WO2004079367A1 - バイオアレイ - Google Patents

バイオアレイ Download PDF

Info

Publication number
WO2004079367A1
WO2004079367A1 PCT/JP2004/000247 JP2004000247W WO2004079367A1 WO 2004079367 A1 WO2004079367 A1 WO 2004079367A1 JP 2004000247 W JP2004000247 W JP 2004000247W WO 2004079367 A1 WO2004079367 A1 WO 2004079367A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
biomolecule
stranded oligonucleotide
array
immobilized
Prior art date
Application number
PCT/JP2004/000247
Other languages
English (en)
French (fr)
Other versions
WO2004079367A8 (ja
Inventor
Masayuki Yamamoto
Hozumi Motohashi
Kinuko Ohneda
Motoki Kyo
Yutaka Takarada
Bunsei Kawakami
Yoshihisa Kawamura
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003007482A external-priority patent/JP4193039B2/ja
Priority claimed from JP2003007469A external-priority patent/JP4189644B2/ja
Priority claimed from JP2003298027A external-priority patent/JP4281108B2/ja
Priority claimed from JP2003333072A external-priority patent/JP4171982B2/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2004079367A1 publication Critical patent/WO2004079367A1/ja
Publication of WO2004079367A8 publication Critical patent/WO2004079367A8/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the present invention relates to a bioarray in which a plurality of biomolecules are directly or indirectly immobilized, and a method for measuring the interaction between the array and a non-immobilized biomolecule or an aggregate thereof.
  • the present invention relates to a method for analyzing the interaction with a non-immobilized biomolecule or an aggregate thereof using a biomolecule.
  • DNA array technology has been used as a method for detecting cara genes.
  • a single-stranded DNA is immobilized on a substrate, and whether or not a nucleic acid complementary to the DNA has been hybridized is detected using a fluorescent label or chemiluminescence. is there.
  • the gel shift method has been used as a general method for evaluating the interaction between DNA-protein binding and dissociation, and the method of observing the migration speed in a gel with DNA-protein interacting has been used.
  • the gel shift method has low throughput, and it is very difficult to handle a large amount of samples.
  • the equilibrium state is measured, it is impossible to evaluate the bond / dissociation rate.
  • biomolecules As a means for examining the function of biomolecules, interaction of biomolecules has been examined. As a means for examining the interaction, one molecule is immobilized on a solid surface, A method of detecting whether or not a target substance is adsorbed by contacting a substance is becoming common. When measuring the interaction, it is preferable to suppress the non-specific adsorption after securing the mobility of the immobilized molecule. To this end, a space for securing the space between the immobilized molecule and the surface is preferred. It is considered that the existence of a sa is essential.
  • a method of immobilizing a nucleic acid molecule by a covalent bond a method of providing a spacer of 15 bases of thymine or a short polyethylene glycol in the nucleic acid molecule is described (WO00 / 67028).
  • the mobility of the molecule is insufficient because the cross-linking agent has no spacer effect, and the target substance for the interaction analysis is limited.
  • US Pat. No. 5,463,161 discloses a method in which a hydrated gel is formed on the surface and a bifunctional group in the gel is provided to ensure the mobility of immobilized molecules and to suppress nonspecific adsorption.
  • An effective method has a different penetration rate and diffusion rate of a target substance between the inside and the outside of a force gel, and is not suitable as a method for strictly measuring real-time interaction kinetics.
  • a molecule having a functional group for immobilizing a biomolecule at one end of a spacer having a hydrophilic polymer and a functional group capable of directly binding to a solid surface at the other end has been designed. It has also been reported to observe the effects (Sigal et al. Anal. Chem. 68 (1996) 490-497; Jung et al. Langmuir 16 (2000) 942 9432). However, it is difficult to densely fill the surface with this substance alone, and in order to suppress non-specific adsorption, a high ratio of other hydrophilic group-terminated substances is mixed, resulting in immobilization of biomolecules on the surface. However, there is a problem that the density to be formed is low and the measurement sensitivity is low.
  • a technique using polyethylene glycol on the surface of a biosensor is also known from WO01 / 86301.
  • An object of the present invention is to provide an array on which double-stranded oligonucleotides are immobilized and a method for appropriately measuring the interaction of biological molecules using the array.
  • an array in which sites for immobilizing the double-stranded oligonucleotide are arranged is also referred to as an array.
  • a further object of the present invention is to provide a method for ensuring the mobility of immobilized molecules, suppressing non-specific adsorption, and enabling strict interaction kinetics analysis.
  • FIG. 1 shows the nucleotide sequence of MARE25 (SEQ ID NO: 1) and its complementary sequence (SEQ ID NO: 2).
  • the underlined part indicates the Maf recognition sequence.
  • FIG. 2 shows the nucleotide sequence of MARE23 (SEQ ID NO: 3) and its complementary sequence (SEQ ID NO: 4).
  • FIG. 3 shows an SPR image of the dsDNA array.
  • FIG. 4 shows a change in SPR signal (binding dissociation curve of MafG homodimer) in Example 1.
  • FIG. 5 is a diagram showing the difference between images before and after MafG homodimer binding.
  • FIG. 6 shows the photomask used in Example 2 and Reference Example 1.
  • FIG. 7 shows SPR signal changes in Example 2.
  • FIG. 8 shows a change in SPR signal when poly-L-lysine was flowed in Reference Example 1.
  • FIG. 9 shows a change in SPR signal when poly-L-lysine was flowed in Reference Example 2.
  • FIG. 10 is a step diagram of the array fabrication of Example 2.
  • FIG. 11 shows a scheme of a crosslinking agent reaction of Example 2.
  • FIG. 12 shows the change in the SPR signal of Example 3.
  • FIG. 13 is a diagram illustrating a change in an image according to the third embodiment.
  • the present invention provides the following 1. to 36.
  • a bioarray in which a plurality of biomolecules (A) are bonded directly or indirectly via a spacer on a metal substrate.
  • the biomolecule (A) is a double-stranded oligonucleotide, and the first single-stranded oligonucleotide and the second single-stranded oligonucleotide are completely or partially complementary bonded to each other to form a double-stranded oligonucleotide.
  • Item 2 The array according to Item 1, wherein a single-stranded oligonucleotide is formed, and only the first single-stranded oligonucleotide in the double-stranded oligonucleotide is directly or indirectly bound on the metal substrate.
  • the first single-stranded oligonucleotide is immobilized by bonding directly or indirectly via a cross-linking agent to the bifunctional group alminol immobilized on the metal substrate.
  • the biomolecule (A) is a heterobifunctional hydrophilic polymer represented by the general formula X—R—Y (where X binds to a functional group on the solid surface or a functional group introduced to the solid surface) Represents a functional group.
  • Y represents a functional group that binds to the biomolecule (A).
  • R represents a polymer repeating unit. 6. The array according to any one of Items 1 to 5, wherein the array is bound to a substrate via a).
  • the first single-stranded oligonucleotide and the second single-stranded oligonucleotide are hybridized so that the first single-stranded oligonucleotide and the second single-stranded oligonucleotide are entirely or
  • the step of forming a partially complementary double-stranded oligonucleotide then, (2) bonding the ends of the first single-stranded oligonucleotide to a metal substrate, and forming a step on the metal substrate (
  • the first single-stranded oligonucleotide has a 5 ′ terminal, has a functional group on the 3 ′ terminal, has a binding group, and the functional group has the first group via the binding group.
  • Item 10 The method according to Item 9, wherein the terminal of the single-stranded oligonucleotide is bound on a metal substrate.
  • the metal substrate is a transparent substrate having a thin gold layer formed on a surface layer.
  • a biomolecule interaction measurement method including a step of measuring an interaction between an oligonucleotide immobilized on a double-stranded oligonucleotide array and a biomolecule or an aggregate thereof using a double-stranded oligonucleotide array.
  • the double-stranded oligonucleotide array is an array in which a plurality of double-stranded oligonucleotides are immobilized on a metal substrate, and includes a first single-stranded oligonucleotide and a second single-stranded oligonucleotide.
  • a biomolecule interaction measuring method characterized in that it is a double-stranded oligonucleotide array.
  • a heterobifunctional hydrophilic polymer represented by the general formula X-RY (where X is a functional group on the solid surface or a functional group introduced on the solid surface) Represents a functional group that binds to a group, Y represents a functional group that binds to a biomolecule (A), and R represents a repeating unit of a macromolecule.). the method of.
  • Y represents a functional group that binds to the biomolecule (A).
  • R represents a repeating unit of a polymer.
  • the biomolecule (A) is immobilized on a solid surface using a substrate.
  • a method for measuring the interaction between biomolecules comprising the step of measuring the interaction between a molecule (A) and a biomolecule (B) or an aggregate thereof. 16.
  • the method according to item 15, wherein the heterobifunctional hydrophilic polymer has a molecular weight of 200 to 20,000.
  • R of the heterobifunctional hydrophilic polymer is represented by the following repeating unit— (1 O—1 ⁇ —) n — (where, represents an alkylene group having 2 to 5 carbon atoms.
  • Item 16 The method according to Item 15, having a structure represented by the following formula: 18.
  • the functional groups X and X of the heterobifunctional hydrophilic polymer are amino, carboxyl, succinimide, sulfonated succinimide, maleimide, thiol, aldehyde, vinyl, isocyanate, epoxy Item 16.
  • a compound whose solid surface is represented by the general formula X'-R, -Y '(where X, represents a functional group that reacts with a thin gold layer.
  • Y' is a heterobifunctional hydrophilic polymer)
  • the method according to Item 15, which is a solid surface into which a bifunctional group is introduced on the surface of the thin gold layer using R ′ represents an organic group.
  • the substrate on which the biomolecules (A) are immobilized is a substrate on which a plurality of types of biomolecules (A) are immobilized in an array.
  • a material as a starting point for immobilization or a material having a functional group is immobilized, and a hydrophilic polymer is immobilized in a background portion other than the immobilization region. .
  • An array having an array-shaped portion formed on a metal substrate and provided with a marker indicating a location of a spot.
  • 30. The array according to item 28, wherein a hydrophilic polymer is immobilized on a background portion other than the immobilization site.
  • biomolecules (A) the biomolecules immobilized on the array
  • biomolecules (B) j the biomolecules that are not immobilized on the array and interact with the biomolecules (A)
  • biomolecules (B) j the term “metal substrate” means a substrate having a metal or a metal layer on at least one surface, and one or both of a non-metal substrate and a non-metal substrate whose entire substrate is made of metal.
  • a substrate having a metal layer (preferably a thin metal layer) on the surface thereof may be used. Examples of the metal existing on the substrate surface include gold, silver, copper, aluminum, and chromium.
  • Substrate overall strength S may be made of at least one of these metals, and a layer made of at least one of these metals may be provided on a substrate made of glass, plastic, ceramic, or the like.
  • a metal substrate having a thin gold layer formed on the surface of a transparent substrate such as glass or plastic is preferable.
  • preferred plastics for the transparent substrate include polycarbonate, polyethylene terephthalate, polymethyl methacrylate, polystyrene, and polymethyl pentene.
  • a thin gold layer is formed on the surface, a specific substance is densely packed on the substrate to introduce a plurality of functional groups on the gold surface, and the terminal of the biomolecule (A) is attached to the functional group of the substance.
  • Direct or spacer e.g., heterobifunctional hydrophilic
  • the biomolecule (A) can be tightly immobilized on the substrate by indirectly binding via a crosslinking agent containing a reactive polymer and Z or a bifunctional alkane).
  • the biomolecule (A) is preferably exemplified by a double-stranded oligonucleotide.
  • the double-stranded oligonucleotide refers to double-stranded DNA or a double helix molecule of DNA and RNA, and in the present invention, a plurality of types of double-stranded oligonucleotides are immobilized on an array.
  • the double-stranded oligonucleotide according to the present invention is formed by combining the first oligonucleotide and the second oligonucleotide completely or partially together with each other. Partial refers to a state in which a part of either oligonucleotide is single-stranded, or that a double-stranded oligonucleotide contains a mismatch.
  • first oligonucleotide only one of the single-stranded oligonucleotides constituting the double-stranded oligonucleotide (hereinafter, “first oligonucleotide”) is directly or spacer-mounted on a metal substrate.
  • the second oligonucleotide is fixed on the substrate in the form of a double-stranded oligonucleotide by forming a Petson one-click pair complementarily with the first oligonucleotide.
  • the melting temperature (Tm) of the first and second oligonucleotides that are complementary to each other is set to be higher than the measurement temperature.
  • the Tm also depends on the percentage of G and C in the oligonucleotide, but at a general measurement temperature (25 to 37 ° C), at least 9 bases or more of the binding is preferred.
  • long base pairs of 50 or more are difficult to synthesize, generate self-complementary base pairs, or hybridize at a site different from the target site. Risk of not being able to obtain. Therefore, the length of the complementary bond in the double-stranded oligonucleotide is preferably 9 bases or more and 50 bases or less. More preferably, the length is 11 bases or more and 30 bases or less.
  • the bases are continuously combined It is preferable that If they have complementary binding, those having a partial mismatch in the complementary binding portion are also included.
  • the biomolecule (A) In order to observe the interaction with the biomolecule (B), the biomolecule (A) must be able to recognize the oligonucleotide. For this purpose, it is important that the double-stranded oligonucleotide molecule is bound not at the center of the oligonucleotide but at the end so that it does not lie on the substrate.
  • Examples of a method for bonding an oligonucleotide at its end include, for example, introducing a functional group at the end of the first oligonucleotide, directly with a functional group present on the solid surface or a functional group introduced on the solid surface, or a crosslinking agent. For example, a method of indirect binding using such methods can be used. By immobilizing at the terminal in this way, the biomolecule can appropriately recognize the oligonucleotide, and a correct evaluation value can be obtained.
  • a method for preparing a bioarray will be described using a double-stranded oligonucleotide as an example of the biomolecule (A), but other biomolecules (A) can be similarly prepared.
  • the method for preparing the array of the present invention is not particularly limited, but the first and second oligonucleotides are hybridized to form a double-stranded oligonucleotide, and the terminal of the first oligonucleotide is placed on the substrate. It is preferable to use a method of immobilizing an array.
  • the first single-stranded oligonucleotide and the second single-stranded oligonucleotide are hybridized to form the first single-stranded oligonucleotide and the second single-stranded oligonucleotide.
  • Forming a double-stranded oligonucleotide in which the oligonucleotides are wholly or partially complementarily bonded, and then (2) bonding the ends of the first single-stranded oligonucleotide to a metal substrate A method including a step of immobilizing the double-stranded oligonucleotide formed in step (1) on a substrate is preferable.
  • the first and second oligonucleotides are subjected to hybridization before being placed on the substrate to form double-stranded oligonucleotides.
  • the hybridization of the first oligonucleotide and the second oligonucleotide is performed by adding a solution complementary to the 5 ′ thiol-terminal DNA to a high salt concentration solution such as an X5SSC solution. Has a molar ratio of 1 ::! It is preferable to mix them in the range of 1 to 10 and quench in a boiling bath for 3-1'5 minutes, rapidly cool to 0 ° C for 5 to 60 minutes, and incubate at 37 ° C for 1 to 24 hours.
  • a functional group or a bonding group is introduced into the terminal of the first oligonucleotide, and the functional group or the bonding group is used to directly or directly connect the substrate onto the substrate.
  • a method of indirect binding via a spacer is preferred.
  • the type of the functional group or the bonding group is not particularly limited, and examples thereof include an amino group, a thiol group, an aldehyde group, a maleimide group as the functional group, and a biotin as the bonding group.
  • a bifunctional alkane represented by the general formula X, —R′—Y ′ (where X, is a functional group binding to the gold surface, and Y, R ′ represents a divalent organic group, which represents a functional group that binds to an oligonucleotide or a cross-linking agent (for example, a spacer). May be reacted with the gold surface as a surface treatment agent, and the reaction is tightly bonded on the substrate.
  • the functional group X include a thiol group, a sulfide group, and a disulfide group.
  • Examples of ⁇ include an amino group, a carboxyl group, an aldehyde group, an azide group, a ⁇ -hydroxysuccinimide group, an epoxy group, a carberdiimidazole group, and an isocyanate group.
  • R ′ include an alkylene group (for example, (CH 2 ) nl, nl represents an integer of 5 to 18) and the like. If the carbon number of the alkylene group is less than 4, hydrophobic bonds between the alkane chains are not sufficient, and the stability of the self-assembled surface is lacking. If it is 19 or more, the reaction of hydrophilic substances with strong alkane chain hydrophobicity will not only make it difficult to immobilize, but also the non-specific adsorption during measurement due to the strong hydrophobicity of the sensor surface. .
