WO2004076656A1 - Composición estabilizada para ensayos fluorimétricos, colorimétricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtención - Google Patents

Composición estabilizada para ensayos fluorimétricos, colorimétricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtención Download PDF

Info

Publication number
WO2004076656A1
WO2004076656A1 PCT/ES2004/000024 ES2004000024W WO2004076656A1 WO 2004076656 A1 WO2004076656 A1 WO 2004076656A1 ES 2004000024 W ES2004000024 W ES 2004000024W WO 2004076656 A1 WO2004076656 A1 WO 2004076656A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
composition according
composition
colorimetric
reaction
Prior art date
Application number
PCT/ES2004/000024
Other languages
English (en)
French (fr)
Inventor
Antonio MADEJÓN SEIZ
Gemma LIMONES LÓPEZ
Amparo Haro Castuera
Myriam De Grado Sanz
Pedro Manuel Franco De Sarabia Rosado
Original Assignee
Biotools Biotechnological & Medical Laboratories, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotools Biotechnological & Medical Laboratories, S.A. filed Critical Biotools Biotechnological & Medical Laboratories, S.A.
Priority to EP04703407A priority Critical patent/EP1598418A1/en
Publication of WO2004076656A1 publication Critical patent/WO2004076656A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/581Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with enzyme label (including co-enzymes, co-factors, enzyme inhibitors or substrates)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)

Definitions

  • the invention relates to a stabilized composition, useful for the performance of fluorimetric, colorimetric or chemo-luminescent assays, which comprises the compounds and materials that can potentially be used in said tests, such as molecules fixed or not to solid supports, enzymatic activities. , antibodies, proteins and fluorescent, colorimetric or chemiluminescent markers.
  • the invention also relates to a process for obtaining said stabilized composition by using a stabilizing mixture, as well as kits containing said composition.
  • the techniques of colorimetry and chemo-luminescence are indirect detection systems based on the chemical modification of molecules with high binding capacity to specific target molecules, by incorporation (conjugation) of enzymatic activities that, in the presence of the appropriate substrate, catalyze a reaction that generates a colored compound (colorimetric reactions) or light (chemo-luminescence). Said modified molecules are used as probes for the identification of the target target molecules in complex mixtures. Finally, and to determine the amount of bound conjugate, and indirectly the amount of target molecules present in the mixture, the dianana / conjugate molecule complexes are separated and the substrate of the chemical activity incorporated in the conjugate is added.
  • the amount of product generated can be determined in the case of colorimetric reactions by measuring the absorbance levels at certain wavelengths of the visible spectrum.
  • the efficiency of the reaction is determined by measuring light emission in luminometers or by printing photosensitive plates.
  • peroxidase activity that uses as a substrate various molecules such as 4-chloro-l-naphthol, 3-amino-4-ethylcarbazole, diaminobenzidine, 3,3 ', 5,5'-tetramethylbenzidine (TMB), O-phenylenediamine (OPD), 2,2'-azino-di (3-ethylbenzothiozoline-6-sulfonic acid) (ABTS), 3- (p-hydroxyphenyl) (HPPA), among others.
  • TMB 5,5'-tetramethylbenzidine
  • OPD O-phenylenediamine
  • ABTS 2,2'-azino-di (3-ethylbenzothiozoline-6-sulfonic acid)
  • HPPA 3- (p-hydroxyphenyl)
  • alkaline phosphatase activity that uses as substrates, among others, 3- (4-methoxyspiro [l, 2- dioxetane-3'2'-tricycle- [3.3.1 3 ' 7 ] decan] -4-yl) -phenyl phosphate (AMPPD) and p-nitrophenyl phosphate (pNPP).
  • AMPPD 2- dioxetane-3'2'-tricycle- [3.3.1 3 ' 7 ] decan]
  • pNPP p-nitrophenyl phosphate
  • luminescent markers there are also numerous luminescent markers, among which are the esters of acridine, luminol, luciferin, etc.
  • Various enzymatic activities capable of generating chemiluminescent reactions are also known, for example, enzymatic activities: ⁇ -D-galactosidase, which uses adamantil-l, 2-dioxetane aryl galactoside (AMPGD) as a substrate; xanthine oxidase on luminol + EDTA gold; glucose oxidase on luminol or isoluminol + microperoxidase; Luciferase in the presence of Luciferin + ATP; green fluorescent protein (GFP) in cultured cells; etc.
  • AMPGD 2-dioxetane aryl galactoside
  • HRP horseradish peroxidase
  • the conjugation of the enzymatic activity can be carried out directly on a molecule, for example, on an antigen, or on an antibody, which directly recognizes the antibody or problem antigen, respectively.
  • intermediary molecules to achieve the union between the problem molecule and the conjugate.
  • intermediary molecules are those that form the avidin / biotin, strevidin / biotin, avi ⁇ -i / phycoerythrin, digoxigenin / anti-digoxigenin systems, etc.
  • Labiotin (vitamin H, coenzyme R) is a small molecule that can bind to a wide variety of proteins and nucleic acids without altering their properties.
  • biotin and streptoavidin can be complexed by In a simple way with various enzymatic activities involved in colorimetric or chemo-luminescent reactions, the biotin / avidin or biotin / streptoavidin system is a system of choice as an intermediate in the detection and identification reactions of nucleic acids, proteins (including antibodies), antigens, etc.
  • Digoxigenin is a low molecular weight cardenolide that can be chemically incorporated as a ligand to DNA and RNA molecules without altering its ability to hybridize to complementary nucleic acid sequences
  • anti-digoxigenin antibodies have been developed that recognize specific way this ligand and to which you can complex a great variety of activities and nzimatics described above.
  • biotin / avidin, biotin / streptoavidin and digoxigenin / anti-digoxigenin systems have been widely used in the development of techniques for the detection and identification of specific nucleic acid sequences by colorimetry in a wide variety of supports including ELISA plate membranes and wells (PCR - ELISA) or chemo-campusiscence. This is due to the fact that the chemical incorporation of biotin or digoxigenin molecules is carried out in a simple way during the chemical synthesis of oligonucleotides, being able to place the marking in the desired positions within the sequence, without thereby altering the binding capacity of the labeled oligonucleotide to complementary sequences of nucleic acids.
  • biotin or digoxigenin labeled nucleotides continue to retain the ability to be used in elongation reactions of nucleic acid molecules catalyzed by DNA polymerase activities, such systems are used for the synthesis of usable DNA or RNA probes. for subsequent hybridization experiments.
  • fluorescent markers An especially important case within the field of detection of biomolecules, and especially of specific nucleic acid sequences, is the use of fluorescent markers. Fluorescent substances have the ability to be excited by receiving radiation of a certain wavelength, returning to the equilibrium state after emitting radiation at a wavelength different from that of excitation. Fluorescence is commonly used in research laboratories for a wide variety of experimental tests, such as the detection of acid molecules. Double-band nuclei in agarose or polyacrylamide gels by identifying intercalating fluorescent molecules, such as ethidium bromide, etc. In more specific systems, fluorescent marking is included by chemical modification of protein molecules or nucleic acid. Subsequently, said modified molecules are used as probes for the identification of target molecules recognized by the probe. Said binding can be direct or, as in the case of colorimetry and chemo-luminescence reactions, can make use of intermediary molecules.
  • fluorophores in proteins and polynucleotides is very standardized.
  • fluorophores-labeled oligonucleotides is particularly interesting since it is possible to include a wide variety of fluorescent markers during the synthesis process.
  • the fluorescent marking that can be used in these techniques is very varied and includes both the use of intercalating fluorescent substances in double-band DNA molecules (dsDNA), for example, ethidium bromide, SYBR Green, etc., as well as the use of primers and probes comprising a fluorophore and, optionally, a fluorescence modulating molecule (quencher), for example, Taqman, Molecular Beacon, Scorpion, FRET, etc. probes.
  • dsDNA double-band DNA molecules
  • ethidium bromide for example, ethidium bromide, SYBR Green, etc.
  • primers and probes comprising a fluorophore and, optionally, a fluorescence modulating molecule (quencher), for example, Taqman, Molecular Beacon, Scorpion, FRET, etc. probes.
  • biomolecule marking systems such as proteins and nucleic acids
  • fluorescent markers or molecules involved in the development of colorimetric or chemiluminescent analysis techniques
  • many of the techniques involved continue to require high levels of manipulation by the researcher. Due to the high sensitivity of some of these systems, such as DNA or RNA quantifications in real-time amplification systems, the manipulation factor can affect the reproducibility of the results.
  • Patent application WO 93/00807 describes a system for the stabilization of biomaterials during the lyophilization process.
  • Biotools Biotechnological & Medical Laboratorios SA has recently developed a system of gelation of complex mixtures of biomolecules that allows the stabilization of reaction mixtures for long periods of time under the most varied conditions storage (WO 02/072002).
  • complex reaction mixtures have been stabilized, such as mixtures for gene amplification reactions, which contain all the reagents necessary for performing the experiment aliquoted in "ready-to-use" independent vials.
  • reaction mixtures containing at least one compound involved in a fluorimetric, colorimetric or chemo-luminescent assay selected from (i) a compound comprising a fluorophore, (ii) a compound comprising a ligand capable of recognizing and interacting with a specific receptor, (iii) an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction, (iv) a conjugate comprising an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction, and a member of a specific binding pair capable of recognizing and binding to a second member of said specific binding pair, (v) one or more compounds, regardless of their nature, for example, nucleic acids or proteins, bound to one or more supports solids, capable of being used in fluorimetric, colorimetric or chemiluminescent assays, or mixtures thereof, with a a stabilizing mixture comprising (i)
  • Said reaction mixtures containing at least one compound involved in a fluorimetric, colorimetric or chemo-luminescent assay may optionally also include an enzyme that catalyzes the polymerization of nucleic acids, as well as the components necessary for carrying out said polymerization reaction.
  • composition of the invention comprising:
  • component B consisting of a stabilizing mixture comprising at least one protective agent against desiccation (component B 1), at least one inhibitor of the condensation reaction between carbonyl or carboxyl groups and amino groups or phosphate (component B2), and - at least, an inert polymer capable of generating a mesh structure that prevents the mobility of dried reagents
  • composition of the invention may optionally contain other components, such as water, enzymes, reagents for the reactions in which such enzymes are involved, for example, cofactors, substrates, additives that improve enzymatic reactions, etc.
  • other components such as water, enzymes, reagents for the reactions in which such enzymes are involved, for example, cofactors, substrates, additives that improve enzymatic reactions, etc.
  • the composition of the invention comprises, in addition to components A and B, an enzyme that catalyzes the polymerization of acids nucleic acids, together with all or part of the components necessary for the performance of said nucleic acid polymerization reaction.
  • composition of the invention can be obtained by drying by vacuum application without prior freezing.
  • the composition of the invention contains a degree of humidity equal to or less than 30%, preferably between 1% and 20%.
  • composition of the invention can be used in the performance of fluorimetric, colorimetric or chemo-luminescent assays, in general, and, in particular, in the detection and / or quantification of macromolecular entities, such as nucleic acids, proteins, antibodies, antigens. , etc., by using such fluorimetric, colorimetric or chemo-luminescent assays.
  • the composition of the invention is of the "ready-to-use" type.
  • the composition of the invention is a stabilized gene sequencing system.
  • the composition of the invention is embodied in a kit comprising all the components necessary for the performance of a "ready-to-use" nucleic acid amplification reaction, or of gene sequencing, containing all reagents. for the identification of a predetermined marker, and which is presented as independent reaction vials in which the user must only add the test sample in the appropriate amount and concentration.
  • composition of the invention is presented in the form of a solid support (microplate, chip, array, microarray, etc.) to which molecules (for example, nucleic acids, proteins, etc.) and stabilized previously by coating with said stabilizing mixture (B) and subsequent drying.
  • the composition of the invention is presented in the form of a solid support (microplate, chip, array, microarray, etc.) to which molecules (for example, nucleic acids, proteins, etc.) are previously attached. mixed with said stabilizing mixture (B) and fixed by the specific methods used for each support.
  • composition of the invention contains one or more of said components Al, A2, A3, A4 or A5 in the appropriate amount so that it can perform its function in the test corresponding fluorescent, colorimetric or chemo-luminescent.
  • the Al component includes any compound that contains a molecular group or fluorescent substance.
  • component Al is a fluorescent compound that can be introduced, by chemical interaction with formation of a true bond or by simple coupling, into the molecule to be studied, without affecting its characteristics.
  • fluorescent compounds include acridines, such as acridine orange, proflavin, acriflavin, etc .; elidium bromide; SYBR Green; fluorescein and its derivatives (for example, carboxy, isothiocyanate, etc.); Rhodamine B and its derivatives (for example, isothiocyanate, etc.); l-anilino-8-naphthalene sulfonate (ANS); dimethyl-amino-naphthalene-5-sulphonate (DNS) and its derivatives (for example, chlorinated, etc.); dansyl chloride; 2-p-toluidylnaphthalene-6-sulfonate (TNS); etc.
  • acridines such as acridine orange, proflavin, acrif
  • the Al component comprises a nucleotide, an oligonucleotide or a polynucleotide, regardless of its nature (DNA, RNA, DNA / RNA chimeras, etc.), optionally chemically modified, containing a fluorophore, for example, a nucleotide labeled with a fluorescent compound, an oligonucleotide, such as a primer, labeled with a fluorescent compound, or a polynucleotide, such as a probe, labeled with a fluorescent compound.
  • a fluorophore for example, a nucleotide labeled with a fluorescent compound, an oligonucleotide, such as a primer, labeled with a fluorescent compound, or a polynucleotide, such as a probe, labeled with a fluorescent compound.
