-03-29 Gene Shears Pty Ltd DNA Sequence
US5689040A (en) 1995-02-23 1997-11-18 The Regents Of The University Of California Plant promoter sequences useful for gene expression in seeds and seedlings
JP4424756B2 (ja) 1995-07-05 2010-03-03 サッポロビール株式会社 組織特異的プロモーターを用いたトランスジェニック植物およびその作出方法
CA2225652C (en) 1995-08-10 2007-11-20 Pal Maliga Nuclear-encoded transcription system in plastids of higher plants
ATE520302T1 (de) 1995-12-14 2011-09-15 Cargill Inc Pflanzen mit mutierten sequenzen, welche einen veränderten fettsäuregehalt vermitteln
EP0794250A1 (de) 1996-03-04 1997-09-10 Soremartec S.A. Isolierung und Sequenzierung des FAd2-N Gens der Haselnuss
US6300487B1 (en) * 1996-03-19 2001-10-09 Cell Therapuetics, Inc. Mammalian lysophosphatidic acid acyltransferase
DE19626564A1 (de) 1996-07-03 1998-01-08 Hoechst Ag Genetische Transformation von Ciliatenzellen durch Microcarrier-Bombardement mit DNA beladenen Goldpartikeln
US5981841A (en) 1996-08-30 1999-11-09 Monsanto Company Early seed 5' regulatory sequence
US6033883A (en) 1996-12-18 2000-03-07 Kosan Biosciences, Inc. Production of polyketides in bacteria and yeast
US5977436A (en) 1997-04-09 1999-11-02 Rhone Poulenc Agrochimie Oleosin 5' regulatory region for the modification of plant seed lipid composition
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
US5968809A (en) 1997-04-11 1999-10-19 Abbot Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
US5972664A (en) 1997-04-11 1999-10-26 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
NZ337459A (en) 1997-04-11 2000-07-28 Abbott Lab Nucleic acid construct in plants and dietary supplement
JP2002514087A (ja) 1997-05-27 2002-05-14 セル セラピューティクス インク. 哺乳類のリゾホスファチジン酸アシルトランスフェラーゼ
AU7600098A (en) 1997-05-27 1998-12-30 Icos Corporation Novel lysophosphatidic acid acyltransferase
IN1998CH01219A (en) 1997-06-04 2005-03-04 Calgene Llc Production of polyunsaturated fatty acid by expression of polyketide-like synthesis genes in plants
US6566583B1 (en) 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
CN1255541C (zh) 1997-06-05 2006-05-10 卡尔金有限责任公司 脂酰辅酶a:脂肪醇酰基转移酶
JP2002504819A (ja) 1997-06-05 2002-02-12 カルジーン エルエルシー ジアシルグリセロールトランスフェラーゼタンパク質
WO1999016890A2 (en) 1997-09-30 1999-04-08 The Regents Of The University Of California Production of proteins in plant seeds
GB9724783D0 (en) 1997-11-24 1998-01-21 Inst Arable Crops Research Novel polypeptides
TR200002503T2 (tr) 1998-03-11 2000-12-21 Novartis Ag Yeni bitki plastid promotör sekansı
AU4564399A (en) 1998-06-12 1999-12-30 Abbott Laboratories Polyunsaturated fatty acids in plants
US6555732B1 (en) 1998-09-14 2003-04-29 Pioneer Hi-Bred International, Inc. Rac-like genes and methods of use
EP1121150A4 (de) 1998-10-09 2003-06-04 Merck & Co Inc Delta-6 fettsäure desaturase
US7635798B2 (en) * 2001-08-31 2009-12-22 Dow Agrosciences, Llc Nucleic acid compositions conferring altered metabolic characteristics
DE10219203A1 (de) 2002-04-29 2003-11-13 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
BRPI0407138A (pt) * 2003-02-27 2006-01-10 Basf Plant Science Gmbh Sequência de ácido nucleico isolada, sequência de aminoácido, construção de gene, vetor, organismo transgênico não humano, processo para produzir ácidos graxos poliinsaturados, óleo, lipìdeo, ou um ácido graxo poliinsaturado ou uma fração dos mesmos, composições de óleo, de lipìdeos, ou de ácido graxo, e, uso do óleo, lipìdeos ou ácidos graxos ou de composições de óleo, de lipìdeos ou de ácido graxo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018889A2 (en) * 1998-09-25 2000-04-06 Calgene Llc Sequenzes of putative plant acyltransferases
WO2001059128A2 (de) * 2000-02-09 2001-08-16 Basf Aktiengesellschaft Neues elongasegen und verfahren zur herstellung mehrfach ungesättigter fettsäuren
WO2002072742A1 (en) * 2001-03-09 2002-09-19 Societe Des Produits Nestle S.A. Oil containing one or more long-chain polyunsaturated fatty acids derived from biomass, process for preparing it, foodstuff, or nutritional, cosmetic or pharmaceutical composition containing it

