WO2004082817A1 - Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen - Google Patents

Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen Download PDF

Info

Publication number
WO2004082817A1
WO2004082817A1 PCT/EP2003/002996 EP0302996W WO2004082817A1 WO 2004082817 A1 WO2004082817 A1 WO 2004082817A1 EP 0302996 W EP0302996 W EP 0302996W WO 2004082817 A1 WO2004082817 A1 WO 2004082817A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing vessel
emulsion
emulsions
dispersions
dispersion
Prior art date
Application number
PCT/EP2003/002996
Other languages
English (en)
French (fr)
Inventor
Gerd Dahms
Helmut Hegmann
Original Assignee
Ifac Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33016801&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004082817(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ifac Gmbh & Co. Kg filed Critical Ifac Gmbh & Co. Kg
Priority to CA2519591A priority Critical patent/CA2519591C/en
Priority to DE20321104U priority patent/DE20321104U1/de
Priority to AU2003226694A priority patent/AU2003226694B2/en
Priority to JP2004569474A priority patent/JP4782426B2/ja
Priority to DE50305216T priority patent/DE50305216D1/de
Priority to EP03816337A priority patent/EP1606044B2/de
Priority to PCT/EP2003/002996 priority patent/WO2004082817A1/de
Priority to US10/549,700 priority patent/US7775704B2/en
Publication of WO2004082817A1 publication Critical patent/WO2004082817A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour

Definitions

  • the invention relates to a device and a method for the continuous production of emulsions or dispersions, in particular for the production of nanoemulsions.
  • Emulsions and dispersions are generally produced batchwise in stirred reactors.
  • the required amounts of the feed materials are metered into a mixing vessel and emulsified or dispersed with high stirring input.
  • high-speed stirrers are used, which allow the generation of cavitation forces.
  • high-pressure homogenization is carried out.
  • the emulsions and dispersions produced and the process are generally only checked on the finished product of the corresponding mixture batch. A continuous review of the manufacturing process is usually not possible.
  • the amount of product can only be varied to a very limited extent, since the possible batch size for a batch mixer is in a very limited range. As a rule, the minimum batch size must not be less than half the maximum batch size.
  • a batch process is also problematic with regard to sterile processing. As a rule, work is carried out in open stirred tanks, so that contamination from the outside cannot be ruled out. If work is to be carried out in the absence of air, a complex process for evacuating the mixing vessels is necessary for working under vacuum.
  • discontinuous mixing devices have to be designed large in order to be able to produce suitable product quantities. This is associated with considerable investment costs.
  • the high stirring input leads to high energy costs.
  • Large-scale manufacturing processes have so far been lacking, in particular in the production of nanoemulsions, especially solid lipid nano particles (SLN). For this reason, SLNs have so far not been able to gain widespread acceptance.
  • SLN dispersions are usually produced by high-pressure homogenization. Depending on the lipid and surfactant used, different particle shapes are obtained. A distinction is made between hot homogenization and cold homogenization. After melting the lipid and dissolving or dispersing the active ingredient, the hot homogenization is followed by dispersion in hot surfactant solution.
  • a high-pressure homogenization of this pre-emulsion is then carried out, which is then transferred into a hot O / W nanoemulsion.
  • solid lipid nanoparticles SSN
  • SSN solid lipid nanoparticles
  • the drug-lipid mixture solidifies and is then ground into microparticles.
  • the particles are then suspended in cold surfactant solution and high pressure homogenization of the particle suspension is carried out. The cavitation and shear forces that occur during high pressure homogenization are sufficiently large to break the lipid microparticles into lipid nanoparticles.
  • the pre-emulsion is usually homogenized in a piston-gap homogenizer at pressures between 200 bar and a maximum of 1500 bar in the hot state. This creates an emulsion whose lipid phase recrystallizes to SLN when cooled.
  • a piston-gap homogenizer at pressures between 200 bar and a maximum of 1500 bar in the hot state. This creates an emulsion whose lipid phase recrystallizes to SLN when cooled.
  • the SLN technology is used in particular for the application of pharmaceutical, cosmetic and / or food technology active ingredients in a solid carrier.
  • the active substance carrier can be adapted to the respective application and allows a suitable dosage and release of the active substance.
  • the SLN provide an alternative
  • the nanoparticles can contain hydrophilic or hydrophobic pharmaceutical active ingredients and can be administered orally or parenterally.
  • the matrix material used is
  • Emulsions used a solid lipid. To ensure high bio-acceptance and good in-vivo degradability, predominantly physiologically compatible lipids or
  • Lipids from physiological components such as glycerides from the body's own fatty acids are used.
  • emulsifiers or surfactants are usually used in the production.
  • a method for producing SLN dispersions is described, for example, in EP-B-0 167 825.
  • the lipid nano pellets are produced by dispersing the melted lipid with water using a high-speed stirrer.
  • the desired particle size distribution is then set by an ultrasound treatment. Stirring is usually at speeds ranging from 20 000 min: "1.
  • the object of the present invention is to provide a continuous, uncomplicated process for the preparation of emulsions and dispersions, which in particular allows the production of nanoemulsions with a controlled particle size.
  • the device and the method are intended to allow in-process / online quality control.
  • the production is to be simplified and accelerated compared to conventional batch processes. It should also be possible to produce variable amounts of emulsions or dispersions. In addition, it should be possible to work free of air.
  • a device for the continuous production of emulsions or dispersions with exclusion of air comprising a mixing vessel which is closed on all sides and which has supply and discharge pipes for the introduction and discharge of flowable substances or mixtures of substances and a stirring tool which has a stirring entry into the emulsion or dispersion without generating cavitation forces and without high pressure homogenization.
  • the object is achieved according to the invention by a process for the continuous production of emulsions and dispersions with exclusion of air, in which at least two flowable streams of at least two phases of the emulsions or dispersions are metered continuously continuously into a mixing vessel which is closed on all sides and in which they are stirred into an emulsion or dispersion are transferred, and the emulsion / dispersion is continuously discharged from the mixing vessel, the stirring being carried out without generating cavitation forces and without high-pressure homo-curing.
  • the mixing vessel is closed on all sides. This means that apart from feeds and discharges, as well as feedthroughs or feedthroughs for analytical sensors, the mixing vessel is closed. If both the feed and filling pipes are filled with flowable substances and the stirring tool and possibly analytical sensors are available, the mixing vessel is sealed against the entry of air or oxygen. This design of the mixing vessel is recorded under the expression "closed on all sides”.
  • the stirring tool allows mechanical stirring into the emulsion or dispersion without generating cavitation forces and without high pressure homogenization.
  • stirring tools In preferred stirring tools, suitable stirring elements are arranged on a stirrer shaft that is rotated.
  • the stirring tool can be a so-called
  • the housing which can be equipped with internals such as breakers, is generally used as the stator.
  • internals such as breakers
  • paddle stirrers come into consideration as stirrers, optionally with
  • Wipers can be provided.
  • kneaders and other suitable ones can be provided.
  • Stirrers such as planetary stirrers, anchor stirrers, bar stirrers, propellers, blade stirrers, dissolver disks or Intermig are used. Further suitable stirrer configurations are known to the person skilled in the art.
  • the stirring tool is operated so that the stirring entry into the emulsion or dispersion takes place without generation of cavitation forces and without high pressure homogenization.
  • u Mixing vessel may also have grinding tools such as grinding beads or balls. Suitable grinding tools are known to the person skilled in the art.
  • the mixing vessel can have any suitable geometry, as long as it permits a suitable mixing of the flowable substances or substance mixtures or the phases of the emulsions and dispersions to be produced. Suitable geometries are known to the person skilled in the art.
  • the mixing vessel preferably has a substantially cylindrical shape, the axis of the stirring tool lying in the cylinder axis and the feed and discharge pipes being arranged substantially perpendicular to the cylinder axis in the upper and lower peripheral region of the cylinder.
  • the feed and discharge pipes are thus, viewed along the cylinder axis, arranged as far apart as possible in positions along the cylinder circumference. They are arranged essentially perpendicular to the cylinder axis.
  • Deviations of ⁇ 10 °, preferably ⁇ 5 ° are possible.
  • the arrangement can be adapted to practical requirements.
  • the flowable substances or mixtures of substances are preferably introduced into the first mixing vessel separately or J-U guided.
  • the corresponding feed pipes preferably protrude somewhat into the mixing vessel. It is also possible to provide a premixing stage for the flowable substances or substance mixtures.
  • the individual components of the oil phase and the individual components of the water phase can be premixed separately. It is also possible for the oil phase and the water phase to be brought together in a premixing stage and to be introduced together into the mixing vessel.
  • the oil phase and the water phase or corresponding other phases are fed separately into the mixing vessel.
  • One or more supply and discharge pipes can be provided.
  • two or more, in particular two or three feed pipes and a discharge pipe are provided.
  • the size of the mixing vessel can be selected according to the respective practical requirements.
  • the internal volume (free volume) of the mixing vessel is preferably 2 to 70 ml, particularly preferably 3 to 50 ml, in particular 5 to 15 ml.
  • the internal volume is preferably 70 to 500 ml, particularly preferably 100 to 400 ml
  • the scale is preferably more than 500 ml, for example 500 to 50,000 ml.
  • mixing vessels with a volume of about 7 ml can be used, which have a cylindrical shape and an inner diameter of 20 mm and an inner height of 25 mm.
  • the internal volume can also be controlled by the thickness or the diameter of the rotor axis. It is also possible that configurations corresponding to an annular chamber reactor are obtained.
  • the residence times in the first mixing vessel are preferably 2 to 600 seconds, particularly preferably 4 to 100 seconds, in particular 8 to 40 seconds.
  • the invention it is possible according to the invention. to produce the desired emulsions and dispersions continuously with a mixing vessel.
  • a mixing vessel At least two mixing vessels are preferably connected in series, the discharge from the first mixing vessel being entered into the second mixing vessel and a further feed pipe being provided in the second mixing vessel.
  • the second (and subsequent) mixing vessel also has an agitator, as described. Accordingly, it is also possible to provide longer cascades of mixing vessels, the discharge of one mixing vessel being passed to the next mixing vessel and any further entries in the further mixing vessel can be entered. It is preferable to work with two or three, in particular with two mixing vessels connected in series.
  • thermocontrol can be achieved by cooling or heating jackets or by integrating the mixing vessel into an oven or a cryostat. Suitable devices for heating / cooling or tempering the mixing vessels are known to the person skilled in the art.
  • the ratio of the inflows is set in the first mixing vessel in such a way that when mixing in the first mixing vessel one works in the viscoelastic or highly viscous elastic range.
  • the viscoelastic area denotes the area in which the viscoelastic liquids show non-Newtonian liquid behavior.
  • the dependence of the viscosity of an emulsion or dispersion on the volume fraction of the disperse phase usually corresponds to an exponential function.
  • the important viscoelastic range in which work is preferably carried out according to the invention is the range in which the viscosity increases very strongly with increasing volume fraction of the disperse phase.
  • the weight ratio of the phases is preferably in a range from 1:15 to 15: 1, preferably 1: 5 to 5: 1, preferably 1: 2 to 2: 1, in particular 1: 1.5 to 1.5 : 1 selected.
  • the weight fractions of the corresponding phases are preferably in this range.
  • the process is highly viscous in the first stage and low-viscosity in the subsequent second stage.
  • the setting of a finely divided emulsion or dispersion is achieved in the first reactor, while the dilution to the final concentration of the product takes place in the second mixing vessel. Since in this case an additional amount of at least one of the phases or a further phase is entered into the second mixing vessel, the dwell time in the second mixing vessel is correspondingly shorter if both mixing vessels have the same internal volume.
  • the microemulsion obtained when the phases are mixed can be understood as a system of two interpenetrating networks, so that the microemulsion exhibits single-phase behavior.
  • At least one sensor for continuous measurement of the temperature, conductivity and / or optical properties of the emulsion or dispersion is arranged in the discharge pipes of the mixing vessels or at least one discharge pipe of a mixing vessel.
  • a corresponding sensor is usually provided in the discharge pipe near the mixing vessel.
  • Suitable sensors for determining the electrical conductivity, the temperature or optical properties such as turbidity are known to the person skilled in the art.
  • a sight glass can also be provided, through which an optical or visual control of the clarity or turbidity of the emulsion / dispersion is possible.
  • Machine-assisted optical methods include laser light scattering and absorbance measurements.
  • Optical methods for determining the particle size in the emulsions or dispersions can also be used for process control. It is also possible to carry out viscosity measurements, for example according to Brookfield, for example in line. The visual / optical control can be carried out by suitable and trained personnel. It is also possible to determine the amount of energy entered by the stirrer. Here too, a reaction to deviations in the energy input can be rapid, since this can indicate a changed composition of the emulsion / dispersion. Overall, the continuous determination of one or more of the parameters mentioned allows continuous process control and continuous control of the composition of the emulsion or dispersion. This significantly improves or simplifies quality assurance during production. This is of great importance, especially for pharmaceutical products.
  • phase volume ratio is possible via the conductivity.
  • the process control is preferably carried out online, ie continuously during the manufacturing process. This makes it possible to react immediately to deviations in the composition of the emulsions or dispersions. If, for example, the volume flows of the phases used change, the mixing vessel changes Get phase volume ratio, which leads to a changed conductivity.
  • the conductivity for example, the setting of the volume flows can also be controlled in order to ensure constant volume flows.
  • the supply of the flowable substances and the stirring entry and, if appropriate, the temperature control of the mixing vessels are computer-controlled. All process parameters can thus be controlled and monitored via a central computer (computer). The measured values supplied by the sensors can also be fed to the computer and evaluated with the aid of a computer.
  • the different flowable substances are dosed, for example, by means of suitable pumps.
  • suitable pumps are known to the person skilled in the art. They are preferably independent of the back pressure and can be controlled in fine increments.
  • suitable pumps are gear pumps, peristalsis / peristaltic pumps and other suitable pumps.
  • the combination of these pumps with the mixing vessels used according to the invention enables the production of emulsions without bubbles and air. Access to air is made difficult or impossible in the entire path of the flowable substances, since all process steps are carried out in a closed system. This is a further advantage of the method according to the invention, it being possible to dispense with complex method steps such as evacuating the emulsions.
  • the device according to the invention can be operated at low pressure, in particular at a pressure in the range from 1 to 10 bar, particularly preferably 1 to 1.5 bar.
  • the process is carried out accordingly at a pressure in this range.
  • the mixing vessels and lines can be constructed from any suitable materials.
  • suitable inert materials are plastics, steels such as V2A or V4A steel or copper. Suitable materials are known to the person skilled in the art.
  • the device can be constructed on a modular basis from individual components. These individual components can be, for example, pirmas, mixing vessels, sensor elements, stirring motors, temperature control units and connecting elements. All pumps and agitator motors can be controlled via a central computer. The selection of the stirrer, the size of the mixing vessels and the feed streams is based on practical requirements and can be determined by simple preliminary tests. In the two-stage procedure in particular, it is possible to work in the first stage with high viscosity and in the second stage with low viscosity, which makes a large number of different emulsions or dispersions easily accessible.
  • thickeners can optionally be added to the individual phases or flowable substances or substance mixtures. This makes it possible in a simple manner to reach a suitable viscosity range which allows the production of finely divided emulsions and dispersions with little stirring input.
  • the advantages of the continuous compared to discontinuous processes according to the invention are numerous: the production of the emulsions or dispersions is significantly accelerated. For example, the production of 1 liter of an emulsion in a continuous batch process with heating, cooling and homogenizing takes at least about 1.5 hours. Here are no statements about the quality of the
  • Emulsions or dispersions possible.
  • the method according to the invention allows a corresponding production in a maximum of about 15 minutes, the emulsions or
  • Dispersions can be analyzed and controlled in the process (in-process
  • nanoemulsions with particle or droplet sizes in the range from 15 to 300 ⁇ m, maximum 1000 nm, is possible in a simple manner.
  • the amount of emulsifier used can be significantly reduced. It is often possible to work with less than half the usual amount of emulsifier.
  • the device according to the invention can be easily adapted to a large number of applications by selecting suitable stirring tools.
  • the device according to the invention can be cleaned in a simple and quick manner. If the emulsions or dispersions to be produced are changed, cleaning can also be dispensed with. In this case, the substances or streams used are varied according to the new product composition, and the first discharge amount from the mixing vessels is discarded. The change in the emulsion until the constant desired product composition is obtained can in turn be followed via the online process control.
  • the device according to the invention and the method according to the invention are applicable to a large number of emulsions or dispersions.
  • emulsions or multiple emulsions are produced according to the invention.
  • Examples are OW emulsions, WO emulsions, PO emulsions, multiple emulsions, LC gels, liposomes or pearlescent concentrates. Since work is carried out in an air-free manner, active substances which are sensitive to oxidation can be introduced into the emulsions in an advantageous manner.
  • the method according to the invention allows the production of highly viscous systems such as gels. Liposomes can also be made at low pressure. It is possible to produce emulsions, ointments, gels for all common pharmaceutical, cosmetic, food technology or detergent technology areas. Other areas of application are also accessible according to the invention. Nanoe ulsionen have emulsion droplets having an average diameter in the range of 5 nm to 1000 ', preferably 15 to 300 nm. In the production of two-phase emulsions, a finely divided primary emulsion is generally prepared in the first mixture under highly viscous conditions, which is diluted to the desired final concentration in the second mixing vessel with one of the two phases.
  • an OW emulsion can be produced in the first mixing vessel with high oil contents, the primary emulsion thus obtained being diluted to the desired final concentration in the second mixing vessel with the addition of water. With this procedure, the main part of the external phase is diluted in the second mixing device.
  • System-adapted speeds and stirring tools can be used.
  • the active substance and the active substance carrier based on lipid and at least one emulsifier which forms luminal stricctures can be used at a temperature above the melting or softening index of the active substance carrier be mixed.
  • a phase B is formed here.
  • This phase B can then be mixed with an aqueous phase A at a temperature above the melting or softening point of the active ingredient carrier.
  • This mixture is carried out, for example, in the first mixing vessel.
  • the mixed phase can then be diluted to the desired final concentration with an aqueous phase. This dilution can be carried out in the second mixing vessel.
  • Lipid-based particles are used as drug carrier particles. These include lipids and lipid-like structures.
  • suitable lipids are the mono-, di- and triglycerides of saturated straight-chain fatty acids with 12 to 30 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, lignoceric acid, cerotic acid, melesic acid, and their esters with other polyhydric alcohols such as ethylene glycol , Propylene glycol, mannitol, sorbitol, saturated fatty alcohols with 12 to 22 carbon atoms such as lauryl alcohol, myrestyl alcohol, cetyl alcohol, stearyl alcohol, arachidyl alcohol, behenyl alcohol, saturated wax alcohols with 24 to 30 carbon atoms such as lignoceryl alcohol, ceryl alcohol, cerotyl alcohol, myrizyl alcohol.
  • synthetic mono-, di- and triglycerides are used as individual substances or in the form of a mixture, for example in the form of a hard fat.
  • Glycerol trifatty acid esters are, for example, glycerol trilaurate, glycerol trimyristate, glycerol palmitate, glycerol tristearate or glycerol tribehenate.
  • Suitable waxes are, for example, cetylpahnitat and Gera alba (bleached wax, DAB 9).
  • Lipids which can also be used are polysaccharides with or in individual cases or polyalkyl acrylates, polyalkyl cyanoacrylates, polyalkyl vinyl pyrrolidones, acrylic polymers, polylactic acids or polylactides.
  • the amount of the active substance carrier particles, based on the total aqueous active substance carrier dispersion, is preferably 0.1 to 30% by weight, particularly preferably 1 to 10% by weight.
  • dispersion stabilizers can be used. For example, they can be used in amounts of 0.01 to 10% by weight, preferably 0.05 to 5% by weight.
  • Suitable substances are surfactants, in particular ethoxylated sorbitan fatty acid esters, block polymers and block copolymers (such as, for example, poloxamers and poloxamines), polyglycerol ethers and esters, lecithins of various origins (for example egg or soy lecithin), chemically modified lecithins (for example hydrogenated lecithin) as well Phospholipids and sphingolipids, mixtures of lecithins with phospholipids, sterols (for example cholesterol and cholesterol derivatives and stigmasterol), esters and ethers of sugars or sugar alcohols with fatty acids or fatty alcohols (for example sucrose monostearate), sterically stabilizing substances such as poloxamers and poloxamines (polyoxyethylene-polyethylenes block polymers), ethoxylated sorbitan fatty acid esters, ethoxylated mono- x ⁇ nd diglycerides, ethoxylated lipids
  • viscosity-increasing substances such as cellulose ethers and esters (for example methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose), polyvinyl derivatives such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (for example carbopol), Xanthans and pectins.
  • cellulose ethers and esters for example methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose
  • polyvinyl derivatives such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (for example carbopol), Xanthans and pectins.
  • aqueous solutions or mixtures of water with water-miscible liquids such as glycerol or polyethylene glycol can be used as the aqueous phase A.
  • additional components for the aqueous phase are, for example Mannose, glucose, fructose, xylose, trehalose, mannitol, sorbitol, xylitol or other polyols such as polyethylene glycol and electrolytes such as sodium chloride. These additional components can be used in an amount of 0.5 to 60, for example 1 to 30% by weight, based on the aqueous phase A.
  • viscosity-increasing substances or charge carriers can also be used, as described in EP-B-0 605 497.
  • Natural or synthetic products can be used as emulsifiers that form lamellar structures.
  • surfactant mixtures is also possible.
  • suitable emulsifiers are the physiological bile salts such as sodium cholate, sodium dehydrocholate, sodium deoxycholate, sodium glycocholate, sodium taurocholate.
  • Animal and vegetable phospholipids such as lecithins with their hydrogenated forms and polypeptides such as gelatin with their modified forms can also be used.
  • Suitable synthetic surface-active substances are the salts of sulfosuccinic acid esters, polyoxyethylene acid betan esters, acid betanate esters and sorbitan ethers, polyoxyethylene fatty alcohol ethers, polyoxyethylene stearic acid esters as well as corresponding mixture condensates of polyoxyethylene methpolyoxypropylene ethers, ethoxylated saturated glycerides, partial fatty acid glyceride and glycerides.
  • suitable surfactants are Biobase® EP and Ceralution® H.
  • emulsifiers are also glycerol esters, polyglycerol esters, sorbitan esters, sorbitol esters, fatty alcohols, propylene glycol esters, alkyl glucose esters, sugar esters, lecithin, silicone copolymers, wool wax and mixtures or derivatives thereof.
  • Glycerol esters, polyglycerol esters, alkoxylates and fatty alcohols and iso alcohols can be derived, for example, from castor fatty acid, 12-hydroxystearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, myristic acid, lauric acid and capric acid.
  • Suitable fatty acid alkoxylates are, in particular, the ethoxylates, propoxylates or mixed ethoxylates / propoxylates.
  • emulsifiers are also used to prepare the cosmetic emulsions according to the invention.
  • suitable emulsifiers are glycerol esters, polyglycerol esters, sorbitan esters, sorbitol esters, fatty alcohols, propylene glycol esters, Alkyl glucoside esters, sugar esters, lecithin, silicone copolymers, wool wax and their mixtures and derivatives.
  • Glycerol esters, polyglycerol esters, alkoxylates and fatty alcohols and iso alcohols can be derived, for example, from castor fatty acid, 12-hydroxystearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, myristic acid, mauric acid and capric acid.
  • succinates, amides or ethanolamides of the fatty acids can also be present.
  • Suitable fatty acid alkoxylates are, in particular, the ethoxylates, propoxylates or mixed ethoxylates / propoxylates.
  • emulsifiers can be used which form L_ ⁇ mel__rslJ ⁇ ikturen.
  • physiological bile salts such as sodium cholate, sodium dehydrocheolate, sodium deoxycheolate, sodium glycochealate, sodium taurochealate.
  • Animal and vegetable phospholipids such as lecithins with their hydrogenated forms and polypeptides such as gelatin with their modified forms can also be used.
  • Suitable synthetic surface-active substances are the salts of sulfosuccinic acid esters, polyoxyethylene ethane esters, acid ether esters and sorbitan ethers, polyoxyethylene fatty alcohol ethers, polyoxyethylene stearic acid esters and corresponding mixture condensates of polyoxyethylene methpolyoxipropylene ethers, ethoxylated and saturated polyglycide glycerides, and glycated glycides.
  • suitable surfactants are Biobase ® EP and Ceralution ® H.
  • Lipids and emulsifiers are preferably used in a weight ratio of 50: 1 to 2: 1, preferably 15: 1 to 30: 1.
  • the pharmaceutical, cosmetic and / or food technology active ingredients, based on phase B are preferably used in an amount of 0.1 to 80% by weight, particularly preferably 1 to 10% by weight.
  • active pharmaceutical ingredients that can be used, for example, in free form, as a salt, ester or ether:
  • Analgesics / anti-rheumatic drugs such as morphine, copdein, Pt tnid, fentanyl and fentanyl derivatives, leyomethadone, tramadol, diclofenac, ibuprofen, indomethacin, naproxen, piroxicam, penicillamine;
  • Antiallergics such as pheniramine, dimetinden, terfenadine, astemizole, loratidine, doxylamine, meclozin, b ⁇ tmipin, clemastine;
  • Antibiotics / chemotherapeutics such as polypeptide antibiotics such as colistin, polymyxin B, teicplanin, vancomycin; Malaria drugs such as quinine, halofantrine, mefloquine, chloroquine, antivirals such as ganciclovir, foscarnet, zidovudine, acyclovir and others such as
  • Antimetabolites such as cytarabine, fluorouracil, methotrexate, mercaptopurine, tioguanine, alkaloids such as vinblastine, vincristine, vindesine; Antibiotics such as aclarubicin, bleomycin, dactinomycin, daunorubicin, epimbicin, idarubicin, mitomycin, plicamycin, complexes of sub-group elements (for example Ti, Zr, V, Nb, Ta, Mo, W, Pt) such as carboplatin, cisplatin and metallocene compounds such as titanacrine dichloride am dacarbazin, Estramustin, Etoposid, Hydroxycarbamid, Mitoxynthron, Procarbazin, Temiposid Alkylamidophospholipide (described in JM Zeidler, F. Emling, W. Zimmermann and HJ Roth, Archiv der Pharmazie, 324 (1991), 687)
  • Ether lipids such as hexadecylphosphocholine, ilmofosin and analogues, described in R. Zeisig, D. Arndt and H. Brachwitz, Pharmazie 45 (1990), 809 to 818.
  • Suitable active substances are, for example, dichlorphenac, ibuprofen, acetylsalicylic acid, salicylic acid, erythromycin, ketoprofen, cortisone, glucocorticoids.
  • cosmetic active ingredients that are particularly sensitive to oxidation or hydrolysis, such as polyphenols.
  • Catechins such as epicatechin, epicatechin-3-gallate, epigallocatechin, epigallocatechin-3-gallate
  • flavonoids such as luteolin, apigenin, rutin, quercitin, fisetin, kaempherol, rhametin
  • isoflavones such as genistein, glycine, daidzein
  • Prunetin coumarins (such as daphnetin, umbelliferon), Emodin, Resveratrol, Oregonin.
  • Vitamins such as retinol, tocopherol, ascorbic acid, riboflavin, pyridoxine are suitable. Also suitable are total extracts from plants that. include the above molecules or classes of molecules.
  • the active ingredients are light protection filters. These can be in the form of organic light protection filters at room temperature (25 ° C) in liquid or solid form. Suitable light protection filters (UV filters) are, for example, compounds based on benzophenone, diphenyl cyanoacrylate or p-aminobenzoic acid.
  • organic light protection filters are octyl triazone, avobenzone, octyl methoxycinnamate, octyl salicylate, benzotriazole and triazine.
  • anti-dandruff active ingredients such as are usually present in cosmetic or pharmaceutical formulations are used as active ingredients.
  • An example of this is piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-dimethylpentyl) -2 (1H) -pyridone; preferably in
  • emulsions are hydrophilically coated micropigments, electrolytes, glycerin, polyethylene glycol, propylene glycol, barium sulfate, alcohols, waxes, metal soaps, magnesium stearate, petroleum jelly or other ingredients.
  • perfume ms, perfume oils or perfume flavors can also be added.
  • Suitable cosmetic active ingredients for example polyphenols and compounds derived therefrom.
  • Suitable vitamins are retinol, tocopherol, ascorbic acid, riboflavin and pyridoxine.
  • active ingredients for example, all oxidation-sensitive active ingredients such as tocopherol can be considered.
  • organic dyes are used as active substances or instead of active substances.
  • all known and suitable water-in-oil emulsions or oil-in-water emulsions can be produced.
  • the emulsifiers and other ingredients described can be used.
  • polyol-in-oil emulsions Any suitable polyols can be used here.
  • the proportions of the two main phases in the emulsions can be varied within wide limits. For example, 5 to 95% by weight, preferably 10 to 90% by weight, in particular 20 to 80% by weight, of the respective phases are present, the total amount giving 100% by weight.
  • the P / O emulsion described can also be emulsified in water or a water-in-oil emulsion.
  • the result is a polyol-in-oil-in-water emulsion (P / O / W emulsion) which contains at least one emulsion described and additionally at least one aqueous phase.
  • P / O / W emulsion polyol-in-oil-in-water emulsion
  • Such multiple emulsions can correspond in structure to the emulsions described in DE-A-43 41 113.
  • the weight ratio of the individual phases can be varied within a wide range.
  • the weight fraction of the P / O emulsion is preferably 0.01 to 80% by weight, particularly preferably 0.1 to 70% by weight, in particular 1 to 30% by weight. %, based on the total P / O / W emulsion.
  • the proportion of the P / O emulsion is preferably 0.01 to 60% by weight, particularly preferably 0.1 to 40% by weight, in particular 1 up to 30% by weight, based on the P / O / W emulsion ultimately obtained.
  • the oil content is preferably 1 to 80% by weight, particularly preferably 1 to 30% by weight, based on the O / W emulsion used.
  • a W / O emulsion can also be introduced, which leads to a W / O / W emulsion.
  • the individual phases of the emulsions can also have the usual ingredients known for the individual phases.
  • the individual phases can contain further pharmaceutical or cosmetic active ingredients that are soluble in these phases.
  • the aqueous phase can contain, for example, organic soluble light protection filters, hydrophilically coated micropigment, electrolytes, alcohols, etc. Some or all of the phases can also contain solids, which are preferably selected from pigments or micropigments, microspheres, silica gel and similar substances.
  • the oil phase can for example, organically modified gate minerals, hydrophobically coated (micro) pigments, organic oil-soluble light protection filters, oil-soluble cosmetic active ingredients, waxes, metal soaps such as magnesium stearate, petroleum jelly or mixtures thereof.
  • Titanium dioxide, zinc oxide and barium sulfate as well as wollastonite, kaolin, talc, Al 2 O 3 , bismuth oxychloride, micronized polyethylene, mica, ultramarine, eosin colors, azo dyes can be mentioned as (micro) pigments.
  • titanium dioxide or zinc oxide are used in cosmetics as light protection filters and can be applied to the skin in a particularly smooth and uniform manner by means of the emulsions according to the invention.
  • Ivfikro spheres or silica gel can be used as carriers for active ingredients, and waxes can be used, for example, as the basis for polishes.
  • the water phase can also contain glycerol, polyethylene glycol, propylene glycol, ethylene glycol and similar compounds and derivatives thereof.
  • aqueous solutions or mixtures of water with water-miscible liquids such as glycerol or polyethylene glycol can be used as the aqueous phase.
  • Electrolytes such as sodium chloride can also be present in the aqueous phase.
  • viscosity-increasing substances or charge carriers can also be used, as described in EP-B-0605 497.
  • phase A and phase B being fed into the first mixing vessel, the query and phase C then being fed into the second mixing vessel.
  • the percentages given relate to the weight.
  • Particle sizes and inner surfaces were determined using a particle size analyzer (PSA).
  • Miglyol 812 N Caprylic / capric 60.0% 60.0% triglycerides
  • Protelan LS 9011 Sodium Lauroyl Sarcosinate 0.40% Brij 35 P Nena Laureth-23 1.05% Hexylene Glycol Hexylene Glycol 1.50% Demin. Water 4.50% phase B: Woleekyd L3 alkyd resin 58.0% phase C: demin. Water 34.5% 100.0%
  • phase A Protelan LS 9011 Sodium Lauroyl Sarcosinate 0.38% Brij 35 P Nena Laureth-23 0.41% Brij 700 Steareth-100 0.41% demin. Water 6.00% phase B:
  • Phase B propylene glycol (0.5% propylene glycol 71.00
  • Phase A Protelan LS 9011 Sodium Lauroyl Sarcosinate 0.75% Brij 35 P Nena Laureth-23 1.30% Pricerine 9091 Glycerin 2.25% demin. Water 2.25% phase B: Cutina CP Cetyl palmitate 44.8% a-tocopherol tocopherol 11.2% phase C: demin. Water 37.5% 100.0%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Cosmetics (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