  • component Al in accordance with the foregoing include deoxyribonucleotide triphosphate (dNTPs), for example, dATP, dGTP, dCTP, dTTP, dUTP, labeled with fluorescent compounds; oligonucleotides labeled with fluorescent compounds at one of its ends, for example, with LC Red 640 at its 5 'end; a FRET (Fluorescent Resonance Energy Transfer) probe system comprising a probe containing a donor fluorophore and another probe containing an acceptor fluorophore, which can hybridize with the amplification product or with regions adjacent to the target DNA and emit a fluorescent signal that depends on the proximity between fluorophores, for example, a pair of oligonucleotide probes capable of hybridizing with adjacent regions in a DNA sample, one labeled with fluorescein at its 3 'terminal end and the other labeled at its 5 end 'terminal with LC Red 640;
  • the Al component comprises a fluorophore and a macromolecular entity, other than a nucleic acid, for example, a peptide, a protein, an antigen, etc., such as an antibody or an antigen labeled with a fluorescent compound, for example, fluorescein and its derivatives, rhodamine B and its derivatives, ANS, DNS and its derivatives, TNS, dansyl chloride, etc.
  • a fluorescent compound for example, fluorescein and its derivatives, rhodamine B and its derivatives, ANS, DNS and its derivatives, TNS, dansyl chloride, etc.
  • Component A2 (compound comprising a first member of a specific binding pair capable of recognizing and interacting with a second member of said specific binding pair), refers to any compound containing a first member of a specific binding pair capable of recognizing and interacting with a second member of said specific binding pair.
  • Virtually any specific binding pair can be used in the preparation of the composition of the invention.
  • the composition of the invention will include at least one of the members of the specific binding pair.
  • specific binding pairs include those specific binding pairs useful for detecting macromolecular entities such as nucleic acids, peptides, proteins, antigens, antibodies, compounds capable of being fixed by adsorption or by covalent binding, etc., for example, systems based on avidin or streptavidin, such as the specific binding pair avidin (or streptavidin) / biotin, avidin / phycoerythrin, etc., as well as systems based on antigen / antibody interactions, or fragments thereof containing the recognition sites, for example, the specific digoxigenin / antigoxigenin binding pair, etc.
  • component A2 possibly present in the composition of the invention can be used in many biomolecule detection systems in ELISA systems, that is, a primary antibody that recognizes an antigen and can in turn be recognized by an antibody secondary carrier of a fluorescent or conjugated tide with enzymatic activities.
  • Other possible alternative systems may be an antigen or an antibody bound to biotin, a oligonucleotide bound to digoxigenin, etc.
  • Component A3 (enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction) refers to any enzymatic activity capable of catalyzing a colorimetric or chemo-luminescent reaction in the presence of the appropriate substrate and, therefore, capable of being used in such reactions. Virtually any enzymatic activity capable of catalyzing a colorimetric or chemiluminescent reaction could be used in the preparation of the composition of the invention.
  • Illustrative examples of enzymatic activities capable of catalyzing colorimetric reactions include the peroxidase activity that it uses as a substrate, among others, 4-chloro-l-naphthol, 3-amino-4-ethylcarbazole, diamino-benzidine, 3,3 ', 5,5 '- tetramethylbenzidine (TMB), O-phenylenediamine (OPD), 2,2'-azino-di (3- ethylbenzothiozoline-6-sulfonic acid) (ABTS), 3- (p-hydroxyphenyl) (HPPA); the alkaline phosphatase activity that uses as a substrate, among others, 3- (4-methoxyspiro [1, 2-dioxetane-3'2'-tricyclo- [3.3.1 3 ' 7 ] decan] -4-yl) -phenylphosphate ( AMPPD) and p-nitrophenyl phosphate (pNPP); etc.
  • Illustrative examples of enzymatic activities capable of catalyzing chemo-luiminiscent reactions include the ⁇ -D-galactosidase activity which uses as substrate adamantil-1, 2-dioxetane aryl galactoside (AMPGD); Xanthine oxidase activity on luminol + EDTA gold; glucose oxidase activity on luminol or isoluminol + microperoxidase; Luciferase activity in the presence of luciferin + ATP; green fluorescent protein (GFP) in cell cultures; isolated horseradish peroxidase (HRP) activity in the presence of luminol + perborate + 4-iodophenol or 4-hydroxycinnamic acid; alkaline phosphatase (PA) activity in the presence of AMPPD, 5-bromo-4-chloro-3-indolyl phosphate (BCIP) either in its disodium salt or toluidine salt form, or in the
  • Component A4 refers to a conjugate resulting from the binding of an enzymatic activity capable of catalyzing a colorimetric or chemiluminescent reaction and a member of a specific binding pair with recognition and binding ability to a second member of said specific binding pair.
  • Said enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction it can be any enzymatic activity that can be used in said reactions, for example, any of those mentioned in relation to component A3.
  • component A4 possibly present in the composition of the invention may be an avidin (or streptavidin) -enzymatic activity (HRP or PA) conjugate capable of catalyzing a colorimetric or chemo-luminescent reaction, for example, the conjugate avidin (or streptavidin) -peroxidase, avidin (or streptavidin) -alkine phosphatase, an antibody capable of binding to a molecule (antigen) and that is conjugated to an enzymatic activity, such as HRP or PA, or an acid sequence nucleic conjugate with enzymatic activities (HRP or PA) that, by base complementation and hybridization, recognize other specific nucleic acid sequences.
  • HRP or PA an avidin (or streptavidin) -enzymatic activity
  • Component A5 refers to a solid support in which one or more compounds have been previously immobilized, which can be used as a component of fluorimetric, colorimetric, chemo-luminescent detection systems, or of analysis of electrical conductivity, or of analysis of changes of index of refraction, etc.
  • Said solid support can be any solid support capable of being used in said systems, preferably in fluorimetric, eolorimetric or chemo-luminescent detection systems.
  • constituent material of said solid support can vary widely and includes the modifications necessary to allow the fixation of the compounds, for example, plastic (ELISA microplates), glasses (microarrays), gold surfaces (chips), etc., optionally treated to allow adsorption or covalent binding of macromolecules, for example, nucleic acids, proteins, etc.
  • said component A5 is a microplate of ELISA wells, both for nucleic acids and for proteins, in which one or more compounds of interest, such as biomolecules (for example, nucleic acids or proteins) have been previously fixed.
  • said component A5 comprises chips and microarrays that have, immobilized on their surfaces, one or more compounds of interest, such as biomolecules (for example, nucleic acids or proteins), regardless of the nature of the constituent material of the chip or microarray, or of the modifications introduced therein, necessary to allow the fixation of said compounds in the support.
  • compounds of interest such as biomolecules (for example, nucleic acids or proteins)
  • composition of the invention comprises a component B consisting of B 1,
  • Component B will be present in the composition of the invention in the appropriate amount so that it can perform its function in the corresponding reaction or assay.
  • the component Bl (protective agent against drying) comprises at least one non-reducing carbohydrate together with, optionally, a polyol.
  • said non-reducing carbohydrate is selected from the group consisting of a non-reducing disaccharide, a non-reducing trisaccharide and mixtures thereof.
  • non-reducing disaccharides that may be present in the composition of the invention include palatinitol (6- ⁇ -D-glucopyranosyl mannitol) and trehalose.
  • non-reducing trisaccharides include raffinose and melezitose.
  • the polyol is preferably selected from glycerol, sorbitol and mixtures thereof;
  • the polyol is glycerol. Therefore, in a particular embodiment, the Bl component comprises a non-reducing carbohydrate selected from palatinitol, trehalose, raffinose, melezitose and mixtures thereof.
  • the Bl component comprises (i) a non-reducing carbohydrate selected from palatinitol, trehalose, raffinose, melezitose and mixtures thereof, and (ii) a polyol selected from glycerol, sorbitol and mixtures thereof.
  • Component B2 inhibits the condensation reactions that can occur between the reactive carboxyl, carbonyl, amino and phosphate groups found in the macromolecules present in the composition of the invention.
  • Said inhibitor may be a competitive inhibitor or a non-competitive inhibitor.
  • the competitive inhibitors are amino acids, in particular, ⁇ -amino acids, such as natural ⁇ -amino acids, for example, Usine, arginine, tryptophan, etc., preferably, lysine.
  • non-competitive inhibitors betaine, aminoguanidine and aminoguanidine derivatives have proven to be the most effective.
  • non-competitive inhibitor depends on the non-reducing carbohydrate used as a protective agent against desiccation, so that in the presence of raffinose the most effective non-competitive inhibitor is betaine, while in the presence of other non-reducing carbohydrates the most effective non-competitive inhibitors are aminoguanidine and its derivatives.
  • Component B3 (inert polymer capable of generating a mesh-like structure that prevents the mobility of dried reagents) improves the stability of the composition of the invention by generating a mesh that prevents the mobility of the different components that make up said composition, so that they remain immobilized, to a greater or lesser extent, in the cells formed by the polymer, thus preventing said components from approaching each other, thereby avoiding possible chemical reactions between the possible reactive groups.
  • Component B3 must not react chemically with any of the components that make up the composition of the invention and must create a framework that is thin and moldable enough to trap individualized macromolecules in its mesh without distorting its tertiary or quaternary structure.
  • component B3 is selected from the group consisting of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) of various degrees of polymerization, dextran, starch, Ficoll [non-ionic polymer synthesized from sucrose], glycogen, gum arabic and their mixtures.
  • PVP polyvinylpyrrolidone
  • PEG polyethylene glycol
  • dextran dextran
  • starch starch
  • glycogen and gum arabic are the inert polymers that have proven to be most effective in their protective function.
  • the amount of component B3 present in the composition of the invention should be sufficient to ensure the generation of a dense enough mesh that prevents the mobility of macromolecules, without then interfering with the rehydration (reconstitution) of the composition of the invention neither in the reaction nor in the fluorescent, colorimetric or chemo-luminescent assay to be performed.
  • the composition of the invention may contain one or more enzymes other than the enzymatic activities possibly present in the composition of the invention, together with all or part of the reagents necessary for carrying out the reactions in which such enzymes are involved, for example, cofactors, substrates, additives that improve enzymatic reactions, etc.
  • any enzyme can be present in the composition of the invention; however, in a particular embodiment, said enzyme is an enzyme that catalyzes the polymerization of nucleic acids, for example, amplification enzymes (thermostable or thermolabile) of nucleic acids, regardless of their chemical nature; in this case, the composition of the invention may also contain the components necessary for the performance of said nucleic acid polymerization reaction, such as reaction buffers, nucleotides, cofactors etc.
  • amplification enzymes thermoostable or thermolabile
  • composition of the invention has numerous applications, both in basic and applied research, for example, in the analysis and study of all types of macromolecular entities (nucleic acids, peptides, proteins, antigens, antibodies, etc.).
  • macromolecular entities nucleic acids, peptides, proteins, antigens, antibodies, etc.
  • the composition of the invention is particularly useful in performing fluorimetric, colorimetric or chemo-luminescent assays.
  • Such assays can be used in the detection, identification and / or quantification of such macromolecular entities.
  • these tests can be easily performed using the composition of the invention, which will contain the components necessary for the purpose for which it is intended, after reconstitution thereof, for example, by rehydration, and addition of the test sample.
  • the composition of the invention comprises an intercalating fluorophore between dsDNAs, or a compound comprising a fluorophore and, optionally, a quencher, said compound being selected from a nucleotide, an oligonucleotide and a polynucleotide, and, in addition, an enzyme which catalyzes the polymerization of nucleic acids.
  • Said composition of the invention can be used in the detection and / or quantification of nucleic acids by a fluorimctric method.
  • said composition of the invention can be used: in the amplification of nucleic acids in real time, regardless of the system chosen (for example, Taqman probes, MB probes, Scorpion probes, FRET probes, intercalating fluorophores, etc.) and of the reaction format (for example, conventional or capillary reaction tubes, plates, etc.); in nucleic acid sequencing reactions based on the use of fluorophores for identification, for example, by PCR reactions using thermostable DNA polymerases or by elongation reactions of nucleic acids in the presence of fluorophore-labeled oligonucleotides or nucleotides; or in the identification of nucleic acid fragments in assays based on Multiplexed PCRs with fluorescent compounds for fragment identification in capillary electrophoresis systems; etc.
  • the system chosen for example, Taqman probes, MB probes, Scorpion probes, FRET probes, intercalating fluorophores, etc.
  • the reaction format for example, conventional
  • the composition of the invention comprises an chemically modified oligonucleotide or polynucleotide by the inclusion of a compound that acts as the first member of a specific binding pair capable of recognizing and interacting with a second member of said specific binding pair. , wherein said second member of the specific binding pair is linked to an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction.
  • Illustrative examples of this embodiment include oligonucleotides or polynucleotides bound to digoxigenin or biotin, which would act as the first binding pair, and which could interact with the second binding pair, such as an anti-digoxigenin antibody (in the case of digoxigenin), or with an anti-biotin antibody, with avidin or with streptoavidin (in the case of biotin).
  • the second binding pair would be bound to an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction.
  • Said composition can be used in the detection and / or quantification of nucleic acids by a colorimetric or chemo-luminescent method.
  • the detection and identification of nucleic acids is particularly interesting in diagnostic applications, for example, in the identification of pathogens, or in prognostic applications, that is, in the evaluation of the risk to develop a certain pathology, for example, the detection of Gene mutations associated with an increased risk of developing some pathology (cancer, Alzheimer's disease, etc.).