  • R'-Y ' specifically, 8-amino-1-octanethiol (Y-) in which Y' is an amino group
  • Y 7-Carboxy-11-heptanethionole (7-Carboxy-1- ⁇ mark tanethiol) which becomes a carboxyl group.
  • the compound of the formula X′—R′—Y ′ on the substrate and the first oligonucleotide are preferably bonded via a cross-linking agent. Details of this technique will be described later.
  • the double-stranded oligonucleotide array of the present invention can be suitably used for measuring the interaction between an oligonucleotide and a biomolecule (B) or an aggregate thereof.
  • a surface plasmon resonance (SPR) method that can perform label-free and real-time measurement is preferable. Further, in the SPR method, the SPR imaging method is preferable.
  • the SPR method is an interaction analysis method that does not require labeling of biomolecules, appropriate measurements can be performed while maintaining functions and activities of biomolecules. 'In addition, the method enables real-time measurement and analysis of the binding and dissociation rates, not just the equilibrium state. Information can be obtained. Note that the SPR method is similarly preferred even when the biomolecule (A) is other than a double-stranded oligonucleotide (for example, a protein, a polysaccharide, or a nucleic acid).
  • a double-stranded oligonucleotide for example, a protein, a polysaccharide, or a nucleic acid.
  • the SPR imaging method irradiates the entire array with polarized parallel light from the back side and captures the reflected light with a CCD camera.Therefore, the surface plasmon resonance color displacement at a certain point on the array can be known from the change in reflected light intensity. It is possible. Therefore, it is possible to measure and analyze the interaction between a double-stranded oligonucleotide array having a plurality of immobilized sequences and a biomolecule in a label-free and real-time manner.In particular, an array having a plurality of immobilized biomolecules can be used. It can be suitably used for analyzing the biomolecular interaction used.
  • the biomolecule (B) to be subjected to oligonucleotide interaction is not particularly limited.
  • nucleic acids, proteins, peptides, sugar chains and the like can be mentioned. It can also be applied to aggregates of biomolecules such as heterodimers.
  • the present invention can be suitably used for protein measurement.
  • it can be suitably used for measuring transcription factors known to interact with double-stranded DNA among proteins.
  • the type of transcription factor is not particularly limited, and for example, NF1 family, Maf family, GATA family and the like can be applied.
  • the Maf family is known to form heterodimers in addition to homodimers, the method of the present invention evaluates the difference in binding behavior between various combinations of heterodimers.
  • a heterobifunctional hydrophilic polymer represented by the general formula X—R—Y (where X is a functional group on a solid surface or a solid surface) is used as a crosslinking agent.
  • Y represents a functional group that binds to the functional group introduced into the biomolecule
  • Y represents a functional group that binds to the biomolecule (A)
  • X and Y are different from each other, and are amino, carboxyl, succinimide
  • R is preferably selected from the group consisting of sulfonated succinimide groups, maleimide groups, thiol groups, aldehyde groups, vinyl groups, isocyanate groups, epoxy groups, hydrazide groups, and azide groups.
  • a heterobifunctional hydrophilic polymer is used as a crosslinking agent.
  • biomolecule (A) can be immobilized while keeping a certain space from the surface, and rigorous biomolecular interaction kinetics analysis can be performed.
  • appropriate observations can be made in real time while securing the mobility of biomolecules.
  • the heterobifunctional hydrophilic polymer used as a crosslinking agent is represented by the general formula X—R—Y.
  • X represents a functional group on the solid surface or a functional group bonded to a functional group introduced on the solid surface.
  • Y represents a functional group that binds to the biomolecule (A).
  • R represents a polymer repeating unit.
  • the polymer refers to a polymer having three or more repeating units.
  • the two different functional groups ( ⁇ , ⁇ ) at the polymer terminal serving as the cross-linking agent of the present invention are functional groups in which the functional group X at one end is bonded to the solid surface or the functional group introduced to the solid surface.
  • the other terminal functional group ⁇ ⁇ reacts with the biomolecule ( ⁇ ).
  • the functional group ⁇ ⁇ ⁇ is preferably a functional group that does not react with the solid surface.
  • the functional group ⁇ ⁇ reacts with the surface, loops are formed on the surface, the number of functional groups for immobilizing biomolecules decreases, and the reaction efficiency deteriorates.
  • Examples of the functional groups X and X include an amino group, a carboxyl group, a succinimide group, a sulfonated succinimide group, a maleimide group, a thiol group, an aldehyde group, a butyl group, and an isocyanate. Groups, epoxy groups, hydrazide groups, azide groups and the like. Two different functional groups are selected as X and Y from such a group of functional groups.
  • the combination of X and Y is preferably a combination of an amino group and a carboxyl group, which are different from each other, and a combination of a succinimide group and a maleimide group.
  • the functional group Y introduced at the terminal is preferably an amino group, a thiol group or biotin.
  • the molecular weight of the heterobifunctional hydrophilic polymer is 200 or more, preferably 1000 or more, more preferably 1500 or more, and the upper limit of the molecular weight is 20000 or less, preferably 10,000 or less, and more preferably ⁇ 6000 or less. is there.
  • the number of repeating structural units is 4 or more, preferably 20 or more, more preferably 30 or more, 450 or less, preferably 225 or less, and more preferably 130 or less.
  • the heterobifunctional hydrophilic polymer of the present invention also plays a role of a spacer that can only act as a crosslinking agent. If the molecular weight is too small, it does not function as a sufficient spacer, which is not preferable. On the other hand, when the molecular mass is too large, the number of grams of the crosslinking agent required for immobilization, which requires a certain molar concentration, is not preferable.
  • the polymer corresponding to R constituting the cross-linking agent needs to be hydrophilic in order to suppress nonspecific adsorption.
  • hydrophilic means that a polymer serving as a crosslinking agent is water-soluble.
  • hydrophilic polymers examples include polyethylene glycol, polyvinyl alcohol, poly (meth) acrylic acid, poly (meth) acrylate, poly (meth) acrylamide, polyethyleneimine, polyvinylpyrrolidone, and carboxylic acid. Or a salt thereof--a monomer containing sulfonic acid or a salt thereof, or a polyester obtained by copolymerizing a hydrophilic portion such as polyethylene glycol, polyurethane, carboxymethylcellulose, dextran, and polysaccharides such as chitosan, carrageenan, and glycomannan. No.
  • the hydrophilic polymer is preferably non-ionic. This is to suppress non-specific adsorption due to ionic bonds. Specifically, it does not have a reactive moiety such as a ⁇ H group such as polyethylene glycol (PEG), poly (meth) acrylamide, or polybutylpyrrolidone, or a carboxylic acid or a salt thereof, or an amine or imine. Les, things are preferred.
  • a reactive moiety such as a ⁇ H group such as polyethylene glycol (PEG), poly (meth) acrylamide, or polybutylpyrrolidone, or a carboxylic acid or a salt thereof, or an amine or imine. Les, things are preferred.
  • R is the following repeating unit -(-O-Ri-) n-
  • the R specifically, - (_CH 2 -CH 2 - ⁇ -) ⁇ - or - or a straight-chain alkylene group such as, - (- CH 2 - CH 2 - CH 2 - ⁇ -) ⁇ And branched alkylene groups such as-(-CH (CH 3 ) -CH 2 - ⁇ -) ⁇ - (where ⁇ is as defined above). Also,
  • Block copolymers are also included.
  • the method for immobilizing a biomolecule using a cross-linking agent is not particularly limited. For example, after reacting one end X of the cross-linking agent on the surface and immobilizing the same, another functional group present on the opposite end is used. A method of immobilizing a biomolecule using the group Y can be mentioned.
  • the solid surface into which the carboxyl group has been introduced is treated with carpo-imide and N- After activation with hydroxysuccinimide, it is reacted with an amino group at one end to immobilize the citrus agent on the surface.
  • the biomolecule (A) is immobilized on the surface using a carboxyl group introduced to the surface via a cross-linking agent.
  • the succinimide group of the cross-linking agent is reacted on the solid surface into which the amino group has been introduced. Let it. Next, the biomolecules are immobilized on the surface using the maleimide group introduced into the surface via the cross-linking agent.
  • the method for bonding the biomolecule (A) to the heterobifunctional hydrophilic polymer serving as a cross-linking agent is not particularly limited, and it may be bonded directly or indirectly through another substance. May be allowed.
  • the type of the bond is not particularly limited.
  • the bond can be formed by a covalent bond, an ionic bond, a chelate bond, a hydrogen bond, or the like.
  • a functional group or substance that binds to a biomolecule after using the heterobifunctional crosslinking agent of the present invention is also included in the present invention.
  • a heterotriacetic acid (NTA) group After immobilization with a functional crosslinking agent, the NTA group and the histidine tag are chelated with Ni chelate to introduce the histidine tag protein to the surface, or biotin or streptavidin can be functionalized with the functional group Y of the crosslinking agent. And then introducing the biotin or streptavidin into the biomolecule (A).
  • a flat substrate is preferable because it is suitable for interaction analysis.
  • a metal substrate suitable for interaction analysis by surface plasmon resonance (SPR) is preferable.
  • the metal include gold, silver, copper, aluminum, and chromium.
  • a transparent substrate having a thin gold layer on the surface is particularly preferred.
  • the reason why the surface of the gold thin layer is preferable is that a functional group can be introduced on the surface by using a gold-sulfur bond.
  • the packed ground portion other than the portion where the biomolecules are immobilized is covered with a hydrophilic polymer.
  • hydrophilic polymer examples include a polymer (corresponding to R) used in the above-mentioned cross-linking agent, and among them, nonionic is preferable. This is to suppress non-specific adsorption due to ionic bonds.
  • a resin having no OH group such as polyethylene glycol (PEG), poly (meth) acrylamide, polybutylpyridone, and a reactive portion such as a carboxylic acid or a salt thereof, an amine or an imine is preferable, and most preferably.
  • PEG polyethylene glycol
  • PEG poly (meth) acrylamide
  • polybutylpyridone a reactive portion
  • a reactive portion such as a carboxylic acid or a salt thereof, an amine or an imine
  • the molecular weight of the hydrophilic polymer covering the background portion be 1000 or more. If the number is less than 1000, the non-specific adsorption in which the background portion surface is sufficiently hydrophilic may not be able to be suppressed.
  • the upper limit of the molecular weight of the hydrophilic polymer is not particularly limited, but if the molecular weight exceeds 20000, the viscosity of the solution increases, and the polymer may be fixed on the surface while being entangled. In such cases, they are not immobilized by covalent bonds Due to the gradual desorption of macromolecules, the baseline of the sensor may change and may not be desirable.
  • any method of immobilizing it directly or indirectly on the surface may be used.
  • a method of immobilizing a hydrophilic polymer having a terminal thiol group may be used.
  • an alkanethiol or the like having a functional group at the terminal as described above is immobilized on the gold surface, and then the hydrophilicity is enhanced by using the functional group of the alkanethiol as a starting point.
  • the molecule can be immobilized.
  • a method of coating the surface with a hydrophilic polymer is also possible.
  • Means for separating the immobilization section from the background section include a patterning technique using light irradiation and a stamp technique.
  • a specific example of the patterning technique by light irradiation is to fix the hydrophilic polymer in the background portion on the entire surface, and then use a mask or the like to shield the background portion from light, and apply ultraviolet light to the fixing portion.
  • the hydrophilic polymer having a plurality of metal-binding functional groups be bonded to the metal surface of the hydrophilic polymer in the background portion.
  • the hydrophilic polymer having a plurality of metal-binding functional groups means that the hydrophilic polymer may have the metal-binding functional group directly, or the functional group may be introduced on the metal surface as described above.
  • the functional group may be in a state in which a hydrophilic polymer is bonded.
  • hydrophilic polymer when such a hydrophilic polymer is used, since there are a plurality of metal-binding functional groups per molecule, when the hydrophilic polymer is bonded to the metal surface, all bonds are simultaneously broken. Unless otherwise, the hydrophilic polymer does not desorb from the metal surface. Therefore, the contrast between the background part and the fixed part can be further increased, and the change of the signal in the background part during the measurement can be suppressed.
  • the plurality of metal functional groups is 2 or more, preferably 3 or more, and the upper limit is preferably 16 or less, more preferably 10 or less. It is preferable that the number is two or more, particularly three or more, because the probability of metal surface force dissociation decreases. However, if the number is 17 or more, the number of free metal-binding functional groups not bonded to the metal surface increases, which is not preferable.
  • metal When a thiol group is selected as the binding functional group, if a large number of free thiol groups are present, it becomes difficult to apply the method to a means for immobilizing a biomolecule having a thiol group using a crosslinking agent having a maleimide group.
  • the hydrophilic polymer having a plurality of metal-binding functional groups is preferably a branched one, and it is particularly preferable that the hydrophilic polymer has a metal-binding functional group at a branched terminal.
  • the hydrophilic polymer lies on the surface, and the ability to suppress nonspecific adsorption is reduced.
  • a plurality of molecules of the same length be spread from the center, where the lengths of the branched portions are preferably substantially equal.
  • a metal-binding functional group is present at a branched end, a large number of metal-binding functional groups may remain free if the length of the branched portion varies.
  • Preferred examples include, for example, multi-arm type molecules, dendrimers of the relatively young generation of 1 to 4 generations, and the like.
  • the metal-binding functional group is preferably a thio-containing functional group, particularly preferably a thiol group or a disulfide group. This is because these functional groups are most suitable for adsorption bonding to a metal, particularly to a gold substrate. Therefore, the substrate surface is preferably made of gold.
  • the remaining functional groups to which the double-stranded oligonucleotides are bound are blocked in the fixing part.
  • the blocking agent is not particularly limited as long as it does not have a reactive functional group as described above, which reacts with the functional group, but is preferably a hydrophilic polymer.
  • the hydrophilic polymer include the above-described hydrophilic polymer used in the background portion, and most preferably PEG.
  • hydrophilic polymer it is, of course, necessary for the hydrophilic polymer to have a functional group that reacts with the functional group remaining in the immobilized area.
  • the functional group in the hydrophilic polymer used for blocking is more preferably present at one end of the polymer, preferably at one end of the polymer.
  • Main chain or main chain power of polymer If a functional group is present in a multi-branched side chain, steric hindrance may be given to the immobilized target molecule.
  • the functional groups remain in the immobilizing portion, and even if the functional groups are blocked, the functional groups remain, and this functional group also causes non-specific adsorption. There is no denying the possibility. Therefore, it is preferable that the functional group exists only at the terminal. Les ,. More preferably, a hydrophilic polymer having a functional group at only one end and no functional group at the other end, or having low activity and having a methoxy group ⁇ hydroxyl group is preferred! /.
  • the molecular weight of the hydrophilic polymer is preferably 400 or more, more preferably 1,000 or more. This is because the larger the molecular weight / the number of repeating units, the stronger the effect of suppressing nonspecific adsorption. However, if the molecular weight is 50,000 or more, steric hindrance may be caused to the immobilized target molecule, which may have an adverse effect.
  • the biochip is provided with a marker indicating the location of the spot on the array portion.
  • the presence of the marker ⁇ "makes it easy to determine the force where the substance immobilized on the array is located.
  • the SPR imaging method as the optical detection method
  • the rear surface force of the chip using a CCD camera When shooting, it is difficult to determine the location because the pattern with the chip is reversed, and the presence of the marker makes it easy to identify the location of the spot.
  • the marker may be one or many, and the shape of the marker may be any. However, in order to easily distinguish the rows and columns of the array, the shape of the marker is preferably a distinguishable character and / or number. For example, when a sample to be fixed is prepared on a commercially available 96-well plate or 384-well plate, it is conceivable to reflect the letters and numbers of the rows and columns described on the plate as they are. In the case of a 96-well plate, the vertical axis may be alphabetical letters from A to H, and the horizontal axis may be numbers from 1 to 12.
  • the method of introducing the marker is not limited to the method as long as it can be detected by the detection system.
  • the metal is not vapor-deposited only at the marker portion, and the metal thickness is changed only at the marker portion.
