WO2004082173A1 - 送信ビーム制御方法、適応アンテナ送受信装置及び無線基地局 - Google Patents

送信ビーム制御方法、適応アンテナ送受信装置及び無線基地局 Download PDF

Info

Publication number
WO2004082173A1
WO2004082173A1 PCT/JP2004/003034 JP2004003034W WO2004082173A1 WO 2004082173 A1 WO2004082173 A1 WO 2004082173A1 JP 2004003034 W JP2004003034 W JP 2004003034W WO 2004082173 A1 WO2004082173 A1 WO 2004082173A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
instruction
increase
antenna
transmission beam
Prior art date
Application number
PCT/JP2004/003034
Other languages
English (en)
French (fr)
Inventor
Hironori Mizuguchi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005503526A priority Critical patent/JPWO2004082173A1/ja
Priority to CNB2004800063683A priority patent/CN100479350C/zh
Priority to KR1020057016845A priority patent/KR100739087B1/ko
Priority to US10/548,674 priority patent/US7324784B2/en
Priority to BRPI0408742-9A priority patent/BRPI0408742A/pt
Priority to EP04718723.2A priority patent/EP1603255B1/en
Publication of WO2004082173A1 publication Critical patent/WO2004082173A1/ja
Priority to HK06109882.6A priority patent/HK1087851A1/xx