  • the composition of the invention comprises an antibody (which acts as the first binding pair) and which specifically binds to a second binding pair (an antigen).
  • Said antibody may be conjugated to a fluorescent compound, for example, fluorescein.
  • Said composition can be used in the detection and / or quantification of antigens by an immunofluorescent method.
  • the composition of the invention may contain said antibody conjugated to a first member of a binding pair, for example, biotin, or a conjugate comprising an enzymatic activity that catalyzes a colorimetric reaction, for example, peroxidase, or chemo- luminescent, for example, ⁇ -D-galactosidase, and a second member of a specific binding pair (avidin or streptavidin) capable of recognizing and binding to said first member (biotin) of said specific binding pair; said composition can be used in the detection and / or quantification of antigens by an immunocolorimetric or immunoquinine-luminescent method.
  • these compositions are useful for detecting and identifying tumor antigens, viruses, etc.
  • this embodiment can be used to perform an ELISA antigen detection assay, whether used with digoxigenin or biotin.
  • the composition of the invention may or may not contain the conjugate in the same vial.
  • the composition of the invention comprises an antigen capable of being specifically recognized by an antibody, conjugated to a fluorescent compound, for example, fluorescein.
  • Said composition can be used in the detection and / or quantification of antibodies by an immunofluorescent method.
  • the composition of the invention may contain said antigen conjugated to a first member of a binding pair, for example, biotin, or a conjugate comprising an enzymatic activity that catalyzes a colorimetric reaction, for example, peroxidase, or chemo- luminescent, for example, ⁇ -D-galactosidase, and a second member of a specific binding pair (avidin or streptavidin) capable of recognizing and binding to said first member (biotin) of said specific binding pair;
  • Said composition may be used in the detection and / or quantification of antibodies by an immunocolorimetric or immunoquimio-luminescent method.
  • these compositions are useful for detecting and identifying antibodies, etc.
  • this embodiment can be used to perform an ELISA antibody detection assay, whether used with digoxigenin or biotin.
  • the composition of the invention may or may not contain the conjugate in the same vial, but would not include the reaction substrate.
  • the invention would consist of a solid support, whatever its nature, such as for example ELISA microplates and microarray or chip holders, in which one or more molecular species have previously been immobilized, whatever their nature. Said molecular species would be stabilized by coating the support with the stabilization mixture.
  • the format of the invention would be a support with bound and stabilized molecules. Said support could be used for colorimetric, fluorimetric or chemiluminescent analysis, being able to use any of the stabilized systems presented in this patent.
  • the invention would consist of a mixture of stabilization that would be added to the molecules prior to their fixation on a solid support, whatever their nature, such as for example ELISA microplates and microarray or chip holders.
  • the molecules thus stabilized would be applied to the solid support following the specific procedure indicated for each support.
  • the format of the invention would be a support with bound and stabilized molecules. Said support could be used for colorimetric, fluorimetric or chemo-luminescent analysis, being able to use any of the stabilized systems presented in this description.
  • the invention provides a kit comprising at least one container containing a composition of the invention.
  • the container may be any suitable container for containing the composition of the invention, for example, a vial, a bottle, etc.
  • the kit provided by this invention is a kit suitable for the detection and / or quantification of nucleic acids by fluorimetric, colorimetric or chemo-luminescent methods, in particular, for the detection by said methods of amplified nucleic acids by amplification. of nucleic acids in real time, or in multiplexed PCRs, or resulting from sequencing reactions, etc.
  • the kit provided by this invention is a kit suitable for the detection and / or quantification of peptides, proteins, antigens or antibodies by fluorimetric, colorimetric or chemo-luminescent methods.
  • the kit of the invention will contain, in addition to the composition of the invention (with the appropriate components depending on the purpose for which it is intended), all or part of the components (reagents, factors, additives, etc.) necessary for carrying out the reaction and the test in question, except the problem molecule (nucleic acid, peptide, protein, antigen, antibody, etc.).
  • the invention provides a kit for the amplification and / or detection in real time of specific nucleic acid sequences (RNA or DNA) comprising at least one container containing a composition of the invention, stabilized and ready for using, said composition of the invention comprising an enzyme that catalyzes the polymerization of nucleic acids, for example, a gene amplification or reverse transcription enzyme coupled to gene amplification, and, in addition, all necessary reagents, including specific primers labeled with fluorophores or probes comprising a fluorophore and, optionally, a quencher, for example, Taqman, MB, FRET or Scorpion probes, except the problem nucleic acid.
  • a composition of the invention comprising an enzyme that catalyzes the polymerization of nucleic acids, for example, a gene amplification or reverse transcription enzyme coupled to gene amplification, and, in addition, all necessary reagents, including specific primers labeled with fluorophores or probes comprising a fluoro
  • the invention provides a real-time amplification and / or detection kit for specific nucleic acid sequences (RNA or DNA) comprising at least one container containing a composition of the invention, stabilized and ready for using, said composition of the invention comprising an enzyme that catalyzes the polymerization of nucleic acids, for example, a gene amplification or reverse transcription enzyme coupled to gene amplification, and, in addition, the necessary reagents, including nucleotides labeled with fluorescent labels , except the problem nucleic acid.
  • RNA or DNA nucleic acid sequences
  • the invention provides a real-time amplification and / or detection kit for specific nucleic acid sequences (RNA or DNA) comprising at least one container containing a composition of the invention, stabilized and ready for using, said composition of the invention comprising an enzyme that catalyzes the polymerization of nucleic acids, for example, a gene amplification or reverse transcription enzyme coupled to gene amplification, and, in addition, the necessary reagents, including fluorescent substances intercalating in dsDNAs , for example, Sybr Green, except the problem nucleic acid.
  • RNA or DNA nucleic acid sequences
  • the invention provides a nucleic acid sequencing kit by gene amplification comprising at least one container containing a composition of the invention, stabilized and ready to use, said composition comprising the invention an enzyme that catalyzes the polymerization of nucleic acids, for example, a gene amplification enzyme, and, in addition, the necessary reagents, including primers or terminating nucleotides labeled with a fluorescent label.
  • a nucleic acid sequencing kit by gene amplification comprising at least one container containing a composition of the invention, stabilized and ready to use, said composition comprising the invention an enzyme that catalyzes the polymerization of nucleic acids, for example, a gene amplification enzyme, and, in addition, the necessary reagents, including primers or terminating nucleotides labeled with a fluorescent label.
  • the invention provides a nucleic acid sequencing kit by nucleic acid elongation reactions comprising at least one container containing a composition of the invention, stabilized and ready to use, said composition comprising the invention.
  • an enzyme that catalyzes the polymerization of nucleic acids for example, a gene amplification enzyme, and, in addition, the necessary reagents, including primers or terminating nucleotides labeled with a fluorescent label.
  • the invention provides a nucleic acid detection kit comprising at least one container containing a composition of the invention, stabilized and ready to use, said composition of the invention comprising the necessary reagents, including compounds containing a member of a specific binding pair conjugated to an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction, for example, a compound comprising an avidin or biotin group, or any other modification used for subsequent colorimetric or chemo- analyzes. luminescent.
  • the invention provides a kit for the detection of antibodies comprising at least one container containing a composition of the invention, stabilized and ready to use, said composition comprising a compound comprising a member of a pair of specific binding conjugated to an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction.
  • the invention provides a kit for the detection of antigens comprising, at least, a container containing a composition of the invention, stabilized and ready to use, said composition comprising a compound comprising a member of a pair of specific binding conjugated to an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction.
  • compositions for example, of the "ready-to-use” type, and kits, closed and ready-to-use, including (i) a compound comprising a fluorophore, (ii) a compound comprising a ligand capable of recognizing and interacting with a specific receptor, wherein said ligand or said receptor is bound to an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction, (iii) a Enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction, or (iv) a conjugate comprising an enzymatic activity that catalyzes a colorimetric or chemiluminescent reaction and a member of a specific binding pair capable of recognizing and binding to a second member of said specific binding pair.
  • compositions are useful for conducting fluorescent, colorimetric or chemo-luminescent assays.
  • the composition of the invention comprises a member of a specific binding pair
  • the other member of said specific binding pair will be contained in another container of the kit of the invention.
  • kits intended for the performance of colorimetric or chemo-luminescent tests shall include a separate container with the substrate for said enzymatic activities that catalyze a colorimetric or chemo-luminescent reaction.
  • the process of preparing amplification reactions is simplified using fluorescent, colorimetric or chemiluminescent tides by developing reaction systems ready for use in independent (vial) containers.
  • the development of ready-to-use reaction systems in independent containers makes it possible to expedite the realization of a large number of techniques commonly used in diagnostic and research laboratories, such as real-time amplification reactions, sequencing and dizzying with fluorescent groups or intermediaries of colorimetry and chemo-luminescence reactions.
  • the reproducibility of results is increased and the experimental error factor is largely eliminated.
  • the kit is a solid support, such as ELISA microplates, microarray holders or chips, containing immobilized and stabilized molecules that can be used in fluorimetric, colorimetric or chemo-luminescent detection assays.
  • the invention provides a process for preparing a stabilized composition, with a moisture content equal to or less than 30% (composition of the invention), comprising
  • an aqueous solution comprising at least one component (A) selected from the group consisting of: a compound comprising a fluorophore (component Al), - a compound comprising a first member of a specific binding pair capable of recognizing and interacting with a second member of said specific binding pair (component A2), an enzymatic activity that catalyzes a colorimetric reaction or chemo-luminescent (component A3), a conjugate comprising an enzymatic activity that catalyzes a colorimetric or chemo-luminescent reaction and a member of a specific binding pair capable of recognizing and binding to a second member of said specific binding pair ( component A4), and mixtures thereof;
  • A a compound comprising a fluorophore
  • component A2 a compound comprising a fluorophore
  • component A3 a compound comprising a first member of a specific binding pair capable of recognizing and interacting with a second member of said specific binding pair
  • component A3
  • an aqueous solution comprising a component (B) consisting of - at least, a drying agent (component B 1), at least one inhibitor of the condensation reaction between carbonyl or carboxyl groups and amino or phosphate groups ( component B2), and at least one inert polymer capable of generating a mesh-like structure that prevents the mobility of dried reagents (component B3),
  • step b) withdraw all or part of the water contained in said aqueous solution containing components A and B obtained in step a), until a composition comprising said components A and B is obtained, and has a moisture content equal to or less than 30%
  • the aqueous solution comprising component A may be prepared outside the container and subsequently added thereto as it may be or formed directly in the container by adding and mixing the various components of said aqueous solution in the container itself.
  • the aqueous solution comprising component B stabilizing mixture
  • the container can be any suitable container, for example, a vial, of any appropriate material (glass, plastic, etc.)
  • Components A1-A4 and B1-B3 have been previously described in relation to the composition of the invention.
  • the composition of the invention may also contain, if desired, one or more of the optional components mentioned above, such as one or more enzymes other than the enzymatic activities eventually present in the composition of the invention, for example, enzymes (thermostable or thermolabile) of nucleic acid amplification, restriction enzymes, enzymes involved in the reactions of amplification, sequencing or characterization (identification) of nucleic acids, etc., together with all or part of the reagents necessary for carrying out the reactions in which such enzymes are involved, for example, cofactors, substrates, additives that improve enzymatic reactions, etc.
  • enzymes thermoostable or thermolabile
  • Said optional components may be added to the aqueous solution containing component A or to the aqueous solution containing component B or they may be added to the aqueous solution resulting from the mixture of aqueous solutions containing components A and B.
  • the withdrawal of all or part of the water present in the aqueous solution resulting from mixing the aqueous solutions comprising components A and B in the container can be carried out by any conventional drying method, including, for example, lyophilization, drying in fluid bed , dried at room temperature and atmospheric pressure, dried at room temperature and decreased pressure, dried at high temperature and atmospheric pressure, dried at high temperature and decreased pressure.
  • the preferred drying method is drying at a temperature between 15 ° C and 60 ° C, and lower pressure than atmospheric.
  • Other methods, such as those mentioned above, can be applied in drying, although their higher cost or lower efficiency or greater aggressiveness against the components of the reaction mixture to be dried advise against their use.
  • the degree of drying chosen will depend mainly on economic factors (cost of the process, time needed to reach a certain degree of drying, etc.) and on the relationship between the degree of drying and the stability of the composition. Therefore, in a particular embodiment, the degree of moisture remaining in the composition of the invention is between 1% and 20%.
  • Completely dried compositions that is, with a presence of residual water equal to or less than 1%, tend to have a stability (during storage) lower than those containing a higher percentage of water, with a significant drying in the completely dried compositions. decrease in reaction yields after rehydration and addition of the reaction substrate.
  • the composition of the invention due to its stability, can be stored for one or more weeks at room temperature (25 ° C), it seems advisable that it be stored at temperatures between 4 ° C and 10 ° C to ensure its correct functionality over time.
  • the Bl component stabilizes the tertiary structure of the macromolecules present in the aqueous solution comprising component A, replacing in that mission the water molecules that, in aqueous solution, form the protective envelope that helps maintain the three-dimensional structure of said macromolecules, further blocking the reactions that could occur between the reactive chemical groups that could be found in said macromolecules, thereby also exercising a stabilizing effect on the dried compositions.
  • Component B2 inhibits the condensation reactions that can occur between the carboxyl, carbonyl, aniino and phosphate reactive groups found in the macromolecules present in the composition of the invention.
  • Component B3 improves the stability of the composition of the invention by generating a mesh that prevents the mobility of the different reagents that compose it, so that they are immobilized to a greater or lesser extent in the cells that form the polymer and, consequently, these reagents cannot approach each other, avoiding the chemical reaction of their surface reactive groups.