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [Online] Vicia faba putative GPAT mRNA 23. September 1998 (1998-09-23), LIU ET AL.: "Cloning and Sequencing of the cDNA (Accession No. AF090734) Coding for Glycerol-3-Phosphate Acyltransferase from Vicia faba. (PGR99-094)" XP002295954 gefunden im EBI Database accession no. AF090734 *
HOBBS D H ET AL: "Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 452, Nr. 3, 11. Juni 1999 (1999-06-11), Seiten 145-149, XP004259739 ISSN: 0014-5793 *
JAKO C ET AL: "Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, Bd. 126, Nr. 2, Juni 2001 (2001-06), Seiten 861-874, XP002242963 ISSN: 0032-0889 *
KNUTZON D S ET AL: "CLONING OF A COCONUT ENDOSPERM CDNA ENCODING A 1-ACYL-SN-GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE THAT ACCEPTS MEDIUM-CHAIN-LENGHT SUBSTRATES" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, Bd. 109, Nr. 3, 1995, Seiten 999-1006, XP000907268 ISSN: 0032-0889 in der Anmeldung erwähnt *
LASSNER M W ET AL: "LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE FROM MEADOWFOAM MEDIATES INSERTION OF ERUCIC ACID AT THE SN-2 POSITION OF TRIACYLGLYCEROL IN TRANSGENIC RAPESEED OIL" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, Bd. 109, 1995, Seiten 1389-1394, XP002003604 ISSN: 0032-0889 *
LOPEZ ALONSO D ET AL: "Plants as 'chemical factories' for the production of polyunsaturated fatty acids" BIOTECHNOLOGY ADVANCES, ELSEVIER PUBLISHING, BARKING, GB, Bd. 18, Nr. 6, Oktober 2000 (2000-10), Seiten 481-497, XP002208312 ISSN: 0734-9750 *
MCLEAN J ET AL: "CLONING AND EXPRESSION OF HUMAN LECITHIN-CHOLESTEROL ACYLTRANSFERASE CDNA" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, Bd. 83, 1. April 1986 (1986-04-01), Seiten 2335-2339, XP002008904 ISSN: 0027-8424 *
OELKERS PETER ET AL: "A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 275, Nr. 21, 26. Mai 2000 (2000-05-26), Seiten 15609-15612, XP002295953 ISSN: 0021-9258 *
ZOU ET AL: "The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, Bd. 19, Nr. 6, 1999, Seiten 645-653, XP002133607 ISSN: 0960-7412 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166089B1 (de) 2003-08-01 2015-07-01 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP1809756A4 (de) * 2004-11-04 2010-10-27 Du Pont Docosahexaensäure-produzierende stämme von yarrowia lipolytica
US7189559B2 (en) 2004-11-04 2007-03-13 E. I. Du Pont De Nemours And Company Mortierella alpina lysophosphatidic acid acyltransferase homolog for alteration of polyunsaturated fatty acids and oil content in oleaginous organisms
US7192762B2 (en) 2004-11-04 2007-03-20 E. I. Du Pont De Nemours And Company Mortierella alpina glycerol-3-phosphate o-acyltransferase for alteration of polyunsaturated fatty acids and oil content in oleaginous organisms
EP2458000A1 (de) 2004-11-04 2012-05-30 E. I. du Pont de Nemours and Company Grosse Mengen an Arachidonsäure produzierende Yarrowia lipolytica Stämme
EP1809756A2 (de) * 2004-11-04 2007-07-25 E.I. Dupont De Nemours And Company Docosahexaensäure-produzierende stämme von yarrowia lipolytica
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
US7879591B2 (en) 2004-11-04 2011-02-01 E.I. Du Pont De Nemours And Company High eicosapentaenoic acid producing strains of Yarrowia lipolytica
US7524658B2 (en) 2004-11-04 2009-04-28 E.I. Du Pont De Nemours And Company Mortierella alpina lysophosphatidic acid acyltransferase homolog for alteration of polyunsaturated fatty acids and oil content in oleaginous organisms
WO2006069936A2 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
EP2180046A1 (de) * 2004-12-23 2010-04-28 BASF Plant Science GmbH Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
US7871804B2 (en) 2004-12-23 2011-01-18 Basf Plant Science Gmbh Method for producing polyunsaturated long-chain fatty acids in transgenic organisms
WO2006069936A3 (de) * 2004-12-23 2007-03-22 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
RU2469092C2 (ru) * 2006-05-17 2012-12-10 Е.И.Дюпон Де Немур Энд Компани Дельта-5-десатураза и ее применение для получения полиненасыщенных жирных кислот
US8049070B2 (en) 2006-05-17 2011-11-01 E.I. Du Pont De Nemours And Company Delta-5 desaturase and its use in making polyunsaturated fatty acids
WO2007136876A3 (en) * 2006-05-17 2008-07-10 Du Pont Delta-5 desaturase from peridinium sp. and its use in making polyunsaturated fatty acids
WO2007136876A2 (en) * 2006-05-17 2007-11-29 E. I. Du Pont De Nemours And Company Delta-5 desaturase from peridinium sp. and its use in making polyunsaturated fatty acids
US8247209B2 (en) 2007-06-18 2012-08-21 Suntory Holdings Limited Glycerol-3-phosphate acyltransferase (GPAT) homologs and use thereof
WO2008156026A1 (ja) 2007-06-18 2008-12-24 Suntory Holdings Limited グリセロール-3-リン酸アシル基転移酵素(gpat)ホモログとその利用
EP2182071A4 (de) * 2007-07-23 2010-08-25 Suntory Holdings Ltd Fettsäurezusammensetzung mit neuem fettsäuregehalt
EP2182071A1 (de) * 2007-07-23 2010-05-05 Suntory Holdings Limited Fettsäurezusammensetzung mit neuem fettsäuregehalt
WO2010023202A2 (en) 2008-08-26 2010-03-04 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
DE112009002048T5 (de) 2008-08-26 2012-01-26 Basf Plant Science Gmbh Nukleinsäure, die Desaturasen kodieren, und modifiziertes Planzenöl