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a transmission / reception device suitable for use in a mobile communication system of a code division multiple access (hereinafter, referred to as CDMA) system.
  • CDMA code division multiple access
  • radio wave interference due to wireless communication of other mobile stations that is, multi-user interference
  • This is a major factor that limits subscriber capacity.
  • it is effective to use adaptive antenna technology that suppresses interference waves during reception and avoids transmission in unnecessary directions during transmission to reduce interference power applied to other mobile stations.
  • Non-Patent Document 1 discloses that at the time of reception, the antenna gain in the direction of the mobile station is increased by assigning optimum weighting factors (reception antenna weights) to the received signals received by a plurality of antenna devices, respectively. It describes that a transmission beam is directed toward a mobile station to be transmitted by multiplying transmission data for each antenna device by a weight coefficient (transmission antenna weight) generated based on a reception antenna weight.
  • the receiving antenna weight is generated in such a way as to minimize the mean square error between the despread pilot symbol and the RAKE-combined signal generated by referring to the provisionally determined information data symbol.
  • Non-patent document 3 (Tanaka, Harada, Ihara, Sawabashi, Adachi, "Outdoor experimental characteristics of adaptive antenna diversity reception in W-CDMA") , IEICE Technical Report RCS99-127, pp. 45-50, Oct., 1999)).
  • the directivity of the transmission beam is controlled by multiplying the transmission data by a plurality of antenna weights using a plurality of antenna devices provided in the radio base station.
  • the mobile station instructs the radio base station to decrease the transmission power if the reception quality exceeds a desired value, and instructs the radio base station to increase the transmission power if the reception quality falls below the desired value.
  • An instruction to increase or decrease the power from the mobile station to the radio base station uses TPC bits included in a frame transmitted from the mobile station to the radio base station at predetermined intervals. It is possible.
  • the radio base station extracts the TPC bit from the frame transmitted from the mobile station, and increases or decreases the transmission power for the mobile station according to the instruction.
  • the adaptive antenna transmitting / receiving apparatus shown in FIG. 1 is a configuration example in which the adaptive antenna transmitting / receiving apparatus described in FIG. 1 of Non-Patent Document 1 executes TPC.
  • a conventional adaptive antenna transmitting and receiving apparatus includes a plurality of (N: N is a positive integer) antenna apparatuses 310-1 to 310-1N arranged in an array, Antenna device 3 0 1— 1 to 3 0 1—N Multiplier of receiving signal received by antennas 3 2 1—1 to 3 0 2 _N and a plurality of receiving antennas multiplied by the receiving antenna rate Adds (combines) received signals and outputs as playback data Optimum receiving antenna that multiplies the received signals received by each of the antenna devices 3 0 1-1 to 3 0 1 -N based on the reproduced data output from the adder 303 and the calorie calculator 303.
  • the TPC bit decoding circuit 307 outputs an instruction to increase or decrease the transmission power, and the transmission antenna weight is generated based on the reception antenna weight generated by the reception antenna weight generation circuit 304.
  • the adaptive antenna transmission / reception device includes an RF reception unit that converts a radio frequency signal received by the antenna device into a baseband signal, and a radio signal transmission / reception unit (not shown) including an RF transmission unit that converts a baseband signal into a radio frequency signal. have.
  • the antenna weight conversion circuit 305 uses the weighting factor (reception antenna weight) generated by the reception antenna weight generation circuit 304 to transmit in the same direction as the directivity at the time of reception. Generate transmit antenna weight.
  • the antenna weight conversion circuit 305 controls the transmission power by adjusting each transmission antenna weight in accordance with the instruction to increase or decrease the transmission power decoded by the TPC bit decoding circuit 307.
  • the peak direction of the beam is shifted from the desired wave mobile station: ⁇ , TPC processing Therefore, if another mobile station exists in the peak direction of the power m-beam which reaches the desired value for the reception quality of the desired wave mobile station, unnecessary interference power is given to the mobile station. As a result, the transmission power for each mobile station must be increased. Normally, the maximum power of a radio base station is limited by the capability of a power amplifier that supplies power to an antenna device. Therefore, if the transmission power for each mobile station increases, the subscription power that can be accommodated in a mobile communication system is increased. User capacity is reduced.
  • An object of the present invention is to reduce the unnecessary interference power given to other mobile stations due to the shift of the peak direction of a transmission beam from a mobile station to be transmitted when TPC is applied in downlink, and to join a mobile communication system. It is an object of the present invention to provide an adaptive antenna transmitting / receiving apparatus capable of preventing a decrease in user capacity. Disclosure of the invention
  • the change in the transmission power increase / decrease instruction decoded from the TPC bit is monitored, and the increase / decrease instruction is biased toward the transmission power increase instruction during a predetermined period set in advance.
  • the transmission antenna weight / transmission power is adjusted for each antenna device, thereby changing the peak direction / main lobe width of the transmission beam. Then, this processing is repeated until the bias of the power increase instruction is eliminated in the increase / decrease instruction, or until the number of times of changing the transmission beam reaches the preset maximum value.
  • the peak direction of the transmission beam can be corrected to the direction of the mobile station to be transmitted. Also, when the main rope width of the transmission beam is widened, the received power of the mobile station increases even if the peak direction of the transmission beam with respect to the transmission target mobile station is slightly shifted.
  • FIG. 1 is a block diagram showing a configuration of a conventional adaptive antenna transmitting / receiving apparatus
  • FIG. 2 is a block diagram showing a configuration of a first embodiment of the adaptive antenna transmitting / receiving apparatus of the present invention.
  • FIG. 3A is a schematic diagram showing a change in transmission power when TPC is applied when the peak direction of the transmission beam is directed to the mobile station
  • FIG. 3B is a schematic diagram showing a change in transmission power when TPC is applied when the peak direction of the transmission beam deviates from the mobile station
  • FIG. 4 is a schematic diagram showing a control method of a transmission beam of the adaptive antenna transmitting / receiving apparatus of the first embodiment
  • FIG. 5 is a flowchart showing a processing procedure of the transmission beam control method shown in FIG. 4,
  • FIG. 6 is a schematic diagram showing a control method of a transmission beam of the adaptive antenna transceiver according to the second embodiment
  • FIG. 7 is a flowchart showing a processing procedure of the transmission beam control method shown in FIG. 6,
  • FIG. 8 is a flowchart showing a processing procedure of a transmission beam control method according to the third embodiment.
  • FIG. 9 is a block diagram showing the configuration of the adaptive antenna transmitting / receiving apparatus according to the fourth embodiment.
  • FIG. 10 is a block diagram showing a configuration example of a radio base station provided with the adaptive antenna transmitting / receiving apparatus of the present invention.
  • the transmission / reception apparatus includes a plurality of (N: N is a positive integer) antenna apparatuses 101-1 to 101-1 arranged in an array. N, a receiving-side multiplier for multiplying the received signal received by the antenna device 1 0 1—1 to 1 0 1—N by a receiving antenna, and a receiving antenna Adder 103 that adds (synthesizes) the multiple received signals multiplied by the data and outputs the data as playback data, and each antenna device receives the data based on the playback data output from the adder 103.
  • N is a positive integer
  • a receiving antenna weight generating circuit 104 that calculates an optimum receiving antenna weight for multiplying the received signal that is to be multiplied and supplies the received receiving antenna multipliers to the corresponding receiving-side multipliers 10 2 — 1 to 10 2 — N respectively;
  • a TPC bit decoding circuit 107 for extracting the TFC bit from the TPC bit and decoding the transmission power increase / decrease instruction, and a TPC bit decoding circuit 107 for decoding the transmission power increase / decrease instruction in the predetermined period.
  • Based on the TPC bit monitoring circuit 108 that monitors and detects whether or not the power is biased to increase the transmission power, and the first antenna based on the reception antenna weight generated by the reception antenna weight generation circuit 104.
  • the antenna weight for generating the transmission antenna weight A transmission antenna weight control circuit 109 that controls the first transmission antenna weight based on the monitoring result of the bit conversion circuit 105 and the TPC bit monitoring circuit 108 and outputs the weight as the second transmission antenna weight. And the second transmission antenna weight output from the transmission antenna weight control circuit 109 and the word data, and supplies the multiplied data to the antenna devices 101-1-1 to: 101-N. 106 1-106-N.
  • the adaptive antenna transmission / reception apparatus shown in FIG. 2 mainly shows the configuration of a baseband signal processing unit that performs signal processing on baseband transmission / reception data as in the conventional case.
  • the adaptive antenna transmitting and receiving apparatus includes an RF apparatus for converting a radio frequency signal received by the antenna apparatus 101-1 to L01-N to a baseband signal, and an RF for converting a baseband signal to a radio frequency signal.
  • a wireless signal transmission / reception unit (not shown) including a transmission unit is provided.
  • the baseband signal processing unit may be configured by a semiconductor integrated circuit device in which the functions of the above-described components are realized by a logic circuit or the like, or may be configured by a DSP or a CPU.
  • the baseband signal processing unit is composed of a DSP and a CPU. H
  • the processing of each component except for the antenna device described below is executed according to a program stored in a storage device in advance.
  • the reception antenna weight generation circuit 104 receives the reproduced data output from the reception adder 103, for example, so that the mean square error between the reproduced data and a preset reference signal (desired signal waveform) is minimized.
  • Known algorithms for realizing the MMS E processing include an LMS (Least Mean Square) algorithm ⁇ an RLS (Recursive Least Square) algorithm.
  • the algorithm used in the reception antenna weight generation circuit 104 is not particularly limited.
  • Reception antenna weights received and generated by the generator 1 0 4 antenna weight W O There w 2 - -, w N), the receiving-side multiplier 1 0 2 - :! ⁇ 1 0 2- N, ⁇ Pia antenna The signals are supplied to the weight conversion circuits 105, respectively.
  • the antenna weight conversion circuit 105 corrects the Z-phase deviation between the plurality of radio signal transmitting / receiving units shown in FIG.
  • the TPC bit decoding circuit 107 extracts the TPC bit from the reproduced data and outputs an instruction to increase or decrease the transmission power transmitted from the mobile station by decoding the TPC bit.
  • the TPC bit monitoring circuit 108 monitors a change during a predetermined period of the instruction to increase or decrease the transmission power decoded by the TPC bit decoding circuit 101.
  • the decoding result of the TPC bit is considered to repeat the transmission power increase and decrease instructions in order. That is, the transmission power from the radio base station to the desired wave mobile station during a predetermined period of time increases and decreases around a certain transmission power (threshold power) as shown in Fig. 3A. repeat.
  • the number of TPC bit maximum instructions and the number of decrease instructions of the TPC bit in the predetermined period are substantially equal.