  • the amount of inert polymer to be added must be sufficient to ensure the generation of a dense enough mesh that prevents the mobility of macromolecules, without interfering with the subsequent reactions
  • the joint action of the three components (Bl, B2 and B3) of the stabilizing mixture (component B) results in the composition of the invention being functional after storage.
  • the invention provides a process for preparing a stabilized composition comprising a solid support with one or more immobilized and stabilized compounds, with a moisture content equal to or less than 30%, comprising
  • component (A) consisting of a solid support containing one or more compounds previously immobilized on said solid support with a component (B) consisting of a stabilizing mixture comprising
  • At least one drying agent component B 1
  • component B2 at least one inhibitor of the condensation reaction between carbonyl or carboxyl groups and amino or phosphate groups
  • component B3 at least one inert polymer capable of generating a mesh-shaped structure that prevents the mobility of dried reagents
  • Component (A) comprises a solid support of plastic, glass or gold surfaces, optionally pretreated to allow adsorption or covalent bonding of compounds.
  • the compound or compounds immobilized on the solid support can be any compound of interest, for example, one or more biomolecules, such as nucleic acids (oligo- or polynucleotides, etc.), peptides, proteins, antibodies, etc. Said compounds are immobilized by conventional methods on said solid support or solid supports loaded with one or more compounds immobilized on said solid support are commercially acquired.
  • the component (B) is added on the solid support loaded with said compound or compounds forming a thin layer that covers said solid support and, finally, all or part of the water present in the resulting mixture is removed by any method of conventional drying, including, for example, lyophilization, drying in a fluid bed, drying at room temperature and atmospheric pressure, drying at room temperature and decreased pressure, drying at high temperature and atmospheric pressure, drying at high temperature and reduced pressure.
  • the preferred drying method is drying at a temperature between 15 ° C and 60 ° C, and lower pressure than atmospheric.
  • Other methods, such as those mentioned above, can be applied in drying, although their higher cost or lower efficiency or greater aggressiveness against the components of the reaction mixture to be dried advise against their use.
  • the stabilized composition comprising a solid support containing one or more immobilized and stabilized compounds, with a degree of humidity equal to or less than 30%, obtainable according to the previously defined procedure, can be used as a substrate for detecting colorimetric, fluorescent or chemo systems -luminescent or as a detection substrate in a method of analysis of results such as electrical conductivity measurement or refractive index measurement. Therefore, solid supports will meet the necessary conditions to be used in such applications.
  • the invention provides a process for preparing a stabilized composition comprising a solid support containing one or more immobilized and stabilized compounds, with a humidity degree equal to or less than 30%, comprising
  • At least one drying agent component B 1
  • component B2 at least one inhibitor of the condensation reaction between carbonyl or carboxyl groups and amino or phosphate groups
  • component B3 at least one inert polymer capable of generating a mesh-shaped structure that prevents the mobility of dried reagents
  • composition comprising a solid support with one or more immobilized and stabilized compounds and said component B, and has a degree of humidity equal to or less than 30%.
  • the solid support can be a solid support of plastic, glass or gold surfaces, optionally pretreated to allow adsorption or covalent bonding of compounds.
  • the compound or compounds to be fixed on the solid support can be any compound of interest, for example, one or more biomolecules, such as nucleic acids (oligo- or polynucleotides, etc.), peptides, proteins, antibodies, etc. Said compounds are stabilized by contacting said compounds with said component (B) and then added on the optionally treated solid support to immobilize said compounds.
  • all or part of the water present in the resulting mixture is removed by any conventional drying method, including, for example, lyophilization, drying in a fluid bed, drying at room temperature and atmospheric pressure, drying at room temperature and pressure decreased, dried at high temperature and atmospheric pressure, dried at high temperature and decreased pressure.
  • the preferred drying method is drying at a temperature between 15 ° C and 60 ° C, and lower pressure than atmospheric.
  • Other methods such as those mentioned above, can be applied in drying, although their higher cost or lower efficiency or greater aggressiveness against the components of the reaction mixture to be dried advise against their use.
  • the stabilized composition comprising a solid support containing one or more immobilized and stabilized compounds, with a degree of humidity equal to or less than 30%, obtainable according to the previously defined procedure, can be used as a substrate for detecting colorimetric, fluorescent or chemo systems -luminescent or as a detection substrate in a method of analysis of results such as electrical conductivity measurement or refractive index measurement. Therefore, solid supports will meet the necessary conditions to be used in such applications.
  • thermostable DNA polymerase enzyme used in this and the following examples, unless otherwise indicated, is a recombinant DNA polymerase of
  • Thermus ⁇ hermoph ⁇ lus expressed in Escherichia coli owned by Biotools B&M Labs
  • the enzyme was stored at -20 ° C in a storage buffer containing 30 mM Tris HC1, pH 8, 25 mM glucose, 25 mM KCl, 0.5 mM PMSF, 0.25% Tween 20 and NP40 0 , 25%.
  • a reaction buffer was prepared containing Tris HC1, pH 8, 750 mM, (NH) 2 SO 4 200 mM, 0.1% Tween 20 and 20 mM MgCl 2 .
  • Reaction mixtures were prepared for the amplification of a fragment of approximately 750 base pairs (bp) corresponding to the coding region of the 18S fraction of the ribosomal RNA (rRNA from the small subunit - "small subunit” or "SSUrRNA”) of the Plasmodium genus (the amplified size shows small variations depending on the species).
  • Both probes have the same polarity and hybridize in adjacent areas of the region amplified by primers Al and A2, leaving only two separation bases between both probes when hybridizing.
  • the A3 probe is labeled with fluorescein at 3 'position and the A4 probe contains a Red 640 LC group at the 5' end and is phosphorylated at the 3 'end to avoid elongation reaction primed by Taq polymerase, in this way , when both probes hybridize the groups fluorescefna and LC Red 640 are located adjacent favoring the resonance process.
  • the A3 and A4 probes were designed over a variable area of the Plasmodium genome, so that they hybridize with the amplified product of P. falciparum, but not with the amplified product of other Plasmodium species such as P. vivax, P. inalariae or P . or voucher.
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their activity was tested by performing the gene amplification reaction on blood samples from patients infected with P. falciparum, P. vivax, P. ovale or P. malariae.
  • reaction mixtures were prepared for amplification of the same region described in Example 1, using the same reagents described.
  • DNA polymerase 1 U / ⁇ l
  • 2 microliters was added of the reaction buffer, 1 microliter of a solution containing in equimolar proportion the four deoxyribonucleotides (dNTPs) involved in the DNA amplification reaction (dATP, dCTP, dGTP and dTTP), 1 microliter of the Al primer ( 5 ' - AGT GTG TAT CA ⁇ TCG AGT TTC- 3 ' ) at a concentration of 10 ⁇ M and 1 microliter of primer A2 ( 5' -CGC AGT TGT TTG TCT CCA GAA- 3 ' ) at a concentration of 10 ⁇
  • dNTPs deoxyribonucleotides
  • A5 hydrolysis probe (TaqMan probe: 5 ' -FAM-TTT AGC TTT TGG CTT TAA TAC-TAMRA- 3' ) was added to each vial at a concentration of 10 mM, which contains a FAM group at the end 5 'and a TAMRA group in position 3'.
  • the hybrid A5 probe with the genome of P. falciparum, but does not recognize the amplified product of other Plasmodium species, such as P. vivax, P. malariae or P. ovale.
  • Various tubes were prepared in the manner described above, and to each of them the appropriate volumes of each of the stabilizing mixtures listed in Table 1 were added.
  • the tubes thus prepared were centrifuged for 10 seconds at 4000 rpm in one table centrifuge (Eppendorf). Finally, they were dried in an Eppendorf model 5301 brand centrifugal evaporator, at temperatures between 10 ° C and 60 ° C, for a period of time between 30 and 120 minutes. The temperatures and times mentioned above vary according to the final volume of the mixture to be dried.
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their activity was tested by performing the gene amplification reaction on blood samples from patients infected with P. falciparum, P. vivax, P. ovale or P malariae.
  • the result of the amplification reaction was analyzed in all cases by visualization of the fluorescence curve and determination of the "crossing point", following the instructions of the equipment software, of each of the reaction tubes, both fresh and stabilized. It was observed, in all cases, that those stabilizing mixtures containing melezitose or palatinitol, in conjunction with lysine and glycogen or gum arabic, or raffinose with betaine and glycogen, have maximum activity, with a coefficient of variation in the "crossing point "2% with respect to the values obtained in fresh mixtures. Samples of patients infected with P. falciparum gave positive results in all cases, while patients infected with other species gave negative results in all cases.
  • reaction mixtures were prepared for amplification of the same region described in Example 1, using the same reagents described. In this case, the "DNA Engine OPTICON TM 2 System" (MJ Research) equipment was used.
  • OPTICON In 0.2 ml amplification tubes with optical cap, specific for use in the system OPTICON was added 1 microliter of DNA polymerase (1 U / ⁇ l) preserved in its storage buffer, 2.5 microliters of the reaction buffer, 1 microliter of a solution containing in equimolar proportion the four deoxyribonucleotides (dNTPs) involved in the DNA amplification reaction (dATP, dCTP, dGTP and dTTP), 1 microliter of primer A1 ( 5 ' -AGT GTG TAT CA ⁇ TCG AGT TTC- 3' ) and 1 microliter of primer A2 ( 5 ' -CGC AGT TGT TTG TCT CCA GAA- 3 ' ), both at a concentration of 10 ⁇ M.
  • dNTPs deoxyribonucleotides
  • the 21 bp central region of the hybrid A6 oligonucleotide with the amplicons thus breaking the hairpin structure and allowing fluorescence emission by the fluorescein group, when spatially separated from the DABCYL.
  • the central region of the hybrid A6 probe with the genome of P falciparum, but does not recognize the amplified product of other Plasmodium species, such as P. vivax, P. malariae or P. ovale.
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their activity was tested by performing the gene amplification reaction on blood samples from patients infected with P falciparum, P vivax, P ovale or P malariae.
  • the result of the amplification reaction was analyzed in all cases by visualization of the fluorescence curve and determination of the "crossing point", following the instructions of the equipment software, of each of the reaction tubes, both fresh and stabilized. It was observed, in all cases, that those stabilizing mixtures containing melezitose or palatinitol, in conjunction with lysine and glycogen or gum arabic, or raffinose with betaine and glycogen, have maximum activity, with a coefficient of variation in the "crossing point "2% with respect to the values obtained in fresh mixtures. Samples of patients infected with P. falciparum gave positive results in all cases, while patients infected with other species gave negative results in all cases.
  • reaction mixtures were prepared for amplification of a 125 bp region of the Mycobacterium tuberculosis rpo gene, using a LightCycler kit and the same reagents described in Example 1. To each capillary reaction tube, specific for use in the LightCycler System (Roche Applied Science, Mannheim, Germany).
  • A8 primer Scorpion probe: 5 -FAM-CCGCGACGGACCTCCAGCCCGGCACGCTGGCGCT MR HEG CCCGGCGGTCTGTCACGTG-3 '
  • MR methyl red
  • HEG hexethylene glycol
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times measured in Table 1, their activity was tested by performing the gene amplification reaction on blood samples from patients infected with M tuberculosis and samples of uninfected patients.
  • the result of the amplification reaction was analyzed in all cases by means of visualization of the fluorescence curve and determination of the "crossing point", following the instructions of the equipment software, of each of the reaction tubes, both fresh and stabilized. It was observed, in all cases, that those stabilizing mixtures containing melezitose or palatinitol, in conjunction with Usina and glycogen or gum arabic, or raffinose with betaine and glycogen, have maximum activity, with a coefficient of variation in the "crossing point "2% with respect to the values obtained in the fresh mixtures (Table 1). Samples from patients infected with M tuberculosis gave positive results in all cases, while samples from healthy donors gave negative results in all cases.
  • EXAMPLE 5 Preparation of a dried and stabilized reaction mixture with SYBR Green for real-time amplification
  • SYBR Green intercalating fluorophores, such as SYBR Green
  • reaction mixtures were prepared for amplification of a fragment of 250 bp corresponding to the E6-E7 region of oncogenic papillomaviruses, using the reagents described in Example 1.
  • the "DNA Engine OPTICON TM 2 System" MJ Research
  • the incubation cycles were then carried out, consisting of an initial incubation at 95 ° C for 10 minutes, and then 45 cycles of denaturation (95 ° C, 30 seconds), banding (55 ° C, 30 seconds), and extension (72 ° C, 30 seconds), using a "DNA Engine OPTICON TM 2 System" device.
  • DNA samples were amplified using a fresh mixture, under the same amplification conditions.
  • the result of the amplification reaction was analyzed in all cases by visualization of the fluorescence curve and determination of the "crossing point", following the instructions of the equipment software, of each of the reaction tubes, both fresh and dried and stabilized It was observed, in all cases, that those stabilizing mixtures containing melezitose or palatinitol, in conjunction with Usina and glycogen or gum arabic, or raffinose with betaine and glycogen, have maximum activity, with a coefficient of variation in the "crossing point "2% with respect to the values obtained in fresh mixtures. Samples from patients infected with oncogenic HPV species gave positive results in all cases, while samples from patients infected with non-oncogenic HPV species, or not infected with HPV, gave negative results in all cases.
  • the maintenance of the activity in the dried and stabilized reaction mixtures that included the Taq polymerase activity and the SYBR green intercalator, for a period of up to one month guarantees that, under the stabilization conditions used, the coexistence of both molecules does not entail a loss of activity of Taq polymerase.