  • a mask is deposited by vapor deposition, a mask is coated, a printing is performed by a letterpress or an ink jet method, or the entire surface is printed. After coating, the adhered substance is decomposed and removed or degraded by irradiation with radiation or radiation to remove unnecessary parts, and other substances are attached after removing the unnecessary parts. Or they can be combined.
  • a marker is applied to the substrate provided with the metal layer by the above method. Can be provided.
  • the metal layer can be provided after the marker is attached to the substrate by the above method.
  • polymer or organic substance As a polymer or organic substance, it can be attached to metals and substrates, and when attached to metals, there is no problem as long as it is not washed away when the measuring solution is poured.For example, it can be used for ink, paint, etc. Polymers, organic substances, and organic substances and polymers containing thiols, sulfides, disulfides, and the like in their molecules that can be firmly bonded to the powers of these compositions are preferably used.
  • the difference in height between the marker and other parts on the chip surface is preferably 3 or less. It is more preferably at most 1 ⁇ , still more preferably at most 100 nm, particularly preferably at most 50 nm.
  • the marker is preferably introduced in a monolayer. If the chip surface has irregularities exceeding 3 ⁇ , the flow of the surface will deteriorate when a solution containing the analyte is exposed to the chip surface, making it difficult to evaluate interaction kinetics. It is better to be Irregularities at the molecular level can be sufficiently discriminated by optical detection methods such as SPR imaging.
  • the surface roughness can be measured according to the scale of the roughness, such as by using a stylus type or non-contact surface roughness meter, interference microscope, tunnel microscope, calculating SPR angular force plate, and cutting and observing the cross section. You can decide. '
  • the marker part is formed at the same time when the spot part is formed. If either the marker part or the spot part is formed in advance, the spot pattern may be restricted or the position may be misaligned.
  • the term “simultaneous” does not need to be perfectly simultaneous in terms of time, as long as it is performed in the same step or continuously without moving the substrate.
  • the marker part and the spot part are formed by masking the metal layer when depositing and depositing the metal, and the marker part is formed when the spot part is formed on the metal layer by spotting. And a marker portion when a spot portion is provided by treating the surface of the metal surface corresponding to the background portion.
  • a marker when a marker is also provided when a spot is provided by spotting on a metal layer, for example, spotting is performed on a metal by an automatic spotter or the like, and the same or another substance is placed in the spot.
  • Spotting and markers can be done with a pin or pen. And a method using ink jet. After the spotting process, a marker may be stamped on the substrate using a laser or the like.
  • a marker portion is also provided when the spot portion is formed by surface-treating the metal surface of the portion corresponding to the knocking ground portion, for example, the entire metal surface is coated with a hydrophilic compound which corresponds to the background portion, and the like, Thereafter, the hydrophilic compound or the like at the spot portion is removed, and a method of removing the hydrophilic compound at the marker portion at that time is exemplified.
  • the biomolecule (A) is not limited to the double-stranded oligonucleotide described above, and for example, the type of nucleic acid, protein, peptide, sugar chain and the like is not particularly limited. Among them, nucleic acids are preferred because they are stable and many types can be easily obtained.
  • biomolecule (A) As the biomolecule (A), a single substance may be used, or a plurality of types of substances may be used.
  • biomolecule (A) immobilized according to the present invention has excellent mobility and an effect of suppressing nonspecific adsorption, the interaction with the biomolecule (B) or its aggregate is measured in an appropriate state. can do.
  • the type of the biomolecule (B) is not particularly limited, and includes, for example, nucleic acids, proteins, peptides, sugar chains, and the like. Also, an aggregate of biomolecules (B) such as a protein dimer can be used.
  • the present invention is particularly suitable for measuring a protein having a complex structure such as a transcription factor.
  • transcription factors often have a special three-dimensional structure as seen in b-zip and zinc fingers, and if the mobility of the nucleic acid molecule to be bound is insufficient, the transcription factor can easily be used. Inaccessible.
  • the transcription factor since the transcription factor has a remarkably large amount of non-specific adsorption on the surface, it is difficult to analyze the non-specific adsorption without suppressing the non-specific adsorption.
  • the mobility of the immobilized molecule is Therefore, it can be suitably used for analysis of interaction evaluation of a biomolecule having a special structure such as a transcription factor, since it can secure nonspecific adsorption.
  • the present invention it is possible to appropriately analyze the interaction between the aggregates of biomolecules as described above, and by using the method of the present invention, the difference in the binding behavior due to various combinations of heterodimers can be obtained. It is possible to perform very significant measurements such as evaluating
  • the interactions that can be measured in the present invention include, for example, protein-protein interaction, nucleic acid-protein interaction, nucleic acid-nucleic acid interaction, protein-peptide interaction, protein-sugar chain interaction, antigen-antibody interaction Action and the like.
  • the SPR method As a method for measuring the interaction between the immobilized biomolecule (A) and the immobilized biomolecule, biomolecule, biomolecule (B) or an aggregate thereof, it is possible to use the surface plasmon resonance (SPR) method. preferable. Furthermore, among the SPR methods, the SPR imaging method is particularly preferred.
  • the SPR method is a label-free and real-time measurement method. Therefore, it is particularly suitable when at least one of the biological molecules (A) and (B) is a protein.
  • the contact liquid placed between the transparent substrate and the prism has a small weight change due to evaporation, and the weight loss rate when left open at 37 ° C for 1 hour is l ° / o. It is preferably at most 0.5%, more preferably at most 0.5%. If the weight loss rate exceeds 1%, interference fringes may become a problem. '
  • the refractive index ( nd ) of the contact liquid is preferably 1.60 or more, more preferably 1.65 or more. The higher the refractive index, the smaller the incident light angle for measuring SPR and the easier the measurement. In particular, in the SPR imaging method, since the distortion in the uniaxial direction of the image is reduced, a contact liquid having a high refractive index is desired.
  • the contact liquid preferably has a boiling point of 200 ° C. or higher. If the temperature is lower than 200 ° C, it is slightly volatile and the liquid smells strong. There is a high risk that the contact liquid will evaporate during the measurement, adversely affecting the measurement.
  • the contact liquid Since the contact liquid has a high boiling point and evaporation is reduced, interference fringes caused by changes in the refractive index due to evaporation of the contact liquid are hardly observed, and a precise SPR measurement method is realized. .
  • a hetero-functional polyethylene glycol (NHS-PEG-MAL, manufactured by Sheawater Polymers) having a succinimide (NHS) group and a maleimide (MAL) group at the terminal of a molecular weight of 3,400 was added to a phosphate buffer (20 mM phosphate, It was dissolved in 150 mM NaCl, ⁇ 72 ⁇ 2 at lOmg / ml, and reacted with 8-AOT on the gold surface for 2 hours. The amino group of 8-AOT and the NHS group of NHS-PEG-MAL reacted with each other, and the MAL group remained unreacted, so that a maleimide group could be introduced to the surface via PEG.
  • the DNA hybridization was carried out in an X5SSC solution (75 mM sodium citrate, 75 OmM NaCl, pH 7.0) so that the thiol-terminal DNA was 25 ⁇ and its complementary DNA was 100 ⁇ .
  • a solution was prepared, and the solution was left in boiling water for 5 minutes, quenched to 0 ° C, left for 15 minutes, and then incubated at 37 ° C for 3 hours.
  • the surface on which the dsDNA was immobilized was washed with a phosphate buffer, the surface was set on an SPR imaging device (SPRImager: manufactured by GWC Instruments), and 10 mM Hepes, 300 mM NaCl, 4 mM MgCl 2 , lmM EDTA, lOO ⁇ ug / ml bovine serum albumin, pH 7.9, transcription factor measurement buffer was flowed into the flow cell.
  • SPRImager manufactured by GWC Instruments
  • Figure 3 shows the image obtained by SPR imaging.
  • the oval portion on which dsDNA is immobilized looks white due to the change in the refractive index.
  • an array in which dsDNA was immobilized on the surface was formed.
  • a solution prepared by dissolving the homodimer of the transcription factor MafG in the above-described buffer for the transcription factor measurement at a concentration of 1 ⁇ g Zml was placed in the cell for 10 minutes. Injection was carried out at a rate of min, and a buffer containing no transcription factor was flowed.
  • Fig. 4 shows a graph showing the change in the SPR signal.
  • MA E25 sequence only bound MafG homodimer, MARE23, be observed that hardly bind to the background portion position, association rate constant 2.
  • 22 X 10 5 (M one 1 s one 1), dissociation rate degrees constants 8.
  • 80 X 10- 4 (s- 1 ), binding equilibrium constants 2. ⁇ ⁇ ⁇ ⁇ ⁇ - 1) was obtained.
  • 4armPEG has a molecular weight of 10,000 and has four PEG chains of approximately the same length from the center, making it extremely hydrophilic.
  • all four terminals of PEG are thiol groups, and exhibit metal-binding properties particularly to gold. '
  • the photomask shown in FIG. 6 was placed on the slide, and irradiated with a 500 W ultra-high pressure mercury lamp (manufactured by Shiso Electric Co., Ltd.) for 2 hours to remove the 4armPEG thiol in the UV irradiation area.
  • the photomask has 96 0.5mm square holes, and the distance between the holes is lmm.
  • the portions of the photomask where the holes are open transmit UV light and are irradiated on the slide to be patterned.
  • 4armPEG remains, and functions as a background part (reference part) of the chip.
  • the photomask is provided with a marker that indicates the location of the sbot, and corresponds to the sample prepared in the 96-well plate.
  • the slide was immersed in an ethanol solution of 8-AOT in ImM for 1 hour to form a self-assembled surface of 8-AOT on the UV irradiation part of the slide.
  • a heterobifunctional polyethylene glycol (NHS-PEG-MAL, manufactured by Nektar) having a succinimide (NHS) group and a maleimide (MAL) group at the terminal having a molecular weight of 3,400 was added to a phosphate buffer (20 mM phosphoric acid, 150 mM NaCl). , PH 7.2) at 10 mg / ml, and this solution was reacted with 8-AOT on the gold surface of the slide for 2 hours.
  • the amino group of 8-AOT reacted with the NHS group of NHS-PEG-MAL, and the MAL group remained unreacted, so that the maleimide group could be introduced onto the slide surface via PEG.
  • GATAreg is a sequence that GATA-1 can recognize and bind to, and contains the 5'-side GATA sequence at the center.
  • GATAmut sequence is a sequence in which AGTA, G and A are replaced in place of GATAreg, and GATA-1 is generally an unrecognizable sequence.
  • the maleimide group formed on the surface of the chip reacts with the thiol group of the immobilized DNA, and the DNA can be covalently immobilized on the surface.
  • DNA hybridization conditions were the same as in Example 1. About 10 nl of the obtained dsDNA was spotted and reacted for 15 hours to immobilize the dsDNA on the surface.
  • PEG thiol in which one functional group is a thiol group and the other functional group is a methoxy group in order to block unreacted maleimide groups was dissolved at a concentration of 10 mg / ml in a phosphate buffer solution (20 mM phosphoric acid, 150 mM NaCl, H7.2), 250 ⁇ l was poured onto the chip, and reacted for 1 hour. I let it.
  • the molecular weight of the PEG thiol used here is 5,000, and the effect of suppressing non-specific adsorption, which is extremely high in hydrophilicity, can be expected.
  • the dsDNA-immobilized chip thus obtained is set on an SPR imaging device (MultiSPRinter: manufactured by Toyobo Co., Ltd.), and used to measure the transcription factor of 20 mM Hepes ⁇ 300 mM NaCl, 0.2 mM ZnCl 2 , 0.005% Tween20, pH7.9.
  • the buffer was flowed into the flow cell.
  • the transcription factor GATA-1 was prepared in the above-mentioned buffer for measuring the transcription factor at a concentration of ⁇ ⁇ , and injected into the cell in the SPR device.
  • polydldC When injecting GATA-1, polydldC was added to the buffer at a concentration of 100 ⁇ gZml to suppress non-specific adsorption to nucleic acids.
  • the cells were injected at a rate of 100 1 / min into the cell for 10 minutes, and a buffer containing no transcription factor was further flowed, and changes in the SPR signal for binding and dissociation were observed. Shi The observation of the change in the signal was performed with GATAreg and GATAmut, and with Blank and Background. '
  • FIG. 1 A graph of the signal change is shown in FIG. Here, it could be observed that GATA-1 binds to the GATAreg sequence and hardly binds to GATAmut.
  • the Background portion (4armPEG) in this graph shows no signal change, indicating that GATA-1 had little binding power.
  • a patterned glass slide similar to that in Example 2 was immersed in an ImM solution of 7-carboxy-1-heptanethiol (7-CHT: Dojindo Laboratories) for 2 hours to introduce amino groups into the UV irradiation area.
  • 7-CHT 7-carboxy-1-heptanethiol
  • 4armPEG could be exchanged for 7-CHT.
  • the chip was set on a surface plasmon resonance imaging device (manufactured by Toyobo Co., Ltd.), and the adsorption of poly-L-lysine on the chip surface was observed. The measurements were performed in 10 mM phosphate buffer, 150 mM NaCl, pH 7.4, 30 ° C.
  • poly-L-lysine (Sigma) having a molecular weight of 4000 to 15000 was dissolved at a concentration of 10 ⁇ g / ml was contacted for 5 minutes.
  • Poly-L-lysine is a polymer having a positive charge, and has a property of electrostatically binding to a portion where 7-CHT is bound and a carboxyl group is introduced.
  • Figure 8 shows the changes in the SPR signal.
  • the amount of signal due to poly-L-lysine was measured by measuring the change in signal value 3 minutes before flowing poly-L-lysine and 5 minutes after finishing flowing poly-L-lysine.
  • the signal of the 7-CHT introduction part was the average value of the signal of 96 7-CHT introduction parts.
  • the signals in the 4armPEG section were taken at 11 vertical and long rectangles at intervals in the column direction to obtain the signal average value.
  • PEG thiol has a molecular weight of 5000 and has very high hydrophilicity. As described above, one end of the PEG thiol is a thiol group having metal binding properties, and the other end is a methoxy group.
  • the alkyl chain portion of PEG thiol has 2 carbon atoms, and the hydrophobic bond between molecules is strong.
  • a maleimide group was introduced into the gold surface of the slide glass via PEG in the same manner as in Example 2.
  • dsDNA double-stranded DNA
  • Blank a spot for immobilizing nothing
  • the sequence of the immobilized DNA is designed to be 5'HS— (T) 15— CGGAAT (N) 13 TTACTC 3 ′ (SEQ ID NO: 914), and the target sequence is located at the 13 bases of (N) 13. It is designed to enter.
  • Table 2 shows the six types of target sequences used. Although the sequence of the capture side DNA is not shown in Table 2, a complementary strand corresponding to the 25 base portion of CGG AAT (N) 13 TTACTC was considered for each sequence. 5 '3'
  • MGSTY (SEQ ID NO: 14) TGGTGGAcAAAGcA
  • the maleimide group formed on the surface of the chip reacts with the thiol group of the immobilization-side DNA, whereby DNA can be covalently immobilized on the surface.
  • DNA hybridization conditions were the same as in Example 1, about 10 nl of the obtained dsDNA was spotted and reacted for 15 hours to immobilize the dsDNA on the surface.
  • the dsDNA-immobilized chip thus obtained was set on an SPR imaging device (ultiSPRinter: manufactured by Toyobo).
  • SPR imaging device ultiSPRinter: manufactured by Toyobo.
  • This matching oil is characterized by a weight change of 0.11% when left open for 1 hour at 37 ° C, which is less than 1%.
  • the boiling point is 279 ° C, which is 200 ° C or more.
  • a buffer for measuring a transcription factor of 20 mM Hepes, 200 mM NaCl, 4 mM MgCl 2 , ImM EDTA, 100 / ig / ml BSA S pH 7.9 was flowed into the flow cell.
  • the transcription factor MafG was prepared at a concentration of 125 ⁇ in the above-mentioned buffer for measuring the transcription factor, and injected into the cell in the SPR device.
  • the cells were injected into the cell at a rate of 100 ⁇ l / min for 10 minutes, and a buffer containing no transcription factor was further passed. Changes in the SPR signal for binding and dissociation were observed. Observation of the signal change was performed for the blanks and backgrounds of the six gene sequences. (Observation results and discussion)
  • a graph of the signal change is shown in FIG. In this way, it was possible to observe six interactions at the same time on one chip. Again, it was reconfirmed that the binding strength to the consensus sequence MARE25 was strong and the binding to MARE23 was weak.
  • the back ground part (4armPEG) in this graph shows no signal change, indicating that MafG hardly bound.
  • the table below compares the kinetics values obtained from the binding-dissociation curves with the values of the gel shift method (GMSA), which is a conventional interaction measurement method. Although there is a difference between the SPR value and the GMSA value, it seems that the SPR method could be used to sufficiently evaluate the binding strength in terms of affinity binding strength.
  • GMSA gel shift method
  • hBglHS4 N.D. N.D. N.D. N.D. By using the double-stranded oligonucleotide array of the present invention, it is possible to appropriately analyze the interaction between the oligonucleotide and a biological molecule or an aggregate thereof.
  • a double-stranded oligonucleotide suitable for observation of biomolecular interaction can be efficiently and appropriately prepared.
  • the present invention provides an excellent means having high utility in measuring the interaction between an oligonucleotide and a biomolecule or an aggregate thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、金属基板上に直接的に或いはスペーサーを介して間接的に複数の生体分子(A)を結合させたバイオアレイに関し、特に、金属基板上に複数の二本鎖オリゴヌクレオチドが固定化されたアレイであり、第一の一本鎖オリゴヌクレオチドと第二の一本鎖オリゴヌクレオチドとが全体的あるいは部分的に相補的に結合して二本鎖オリゴヌクレオチドを形成しており、該二本鎖オリゴヌクレオチドにおいて第一の一本鎖オリゴヌクレオチドのみが基板上に結合している二本鎖オリゴヌクレオチドアレイに関する。