  • the increase instruction is continuously output from the decoding result of the TPC bit. That is, the transmission power from the radio base station to the desired wave mobile station during the predetermined period continuously increases in a stepwise manner as shown in FIG. 3B.
  • the power of the desired wave mobile station that can finally obtain the desired reception quality is that other mobile stations that exist in the peak direction of the transmission beam formed by the radio base station directly receive unnecessary interference power. , Reception quality is greatly degraded.
  • the maximum value of Kmax is provided for each register.
  • the first transmission antenna weight W, (w 'W' 2 ⁇ ' ⁇ , w, N )
  • the peak direction is moved right (or left) by a preset angle L with respect to the direction of beam 3 (initial position) (a in Fig. 4). If the situation is not improved (the decoding result of the TPC bit is biased toward an instruction to increase the transmission power), the position is further moved to the right (or left) by an angle L (Fig. 4, b). .
  • the same processing is repeated up to a preset maximum change number Kmax.
  • the peak direction of the beam is moved within a maximum range of Kmax x L (+: rightward, 1: leftward) degrees.
  • the values of Kma X and L can be changed to any values by external instructions.
  • set Kmax 2, move right twice in units of angle L, move left four times in units of angle L, and then return to the original initial position (g in Fig. 4).
  • H shows an example.
  • the antenna weight control circuit 109 of the present embodiment first receives the value of the variable K indicating the number of movements in the peak direction. Is reset to 0 (step S 1), and it is determined whether or not the decoding result of the TPC bit transmitted from the mobile station is biased toward an instruction to increase the transmission power (step S 2).
  • (w "w" 2 ⁇ ⁇ ⁇ , w " N ) are set (step S3).
  • the transmission antenna weight control circuit 109 increments the value of the variable K indicating the number of movements in the peak direction by one.
  • Step S4 When the decoding result of the TPC bit is biased toward the transmission power reduction instruction, or when neither is biased, the transmission antenna weight control circuit 109 forms the first antenna generated by the antenna weight conversion circuit 105. The transmission antenna weight is output as it is as the second transmission antenna weight, and the transmission beam control processing of the present embodiment is stopped.
  • the transmission antenna weight control circuit 109 sets the value of the variable ⁇ in advance. It is determined whether or not the force has reached the maximum change number Kmax (step S5). If the force has not reached the maximum change number Kmax, the process returns to step S2 and repeats steps S2 to S5. repeat.
  • the transmission antenna weight control circuit 109 increments the value of the variable K indicating the number of times of movement in the peak direction by one (step S9). If the decoding result of the TPC bit is biased toward the transmission power reduction instruction, or if neither is biased, the transmission antenna weight control circuit 109 will use the antenna weight conversion circuit 105 generated by the antenna weight conversion circuit 105. The first transmission antenna weight is output as the second transmission antenna weight as it is, and the transmission beam control processing of the present embodiment is stopped.
  • the transmitting antenna weight control circuit 109 determines whether or not the value of the variable K has reached a preset maximum number of changes 2 Kmax (step S 10), and the maximum number of changes 2 If Km aX has not been reached, the process returns to step S7 and repeats the processes in steps S7 to S10. Also, when the value of the variable has reached the maximum number of changes 2 kmax, the transmission antenna weight control circuit 109 transmits the first transmission antenna weight generated by the antenna weight conversion circuit 105 to the second transmission antenna weight. The signal is output as it is as the transmission antenna weight, and the control processing of the transmission beam of the present embodiment is stopped.
  • the age at which the peak direction of the transmitted beam is at the position of + Kmax XXL or 1 K max XL is moved to the initial position in one process. May be moved.
  • the adaptive antenna transmitting and receiving apparatus of the present embodiment when the decoding result of the TPC bit in the predetermined period is biased to the instruction to increase the transmission power, the peak direction of the death beam is shifted to the left and right.
  • the peak direction of the transmission beam can be corrected to the direction of the desired wave mobile station. Therefore, the interference power applied to other mobile stations existing in the peak direction due to the shift of the peak direction of the transmission beam from the mobile station to be transmitted can be reduced, so that a decrease in the subscriber capacity of the system can be prevented.
  • the adaptive antenna transmitting / receiving apparatus of the second embodiment is different from the first embodiment in the procedure of controlling the transmission beam by the antenna weight control circuit 109.
  • the other configurations and operations are the same as those of the first embodiment, and a description thereof will not be repeated.
  • the adaptive antenna transmitting / receiving apparatus of the second embodiment provides a transmission antenna weight control circuit 109 when the decoding result of TPC bits in a predetermined period is biased toward an instruction to increase the power.
  • a process of alternately moving the peak direction of the transmission beam 3 in the left-right direction is executed.
  • the peak direction of the transmission beam 3 formed by the first transmission antenna weight W, (w, w ′ 2 ⁇ , w, N ) is set by the angle L set in advance. Move in the right (or left) direction (a in Fig. 6).
  • the decoding result of the TPC bit is biased toward an instruction to increase the transmission power
  • it is moved left (or right) by an angle of 2 L (b in Fig. 6).
  • the situation does not improve: ⁇ moves right or left) by an angle of 3 L (Fig. 6c).
  • the maximum number of changes at this time is 2 KmaX set in advance.
  • the peak direction of the beam is set to the maximum Km ax XL (+: right (Direction, 1: Left direction) Change in the range of degrees.
  • Kma X and L can be changed to arbitrary values by an external instruction.
  • the transmitting antenna weight control circuit 109 of the second embodiment first receives a variable K indicating the number of movements in the peak direction. Is reset to 0, and the value of the variable J for multiplying the angle L is set to 1 (step S 11).
  • the transmission antenna weight control circuit 109 transmits the first transmission generated by the antenna weight conversion circuit 105.
  • the antenna weight is output as it is as the second transmission antenna weight, and the transmission beam control processing of the present embodiment is stopped.
  • the transmission antenna weight control circuit 109 determines whether the value of the variable K has reached the preset maximum number of changes 2 KmaX (Step S 15), and determines the maximum number of changes 2 If Kmax has not been reached, the process returns to step S12 and repeats the processes of steps S12 to S15.
  • the word antenna weight control circuit 109 sets the first word antenna weight generated by the antenna weight conversion circuit 105 to the second The signal is output as it is as the transmission antenna weight, and the transmission beam control processing of the present embodiment is stopped.
  • the peak direction of the transmission beam can be corrected to the direction of the desired wave mobile station. Therefore, interference power applied to other mobile stations existing in the peak direction due to the shift of the peak direction of the transmission beam from the mobile station to be transmitted is reduced. Therefore, a decrease in the subscriber capacity of the system can be prevented.
  • the adaptive antenna transmitting / receiving apparatus of the third embodiment is different from the first and second embodiments in the control procedure of the transmission beam by the transmission antenna weight control circuit.
  • Other configurations and operations are the same as those of the first embodiment, and therefore, description thereof will be omitted.
  • the first transmission antenna weight W, (w, i w ′ 2 ⁇ , The width of the main lobe is expanded by a predetermined angle H (+: right direction, 1: left direction) for the transmission beam formed by w ' N ). If the situation is not improved (the decoding result of the TPC bit is biased toward an increase in the transmission power), the width of the main rope of the word beam is further increased by the angle H. Hereinafter, the same processing is repeated. At this time, the maximum number of changes is Kmax set in advance.
  • the width of the main lobe of the beam beam is changed within the range of Kma XX 2 Hit at the maximum.
  • the width of the main lobe of the transmission beam is widened in this way, the peak direction of the transmission beam is slightly shifted with respect to the transmission target mobile station! Also, the received power at the mobile station increases. Therefore, an increase in transmission power due to the shift of the peak direction of the transmission beam from the mobile station to be transmitted is reduced.
  • the width of the main lobe is too wide, interference power will be given to other mobile stations existing around the desired wave mobile station. Therefore, it is desirable to set the angle H and the maximum number of changes Km a X to minimum values.
  • Step S24 If the decoding result of the TPC bit is biased toward the transmission power reduction instruction, or if neither is biased, the transmission antenna weight control circuit 1 09 generates the first antenna weight conversion circuit 1 0 5 The transmission antenna weight is output as it is as the second transmission antenna weight, and the transmission beam control processing of this embodiment is stopped.
  • the transmitting antenna weight control circuit 109 determines whether the force of the variable K has reached the preset maximum number of changes Kmax (step S25), and determines the maximum number of changes Kmax. If not, the process returns to step S22 and repeats the processes of steps S22 to S25. On the other hand, when the value of the variable K has reached the maximum number of times of change Kmax: ⁇ , the transmission antenna weight control circuit 109 sets the first transmission antenna weight generated by the antenna weight conversion circuit 105 to the second transmission antenna weight. The transmission beam weight is output as it is, and the transmission beam control processing of the present embodiment is stopped.
  • the increase in power per week due to the shift of the peak direction of the transmission beam from the mobile station of the transmission target is reduced.
  • the interference power applied to the mobile station is reduced, and a decrease in the subscriber capacity of the system can be prevented.
  • the adaptive antenna transmitting / receiving apparatus can also control the transmission power using the above-mentioned radio signal reception unit.
  • the radio signal reception units 210-1 to 210-0-N The RF section includes a quadrature modulator that orthogonally modulates a baseband signal (not shown), an upconverter that converts a baseband signal to a radio frequency, an AGC (Automatic Gain Control), and a TPA (Transmission Power Amplifier). And are arranged between the antenna device and the transmission-side multiplier as shown in FIG.
  • the monitoring result of the TPC bit monitoring circuit is supplied to the radio signal transmitting / receiving units 210-1-1 to 210-N, and the transmission antenna shown in the first to third embodiments is transmitted.
  • the power supplied to each antenna device is controlled by the AGC included in the wireless signal transmission / reception units 210-10-1 to 210-N. Even with such a configuration, the same effects as those of the first to third embodiments can be obtained.
  • FIG. 10 is a block diagram showing a configuration example of a wireless base station provided with the adaptive antenna transmitting / receiving apparatus of the present invention.
  • the radio base station 1 of the present embodiment is different from the adaptive antenna transceiver 11 shown in the first to fourth embodiments in transmitting and receiving data of each mobile station.
  • a control unit 12 that controls operations as a radio base station, such as multiplexing and demultiplexing and monitoring of a communication state with each mobile station, and manages the position of each mobile station, and through a plurality of radio base stations 1.
  • the configuration includes a communication interface device 13 which is an interface with the wireless network control device 2 that relays communication between the mobile station and the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