  • Reaction mixtures were prepared containing 4 microliters of DTCS Quick Start Master Mix, 1 microliter of universal primer MI 3 -47 and the appropriate volumes of each of the stabilizing mixtures listed in Table 1.
  • the tubes thus prepared were dried. in an Eppendorf model 5301 centrifugal evaporator, at temperatures between 10 ° C and 60 ° C, for a period of time between 30 and 120 minutes. The temperatures and times mentioned above vary according to the final volume of the mixture to be dried.
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their activity was tested by performing the gene amplification reaction on a plasmid pONC, containing cloned a 250 bp fragment of the human papillomavirus genome in the poly-linker of plasmid pBluescript II SK (-) following the sequencing kit instructions.
  • the incubation cycles were carried out, which consisted of an initial incubation at 95 ° C for 10 minutes, and then 30 cycles of denaturation (96 ° C, 20 seconds), banding (55 ° C, 20 seconds) , and extension (60 ° C, 4 minutes), using a Minicycler thermal cycler (MJ Reasearch).
  • the same plasmid was sequenced using a fresh sequencing mixture under standard conditions.
  • the sequencing reactions were analyzed in the CEQ 2000XL equipment following the instructions of the supplier.
  • the data obtained reflect that those stabilizing mixtures containing melezitose or palatinitol, in conjunction with Usina and glycogen or gum arabic, or raffinose with betaine and glycogen, were efficient in sequencing reactions.
  • the comparison of the sequences obtained with the dried and stabilized mixtures and the standard sequencing mixtures reflected that the yield of the reactions was very similar.
  • the number of bases read with the dried and stabilized system (638) was similar to that obtained when using the standard system (686).
  • Regarding the percentage of coincidence with the theoretical sequence it was analyzed in the 593 coincident bases in both readings, finding that the behavior of the dried and stabilized mixture and the standard mixture was similar.
  • the homology percentage of the sequence obtained with the dried and stabilized mixture with respect to the theoretical sequence was 572/593 (96.5%) of the bases analyzed and 577/593 (97%) for the standard mixture .
  • EXAMPLE 7 Preparation of avidin / biotin amplification reactions and subsequent colorimetric assay 7.A Use of chemically modified oligonucleotides and stabilized by drying in gene amplification reactions The possibility of stabilizing reaction mixtures containing chemically modified oligonucleotides by inclusion of biotin and / or digoxigenin groups, and their functionality as primers in gene amplification reactions, as well as the persistence of their binding capacity to their ligands (streptoavidin and anti-digoxigenin antibodies, respectively), commonly used in colorimetry tests. For this, 4 oligonucleotides were designed that hybridized with the genome of the E6-E7 region of oncogenic HPV species.
  • oligonucleotides Two of the oligonucleotides, A9 (- TGTCAAAAACCGTTGTGTCC- 3 ' ) and All ( 5' -Bio-TGTCAAAAACCGTTGTGTCC- 3 ), of positive polarity, were identical in sequence, except that one of them (All) included a biotin group (Bio in the sequence) in position 5 '.
  • GAGCTGTCGCTTAATTGCTC- 3 ' were of reverse polarity, and as in the previous case, the nucleotide sequence of both was identical, except that one of them (A12) included a digoxigenin grape (Dig in the sequence) in position 5' .
  • Stabilizing mixture 1 First unmodified (A9) + Primer with digoxigenin (A 12)
  • Stabilizer mixture 2 First unmodified (AlO) + Primer with biotin (All) Stabilizer mixture 3 Primer with digoxigenin (A12) + Primer with biotin (All)
  • the tubes thus prepared were dried in an Eppendorf model 5301 centrifugal evaporator, at temperatures between 10 ° C and 60 ° C, for a period of time between 30 and 120 minutes.
  • the temperatures and times mentioned above vary according to the final volume of the mixture to be dried.
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their activity by performing the gene amplification reaction on a plasmid pOnc, which contains a cloned fragment of the E6-E7 region of HPV 16, amplified by the combination of primers A9 or All + AlO or A12. For this, the incubation cycles were carried out, which consisted of an initial incubation at 95 ° C for 10 minutes, and then 35 cycles of denaturation (95 ° C, minute), banding (55 ° C, 1 minute), and extension (72 ° C, 1 minute), using a Minicycler thermal cycler (MJ Reasearch).
  • a Minicycler thermal cycler MJ Reasearch
  • amplification reactions were analyzed by 1.5% agarose gel electrophoresis, stained with ethidium bromide.
  • the efficiency of the amplification reaction was analyzed by densitometry of the amplified bands using a Gelsuper system (TDI).
  • A.- Amplification products using an oligonucleotide labeled with digoxigenin (mixture 1 in Example 7.A): The biotinylated All probe was fixed to the plate and the amplified product hybridized. The hybrid was then incubated with antibody-alkaline phosphatase-conjugated antidigoxigenin (Sigma), and revealed colorimetrically using as pNpp substrate (Roche), analyzing absorbance levels at 415 n with a plate reader equipment (Beckman).
  • the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, the dried tubes were resuspended and stabilized in 100 microliters of sterile distilled HO and their activity was tested by realization of the ELISA plate colorimetric detection reaction of amplified products of oncogenic HPV (HPV 16), obtained by amplification of the plasmid pOnc using primers labeled with digoxigenin (A12) and biotin (All), using a dried and stabilized reaction mixture according to described in Example 7.A, stabilizing mixture 3.
  • HPV 16 oncogenic HPV
  • A12 digoxigenin
  • biotin All
  • 0.2 ml tubes were prepared in which 1 microliter of DNA polymerase (1 U / ⁇ l) stored in its storage buffer, 5 microliters of the reaction buffer, 1 microliter of a solution containing in proportion was added equimolar the four deoxyribonucleotides (dNTPs) involved in the DNA amplification reaction (dATP, dCTP, dGTP and dTTP), 1 microliter of the AlO primer, at a concentration of 20 ⁇ M and of the A9 primer at a concentration of 0.2 ⁇ M.
  • DNA polymerase 1 U / ⁇ l
  • reaction buffer 5 microliters of the reaction buffer
  • 1 microliter of a solution containing in proportion was added equimolar the four deoxyribonucleotides (dNTPs) involved in the DNA amplification reaction (dATP, dCTP, dGTP and dTTP)
  • dNTPs deoxyribonucleotides
  • each of the stabilizing mixtures listed in Table 1 were added.
  • the tubes thus prepared were centrifuged for 10 seconds at 4000 rpm in a tabletop centrifuge (Eppendorf). Finally, they were dried in an Eppendorf model 5301 centrifugal evaporator, at temperatures between 10 ° C and 60 ° C, for a period of time between 30 and 120 minutes. After drying, the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their activity was tested using them as probes for the detection by molecular hybridization of specific HPV 16 sequences.
  • NucleoLink plates (Costar) were used, which have been specially designed for immobilization of biomolecules in a specially treated plastic and that maintaining a high level of transparency, which allows its use in colorimetry tests, is also resistant to high temperatures. These characteristics make it susceptible to its use in gene amplification reactions and subsequent colorimetric assay.
  • Primer A13 ( 5 -P-) was attached to the wells of the plate
  • GAGCTGTCGCTTAATTGCTC- 3 complementary to the HPV genome, phosphorylated at the 5 'end (P in the sequence) to allow its fixation to the wells. Probe fixation was performed following the protocol recommended by the NucleoLink plate distributor.
  • a mixture consisting of 1 microliter of DNA polymerase (1 U / ⁇ l) conserved in its storage buffer, 5 microliters of the reaction buffer, 1 microliter of a solution containing in each well was included in each well equimolar ratio of the four deoxyribonucleotides (dNTPs) involved in the DNA amplification reaction (dATP, dCTP, dGTP and dTTP), 1 microliter of primer A9 at a concentration of 20 ⁇ M. Finally, the appropriate volumes of each of the stabilizing mixtures listed in Table 1 were added to each well.
  • dNTPs deoxyribonucleotides
  • the plates thus prepared were dried in a Memmert vacuum oven (Model V0400) at 25 ° C and 50 mbar pressure for 1 hour and 30 minutes. After drying, the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, their functionality was tested by performing an amplification reaction. To this end, 50 microliters of a 0.5 pmol / microliter dilution of pOnc plasmid was added to each well.
  • the amplification reaction was carried out by the following cycles: an initial incubation at 95 ° C for 10 minutes, and then 35 cycles of denaturation (95 ° C, 1 minute), banding (55 ° C, 1 minute ), and extension (72 ° C, 1 minute), using a Minicycler thermal cycler (MJ Reasearch).
  • the colorimetric detection test of the amplified band fixed on the solid substrate was carried out, following the protocol recommended by the manufacturer of the NucleoLink plates.
  • the oligonucleotide used as a hybridization probe was All, labeled with biotin.
  • the conjugate used was streptoavidin-HRP, and the ABTS substrate.
  • the plates thus prepared were dried in a Memert vacuum oven at 25 ° C and 50 mbar pressure for 1 hour and 30 minutes. After drying, the tubes were stored at the temperatures and times indicated in Table 1. Upon completion of the times indicated in Table 1, the stability of the immobilized antibody was tested by a colorimetry test.
  • An HPV genome amplification product amplified with the pair of primers A12 (labeled with digoxigenin at the 5 'end) and All (labeled with biotin at the 5' end).
  • the amplified product was incubated for 30 minutes in the wells with the immobilized antibody.
  • the amplified products immobilized on the plate through the binding of the digoxigenin grape of the amplicons and the immobilized anti-digoxigenin antibody was analyzed by colorimetric assay. For this, each well was incubated with HRP-conjugated streptoavidin, and revealed after ABTS washes. The colorimetric reaction was finally analyzed by absorption measurement at 415 nm.
  • Ng negative result
  • + weak positive, below 50% activity of the fresh mixture
  • ++ positive between 50-90% of the activity obtained in the fresh mixture
  • +++ positive with activity level not less than 90% of the activity of the fresh mixture.
  • PVP polyvinylpyrrolidone
  • PEG polyethylene glycol
  • G. Arabic Gum Arabic

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

La composición estabilizada comprende: un componente (A) seleccionado entre (i) un compuesto que comprende un fluoróforo, (ii) un compuesto que comprende un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica, (iii) una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, (iv) un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica, (v) uno o más compuestos unidos a un soporte sólido, y sus mezclas; y un componente (B) constituido por una mezcla estabilizante. De aplicación en ensayos fluorimétricos, colorimétricos o quimio-luminiscentes.

Description

COMPOSICIÓN ESTABILIZADA PARA ENSAYOS FLUORIMÉTRICOS, COLORIMÉTRICOS O QIJIMIO-LIJMINISCENTES, KITS QUE LA CONTIENEN Y PROCEDIMIENTO PARA SU OBTENCIÓN
CAMPO DE LA INVENCIÓN
La invención se relaciona con una composición estabilizada, útil para la realización de ensayos fluorimétricos, colorimétricos o quimio-luminiscentes, que comprende los compuestos y materiales que potencialmente pueden ser utilizados en dichos ensayos, tales como moléculas fijadas o no a soportes sólidos, actividades enzimáticas, anticuerpos, proteínas y marcadores fluorescentes, colorimétricos o quimio- luminiscentes. La invención también se refiere a un procedimiento para la obtención de dicha composición estabilizada mediante el empleo de una mezcla estabilizante, así como a kits que contienen dicha composición.
ANTECEDENTES DE LA INVENCIÓN
La utilización de sistemas de detección de marcadores moleculares basados en fluorescencia o en reacciones de colorimetría o quimio-luminiscencia se ha convertido en los últimos años en una alternativa a la utilización de isótopos radiactivos.
Las técnicas de colorimetría y quimio-luminiscencia son sistemas de detección indirectos basados en la modificación química de moléculas con alta capacidad de unión a moléculas diana específicas, mediante incorporación (conjugación) de actividades enzimáticas que, en presencia del sustrato adecuado, catalizan una reacción que genera un compuesto coloreado (reacciones colorimétricas) o luz (quimio-luminiscencia). Dichas moléculas modificadas se utilizan como sondas para la identificación de las moléculas diana problema en mezclas complejas. Finalmente, y para determinar la cantidad de conjugado unido, y de forma indirecta la cantidad de moléculas diana presentes en la mezcla, se separan los complejos molécula dianana/conjugado y se añade el sustrato de la actividad química incorporada en el conjugado. La cantidad de producto generado puede ser determinada en el caso de las reacciones colorimétricas mediante la medida de los niveles de absorbancia a determinadas longitudes de onda del espectro visible. En el caso de las reacciones quimio-luminiscentes, la eficiencia de la reacción se determina mediante la medida de emisión de luz en luminómetros o mediante la impresión de placas fotosensibles. Existe una amplia variedad de actividades enzimáticas susceptibles de catalizar reacciones colorimétricas y que se han adaptado para este tipo de ensayos. Entre ellas caben destacar, como de uso habitual, la actividad peroxidasa que utiliza como sustrato diversas moléculas tales como 4-cloro-l-naftol, 3-amino-4-etilcarbazol, diaminobenzidina, 3,3',5,5'-tetrametilbenzidina (TMB), O-fenilendiamina (OPD), 2,2'- azino-di (ácido 3-etilbenzotiozolina-6-sulfónico) (ABTS), 3-(p-hidroxifenilo) (HPPA), entre otras. También, habitualmente utilizada en ensayos de colorimetría, se encuentra la actividad fosfatasa alcalina que utiliza como sustratos, entre otros, 3-(4-metoxiespiro[l,2- dioxetano-3'2'-triciclo-[3.3.13'7]decan]-4-il)-fenilfosfato (AMPPD) y p-nitrofenil-fosfato (pNPP).