Description

パイオアレイ
技術分野
本発明は、複数の生体分子を直接的又は間接的に固定ィ匕したバイオアレイ及び該ァ レイと非固定ィヒ生体分子もしくはその集合体との相互作用を測定する方法に関し、さらに は該アレイを用いて非固定化生体分子又はその集合体との相互作用解析を行う方法に 関する。
背景技術
従来カゝら遺伝子を検出する方法として DNAアレイの技術が用いられてきた。 DNAァレ ィは、一本鎖 DNAを基板上に固定化しておき、その DNAに相補的な核酸がハイブリダ ィゼーシヨンしたカゝどうかを蛍光ラベルや化学発光などを用いて検出するのが一般的で ある。
近年、核酸同士の相互作用だけでなく、 DNA—タンパク質相互作用などの異なる生 体分子相互作用の観察が注目を浴びてきている。その理由として核酸配列に特異的な タンパク質の存在が広く知られるようになったことが挙げられる。中でも結合♦解離の相互 作用が重要視されている。
従来、 DNA—タンパク質の結合 '解離の相互作用評価として一般的な方法はゲルシフ ト法であり、 DNA—タンパク質を相互作用させた状態で、ゲル内の移動速度を観察する 方法が行われてきた。しかし、ゲルシフト法はスループットが低く、多量のサンプルを扱う のは非常に困難である。また、平衡状態を測定するため、結合'解離速度の評価は不可 能である。
そこで、 DNAアレイの技術を応用して、二本鎖 DNAのアレイを作製し、タンパク質との 相互作用を解析する方法が探索されてきた。例えば同一のプライマー部分を有する一本 鎖 DNAをアレイ状に固相に固定ィ匕しておき、プライマーをハイプリダイゼーシヨンさせた 上で、表面上でのポリメラーゼ操作によって二本鎖とする方法が知ちれている(USP632 6489)。この方法は同一のプライマー部分を有する長い一本鎖 DNAを固定ィヒしている 場合は効果がある。しかし、基板上での DNAポリメラーゼの反応条件の最適化、反応操 作は煩雑である。また、 USP6326489では二本鎖 DNAは緑色蛍光蛋白(GFP)などに よってラベル化されたタンパク質との相互作用が観察されてレ、るが、ラベル操作はタンパ ク質の機能や特性を変える可能性が指摘されており、 DNA—タンパク質相互作用を普 遍的に測定できる方法とは言えない。
一方、基板上で酵素処理を行わず、二本鎖 DNAをハイブリダィゼーシヨンさせて力 、 電極基板上に固定ィ匕し、酵素との相互作用を観察する方法も報告されてレ、る (Boon e t al . Nature Biotechnology 20 (2002) 282-286. )。ここでは金基板に結合性をもつ チオール基を DNA分子に導入しておき、金基板に直接固定化する方法をとつている。し かし、この方法は電極全体に二本鎖 DNAを固定ィ匕するもので、アレイの概念は示されて いない。また、この方法では、 DNA分子は金表面に横たわる形でも存在することが知ら れており(Tonya e t al, J . Am. Chem. Soc. 119 (1997) 8916-8920.)、 DNA分子が基 板に近すぎて DNA分子のモビリティが十分に確保できなレヽことから、タンパク質との相互 作用キネテイクス (kinetics)を正確に測定することは困難となる場合がある。また、 DNA分 子だけで金表面に自己組織化によって固定ィヒすると密に充填できないため、メルカプト へキサノールのような非イオン性アルカンチオールで金表面をブロッキングする必要が生 じる。非イオン性アルカンチオールの方が自己組織ィ匕能は強く、先に金に固定化した D NA分子と非イオン性アルカンチオールの交換反応が起こるため、表面に残る DNA分子 の密度は極めて低くなり、タンパク質との相互作用によって得られる信号は非常に小さく . なる。チオール末端 DNAと非イオン性アルカンチオールの混合物を金表面に曝すことも 可能であるが、 DNA固定化量が少ないことと、表面の DNA固定化量のコントロールがで きない点が問題となる。
また、アレイ上で DNA—タンパク質相互作用を観察する報告もされている(Brockman et al. J. Am. Chem. Soc. 121 (1999) 8044-8051.)。ここでは二種類の一本鎖 DNAを固 定化しておき、片方に相補的な DNAをアレイ全体に曝し、片方のみをハイブリダィゼー シヨンさせた後、一本鎖結合型蛋白(SSB)との相互作用を表面プラズモン共鳴 (SPR)ィ メージング法によって観察している。しかし、この方法では、配列の近い DNAが固定ィ匕さ れる場合、ミスマッチでもハイブリダィゼーシヨンしてしまレ、、配列が似かよった二本鎖 DN Aアレイを作成することは困難である。またチップ全体に相補的 DNAを曝すことにも限界 がある。
また、従来から生体分子の機能を調べる手段として、生体分子の相互作用が調べられ てきた。相互作用を調べる手段としては、一方の分子を固体表面上に固定ィ匕し、対象物 質を接触させて、対象物質が吸着するかどうかを検出する方法が一般的となってきてレ、 る。相互作用を測定する際には、固定ィ匕した分子のモビリティを確保した上で、非特異的 吸着を抑制することが好ましく、そのためには、固定ィヒ分子と表面のスペースを確保する スぺーサ一の存在が不可欠と考えられている。例えば、核酸分子を共有結合で固定化 する方法において、核酸分子内にチミン 15塩基または短いポリエチレングリコールのス ぺーサ一を設ける方法が示されている (WO00/67028)。しかし、この方法では、架橋剤 にスぺーサ一の効果がないために分子のモビリティが不十分で、相互作用解析の対象 物質が限られる。
一方、スぺーサ一としてポリマーを用いる方法も報告されている(特開 2000-146976号 公報)。しかし、この方法において使用されるポリマーはアミノ基を多く有する多官能型ポ リマーで、表面力 の距離を十分に取ることができず、効果が不十分である。また、両端 が同じ官能基であると、両端とも反応してしまい、生体物質との反応効率が悪くなる。
USP5436161においては、表面にハイド口ゲルを形成し、ゲル内二官能基を設けること で固定化分子のモビリティを確保し、非特異的吸着を抑制する方法が開示されている。 効果のある方法ではある力 ゲルの内部と外部とで、対象物質の浸透、拡散速度が異な るため、リアルタイムに相互作用キネテイクス (kinet ics)を厳密に測定する方法としては 不適当である。
また、親水性高分子を有するスぺーサ一の末端に生体分子を固定化するための官能 基を有し、もう一方の末端に固体表面に直接結合できる官能基をもつ分子が設計され、 相互作用観察を行うことも、報告されている(Sigal et al. Anal. Chem. 68 (1996) 490-497 ; Jung et al. Langmuir 16 (2000) 942卜 9432)。しかし、この物質単独を表 面に密に充填することは難しぐ非特異的吸着を抑制するために、その他の親水性基末 端物質を高い比率で混合する結果となり、表面に生体分子が固定化される密度が低く、 測定感度が低レ、という問題が生じる。
また、バイオセンサーの表面にポリエチレングリコールを用いる技術は WO01/86301で も知られている。
また、ノックブランド部にポリエチレングリコールが固定ィヒされたバイオチップアレイが 示されている(USP6127129、 Prime et al. J. Am. Chem. Soc. 115, (1993) 10714 - 10721) c その他にも、親水性高分子をバイオセンサー表面に適応する技術が知られている (Anal. Biochem. 198, 268, (1991); USP6127129)0
本発明は二本鎖オリゴヌクレオチドを固定ィヒしたアレイ並びに該アレイを用いて生体分 子の相互作用を適切に測定する方法を提供することを主な課題とする。なお、本発明に おいては、二本鎖オリゴヌクレオチドなどを固定ィ匕する前であっても、それらを固定化す るための部位がアレイ状に配置されているものもアレイと呼ぶ。
さらに本発明は、固定化した分子のモビリティを確保すると同時に、非特異的吸着を抑 制し、厳密な相互作用キネテイクス (kinetics)解析を可能とする方法を提供することを主 な目的とする。
図面の簡単な説明
図 1は、 MARE25の塩基配列 (配列番号 1)とその相捕的配列 (配列番号 2)を示す。 下線部が Maf認識配列を示す。
図 2は、 MARE23の塩基配列 (配列番号 3)とその相捕的配列 (配列番号 4)を示す。 図 3は、 dsDNAアレイの SPR像を示す。
図 4は、実施例 1における SPRシグナル変化 (MafGホモ二量体の結合解離曲線)を 示す。
図 5は、 MafGホモ二量体結合前後の画像の差を示す図である。
図 6は、実施例 2、参考例 1で使用したフォトマスクを示す。
図 7は、実施例 2における SPRシグナル変化を示す。
図 8は、参考例 1においてポリ Lリシンを流したときの SPRシグナル変化を示す。
図 9は、参考例 2においてポリ Lリシンを流したときの SPRシグナル変化を示す。
図 10は、実施例 2のアレイ作製のステップ図である。
図 11は、実施例 2の架橋剤反応のスキームを示す。
図 12は、実施例 3の SPRシグナル変化を示す。
図 13は、実施例 3の画像の変化を示す図である。
発明の開示
本発明は、以下の 1.〜36.を提供するものである。
1. 金属基板上に直接的に或いはスぺーサーを介して間接的に複数の生体分子 (A) を結合させたバイオアレイ。 2. 前記生体分子 (A)が二本鎖オリゴヌクレオチドであり、第一の一本鎖オリゴヌクレ ォチドと第二の一本鎖オリゴヌクレオチドとが全体的あるいは部分的に相補的に結合して 二本.鎖オリゴヌクレオチドを形成しており、該ニ本鎖オリゴヌクレオチドにおいて第一の一 本鎖オリゴヌクレオチドのみが金属基板上に直接的或いは間接的に結合している項 1に 記載のアレイ。
3. 结一の一本鎖オリゴヌクレオチドが、 5'末端あるいは 3'末端側に官能基あるいは 結合グループを有し、該官能基あるいは結合グループを介して基板上に固定ィ匕されてい る項 2に記載のアレイ。
4. 金属基板が、表層に金薄層が形成された透明基板である項 1〜3のいずれかに記 載のアレイ。
5. 第一の一本鎖オリゴヌクレオチドが、金属基板上に固定された二官能基型アル力 ンに直接的或いは架橋剤を介して間接的に結合することによって固定化されている項 2 〜4のレ、ずれかに記载のアレイ。
6. 生体分子 (A)が一般式 X— R— Yで表されるヘテロ二官能型親水性高分子 (ここで Xは固体表面の官能基、もしくは固体表面に導入された官能基と結合する官能基を表す。
Yは生体分子 (A)と結合する官能基を表す。 Rは高分子の繰り返し単位を表す。)を介し て基板上に結合されてレ、ることを特徴とする項 1〜5のいずれかに記載のアレイ。
7. バックグラウンド部に親水性高分子が固定化されていることを特徵とする項 1〜6 の!/、ずれかに記載のアレイ。
8. スポットの場所を記したマーカーが備えられていることを特徴とする項 1に記載の アレイ。
9. (1)第 1の一本鎖オリゴヌクレオチドと第二の一本鎖オリゴヌクレオチドをハイプリ ダイゼーシヨンさせて、第一の一本鎖オリゴヌクレオチドと第二の一本鎖オリゴヌクレオチ ドが全体的あるいは部分的に相補的に結合した二本鎖オリゴヌクレオチドを形成するェ 程、次いで、(2)第一の一本鎖オリゴヌクレオチドの末端を金属基板上に結合させて、金 属基板上に工程(1)で形成した二本鎖オリゴヌクレオチドを固定ィ匕する工程を含む二本 鎖オリゴヌクレオチドアレイの作成方法。 10. 第一の一本鎖オリゴヌクレオチドが 5 '末端あるレ、は 3 '末端側に官能基ある ヽは 結合グループを有し、該官能基あるレ、は結合グループを介して第一の一本鎖オリゴヌク レオチドの末端を金属基板上に結合させる項 9に記載の方法。
11. 金属基板が表層に金薄層が形成された透明基板である項 9に記載の方法。
12. 第一の一本鎖オリゴヌクレオチドの末端を、金薄層上に密に充填された二官能基 型アルカンに直接的或いは間接的に結合させて、金属基板上に結合させる項 9に記載 の方法。
13. 二本鎖オリゴヌクレオチドアレイを用いて、二本鎖オリゴヌクレオチドアレイに固定 化されたオリゴヌクレオチドと生体分子又はその集合体との相互作用を測定する工程を 有する生体分子相互作用測定方法であって、該ニ本鎖オリゴヌクレオチドアレイが、金属 基板上に複数の二本鎖オリゴヌクレオチドが固定化されたアレイであり、第一の一本鎖ォ リゴヌクレオチドと第二の一本鎖オリゴヌクレオチドとが全体的あるいは部分的に相補的 に結合して二本鎖オリゴヌクレオチドを形成しており、該ニ本鎖オリゴヌクレオチドにおレ、 て第一の一本鎖オリゴヌクレオチドのみが基板上に結合している二本鎖オリゴヌクレオチ ドアレイであることを特徴とする生体分子相互作用測定方法。
14. 基板に結合する際の架橋剤として、一般式 X— R—Yで表されるヘテロ二官能型 親水性高分子 (ここで Xは固体表面の官能基、もしくは固体表面に導入された官能基と 結合する官能基を表す。 Yは生体分子 (A)と結合する官能基を表す。 Rは高分子の繰り 返し単位を表す。 )が用いられていることを特徴とする項 13に記載の方法。
15. 架橋剤として一般式 X—R— Yで表されるヘテロ二官能型親水性高分子(ここで Xは固体表面の官能基、もしくは固体表面に導入された官能基と結合する官能基を表す。 Yは生体分子 (A)と結合する官能基を表す。 Rは高分子の繰り返し単位を表す。)を用い て固体表面上に生体分子 (A)を固定化した基板を用いて、生体分子 (A)と生体分子 (B)又はその集合体との相互作用を測定する工程を有する生体分子相互作用測定方法。 16. ヘテロ二官能型親水性高分子の分子量が 200〜20, 000である項 15に記載の 方法。
17. ヘテロ二官能型親水性高分子の Rが、下記繰り返し単位— (一 O— 1^—) n— (ここ で、 は、炭素数が 2—5のアルキレン基を表す。 nは 4〜450の整数である)で表される 構造を有する項 15に記載の方法。 18. ヘテロ二官能型親水性高分子の官能基 X及ひ Ύが、アミノ基、カルボキシル基、 スクシンイミド基、スルホン化スクシンイミド基、マレイミド基、チオール基、アルデヒド基、ビ ル基、イソシァネート基、エポキシ基、ヒドラジド基、アジド基からなる群力 選ばれる項 15に記載の方法。'
19. 固体表面が、一般式 X'— R,—Y'で表される化合物 (ここで X,は金薄層と反応 する官能基を表す。 Y'はへテロ二官能型親水性高分子と結合する官能基を表す。 R'は 有機基を表す)を用いて金薄層表面二官能基を導入した固体表面である項 15に記載の 方法。
20. 生体分子 (A)を固定化した基板が、複数の種類の生体分子 (A)をアレイ状に固 定化した基板である項 15に記載の方法。
21. 生体分子 (A)が核酸である項 15に記載の方法。
22. 生体分子 (A)と生体分子 (B)又はその集合体との相互作用を、表面プラズモン 共鳴法を用いて測定する項 15に記載の方法。
23. 生体分子 (A)と生体分子 (B)又はその集合体との相互作用を、表面プラズモン 共鳴イメージング法を用 V、て測定する項 15に記載の方法。
24. 生体分子 (B)がタンパク質である項 15に記載の方法。
25. タンパク質が転写因子である項 24に記載の方法。
26. バックグラウンド部に親水性高分子が固定化されてレ、るアレイを用いて測定を行 うことを特徴とする項 13または 15に記載の方法。
27. スポットの場所を記したマーカーが備えられているアレイを用いて測定を行うこと を特徴とする項 13または 15に記載の方法。
28. 生体分子 (A)もしくは生物分子集合体を表面に固定ィ匕するためのアレイであり、 該生体分子 (A)もしくは生物分子集合体を固定化する部分 (固定化部位)には固定化さ せるための起点となる物質もしくは官能基を有する物質が固定化され、かつ固定ィ匕部位 以外のパックグラウンド部には、親水性高分子が固定化されていることを特徴とするァレ ィ。
29. 金属基板上に形成されたアレイ状部分を有し、スポットの場所を記したマーカー が備えられてレ、ることを特徴とするアレイ。 30. 固定化部位以外のパックグラウンド部には、親水性高分子が固定化されてレヽるこ とを特徴とする項 28に記載のアレイ。
31. 親水性高分子が複数の金属結合性官能基を有することを特徴とする項 6または 2 8に記載のアレイ
32. 親水性高分子が枝分かれしており、その末端部分に金属結合性官能基を有する ことを特徴とする 7または 28に記載のアレイ。
33. 親水性高分子がポリエチレングリコールであることを特徴とする項 7または 28に記 載のアレイ。
34. マーカーが判別可能な文字及び/又は数字であることを特徴とする項 7または 2 9に記載のアレイ。
35. マーカーが単分子層でパターン化されてレ、ることを特徴とする項 8または 29に記 載のアレイ。
36. チップ上の官能基と生体分子が有する官能基とを反応させることにより、チップ 上に生体分子が固定されたチップであって、チップ表面に残存する官能基が親水性高 分子により共有結合的にブロッキングされていることを特徴とするアレイ。
以下、本発明を詳細に説明する。
本明細書において、アレイに固定化された生体分子を「生体分子 (A)」と表し、アレイ に固定化されず、生体分子 (A)と相互作用する生体分子を「生体分子 (B) jと表す。 本明細書において、「金属基板」とは、少なくとも一方の表面に金属又は金属層を有す る基板を意味し、基板全体が金属からなるものでもよぐ非金属基板の一方または両方の 表面に金属層(好ましくは金属薄層)を有する基板でもよい。基板表面に存在する金属と しては、例えば、金、銀、銅、アルミニウム、クロム等が挙げられる。基板全体力 Sこれらの金 属の少なくとも 1種からなるものでもよく、ガラス、プラスチック、セラミック等の基板上に、こ れらの金属の少なくとも 1種力 なる層が設けられていてもよい。ガラス、プラスチックなど の透明基板の表層に金薄層が形成された金属基板が好ましい。透明基板として好ましい プラスチックはポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタタリレート、ポ リスチレン、ポリメチルペンテンなどが例示できる。表層に金薄層が形成されている場合 には、特定の物質を基板上に密に充填して金表面に複数の官能基を導入し、生体分子 (A)の末端を該物質の官能基に直接的又はスぺーサー (例えば、ヘテロ二官能型親水 性高分子を含む架橋剤及び Z又は二官能基型アルカン)を介して間接的に結合させて、 生体分子 (A)を基板上に密に固定化することが可能である。