TPCビットから復号した送信電力の増減指示の変化を監視し、予め設定した所定期間において該増減指示が送信電力の増大指示に偏っている場合は、複数のアンテナ装置毎に対応する送信アンテナウェイトや送信電力を調整することで、送信ビームのピーク方向やメインローブ幅を変化させる。この処理は増減指示に送信電力の増大指示の偏りが無くなるまで、または送信ビームの変更回数が予め設定した最大値に達するまで繰り返す。

Description

明細書 送信ビーム制御方法、 適応ァンテナ送受信装置及び無線基地局 技術分野
本発明は符号分割多重ァクセス (Code Division Multiple Access:以下、 C DMAと称す)方式の移動通信システムに用いて好適な送受信装置に関する。 背景技術
一般に、 C DMA方式の移動通信システムでは、複数の移動局が同一の周波 数帯域を利用して無線通信を行うため、他の移動局の無線通信による電波干渉、 すなわちマルチユーザ干渉が移動通信システムの加入者容量を制限する大き な要因となる。 加入者容量を増大させるためには、 受信時に干渉波を抑制し、 送信時に不要な方向への送信を避けて他の移動局に与える干渉電力を低減す る適応アンテナ技術が有効である。
適応ァンテナ技術を採用した送受信装置 (以下、 適応ァンテナ送受信装置と 称す)の従来例として、 複数のァンテナ装置を用いて指向性を制御する技術が 非特許文献' 1 (NT T D o C o M o テクニカル'ジャーナル、 Vol. 8 No. 1, Apr. , 2000) に記載されている。 非特許文献 1には、 受信時に、 複数のアンテ ナ装置で受信した受信信号にそれぞれ最適な重み係数 (受信ァンテナウェイ ト) を付与することで移動局方向のアンテナ利得を大きくし、 送信時に、 該受 信アンテナウェイトに基づいて生成した重み係数(送信アンテナウェイト) を ァンテナ装置毎の送信データに乗算することで送信対象の移動局方向へ送信 ビームを指向させることが記載されている。
受信アンテナウェイトの生成方法としては、逆拡散後のパイ口ットシンボル と仮決定した情報データシンボルを参照することで生成された RAKE合成 後の信号との平均 2乗誤差が最小となるように制御する手法が非特許文献 2
(S. Tanaka, M. Sawahashi and F. Adachi, Pilot symbol-assisted decision-directed coherent adaptive array diversity for DS - CDMA mobile radio reverse link" , IEICE Trans. Fundamentals, Vol. E80-A, pp. 2445-2454, Dec , 1997) に記載されている。 また、 上記受信アンテナウェイトに基づいて 生成された送信ァンテナウエイトを下り送信 (無線基地局から移動局方向への 送信)に用いる例が非特許文献 3 (田中、 原田、 井原、 佐和橋、 安達、 " W— C DMAにおける適応ァンテナァレイダイバーシチ受信の屋外実験特性" 、信 学技報 RCS99 - 127、 pp. 45-50, Oct. , 1999) ) に記載されている。
一般に、 C DMA方式の移動通信システムでは、伝送品質を確保しつつ他の 移動局への不要な干渉を避けるために、 送信電力制御 (Transmission Power Control:以下、 T P Cと称す)が行われる。 特に、 C DMA方式では、 複数の 移動局に対して共通の周波数を割り当てることで共通周波数干渉が発生する ため、 T P C技術が必須となる。
例えば、 下り送信における送信ビームと T P Cとの関係について考える。 下り送信においては、無線基地局が備える複数のアンテナ装置を用いて送信 データにそれぞれ週言アンテナウェイトを乗算することで送信ビームの指向 性を制御する。移動局は、受信品質が所望の値を上回っていれば無線基地局に 対して送信電力を減少するように指示し、下回ってレヽれば無線基地局に対して 送信電力を増大するように指示する。移動局から無線基地局への 言電力の増 大指示または減少指示 (以下、 まとめて増減指示と称す) は、 移動局から無線 基地局へ所定周期毎に送信するフレームに含まれる T P Cビットが用いられ る。無線基地局は、移動局から送信されたフレームから T P Cビットを抽出し、 その指示にしたがって該移動局に対する送信電力を増減する。
次に、従来の適応アンテナ送受信装置について第 1図を用いて説明する。 な お、第 1図に示す適応アンテナ送受信装置は、 非特許文献 1の第 1図に記載さ れた適応アンテナ送受信装置に T P Cを実行させる構成例である。
第 1図に示すように、従来の適応アンテナ送受信装置は、 アレイ状に配置さ れた複数 (N個: Nは正の整数) のアンテナ装置 3 0 1— 1〜3 0 1— Nと、 アンテナ装置 3 0 1— 1〜3 0 1— Nで受信した受信信号に受信ァンテナゥ エイトを乗算する受信側乗算器 3 0 2— 1〜3 0 2_Nと、受信アンテナゥェ ィトが乗算された複数の受信信号を加算 (合成) し、 再生データとして出力す る加算器 3 0 3と、カロ算器 3 0 3から出力された再生データに基づき各アンテ ナ装置 3 0 1— 1〜3 0 1—Nで受信した受信信号に乗算する最適な受信ァ ンテナウェイトを算出し、対応する受信側乗算器 3 0 2— 1〜3 0 2— Nにそ れぞれ供給する受信アンテナウェイト生成回路 3 0 4と、再生データから T P Cビットを抽出して復号することで送信電力の増減指示を出力する T P Cビ ット復号回路 3 0 7と、受信アンテナウェイト生成回路 3 0 4で生成された受 信アンテナウェイトに基づいて送信アンテナウェイトを生成すると共に、 T P Cビット復号回路 3 0 7から出力された送 ί言電力の增減指示にしたがって送 信アンテナウェイトを增減させるアンテナウェイト変換回路 3 0 5と、アンテ ナウエイト変換回路 3 0 5から出力された 言アンテナウェイトと送信デー タとを乗算し、アンテナ装置 3 0 1— 1〜3 0 1—Nへ供給する 言側乗算器 3 0 6—:!〜 3 0 6— Νとを有する構成である。 なお、第 1図に示した適応ァ ンテナ送受信装置は、主としてベースバンドの送受信データを信号処理するべ ースバンド信号処理部の構成を示している。適応アンテナ送受信装置は、 アン テナ装置で受信した無線周波数信号をベースパンド信号に変換する R F受信 部、及びベースバンド信号を無線周波数信号に変換する R F送信部を備えた不 図示の無線信号送受信部を有している。
このような構成において、 アンテナウェイト変換回路 3 0 5は、受信アンテ ナウエイト生成回路 3 0 4で生成された重み係数(受信アンテナウェイト) に 基づき、受信時の指向性と同じ方向に送信するための送信アンテナウェイトを 生成する。 また、 アンテナウェイト変換回路 3 0 5は、 T P Cビット復号回路 3 0 7で復号された 言電力の増減指示にしたがって各送信アンテナウェイ トを調整することで 言電力を制御する。
一般に、無線基地局の送信電力が増大する要因としては、無線基地局と移動 局間が建造物等により遮蔽されることで移動局の受信品質が劣化する場合、あ るレ、は無線基地局で形成している送信ビームのピーク方向が送信 ¾ ^の移動 局 (以下、 希望波移動局と称す) からずれてレヽるために希望波移動局の受信品 質の低下を送信電力の増大で補っている場合が考えられる。
言ビームのピーク方向が希望波移動局からずれている:^、 T P C処理に よつて希望波移動局の受信品質は所望の値に到達する力 m ビームのピーク 方向に他の移動局が存在すると、その移動局に対しては不要な干渉電力を与え ることになる。 その結果、各移動局に対する送信電力を増大させなければなら ない。 通常、 無線基地局の最大 ¾{言電力は、 アンテナ装置に電力を供給する電 力増幅器の能力で制限されるため、各移動局に対する送信電力が増大すれば移 動通信システムに収容可能な加入者容量が低下してしまう。
本発明の目的は、 下り 言における T P C適用時に、送信ビームのピーク方 向が送信対象の移動局からずれることによる、他の移動局に与える不要な干渉 電力を低減して、移動通信システムの加入者容量の低下を防止できる適応アン テナ送受信装置を提供することにある。 発明の開示
上記目的を達成するため本発明では、 T P Cビットから復号した送信霉力の 増減指示の変化を監視し、予め設定した所定期間におレヽて該増減指示が送信電 力の増大指示に偏っている場合は、アンテナ装置毎の送信アンテナウェイトゃ 送信電力を調整することで、送信ビームのピーク方向ゃメィンローブ幅を変化 させる。 そして、 この処理を増減指示に 言電力の増大指示の偏りが無くなる まで、または送信ビームの変更回数が予め設定した最大値に達するまで繰り返 す。
送信ビームのピーク方向を変ィ匕させた 、送信ビームのピーク方向を送信 対象の移動局の方向へ修正することが可能になる。 また、送信ビームのメイン ロープ幅を広げた場合、送信対象の移動局に対する送信ビームのピーク方向が 少々ずれていても該移動局の受信電力が増大する。
したがって、 言ビームのピーク方向が 言対象の移動局からずれることに よる 言電力の増大が低減されるため、 ピーク方向に存在する他の移動局に与 える干渉電力を低減することが可能になり、システムのカロ入者容量の低下を防 止できる。 図面の簡単な説明 第 1図は、 従来の適応ァンテナ送受信装置の構成を示すプロック図であり、 第 2図は、本発明の適応アンテナ送受信装置の第 1の実施の形態の構成を示 すブロック図であり、
第 3 A図は、送信ビームのピーク方向が移動局に向いているときの、 T P C 適用時の送信電力の変化を示す模式図であり、
第 3 B図は、送信ビームのピーク方向が移動局からずれてレヽるときの、 T P C適用時の送信電力の変ィ匕を示す模式図であり、
第 4図は、第 1の実施の形態の適応アンテナ送受信装置の送信ビームの制御 方法を示す模式図であり、
第 5図は、第 4図に示した送信ビームの制御方法の処理手順を示すフローチ ヤートであり、
第 6図は、第 2の実施の形態の適応アンテナ送受信装置の送信ビームの制御 方法を示す模式図であり、
第 7図は、第 6図に示した送信ビームの制御方法の処理手順を示すフローチ ヤートであり、
第 8図は、第 3の実施の形態の送信ビームの制御方法の処理手順を示すフ口 一チヤ一トであり、
第 9図は、第 4の実施の形態の適応ァンテナ送受信装置の構成を示すプロッ ク図であり、
第 1 0図は、本発明の適応アンテナ送受信装置を備えた無線基地局の一構成 例を示すプロック図である。 発明を実施するための最良の形態
次に本発明について図面を参照して説明する。
(第 1の実施の形態)
第 2図に示すように、 第 1の実施の形態の送受信装置は、 ァレイ状に配置さ れた複数 (N個: Nは正の整数) のアンテナ装置 1 0 1— 1〜1 0 1一 Nと、 ァンテナ装置 1 0 1— 1〜1 0 1— Nで受信した受信信号に受信ァンテナゥ エイトを乗算する受信側乗算器 1 0 2— 1〜1 0 2— Nと、受信アンテナゥェ ィトが乗算された複数の受信信号を加算 (合成) し、 再生データとして出力す る加算器 1 0 3と、加算器 1 0 3から出力された再生データに基づいて各アン テナ装置で受信した受信信号に乗算する最適な受信ァンテナウェイトを算出 し、対応する受信側乗算器 1 0 2— 1〜1 0 2— Nにそれぞれ供給する受信ァ ンテナウェイト生成回路 1 0 4と、再生データから T F Cビットを抽出して送 信電力の増減指示を復号する T P Cビット復号回路 1 0 7と、 T P Cビット復 号回路 1 0 7で復号された送信電力の増減指示の所定期間における変ィ匕を監 視し、送信電力の増大指示に偏っている力否かを検出する T P Cビット監視回 路 1 0 8と、受信アンテナウェイト生成回路 1 0 4で生成された受信アンテナ ウェイトに基づいて第 1の送信アンテナウェイトを生成するアンテナウェイ ト変換回路 1 0 5と、 T P Cビット監視回路 1 0 8の監視結果に基づいて第 1 の送信アンテナウェイトを制御し、第 2の送信アンテナウェイトとして出力す る送信アンテナウェイト制御回路 1 0 9と、送信アンテナウェイト制御回路 1 0 9から出力される第 2の送信アンテナウェイトと 言データとを乗算し、了 ンテナ装置 1 0 1—1〜: 1 0 1— Nへ供給する送信側乗算器 1 0 6一 1〜1 0 6— Nとを有する構成である。