Asimismo, existen numerosos marcadores luminiscentes, entre los que se encuentran los esteres de acridina, el luminol, la luciferina, etc. También se conocen diversas actividades enzimáticas susceptibles de generar reacciones quimio- luminiscentes, por ejemplo, las actividades enzimáticas: β-D-galactosidasa, que utiliza adamantil-l,2-dioxetano aril galactósido (AMPGD) como sustrato; xantina oxidasa sobre luminol + EDTA oro; glucosa oxidasa sobre luminol o isoluminol + microperoxidasa; luciferasa en presencia de luciferina + ATP; proteína verde fluorescente (GFP) en células en cultivo; etc. Asimismo, la actividad peroxidasa aislada de rábano picante (HRP) en presencia de luminol + perborato + 4-iodofenol o ácido 4-hidroxicinámico; y la actividad fosfatasa alcalina en presencia de AMPPD, 5-bromo-4-cloro-3-indolil fosfato (BCIP), bien en su fonna de sal disódica o de sal de toluidina, o en presencia de sal nitroblue- tetrazolium (NPT), generan señales quimio-luminiscentes.
La conjugación de la actividad enzimática puede realizarse directamente sobre una molécula, por ejemplo, sobre un antígeno, o sobre un anticuerpo, que reconozca directamente el anticuerpo o antígeno problema, respectivamente. Sin embargo, es habitual el empleo de moléculas intermediarias para conseguir la unión entre la molécula problema y el conjugado. Entre las moléculas intermediarias más utilizadas se encuentran las que forman los sistemas avidina/biotina, estretavidina/biotina, aviά -i/ficoeritrina, digoxigenina/anti-digoxigenina, etc. Labiotina (vitamina H, coenzima R) es una pequeña molécula que puede unirse a una gran variedad de proteínas y ácidos nucleicos sin alterar sus propiedades. Presenta, asimismo, capacidad de unión altamente específica con avidina, una glicoproteína básica tetramérica presente en gran abundancia en la clara de huevo, y con estreptoavidina, su equivalente sintetizado por bacterias del género Streptomyces. La unión del complejo avidina/biotina y avidina ficoeritrina es altamente estable, con una constante de disociación de 1,0 x 10"15 M y una energía de disociación de 21 Kcal/mol. Debido a que la avidina y la estreptoavidina pueden acomplejarse de forma sencilla con diversas actividades enzimáticas implicadas en reacciones colorimétricas o quimio-luminiscentes, el sistema biotina/avidina o biotina/estreptoavidina es un sistema de elección como intermediario en las reacciones de detección e identificación de ácidos nucleicos, proteínas (incluyendo anticuerpos), antígenos, etc. La digoxigenina es un cardenólido de bajo peso molecular que puede ser incorporado químicamente como ligando a moléculas de ADN y ARN sin alterar su capacidad de hibridación a secuencias de ácidos nucleicos complementarias. En paralelo, se han desarrollado anticuerpos anti- digoxigenina que reconocen de forma específica este ligando y a los que se puede acomplejar gran variedad de las actividades enzimáticas anteriormente descritas.
Los sistemas biotina/avidina, biotina/estreptoavidina y digoxigenina/anti- digoxigenina han sido ampliamente utilizados en el desarrollo de técnicas de detección e identificación de secuencias específicas de ácidos nucleicos mediante colorimetría en gran variedad de soportes incluyendo membranas y pocilios de placas ELISA (PCR- ELISA) o quimio-luniiniscencia. Esto es debido a que la incorporación química de moléculas de biotina o digoxigenina es realizada de forma sencilla durante la síntesis química de oligonucleótidos, pudiendo situar el mareaje en las posiciones deseadas dentro de la secuencia, sin que resulte por ello alterada la capacidad de unión del oligonucleótido marcado a secuencias complementarias de ácidos nucleicos. Por otro lado, y dado que los nucleótidos marcados con biotina o digoxigenina siguen reteniendo la capacidad de ser utilizados en reacciones de elongación de moléculas de ácidos nucleicos catalizadas por actividades ADN polimerasas, dichos sistemas son utilizados para la síntesis de sondas de ADN o ARN utilizables para posteriores experimentos de hibridación.
Un caso especialmente importante dentro del campo de detección de biomoléculas, y especialmente de secuencias específicas de ácidos nucleicos, es el uso de marcadores fluorescentes. Las sustancias fluorescentes presentan la capacidad de excitarse al recibir radiación de una determinada longitud de onda, volviendo al estado de equilibrio tras emitir radiación a una longitud de onda diferente a la de excitación. La fluorescencia se utiliza habitualmente en laboratorios de investigación para una gran variedad de pruebas experimentales, tales como la detección de moléculas de ácidos nucleicos de doble banda en geles de agarosa o poliacrilamida mediante identificación de moléculas fluorescentes intercalantes, tales como el bromuro de etidio, etc. En sistemas más específicos, se incluye un mareaje fluorescente mediante modificación química de moléculas de proteína o ácido nucleico. Posteriormente, dichas moléculas modificadas son utilizadas como sondas para la identificación de moléculas diana reconocidas por la sonda. Dicha unión puede ser directa o, como en el caso de las reacciones de colorimetría y quimio-luminiscencia, puede hacer uso de moléculas intermediarias.
La inclusión de fluoróforos en proteínas y polinucleótidos está muy estandarizada. El caso de los oligonucleótidos marcados con fluoróforos es particularmente interesante ya que es posible incluir una gran variedad de marcadores fluorescentes durante el proceso de síntesis.
Los sistemas basados en el empleo de marcadores fluorescentes son particularmente útiles en la identificación simultánea de varias moléculas problema en una única mezcla de reacción. Así, a diferencia de los sistemas colorimétricos, los espectros de emisión de los compuestos fluorescentes son muy defimdos, cubriendo un intervalo pequeño de longitudes de onda en torno a la longitud de onda de máxima emisión. Esto hace que se hayan podido diseñar toda una batería de compuestos fluorescentes que, emitiendo en diferentes longitudes de onda, no interfieren prácticamente entre sí. Por este motivo, es posible incluir en un único tubo varios marcadores fluorescentes diferentes y conseguir una identificación separada y sin solapamientos de las moléculas problema.
La capacidad de discriminar simultáneamente diversos marcadores fluorescentes en una misma muestra, ha permitido el desarrollo de sistemas de secuenciación génica mediante reacciones de amplificación o elongación de secuencias de ADN a partir de oligonucleótidos específicos, en presencia de los cuatro nucleótidos terminadores marcados cada uno de ellos con un fluoróforo diferente. Finalmente, se realiza la discriminación de cada fluoróforo en un único carril de electroforesis capilar (sistemas de secuenciación capilar).
Posiblemente el campo de mayor desarrollo en los últimos años es el de las reacciones de amplificación génica en tiempo real, que han permitido añadir una dimensión cuantitativa a la reacción de amplificación génica, la técnica más sensible para la detección de ácidos nucleicos. Dicha técnica consiste en un acoplamiento simultáneo de la reacción de amplificación génica y de detección del material amplificado mediante señales de fluorescencia en cada ciclo del proceso de amplificación. Para ello, se han diseñado y comercializado una cantidad creciente de equipos que realizan ambas funciones simultáneamente. La medida de la fluorescencia incorporada en cada ciclo de amplificación permite identificar los amplicones en la fase exponencial de amplificación, donde todavía no tienen lugar fenómenos de saturación de la reacción. Por este motivo el reflejo de la cantidad inicial de ADN sustrato es mucho más exacta que en los métodos tradicionales en los que se analiza el producto amplificado en fases más tardías de la reacción.
El mareaje fluorescente que puede ser utilizado en estas técnicas es muy variado y comprende tanto el empleo de sustancias fluorescentes intercalantes en moléculas de ADN de doble banda (dsADN), por ejemplo, bromuro de etidio, SYBR Green, etc., como el empleo de cebadores y sondas que comprenden un fluoróforo y, opcionalmente, una molécula moduladora de fluorescencia (quencher), por ejemplo, sondas Taqman, Molecular Beacon, Scorpion, FRET, etc. Otra apücación que ha tenido una trascendencia especial en los últimos años, es el desarrollo de sistemas de chips y arrays, consistentes en la fijación en sustratos sólidos de diversa naturaleza (vidrios modificados, superficies de oro, superficies plásticas modificadas, etc.), sobre las que se fijan moléculas de ácidos nucleicos o proteínas, que son posteriormente utilizados para la detección específica de biomoléculas en mezclas complejas. La utilización de este tipo de soportes pennite dos formas de uso diferenciadas. Así, se puede fijar una única molécula (por ejemplo ácidos nucleicos o proteínas) sobre el chip soporte y utilizar este para el análisis de una batería amplia de muestras problema. Este el principio de algunos sistemas de chips comerciales, como los chips Biocore® (Izasa, España). En otros sistemas, por el contrario, se invierte el proceso, presentándose soportes sólidos en los que se fija previamente una batería de moléculas (ácidos nucleicos o proteínas) que permiten identificar en una sola prueba una variedad de moléculas de interés en muestras biológicas complejas. Dependiendo del número de moléculas diferentes fijadas en el soporte del chip se pueden encontrar chips o arrays de baja, media y alta densidad. En este sentido, el desarrollo de sistemas de aplicación robotizada que permiten manipular volúmenes del orden de picolitros con alta precisión, ha permitido el desarrollo de microarrays de ácidos nucleicos y proteínas en los que se incluyen miles de moléculas diferentes. La utilización de sistemas tan complejos de detección precisa asimismo del desarrollo de sistemas sofisticados de análisis de resultados. En relación con esto, se utilizan habitualmente los sistemas de detección fluorescente (microarrays), así como los análisis de conductividad eléctrica o modificaciones de ángulos de refracción de luz (Biocore®), entre otros.
De lo anteriormente expuesto se comprueba que los sistemas de mareaje de biomoléculas, como proteínas y ácidos nucleicos, con marcadores fluorescentes, o moléculas implicadas en el desarrollo de técnicas de análisis colorimétrico o quimio- luminiscente, son hoy en día técnicas habituales y esenciales en los laboratorios en los que se realizan pruebas de diagnósticos e investigaciones biológicas. Sin embargo, hasta el día de hoy, muchas de las técnicas implicadas continúan requiriendo niveles altos de manipulación por parte del investigador. Debido a la alta sensibilidad de algunos de estos sistemas, tales como las cuantificaciones de ADN o ARN en sistemas de amplificación en tiempo real, el factor manipulación puede afectar la reproducibilidad de los resultados.
Por este motivo, sería importante disponer de sistemas de reacción preformados y estabilizados que minimizaran la manipulación de reactivos y limitaran el papel del manipulador a la inclusión de la muestra problema. Este tipo de sistemas conseguiría no solo incrementar la reproducibilidad de los resultados obtenidos en experimentos independientes, y que son cruciales a la hora de interpretar los mismos, sino que agilizaría, por otro lado, la ejecución de una variada gama de técnicas experimentales, de uso rutinario en el laboratorio, permitiendo así una mayor rapidez en la obtención de resultados.
Otro problema de gran trascendencia es la estabilización de los chips o microarrays de biomoléculas, que son utilizados como soporte de detección en muestras biológicas complejas. Dichos sistemas, especialmente aquellos que presentan fijados un gran número de moléculas diferentes, cualquiera que sea su naturales (ácidos nucleicos, proteínas u otros), exigen una correcta estabilización de todas las moléculas incluidas en los mismos para garantizar la correcta interpretación de los resultados de un experimento, así como para garantizar la reproducibilidad del sistema.
Se han desarrollado sistemas de preparación y estabilización de actividades enzimáticas. La solicitud de patente WO 93/00807 describe un sistema para la estabilización de biomateriales durante el proceso de liofilización. Por otra parte, Biotools Biotechnological & Medical Laboratorios, S.A. ha desarrollado recientemente un sistema de gelificación de mezclas complejas de biomoléculas que permite la estabilización de mezclas de reacción durante largos periodos de tiempo en las más variadas condiciones de almacenamiento (WO 02/072002). Mediante la utilización de este sistema se han conseguido estabilizar mezclas de reacción complejas, tales como mezclas para reacciones de amplificación génica, que contienen todos los reactivos necesarios para la realización del experimento alicuotados en viales independientes "listos para usar" (ready-to-use), en los que únicamente es necesario reconstituir la mezcla de reacción y añadir el ácido nucleico problema. Sin embargo, en dicha solicitud de patete WO 02/072002 no se menciona expresamente la adición de moléculas marcadas con un fluoróforo, o que incluyan actividades enzimáticas susceptibles de catalizar reacciones colorimétricas o quimio-luminiscentes, o bien moléculas intermediarias (ligandos) en los sistemas de detección colorimétrica o quimio-luminiscente. La inclusión de dichas moléculas en un sistema de reacción complejo presenta problemas adicionales, tales como el mantenimiento de las capacidades de unión de los ligandos a sus receptores, el mantenimiento de las actividades enzimáticas, y, en el caso de las reacciones de fluorescencia, la no interferencia con los espectros de emisión o absorción de los marcadores fluorescentes incluidos.