本発明の好ましい実施形態において、生体分子 (A)としては、二本鎖オリゴヌクレオチ ドが好ましく例示される。
以下、生体分子 (A)として二本鎖オリゴヌクレオチドを固定ィヒしたパイオアレイについて 説明する。
二本鎖オリゴヌクレオチドを固定ィヒしたバイオアレイ
二本鎖オリゴヌクレオチドとは二本鎖 DNAあるいは DNAと RNAの二重らせん分子の ことをいい、本発明においては、アレイ上に複数種の二本鎖オリゴヌクレオチドが固定化 される。本発明における二本鎖オリゴヌクレオチドは、第一のオリゴヌクレオチドと第二の オリゴヌクレオチドとが、全体的あるいは部分的に相捕的に結合して形成されている。部 分的とはどちらかのオリゴヌクレオチドの一部分が一本鎖である状態や、ニ本鎮オリゴヌ クレオチドがミスマッチを含むことをレ、う。
本発明のアレイにおいては、二本鎖オリゴヌクレオチドを構成する一方の一本鎖オリゴ ヌクレオチド(以下、「第一のオリゴヌクレオチド (first oligonucleotide) )のみが、金属基板 上に直接的又はスぺーサー (例えば、ヘテロ二官能型親水性高分子を含む架橋剤及 びノ又は二官能基型アル力ン) を介して間接的に結合しており、もう一方の一本鎖ォ リゴヌクレオチド(以下、「第二のオリゴヌクレオチド (second oligonucleotide^ )は、第一の オリゴヌクレオチドと相補的にヮトソン一クリック対を形成することによって、二本鎖オリゴヌ クレオチドの形で、基板上に固定ィ匕されている。
相補結合をしてレ、る第一と第二のオリゴヌクレオチドの融解温度(melting temperature; Tm)は、測定温度よりも高いように設定する。 Tmはオリゴヌクレオチドにおける Gと Cが含 まれるパーセンテージにも依存するが、—般的な測定温度(25〜37°C)で、少なくとも 9 塩基以上の相捕的結合が好ましい。また、 50以上の長い塩基対は合成が困難であった り、自己相補的塩基対を生じたり、目的の部位と異なる部位でハイブリダィゼーシヨンした りして、目的の一本鎖オリゴヌクレオチドが得られない危険性が生じる。従って、二本鎖ォ リゴヌクレオチドにおいて、相補的結合をしている長さは、 9塩基以上 50塩基以下が好ま しい。より好ましくは、 11塩基以上 30塩基以下である。相捕結合してレ、る塩基は連続して レ、ることが好ましい。相補結合していれば、相補的結合部分に一部ミスマッチを有するも のも含まれる。
生体分子 (B)との相互作用を観察するためには、生体分子 (A)が、オリゴヌクレオチドを 認識できる状態が必要である。そのためには、二本鎖オリゴヌクレオチド分子が基板上に 横たわらないよう、オリゴヌクレオチドの中央部分ではなぐ末端で結合させることが重要 である。オリゴヌクレオチドを末端で結合するための方法としては、例えば、第一のオリゴ ヌクレオチドの末端に官能基を導入し、固体表面に存在する官能基もしくは固体表面に 導入した官能基と直接、もしくは架橋剤などを用いて間接的に結合する方法などが挙げ られる。このように末端で固定化することで、生体分子がオリゴヌクレオチドを適切に認識 でき、正しい評価値を得ることができる。
生体分子 (A)が二本鎖オリゴヌクレオチドであるバイオアレイの作成方法
以下において、生体分子 (A)として二本鎖オリゴヌクレオチドを例に取りバイオアレイの 作成方法を説明するが、他の生体分子 (A)についても同様に作成することができる。 本発明のアレイの作成方法は、特に限定されないが、第一と第二のオリゴヌクレオチド をハイプリダイゼーシヨンし、二本鎖オリゴヌクレオチドとした上で、第一のオリゴヌクレオ チドの末端を基板上にアレイ状に固定ィ匕する方法が好ましい。
より具体的には、 (1)第一の一本鎖オリゴヌクレオチドと第二の一本鎖オリゴヌクレオチ ドをハイプリダイゼーシヨンさせて、第一の一本鎖オリゴヌクレオチドと第二の一本鎖オリ ゴヌクレオチドが全体的あるいは部分的に相補的に結合した二本鎖オリゴヌクレオチドを 形成する工程、次いで、(2)第一の一本鎖オリゴヌクレオチドの末端を金属基板に結合さ せて、金属基板上に工程 (1)で形成した二本鎖オリゴヌクレオチドを固定化する工程を 含む方法が好ましい。
第一のオリゴヌクレオチドを、先に固定化した後で、第二のオリゴヌクレオチドを配置さ せる場合には、アレイの同一場所にスポットする必要があり、スポット操作が二回必要とな るなど、工程が煩雑となる。そのため、第一と第二のオリゴヌクレオチドは基板に配置され る前に、ハイプリダイゼーシヨンを行って、二本鎖オリゴヌクレオチドとすることが好ましい。 第一のオリゴヌクレオチドと第二のオリゴヌクレオチドとのハイプリダイゼーシヨンは、例 えば、 X 5SSC溶液などの塩濃度の高い溶液に、 5'チオール末端 DNAと相補的 DNA がモル比 1::!〜 1: 10の範囲で混合し、沸騰浴中にて 3— 1'5分、 0°Cに急冷し 5— 60分、 その後 37°Cで 1— 24時間インキュベートするなどの方法が好ましい。
第一のオリゴヌクレオチドを金属基板に結合する方法としては、第一のオリゴヌクレオ チドの末端に官能基あるいは結合グループを導入し、該官能基あるいは結合グループを 介して、基板上に直接的あるいはスぺーサーを介して間接的に結合する方法が好ましい。 官能基や結合グループの種類は特に限定されるものではないが、例えば、官能基として アミノ基、チオール基、アルデヒド基、マレイミド基、結合グループとしてピオチンなどが挙 られる。
金表面に官能基を導入する方法としては、一般式 X,— R'—Y'で表される二官能基 型アルカン (ここで X,は金表面と結合する官能基、 Y,は第一オリゴヌクレオチド又は架橋 剤 (例えばスぺーサ一)と結合する官能基を表す。 R'は二価の有機基を表す。なお、後 述するが、この際 Υ,と第一オリゴヌクレオチドは架橋剤を介して結合してもよい)を表面処 理剤として金表面と反応させ、これを基板上に密に結合する方法が好ましい。官能基 X, としては、例えば、チオール基、スルフイド基またはジスルフイド基などが挙げられる。 γ, としては、例えば、アミノ基、カルボキシル基、アルデヒド基、アジド基、 Ν—ヒドロキシスク シンイミド基、エポキシ基、カルボエルジイミダゾール基、イソシァネート基などが挙げられ る。また R'としては、アルキレン基(例えば (CH2) nl、 nlは 5〜18の整数を示す)などが 挙げられる。アルキレン基の炭素数が 4未満であると、アルカン鎖同士の疎水結合が十 分でなく、自己組織ィヒ表面の安定性に欠ける。また 19以上であると、アルカン鎖の疎水 性が強ぐ親水性物質の反応'固定化が困難となるだけでなぐセンサー表面として疎水 性が強いために測定中の非特異的吸着が懸念される。
一般式 X,一 R'— Y'で表される化合物としては、具体的には、 Y'がアミノ基となる 8— アミノー 1 -オクタンチオール (8- Amino- 1- Octanethiol)、 Y,がカルボキシル基となる 7— カルボキシ一 1—ヘプタンチォーノレ (7 - Carboxy- 1 - Η印 tanethiol)などが挙げられる。
さらに、基板上の式 X'— R'— Y'の化合物と第一オリゴヌクレオチドは架橋剤を介して 結合してレ、ることが好ましレ、。この技術に関しては後に詳細を述べる。
生体分子 (A)が二本鎖オリゴヌクレオチドであるパイオアレイと生体分子 (B)の相互作用 の測定方法 本発明における二本鎖オリゴヌクレオチドアレイは、オリゴヌクレオチドと生体分子 (B)又 はその集合体との相互作用の測定に、好適に用いることができる。相互作用測定の手段 としては、ラベルフリーかつリアルタイム測定が可能な表面プラズモン共鳴 (SPR)法が好 ましい。さらに SPR法においては、 SPRイメージング法が好ましい。
生体分子の中にはラベル操作によって機能'活性に変化が生じるものがあり、特にタン パク質は、ラベル操作によって構造が変化したり、活性を失う可能性が高い。 SPR法は 生体分子を標識ィ匕 (ラベル)する必要のない相互作用解析方法であるため、生体分子の 機能や活性を維持したまま適切な測定を行うことができる。'また該方法により、リアルタイ ムな測定が可能であり、平衡状態だけではなぐ結合と解離の速度を解析することが可能 となるため、これらの結果力も生体分子の機能を知るための貴重な情報を得ることができ る。なお、 SPR法は、生体分子 (A)が二本鎖オリゴヌクレオチド以外のもの(例えばタンパ ク質、多糖、核酸)であっても同様に好ましい。
SPRイメージング法はアレイ全体に裏面側から偏光平行光を照射し、その反射光を C CDカメラで撮影するため、アレイのある地点における表面プラズモン共鳴色変位を、反 射光強度の変化によって知ることが可能である。よって、複数の配列を固定化した二本 鎖オリゴヌクレオチドアレイと生体分子の相互作用をラベルフリー、かつリアルタイムに測 定乃至解析することが可能であり、特に複数の生体分子を固定化したアレイを用いた生 体分子相互作用の解析に好適に用いることができる。
オリゴヌクレオチドの相互作用の対象となる生体分子 (B)は、特に限定されることはない 力 例えば、核酸、タンパク質、ペプチド、糖鎖などが挙げられる。またへテロ二量体など の生体分子の集合体にも適用できる。中でも、本発明はタンパク質の測定に好適に用レ、 ることができる。特に、タンパク質の中でも、二本鎖 DNAと相互作用することが知られて レ、る転写因子の測定に好適に用いることができる。転写因子の種類は特に限定されず、 例えば、 NF1ファミリー、 Mafファミリー、 GATAファミリーなどを適用することができる。 M afファミリ一はホモ二量体だけではなぐヘテロ二量体を形成することが知られてレ、るが、 本発明の方法により、さまざまなヘテロ二量体の組合せによる結合挙動の違いの評価や、 変異の入った二本鎖 DNAと転写因子の相互作用を解析することなどができ、本発明に より、生体機能に関する有用な種々の情報を得ることができる。 また、本発明の他の好適な実施態様は、架橋剤として一般式 X— R— Yで表されるへ テロ二官能型親水性高分子 (ここで Xは固体表面の官能基、もしくは固体表面に導入さ れた官能基と結合する官能基を表す。 Yは生体分子 (A)と結合する官能基を表す。且つ、 X及び Yは、相互に異なり、アミノ基、カルボキシル基、スクシンイミド碁、スルホン化スクシ ンイミド基、マレイミド基、チオール基、アルデヒド基、ビニル基、イソシァネート基、ェポキ シ基、ヒドラジド基、アジド基からなる群力 選ばれるいずれかであることが好ましい。 Rは 高分子の繰り返し単位を表す。;)を用いて固体 (金属基板)表面上に生体分子 (A)を固 定化した基板を用レ、て、生体分子 (A)と生体分子 (B)又はその集合体との相互作用を 測定する工程を有する生体分子相互作用測定方法である。
以下には、この発明に関して詳細に説明する。
ヘテロ二官能型親水性高分子 (架橋剤)
本発明の好ましい実施形態の 1つである、生体分子を固体 (例えば金属基板)表面に 固定化する方法において、架橋剤としてへテロ二官能型親水性高分子を用いる。
この方法により、非特異的吸着を抑制し、表面から一定のスペースを保った状態で生 体分子 (A)を固定化することが可能となり、厳密な生体分子の相互作用キネテイクス (kinetics)解析を、生体分子のモビリティを確保しつつ、リアルタイムで適切な観察を行う ことができる。
架橋剤として用いるヘテロ二官能型親水性高分子は、一般式 X— R— Yで表される。こ こで Xは固体表面の官能基、もしくは固体表面に導入された官能基と結合する官能基を 表す。 Yは生体分子 (A)と結合する官能基を表す。また、 Rは高分子の繰り返し単位を表 す。ここで、高分子とは繰り返し単位の数が 3以上のものをいう。
本発明の架橋剤となる高分子末端の相異なる 2つの官能基 (Χ,Υ)は、一方の末端の 官能基 Xが固体表面もしくは固体表面に導入された官能基と結合する官能基であり、他 方の末端の官能基 Υが生体分子 (Α)と反応するものである。
官能基 Υは固体表面と反応しない官能基であることが好ましい。官能基 Υが表面と反応 すると、表面にループが形成され、生体分子を固定化するための官能基が少なくなり、反 応効率が悪くなるので好ましくな!/、。
官能基 X及ぴ Υとしては、例えば、アミノ基、カルボキシル基、スクシンイミド基、スルホ ン化スクシンイミド基、マレイミド基、チオール基、アルデヒド基、ビュル基、イソシァネート 基、エポキシ基、ヒドラジド基、アジド基などが挙げられる。このような官能基群の中から X 及び Yとして異なる 2つの官能基を選択する。
特に、 X及ぴ Yの組合せとしては、反応対象が異なるァミノ基とカルボキシル基の組合 せ、スクシンイミド基とマレイミド基の組合せが好ましい。
生体分子 (A)力 ¾ΝΑである場合、末端に導入する官能基 Yはァミノ基、チオール基あ るいはビォチンが好ましい。
ヘテロ二官能基型親水性高分子の分子量は 200以上、好ましくは 1000以上、更に好 ましくは 1500以上であり、分子量の上限は 20000以下、好ましくは 10000以下、更に好 まし <は 6000以下である。
繰り返し単位で言うと、構成単位の繰り返し数が、 4以上、好ましくは 20以上、更に好ま しくは 30以上であり、 450以下、好ましくは 225以下、更に好ましくは 130以下である。
本発明のへテロ二官能型親水性高分子は、架橋剤となるだけでなぐスぺーサ一の役 割も担う。分子量が小さすぎる場合には、十分なスぺーサ一として機能しないため好まし くない。一方、分子釐が大きすぎる場合には、一定のモル濃度が必要である固定化に要 する架橋剤のグラム数が増大するため、好ましくない。
本発明において、架橋剤を構成する Rに対応する高分子は、非特異的吸着を抑制す るために親水性である必要がある。ここで親水性とは架橋剤となる高分子が水溶性である ことを意味する。 '
これらの親水性高分子としては、例えば、ポリエチレングリコール、ポリビュルアルコ ^ル、 ポリ (メタ)アクリル酸、ポリ (メタ)アクリル酸塩、ポリ (メタ)アクリルアミド、ポリエチレンィミン、 ポリビニルピロリドン、カルボン酸もしくはその塩ゃスルホン酸もしくはその塩を含有するモ ノマーまたはポリエチレングリコール等の親水性部分を共重合させたポリエステルやポリ ウレタン、カルボキシメチルセルロース、デキストラン、さらにはキトサン、カラギーナン、グ ルコマンナンなどの多糖類が挙げられる。
親水性高分子は、非イオン性であることが好ましい。イオン結合による非特異的吸着を 抑制するためである。具体的には、ポリエチレングリコール (PEG)、ポリ(メタ)アクリルアミ ド、ポリビュルピロリドン等の〇H基、カルボン酸やその塩、ァミン、ィミンなど反応性を有 する部分 (moiety)を持たなレ、ものが好ましレ、。
これらの中でも、 Rは、下記繰り返し単位 - (-O-Ri-)n-
(ここで、 Riは、炭素数が 2— 5φアルキレン基を表す。 ηは 4〜450の整数である。 ) で表される構造を有することが好ましい。
Rとしては、具体的には、 - (_CH2-CH2- Ο -) η-や- (- CH2- CH2 - CH2- Ο -) η -等の直 鎖状のアルキレン基や、 -(-CH(CH3) - CH2- Ο -) η- (ηは前記に定義されるとおりであ る)等の分岐状のアルキレン基など力挙げられる。また、
- (-CH2-CH2-0-) p- (-CH (CH3) -CH2-0~) q- ( , qは任意の自然数を示し、 p+q= nである)のようなプロック共重合体も含まれる。
このうち、親水性と鎖のフレキシビリティからみて、エチレングリコールの繰り返し単位 - (-CH2 - CH2- O- )n - (nは前記に定義されるとおりである)を有するものが好ましい。
生体分子の固定化方法
架橋剤を用いて生体分子を固定ィ匕する方法は特に限定されないが、例えば、架橋剤 の一方の末端 Xを表面に反応して固定ィ匕した後に、反対側の末端に存在する別の官能 基 Yを利用して、生体分子を固定化する方法が挙げられる。
具体的には、一方の末端にアミノ基を有し、他方の末端にカルボキシル基を有するへ テロ二官能基型高分子を架橋剤として用いる場合、カルボキシル基を導入した固体表面 をカルポジイミドと N—ヒドロキシスクシンイミドで活性化した後に、一方の末端であるアミノ 基と反応させて、架橘剤を表面に固定化する。その次に架橋剤を介して表面に導入され たカルボキシル基を用いて生体分子 (A)を表面に固定化する。
また、一方の末端にスクシンイミド基を有し、他方の末端にマレイミド基を有するヘテロ 二官能基型高分子を架橋剤として用いる場合、アミノ基を導入した固体表面に、架橋剤 のスクシンイミド基を反応させる。次に架橋剤を介して表面に導入されたマレイミド基を用 いて生体分子を表面に固定化する。
生体分子 (A)を架橋剤であるへテロ二官能基型親水性高分子と結合する方法は特に 限定されず、直接的に結合させても、また他の物質を介在させて間接的に結合させても よい。結合の種類は特に限定されず、例えば、共有結合、イオン結合、キレート結合、水 • 素結合などにより結合させることができる。
本発明のへテロ二官能型架橋剤を用いた後に、生体分子に結合する官能基又は物 質を導入することも、本発明に含まれる。例えば、二トリ口三酢酸 (NTA)基をへテロニ官 能型架撟剤で固定化した後に、 Niキレートにより NTA基とヒスチジンタグとをキレ ト結 合させて、ヒスチジンタグ蛋白を表面に導入する方法や、ビォチン或いはストレブトァビジ ンを架橋剤の官能基 Yと反応させて導入した後に、導入したビォチン或いはストレブトァ ビジンと生体分子 (A)を反応させる方法などが考えられる。