第 2図に示した適応アンテナ送受信装置は、従来と同様に、 主としてベース バンドの送受信データを信号処理するベースバンド信号処理部の構成を示し ている。適応アンテナ送受信装置は、 アンテナ装置 1 0 1—1〜: L 0 1— Nで 受信した無線周波数信号をベースバンド信号に変換する R F受信部、及びべ一 スパンド信号を無線周波数信号に変換する R F送信部を備えた不図示の無線 信号送受信部を有している。 ベースパンド信号処理部は、上記各構成要素の機 能を論理回路等で実現した半導体集積回路装置で構成されていてもよく、 D S Pや C P Uで構成されていてもよレヽ。ベースパンド信号処理部が D S Pや C P Uで構成されている H 以下に記載する、 了ンテナ装置を除く各構成要素の 処理は、 予め記憶装置に記憶されたプログラムにしたがって実行される。 受信アンテナウェイト生成回路 1 0 4は、例えば、受信側加算器 1 0 3から 出力された再生データと予め設定された参照信号 (希望信号波形) との平均 2 乗誤差が最小となるように受信アンテナウェイトを更新する MM S E (Minimum Mean Squared Error)処理を実行する。 MMS E処理を実現するアル ゴリズムとしては、 LM S (Least Mean Square)ァルゴリズムゃ R L S (Recursive Least Square)アル.ゴリズムなどが知られている。 本実施形態では 受信アンテナウェイト生成回路 1 0 4で用いるアルゴリズムについては特に 限定しない。
受信アンテナウェイト生成回路 1 0 4で生成された受信アンテナウェイト W= Oい w2- -, wN) は、 受信側乗算器 1 0 2—:!〜 1 0 2— N、 及ぴァ ンテナウェイト変換回路 1 0 5へそれぞれ供給される。
アンテナウェイト変換回路 1 0 5は、受信アンテナウェイト生成回路 1 0 4 で生成された受信アンテナウェイ hW= (wい w 2-- -, wN) に基づいて送信 アンテナウェイト (第 1の送信アンテナウェイト) W, = (w ' い w' 2· · ·, w' N) を生成する。 アンテナウェイト変換回路 1 0 5は、 各アンテナ装置に 対応して設けられた、第 2図に示さなレヽ複数の無線信号送受信部間の振幅 Z位 相偏差を補正する処理、 または周知の F D D (Frequency Division Duplex) システムのように送信電波と受信電波の周波数が異なる場合に、その周波数差 を補正する処理を実行するものであり、基本的に受信時と同様の指向性を持つ 送信ビームを形成するための第 1の送信アンテナウェイト W, = (w, い w,
2 , N ) を生成する。
T P Cビット復号回路 1 0 7は、再生データから T P Cビットを抽出し、復 号することで移動局から送信された送信電力の増減指示を出力する。
T P Cビット監視回路 1 0 8は、 T P Cビット復号回路 1 0 1で復号された 送信電力の増減指示の所定期間における変ィ匕を監視する。送信ビームのピーク 方向が希望波移動局の方向を正しく向いている場合、 T P Cビットの復号結果 は送信電力の増大指示と減少指示とを順に繰り返すものと考えられる。すなわ ち、予め設定した所定期間における無線基地局から希望波移動局への送信電力 は、 第 3 A図に示すように、 ある送信電力 (しきい値電力) を中心にして増大 と減少とを繰り返す。 この場合、所定期間における T P Cビットの增大指示の 回数と減少指示の回数とはほぼ等しくなる。
—方、 送信ビームのピーク方向が希望波移動局の方向からずれている場合、 希望波移動局は所望の受信品質が得られるまで無線基地局に 言電力の増大 を要求し続けるため、 T P Cビットの復号結果からは増大指示が連続して出力 されると考えられる。すなわち、所定期間における無線基地局から希望波移動 局への送信電力は、第 3 B図に示すように階段状に連続して増大する。 この場 合、希望波移動局では最終的に所望の受信品質が得られる力 無線基地局が形 成している送信ビームのピーク方向に存在する他の移動局は不要な干渉電力 を直接受けることになるため受信品質が大きく劣化する。
このような問題に対処するため、本実施形態では、所定期間における T P C ビットの復号結果が送信電力の増大指示に偏ってレヽるとき、送 ί言アンテナゥェ ィト制御回路 1 0 9により送信ビームのピーク方向を左右方向に移動させる。 具体的には、 第 1の 言アンテナウェイト W, = (w, い w' 2· · ·, w' N) で形成される送信ビームに対して、 ピーク方向が右または左方向へ移動するよ うに第 2の送信アンテナウェイト W" = (w" い w" 2· ' ·, w" N) を生成す る。 この第 2の 言アンテナウェイトにより送信データの振幅を増減させるこ とで送信ビームのピーク方向を制御する。 この処理は、 T P Cビットの復号結 果に送信電力の増大指示の偏りが無くなるまで、あるいはピーク方向の移動回 数が予め設定した最大値に達するまで実行する。本実施形態の送信ァンテナゥ エイト制御回路 1 0 9は、 ピーク方向を左右に移動させる際の移動単位である 角度 L、 移動回数を示す変数 K (初期値 = 0 ) 、 及び最大変更回数 (移動回数 の最大値) Km a xの値をそれぞれ保持するためのレジスタを備えている。 受信側乗算器 1 0 2_ 1 ~ 1 0 2— N、加算器 1 0 3、受信アンテナウェイ ト生成回路 1 0 4、送信側乗算器 1 0 6—1〜: 1 0 6— Nの構成及びその動作 は、第 1図に示した従来の適応アンテナ送受信装置と同様であるため、その説 明は省略する。
次に、本実施形態の適応ァンテナ送受信装置による腿ビームの制御方法に つ!/、て第 4図及び第 5図を用いて説明する。
第 4図に示すように、本施形態の適応アンテナ送受信装置では、所定期間に おける T P Cビットの復号結果が送信電力の増大指示に偏つている場合、第 1 の送信アンテナウェイト W, = (w' い w' 2· ' ·, w, N) で形成される送信 ビーム 3の方向 (初期位置) に対して、 ピーク方向を予め設定した角度 Lだけ 右 (または左) 方向に移動させる (第 4図の a ) 。 そして、 状況が改善されな い (T P Cビットの復号結果が送信電力の増大指示に偏っている) 場合は、 さ らに右 (または左) 方向に角度 Lだけ移動させる (第 4図の b ) 。 以下、 同様 の処理を予め設定した最大変更回数 Km a Xまで繰り返す。
そして、最大変更回数 Km a xだけ送信ビームのピーク方向を移動させても 状況が改善されない は、 それまでとは逆の左 (または右) 方向に角度 L単 位で移動させる (第 4図の c , d , e, f ) 。 このとき、 逆方向の最大変更回 数は 2 Km a xとなる。
上記処理により週言ビームのピーク方向を最大で士 Km a x X L (+:右方 向、 一:左方向とする) 度の範囲で移動させる。 Km a X及び Lの値は外部か らの指示により任意の値に変更可能とする。第 4図は、 Km a x = 2に設定し、 右方向に角度 L単位で 2回移動し、左方向に角度 L単位で 4回移動した後、元 の初期位置に戻す (第 4図の g、 h ) 例を示している。
第 5図に示すように、本実施形態の 言アンテナウェイト制御回路 1 0 9は、 T P Cビット監視回路 1 0 8力 ら復号結果を受け取ると、まずピーク方向の移 動回数を示す変数 Kの値を 0にリセットし (ステップ S 1 ) 、移動局から送信 される T P Cビットの復号結果が送信電力の増大指示に偏っている力否かを 判定する (ステップ S 2 ) 。 そして、 T P Cビットの復号結果が送信電力の増 大指示に偏っている^^は、 送信ビームのピーク方向が右 (または左) 方向に L度移動するように第 2の送信アンテナウェイト W" = (w" w" 2· · ·, w" N) の値を設定する (ステップ S 3 ) 。 また、 送信アンテナウェイト制御回路 1 0 9は、 ピーク方向の移動回数を示す変数 Kの値を 1インクリメントする
(ステップ S 4 )。 T P Cビットの復号結果が送信電力の減少指示に偏ってい る場合、 あるいはどちらにも偏っていない場合、送信アンテナウェイト制御回 路 1 0 9は、アンテナウェイト変換回路 1 0 5で生成された第 1の送 ί言アンテ ナウエイトを第 2の送信アンテナウェイトとしてそのまま出力し、本実施形態 の送信ビームの制御処理を停止する。
次に、送信アンテナウェイト制御回路 1 0 9は、変数 Κの値が予め設定した 最大変更回数 Km a xに達している力否かを判定し (ステップ S 5 ) 、 最大変 更回数 Km a xに達していない場合はステップ S 2の処理に戻ってステップ S 2〜 S 5の処理を繰り返す。
変数 Kの値が最大変更回数 Km a xに達している場合、送信アンテナウェイ ト制御回路 1 0 9は、変数 Kの値を 0にリセットした後 (ステップ S 6 ) 、 移 動局から送信される T P Cビットの復号結果が送信電力の増大指示に偏って いるか否かを判定する (ステップ S 7 ) 。 そして、 T P Cビットの復号結果が 送信電力の増大指示に偏っている場合は、 言ビームのピーク方向が、 それま での移動方向とは逆の左 (または右)方向に L度移動するように第 2の送信ァ ンテナウェイト W" = (w" w" 2· ··, w" N) の値を設定する (ステップ S 8 ) 。 また、 送信アンテナウェイト制御回路 1 0 9は、 ピーク方向の移動回 数を示す変数 Kの値を 1インクリメントする (ステップ S 9 ) 。 T P Cビット の復号結果が送信電力の減少指示に偏っている場合、あるいはどちらにも偏つ ていない場合、送信アンテナウェイト制御回路 1 0 9は、 アンテナウェイト変 換回路 1 0 5で生成された第 1の送信アンテナウェイトを第 2の送信アンテ ナウエイトとしてそのまま出力し、本実施形態の送信ビームの制御処理を停止 する。
次に、送信アンテナウェイト制御回路 1 0 9は、変数 Kの値が予め設定した 最大変更回数 2 Km a Xに達しているカ否かを判定し (ステップ S 1 0 ) 、 最 大変更回数 2 Km a Xに達していない場合はステップ S 7の処理に戻ってス テツプ S 7〜S 1 0の処理を繰り返す。 また、変数 の値が最大変更回数 2 K m a Xに達している場合、送信アンテナウェイト制御回路 1 0 9は、 アンテナ ウェイト変換回路 1 0 5で生成された第 1の送信アンテナウェイトを第 2の 送信アンテナウェイトとしてそのまま出力し、本実施形態の送信ビームの制御 処理を停止する。