Ahora se ha encontrado que es posible estabilizar mezclas de reacción que contienen, al menos, un compuesto implicado en un ensayo fluorimétrico, colorimétrico o quimio-luminiscente seleccionado entre (i) un compuesto que comprende un fluoróforo, (ii) un compuesto que comprende un ligando capaz de reconocer e interaccionar con un receptor específico, (iii) una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, (iv) un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica, (v) uno o más compuestos, independientemente de su naturaleza, por ejemplo, ácidos nucleicos o proteínas, unidos a uno o más soportes sólidos, susceptibles de ser utilizados en ensayos fluorimétricos, colorimétricos o quimio- luminiscentes, o mezclas de los mismos, con una mezcla estabilizante que comprende (i) al menos, un agente protector frente a la desecación; (ii) al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato; y (iii) al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados. Dichas mezclas de reacción que contienen, al menos, un compuesto implicado en un ensayo fluorimétrico, colorimétrico o quimio-luminiscente, opcionalmente, pueden incluir, además, una enzima que cataliza la polimerización de ácidos nucleicos, así como los componentes necesarios para la realización de dicha reacción de polimerización.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN 1. Composición
En un aspecto, la invención proporciona una composición estabilizada, en adelante composición de la invención, que comprende:
(i) un componente (A) seleccionado del grupo formado por: un compuesto que comprende un fluoróforo (componente Al), - un compuesto que comprende un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica (componente A2), una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente (componente A3), - un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica (componente A4), uno o más compuestos unidos a un soporte sólido (componente A5), - sus mezclas; y
(ii) un componente (B) constituido por una mezcla estabilizante que comprende al menos, un agente protector frente a la desecación (componente B 1), al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y - al menos, un polímero inerte capaz de generar una estructura en fonna de malla que impide la movilidad de los reactivos desecados
(componente B3).
La composición de la invención puede contener, opcionalmente, otros componentes, tales como agua, enzimas, reactivos para las reacciones en las que intervienen tales enzimas, por ejemplo, cofactores, sustratos, aditivos que mejoran las reacciones enzimáticas, etc.
En una realización particular, la composición de la invención comprende, además de los componentes A y B, una enzima que cataliza la polimerización de ácidos nucleicos, junto con la totalidad o parte de los componentes necesarios para la realización de dicha reacción de polimerización de ácidos nucleicos.
La composición de la invención puede obtenerse mediante desecación por aplicación de vacío sin congelación previa. La composición de la invención contiene un grado de humedad igual o inferior al 30%, preferentemente, comprendido entre 1% y 20%.
La composición de la invención puede ser utilizada en la realización de ensayos fluorimétricos, colorimétricos o quimio-luminiscentes, en general, y, en particular, en la detección y/o cuantificación de entidades macromoleculares, tales como ácidos nucleicos, proteínas, anticuerpos, antígenos, etc., mediante el empleo de tales ensayos fluorimétricos, colorimétricos o quimio-luminiscentes. Ventajosamente, la composición de la invención es del tipo "lista para usar" (ready-to-use).
En una realización particular, la composición de la invención es un sistema de secuenciación génica estabilizado. En una realización particular, la composición de la invención se materializa en un kit que comprende todos los componentes necesarios para la realización de una reacción de amplificación de ácidos nucleicos del tipo "lista para usar", o de secuenciación génica, que contiene todos los reactivos para la identificación de un marcador predeterminado, y que se presenta como viales de reacción independientes en los que el usuario únicamente debe añadir la muestra problema en la cantidad y concentración adecuadas.
En otra realización particular, la composición de la invención se presenta en forma de un soporte sólido (microplaca, chip, array, microarray, etc.) al que previamente se fijan moléculas (por ejemplo, ácidos nucleicos, proteínas, etc.) y estabilizadas por recubrimiento con dicha mezcla estabilizante (B) y posterior desecación. Alternativamente, en otra realización particular, la composición de la invención se presenta en forma de un soporte sólido (microplaca, chip, array, microarray, etc.) al que se fijan moléculas (por ejemplo, ácidos nucleicos, proteínas, etc.) previamente mezcladas con dicha mezcla estabilizante (B) y fijadas mediante los métodos específicos utilizados para cada soporte.
1.1 Componente A
La composición de la invención contiene uno o más de dichos componentes Al, A2, A3, A4 o A5 en la cantidad adecuada para que pueda realizar su función en el ensayo fluorescente, colorimétrico o quimio-luminiscente correspondiente.
El componente Al (compuesto que comprende un fluoróforo) incluye a cualquier compuesto que contiene un grupo molecular o sustancia fluorescente.
En una realización particular, el componente Al es un compuesto fluorescente que puede introducirse, mediante interacción química con formación de un auténtico enlace o bien por simple acoplamiento, en la molécula a estudiar, sin afectar a sus características. Ejemplos de tales compuestos fluorescentes incluyen acridinas, tales como naranja de acridina, proflavina, acriflavina, etc.; bromuro de elidió; SYBR Green; fluoresceína y sus derivados (por ejemplo, carboxi, isotiocianato, etc.); rhodamina B y sus derivados (por ejemplo, isotiocianato, etc.); l-anilino-8-naftaleno sulfonato (ANS); dimetil-amino-naftaleno-5-sulfonato (DNS) y sus derivados (por ejemplo, clorados, etc.); cloruro de dansilo; 2-p-toluidilnaftaleno-6-sulfonato (TNS); etc.
En otra realización particular, el componente Al comprende un nucleótido, un oligonucleótido o un polinucleótido, independientemente de su naturaleza (ADN, ARN, quimeras ADN/ARN, etc.), opcionalmente modificado químicamente, que contiene un fluoróforo, por ejemplo, un nucleótido marcado con un compuesto fluorescente, un oligonucleótido, tal como un cebador, marcado con un compuesto fluorescente, o un polinucleótido, tal como una sonda, marcado con un compuesto fluorescente. Ejemplos ilustrativos de componente Al de acuerdo con lo anterior incluyen desoxirribonucleótidos trifosfato (dNTPs), por ejemplo, dATP, dGTP, dCTP, dTTP, dUTP, marcados con compuestos fluorescentes; oligonucleótidos marcados con compuestos fluorescentes en alguno de sus extremos, por ejemplo, con LC Red 640 en su extremo 5'; un sistema de sondas FRET (Transferencia de Energía de Resonancia Fluorescente) que comprende una sonda que contiene un fluoróforo dador y otra sonda que contiene un fluoróforo aceptor, que pueden hibridar con el producto de amplificación o con regiones adyacentes al ADN diana y que emiten una señal fluorescente que depende de la proximidad entre los fluoróforos, por ejemplo, un par de sondas de oligonucleótidos capaces de hibridar con regiones adyacentes en una muestra de ADN, una marcada con fluoresceína en su extremo 3' terminal y la otra marcada en su extremo 5' terminal con LC Red 640; sondas Taqman (WO 98/48046) que comprenden una sonda marcada con un compuesto fluorescente y con un compuesto modulador de la fluorescencia (quencher), por ejemplo, una sonda que contiene un grupo FAM (6- carboxi-fluoresceína) en el extremo 5' terminal y un grupo TAMRA (6-carboxi- tetrametil-rhodamina) en el extremo 3' terminal; sondas Molecular Beacon (MB) (WO 99/22018) que comprenden una sonda marcada con un compuesto fluorescente en un extremo y con un quencher en el otro y una estructura de tipo horquilla cuando no está hibridada a un ácido nucleico complementario a la secuencia de nucleótidos del bucle, por ejemplo, una sonda MB que contiene fluoresceína en el extremo 5' terminal y DABCYL en el extremo 3' terminal; sondas Scorpion (US 2002/0102591), consistente en la unión de una sonda MB a un cebador utilizado en la reacción de amplificación.
En otra realización particular, el componente Al comprende un fluoróforo y una entidad macromolecular, distinta a un ácido nucleico, por ejemplo, un péptido, una proteína, un antígeno, etc., tal como un anticuerpo o un antígeno marcado con un compuesto fluorescente, por ejemplo, fluoresceína y sus derivados, rhodamina B y sus derivados, ANS, DNS y sus derivados, TNS, cloruro de dansilo, etc.
El componente A2 (compuesto que comprende un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica), se refiere a cualquier compuesto que contiene un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica. Prácticamente cualquier par de unión específica puede ser utilizado en la elaboración de la composición de la invención. La composición de la invención incluirá, al menos, uno de los miembros del par de unión específica. Ejemplos ilustrativos de pares de unión específica incluyen aquellos pares de unión específicos útiles para detectar entidades macromoleculares tales como ácidos nucleicos, péptidos, proteínas, antígenos, anticuerpos, compuestos susceptibles de ser fijados por adsorción o por unión covalente, etc., por ejemplo, los sistemas basados en avidina o estreptavidina, tales como el par de unión específica avidina (o estreptavidina)/biotina, avidina/ficoeritrina, etc., así como los sistemas basados en interacciones de tipo antígeno/anticuerpo, o fragmentos de los mismos que contienen los sitios de reconocimiento, por ejemplo, el par de unión específica digoxigenina/anti- digoxigenina, etc. A modo ilustrativo, el componente A2 eventualmente presente en la composición de la invención puede ser el utilizado en muchos sistemas de detección de biomoléculas en sistemas ELISA, esto es, un anticuerpo primario que reconoce un antígeno y puede ser a su vez reconocido por un anticuerpo secundario portador de un mareaje fluorescente o conjugado con actividades enzimáticas. Otros sistemas alternativos posibles pueden ser un antígeno o un anticuerpo unido a biotina, un oligonucleótido unido a digoxigenina, etc.
El componente A3 (actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente) se refiere a cualquier actividad enzimática susceptible de catalizar una reacción colorimétrica o quimio-luminiscente en presencia del sustrato adecuado y, por tanto, susceptible de ser utilizada en tales reacciones. Prácticamente cualquier actividad enzimática susceptible de catalizar una reacción colorimétrica o quimio- luminiscente podría ser utilizada en la elaboración de la composición de la invención.
Ejemplos ilustrativos de actividades enzimáticas susceptibles de catalizar reacciones colorimétricas incluyen la actividad peroxidasa que utiliza como sustrato, entre otros, 4-cloro-l-naftol, 3-amino-4-etilcarbazol, diamino-benzidina, 3,3',5,5'- tetrametilbenzidina (TMB), O-fenilendiamina (OPD), 2,2'-azino-di (ácido 3- etilbenzotiozolina-6-sulfónico) (ABTS), 3-(p-hidroxifenilo) (HPPA); la actividad fosfatasa alcalina que utiliza como sustrato, entre otros, 3-(4-metoxiespiro[l,2-dioxetano- 3'2'-triciclo-[3.3.13'7]decan]-4-il)-fenilfosfato (AMPPD) y p-nitrofenil-fosfato (pNPP); etc.
Ejemplos ilustrativos de actividades enzimáticas susceptibles de catalizar reacciones quimio-luiminiscentes incluyen la actividad β-D-galactosidasa que utiliza como sustrato adamantil-l,2-dioxetano aril galactósido (AMPGD); la actividad xantina oxidasa sobre luminol + EDTA oro; la actividad glucosa oxidasa sobre luminol o isoluminol + microperoxidasa; la actividad luciferasa en presencia de luciferina + ATP; la proteína verde fluorescente (GFP) en cultivos celulares; la actividad peroxidasa aislada de rábano picante (HRP) en presencia de luminol + perborato + 4-iodofenol o de ácido 4- hidroxicinámico; la actividad fosfatasa alcalina (PA) en presencia de AMPPD, 5-bromo- 4-cloro-3-indolil fosfato (BCIP) bien en su forma de sal disódica o de sal de toluidina, o en presencia de sal nitroblue-tetrazolium (NPT); etc.
El componente A4 (conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica) se refiere a un conjugado resultante de la unión de una actividad enzimática susceptible de catalizar una reacción colorimétrica o quimio- luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica. Dicha actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente puede ser cualquier actividad enzimática susceptible de ser utilizada en dichas reacciones, por ejemplo, cualquiera de las mencionadas en relación con el componente A3. Asimismo, dicho miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica puede ser uno de los miembros de los pares de unión específica mencionados en relación con el componente A2. A modo ilustrativo, el componente A4 eventualmente presente en la composición de la invención puede ser un conjugado de tipo avidina (o estreptavidina)- actividad enzimática (HRP o PA) susceptible de catalizar una reacción colorimétrica o quimio-luminiscente, por ejemplo, el conjugado avidina (o estreptavidina)-peroxidasa, avidina (o estreptavidina)-fosfatasa alcalina, un anticuerpo con capacidad de unión a una molécula (antígeno) y que se encuentre conjugado con una actividad enzimática, tal como HRP o PA, o una secuencia de ácido nucleico conjugada con actividades enzimáticas (HRP o PA) que, por complementación de bases e hibridación, reconozca otras secuencias específicas de ácidos nucleicos. El componente A5 (uno o más compuestos unidos a un soporte sólido) se refiere a un soporte sólido en el que se han inmovilizado previamente uno o más compuestos, susceptible de ser utilizado como componente de sistemas de detección fluorimétricos, colorimétricos, quimio-luminiscentes, o de análisis de conductividad eléctrica, o de análisis de cambios de índice de refracción, etc. Dicho soporte sólido puede ser cualquier soporte sólido susceptible de ser utilizado en dichos sistemas, preferentemente, en sistemas de detección fluorimétricos, eolorimétricos o quimio-luminiscentes. La naturaleza del material constituyente de dicho soporte sólido puede variar ampliamente e incluye las modificaciones necesarias para permitir la fijación de los compuestos, por ejemplo, plástico (microplacas ELISA), vidrios (microarrays), superficies de oro (chips), etc., opcionalmente tratados para permitir la adsorción o unión covalente de macromoléculas, por ejemplo, ácidos nucleicos, proteínas, etc. En una realización particular, dicho componente A5 es una microplaca de pocilios ELISA, tanto para ácidos nucleicos como para proteínas, en la que se han fijado previamente uno o más compuestos de interés, tales como biomoléculas (por ejemplo, ácidos nucleicos o proteínas). En otra realización particular, dicho componente A5 comprende chips y microarrays que presentan, inmovilizados sobre sus superficies, uno o más compuestos de interés, tales como biomoléculas (por ejemplo, ácidos nucleicos o proteínas), independientemente de la naturaleza del material constituyente del chip o microarray, o de las modificaciones introducidos en el mismo, necesarias para permitir la fijación de dichos compuestos en el soporte.