Eine Vorrichtung zur Kontinuierlichen Herstellung von Emulsionen oder Dispersionen unter Luftausschluss, umfasst ein allseits geschlossenes Mischgefäss, das Zu- und Abführrohre zum Ein- und Austrag von fliessfähigen Stoffen oder Stoffgemischen sowie ein Rührwerkzeug aufweist, das einen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erlaubt.

Description

Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen, insbesondere zur Herstellung von Nanoemulsionen.
Die Herstellung von Emulsionen und Dispersionen erfolgt in der Regel diskontinuierlich in Rührreaktoren. Dabei werden die erforderlichen Mengen der Einsatzstoffe in ein Mischgefäß dosiert und unter hohem Rühreintrag emulgiert oder dispergiert. In der Regel werden dazu HocUeisttmgsriihrer eingesetzt, die die Erzeugung von Kavitationskräften erlauben. Alternativ wird eine Hochdruckhomogenisieriing durchgeführt. Eine Kontrolle der hergestellten Emulsionen und Dispersionen und des Verfahrens erfolgt in der Regel erst am fertigen Produkt der entsprechenden Mischungscharge. Eine kontinuierliche Überprüfung des Herstellungsprozesses ist in der Regel nicht möglich.
Darüber hinaus ist eine Variation der Produktmengen nur in sehr begrenztem Umfang möglich, da die mögliche Ansatzgröße bei einem Chargenmischer in einem eng begrenzten Bereich liegt. Die minimale Ansatzgröße darf in der Regel die Hälfte der maximalen Ansatzgröße nicht unterschreiten.
Auch im Hinblick auf eine sterile Verarbeitung ist ein diskontinuierliches Verfahren problematisch. In der Regel wird in offenen Rührkesseln gearbeitet, so dass Kontaminationen von außen nicht ausgeschlossen werden können. Sofern unter Luftausschluss gearbeitet werden soll, ist ein aufwändiges Verfahren z ir Evakuierung der Mischgef ße zum Arbeiten unter Vakuum notwendig.
Darüber hinaus müssen diskontinuierliche Mischungsvorrichtungen groß ausgelegt werden, um geeignete Produktmengen erzeugen zu können. Dies ist mit erheblichen Investitionskosten verbunden. Zudem führt der hohe Rühreintrag zu hohen Energiekosten. Insbesondere bei der Herstellung von Nanoemulsionen, speziell festen Lipidnanopartikeln (englisch solid lipid nano particles - SLN) fehlen bislang großtechnische Herstellungsverfahren. Daher konnten sich SLN bislang nicht in größerem Umfang durchsetzen. Die Herstellung von SLN-Dispersionen erfolgt üblicherweise durch Hochdruckhomogenisation. In Abhängigkeit vom eingesetzten Lipid und Tensid erhält man dabei unterschiedliche Partikelformen. Man unterscheidet die Heißhomogenisation und die Kalthomogenisation. Nach dem Schmelzen des Lipids und Lösen oder Dispergieren des Wirkstoffes wird bei der Heißhomogenisation in heißer Tensidlösung dispergiert. Sodann wird eine Hochdruckhomogenisation dieser Präemulsion durchgeführt, die sodann in eine heiße O/W-Nanoemulsion überfjjhrt wird. Nach Abkühlen und Rekristallisation werden feste Lipidnanopartikel (SLN) erhalten. Bei der Kalthomogenisation wird nach Schmelzen des Lipids und Lösen oder Dispergieren des Wirkstoffs die Arzneistoff-Lipidmischung erstarrt und sodann zu Mikropartikeln vermählen. Anschließend werden die Partikel in kalter Tensidlösung suspendiert, und eine Hochdruckhomogenisation der Partikelsuspension wird durchgeführt. Die bei der Hochdruckhomogenisation auftretenden Kavitations- und Scherkräfte sind ausreichend groß, um die Lipidmikropartikel zu Lipidnanopartikehi zu zerbrechen. Bei der Heißhomogenisation wird die Präemulsion in der Regel in einem Kolben-Spalt- Homogenisator bei Drücken zwischen 200 bar und maximal 1500 bar im heißen Zustand homogenisiert. Hierbei entsteht eine Emulsion, deren Lipidphase beim Erkalten zu SLN rekristallisiert. Für eine Beschreibung der Verfahren kann auf R.H. Müller, G. E. Hildebrandt, Pharmazeutische Technologie: Moderne Arzneiformen, wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1998, 2. Auflage, Seiten 357 bis 366 verwiesen werden.
Die SLN-Technolgie dient insbesondere der Applikation von pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoffen in einem festen Träger.
Der Wirkstoffträger kann dabei an die jeweilige Anwendung angepasst werden und erlaubt eine geeignete Dosierung und Freisetzung des Wirkstoffs. Die SLN stellen ein alternatives
Carriersystem zu Emulsionen und Liposomen dar. Die Nanopartikel können hydrophile oder hydrophobe pharmazeutische Wirkstoffe enthalten und können oral oder parenteral verabreicht werden. Als Matrixmaterial wird dabei im Gegensatz zu den bekannten
Emulsionen ein festes Lipid eingesetzt. Zur Gewährleistung einer hohen Bioakzeptanz und guter In-Vivo-Abbaubarkeit werden überwiegend physiologisch verträgliche Lipide oder
Lipide aus physiologischen Komponenten wie Glyceride aus körpereigenen Fettsäuren verwendet. Bei der Herstellung werden wie bei der Herstellung von Emulsionen und Dispersionen üblicherweise Emulgatoren oder Tenside mit verwendet. Ein Verfahren zur Herstellung von SLN-Dispersionen ist beispielsweise in der EP-B-0 167 825 beschrieben. Die Herstellung der Lipid Nano Pellets .erfolgt durch Dispergieren des geschmolzenen Lipids mit Wasser mit einem hochtourigen Rührer. Anschließend wird durch eine Ultraschallbehandlung die gewünschte Teilchengrößenverteilung eingestellt. Das Rühren erfolgt in der Regel mit Drehzahlen im Bereich von 20 000 min"1.
Die Herstellung von festen Lipid-Nanoteilchen mit geringem mittleren Teilchendurchmesser gemäß dem Stand der Technik ist aufwendig, da in der Regel Hochdruckhomogenisatoren eingesetzt werden müssen. Durch bloßes Rühren bei hoher Umdrehungszahl werden nur relativ große mittlere Teilchendurchmesser von etwa 3 μm erreicht.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines kontinuierlichen, unaufwendigen Verfahrens zur Herstellung von Emulsionen und Dispersionen, das insbesondere die Herstellung von Nanoemulsionen mit kontrollierter Partikelgröße erlaubt. Die Vorrichtung und das Verfahren sollen eine In-Process/Online-Qualitätskontrolle erlauben. Zudem soll die Herstellung gegenüber üblichen Batch- Verfahren vereinfacht und beschleunigt werden. Auch die Herstellung variabler Mengen an Emulsionen oder Dispersionen soll möglich sein. Zudem soll unaufwendig luftfrei gearbeitet werden können.
Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen unter Luftausschluss, umfassend ein allseits geschlossenes Mischgefaß, das Zu- und AbfLihrrohre zum Ein- und Austrag von fließfähigen Stoffen oder Stoffgemischen sowie ein Rührwerkzeug aufweist, das einen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erlaubt.
Zudem wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur kontinuierlichen Herstellung von Emulsionen und Dispersionen unter Luftausschluss, bei dem mindestens zwei fließfahige Ströme mindestens zweier Phasen der Emulsionen oder Dispersionen getrennt kontinuierlich in ein allseitig geschlossenes Mischgefaß dosiert werden, in dem sie unter Rühreintrag in eine Emulsion oder Dispersion überfuhrt werden, und die Emulsion/Dispersion kontinuierlich aus dem Mischgefaß ausgetragen wird, wobei der Rühreintrag ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogerüsierung erfolgt. In der erfindungsgemäßen Vorrichtung ist das Mischgefaß allseitig geschlossen. Dies bedeutet, dass abgesehen von Zu- und Abfuhrungen sowie Rü irerdurchfuhrungen oder Durchfuhrungen für Analytiksensoren das Mischgefaß geschlossen ist. Sofern sowohl die Zu- als auch Abfül rrohre mit fließfähigen Stoffen gefüllt sind und Rührwerkzeug sowie gegebenenfalls Analytiksensoren vorliegen, ist das Mischgefaß gegenüber dem Zutritt von Luft bzw. Sauerstoff abgeschlossen. Diese Auslegung des Mischgefaßes wird unter dem Ausdruck "allseitig geschlossen" erfasst.
Das Rührwerkzeug erlaubt einen mechanischen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationkräften und ohne Hochdruckhomogenisierung.
In bevorzugten Rührwerkzeugen werden auf einer Rührerachse, die gedreht wird, geeignete Rührelemente angeordnet. Beim Rührwerkzeug kann es sich um so genannte
Rotor/Stator-Systeme handeln, in denen motorbetrieben ein Rotor bewegt wird. Als Stator dient in der Regel das Gehäuse, das mit Einbauten wie Brechern versehen sein kann. Als Rührer kommen beispielsweise Flügelrührer in Betracht, die gegebenenfalls mit
Abstreifern versehen sein können. Darüber hinaus können Kneter und andere geeignete
Rührer wie Planetenrührer, Ankerrϋhrer, Balkenrührer,- Propeller, Blattrührer, Dissolver- scheiben oder Intermig eingesetzt werden. Weitere geeignete Rührerkonfigurationen sind dem Fachmann bekannt.
Das Rührwerkzeug wird so betrieben, dass der Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erfolgt.
u Mischgefaß können zudem gegebenenfalls Mahlwerkzeuge wie Mahlperlen oder -kugeln vorliegen. Geeignete Mahlwerkzeuge sind dem Fachmann bekannt.
Das Mischgefaß kann jede geeignete Geometrie aufweisen, solange es eine geeignete Durchrnischung der fließfähigen Stoffe oder Stoffgemische bzw. der Phasen der herzustellenden Emulsionen und Dispersionen erlaubt. Geeignete Geometrien sind dem Fachmann bekannt. Vorzugsweise weist das Mischgefaß eine im Wesentlichen zylindrische Form auf, wobei die Achse des Rührwerkzeugs in der Zylinderachse liegt und die Zu- und Abführrohre im Wesentlichen senkrecht zur Zylinderachse im oberen und unteren Umfangsbereich des Zylinders voneinander beabstandet angeordnet sind. Die Zu- und Abfuhrrohre sind damit, entlang der Zylinderachse betrachtet, möglichst weit voneinander entfernt in Positionen entlang des Zylinderumfangs angeordnet. Sie sind im Wesentlichen senkrecht zur Zylinderachse angeordnet. Abweichungen von ± 10 °, vorzugsweise ± 5 ° hierzu sind möglich. Die Anordnung kann den praktischen Erfordernissen angepasst werden. Vorzugsweise werden die fließfähigen Stoffe oder Stoffgemische in das erste Mischgefäß getrennt eingetragen bzw. J-Ugeführt. Die entsprechenden Zuführrohre ragen vorzugsweise etwas in das Mischgefaß hinein. Es ist auch möglich, eine Vormischstufe für die fließfähigen Stoffe oder Stoffgemische vorzusehen. Beim Herstellen einer Öl/Wasser-Emulsion oder Wasser/Öl-Emulsion können beispielsweise die einzelnen Komponenten der Ölphase und die einzelnen Komponenten der Wasserphase getrennt vorgemischt werden. Es ist auch möglich, dass die Ölphase und die Wasserphase in einer Vormischstufe zusammengeführt und gemeinsam in das Mischgefaß eingetragen werden. Üblicherweise werden die Ölphase und die Wasserphase oder entsprechende andere Phasen voneinander getrennt in das Mischgefaß geführt. Es können ein oder mehrere Zu- und Abfuhrrohre vorgesehen werden. Üblicherweise werden zwei oder mehr, insbesondere zwei oder drei Zuführrohre und ein Abführrohr vorgesehen. Die Größe des Mischgefäßes kann nach den jeweiligen praktischen Erfordernissen gewählt werden. Im Labormaßstäb beträgt das Innenvolumen (freie Volumen) des Mischgefäßes vorzugsweise 2 bis 70 ml, besonders bevorzugt 3 bis 50 ml, insbesondere 5 bis 15 ml. Im Technikumsmaßstab beträgt das Innenvolumen vorzugsweise 70 bis 500 ml, besonders bevorzugt 100 bis 400 ml. Im großtechnischen Maßstab beträgt das Volumen vorzugsweise mehr als 500 ml, beispielsweise 500 bis 50 000 ml.
Im Labormaßstab können beispielsweise Mischgefäße mit etwa 7 ml Volumen eingesetzt werden, die eine zylindrische Form aufweisen und einen Innendurchmesser von 20 mm und eine Innenhöhe von 25 mm aufweisen. Das Innenvolumen kann dabei auch durch die Dicke bzw. den Durchmesser der Rotorachse gesteuert werden. So ist es auch möglich, dass Konfigurationen entsprechend einem Ringkammerreaktor erhalten werden. Die Verweilzeiten im ersten Mischgefaß betragen vorzugsweise 2 bis 600 Sekunden, besonders bevorzugt 4 bis 100 Sekunden, insbesondere 8 bis 40 Sekunden.
Es ist erfindungsgemäß möglich, . bereits mit einem Mischgef ß die gewünschten Emulsionen und Dispersionen kontinuierlich herzustellen. Vorzugsweise werden jedoch mindestens zwei Mischgefaße in Reihe hintereinander geschaltet, wobei der Austrag aus dem ersten Mischgefaß ins zweite Mischgefaß eingetragen wird und ein weiteres Zufuhrrohr in das zweite Mischgefaß vorgesehen ist. Auch das zweite (und folgende) Mischgefaß weist ein Rührwerk auf, wie beschrieben. Es ist entsprechend auch möglich, längere Kaskaden von Mischgefaßen vorzusehen, wobei der Austrag eines Mischgefäßes dem nächsten Mischgefäß __ugeführt wird und gegebenenfalls jeweils weitere Einträge in das weitere Mischgefaß eingetragen werden können. Vorzugsweise wird mit zwei oder drei, insbesondere mit zwei hintereinander geschalteten Mischgefäßen gearbeitet.
Es ist erfindungsgemäß möglich, ein oder mehrere der Mischgefaße unabhängig voneinander zu temperieren. Eine Temperierung kann durch Kühl- oder Heiz-Mäntel oder durch Integrieren des Mischgefäßes in einen Ofen oder einen Kryostaten erreicht werden. Geeignete Vorrichtungen zum Heizen/Kühlen bzw. Temperieren der Mischgefaße sind dem Fachmann bekannt.