なお、 第 4図及び第 5図では、 言ビームのピーク方向を、左右方向に角度 L単位で移動させる例を示したが、 移動角度は予め設定した角度 Lの整数倍
(零を除く) であってもよい。 例えば、 + Km a X X Lまたは一 Km a x X L の位置に送信ビームのピーク方向がある齢は、初期位置まで一度の処理で移 動させてもよい。
本実施形態の適応アンテナ送受信装置によれば、所定期間における T P Cビ ットの復号結果が送 ί言電力の増大指示に偏っている場合に、逝言ビームのピー ク方向を左右方向にずらすことで、送信ビームのピーク方向を希望波移動局の 方向に修正することができる。 したがって、送信ビームのピーク方向が送信対 象の移動局からずれることによる、 ピーク方向に存在する他の移動局に与える 干渉電力を低減できるため、 システムの加入者容量の低下を防止できる。
(第 2の実施の形態)
第 2の実施の形態の適応アンテナ送受信装置は、 言アンテナウェイト制御 回路 1 0 9による送信ビームの制御手順が第 1の実施の形態と異なっている。 その他の構成及び動作は第 1の実施の形態と同様であるため、その説明は省略 する。
第 6図に示すように、第 2の実施の形態の適応アンテナ送受信装置は、所定 期間における T P Cビットの復号結果が 言電力の増大指示に偏っていると き、送信アンテナウェイト制御回路 1 0 9により送信ビーム 3のピーク方向を 左右方向に交互に移動させる処理を実行する。本実施形態では、 第 1の送信ァ ンテナウェイト W, = (w, い w' 2 · · ·, w, N) で形成される送信ビーム 3 に対して、 ピーク方向を予め設定した角度 Lだけ右 (または左) 方向に移動さ せる (第 6図の a ) 。 そして、 状況が改善されない (T P Cビットの復号結果 が送信電力の増大指示に偏っている) 場合は、左 (または右) 方向に角度 2 L だけ移動させる (第 6図の b ) 。 さらに、 状況が改善されない:^は、 右 ほ たは左) 方向に角度 3 Lだけ移動させる (第 6図の c ) 。 以下、 同様の処理を 繰り返す。 このときの最大変更回数は予め設定した 2 Km a Xとする。
なお、本実施形態の送信アンテナウェイト制御回路 1 0 9は、 ピーク方向を 左右に移動させる際の移動単位である角度 L、角度 Lに乗算する変数 J (正の 整数、 初期値 = 1 ) 、移動回数を示す変数 K (初期値 = 0 ) 、 及び最大変更回 数(移動回数の最大値) Km a Xの値をそれぞれ保持するためのレジスタを備 えている。
上記処理により 言ビームのピーク方向を最大で土 Km a x X L (+:右方 向、 一:左方向とする) 度の範囲で変ィヒさせる。 Km a X及ぴ Lの値は外部か らの指示により任意の値に変更可能とする。第 6図は Km a x == 2に設定した 例を示している。
第 7図に示すように、第 2の実施の形態の送信アンテナウェイト制御回路 1 0 9は、 T P Cビット監視回路 1 0 8の復号結果を受け取ると、 まずピーク方 向の移動回数を示す変数 Kの値を 0にリセットし、角度 Lに乗算する変数 Jの 値を 1にセットする (ステップ S 1 1 ) 。
続いて、移動局から送信される T P Cビットの復号結果が送信電力の増大指 示に偏っている力、否かを判定し (ステップ S 1 2 ) 、 T P Cビットの復号結果 が送信電力の増大指示に偏っている場合は、送信ビームのピーク方向が + J X L (または一 J X L)移動するように第 2の 言アンテナウェイト W" = (w" い w" 2 · ··, w" N) の値を設定する (ステップ S 1 3 ) 。 そして、 送信アン テナウェイト制御回路 1 0 9は、 ピーク方向の移動回数を示す変数 Kの値及び 角度 Lに乗算する変数 Jの値をそれぞれ 1インクリメントし、 さらに角度 Lに 一 1を乗算する (ステップ S 1 4 ) 。 T P Cビットの復号結果が 言電力の減 少指示に偏っている 、 あるいはどちらにも偏っていない 、送信アンテ ナウエイト制御回路 1 0 9は、アンテナウェイト変換回路 1 0 5で生成された 第 1の送信アンテナウェイトを第 2の送信アンテナウェイトとしてそのまま 出力し、 本実施形態の送信ビームの制御処理を停止する。
次に、送信アンテナウェイト制御回路 1 0 9は、変数 Kの値が予め設定した 最大変更回数 2 Km a Xに達している力否力を判定し (ステップ S 1 5 ) 、 最 大変更回数 2 Km a xに達していない場合はステップ S 1 2の処理に戻って ステップ S 1 2〜S 1 5の処理を繰り返す。一方、変数 Kの値が最大変更回数 2 Km a xに達している場合、 言アンテナウェイト制御回路 1 0 9は、 アン テナウェイト変換回路 1 0 5で生成された第 1の 言アンテナウェイトを第 2の送信アンテナウェイトとしてそのまま出力し、本実施形態の送信ビームの 制御処理を停止する。
第 2の実施の形態の適応ァンテナ送受信装置によれば、第 1の実施の形態と 同様に、送信ビームのピーク方向を希望波移動局の方向に修正することができ るため、 送信ビームのピーク方向が送信対象の移動局からずれることによる、 ピーク方向に存在する他の移動局に与える干渉電力が低減される。 したがって、 システムの加入者容量の低下を防止できる。
(第 3の実施の形態)
第 3の実施の形態の適応ァンテナ送受信装置は、送信アンテナウェイト制御 回路による送信ビームの制御手順が第 1の実施の形態及び第 2の実施の形態 と異なっている。その他の構成及び動作は第 1の実施の形態と同様であるため、 その説明は省略する。
第 3の実施の形態の適応ァンテナ送受信装置では、 T P Cビットの復号結果 が送信電力の増大指示に偏っている場合、第 1の送信アンテナウェイト W, = (w, い w' 2· · ·, w' N) で形成される送信ビームに対して、 メインローブ の幅を予め設定した角度土 H (+ :右方向、 一:左方向とする) だけ広げる。 そして、状況が改善されない (T P Cビットの復号結果が送信電力の増大指示 に偏っている) は、 さらに、 言ビームのメインロープの幅を角度土 Hだ け広げる。 以下、 同様の処理を繰り返す。 このとき、 最大変更回数は予め設定 した Km a xとする。
上記処理により週言ビームのメインローブの幅を最大で Km a X X 2 Hit の範囲で変ィ匕させる。 このように送信ビームのメィンローブの幅を広げると、 送信対象の移動局に対して送信ビームのピーク方向が少々ずれて!/ヽても、該移 動局における受信電力が増大する。 したがって、送信ビームのピーク方向が送 信対象の移動局からずれることによる送信電力の増大が低減される。 なお、本 実施形態では、メィンローブの幅を広げすぎると希望波移動局の周辺に存在す る他の移動局に干渉電力を与えることになる。 よって、角度 Hや最大変更回数 Km a Xは必要最小限の値に設定することが望ましい。
本実施形態の送信ァンテナウェイト制御回路 1 0 9は、メインロープ幅の変 更単位である角度 H、 メインロープ幅の変更回数を示す変数 K、及び最大変更 回数 Km a xの値をそれぞれ保持するためのレジスタを備え、 Km a X、及ぴ Hの値は外部からの指示により任意の値に変更可能とする。
第 8図に示すように、本実施形態の 言アンテナウェイト制御回路 1 0 9は、 T P Cビット監視回路 1 0 8から復号結果を受け取ると、まずメィンローブ幅 の変更回数を示す変数 Kの値を 0にリセットし (ステップ S 2 1 ) 、 移動局か ら送信される T P Cビットの復号結果が送 ί言電力の増大指示に偏つているか 否かを判定する (ステップ S 2 2 ) 。 そして、 T P Cビットの復号結果が送信 電力の増大指示に偏っている場合は、送信ビームのメインローブ幅が土 H度広 がるように第 2の送信アンテナウェイト W" = (w" い w" 2· · ·, w" N) の 値を設定する (ステップ S 2 3 ) 。 また、 言アンテナウェイ 1、制御回路 1 0 9は、 メイン口ーブ幅の変更回数を示す変数 Kの値を 1インクリメントする
(ステップ S 2 4 ) 。 T P Cビットの復号結果が送信電力の減少指示に偏つて いる場合、 あるいはどちらにも偏っていない場合、送信アンテナウェイト制御 回路 1 0 9は、アンテナウェイト変換回路 1 0 5で生成された第 1の送信アン テナウェイトを第 2の送信アンテナウェイトとしてそのまま出力し、本実施形 態の送信ビームの制御処理を停止する。
次に、送信アンテナウェイト制御回路 1 0 9は、変数 Kの値が予め設定した 最大変更回数 Km a Xに達している力否かを判定し (ステップ S 2 5 ) 、 最大 変更回数 Km a xに達していない場合はステップ S 2 2の処理に戻ってステ ップ S 2 2〜S 2 5の処理を繰り返す。 一方、変数 Kの値が最大変更回数 Km a Xに達している:^、送信アンテナウェイト制御回路 1 0 9は、 アンテナゥ エイト変換回路 1 0 5で生成された第 1の送信アンテナウェイトを第 2の送 信アンテナウェイトとしてそのまま出力し、本実施形態の送信ビームの制御処 理を停止する。
第 3の実施の形態の適応ァンテナ送受信装置によれば、送信ビームのピーク 方向が送信対象の移動局からずれることによる週言電力の増大が低減される ため、送信ビームのピーク方向に存在する他の移動局に与える干渉電力が低減 され、 システムの加入者容量の低下を防止できる。
(第 4の実施の形態)
第 1の本実施の形態〜第 3の実施の形態では、第 2の送信アンテナウェイト により送信データの振幅を増減させることで送信ビームのピーク方向を制御 する例を示した。 しカゝしながら、適応アンテナ送受信装置は、上述した無線信"^受信部を用 いて送信電力を制御することも可能である。無線信 受信部 2 1 0—1〜2 1 0— Nは、 R F 言部として、不図示のベースバンド信号を直交変調する直 交変調器、ベースパンド信号を無線周波数に変換するアップコンバータ、 AG C (Automatic Gain Control) 、 及び T P A (Transmission Power Amplifier) 等を備え、第 9図に示すようにアンテナ装置と送信側乗算器間に配置されてい る。
本実施形態では、 T P Cビット監視回路の監視結果を無線信号送受信部 2 1 0— 1〜2 1 0— Nに供給し、第 1の実施の形態〜第 3の実施の形態で示した 送信アンテナウェイト制御回路と同様に、例えば無線信号送受信部 2 1 0—1 〜2 1 0—Nが備える AG Cにより各アンテナ装置に供給する電力を制御す る。 このような構成でも第 1の実施の形態〜第 3の実施の形態と同様の効果を 得ることができる。
(第 5の実施の形態)
第 1 0図は本発明の適応アンテナ送受信装置を備えた無線基地局の一構成 例を示すプロック図である。
第 1 0図に示すように、本実施形態の無線基地局 1は、第 1の実施の形態〜 第 4の実施の形態で示した適応アンテナ送受信装置 1 1と、移動局毎の送受信 データの多重化及び分離や各移動局との通信状態の監視等、無線基地局として の動作を制御する制御部 1 2と、各移動局の位置を管理するとともに、複数の 無線基地局 1を介して移動局とネットワーク間の通信を中継する無線ネット ワーク制御装置 2とのインタフェースである通信インタフェース装置 1 3と を有する構成である。
本実施形態のように、無線基地局 1に第 1の実施の形態〜第 4の実施の形態 で示した適応アンテナ送受信装置 1 1を用いることで、移動通信システムの加 入者容量の低下を防止した無線基地局が得られる。