生体分子を固定化する固体表面としては、相互作用解析に適してレ、る点で平面基板 が好ましい。
平面基板としては、表面プラズモン共鳴 (SPR)法による相互作用解析に好適な、金属 基板が好ましい。金属としては、金、銀、銅、アルミニウム、クロム等が挙げられる。このう ち、表面に金薄層を有する透明基板が特に好ましい。
金薄層表面が好ましい理由として、金一硫黄結合を利用して、表面に官能基を導人で きることが挙げられる。
金—硫黄結合を利用して、表面に官能基を導入する方法としては、例えば、前述の一 般式 X'一 R' -Y' ( X,、R,、 Y,は前記に定義されるとおりである)で表される二官能基 型アルカン化合物を用いて官能基を導入する方法などが挙げられる。
また、本願において、生体分子が固定化された部位(固定化部)以外のパックグラウン ド部は親水性高分子で覆われてレ、ることが好ましレ、。
親水性高分子としては、前述の架橋剤で用いられる (Rに対応する)高分子が挙げられ、 中でも非イオン性であることが好まし ヽ。イオン結合による非特異吸着を抑制するためで ある。具体的には、ポリエチレングリコール (PEG)、ポリ (メタ)アクリルアミド、ポリビュルピ 口リドン等の OH基、カルボン酸やその塩、ァミン、ィミンなど反応性を有する部分を持た なレヽものが好ましく、最も好ましくは PEGである。 PEGは親水性が高ぐ反応性を有する 官能基がないため非特異吸着を抑制する効果が高ぐスポット部とのコントラストをより大 きくすることができる。
パックグラウンド部を覆う親水性高分子の分子量は 1000以上であることが好ましい。 1000未満である場合、バックグラウンド部表面が十分に親水性でなぐ非特異吸着を抑 制することができなレ、場合があるからである。親水性高分子の分子量の上限は特に定め るものではないが、分子量が 20000を越えると、溶液の粘性が上昇し、高分子が絡み合つ たまま表面に固定ィ匕されることがある。このような場合、共有結合で固定化されていない 高分子が徐々に脱離するために、センサーのベースラインが変化することがあり、好まし くない場合がある。
ノックグラウンド部の親水性高分子を固定ィ匕する際には、表面に直接的あるいは間接 的に固定化する方法のいずれであってもよい。金表面に直接固定化する場合、末端チ オール基を有する親水性高分子を固定化する方法などが挙げられる。金表面に間接的 に固定化する場合、ー且、前述のような、末端に官能基をもつアルカンチオール等を金 表面に固定化し、その次にアルカンチオールが有する官能基を起点として親水性高分 子を固定化することができる。あるいは親水性高分子を表面にコーティングする方法も可 能である。
固定化部とバックグラウンド部を分ける手段としては光照射によるパターン化技術や、 スタンプ技術などが挙げられる。光照射によるパターン化技術を具体的に例示すると、全 面にバックグラウンド部の親水性高分子を固定ィ匕した後、パックグラウンド部を遮光する マスク等を用レ、て固定化部に紫外線を当て、紫外線により金一硫黄結合を酸化して洗浄 除去して金表面を露出させ、新たに上述のアルカンチオールを金表面に結合させる方法 がある(図 10参照)。これにより固定化部に官能基を導入することができる。
また、パックグラウンド部の親水性高分子は複数の金属結合性官能基を有する親水性 '高分子が金属表面に結合してレ、ることが好ましい。なお、ここで複数の金属結合性官能 基を有する親水性高分子とは、親水性高分子が直接金属結合性官能基を有しても良い し、前述の様に金属表面に官能基が導入され、この官能基に親水性高分子が結合して いる状態であっても良い。
このような親水性高分子を用 V、た場合、一分子あたりの金属結合性官能基が複数であ るため、該親水性高分子を金属表面に結合させた場合、すべての結合が同時に破壊さ れない限り、親水性高分子が金属表面力 脱離することはない。従って、さらに一層バッ クグラウンド部と固定ィ匕部とのコントラストを高めることができ、測定中にパックグラウンド部 のシグナルが変化することを抑制することができる。
複数の金属官能基とは 2個以上であるが、好ましくは 3個以上であり、上限は好ましく は 16個以下、より好ましくは 10個以下である。 2個以上、特に 3個以上であると、金属表 面力 解離する確率が減少するため好ましい。しかし、 17個以上であると、金属表面に 結合していないフリーの金属結合性官能基が増加するため好ましくない。例えば、金属 結合性官能基としてチオール基を選択する場合、フリーのチオール基が多数存在すると、 マレイミド基を有する架橋剤を用いてチオール基を有する生体分子を固定ィ匕する手段に は応用し難くなる。
複数の金属結合性官能基を持つ親水性高分子は枝分かれしたものが好ましぐ枝分 かれした末端に金属結合性官能基がある場合が特に好ましい。高分子の主鎖に金属結 合性高分子が複数含まれている場合、親水性高分子は表面に横たわり、非特異的吸着 を抑制する能力が低下する。
枝分かれの部分の長さはほぼ同等であることが好ましぐ中心部から複数の同じ長さの 分子が広がっている親水性高分子がさらに好ましい。枝分かれした末端に金属結合性官 能基がある場合、枝分かれ部の長さがまちまちであると、多数の金属結合性官能基がフ リーのまま残る可能性がある。好ましい例としては、例えば、マルチアームタイプの分子、 1〜4世代の比較的若い世代のデンドリマーなども挙げられる。
金属結合性官能基はィォゥを含む官能基が好ましぐ特にはチオール基もしくはジス ルフイド基であることが好ましい。これらの官能基は金属、特に金基板への吸着結合に最 適であるためである。従って、基板表面は金であることが好ましレ、。
さらに、固定ィ匕部は、二本鎖オリゴヌクレオチドが結合された残りの官能基はブロッキン グされてレ、ることが好ましい。ブロッキング剤としては、官能基と反応し他に前述のような 反応性官能基を持たな 、ものであれば特に限定するものではなレ、が、親水性高分子で あることが好ましい。親水性高分子としては前述のバックグラウンド部に用いられる親水性 高分子が例として挙げられ、最も好ましくは PEGである。
親水性高分子は、当然のことながら、固定ィヒ部に残った官能基と反応する官能基を持 つことが必要である。
ブロッキングに用レ、られる親水性高分子における官能基は高分子末端に存在している ことが好ましぐ片末端であるとさらに好ましい。高分子の主鎖もしくは主鎖力 多数分岐 した側鎖に官能基が存在していると、固定化した対象分子に対して立体障害を与える恐 れがある。また、主鎖もしくは側鎖に多数の官能基が存在すると、固定ィ匕部に残った官能 基と反応しブロッキングされてもなお、官能基が残存し、この官能基も非特異的吸着を引 き起こす可能性は否定できない。従って、末端にのみ官能基が存在してレ、ることが好まし レ、。さらに好ましくは片末端のみに官能基があり、もう一つの末端には官能基がないか、 もしくは活性の低レ、メトキシ基ゃヒドロキシル基を有する親水性高分子が好まし!/、。
親水性高分子の分子量は 400以上が好ましぐ 1, 000以上であるとさらに好ましい。 分子量/繰り返し単位が多い方が、非特異的吸着を抑制する効果が強いためである。た だし、分子量が 50, 000以上であると固定化した対象分子に対して立体障害を与え、悪 影響を及ぼす場合がある。
また、バイオチップはアレイ部分のスポットの場所を記したマーカーが備えられてレ、るこ とが好ましい。マーカ^"を備えていることで、アレイ上に固定ィ匕された物質がどこにあるの 力を容易に判別できる。特に光学的検出方法として SPRイメージング法を用いる場合、 チップの背面力 CCDカメラで撮影する場合が一般的である。背面力 撮影するとチッ プとのパターンが反転して映るために、場所が判別しにくい。マーカーが存在することで、 スポットの場所を容易に特定できる。
マーカーは一つであっても、多数存在してもよく、マーカーの形状もどのようなものでも よい。ただし、アレイの行と列を容易に判別するためにマーカーの形状は判別可能な文 字及び/又は数字であることが好ましい。例えば、固定ィ匕するサンプルは市販の 96穴プ レートや 384穴プレートに用意する場合、プレートに記載された行と列の文字数字をその まま反映させることが考えられる。 96穴プレートの場合であると、縦軸に Aから Hまでのァ ルファベット文字、横軸に 1から 12まで数字が記載される場合が考えられる。
マーカーの導入方法としては、検出系で検出可能な方法であればその方法に限定さ れるものでないが、例えば、マーカーの部分のみ金属の蒸着を行わない、マーカーの部 分のみ金属の厚みを変える、マーカーの部分またはマーカー以外の部分の金属表面上 もしくは基板—金属層間にポリマー、有機物質、無機物質等を付着させるか他の部分と は異なる物質を付着させる、等の方法が挙げられる。
マーカーの部分またはマーカー以外の部分にポリマー、有機物質、無機物質等を付 着させる方法としては、マスクして蒸着する、マスクしてコーティングする、凸版やインクジ エツト法等による印刷を行う、全面にコートした後に光'レーザー ·放射線照射等により付 着物を分解除去するか変質させて不要部分を除去する、不要部分を除去した後さらに他 の物質を付着させる、などの方法が挙げられ、適宜単独もしくは組合せることができる。金 属表面上に付着させる場合には、金属層を設けた基板に上記方法によってマーカーを 設けることが出来る。基板一金属層間に付着させる場合には、基板上に上記方法によつ てマーカーを付着させた後に金属層を設けることが出来る。
ポリマー、有機物質としては金属、基板に付着可能であり、金属上に付着させる場合 には測定液を流した際に流失されないものであれば問題はなく、例えばインキ、塗料等 に用レ、られるポリマーや有機物質、これらの組成物が挙げられる力 金と強固に結合可 能である分子内にチオール、スルフイド、ジスルフイド等のィォゥを含有する有機物質、ポ リマーが好ましく用いられる。
また、マーカーと他の部位とのチップ表面での高さの差は 3 以下であることが好まし レ、。より好ましくは 1 μ πι以下、さらに好ましくは lOOnm以下、特に好ましくは 50nm以下 である。さらには、マーカーは単分子層で導入されていることが好ましい。チップ表面に 3 βを越える凹凸があると、分析対象物質を含んだ溶液をチップ表面に曝す際に、表面の 流れが悪くなり、相互作用の kineticsを評価するには好ましくなぐ分子レベルでの凹凸 である方が好ましレ、からである。分子レベルの凹凸は SPRイメージング法などの光学的 検出方法によって十分に判別可能である。
なお、表面の凹凸は、触針式や非接触の表面粗さ計、干渉顕微鏡、トンネル顕微鏡、 SPR角度力ゝらの計算、断面でカットして観察する等、その凹凸の規模により測定法を決 定することが出来る。 '
さらに、マーカー部はスポット部を形成する際に同時に形成されることが好ましい。マー カー部とスポット部のどちらかを予め形成させると、スポットのパターンが制限されたり、位 置ズレが生じる場合がある。なお、ここで同時というのは、時間的に完全な同時でなくとも、 同一工程もしくは基板を移動させずに弓 Iき続き行われるものであればかまわない。マーカ 一部とスポット部を同時に形成する方法としては、金属層を設ける際にマスクして金属の 蒸着等を行いマーカー部とスポット部を設ける、金属層上にスポッティングによりスポット 部を設ける際にマーカー部も設ける、バックグラウンド部にあたる部分の金属面を表面処 理してスポット部を設ける際にマーカー部分も設けるなどの方法が挙げられる。
具体的には、金属層上にスポッティングによりスポット部を設ける際にマーカー部も設 ける場合には、例えば、金属上に自動スポッター等でスポッティングを行い、その中で同 —か別の物質を用いてマーカーを設ける。スポッティングおよびマーカーは、ピンやペン による方法、インクジェットによる方法等が挙げられる。また、スポッティング工程後レーザ 一等を用いて基板にマーカーを刻印してもかまわない。
ノ ックグラウンド部にあたる部分の金属面を表面処理してスポット部を設ける際にマー カー部分も設ける場合には、例えば、金属面全面にバックグラウンド部にあたる親水性ィ匕 5 合物等をコートし、その後にスポット部力 親水性化合物等を除去するが、その際にマー カー部の親水性化合物を除去する方法が挙げられる。
生体分子 (A)は、すでに述べた二本鎖オリゴヌクレオチドに限らず、例えば、核酸、タ ンパク質、ペプチド、糖鎖など種類は特に限定されない。中でも安定であることと、多くの 種類を容易に確保し得ると!/ヽぅ点で、核酸が好ましレヽ。
10 生体分子 (A)としては、単独の物質を用いてもよぐ複数の種類の物質を用いてもよい。
複数の種類の物質を用いる場合には、ハイスループットな解析が可能になる。ハイスル 一プットで解析を行うことにより、極めて多数の化合物を効率よくスクリーニングすることが ' できる。
特に 8種類以上、好ましくは 10種類以上、より好ましくは 12種類以上、さらに好ましくは 15 24種類以上の生体分子を用いることが好ましい。上限は特に限定されないが、通常 96 種類程度である。複数の物質を固定化するためにはアレイ状に物質を固定化するのが 好ましい。それにより、それぞれの固定化部位にて相互作用を解析することが可能となる。 本発明によって固定化された生体分子 (A)はモビリティに優れ、非特異的吸着を抑制 する効果を有するため、生体分子 (B)又はその集合体との相互作用を適切な状態で測 20 定することができる。
生体分子 (B)の種類も特に限定されず、例えば、核酸、タンパク質、ペプチド、糖鎖な どが挙げられる。またタンパク質の二量体など、生体分子 (B)の集合体も用いることがで きる。
本発明は、特に転写因子等の複雑な構造を有するタンパク質の測定に、特に適してい 25 る。なぜならば、転写因子は b— zipや zincフィンガーに見られるように立体的に特殊な構 造を取るものが多く、結合する対象の核酸分子のモビリティが不十分だと、転写因子が容 易に接近できない。また、転写因子は表面への非特異的吸着量が顕著に髙いため、非 特異的吸着を抑制しなレ、と解析は困難となる。本発明においては固定ィ匕分子のモビリテ ィを確保し、非特異的吸着を抑制できるため、転写因子等の特殊な構造をとる生体分子 の相互作用評価の解析にも好適に用いることができる。
本発明においては、前述のような生体分子の集合体の相互作用も適切に解析すること ができ、本発明の方法を用いることによって、様々なへテロ二量体の組合せによる結合挙 動の違いを評価するなどの、非常に意義深い測定を行うことが可能になる。
本発明で測定可能な相互作用としては、例えば、タンパク質一タンパク質相互作用、 核酸—タンパク質相互作用、核酸-核酸相互作用、タンパク質—ペプチド相互作用、タ ンパク質一糖鎖相互作用、抗原一抗体相互作用などが挙げられる。
測定方法
固定化された生体分子 (A)と、固定化されてレ、なレ、生体分子 (B)又はその集合体との 相互作用の測定方法としては、表面プラズモン共鳴 (SPR)法を用いることが好ましい。さ らに、 SPR法の中では、 S PRイメージング法が特に好ましレヽ。
SPR法はラベルフリーかつリアルタイムな測定が可能な測定法である。従って、生体分 子 (A)又は (B)の少なくとも一方がタンパク質である場合に、特に好適である。
また、 SPRで測定する際に、透明基板とプリズムの間に入れる接触液は、蒸発による 重量変化が少ない方が好ましく、 37°Cで 1時間開放放置したときの重量減少率が l°/o以 下であることが好ましく、 0. 5%以下であるとさらに好ましい。重量減少率が 1%を越える と、干渉縞が問題となることがある。 '
接触液の重量減少率の測定方法の詳細は実施例で示すが、以下の通りである。
1.接触液を 200 μ ΐ採取し、胴径 18mm (内径 16mm)、高さ 35mmの筒型秤量瓶 (ァ ズワン社製)に入れる。
2.接触液を入れた秤量瓶を、 37±0. 5°C、湿度 50%RH以下にコントロールされた広 さ 0. 5m3以上の恒温恒湿室に、秤量瓶の蓋を取った状態で、また強い空気流が直接秤 量瓶にあたらない状態で 1時間放置し、接触液の蒸発による重量変化を測定する。 接触液の屈折率 (nd)は 1. 60以上が好ましぐ 1. 65以上がさらに好ましい。屈折率が 高い方が、 SPRを測定する入射光角度が小さくなり、測定が容易となる。特に SPRィメー ジング法において、像の一軸方向への歪みが低減されるため、高い屈折率を有する接 触液であることが望まれる。 接触液の沸点は 200°C以上であることが好ましい。 200°C未満であると、やや揮発性 があり、液に強いにおいを感じる。測定中に接触液が蒸発して、測定に悪影響を与える 危険性が高い。
具体的には、沸点 181°Cであるジョードメタンを用いずに、沸点 279°Cである 1—プロ モナフタレンや、さらに沸点の高い 1ーョ一ドナフタレンを用レ、ることが好ましい。 1一プロ モナフタレンや 1ーョードナフタレンを配合することで、 d=l. 70までの屈折率を有する 接触液が調合可能である。
接触液は、沸点が高ぐ蒸発が低減されてレヽるため、接触液の蒸発による屈折率変化 によって生じる干渉縞が、ほとんど観察されない利点を有しており、精密な SPR測定方法 が実現される。
発明を実施するための最良の形態
以下に実施例及び参考例を示して本発明を具体的に説明するが、本発明は実施例 に限定されるものではない。
実施例 1
厚さ lmm、 18mm X 18mmの SF10製透明ガラス基板上にクロム 3nmを蒸着した後、 金を 45nm蒸着した。蒸着の厚みは水晶発振子にてモニターした。金が表面に蒸着され た基板を 8-Ami no-卜 Octane thiol, Hydrochloride (8-AOT,同仁化学研究所製)の ImMエタノール溶液に 16時間浸漬し、 8— AOTの自己組織化表面を形成させた。分 子量 3, 400の末端にスクシンイミド (NHS)基とマレイミド (MAL)基を有するヘテロニ官 能型ポリエチレングリコール (NHS- PEG- MAL . Sheawater Polymers社製)をリン酸緩衝液 (20mM リン酸、 150mM NaCl、 ρΗ7· 2)に lOmg/mlで溶解し、金表面の 8— AO Tに 2時間反応させた。 8— AOTのァミノ基と NHS— PEG— MALの NHS基が反応し、 MAL基は未反応のまま残るため、 PEGを介してマレイミド基を表面に導入することがで きた。