Sofern zwei hintereinander geschaltete Mischgefäße eingesetzt werden, wird im ersten Mischgefaß das Verhältnis der Zuströme so eingestellt, dass beim Mischen im ersten Mischgefaß im viskoelastischen bzw. hochvisko elastischen Bereich gearbeitet wird. Der viskoelastische Bereich bezeichnet den Bereich, in dem die viskoelastischen Flüssigkeiten nicht-newton'sches Flüssigkeitsverhalten zeigen. Für eine Beschreibung der Viskoelastizität kann auf Römpp, Chemielexikon, 9. Auflage, Stichwort "Viskoelastizität" verwiesen werden.
Üblicherweise entspricht die Abhängigkeit der Viskosität einer Emulsion bzw. Dispersion vom Volumenanteil der dispersen Phase einer Exponentialfunktion. Der wichtige viskoelastische Bereich, in dem erfindungsgemäß vorzugsweise gearbeitet wird, ist der Bereich, in dem sich die Viskosität mit zunehmendem Volumenanteil der dispersen Phase sehr stark erhöht. Bei einer zweiphasigen Emulsion wird das Gewichtsverhältnis der Phasen vorzugsweise in einem Bereich von 1:15 bis 15:1, bevorzugt 1:5 bis 5:1, vorzugsweise 1:2 bis 2:1, insbesondere 1:1,5 bis 1,5:1 gewählt. Insbesondere bei Öl/Wasser-Emulsionen (OAV), Wasser/Öl-Emulsionen (W/O) und Polyol/Öl-Emulsionen (P/O) liegen die Gewichtsanteile der entsprechenden Phasen vorzugsweise in diesem Bereich.
Bei einer Abfolge von zwei Mischgefäßen wird damit in der ersten Stufe hochviskos und in der nachfolgenden zweiten Stufe niederviskos gearbeitet. Die Einstellung einer feinteiligen Emulsion bzw. Dispersion wird dabei im ersten Reaktor erreicht, während die Verdünnung auf die endgültige Konzentration des Produktes im zweiten Mischgefäß erfolgt. Da in diesem Fall ins zweite Mischgefaß eine ergänzende Menge mindestens einer der Phasen oder eine weitere Phase eingetragen wird, ist die Verweilzeit im zweiten Mischgefaß entsprechend kürzer, sofern beide Mischgefaße das gleiche Innenvolumen aufweisen. Durch Einhalten des Mengenverhältnisses der beiden Phasen im ersten Mischgefaß kann selbst mit dem Eintrag geringer Scherenergien eine sehr starke Mischwirkung erreicht werden. Ohne an eine Theorie gebunden zu sein, kann die beim Vermischen der Phasen erhaltene Mikroemulsion als ein System zweier interpenetrierender Netzwerke verstanden werden, so dass die Mikroemulsion einphasiges Verhalten zeigt.
Erfindungsgemäß ist in den Abfuhrrohren der Mischgefaße bzw. mindestens einem Abfuhrrohr eines Mischgefäßes mindestens ein Sensor zur kontinuierlichen Messung der Temperatur, Leitfähigkeit und/oder optischen Eigenschaften der Emulsion oder Dispersion angeordnet. Ein entsprechender Sensor ist dabei in der Regel in der Nähe des Mischgefäßes im Abführrohr vorgesehen. Geeignete Sensoren zur Bestimmung der elektrischen Leitfähigkeit, der Temperatur oder optischer Eigenschaften wie Trübungen sind dem Fachmann bekannt. Bei der Beurteilung der optischen Eigenschaften kann auch ein Schauglas vorgesehen sein, durch das eine optische bzw. visuelle Kontrolle der Klarheit oder Trübung der Emulsion/Dispersion möglich ist. Maschinengestützte optische Verfahren schließen die Laserlichtstreuung und Extinktionsmessungen ein.
Optische Verfahren zur Bestimmung der Teilchengröße in den Emulsionen oder Dispersionen können ebenfalls zur Prozesskontrolle eingesetzt werden. Weiterhin ist es möglich, Viskositätsmessungen, beispielsweise nach Brookfield, zum Beispiel in line durchzuführen. Die visuelle/optische Kontrolle kann durch geeignetes und geschultes Personal vorgenommen werden. Ferner ist es möglich, die eingetragene Energiemenge durch den Rührer zu bestimmen. Auch hier kann bei Abweichungen der eingetragenen Energie schnell reagiert werden, da dies auf eine geänderte Zusammensetzung der Emulsion/Dispersion hindeuten kann. Insgesamt erlaubt die kontinuierliche Bestimmung eines oder mehrerer der genannten Parameter eine kontinuierliche Prozesskontrolle und eine kontinuierliche Kontrolle der Zusammensetzung der Emulsion bzw. Dispersion. Die Qualitätssicherung bei der Herstellung wird damit erheblich verbessert bzw. vereinfacht. Dies ist insbesondere bei pharmazeutischen Produkten von hoher Wichtigkeit.
Über die Leitfähigkeit sind Aussagen über das Phasenvolumenverhältnis möglich. Durch Messung der Leitfähigkeit lassen sich deshalb Veränderungen in der Emuslionszusammensetzung bzw. in den Phasenvolumina leicht bestimmen. Die Prozesskontrolle wird vorzugsweise online durchgeführt, d. h. kontinuierlich während des Herstellungsverfahrens. Dies erlaubt es, auf Abweichungen der Zusammensetzungen der Emulsionen oder Dispersionen sofort zu reagieren. Ändern sich beispielsweise die Volumenströme der eingesetzten Phasen, so wird im Mischgefäß ein anderes Phasenvolumenverhältnis erhalten, was zu einer veränderten Leitfähigkeit führt. Durch die Bestimmung der Leitfähigkeit kann beispielsweise auch die Einstellung der Volumenströme wiederum gesteuert werden, um konstante Volumenströme sicher zu stellen.
Gemäß einer Ausi lirungsform der Erfindung sind die Zufuhr der fließfähigen Stoffe und der Rühreintrag und gegebenenfalls die Temperierung der Mischgefäße rechnergesteuert. Über einen zentralen Rechner (Computer) können damit alle Prozessparameter gesteuert und kontrolliert werden. Die von den Sensoren gelieferten Messwerte können ebenfalls dem Rechner zugeführt und rechnergestützt ausgewertet werden.
Die Dosierung der unterschiedlichen fließfähigen Stoffe erfolgt beispielsweise durch geeignete Pumpen. Derartige Pumpen sind dem Fachmann bekannt. Sie sind vorzugsweise unabhängig vom Gegendruck und können in feiner Abstufung angesteuert werden. Beispiele geeigneter Pumpen sind Zahnradpximpen, Peristaltik/Schlauchpumpen und andere geeignete Pumpen. Die Kombination dieser Pumpen mit den erfindungsgemäß eingesetzten Mischgefäßen erlaubt das blasen- und luftfreie Herstellen von Emulsionen. Im gesamten Weg der fließfähigen Stoffe ist der Zutritt von Luft erschwert bzw. unmöglich gemacht, da alle Verfahrensschritte in einem geschlossenen System durchgeführt werden. Dies ist ein weiterer Vorteil des erfindungsgemäßen Verfahrens, wobei auf aufwendige Verfahrensschritte wie ein Evakuieren der Emulsionen verzichtet werden kann.
Die erfindungsgemäße Vorrichtung kann bei Niederdruck, insbesondere bei einem Druck im Bereich von 1 bis 10 bar, besonders bevorzugt 1 bis 1,5 bar betrieben werden. Das Verfahren wird entsprechend bei einem Druck in diesem Bereich durchgeführt.
Die Mischgefaße und Leitungen können aus beliebigen geeigneten Materialien aufgebaut sein. Beispiele geeigneter inerter Materialien sind Kunststoffe, Stähle wie V2A- oder V4A- Stahl oder Kupfer. Geeignete Materialien oder Werkstoffe sind dem Fachmann bekannt.
Es ist erfindungsgemäß möglich, die Vorrichtung in modularer Bauweise auszuführen. Dies bedeutet, dass mehrere Mischgefaße in einfacher Weise hintereinander oder auch parallel geschaltet werden können. Die Vorrichtung kann nach einem Baukastenprinzip aus Einzelkomponenten aufgebaut sein. Diese Einzelkomponenten können beispielsweise Pirmpen, Mischgefaße, Sensorelemente, Rührmotoren, Temperiereinheiten und Verbindungselemente sein. Sämtliche Pumpen und Rührmotoren können dabei über einen zentralen Rechner angesteuert werden. Die Auswahl der Rührer, der Größe der Mischgefäße und der Eintragsströme erfolgt nach den praktischen Erfordernissen und ist durch einfache Vorversuche zu ermitteln. Insbesondere bei der zweistufigen Vorgehensweise kann in der ersten Stufe hochviskos und in der zweiten Stufe niederviskos gearbeitet werden, wodurch eine Vielzahl unterschiedlicher Emulsionen oder Dispersionen in einfacher Weise zugänglich wird.
Um im ersten Mischgefäß im viskoelastischen, vorzugsweise hochviskoelastischen Bereich arbeiten zu können, können den einzelnen Phasen oder fließfähigen Stoffen oder Stoffgemischen gegebenenfalls Verdicker zugesetzt werden. Hierdurch ist es in einfacher Weise möglich, in einen geeigneten Viskositätsbereich zu gelangen, der die Herstellung feinteiliger Emulsionen und Dispersionen unter geringem Rühreintrag erlaubt.
Die Vorteile des erfindungsgemäßen kontinuierlichen gegenüber diskontinuierlichen Verfahren sind vielfältig: Die Herstellung der Emulsionen oder Dispersionen wird wesentlich beschleunigt. Beispielweise dauert die Herstellung von 1 Liter einer Emulsion im kontinuierlichen Batch- Verfahren mit Heizen, Abkühlen und Homogenisieren mindestens etwa 1,5 Stunden. Hierbei sind noch keine Aussagen über die Qualität der
Emulsionen oder Dispersionen möglich. Das erfindungsgemäße Verfahren erlaubt eine entsprechende Herstellung in maximal etwa 15 Minuten, wobei die Emulsionen oder
Dispersionen im Verfahren analysiert und kontrolliert werden können (In-Process-
Produktkontrolle). Eine Variation der Produktmengen ist in einfacher Weise über die
Länge der Produktionsdauer möglich. Damit sind sehr unterschiedliche Ansatzgrößen in einfacher Weise realisierbar. Durch Veränderung der Zuführströme in die Mischgefäße ist eine Variation der Zusammensetzung der Emulsionen oder Dispersionen in einfacher
Weise möglich.
Da in geschlossenen Rohrleitungssystemen und geschlossenen Mischgefaßen gearbeitet wird, ist eine sterile Verarbeitung möglich. Kontaminationen von außen werden ausgeschlossen. Die Auslegung der Vorrichtung bzw. Anlage kanii kleiner und leichter als bei einer Chargenanlage sein, so dass erhebliche Einsparungen an Investitionskosten möglich sind. Auf den Einsatz von Kühlmitteln kann in der Regel verzichtet werden, da zum Beispiel die Temperatur über die in das zweite Mischgefäß eingebrachte Phase gesteuert werden kann. Auch der Raumbedarf ist wesentlich geringer. Durch die kontinuierliche Verfahrensweise sind auch Energieeinsparungen möglich, wie sie vorstehend bereits beschrieben sind. Durch die Genauigkeit der verfügbaren Dosierpumpen sind sehr hohe Genauigkeiten bei der Zusammensetzung der Emulsionen oder Dispersionen möglich. Übliche Dosierpumpen erlauben Genauigkeiten im Bereich von ± 0,5 % bis zu ± 0,15 %.
Die Herstellung von Nanoemulsionen mit Teilchen- oder Tröpfchengrößen im Bereich von 15 bis 300 um, maximal 1000 nm ist in einfacher Weise möglich.
Im Vergleich zu bekannten Verfahren ist die Herstellung wesentlich feinteiligerer Emulsionen mit wesentlich geringerem Aufwand möglich.
Gegenüber der diskontinuierlichen chargenweisen Herstellung kann die eingesetzte Emulgatormenge deutlich vermindert werden. Häufig kann mit weniger als der Hälfte der üblichen Emulgatormenge gearbeitet werden.
Die erfindungsgemäße Vorrichtung kann durch Auswahl geeigneter Rührwerkzeuge an eine Vielzahl von Anwendungen in unaufwendiger Weise angepasst werden.
Eine Reinigung der erfindungsgemäßen Vorrichtung ist aufgrund der geringen Größe in einfacher und schneller Weise möglich. Bei einem Wechsel der herzustellenden Emulsionen oder Dispersionen kann auch auf eine Reinigung verzichtet werden. In diesem Fall werden die eingesetzten Stoffe oder Ströme gemäß der neuen Produtezusεtmmensetzung variiert, und die erste Austragmenge aus den Mischgefäßen wird verworfen. Die Veränderung der Emulsion bis zum Erhalt der konstanten gewünschten Produlrtzusammensetzung kann wiederum über die Online-Prozeßkontrolle verfolgt werden.
Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren sind auf eine Vielzahl von Emulsionen oder Dispersionen anwendbar. Insbesondere werden erfindungsgemäß Emulsionen oder multiple Emulsionen hergestellt. Beispiele sind OW- Emulsionen, WO-Emulsionen, PO-Emulsionen, multiple Emulsionen, LC-Gele, Liposome oder Perlglanzkonzentrate. Da luftfrei gearbeitet wird, können oxidationsempfindliche Wirkstoffe in vorteilhafter Weise in die Emulsionen eingebracht werden.
Das erfindungsgemäße Verfahren erlaubt die Herstellung hochviskoser Systeme wie Gele. Liposome können ebenfalls bei Niederdruck hergestellt werden. So ist die Herstellung von Emulsionen, Salben, Gelen für alle üblichen pharmazeutischen, kosmetischen, lebensmitteltechnologischen oder waschmitteltechnologischen Bereiche möglich. Auch andere Anwendungsgebiete sind erfindungsgemäß zugänglich. Nanoe ulsionen weisen Emulsionströpfchen mit einem mittleren Durchmesser im Bereich von 5 bis 1000' nm, vorzugsweise 15 bis 300 nm, auf. Bei der Herstellung von zweiphasigen Emulsionen wird in der Regel im ersten Gemisch unter hochviskosen Bedingungen eine feinteilige Primäremulsion hergestellt, die im zweiten Mischgefaß mit einer der beiden Phasen auf die gewünschte Endkonzentration verdünnt wird. Beispielsweise kann eine OW-Emulsion im ersten Mischgefaß mit hohen Ölanteilen hergestellt werden, wobei die so erhaltene Primäremulsion im zweiten Mischgefaß unter Wasserzusatz auf die gewünschte Endkonzentration verdünnt wird. Bei dieser Vorgehensweise wird in der zweiten Mischvorrichtung mit dem Hauptteil der externen Phase verdünnt. Bei der Herstellung multipler Emulsionen ist es beispielsweise möglich, in dem ersten Mischgefäß eine PO-Emulsion herzustellen, die im zweiten Mischgefaß zusammen mit Wasser in eine POW-Emulsion überfuhrt wird. Es können jeweils systemangepasste Drehzahlen und Rührwerkzeuge verwendet werden.