Claims

請求の範囲
1 .複数のアンテナ装置を備えた適応アンテナ送受信装置の送信ビームを制御 するための送信ビーム制御方法であって、
前記複数のァンテナ装置で受信した受信信号から送信電力の制御に用いる
T P Cビットを抽出し、該 T P Cビットから前記送信電力の増大指示または減 少指示を示す増減指示を復号する第 1のステップと、
予め設定した所定期間における前記増減指示の変化を監視し、該増減指示が 前記送信電力の増大指示に偏っている力 かを判定する第 2のステップと、 前記増減指示が前記送信電力の増大指示に偏つている場合、前記送信ビーム の指向性を、受信時の指向性に基づいて形成される所定の指向性から変化させ る第 3のステップと、
前記増減指示に前記送信電力の増大指示の偏りが無くなるまで、または前記 送信ビームを変化させる回数が予め設定した最大値に達するまで lift己第 1の ステップから前記第 3のステップを繰り返す第 4のステップと、
を有する送信ビーム制御方法。
2 . 前記増減指示が前記送信電力の増大指示に偏っている場合、前記送信ビー ムのピーク方向を、受信時と同様の指向方向から、予め設定した角度単位で移 動させる請求項 1記載の送信ビーム制御方法。
3 . 前記送信ビームのピーク方向を、 予め設定した角度の、 零を除く整数倍で 移動させる請求項 2 ff己載の送信ビーム制御方法。
4 . 前記増減指示が前記送信電力の増大指示に偏っている場合、前記送信ビー ムのメインロープ幅を、予め設定した角度単位で広げる請求項 1記載の送信ビ ーム制御方法。
5 ·複数のアンテナ装置を用いて送信ビームの指向性及び送信電力を制御する 適応ァンテナ送受信装置であつて、
前記複数のアンテナ装置で受信した受信信号から送 ί言電力の制御に用いる T P Cビットを抽出し、該 T P Cビットから前記送信電力の増大指示または減 少指示を示す増減指示を復号する T P Cビット復号回路と、 前記 τ ρ cビット復号回路で復号された Ml己増減指示の所定期間における 変化を監視し、該增 i旨示が前記送信電力の増大指示に偏つてレヽる力否かを判 定する T P Cビット監視回路と、
前記増減指示が前記送 ί言電力の増大指示に偏っている場合、前記送信ビーム の指向性が、受信時の指向性に基づいて形成される所定の指向性から変化する ように、前記アンテナ装置毎に供給する振幅に対応した送信アンテナウェイト をそれぞれ生成し、該送信ビームの指向性を変ィ匕させる処理を、前記増減指示 に前記送信電力の増大指示の偏りが無くなるまで、または前記送信ビームを変 ィ匕させる回数が予め設定した最大値に達するまで繰り返す送信ァンテナゥェ ィト制御回路と、
を有する適応ァンテナ送受信装置。
6. 前記送信アンテナウェイト制御回路は、
前記増減指示が前記 言電力の増大指示に偏っている場合、前記送信ビーム のピーク方向が、受信時と同様の指向方向から、予め設定した角度単位で移動 するように前記送信ァンテナウェイトを制御する請求項 5記載の適応ァンテ ナ送受信装置。
7 . 前記送信アンテナウェイト制御回路は、
前記送信ビームのピーク方向を、予め設定した角度の、零を除く整数倍で移 動するように前記 言ァンテナウェイトを制御する請求項 6記載の適応ァン テナ送受信装置。
8. 前記送信アンテナウェイト制御回路は、
前記増減指示が前記送信電力の増大指示に偏つている場合、前記送信ビーム のメインローブ幅が、予め設定した値から所定の角度単位で広がるように、前 記送信ァンテナウェイトを制御する請求項 5記載の適応ァンテナ送受信装置。
9 .複数のアンテナ装置を用いて送信ビーム及び送信電力を制御する適応アン テナ送受信装置であって、
前記複数のアンテナ装置で受信した受信信号から送信電力の制御に用いる T P Cビットを抽出し、該 T P Cビットから前記送信電力の増大指示または減 少指示を示す増減指示を復号する T P Cビット復号回路と、 前記 T Ρ Cビット復号回路で復号された tflf己増減指示の所定期間における 変化を監視し、該増灘旨示が前記送信電力の増大指示に偏つているか否かを判 定する T P Cビット監視回路と、
前記増減指示が前記送信電力の増大指示に偏つている場合、前記送信ビーム の指向性が、受信時の指向性に基づいて形成される所定の指向性から変化する ように、前記アンテナ装置毎に供給する電力をそれぞれ制御し、該送信ビーム の指向性を変化させる処理を、前記増減指示に前記送信電力の増大指示の偏り が無くなるまで、または前記送信ビームを変ィ匕させる回数が予め設定した最大 値に達するまで繰り返す無線信号送受信装置と、
を有する適応ァンテナ送受信装置。
1 0 . 前記無線信" ^受信装置は、
前記増減指示が前記送信電力の増大指示に偏っている場合、前記送信ビーム のピーク方向が、受信時と同様の指向方向から、予め設定した角度単位で移動 するように、前記ァンテナ装置に供給する電力をそれぞれ制御する請求項 9記 載の適応ァンテナ送受信装置。
1 1 . 前記無線信 受信装置は、
前記送信ビームのピーク方向を、予め設定した角度の、零を除く整数倍で移 動するように、前記アンテナ装置に供給する電力をそれぞれ制御する請求項 1 0記載の適応ァンテナ送受信装置。
1 2 . 前記無線信 受信装置は、
前記増減指示が前記送信電力の増大指示に偏つている場合、前記送信ビーム のメインローブ幅が、予め設定した値から所定の角度単位で広がるように、前 記ァンテナ装置に供給する電力をそれぞれ制御する請求項 9記載の適応ァン テナ送受信装置。
1 3 . 請求項 5記載の適応アンテナ送受信装置と、
移動局毎の送受信データの多重化 ·分離、及び各移動局との通信状態の監視 を行う制御部と、
前記移動局とネットワーク間の通信を中継する無線ネットワーク制御装置 とのインタフェースである通信インタフェース装置と、 を有する無線基地局。
1 4 . 請求項 9記載の適応アンテナ送受信装置と、
移動局毎の送受信データの多重ィ匕 ·分離、及び各移動局との通信状態の監視 を行う制御部と、
前記移動局とネットワーク間の通信を中継する無線ネットワーク制御装置 とのインタフェースである通信インタフェース装置と、
を有する無線基地局。
PCT/JP2004/003034 2003-03-12 2004-03-09 送信ビーム制御方法、適応アンテナ送受信装置及び無線基地局 WO2004082173A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005503526A JPWO2004082173A1 (ja) 2003-03-12 2004-03-09 送信ビーム制御方法、適応アンテナ送受信装置及び無線基地局
CNB2004800063683A CN100479350C (zh) 2003-03-12 2004-03-09 发射束控制方法、自适应天线收发设备及无线电基站
KR1020057016845A KR100739087B1 (ko) 2003-03-12 2004-03-09 송신 빔 제어 방법, 적응 안테나 송수신 장치 및 무선기지국
US10/548,674 US7324784B2 (en) 2003-03-12 2004-03-09 Transmission beam control method, adaptive antenna transmitter/receiver apparatus and radio base station
BRPI0408742-9A BRPI0408742A (pt) 2003-03-12 2004-03-09 método de controle de feixe de transmissão, dispositivo transceptor de antena adaptativa, e estação rádio base
EP04718723.2A EP1603255B1 (en) 2003-03-12 2004-03-09 Transmission beam control method, adaptive antenna transmitter/receiver apparatus and radio base station
HK06109882.6A HK1087851A1 (en) 2003-03-12 2006-09-05 Transmission beam control method, adaptive antenna transmitter/receiver apparatus and radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-066566 2003-03-12
JP2003066566 2003-03-12