得られた表面に Greinerbio- one社の HandSpot terを用いて 5'チオール末端の DN Aの二種類をハイブリダィゼーシヨンさせてからこの二本鎖 DM(dsDNA)をスポッティング した。その後 15時間放置して反応させ、 dsDNAを表面に固定ィ匕した。 固定化した DNAの配列は Maf認識配列 (MA E25)と、 Maf非認識配列 (MARE2 3)であり、詳細な配列は図 1、図 2に示す。 5'チオール末端カもチミン 15塩基スぺーサ 一を介した後、目的の配列が入るように設計されている。
なお、 DNAのハイプリダイゼーシヨンは、 X 5SSC溶液(75mMクェン酸ナトリウム、 75 OmM NaCl、 pH7. 0)に 5,チオール末端 DNAが 25 μ Μ、その相補的 DNAを 100 μ Μになるように溶液を調製し、この溶液を沸騰水中にて 5分間放置後、 0°Cに急冷し 15分 放置し、さらにその後 37°Cで三時間インキュベートすることにより行った。
dsDNAを固定ィ匕した表面をリン酸緩衝液で洗浄した後、 SPRイメージング機器 (SPRImager :GWC Ins truments社製)にセットし、 10mM Hepes、 300mM NaCl、4 mM MgCl2、lmM EDTA、 lOO^u g/ml牛血清アルブミン、 pH7. 9の転写因子測 定用緩衝液をフローセル内に流した。
SPRイメージングによつて得られる像を図 3に示す。 dsDNAを固定化した楕円形の部 分は、屈折率の変化のために白く見えてレ、る。このように dsDNAを表面に固定化したァ レイが形成されている。
SPRからのシグナルが安定したのを確認した後に、転写因子 MafGのホモ二量体を 1 μ gZmlの濃度で上記転写因子測定用緩衝液に溶解させた溶液を、セル内に 10分間 ΙΟΟμ Ι/minの速度で注入し、さらに転写因子を含まない緩衝液を流し、結合と解離の SPRシグナルの変化を観察した。
観察は MARE25と MARE23の固定ィ匕部位と何も DNAが固定化されていない部分 (パックグラウンド部位)の三点で実施した。 SPRシグナルの変化を示すグラフを図 4に示 す。 MA E25配列のみに MafGホモ二量体が結合し、 MARE23、バックグラウンド部 位にはほとんど結合しないのが観察でき、結合速度定数 2. 22 X 105(M一1 s一1)、解離速 度定数 8. 80 X 10— 4 (s—1)、結合平衡定数 2. δΖ Χ ΙΟ^Μ—1)を得た。
MafGホモ二量体をセル内に注入する前に撮影した画像と、注入して 10分後に撮影 した画像の差について画像処理ソフト NIH Imageで演算処理した。その結果を図 5に示 す。この結果より、 MARE25配列のみに MafGが結合していることが明らかである。 実施例 2
(二本鎖 DNA固定化) 末端官能基がチオール基である 4armPEG (日本油脂製 SUNBRIGHT PTE- 100SH)を ImMの濃度で 7mlのエタノール:水 =6: 1の混合溶液に溶解させた。 4armPEGの分子 量は 10, 000であり、中心からほぼ同等の長さの PEG鎖が四つ存在する分子であり、親 水性が非常に高レ、。また、 PEGの 4つの末端はすべてチオール基であり、特に金に対す る金属結合性を示す。 '
18mm四方、 2mm厚の SF15ガラススライドにクロムを 3nm蒸着し、さらに金を 45nm 蒸着した金蒸着スライドを、上記 4armPEGチオール溶液に 3時間浸漬させ、金基板全 体に 4armPEGチオールを結合させた。
このスライドの上に図 6に示すフォトマスクを載せ、 500W超高圧水銀ランプ (ゥシォ電 機製)で 2時間照射し、 UV照射部の 4armPEGチオールを除去した。フォトマスクには 0. 5mm四方の穴が 96個あいており、穴の間隔は lmmとなっている。フォトマスクの孔がぁ いている部分は UV光が透過し、スライドに照射されパターン化される。照射されなかった 部分は、 4armPEGが残り、チップのバックグラウンド (Background)部分(レファレンス部) として機能する。
また、フォトマスクにはスボットの場所を示すマーカーが設けられており、 96穴プレート に用意したサンプルに対応している。
このスライドを 8— AOTの ImMエタノール溶液に 1時間浸漬し、スライドの UV照射部 に 8 - AOTの自己組織化表面を形成させた。分子量 3, 400の末端にスクシンイミド (NH S)基とマレイミド (MAL)基を有するヘテロ二官能型ポリエチレングリコール (NHS- PEG - MAL, Nektar社製)をリン酸緩衝液(20mMリン酸、 150mM NaCl、 pH7. 2)に lOmg /mlで溶解し、この溶液をスライドの金表面の 8— AOTに 2時間反応させた。 8— AOT のァミノ基と NHS— PEG— MALの NHS基が反応し、 MAL基は未反応のまま残るため、 PEGを介してマレイミド基をスライドの表面に導入することができた。
得られた表面に自動スポッター装置 (MultiSPRinterSpotter:東洋紡績製)を用いて、 2 種類の DNAをハイブリダィゼーシヨンしてからスポッティングを行った。二種類の二本鎖 DNA(dsDNA)が固定化されたスポットと、何も固定化しないスポット(Blank)を作製し た。使用した DNAの配列を表 1に示す。固定ィ匕側 DNAの配列は 5'チオール末端から チミン 15塩基スぺーサーを介した後、目的の配列が入るように設計されている。相補側 D NAの配列は固定ィヒ側 DNAの目的配列に相補的な部分のみの配列を有しており、チォ 一ルとチミン 15塩基スぺーサーは有して ヽなレ、。ここで GATAregは GATA— 1が認識 して結合することのできる配列であり、 5'側力 GATA配列が中心に含まれている。一方 GATAmut配列は GATAregの代わりに AGTAと Gと Aが入れ代わった配列となってお り、一般的に GATA— 1は認識できなレ、配列である。
表 1
Figure imgf000028_0001
チップの表面に形成させたマレイミド基と固定化側 DNAのチオール基が反応し、 DNA を共有結合的に表面に固定化することができる。
DNAのハイプリダイゼーシヨン条件は実施例 1と同様に行い、得られた dsDNAを約 10 nlスポッティングし、 15時間反応させて dsDNAを表面に固定化した。
(未反応マレイミド基のブロッキング)
dsDNAを固定化した表面をリン酸緩衝液で洗浄した後、未反応のマレイミド基をプロ ッキングするために、片末端の官能基がチオール基、もう一方の官能基がメトキシ基であ る PEGチオール(日本油脂製 SUNBRIGHT MESH-50H)を 10mg/mlの濃度でリン酸緩 衝液 (20mMリン酸、 150mM NaCl、 H7. 2)に溶解して、 250 μ 1をチップ上に注出し、一 時間反応させた。ここで用いた PEGチオールの分子量は 5, 000であり、親水性が非常 に高ぐ非特異吸着を抑制する効果が期待できる。
(SPRイメージング法による測定)
こうして得られた dsDNA固定化チップを、 SPRイメージング機器 (MultiSPRinter:東洋 紡績製)にセットし、 20mM Hepesヽ 300mM NaCl、 0. 2mM ZnCl2、 0. 005% Tween20、 pH7. 9の転写因子測定用緩衝液をフローセル内に流した。
SPRからのシグナルが安定したのを確認した後に、転写因子 GATA— 1を ΙΟ μ Μの 濃度で上記の転写因子測定用緩衝液に調製して SPR装置内のセルへ注入した。
GATA— 1を注入する際には、緩衝液に polydldCを 100 ^ gZmlの濃度で添カ卩し、核 酸への非特異的吸着を抑制した。セル内に 10分間 100 1/minの速度で注入し、さら に転写因子を含まない緩衝液を流し、結合と解離の SPRシグナルの変化を観察した。シ グナル変化の観察は、 GATAreg、 GATAmutにカロえ、 Blankと Backgroundで実施し た。 '
(観察の結果と考察)
シグナル変化のグラフを図 7に示す。ここで、 GATAregの配列には GATA— 1が結合 し、 GATAmutにはほとんど結合しない様子を観察することができた。このグラフにおけ る Background部分 (4armPEG)はシグナル変化がみられておらず、 GATA— 1がほとん ど結合しな力 たことを示している。
参考例 1:複数の金属結合基の効果
7—カルボキシー 1—ヘプタンチオール(7— CHT:同仁化学研究所)の ImM溶液中 に、実施例 2と同様のパターン化されたスライドガラススライドを 2時間浸漬し、 UV照射部 にアミノ基を導入するとともに、 4armPEGが 7— CHTへと交換されるかどうかを確認した。 交換反応が起こったカ^うかを確認する手段として、表面プラズモン共鳴イメージング 機器 (東洋紡績製)にチップをセットし、チップ表面へのポリ Lリシンの吸着を観察した。測 定は 10mMリン酸緩衝液、 150mM NaCl、 pH7. 4, 30°Cで実施した。 10 μ g/ mlの 濃度で分子量 4000— 15000のポリ Lリシン (シグマ社製)を溶解させた上記のリン酸緩 衝液を 5分間接触させた。ポリ Lリシンは正電荷を有するポリマーであり、 7— CHTが結合 されてカルボキシル基が導入された部分に静電的に結合する特'性を有する。
図 8に SPRシグナルの変化を示す。ポリ Lリシンによるシグナル量を、ポリ Lリシンを流 す 3分前とポリ Lリシンを流し終わってから 5分後のシグナル値の変化を測定した。 7-C HT導入部のシグナルは、 96箇所の 7— CHT導入部のシグナル平均値とした。
4armPEG部のシグナルは列方向の間隔の部分で 11箇所の縦に長レ、長方形を取ってシ グナル平均値とした。
7— CHT導入部(UV照射部)のポリ Lリシンによるシグナルは 13. 9であった。それに 対し、 4armPEG結合部におけるポリ Lリシンによるシグナルは 1. 5であり、シグナル比は 9. 1であった。これは、 4armPEG結合部に対する 7— CI - ITの交換反応がほとんど起こらな 力 たことを意味する。 4armPEGは長いアルキル鎖は有さなレ、ものの、複数点で金に結 合してレ、るため、金表面からの脱離がほとんど起こらなかったと考えることができる。
このように安定で、脱離しにくい親水性高分子が固定化されたアレイ部を持つノィォチ ップを容易に得ることができた。このバイオチップは UV照射部のみに導入された 7— CH Tのカルボキシル基を起点として生体分子を結合することができる。 4armPEG固定化部 には官能基がほとんど存在せず、非特異的吸着が抑制することができる。
参考例 2:参考例 1との比較
4armPEGを一つの分子にチオール基を一つだけ有する PEGチオール(日本油脂製 ' SUNBRIGHT MESH-50H)に変えた以外、参考例 1と同様に試験を行った。 PEGチオール の分子量は 5000であり、親水' I生が非常に高い。上述のように PEGチオールの一方の末 端は金属結合性を有するチオール基であり、もう一方の末端はメトキシ基である。 PEGチ オールのアルキル鎖部分は炭素数 2であり、分子間の疎水性結合は強くなレ、。
'図 9に SPRシグナルの変ィ匕を示す。 7― CHT導入部 (UV照射部)のシグナルは 16. 9であったのに対し、 PEGチォール結合部におけるポリエチレンィミン (PEI)によるシグ ナルは 11. 9であり、シグナル比は 1. 4であった。これは、 PEGチオール結合部に対す る 7— CHTの交換反応が起こり、 PEG部分にもカルボキシル基が存在していることを意 味する。 PEGチオールは長いアルキル鎖は有さないだけでなく、金結合性官能基は一 つだけなので、容易に金表面力ゝら脱雛したと考えることができる。従って、 PEGチオール 部分は参考例 1よりも不安定であり、 PEG結合部分にも生体分子が結合できる。また、静 電的な非特異結合は多レ、と推察される。
実施例 3
実施例 2と同様にしてスライドガラスの金表面に PEGを介してマレイミド基を表面に導 入した。
得られた表面に自動スポッター装置 (MuMSPRinter Spotter:東洋紡績製)を用いて、 6 種類の DNAをァユールしてからスポッティングを行った。二種類の二本鎖 DNA(dsDN A)を固定ィヒするスポットと、何も固定化しないスポット (Blank)を作製した。固定化側 DN Aの配列は 5'HS— (T) 15—CGGAAT(N) 13TTACTC 3' (配列番号 9 14)と設計 されており、(N) 13の 13塩基の部分に目的の配列が入るように設計されている。使用した 6種類の目的配列を表 2に示す。相捕側 DNAの配列は表 2には示していないが、 CGG AAT(N) 13TTACTCの 25塩基の部分に対応する相補鎖をそれぞれの配列に対して用 思し 5' 3'
MARE25 (配列番号 9) 丁 G c T G A c T c A G c A
HOPSIN (配列番号 1 0) 丁 G c 丁 G A J T c A G c c
HNQOIm (配列番号 1 1 ) A G T T G A c T c A G c A飞
MARE23(配列番号 1 2) C A A T G A c T c A T T G hBg旧 S4(配列番号 1 3) G G C T G A c T c A C I C
MGSTY (配列番号 14) T G G T G A c A A A G c A チップの表面に形成させたマレイミド基と固定化側 DNAのチオール基が反応し、 DN Aを共有結合的に表面に固定ィ匕することができる。
DNAのハイブリダィゼーシヨン条件は実施例 1と同様に行レヽ、得られた dsDNAを約 10nlスポッティングし、 15時間反応させて dsDNAを表面に固定化した。
(未反応マレイミド基のブロッキング)
実施例 2と同様に操作した。
(SPRイメージング法による測定)
こうして得られた dsDNA固定化チップを、 SPRイメージ グ機器 ( ultiSPRinter:東洋 紡績製)にセットした。セットする際にチップ背面 (ガラス面)と SF15製 60°プリズムをマツ チングォィルを介して接触させた。マッチングオイルには揮発性の極めて少なレ、カーギ ル社製 Bシリーズ nd=l. 700を用いた。このマッチングオイルは 37°Cで 1時間開放放置 したときの重量変化が 0. 11%であり、 1%以下であることが特徴である。また、沸点も 27 9°Cであり、 200°C以上である。
チップを装置にセットした後、 20mM Hepes、 200mM NaCl 、 4mM MgCl2、 ImM EDTA、 lOO /i g/ml BSAS pH7. 9の転写因子測定用緩衝液をフローセル 内に流した。
SPRからのシグナルが安定したのを確認、した後に、転写因子 MafGを 125 μ Μの濃度 で上記の転写因子測定用緩衝液に調製して SPR装置内のセルへ注入した。セル内に 1 0分間 100 μ 1/minの速度で注入し、さらに転写因子を含まない緩衝液を流し、結合と 解離の SPRシグナルの変化を観察した。シグナル変化の観察は、 6種類の遺伝子配列 にカロえ、 Blankと Backgroundで実施した。 (観察の結果と考察)
シグナル変化のグラフを図 12に示す。このように同時に一枚のチップ上で 6点の相互 作用を観察することが可能であった。ここでもコンセンサス配列である MARE25への結 合強度は強く、 MARE23への結合は弱いことが再確認できた。このグラフにおける Back ground部分 (4armPEG)はシグナル変化がみられず、 MafGがほとんど結合しな力 た ことを示している。結合'解離曲線から得られた kinetics値と従来の相互作用測定法であ るゲルシフト法 (GMSA)の値を比較した表を以下に示す。 SPRの値と GMSAの値で相 違がみられるものの、ァフィ二ティの結合強度という観点では、 SPR法によっても結合強 度を十分に評価できているものと思われた。
SPR average GMSA ka [M'1s"1] 105 kd [s 1] 10"4 KD [M] 10-9 KD [M] 10"7
MARE25 1.36 +/- 0.32 3.13 +/- 0.66 2.50 +/- 1.02 2.49 +/- 0.06 hOPSIN 0.493 +/- 0.062 3.72 +/- 0.30 7.68 +/ - 1.17 2.52 +/" 0.05 hNQOIm 0.385 +/- 0.035 3.24 +/- 0.36 8.59 +/- 1.75 2.73 +/" 0.13 mGSTY ■ N.D. N.D. N.D.
MARE23 N.D. N.D. N.D. N.D.
hBglHS4 N.D. N.D. N.D. N.D. 本発明の二本鎖オリゴヌクレオチドアレイを用いることによって、オリゴヌクレオチドと生 体分子又はその集合体との相互作用を適切に解析することが可能となる。
また、本発明により、生体分子相互作用の観察に適した二本鎖オリゴヌクレオチドを、効 率よぐかつ適切に作成することができる。
本発明は、オリゴヌクレオチドと生体分子又はその集合体との相互作用の測定におい て有用性の高い優れた手段を提供するものである。
さらには本発明により、モピリティと活性'機能を保ったまま生体分子を固体表面に固定 化することが可能になり、また、非特異的吸着も少なぐ本発明の方法を用いることにより、 生体分子もしくは生体分子集合体と生体分子との相互作用キネテイクス (kinetics)の厳 密かつ適切な評価が可能となる。