Zur Herstellung einer wässrigen Wirkstoffträger-Nanodispersion, die mindestens einen pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoff enthält, können zunächst der Wirkstoff und der Wirkstoffträger auf Lipidbasis und mindestens ein Emulgator, der Lεumellarstriikturen ausbildet, bei einer Temperatur oberhalb des Schmelz- oder Erweichxingspiinktes des Wirkstoffträgers vermischt werden. Hierbei wird eine Phase B ausgebildet. Sodann kann diese Phase B mit einer wässrigen Phase A bei einer Temperatur oberhalb des Schmelz- oder Erweich_mgspx_nktes des Wirkstoffträgers vermischt werden. . Diese Mischung wird beispielsweise im ersten Mischgefaß diirchgeführt. Sodann kann die Mischphase mit einer wässrigen Phase auf die gewünschte Endkonzentrafion verdünnt werden. Diese Verdünnung kann im zweiten Mischgefäß diirchgeführt werden.
Als Wirkstoffträgerteilchen werden Teilchen auf Lipidbasis eingesetzt. Hierzu gehören Lipide und lipidähnliche Slxukturen. Beispiele geeigneter Lipide sind die Mono-, Di- und Triglyceride der gesättigten geradkettigen Fettsäuren mit 12 bis 30 Kohlenstoffatomen, wie Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsälire, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melesinsäure, sowie deren Ester mit anderen mehrwertigen Alkoholen wie Ethylengfykol, Propylenglykol, Mannit, Sorbit, gesättigten Fettalkoholen mit 12 bis 22 Kohlenstoffatomen wie Laurylalkohol, Myrestylalkohol, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalkohol, gesättigten Wachsalkoholen mit 24 bis 30 Kohlenstoffatomen wie Lignocerylalkohol, Cerylalkohol, Cerotylalkohol, Myrizylalkohol. Bevorzugt sind Mono-, Di-, Triglyceride, Fettalkohole, deren Ester oder Ether, Wachse, Lipidpeptide oder Mischungen davon. Insbesondere werden synthetische Mono-, Di- und Triglyceride als Einzelsubstanzen oder in Form einer Mischung, zum Beispiel in Form eines Hartfettes, eingesetzt. Glycerintrifettsäureester sind beispielsweise Glycerintrilaurat, Glycerintrimyristat, Glycerinpalmitat, Glycerintristearat oder Glycerintribehenat. Geeignete Wachse sind beispielsweise Cetylpahnitat und Gera alba (gebleichtes Wachs, DAB 9). Als Lipide können auch Polysaccharide mit oder in Einzelfällen oder Polyalkylacrylate, Polyalkylcyanoacrylate, Polyalkylvinylpyrrolidone, Acrylpolymere, Polymilchsäuren oder Polylactide eingesetzt werden.
Die Menge der Wirkstoffträgerteilchen, bezogen auf die gesamte wässrige Wirkstoffträger- Dispersion, beträgt vorzugsweise 0,1 bis 30 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%. Zusätzlich zu den Lipiden können Dispersionsstabilisatoren eingesetzt werden. Sie können beispielsweise in Mengen von 0,01 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-% eingesetzt werden. Beispiele geeigneter Substanzen sind Tenside, insbesondere ethoxylierte Sorbitanfettsäureester, Blockpolymere und Blockcopolymere (wie zum Beispiel Poloxamere und Poloxamine), Polyglycerinether und -ester, Lecithine verschiedenen Ursprungs (zum Beispiel Ei- oder Sojalecithin), chemisch modifizierte Lecithine (zum Beispiel hydriertes Lecithin) als auch Phospholipide und Sphingolipide, Mischungen von Lecithinen mit Phospholipiden, Sterine (zum Beispiel Cholesterin und Cholesterinderivate sowie Stigmasterin), Ester und Ether von Zuckern oder Zuckeralkoholen mit Fettsäuren oder Fettalkoholen (zum Beispiel Saccharosemonostearat), sterisch stabilsierende Substanzen wie Poloxamere und Poloxamine (Polyoxyethylen- Polyoxypropylen-Blockpolymere), ethoxylierte Sorbitanfettsäureester, ethoxylierte Mono- xαnd Diglyceride, ethoxylierte Lipide und Lipoide, ethoxylierte Fettalkohole oder Fettsäuren und Ladungsstabilisatoren bzw. Ladungsträger wie zum ' Beispiel Dicetylphosphat, Phosphatidylglycerin sowie gesättigte und ungesättigte Fettsäuren, Natriumcholat, Natriumglykolcholat, Natriumtaurocholat oder deren Mischungen, Aminosäuren oder Peptisatoren wie Natriumeitrat (siehe J. S. Lucks, B. W. Müller, R. H. Müller, Int. J. Pharmaceutics 63, Seiten 183 bis 189 (1990)), viskositätserhöhende Stoffe wie Celluloseether und -ester (zum Beispiel Methylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, Natriumcarboxymethylcellulose), Polyvinylderivate wie Polyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Alginate, Polyacrylate (zum Beispiel Carbopol), Xanthane und Pektine.
Als wässrige Phase A können Wasser, wässrige Lösungen oder Mischungen von Wasser mit wassermischbaren Flüssigkeiten wie Glycerin oder Polyethylenglycol eingesetzt werden. Weitere zusätzliche Komponenten für die wässrige Phase sind beispielsweise Mannose, Glucose, Fructose, Xylose, Trehalose, Mannit, Sorbit, Xylit oder andere Polyole wie Polyethylenglykol sowie Elektrolyte wie Natriumchlorid. Diese zusätzlichen Komponenten können in einer Menge von 0,5 bis 60, zum Beispiel 1 bis 30 Gew.-%, bezogen auf die wässrige Phase A, eingesetzt werden.
Falls gewünscht, können ferner viskositätserhöhende Stoffe oder Ladungsträger eingesetzt werden, wie Sie in EP-B-0 605 497 beschrieben sind.
Als Emulgatoren, die Lamellarstrukturen ausbilden, können natürliche oder synthetische Produkte eingesetzt werden. Auch der Einsatz von Tensidgemischen ist möglich. Beispiele geeigneter Emulgatoren sind die physiologischen Gallensalze wie Natriumcholat, Natriumdehydrocholat, Natriumdeoxycholat, Natriumglykocholat, Natriumtaurocholat. Tierische und pflanzliche Phospholipide wie Lecithine mit ihren hydrierten Formen sowie Polypeptide wie Gelatine mit ihrem modifizierten Formen können ebenso verwendet werden.
Als synthetische grenzflächenaktive Substanzen eignen sich die Salze der Sulfobernsteinsäureester, Polyoxyethylensäurebetanester, Säurebetanester und Sorbitanether, Polyoxyethylenfettalkoholether, Polyoxyethylenstearinsäureester sowie entsprechende Mischungkondensate von Polyoxyethylen-Methpolyoxypropylenethern, ethoxylierte gesättigte Glyceride, partielle Fettsäure-Glyceride und Polyglycide. Beispiele geeigneter Tenside sind Biobase® EP und Ceralution® H.
Beispiele geeigneter Emulgatoren sind ferner Glycerinester, Polyglycerinester, Sorbitanester, Sorbitolester, Fettalkohole, Propylenglykolester, Alkylglucositester, Zuckerester, Lecithin, Silikoncopolymere, Wollwachs und deren Mischungen oder Derivate. Glycerinester, Polyglycerinester, Alkoxylate und Fettalkohole sowie Isoalkohole können sich beispielsweise ableiten von Rizinusfettsäure, 12-Hydroxystearinsäure, Isostearinsäure, Ölsäure, Linolsäure, Linolensäure, Stearinsäure, Myristinsäure, Laurinsäure und Caprinsäure. Neben den genannten Estern können auch Succinate, Amide oder Ethanolamide der Fettsäuren vorliegen. Als Fettsäurealkoxylate kommen insbesondere die Ethoxylate, Propoxylate oder gemischten Ethoxylate/Propoxylate in Betracht.
Auch zur Herstellung der erfindungsgemäßen kosmetischen Emulsionen werden in der Regel Emulgatoren verwendet. Beispiele geeigneter Emulgatoren sind Glycerinester, Polyglycerinester, Sorbitanester, Sorbitolester, Fettalkohole, Propylenglykolester, Alkylglucosidester, Zuckerester, Lecithin, Silikoncopolymere, Wollwachs und ihre Mischungen und Derivate. Glycerinester, Polyglycerinester, Alkoxylate und Fettalkohole sowie Isoalkohole können sich beispielsweise ableiten von Rhizinusfettsäure, 12- Hydroxystearinsäure, Isostearinsäure, Ölsäure, Linolsäure, Linolensäure, Stearinsäure, Myrestinsäure, Maurinsäure und Caprinsäure. Neben den genannten Estern können auch Succinate, Amide oder Ethanolamide der Fettsäuren vorliegen. Als Fettsäurealkoxylate kommen insbesondere die Ethoxylate, Propoxylate oder gemischten Ethoxylate/Propoxylate in Betracht. Ferner können Emulgatoren eingesetzt werden, die L_ιmel__rslJΛikturen ausbilden. Beispiele derartiger Emulgatoren sind die physiologischen Gallensalze wie Natriumcheolat, Natriumdehydrocheolat, Natriumdeoxycheolat, Natriu glycochealat, Natriumtaurochealat. Tierische und pflanzliche Phospholipide wie Lecithine mit Ihren hydrierten Formen sowie Polypeptide wie Gelatine mit ihren modifizierten Formen können ebenso verwendet werden.
Als synthetische grenzflächenaktive Substanzen eignen sich die Salze der Sulfobernsteinsäureester, Polyoxiethylensäurebethanester, Säurebethanester und Sorbitanether, Polyoxiethylenfettalkoholether, Polyoxiethylenstearinsäureester sowie entsprechende Mischungskondensate von Polyoxiethylen-methpolyoxipropylenethern, ethoxylierte gesättigte Glyceride, partielle Fettsäure-Glyceride und Polyglycide. Beispiele geeigneter Tenside sind Biobase® EP und Ceralution® H.
Lipide und Emulgatoren werden vorzugsweise in einem Gewichtsverhältnis von 50: 1 bis 2: 1, vorzugsweise 15:1 bis 30:1 eingesetzt.
Die pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoffe werden, bezogen auf die Phase B, vorzugsweise in einer Menge von 0,1 bis 80 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-% eingesetzt.
Nachfolgend werden beispielhaft pharmazeutische Wirkstoffe aufgeführt, die beispielsweise in freier Form, als Salz, Ester oder Ether eingesetzt werden können:
Analgetika/Antirheumatika, wie Morphin, Copdein, P t__tnid, Fentanyl und Fentanylderivate, Leyomethadon, Tramadol, Diclofenac, Ibuprofen, Indometacin, Naproxen, Piroxicam, Penicillamin; Antiallergika, wie Pheniramin, Dimetinden, Terfenadin, Astemizol, Loratidin, Doxylamin, Meclozin, Bεtmipin, Clemastin; Antibiotika / Chemotherapeutika, wie Polypetidantibiotika wie Colistin, Polymyxin B, Teicplanin, Vancomycin; Malariamittel wie Chinin, Halofantrin, Mefloquin, Chloroquin, Virustatika wie Ganciclovir, Foscarnet, Zidovudin, Aciclovir und andere wie Dapson, Fosfomycin, Fusaiungin, Trimetoprim; Antiepileptika, wie Phenytoin, Mesuximid, Ethosuximid, Primidon, Phenobarbital, Valproinsäure, Carbamazepin, Clonazepam; Antimykotika, wie intern: Nystatin, Natarrycin, Amphotericin B, Flucytoan, Miconazol, Fluconazol, Itraconazol; extern außerdem: Clotrimazol, Econazol, Tioconazol, Fenticonazol, Bifonazol, Oxiconazol, Ketoconazol, isoconazol, Tlnattat; Corticoide (Interna), wie Aldosteron Fludrocortison, Betametason, Dexametason, Triamcinolon, Fluocortolon, Hydroxycortison, Prednisolon, Prednyliden, Cloprednol, Methylprednisolon; Dermatika, wie Antibiotika: Tetracyclin, Erythromycin, Neomycin, Gentamycin, Clindamiycin, Framycetin, Tyrothricin, Chlortetracychn Mipirocin, Fusidnsäure; Virustatika wie oben, außerdem: Podohyllotoxin, Vidarabin, Tromantadin; Corticoide wie oben, außerdem: Amcinonid, Flupredniden, Alclometason, Clobetasol, Diflorason, Halcinonid, Fluocinolon, Clocortolon, Flumetason, Difluocortolon, Fludroxycortid, Halometason, Desoximtason, Fluocinolid, Fluocortinbutyl, Flupredniden, Prednicarbat, Desonid; Diagnostika, wie radioaktive Isotope wie Te99m, Inl l l oder 1131, kovalent gebunden an Lipide oder Lipoide oder andere Moleküle oder in Komplexen, hochsubstituierte iodhaltige Verbindungen wie zum Beispiel Lipide; Hämostyptika, wie Blutungsgerinnungsfaktoren VIII, IX; Hypnotika, Sedativa, wie Cyclobarbital, Pentobarbital, Phenobarbital, Methaqualon, Benzodiazepine (Flurazepam, Midazolam, Netrazepam, Lormetazepam, Flxinitrazepam, Trazolam, Brotizolam, Temazepam, Loprazolam); Hypophysen-, Hypothalamushormone, regulatorische Peptide und ihre Hemmstoffe, wie Corticotrophin, Tetracosactid, Choriongonadotropin, Urofollitropin, Urogonadotropin, Somatropin, Metergolin, Bromocriptin, Terlipressin, Desmopressin, Oxrtocin, Argipressin, Ornipressin, Leuprorelin, Triptorelin, Gonadorelin, Buserelin, Nafarelin, Goselerin, Somatostatin; Immuntherapeutika und Zytokine, wie Dimepranol-4-acetatamidobenzoat, Thymopentin, α-Interferon, ß-lhterferon, Filgrastim, Interleukine, Azathioprin, Ciclosporin; Lokalanaesthetika, wie intern: Butanilicain, Mepivacain, Bupivacain, Etidocain, Lidocain, Articain, Prilocain; extern außerdem: Propipocain, Oxybuprocain, Etracain, Benzocain; Migränemittel, wie Proxibarbal, Lisurid, Methysergid, Dihydroergotamin, Clonidin, Ergotamin, Pizotifen; Narkosemittel, wie Methohexital, Propofol, Etomidat, Ketamin, Alfentanil, Thiopental, Droperidol, Fentanyl; Nebenschilddrüsenhormone, C∑ύciiimstoffwechselregulatoren, wie Dihydrotachysterol, Calcitonin, Clodronsäure, Etidronsäure; Op1h-tlmika, wie Atropin, Cyclodrin, Cyclopentolat, Homatropin, Tronicamid, Scopolamin, Pholedrin, Edoxudin, Idouridin, Tromantadin, Aciclovir, Acetazolamid, Diclofenamid, Carteolol, Timolol, Metipranolol, Betaxolol, Pindolol, Befunolol, Bupranolol, Levobununol, Carbachol, Pilocarpin, Clonidin, Neostigmin; Psychopharmaka, wie Benzodiazepne (Lorazepam, Diazepam), Clomethiazol; Schilddrüsentherapeutika, wie 1-Thyroxin, Carbi nazol, Thiamazol, Propylthiouracil; Sera, hrimxinglobuline, hnpfstoffe, wie Immunglobuline allgemein und spezifisch wie Hepatitis- Typen, Röteln, Cytomegalie, Tollwut; FSME, VaricellaZoster, Tetanus, Rhesusfaktoren, Immunsera wie Botulismus-Antitoxin, Diphterie, Gasbrand, Schlangengift, Skorpiongift, Impfstoffe wie Influenza, Tuberkulose Cholera, Diphterie, Hepatitis-Typen, FSME, Röteln, Hämophilus influenzae, Masern, Neisseria, Mumps, Poliomyelitis, Tetanus, Tollwut, Typhus; Sexualhormone und ihre Hemmstoffe, wie Anabolika, Androgene, Antiandrogene, Gestagene, Estrogene, Antiestrogene (Tamoxifen etc.); Zystostatika und Metastasenhemmer, wie Alkylantien wie Nimustin, Melphalan, Carmustin, Lomustin, Cyclophosphamid, Ifosfamid, Trofosfamid, Chlorambucil, Busulfan, Treosulfan, Predninmustin, Thiotepa,