Publications (1)

Publication Number Publication Date
WO2004082173A1 true WO2004082173A1 (ja) 2004-09-23

Family

ID=32984539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003034 WO2004082173A1 (ja) 2003-03-12 2004-03-09 送信ビーム制御方法、適応アンテナ送受信装置及び無線基地局

Country Status (9)

Country Link
US (1) US7324784B2 (ja)
EP (1) EP1603255B1 (ja)
JP (1) JPWO2004082173A1 (ja)
KR (1) KR100739087B1 (ja)
CN (1) CN100479350C (ja)
BR (1) BRPI0408742A (ja)
HK (1) HK1087851A1 (ja)
TW (1) TWI231668B (ja)
WO (1) WO2004082173A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521194A (ja) * 2005-12-20 2009-05-28 クゥアルコム・インコーポレイテッド 逆方向リンク送信ビーム形成の方法および装置
JP2011061772A (ja) * 2004-12-21 2011-03-24 Qualcomm Inc 多数の送信信号経路を備えた無線デバイスのための送信電力低減
CN110676588A (zh) * 2019-09-25 2020-01-10 中国电子科技集团公司第五十八研究所 一种移相波控码硬件在线调节系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516358B2 (ja) * 2004-05-26 2010-08-04 富士通株式会社 無線基地局装置および無線通信方法
US20090017910A1 (en) * 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
JP6225552B2 (ja) * 2013-08-08 2017-11-08 富士通株式会社 無線通信方法、無線通信システムおよび通信装置
CN104932544B (zh) * 2015-05-21 2017-10-17 中国电子科技集团公司第三十八研究所 一种单发天线的零位校正测试系统及方法
US10944455B2 (en) 2018-02-26 2021-03-09 Qualcomm Incorporated Beam tracking for periodic user equipment movement
DE102018002661A1 (de) * 2018-03-31 2019-10-02 Heinz Lindenmeier Antennen-Einrichtung für die bidirektionale Kommunikation auf Fahrzeugen
EP3706327A1 (en) * 2019-03-07 2020-09-09 Volkswagen Aktiengesellschaft Vehicle, apparatus, method, and computer program for a vehicle in a mobile communication system
US11395154B2 (en) * 2019-04-18 2022-07-19 Qualcomm Incorporated Methods and apparatuses for determining sensing beam for an LBT procure
CN114375031B (zh) * 2021-12-23 2024-04-30 中国电信股份有限公司 一种控制信号强度的方法、基站及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174678A (ja) * 1998-12-09 2000-06-23 Nec Corp 無線通信システム
JP2002026789A (ja) * 1998-09-11 2002-01-25 Matsushita Electric Ind Co Ltd 通信装置および指向性送信方法
WO2002015432A1 (en) * 2000-08-15 2002-02-21 Fujitsu Limited Adaptive beam forming using a feedback signal
JP2002076742A (ja) * 2000-08-30 2002-03-15 Mitsubishi Electric Corp アレーアンテナを備えた送受信装置及びこのアレーアンテナの調整方法
JP2003060549A (ja) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd 移動体通信システムの基地局装置及び送信パターン切り替え方法
JP2003060558A (ja) * 2001-08-14 2003-02-28 Matsushita Electric Ind Co Ltd 通信端末装置および基地局装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98171C (fi) * 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottikanavien lähettämiseksi ja solukkoradiojärjestelmä
JPH09233015A (ja) 1996-02-23 1997-09-05 Mitsubishi Electric Corp 衛星通信用移動局装置
KR100468820B1 (ko) * 1997-08-04 2005-03-16 삼성전자주식회사 가중치기억장치를이용한적응위상배열안테나
JP2000013290A (ja) * 1998-06-24 2000-01-14 Matsushita Electric Ind Co Ltd ダイバーシチ通信装置及び方法
EP1067710A1 (en) * 1999-07-08 2001-01-10 Alcatel Mobile telecommunication system comprising an adaptive base station antenna
GB2363256B (en) * 2000-06-07 2004-05-12 Motorola Inc Adaptive antenna array and method of controlling operation thereof
JP2002026790A (ja) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2002111564A (ja) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd 基地局装置及び無線送信方法
JP4352640B2 (ja) 2000-11-30 2009-10-28 株式会社日本自動車部品総合研究所 アダプティブアレーアンテナ
JP3722003B2 (ja) 2001-03-26 2005-11-30 株式会社日本自動車部品総合研究所 アダプティブアレーアンテナ
JP3767799B2 (ja) 2001-04-09 2006-04-19 日本電気株式会社 アレーアンテナのヌル方向制御方法及び装置
JP3738705B2 (ja) * 2001-06-05 2006-01-25 松下電器産業株式会社 適応アンテナ装置
JP2003060557A (ja) * 2001-08-10 2003-02-28 Fujitsu Ltd アレーアンテナシステムを有する基地局
US6650691B2 (en) * 2002-02-12 2003-11-18 Motorola, Inc. Power control in spread spectrum communications systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026789A (ja) * 1998-09-11 2002-01-25 Matsushita Electric Ind Co Ltd 通信装置および指向性送信方法
JP2000174678A (ja) * 1998-12-09 2000-06-23 Nec Corp 無線通信システム
WO2002015432A1 (en) * 2000-08-15 2002-02-21 Fujitsu Limited Adaptive beam forming using a feedback signal
JP2002076742A (ja) * 2000-08-30 2002-03-15 Mitsubishi Electric Corp アレーアンテナを備えた送受信装置及びこのアレーアンテナの調整方法
JP2003060549A (ja) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd 移動体通信システムの基地局装置及び送信パターン切り替え方法
JP2003060558A (ja) * 2001-08-14 2003-02-28 Matsushita Electric Ind Co Ltd 通信端末装置および基地局装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1603255A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061772A (ja) * 2004-12-21 2011-03-24 Qualcomm Inc 多数の送信信号経路を備えた無線デバイスのための送信電力低減
JP2009521194A (ja) * 2005-12-20 2009-05-28 クゥアルコム・インコーポレイテッド 逆方向リンク送信ビーム形成の方法および装置
CN110676588A (zh) * 2019-09-25 2020-01-10 中国电子科技集团公司第五十八研究所 一种移相波控码硬件在线调节系统
CN110676588B (zh) * 2019-09-25 2020-11-06 中国电子科技集团公司第五十八研究所 一种移相波控码硬件在线调节系统

Also Published As

Publication number Publication date
EP1603255B1 (en) 2018-06-20
CN1759547A (zh) 2006-04-12
KR100739087B1 (ko) 2007-07-13
EP1603255A1 (en) 2005-12-07
JPWO2004082173A1 (ja) 2006-06-15
EP1603255A4 (en) 2012-11-07
BRPI0408742A (pt) 2006-03-28
US20060211439A1 (en) 2006-09-21
CN100479350C (zh) 2009-04-15
TWI231668B (en) 2005-04-21
US7324784B2 (en) 2008-01-29
KR20050107788A (ko) 2005-11-15
TW200505183A (en) 2005-02-01
HK1087851A1 (en) 2006-10-20

Similar Documents

Publication Publication Date Title
US5999826A (en) Devices for transmitter path weights and methods therefor
US7542734B2 (en) Data transmission scheme in wireless communication system
JP4944914B2 (ja) コンフィデンス・メトリックに基づく閉ループ型送信ダイバーシチを実施する装置及び方法
EP1753152B1 (en) On/off switching of antenna verification in closed-loop transmit diversity mode 1
US7613432B2 (en) Method of controlling mobile communication system, control device, and mobile communication system
JP4027912B2 (ja) 送信ダイバーシティを使用する移動通信システムにおける送信ダイバーシティの方式転換装置及び方法
JPH08274687A (ja) Cdma無線伝送装置およびcdma無線伝送システム
WO2006064806A1 (ja) 無線回線制御局、基地局、移動局、移動通信システム及び移動通信方法
EP1250768B1 (en) Diversity transmission
GB2313261A (en) Apparatus and Method for Setting Transmitter Antenna Weights
KR100902298B1 (ko) 기지국, 무선 네트워크 제어국 및 무선 통신 방법
WO2004082173A1 (ja) 送信ビーム制御方法、適応アンテナ送受信装置及び無線基地局
KR100735069B1 (ko) 적응 안테나 송수신 장치
GB2313237A (en) Controlling transmission path weight
CN101151767B (zh) 天线自适应方法、通信终端、设备和模块
GB2313236A (en) Controlling transmit path weight and equaliser setting
EP1929662A1 (en) Data transmission scheme in wireless communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503526

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004718723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048063683

Country of ref document: CN

Ref document number: 10548674

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057016845

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057016845

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004718723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0408742

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10548674

Country of ref document: US