EP2676554A2 (de) 2009-03-26 2013-12-25 Suntory Holdings Limited Neuartige Lysophospholipid-Acyltransferase
KR20110137791A (ko) 2009-03-26 2011-12-23 산토리 홀딩스 가부시키가이샤 신규한 리소인지질 아실기 전이효소
JP5539961B2 (ja) * 2009-03-26 2014-07-02 サントリーホールディングス株式会社 新規なリゾリン脂質アシル基転移酵素
US8790906B2 (en) 2009-03-26 2014-07-29 Suntory Holdings Limited Lysophospholipid acyltransferase
EP2412804A1 (de) * 2009-03-26 2012-02-01 Suntory Holdings Limited Neue lysophospholipid-acyltransferase
CN102388137A (zh) * 2009-03-26 2012-03-21 三得利控股株式会社 新型溶血磷脂酰基转移酶
US9315835B2 (en) 2009-03-26 2016-04-19 Suntory Holdings Limited Lysophospholipid acyltransferase
KR20170002700A (ko) 2009-03-26 2017-01-06 산토리 홀딩스 가부시키가이샤 신규한 리소인지질 아실기 전이효소
EP2412804A4 (de) * 2009-03-26 2012-09-12 Suntory Holdings Ltd Neue lysophospholipid-acyltransferase
WO2010110375A1 (ja) 2009-03-26 2010-09-30 サントリーホールディングス株式会社 新規なリゾリン脂質アシル基転移酵素
EP2676554A3 (de) * 2009-03-26 2014-02-26 Suntory Holdings Limited Neuartige Lysophospholipid-Acyltransferase
EP2821492A2 (de) 2009-05-13 2015-01-07 BASF Plant Science Company GmbH Acyltransferasen und Verwendungen davon zur Fettsäureherstellung
WO2010147904A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company Improved optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
US9029122B2 (en) 2009-06-16 2015-05-12 E I Du Pont De Nemours And Company Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases
US8524485B2 (en) 2009-06-16 2013-09-03 E I Du Pont De Nemours And Company Long chain omega-3 and omega-6 polyunsaturated fatty acid biosynthesis by expression of acyl-CoA lysophospholipid acyltransferases
WO2010147907A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica
WO2010147900A1 (en) 2009-06-16 2010-12-23 E. I. Du Pont De Nemours And Company IMPROVEMENT OF LONG CHAIN OMEGA-3 AND OMEGA-6 POLYUNSATURATED FATTY ACID BIOSYNTHESIS BY EXPRESSION OF ACYL-CoA LYSOPHOSPHOLIPID ACYLTRANSFERASES
EP3418387A1 (de) 2009-08-31 2018-12-26 Basf Plant Science Company GmbH Regulatorische nukleinsäuremoleküle zur erhöhung der samenspezifischen genexpression in pflanzen zur förderung der erhöhten synthese von mehrfach ungesättigten fettsäuren
EP3121283A1 (de) 2009-08-31 2017-01-25 BASF Plant Science Company GmbH Regulatorische nukleinsäuremoleküle für erhöhte samenspezifische genexpression bei pflanzen, welche die erhöhte synthese von mehrfach ungesättigten fettsäuren unterstützen
EP3178937A1 (de) 2009-08-31 2017-06-14 BASF Plant Science Company GmbH Regulatorische nukleinsäuremoleküle zur erhöhung der samenspezifischen genexpression bei pflanzen,welche die synthese von mehrfach ungesättigten fettsäuren begünstigen
WO2011023800A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
WO2011034199A1 (ja) 2009-09-18 2011-03-24 サントリーホールディングス株式会社 グリセロール-3-リン酸アシル基転移酵素
US8980607B2 (en) 2009-09-18 2015-03-17 Suntory Holdings Limited Glycerol-3-phosphate acyl transferase
US9163291B2 (en) 2010-02-03 2015-10-20 Suntory Holdings Limited Glycerol 3-phosphate acyltransferase homologue and use thereof
WO2011096481A1 (ja) 2010-02-03 2011-08-11 サントリーホールディングス株式会社 グリセロール-3-リン酸アシル基転移酵素ホモログとその利用
WO2011161093A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases and uses therof in fatty acid production
WO2012027689A1 (en) 2010-08-26 2012-03-01 E. I. Du Pont De Nemours And Company Recombinant microbial host cells for high eicosapentaenoic acid production
US9416382B2 (en) 2012-06-19 2016-08-16 E I Du Pont De Nemours And Company Production of polyunsaturated fatty acids by coexpression of acyl-CoA:lysophosphatidylcholine acyltransferases and phospholipid:diacylglycerol acyltransferases
WO2013192002A1 (en) 2012-06-19 2013-12-27 E. I. Du Pont De Nemours And Company IMPROVED PRODUCTION OF POLYUNSATURATED FATTY ACIDS BY COEXPRESSION OF ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES AND PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASES
US9347075B2 (en) 2012-06-19 2016-05-24 E I Du Pont De Nemours And Company Nucleic acids encoding mutant acyl-CoA:lysophosphatidylcholine acyltransferases
WO2013192007A1 (en) 2012-06-19 2013-12-27 E. I. Du Pont De Nemours And Company MUTANT ACYL-CoA:LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASES
US10829775B2 (en) 2014-11-14 2020-11-10 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US10760089B2 (en) 2014-11-14 2020-09-01 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
WO2016075327A2 (en) 2014-11-14 2016-05-19 Basf Plant Science Company Gmbh Production of pufas in plants
US11033593B2 (en) 2014-11-14 2021-06-15 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
US11260095B2 (en) 2014-11-14 2022-03-01 Basf Plant Science Company Gmbh Modification of plant lipids containing PUFAs
US11484560B2 (en) 2014-11-14 2022-11-01 Basf Plant Science Company Gmbh Stabilising fatty acid compositions
US11613761B1 (en) 2014-11-14 2023-03-28 Bioriginal Food & Science Corporation Materials and methods for PUFA production, and PUFA-containing compositions
US11771728B2 (en) 2014-11-14 2023-10-03 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US11813302B2 (en) 2014-11-14 2023-11-14 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management