Antimetabolite wie Cytaräbin, Fluorouracil, Methotrexat, Mercaptopurin, Tioguanin, Alkaloide wie Vinblastin, Vincristin, Vindesin; Antibiotika wie Aclarubicin, Bleomycin, Dactinomycin, Daunorubicin, Epimbicin, Idarubicin, Mitomycin, Plicamycin, Komplexe von Nebengruppenelementen (zum Beispiel Ti, Zr, V, Nb, Ta, Mo, W, Pt) wie Carboplatin, Cisplatin und Metallocenverbindungen wie Titanocendichlorid Amsacrin, Dacarbazin, Estramustin, Etoposid, Hydroxycarbamid, Mitoxynthron, Procarbazin, Temiposid Alkylamidophospholipide (beschrieben in J. M. Zeidler, F. Emling, W. Zimmermann und H. J. Roth, Archiv der Pharmazie, 324 (1991), 687)
Etherlipide wie Hexadecylphosphocholin, Ilmofosin und Analoga, beschrieben in R. Zeisig, D. Arndt und H. Brachwitz, Pharmazie 45 (1990), 809 bis 818.
Geeignete Wirkstoffe sind beispielsweise auch Dichlorphenac, Ibuprofen, Acetylsalicylsäure, Salicylsäure, Erythromycin, Ketoprofen, Cortison, Glucocorticoide.
Weiterhin geeignet sind kosmetische Wirkstoffe, die insbesondere oxidations- oder hydrolyseempfindlich sind wie beispielsweise Polyphenole. Hier seien genannt Catechine (wie Epicatechin, Epicatechin-3-gallat, Epigallocatechin, Epigallocatechin-3-gallat), Flavonoide (wie Luteolin, Apigenin, Rutin, Quercitin, Fisetin, Kaempherol, Rhametin), Isoflavone (wie Genistein, Daidzein, Glycitein, Prunetin), Cumarine (wie Daphnetin, Umbelliferon), Emodin, Resveratrol, Oregonin.
Geeignet sind Vitamine wie Retinol, Tocopherol, Ascorbinsäure, Riboflavin, Pyridoxin. Geeignet sind ferner Gesamtextrakte aus Pflanzen, die . u.a. obige Moleküle oder Molekülklassen enthalten. Bei den Wirkstoffen handelt es sich gemäß einer Ausführungsform der Erfindung um Lichtschutzfilter. Diese können als organische Lichtschutzfilter bei Raumtemperatur (25°C) in flüssiger oder fester Form vorliegen. Geeignete Lichtschutzfilter (UV-Filter) sind beispielsweise Verbindungen auf Basis von Benzophenon, Diphenylcyanacrylat oder p- Aminobenzoesäure. Konkrete Beispiele sind (INCI- oder CTFA-Bezeichnungen) Benzophenone-3, Benzophenone-4, Benzophenone-2, Benzophenone-6, Benzophenone-9, Benzophenone-1, Benzophenone-11, Etocrylene, Octocrylene, PEG-25 PABA, Phenylbenzimidazole Sulfonic Acid, Ethylhexyl Methoxycinnamate, Ethylhexyl Dimethyl PABA, 4-Methylbenzylidene Camphor, Butyl Methoxydibenzoylmethane, Ethylhexyl Salicylate, Homosalate sowie Methylene-Bis-Benzotriazolyl Tetramethylbutylphenol (2,2*- Methylen-bis- (6-(2H-benzoetriazol-2-yl)-4-(l , 1 ,3 ,3 -tetramethylbutyl)-phenol} , 2-
Hydroxy-4-methoxybenzophenon-5-sulfonsäure und 2,4,6-Trianilino-p-(carbo-2'- ethylhexyl- 1 '-oxi)- 1 ,3 ,5-triazin.
Weitere organische Lichtschutzfilter sind Octyltriazone, Avobenzone, Octylmethoxycinnamate, Octylsalicylate, Benzotriazole und Triazine.
Gemäß einer weiteren Ausführungsform der Erfindung werden als Wirkstoffe Antischuppen-Wirkstoffe eingesetzt, wie sie üblicherweise in kosmetischen oder pharmazeutischen Formulierungen vorliegen. Ein Beispiel hierfür ist Piroctone Olamine (l-Hydroxy-4-methyl-6-(2,4,4-dimethylpentyl)-2(lH)-pyridone; vorzugsweise in
Kombination mit 2-Aminoethanol (1:1)). Weitere geeignete Mittel zur Behandlung von Hautschuppen sind dem Fachmann bekannt.
Weitere mögliche Inhaltstoffe der Emulsionen sind hydrophil beschichtete Mikropigmente, Elektrolyte, Glycerin, Polyethylenglykol, Propylenglykol, Bariumsulfat, Alkohole, Wachse, Metallseifen, Magnesiumstearat, Vaseline oder andere Inhaltsstoffe. Beispielsweise können weiterhin Parf ms, Parfumöle oder Parfumaromen zugesetzt werden. Geeignete kosmetische Wirkstoffe beispielsweise Polyphenole und davon abgeleitete Verbindungen. Geeignete Vitamine sind Retinol, Tocopherol, Ascorbinsäure, Riboflavin und Pyridoxin.
Als Wirkstoffe kommen zudem beispielsweise alle oxidationssensiblen Wirkstoffe wie Tocopherol in Betracht. Gemäß einer weiteren Ausführungsform der Erfindung werden organische Farbstoffe als Wirkstoffe bzw. an Stelle von Wirkstoffen eingesetzt. Mit dem erfindungsgemäßen Verfahren können alle bekannten und geeigneten Wasser-in- Öl-Emulsionen oder Öl-in- Wasser-Emulsionen hergestellt werden. Dazu können die nach den beschriebenen Emulgatoren und weiteren Inhaltsstoffe eingesetzt werden. Ferner ist die Herstellung von Polyol-in-Öl-Emulsionen möglich. Hierbei können beliebige geeignete Polyole eingesetzt werden.
In den Emulsionen können die Anteile der zwei Hauptphasen in weiten Bereichen variiert werden. Beispielsweise liegen 5 bis 95 Gew.-%, vorzugsweise 10 bis 90 Gew.-%, insbesondere 20 bis 80 Gew.-% der jeweiligen Phasen vor, wobei die Gesamtmenge 100 Gew.-% ergibt.
Die beschriebene P/O-Emulsion kann auch in Wasser oder eine Wasser-in-Öl-Emulsion emulgiert werden. Dabei resultiert eine Polyol-in-Öl-inWasser-Emulsion (P/O/W- Emulsion), die mindestens eine beschriebene Emulsion und zusätzlich mindestens eine wässrige Phase enthält. Derartige multiple Emulsionen können im Aufbau den in DE-A-43 41 113 beschriebenen Emulsionen entsprechen.
Beim Einbringen der erfindungsgemäßen P/O-Emulsion in Wasser oder wässrige Systeme kann das Gewichtsverhältnis der einzelnen Phasen in weiten Bereichen variiert werden. Vorzugsweise beträgt in der letztendlich erhaltenen P/O/W-Emulsion der Gewichtsanteil der P/O-Emulsion 0,01 bis 80 Gew.-%, besonders bevorzugt 0,1 bis 70 Gew.-%, insbesondere 1 bis 30 Gew.-%, bezogen auf die gesamte P/O/W-Emulsion.
Beim Einbringen der erfindungsgemäßen P/O-Emulsion in eine O/W-Emulsion beträgt der Anteil der P/O-Emulsion vorzugsweise 0,01 bis 60 Gew.-%, besonders bevorzugt 0,1 bis 40 Gew.-%, insbesondere 1 bis 30 Gew.-%, bezogen auf die letztendlich erhaltene P/O/W- Emulsion. In der O/W-Emulsion, die hierzu verwendet wird, beträgt der Ölanteil vorzugsweise 1 bis 80 Gew.-%, besonders bevorzugt 1 bis 30 Gew.-%, bezogen auf die eingesetzte O/W-Emulsion. Anstelle einer P/O-Emulsion kann auch eine W/O-Emulsion eingebracht werden, was zu einer W/O/W-Emulsion fuhrt. Die einzelnen Phasen der Emulsionen können noch übliche für die einzelnen Phasen bekannte Inhaltsstoffe aufweisen. Beispielsweise können die einzelnen Phasen weitere in diesen Phasen lösliche pharmazeutische oder kosmetische Wirkstoffe enthalten. Die wässrige Phase kann beispielsweise organische lösliche Lichtschutzfilter, hydrophil gecoatetes Micropigment, Elektrolyte, Alkohole usw. enthalten. Einzelne oder alle der Phasen können zudem Feststoffe enthalten, die vorzugsweise ausgewählt sind aus Pigmenten oder Micropigmenten, Mikrosphären, Silikagel und ähnlichen Stoffen. Die Ölphase kann beispielsweise organisch modifizierte Torimineralien, hydrophob gecoatete (Micro)Pigmente, organische öllösliche Lichtschutzfilter, öllösliche kosmetische Wirkstoffe, Wachse, Metallseifen wie Magnesiumstearat, Vaseline oder Gemische davon enthalten. Als (Micro)Pigmente können Titandioxid, Zinkoxid und Bariumsulfat sowie Wollastonit, Kaolin, Talk, Al2O3, Bismutoxidchlorid, micronisiertes Polyethylen, Glimmer, Ultramarin, Eosinfarben, Azofarbstoffe, genannt werden. Insbesondere Titandioxid oder Zinkoxid sind in der Kosmetik als Lichtschutzfilter gebräuchlich und lassen sich mittels der erfindungsgemäßen Emulsionen besonders glatt und gleichmäßig auf die Haut auftragen. Ivfikro Sphären oder Silicagel können als Träger für Wirkstoffe eingesetzt werden, und Wachse können beispielsweise als Grundlage für Polituren verwendet werden.
Die Wasserphase kann darüber hinaus Glycerin, Polyethylenglykol, Propylenglykol, Ethylenglykol und έihnliche Verbindungen sowie Derivate davon enthalten.
Die Verwendung von üblichen Hilfs- und Zusatzstoffen in den Emulsionen ist dem Fachmann bekannt.
Als wässrige Phase können Wasser, wässrige Lösungen oder Mischungen von Wasser mit wassermischbaren Flüssigkeiten wie Glycerin oder Polyethylenglykol eingesetzt werden. Ferner können in der wässrigen Phase Elekfrolyte wie Natriumchlorid enthalten sein. Falls gewünscht, können femer viskositätserhöhende Stoffe oder Ladungsträger eingesetzt werden, wie sie in der EP-B-0605 497 beschrieben sind.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele
Alle Versuche wurden in einer zweistufigen Vorrichtung durchgeführt, wobei Phase A und Phase B gefrennt in das erste Mischgefäß geführt wurden, der Ausfrag und Phase C sodann gefrennt in das zweite Mischgefaß geführt wurden. Die angegebenen Prozentangäben beziehen sich auf das Gewicht. Es wurden Teilchengrößen und innere Oberflächen mit einem Particle Size Analyzer (PSA) bestimmt.
Beispielrezepturen für kontinuierliche Emulsionsherstellung Beispiel 1
Emulgierung eines Triglycerides
Phase A:
Protelan LS 9011 Sodium Lauroyl 0,54 % 0,54 % Sarcosinate
Brij 35 P Nena Laureth-23 1,40 % 1,40 %
Pricerine 9091 Glycerin 6,32 % 1,40 % demin. Wasser 2,25 % 2,10 %
Phase B:
Miglyol 812 N Caprylic/capric 60,0 % 60,0 % triglyceride
Phase C: demin. Wasser 29,5 % 34,3 %
100,0 % 99,7%
Drehzahl Stufe 1 [min-l] 4000 4000 Drehzahl Stufe 2 [min-l] 3200 3200 Verweilzeit Stufe 1 [s] 10 10 Verweilzeit Stufe 2 [s] 5 5
PSA
Mediän [μm] 0,39 0,44 < 1 μm [%] 100,0 98,3 cm /cm 16,5 15,3
Beispiel 2
Emulgierung eines Alkydharzes
Probe Phase A:
Protelan LS 9011 Sodium Lauroyl Sarcosinate 0,40 % Brij 35 P Nena Laureth-23 1,05 % Hexylenglykol Hexylene Glycol 1,50 % demin. Wasser 4,50 % Phase B: Woleekyd L3 Alkydharz 58,0 % Phase C: demin. Wasser 34,5 % 100,0 %
Drehzahl Stufe 1 [min-l] 3000 Drehzahl Stufe 2 [min-l] 2400 Verweilzeit Stufe 1 [s] 25 Verweilzeit Stufe 2 [s] 16
PSA
Mediän [μm] 0,39 < 1 μm [%] 100,0 cm2/cm3 17,2
Beispiel 3
Emulgierung eines Acrylatharzes
(80 % in EEP)
Probe Phase A: Protelan LS 9011 Sodium Lauroyl Sarcosinate 0,38 % Brij 35 P Nena Laureth-23 0,41 % Brij 700 Steareth-100 0,41 % demin. Wasser 6,00 % Phase B:
WorleeCryl-Produkt Acrylatharz 63,0 % Phase C: demin. Wasser 29,8 % 100,0 %
Drehzahl Stufe 1 [min-l] 3000 Drehzahl Stufe 2 [min-l] 2400 Verweilzeit Stufe 1 [s] 25 Verweilzeit Stufe 2 [s] 16
PSA
Mediän [μm] 0,67 < 1 μm [%] 82,0
9 m /cm 11,0
Beispiel 4
Herstellung einer W/O Emulsion
Rezeptur-Nr.: Handelsname Gew.-%
Phase A
Arlacel 1690 Sorbitan oleate, 7,00 polyglyceryl ricinoleate
Isopar L CIO- 13 isoparaffin 3,50
Phase B demin. Wasser 40,00 NaCl Sodium chloride 1,00
Phase C
Isopar L CIO- 13 isoparaffin 48,50
Summe: 100,00
Drehzahl Stufe 1 [min-l] 3750 Drehzahl Stufe 2 [min-l] 3000 Verweilzeit Stufe 1 [s] 25 Verweilzeit Stufe 2 [s] 13
PSA (Volume)
Mediän [μm] 0,39 < 1 μm ["° 100
9 m /cm 17,3
Beispiel 5
Herstellung einer P/O Emulsion
Rezeptur-Nr Leer-PO
Produktionstag:
Handelsname [Gew.-%]
Phase A
Dow Coming DC DC 5225 Cyclomethicone, PEG/PPG- 13,80
C 18/18 dimethicone
Abu EM 97 Cetyl PEG/PPG- 10/1 5,20 dimethicone Wacker Belsil CM 040 Cyclomethicone
Phase B Propylene glycol (0,5 % Propylene Glycol 71,00
NaCl)
Phase C Wacker Belsil CM 040 Cyclomethicone 10,00
Summe 100,00
Drehzahl Stufe 1 [min- l] 3000
Drehzahl Stufe 2 [min- 1] 2400
Verweilzeit Stufe 1 [s] 20
Verweilzeit Stufe 2 [s] 18
PSA (Volume)
Mediän [μm] 0,71
< 1 μm [%] 83 m2/cm3 9,97 Beispiel 6
Herstellung einer Basis-OW
Rezeptur-Nr.:
Handelsname [Gew.-%]
Phase A
Biobase RS Glycerin stearate, cetyl 2,50 alcohol, sodium stearoyl lactylate, tocopherol
Vara AB Petrolatum 5,00
Cosmacol EBI C12 - 15 Alkyl benzoate 5,00
Cetiol J 600 Oleyl-erucate 3,70
Abu 350 Dimethicone 1,30
Vitamin E Acetat Tocopheryl acatate 1,00
Phase B demin. Wasser 3,70
Brij 700 Stearath-100 0,50 Kelfrol Xanthan-Gum 0,30
Phase C demin. Wasser 77,0
Summe 100,00
Drehzahl Stufe 1 [min-l] 4000 Drehzahl Stufe 2 [min-l] 3200
Verweilzeit Stufe 1 [s] 20 Verweilzeit Stufe 2 [s] 5
Beispiel 7
Herstellung einer SLN Emulsion
Phase A: Protelan LS 9011 Sodium Lauroyl Sarcosinate 0,75 % Brij 35 P Nena Laureth-23 1,30 % Pricerine 9091 Glycerin 2,25 % demin. Wasser 2,25 % Phase B: Cutina CP Cetyl palmitate 44,8 % a-Tocopherol Tocopherol 11,2 % Phase C: demin. Wasser 37,5 % 100,0 %
Drehzahl Stufe 1 [min-l] 4000 Drehzahl Stufe 2 [min-l] 3200
Verweilzeit Stufe 1 [s] 12 Verweilzeit Stufe 2 [s] 8
PSA (Area)
Mediän [μm] 0,36 < 1 μm [%] 100,0
9 cm /cm 16,8