Claims

請求の範囲
1. 金属基板上に直接的に或いはスぺーサーを介して間接的に複数の生体分子 (A) を結合させたバイオアレイ。
2. 前記生体分子 (A)が二本鎖オリゴヌクレオチドであり、第一の一本鎖オリゴヌクレ ォチドと第二の一本鎖オリゴヌクレオチドとが全体的あるいは部分的に相捕的に結合して 二本鎖オリゴヌクレオチドを形成しており、該ニ本鎖オリゴヌクレオチドにおいて第一の一 本鎖オリゴヌクレオチドのみが金属基板上に直接的或いは間接的に結合してレ、る請求項 1に記載のアレイ。
3. 第一の一本鎖オリゴヌクレオチドが、 5'末端あるいは 3'末端側に官能基あるいは 結合グループを有し、該官能基あるいは結合グループを介して基板上に固定化されてい る請求項 2に記載のアレイ。
4. 金属基板が、表層に金薄層が形成された透明基板である請求項:!〜 3のいずれか に記載のアレイ。
5. 第一の一本鎖オリゴヌクレオチドが、金属基板上に固定された二官能基型アル力 ンに直接的或いは架橋剤を介して間接的に結合することによって固定化されてレ、る請求 項 2〜4のいずれかに記載のアレイ。
6. 生体分子 (A)が一般式 X— R— Yで表されるヘテロ二官能型親水性高分子 (ここで Xは固体表面の官能基、もしくは固体表面に導入された官能基と結合する官能基を表す。 Yは生体分子 (A)と結合する官能基を表す。 Rは高分子の繰り返し単位を表す。 )を介し て基板上に結合されていることを特徴とする請求項 1〜5のいずれかに記載のアレイ。
7. バックグラウンド部に親水性高分子が固定化されていることを特徴とする請求項 1 〜6のレ、ずれかに記載のアレイ。
8. スポットの場所を記したマーカーが備えられていることを特徴とする請求項 1に記 載のアレイ。
9. (1)第 1の一本鎖オリゴヌクレオチドと第二の一本鎖オリゴヌクレオチドをハイプリ ダイゼーシヨンさせて、第一の一本鎖オリゴヌクレオチドと第二の一本鎖オリゴヌクレオチ ドが全体的あるいは部分的に相補的に結合した二本鎖オリゴヌクレオチドを形成するェ 程、次いで、(2)第一の一本鎖オリゴヌクレオチドの末端を金属基板上に結合させて、金 属基板上に工程(1)で形成した二本鎖オリゴヌクレオチドを固定化する工程を含む二本 鎖オリゴヌクレオチドアレイの作成方法。
10. 第一の一本鎖オリゴヌクレオチドが 5'末端あるいは 3'末端側に官能基あるいは 結合グループを有し、該官能基あるいは結合グループを介して第一の一本鎖オリゴヌク レオチドの末端を金属基板上に結合させる請求項 9に記載の方法。
11. 金属基板が表層に金薄層が形成された透明基板である請求項 9に記載の方法。
12. 第一の一本鎖オリゴヌクレオチドの末端を、金薄層上に密に充填された二官能基 型アルカンに直接的或いは間接的に結合させて、金属基板上に結合させる請求項 9に 記載の方法。
13. 二本鎖オリゴヌクレオチドアレイを用いて、二本鎖オリゴヌクレオチドアレイに固定 化されたオリゴヌクレオチドと生体分子又はその集合体との相互作用を測定する工程を . 有する生体分子相互作用測定方法であって、該ニ本鎖オリゴヌクレオチドアレイが、金属 基板上に複数の二本鎖オリゴヌクレオチドが固定化されたアレイであり、第一の一本鎖ォ リゴヌクレオチドと第二の一本鎖オリゴヌクレオチドとが全体的あるいは部分的に相捕的 に結合して二本鎖オリゴヌクレオチドを形成しており、該ニ本鎖オリゴヌクレオチドにおレ、 て第一の一本鎖オリゴヌクレオチドのみが基板上に結合している二本鎖オリゴヌクレオチ ドアレイであることを特徴とする生体分子相互作用測定方法。
14. 基板に結合する際の架橋剤として、一般式 X— R—Yで表されるヘテロ二官能型 親水性高分子 (ここで Xは固体表面の官能基、もしくは固体表面に導入された官能基と 結合する官能基を表す。 Yは生体分子 (A)と結合する官能基を表す。 Rは高分子の線り 返し単位を表す。 )が用いられていることを特徴とする請求項 13に記載の方法。
15. 架橋剤として一般式 X—R— Yで表されるヘテロ二官能型親水性高分子 (ここで Xは固体表面の官能基、もしくは固体表面に導入された官能基と結合する官能基を表す。 Yは生体分子 (A)と結合する官能基を表す。 Rは高分子の繰り返し単位を表す。)を用い て固体表面上に生体分子 (A)を固定ィヒした基板を用いて、生体分子 (A)と生体分子 (B)又はその集合体との相互作用を測定する工程を有する生体分子相互作用測定方法。
16. ヘテロ二官能型親水性高分子の分子量が 200〜20, 000である請求項 15に記 載の方法。
17. ヘテロ二官能型親水性高分子の尺が、下記繰り返し単位一 (一 O— 一) n— (ここ で、 は、炭素数が 2— 5のアルキレン基を表す。 nは 4〜450の整数である)で表される 構造を有する請求項 15に記載の方法。
18. ヘテロ二官能型親水性高分子の官能基 X及ぴ Yが、アミノ基、カルボキシル基、 スクシンイミド基、スルホン化スクシンイミド基、マレイミド基、チオール基、アルデヒド基、ビ -ル基、イソシァネート基、エポキシ基、ヒドラジド基、アジド基からなる群力 選ばれる請 求項 15に記載の方法。
19. 固体表面が、一般式 X,— R, -Y'で表される化合物 (ここで X,は金薄層と反応 する官能基を表す。 Y'はへテロ二官能型親水性高分子と結合する官能基を表す。 R'は 有機基を表す)を用いて金薄層表面二官能基を導入した固体表面である請求項 15に記 載の方法。
20. 生体分子 (A)を固定化した基板が、複数の種類の生体分子 (A)をアレイ状に固 定化した基板である請求項 15に記載の方法。
21. 生体分子 (A)が核酸である請求項 15に記載の方 ¾。
22. 生体分子 (A)と生体分子 (B)又はその集合体との相互作用を、表面プラズモン 共鳴法を用いて測定する請求項 15に記載の方法。
23. 生体分子 (A)と生体分子 (B)又はその集合体との相互作用を、表面プラズモン 共鳴イメージング法を用いて測定する請求項 15に記載の方法。
24. 生体分子 (B)がタンパク質である請求項 15に記載の方法。
25. タンパク質が転写因子である請求項 24に記載の方法。
26. バックグラウンド部に親水性高分子が固定ィ匕されているアレイを用いて測定を行 うことを特徴とする請求項 13または 15に記載の方法。
27. スポットの場所を記したマーカーが備えられているアレイを用いて測定を行うこと を特徴とする請求項 13または 15に記載の方法。
28, 生体分子 (A)もしくは生物分子集合体を表面に固定ィ匕するためのアレイであり、 該生体分子 (A)もしくは生物分子集合体を固定化する部分(固定化部位)には固定化さ せるための起点となる物質もしくは官能基を有する物質が固定化され、かつ固定ィ匕部位 以外のバックグラウンド部には、親水性高分子が固定化されていることを特徴とするァレ ィ。
29. 金属基板上に形成されたアレイ状部分を有し、スポットの場所を記したマーカー が備えられてレ、ることを特徴とするアレイ。
30. 固定ィ匕部位以外のパックグラウンド部には、親水性高分子が固定化されているこ とを特徴とする請求項 28に記載のアレイ。
31. 親水性高分子が複数の金属結合性官能基を有することを特徴とする請求項 6ま たは 28に記載のアレイ
32. 親水性高分子が枝分かれしており、その末端部分に金属結合性官能基を有する ことを特徴とする 7または 28に記載のアレイ。
33. 親水性高分子がポリエチレングリコールであることを特徴とする請求項 7または 28 に記載のアレイ。
34. マーカーが判別可能な文字及び/又は数字であることを特徴とする請求項 7ま たは 29に記載のアレイ。
35. マーカーが単分子層でパターンィ匕されてレ、ることを特徴とする請求項 8または 29 に記載のアレイ。
36. チップ上の官能基と生体分子が有する官能基とを反応させることにより、チップ 上に生体分子が固定されたチップであって、チップ表面に残存する官能基が親水性高 分子により共有結合的にブロッキングされてレ、ることを特徴とするアレイ。
PCT/JP2004/000247 2003-01-15 2004-01-15 バイオアレイ WO2004079367A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-007482 2003-01-15
JP2003007482A JP4193039B2 (ja) 2003-01-15 2003-01-15 二本鎖オリゴヌクレオチドアレイ
JP2003007469A JP4189644B2 (ja) 2003-01-15 2003-01-15 生体分子相互作用測定方法
JP2003-007469 2003-01-15
JP2003-298027 2003-08-21
JP2003298027A JP4281108B2 (ja) 2003-08-21 2003-08-21 バイオチップ
JP2003333072A JP4171982B2 (ja) 2003-09-25 2003-09-25 バイオチップ
JP2003-333072 2003-09-25

Publications (2)

Publication Number Publication Date
WO2004079367A1 true WO2004079367A1 (ja) 2004-09-16
WO2004079367A8 WO2004079367A8 (ja) 2005-01-20

Family

ID=32966627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000247 WO2004079367A1 (ja) 2003-01-15 2004-01-15 バイオアレイ

Country Status (2)

Country Link
US (1) US20040191815A1 (ja)
WO (1) WO2004079367A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148346A1 (en) * 2005-10-07 2009-06-11 Canon Kabushiki Kaisha Substrate with binding functional group
EP1923703B1 (en) * 2005-11-25 2015-05-06 FUJIFILM Corporation A method for producing a biosensor having a covalently bound thin polymeric coat
US20090318376A1 (en) * 2006-06-15 2009-12-24 Korea Research Institute Of Bioscience And Biotechnology High Throughput Screening Method of Binding Inhibitor Between caspase3 and XIAP and Binding Inhibitor Screened Thereby
US20100292427A1 (en) * 2007-08-06 2010-11-18 Canon Kabushiki Kaisha Structural member and method of producing the structural member
EP2224227B1 (en) * 2008-01-16 2014-09-03 Nippon Telegraph and Telephone Corporation Surface plasmon resonance measuring device, sample cell, and measuring method
WO2009119082A1 (ja) * 2008-03-26 2009-10-01 独立行政法人理化学研究所 物質固定用基板、物質固定化基板および分析方法
JP2009286968A (ja) * 2008-05-30 2009-12-10 Canon Inc グラフトポリマー含有基体、その製造方法および磁気バイオセンサ
US8792102B2 (en) * 2010-10-28 2014-07-29 General Electric Company Interferometric spectral imaging of a two-dimensional array of samples using surface plasmon resonance
CN103293293B (zh) * 2013-06-24 2015-01-14 浙江大学 用于无标记癌胚抗原检测的电化学免疫传感器的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556752A (en) * 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
JPH10267930A (ja) * 1997-03-26 1998-10-09 Masao Karube 表面プラズモン共鳴バイオセンサー用測定チップ及びその製造方法
JPH10267834A (ja) * 1997-03-26 1998-10-09 Dainippon Printing Co Ltd 表面プラズモン共鳴バイオセンサー用測定チップ及びその製造方法
JP2000338110A (ja) * 1999-06-01 2000-12-08 Hitachi Software Eng Co Ltd マイクロアレイチップ及びそのインデックス方法
WO2001073115A1 (en) * 2000-03-24 2001-10-04 Advanced Array Technologies S.A. Method and kit for the screening, the detection and/or the quantification of transcriptional factors
JP2002176977A (ja) * 2000-12-13 2002-06-25 Fuji Photo Film Co Ltd プローブ分子が固定された検出具の処理方法及び水性処理液
JP2002191397A (ja) * 2000-12-28 2002-07-09 Toshiba Corp 生体関連物質の検出方法、チップ装置および装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379005A (en) * 1979-10-26 1983-04-05 International Business Machines Corporation Semiconductor device fabrication
SE462454B (sv) * 1988-11-10 1990-06-25 Pharmacia Ab Maetyta foer anvaendning i biosensorer
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5874165A (en) * 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
AU5701198A (en) * 1996-12-13 1998-07-03 Kelsey-Hayes Company Vehicular brake system with vehicle stability management
US6326489B1 (en) * 1997-08-05 2001-12-04 Howard Hughes Medical Institute Surface-bound, bimolecular, double-stranded DNA arrays
US6107034A (en) * 1998-03-09 2000-08-22 The Board Of Trustees Of The Leland Stanford Junior University GATA-3 expression in human breast carcinoma
US6312906B1 (en) * 1999-01-15 2001-11-06 Imperial College Innovations, Ltd. Immobilized nucleic acid hybridization reagent and method
US6127129A (en) * 1999-05-04 2000-10-03 Wisconsin Alumni Research Foundation Process to create biomolecule and/or cellular arrays on metal surfaces and product produced thereby
US6362004B1 (en) * 1999-11-09 2002-03-26 Packard Biochip Technologies, Llc Apparatus and method for using fiducial marks on a microarray substrate
US6927033B2 (en) * 2000-05-11 2005-08-09 Toudai Tlo, Ltd. Polymer composition for forming surface of biosensor
JP2002333446A (ja) * 2001-05-09 2002-11-22 Fuji Photo Film Co Ltd 生物学的素材チップ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556752A (en) * 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
JPH10267930A (ja) * 1997-03-26 1998-10-09 Masao Karube 表面プラズモン共鳴バイオセンサー用測定チップ及びその製造方法
JPH10267834A (ja) * 1997-03-26 1998-10-09 Dainippon Printing Co Ltd 表面プラズモン共鳴バイオセンサー用測定チップ及びその製造方法
JP2000338110A (ja) * 1999-06-01 2000-12-08 Hitachi Software Eng Co Ltd マイクロアレイチップ及びそのインデックス方法
WO2001073115A1 (en) * 2000-03-24 2001-10-04 Advanced Array Technologies S.A. Method and kit for the screening, the detection and/or the quantification of transcriptional factors
JP2002176977A (ja) * 2000-12-13 2002-06-25 Fuji Photo Film Co Ltd プローブ分子が固定された検出具の処理方法及び水性処理液
JP2002191397A (ja) * 2000-12-28 2002-07-09 Toshiba Corp 生体関連物質の検出方法、チップ装置および装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOON E M, ET AL: "An electrical probe of protein-DNA interactions on DNA-modified surfaces", NATURE BIOTECHNOLOGY, vol. 20, no. 3, 2002, pages 282 - 286, XP002980572 *
BROCKMAN J M, ET AL: "A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasman resonance imaging", J. AM. CHEM. SOC., vol. 121, no. 35, 1999, pages 8044 - 8051, XP002148625 *
CHRISEY L A, ET AL: "Covalent attachment of synthetic DNA to self-assembled monolayer films", NUCLEIC ACIDS RESEARCH, vol. 24, no. 15, 1996, pages 3031 - 3039, XP002149193 *

Also Published As

Publication number Publication date
WO2004079367A8 (ja) 2005-01-20
US20040191815A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
Wu et al. DNA and protein microarray printing on silicon nitride waveguide surfaces
JP5588430B2 (ja) 標識独立検出のための表面及びその方法
US8168399B2 (en) Supports for assaying analytes and methods of making and using thereof
JP4608107B2 (ja) 未修飾生体高分子のフッ化アシル活性化基質への固定化
US20080241892A1 (en) Modified surfaces for immobilization of active molecules
EP1726661A1 (en) Method for manufacturing a biosensor element
KR20140137366A (ko) 분석 적용용 고분자 스카폴드
Okumura et al. Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique
US9266726B2 (en) Method for making biochips
WO2004079367A1 (ja) バイオアレイ
Chiari et al. Advanced polymers for molecular recognition and sensing at the interface
EP1644527B9 (en) Cucurbituril derivative-bonded solid substrate and biochip using the same
JP3815621B2 (ja) バイオチップ作製方法
JP4648944B2 (ja) 分子が固定化された基材を製造する方法および基材
US6495328B2 (en) Substrate for detecting base sequences, method of manufacturing the substrate, and method of detecting base sequences using the substrate
JP4189644B2 (ja) 生体分子相互作用測定方法
US20090171052A1 (en) Polyelectrolyte Monolayers and Multilayers for Optical Signal Transducers
US20190310260A1 (en) Regeneratable Biosensor and Methods of Use Thereof
JP4193039B2 (ja) 二本鎖オリゴヌクレオチドアレイ
KR101035957B1 (ko) 번짐 현상이 억제된 단일스텝 바이오칩 제작방법
JP4300183B2 (ja) 官能基が導入されたポリアミド固相
JP4171982B2 (ja) バイオチップ
CN113150680B (zh) 一种芯片涂层、其制备方法和应用
WO2002039113A2 (en) Schiff base reductant co-dispense process
JP4288591B2 (ja) ペプチドチップの作製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 38/2004 UNDER (81) DELETE "US"; AS A CONSEQUENCE REPLACE "(71) APPLICANT (FOR ALL DESIGNATED STATES EXCEPT US)" BY "(71) APPLICANT" AND REPLACE "(72) INVENTORS; AND (75) INVENTORS/APPLICANTS (FOR US ONLY)" BY "(72) INVENTORS"

122 Ep: pct application non-entry in european phase