Also Published As

Publication number Publication date
AU2004225838B2 (en) 2009-11-05
US20130084611A1 (en) 2013-04-04
US20110023185A1 (en) 2011-01-27
AU2016203675A1 (en) 2016-06-30
EP2390313A1 (de) 2011-11-30
US7855321B2 (en) 2010-12-21
CA2520795C (en) 2015-06-23
AU2016203675B2 (en) 2018-01-18
US20060174376A1 (en) 2006-08-03
AU2010200180A1 (en) 2010-02-11
AU2004225838A1 (en) 2004-10-14
EP1613746A2 (de) 2006-01-11
CA2520795A1 (en) 2004-10-14
AU2012244303B2 (en) 2016-03-03
AU2012244304B2 (en) 2016-03-03
AU2010200180B2 (en) 2012-08-09
EP2390313B1 (de) 2016-05-11
EP2365063B1 (de) 2015-10-14
ES2421138T3 (es) 2013-08-29
WO2004087902A3 (de) 2005-03-03
EP2365063A1 (de) 2011-09-14
EP1613746B1 (de) 2013-03-06
EP3121269A1 (de) 2017-01-25
CA2868312A1 (en) 2004-10-14
US8354569B2 (en) 2013-01-15

Similar Documents

Publication Publication Date Title
EP2390313B1 (de) Neue pflanzliche Acyltransferase spezifisch für langkettige mehrfach ungesättigte Fettsäuren
EP1599582B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren
EP2180046B1 (de) Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
US7893320B2 (en) Method for producing multiple unsaturated fatty acids in plants
WO2002057465A2 (de) Verfahren zur herstellung mehrfach ungesaettigter fettsaeuren, neue biosynthesegene sowie neue pflanzliche expressionskonstrukte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2520795

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006174376

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2004225838

Country of ref document: AU

Ref document number: 10552013

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004225838

Country of ref document: AU

Date of ref document: 20040326

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004225838

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004723591

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10552013

Country of ref document: US