Claims

Patentansprüche
Vorrichtung zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen unter Luftausschluss, umfassend ein allseits geschlossenes Mischgefäß, das Zu- und Abführrohre zum Ein- und Austrag von fließfähigen Stoffen oder Stoffgemischen sowie ein Rührwerkzeug aufweist, das einen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften ' und ohne Hochdruckhomogenisierung erlaubt.
2. Vorrichtung nach Ansprach 1, dadurch gekennzeichnet, dass das Mischgefäß eine im wesentlichen zylindrische Form aufweist, die Achse des Rührwerkzeugs in der Zylinderachse liegt und die Zu- und Abfuhrrohre im wesentlichen senkrecht zur Zylinderachse im oberen und unteren Umfangsbereich des Zylinders voneinander beabstandet angeordnet sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Abführrohr mindestens ein Sensor zur kontinuierlichen Messung der Temperatur, Leitfähigkeit und/oder optischen Eigenschaften der Emulsion oder Dispersion angeordnet ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie mindestens zwei in Reihe hintereinander geschaltete Mischgefaße aufweist, wobei der Ausfrag aus dem ersten Mischgefäß ins zweite Mischgefäß eingetragen wird und ein weiteres Zuführrohr in das zweite Mischgefäß vorgesehen ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mischgefäße unabhängig voneinander temperiert werden können.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Zufuhr der fließfähigen Stoffe und der Rühreintrag und gegebenenfalls die
Temperierung der Mischgefäße rechnergesteuert sind.
7. Verfahren zur kontinuierlichen Herstellung von Emulsionen und Dispersionen unter Luftausschluß, bei dem mindestens zwei fließfähige Ströme mindestens zweier Phasen der Emulsionen oder Dispersionen gefrennt kontinuierlich in ein allseitig geschlossenes Mischgefaß dosiert werden, in dem sie unter Rühreintrag in eine Emulsion oder Dispersion überfuhrt werden, und die Emulsion/Dispersion
8. kontinuierlich aus dem Mischgefäß ausgefragen wird, wobei der Rühreinfrag ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erfolgt.
9. Verfahren nach Ansprach 7, dadurch gekennzeichnet, dass das Verhältnis der mindestens zwei fließfähigen Ströme zueinander so eingestellt wird, dass im
Mischgefäß ein viskoelastischer Bereich der Mischung eingestellt wird.
10. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die aus dem ersten Mischgefäß ausgetragene Emulsion oder Dispersion und ein weiterer fließfahiger Strom in ein zweites allseitig geschlossenes Mischgefaß dosiert werden, aus dem die gewünschte Emulsion oder Dispersion ausgefragen wird.
11. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass es in einer Vorrichtung gemäß einem der Ansprüche 1 bis 6 durchgeführt wird.
12. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass es zur Herstellung von Nanoemulsionen, Nanodispersionen oder SLN-Dispersionen eingesetzt wird.
PCT/EP2003/002996 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen WO2004082817A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2519591A CA2519591C (en) 2003-03-21 2003-03-21 Device and method for continuously producing emulsions or dispersions
DE20321104U DE20321104U1 (de) 2003-03-21 2003-03-21 Vorrichtung zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen
AU2003226694A AU2003226694B2 (en) 2003-03-21 2003-03-21 Device and method for continuously producing emulsions or dispersions
JP2004569474A JP4782426B2 (ja) 2003-03-21 2003-03-21 乳濁液または分散液を連続的に作製するための装置および方法
DE50305216T DE50305216D1 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen
EP03816337A EP1606044B2 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen
PCT/EP2003/002996 WO2004082817A1 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen
US10/549,700 US7775704B2 (en) 2003-03-21 2003-03-21 Device and method for continuously producing emulsions or dispersions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2003/002996 WO2004082817A1 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen

Publications (1)

Publication Number Publication Date
WO2004082817A1 true WO2004082817A1 (de) 2004-09-30

Family

ID=33016801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/002996 WO2004082817A1 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen

Country Status (7)

Country Link
US (1) US7775704B2 (de)
EP (1) EP1606044B2 (de)
JP (1) JP4782426B2 (de)
AU (1) AU2003226694B2 (de)
CA (1) CA2519591C (de)
DE (2) DE50305216D1 (de)
WO (1) WO2004082817A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036240A1 (de) * 2005-09-28 2007-04-05 Ifac Gmbh & Co. Kg Vorrichtung zur in-line-prozesskontrolle bei der herstellung von emulsionen oder dispersionen
WO2007045198A3 (de) * 2005-10-18 2007-07-12 Forschungszentrum Juelich Gmbh Verfahren zur effizienzsteigerung von tensiden, zur aufweitung des temperaturfensters, zur unterdrückung lamellarer mesophasen in mikroemulsionen mittels additiven sowie mikroemulsion
EP1964604A3 (de) * 2007-01-31 2009-03-18 Hebold Mixing&More GmbH Vorrichtung und Verfahren zur kontinuierlichen Herstellung einer Mischung aus wenigstens zwei fließfähigen Phasen
WO2010040902A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Wood impregnation
WO2010040903A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Impregnation with an emulsion
WO2011023803A2 (de) 2009-08-27 2011-03-03 Otc Gmbh Perlglanzkonzentrat und verfahren zur herstellung
DE102009040454A1 (de) 2009-08-27 2011-03-24 Otc Verwaltungs Gmbh Herstellung von Perlglanzdispersionen
DE102010028774A1 (de) 2010-05-07 2011-11-10 Otc Gmbh Emulgiereinrichtung zur kontinuierlichen Herstellung von Emulsionen und/oder Dispersionen
FR3000957A1 (fr) * 2013-01-16 2014-07-18 Nitrates & Innovation Installation modulaire de fabrication d'un precurseur d'emulsion explosive

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945318B2 (ja) * 2007-05-25 2012-06-06 株式会社仲田コーティング 微細気泡発生装置
US8927020B2 (en) 2007-09-10 2015-01-06 M Technique Co., Ltd. Method for producing biologically ingestible material and biologically ingestible material obtained therefrom
US20130045238A1 (en) * 2009-04-22 2013-02-21 Agency For Science, Technology And Research Emulsions for transdermal delivery
DE102011116069A1 (de) * 2011-10-18 2013-04-18 Dr. Rimpler Gmbh Lipidnanopartikeldispersion, Verfahren zu deren Herstellung sowie ihre Verwendung
WO2013105026A1 (en) * 2012-01-09 2013-07-18 Department Of Biotechnology (Dbt) A process for preparing solid lipid sustained release nanoparticles for delivery of vitamins
JP7306608B2 (ja) * 2016-03-11 2023-07-11 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 高度な流体処理方法およびシステム
CN105854680A (zh) * 2016-05-11 2016-08-17 范绍玉 一种机械工程用搅拌装置
EP3655127B1 (de) 2017-07-20 2021-07-07 Clariant International Ltd Demulgatoren und verfahren zur verwendung von demulgatoren zum brechen von emulsionen aus wasser und rohöl
CN114307756B (zh) * 2021-12-14 2022-12-27 湖州倍格曼新材料股份有限公司 一种基于丁达尔效应判断粘结剂胶凝状态的混合系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579461A (en) * 1967-11-20 1971-05-18 Johnson & Son Inc S C Emulsification process
US4539139A (en) * 1983-05-06 1985-09-03 Fuji Photo Film Co., Ltd. Process for the preparation of oil-in-water emulsions
US5250576A (en) * 1991-08-12 1993-10-05 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361035A (en) * 1942-08-01 1944-10-24 Lummus Co Wax-oil separation
US2475191A (en) * 1947-01-30 1949-07-05 Gen Motors Corp Method for producing latex foam
US3062627A (en) * 1958-04-23 1962-11-06 Shell Oil Co Rotating disc contactor
US3600328A (en) * 1968-12-10 1971-08-17 Union Oil Co Apparatus for forming emulsions
US3855368A (en) * 1972-04-26 1974-12-17 Ceskoslovenska Akademie Ved Apparatus for bringing fluid phases into mutual contact
US3951386A (en) * 1975-03-31 1976-04-20 Phillips Petroleum Company Uniform mixing in vessels
US4123403A (en) 1977-06-27 1978-10-31 The Dow Chemical Company Continuous process for preparing aqueous polymer microsuspensions
JPS6049015B2 (ja) * 1978-12-18 1985-10-30 福嶋 唯夫 連続乳化装置
JPS5735826U (de) * 1980-08-08 1982-02-25
US4403866A (en) * 1982-05-07 1983-09-13 E. I. Du Pont De Nemours And Company Process for making paints
DE3421468A1 (de) 1984-06-08 1985-12-19 Dr. Rentschler Arzneimittel Gmbh & Co, 7958 Laupheim Lipidnanopellets als traegersystem fuer arzneimittel zur peroralen anwendung
CH674317A5 (de) * 1988-01-29 1990-05-31 Applied Biosystems
US5149720A (en) * 1991-08-12 1992-09-22 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials
DE4202212A1 (de) 1992-01-28 1993-07-29 Basf Ag Kontinuierliches verfahren zur herstellung von waessriger polyacrylat-sekundaerdispersionen
JP3306131B2 (ja) * 1992-11-05 2002-07-24 富士写真フイルム株式会社 マイクロカプセルの製造方法
JP2581530B2 (ja) * 1995-03-20 1997-02-12 インテヴェップ,エス.エイ. エマルジョン形成システム及び混合装置
DE69629352T2 (de) * 1995-12-05 2004-02-12 Fuji Photo Film Co., Ltd., Minami-Ashigara Verfahren zur Herstellung einer Zellulose-esterlösung
JPH09192466A (ja) * 1996-01-19 1997-07-29 Toppan Printing Co Ltd 湿式分散装置及びインキの製造方法
FR2747321B1 (fr) 1996-04-16 1998-07-10 Centre Nat Rech Scient Procede de preparation d'une emulsion
DE19828742A1 (de) 1998-06-27 1999-12-30 Basf Coatings Ag Taylorreaktor für Stoffumwandlungen, bei deren Verlauf einer Änderung der Viskosität v des Reaktionsmediums eintritt
DE19828741A1 (de) 1998-06-27 1999-12-30 Leo Elektronenmikroskopie Gmbh Elektronenmikroskop mit einem abbildenden magnetischen Energiefilter
FR2787326B1 (fr) 1998-12-17 2001-01-26 Oreal Nanoemulsion a base d'esters gras de glycerol, et ses utilisations dans les domaines cosmetique, dermatologique et/ou ophtalmologique
US6120175A (en) * 1999-07-14 2000-09-19 The Porter Company/Mechanical Contractors Apparatus and method for controlled chemical blending
JP2002107868A (ja) * 2000-07-14 2002-04-10 Fuji Photo Film Co Ltd 脂肪酸銀塩の製造方法および熱現像画像記録材料
JP4451581B2 (ja) * 2001-09-28 2010-04-14 株式会社日本触媒 重合防止剤の作成供給装置および作成供給方法
JP3747174B2 (ja) * 2001-11-19 2006-02-22 株式会社カイジョー 半導体処理装置の薬液濃度制御装置
JP4588305B2 (ja) * 2003-08-13 2010-12-01 冷化工業株式会社 撹拌混合装置および殺菌装置および洗浄装置
KR100500475B1 (ko) * 2003-11-10 2005-07-12 삼성전자주식회사 케미컬 혼합장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579461A (en) * 1967-11-20 1971-05-18 Johnson & Son Inc S C Emulsification process
US4539139A (en) * 1983-05-06 1985-09-03 Fuji Photo Film Co., Ltd. Process for the preparation of oil-in-water emulsions
US5250576A (en) * 1991-08-12 1993-10-05 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036240A1 (de) * 2005-09-28 2007-04-05 Ifac Gmbh & Co. Kg Vorrichtung zur in-line-prozesskontrolle bei der herstellung von emulsionen oder dispersionen
WO2007045198A3 (de) * 2005-10-18 2007-07-12 Forschungszentrum Juelich Gmbh Verfahren zur effizienzsteigerung von tensiden, zur aufweitung des temperaturfensters, zur unterdrückung lamellarer mesophasen in mikroemulsionen mittels additiven sowie mikroemulsion
EP2196530A1 (de) * 2005-10-18 2010-06-16 Forschungszentrum Jülich Gmbh Mikroemulsion
EP2253698A1 (de) * 2005-10-18 2010-11-24 Forschungszentrum Jülich GmbH Mikroemulsion
EP1964604A3 (de) * 2007-01-31 2009-03-18 Hebold Mixing&More GmbH Vorrichtung und Verfahren zur kontinuierlichen Herstellung einer Mischung aus wenigstens zwei fließfähigen Phasen
WO2010040902A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Wood impregnation
WO2010040903A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Impregnation with an emulsion
DE102009040454A1 (de) 2009-08-27 2011-03-24 Otc Verwaltungs Gmbh Herstellung von Perlglanzdispersionen
WO2011023803A2 (de) 2009-08-27 2011-03-03 Otc Gmbh Perlglanzkonzentrat und verfahren zur herstellung
EP3284807A1 (de) 2009-08-27 2018-02-21 Clariant International Ltd Perlglanzkonzentrat und verfahren zur herstellung
DE102010028774A1 (de) 2010-05-07 2011-11-10 Otc Gmbh Emulgiereinrichtung zur kontinuierlichen Herstellung von Emulsionen und/oder Dispersionen
WO2011138438A1 (de) 2010-05-07 2011-11-10 Otc Gmbh Emulgiereinrichtung zur kontinuierlichen herstellung von emulsionen und/oder dispersionen
US10610835B2 (en) 2010-05-07 2020-04-07 Clariant International Ag Emulsification device for continuously producing emulsions and/or dispersions
FR3000957A1 (fr) * 2013-01-16 2014-07-18 Nitrates & Innovation Installation modulaire de fabrication d'un precurseur d'emulsion explosive
WO2014111644A1 (fr) * 2013-01-16 2014-07-24 Nitrates & Innovation Installation modulaire de fabrication d'un precurseur d'emulsion explosive
EP2845844A3 (de) * 2013-01-16 2015-11-11 Nitrates&Innovation Modulare Anlage zur Herstellung eines Vorläufers einer explosiven Emulsion
US9670107B2 (en) 2013-01-16 2017-06-06 Nitrates & Innovation Modular installation for the manufacture of an explosive emulsion precursor

Also Published As

Publication number Publication date
AU2003226694B2 (en) 2010-08-26
DE50305216D1 (de) 2006-11-09
EP1606044B2 (de) 2010-12-15
JP4782426B2 (ja) 2011-09-28
CA2519591C (en) 2011-07-12
US20070025177A1 (en) 2007-02-01
JP2006520678A (ja) 2006-09-14
AU2003226694A1 (en) 2004-10-11
CA2519591A1 (en) 2004-09-30
DE20321104U1 (de) 2006-01-05
US7775704B2 (en) 2010-08-17
EP1606044A1 (de) 2005-12-21
EP1606044B1 (de) 2006-09-27

Similar Documents

Publication Publication Date Title
EP1606044B2 (de) Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen
EP0605497B2 (de) Arzneistoffträger aus festen lipidteilchen (feste lipidnanosphären (sln))
EP1868573B1 (de) Verfahren zur herstellung ultrafeiner submicron-suspensionen
EP0790821B1 (de) Verfahren zur herstellung von pharmazeutischen nanosuspensionen
EP1194123B1 (de) Verfahren zur schonenden herstellung von hochfeinen mikropartikeln und nanopartikeln
EP1868574B1 (de) Verfahren zur schonenden herstellung hochfeiner partikelsuspensionen und hochfeiner partikel sowie deren verwendung
Zielińska et al. Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients
DE10312763A1 (de) Verfahren zur Herstellung einer SLN-Dispersion
DE102005017777A1 (de) Verfahren zur schonenden Herstellung von hochfeinen Partikelsuspensionen
EP1707256B1 (de) Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen
EP1929271A1 (de) Vorrichtung zur in-line-prozesskontrolle bei der herstellung von emulsionen oder dispersionen
DE202005015341U1 (de) Vorrichtung zur In-Line-Prozesskontrolle bei der Herstellung von Emulsionen oder Dispersionen
KR20060004918A (ko) 에멀젼 또는 분산액을 연속적으로 제조하는 장치 및 방법
DE19945203A1 (de) Fest-flüssig (halbfeste) Lipidpartikel (Nano-Compartiment-Carrier-NCC) und Verfahren zur Herstellung hochkonzentrierter Lipidpartikel
US20220273582A1 (en) Continuous method for nano-emulsification by concentration phase inversion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2519591

Country of ref document: CA

Ref document number: 2004569474

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057017687

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003816337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003226694

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003816337

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057017687

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007025177

Country of ref document: US

Ref document number: 10549700

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003816337

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10549700

Country of ref document: US