1.2 Componente B La composición de la invención comprende un componente B constituido por B 1,
B2 y B3. El componente B estará presente en la composición de la invención en la cantidad adecuada para que pueda realizar su función en la reacción o ensayo correspondiente.
El componente Bl (agente protector frente a la desecación) comprende, al menos un carbohidrato no reductor junto con, opcionalmente, un poliol. Preferentemente, dicho carbohidrato no reductor se selecciona del grupo formado por un disacárido no reductor, un trisacárido no reductor y sus mezclas. Ejemplos ilustrativos de disacáridos no reductores que pueden estar presentes en la composición de la invención incluyen al palatinitol (6-α-D-glucopiranosil-manitol) y la trehalosa. Asimismo, ejemplos ilustrativos de trisacáfidos no reductores incluyen la rafinosa y la melezitosa. El poliol se selecciona, preferentemente, entre glicerol, sorbitol y sus mezclas; ventajosamente, el poliol es glicerol. Por tanto, en una realización particular, el componente Bl comprende un carbohidrato no reductor seleccionado entre palatinitol, trehalosa, rafinosa, melezitosa y sus mezclas. En otra realización particular, el componente Bl comprende (i) un carbohidrato no reductor seleccionado entre palatinitol, trehalosa, rafinosa, melezitosa y sus mezclas, y (ii) un poliol seleccionado entre glicerol, sorbitol y sus mezclas.
El componente B2 (inhibidor de las reacciones de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato) inhibe las reacciones de condensación que pueden producirse entre los grupos reactivos carboxilo, carbonilo, amino y fosfato que se encuentran en las macromoléculas presentes en la composición de la invención. Dicho inhibidor puede ser un inhibidor competitivo o un inhibidor no competitivo. Entre los inhibidores competitivos se encuentran los aminoácidos, en particular, los α- aminoácidos, tal como los α-aminoácidos naturales, por ejemplo, Usina, arginina, triptófano, etc., preferentemente, lisina. Entre los inhibidores no competitivos, la betaína, la aminoguanidina y los derivados de aminoguanidina han demostrado ser los más eficaces. La elección del inhibidor no competitivo depende del carbohidrato no reductor utilizado como agente protector frente a la desecación, de modo que en presencia de rafinosa el inhibidor no competitivo más efectivo es la betaína, mientras que en presencia de otros carbohidratos no reductores los inhibidores no competitivos más efectivos son la aminoguanidina y sus derivados.
El componente B3 (polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados) mejora la estabilidad de la composición de la invención al generar una malla que impide la movilidad de los diferentes componentes que componen dicha composición, de manera que quedan inmovilizados, en mayor o menor medida, en las celdillas que forma el polímero, impidiéndose, por tanto, que dichos componentes puedan aproximarse entre sí con lo que se evitan las posibles reacciones químicas entre los posibles grupos reactivos. El componente B3 no debe reaccionar químicamente con ninguno de los componentes que componen la composición de la invención y debe crear un entramado lo suficientemente fino y moldeable como para atrapar en su malla macromoléculas individualizadas sin distorsionar su estructura terciaria o cuaternaria. En una realización particular, el componente B3 se selecciona del grupo formado por polivinilpirrolidona (PVP), polietilenglicol (PEG) de diversos grados de polimerización, dextrano, almidón, Ficoll [polímero no iónico sintetizado a partir de la sacarosa], glucógeno, goma arábiga y sus mezclas. En general, el glucógeno y la goma arábiga son los polímeros inertes que han demostrado ser más efectivos en su función protectora. La cantidad de componente B3 presente en la composición de la invención debe ser la suficiente como para asegurar la generación de una malla lo suficientemente tupida que impida la movilidad de las macromoléculas, sin que luego interfiera tras la rehidratación (reconstitución) de la composición de la invención ni en la reacción ni en el ensayo fluorescente, colorimétrico o quimio-luminiscente a realizar.
1.3 Componentes opcionales
Opcionalmente, la composición de la invención puede contener una o más enzimas distintas a las actividades enzimáticas eventualmente presentes en la composición de la invención, junto con la totalidad o parte de los reactivos necesarios para la realización de las reacciones en las que intervienen tales enzimas, por ejemplo, cofactores, sustratos, aditivos que mejoran las reacciones enzimáticas, etc. Prácticamente cualquier enzima puede estar presente en la composición de la invención; no obstante, en una realización particular, dicha enzima es una enzima que cataliza la polimerización de ácidos nucleicos, por ejemplo, enzimas (termoestables o termolábiles) de amplificación de ácidos nucleicos, independientemente de su naturaleza química; en este caso, la composición de la invención puede contener, además, los componentes necesarios para la realización de dicha reacción de polimerización de ácidos nucleicos, como búferes de reacción, nucleótidos, cofactores etc.
1.4 Aplicaciones/usos de la composición de la invención
La composición de la invención presenta numerosas aplicaciones, tanto en investigación básica como aplicada, por ejemplo, en el análisis y estudio de todo tipo de entidades macromoleculares (ácidos nucleicos, péptidos, proteínas, antígenos, anticuerpos, etc.). De hecho, la composición de la invención es particularmente útil en la realización de ensayos fluorimétricos, colorimétricos o quimio-luminiscentes. Tales ensayos pueden ser utilizados en la detección, identificación y/o cuantificación de tales entidades macromoleculares. En general, estos ensayos se pueden realizar fácilmente utilizando la composición de la invención, que contendrá los componentes necesarios para el fin al que va destinada, tras reconstitución de la misma, por ejemplo, mediante rehidratación, y adición de la muestra problema.
En una realización particular, la composición de la invención comprende un fluoróforo intercalante entre dsADNs, o un compuesto que comprende un fluoróforo y, opcionalmente, un quencher, seleccionándose dicho compuesto entre un nucleótido, un oligonucleótido y un polinucleótido, y, además, una enzima que cataliza la polimerización de ácidos nucleicos. Dicha composición de la invención, puede ser utilizada en la detección y/o cuantificación de ácidos nucleicos mediante un método fluorimctrico. A modo ilustrativo, dicha composición de la invención puede ser utilizada: en la amplificación de ácidos nucleicos en tiempo real, independientemente del sistema elegido (por ejemplo, sondas Taqman, sondas MB, sondas Scorpion, sondas FRET, fluoróforos intercalantes, etc.) y del formato de reacción (por ejemplo, tubos de reacción convencionales o capilares, placas, etc.); en reacciones de secuenciación de ácidos nucleicos basadas en el empleo de fluoróforos para la identificación, por ejemplo, mediante reacciones de PCR utilizando ADN polimerasas termoestables o bien mediante reacciones de elongación de ácidos nucleicos en presencia de oligonucleótidos o nucleótidos marcados con fluoróforos; o en la identificación de fragmentos de ácidos nucleicos en ensayos basados en PCRs multiplexadas con compuestos fluorescentes para la identificación de fragmentos en sistemas de electroforesis capilar; etc.
En otra realización particular, la composición de la invención comprende un oligonucleótido o un polinucleótido químicamente modificado por la inclusión de un compuesto que actúa como primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica, en el que dicho segundo miembro del par de unión específica está unido a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente. Ejemplos ilustrativos de esta realización incluyen oligonucleótidos o polinucleótidos unidos a digoxigenina o biotina, que actuarían como primer par de unión, y que podría interaccionar con el segundo par de unión, tal como un anticuerpo anti-digoxigenina (en el caso de la digoxigenina), o con un anticuerpo anti-biotina, con avidina o con estreptoavidina (en el caso de la biotina). El segundo par de unión se encontraría unido a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente. Dicha composición puede ser utilizada en la detección y/o cuantificación de ácidos nucleicos mediante un método colorimétrico o quimio-luminiscente.
La detección e identificación de ácidos nucleicos es particularmente interesante en aplicaciones de diagnóstico, por ejemplo, en la identificación de patógenos, o en aplicaciones de pronóstico, es decir, en la evaluación del riesgo a desarrollar una determinada patología, por ejemplo, la detección de mutaciones génicas asociadas a un mayor riesgo de desarrollar alguna patología (cáncer, enfermedad de Alzheimer, etc.).
En otra realización particular, la composición de la invención comprende un anticuerpo (que actúa como primer par de unión) y que se une de forma específica a un segundo par de unión (un antígeno). Dicho anticuerpo puede estar conjugado a un compuesto fluorescente, por ejemplo, fluoresceína. Dicha composición puede ser utilizada en la detección y/o cuantificación de antígenos mediante un método inmunofluorescente. Alternativamente, la composición de la invención puede contener dicho anticuerpo conjugado a un primer miembro de un par de unión, por ejemplo, biotina, o bien un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica, por ejemplo, peroxidasa, o quimio-luminiscente, por ejemplo, β- D-galactosidasa, y un segundo miembro de un par de unión específica (avidina o estreptavidina) con capacidad de reconocimiento y unión a dicho primer miembro (biotina) de dicho par de unión específica; dicha composición puede ser utilizada en la detección y/o cuantificación de antígenos mediante un método inmunocolorimétrico o inmunoquinño-luminiscente. Estas composiciones son útiles para detectar e identificar antígenos propios de tumores, virus, etc. A modo ilustrativo, esta realización puede utilizarse para realizar un ensayo ELISA de detección de antígenos, tanto si se usa con digoxigenina o con biotina. La composición de la invención podría contener o no el conjugado en el mismo vial.
En otra realización particular, la composición de la invención comprende un antígeno susceptible de ser reconocido específicamente por un anticuerpo, conjugado a un compuesto fluorescente, por ejemplo, fluoresceína. Dicha composición puede ser utilizada en la detección y/o cuantificación de anticuerpos mediante un método inmunofluorescente. Alternativamente, la composición de la invención puede contener dicho antígeno conjugado a un primer miembro de un par de unión, por ejemplo, biotina, o bien un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica, por ejemplo, peroxidasa, o quimio-luminiscente, por ejemplo, β-D- galactosidasa, y un segundo miembro de un par de unión específica (avidina o estreptavidina) con capacidad de reconocimiento y unión a dicho primer miembro (biotina) de dicho par de unión específica; dicha composición puede ser utilizada en la detección y/o cuantificación de anticuerpos mediante un método inmunocolorimétrico o inmunoquimio-luminiscente. Estas composiciones son útiles para detectar e identificar anticuerpos, etc. A modo ilustrativo, esta realización puede utilizarse para realizar un ensayo ELISA de detección de anticuerpos, tanto si se usa con digoxigenina o con biotina. La composición de la invención podría contener o no el conjugado en el mismo vial, pero no incluiría el sustrato de la reacción.
En otra realización particular, la invención consistiría en un soporte sólido, cualquiera que sea su naturaleza, como por ejemplo microplacas ELISA y soportes de microarrays o chips, en los que previamente se han inmovilizado una o varias especies moleculares, cualquiera que sea su naturaleza. Dichas especies moleculares se estabilizarían por recubrimiento del soporte con la mezcla de estabilización. En este caso el formato de la invención sería un soporte con moléculas unidas y estabilizadas. Dicho soporte podría ser utilizado para el análisis colorimétrico, fluorimétrico o quimio- luminiscente, pudiéndose utilizar para ello, cualquiera de los sistemas estabilizados presentados en esta patente.
En otra realización particular, la invención consistiría en una mezcla de estabilización que se añadiría a las moléculas previamente a su fijación en un soporte sólido, cualquiera que sea su naturaleza, como por ejemplo microplacas ELISA y soportes de microarrays o chips. Las moléculas así estabilizadas se aplicarían al soporte sólido siguiendo el procedimiento específico indicado para cada soporte. En esta realización, al igual que en el caso anterior, el formato de la invención sería un soporte con moléculas unidas y estabilizadas. Dicho soporte podría ser utilizado para el análisis colorimétrico, fluorimétrico o quimio-luminiscente, pudiéndose utilizar para ello, cualquiera de los sistemas estabilizados presentados en esta descripción.
2. Kits
En otro aspecto, la invención proporciona un kit que comprende, al menos, un contenedor que contiene una composición de la invención. El contenedor puede ser cualquier recipiente apropiado para contener la composición de la invención, por ejemplo, un vial, un frasco, etc. En una realización particular, el kit proporcionado por esta invención es un kit adecuado para la detección y/o cuantificación de ácidos nucleicos por métodos fluorimétricos, colorimétricos o quimio-luminiscentes, en particular, para la detección por dichos métodos de ácidos nucleicos amplificados mediante amplificación de ácidos nucleicos en tiempo real, o en PCRs multiplexadas, o resultantes de reacciones de secuenciación, etc. En otra realización particular, el kit proporcionado por esta invención es un kit adecuado para la detección y/o cuantificación de péptidos, proteínas, antígenos o anticuerpos por métodos fluorimétricos, colorimétricos o quimio-luminiscentes.
Por tanto, el kit de la invención contendrá, además de la composición de la invención (con los componentes apropiados en función del fin al que va destinada), la totalidad o parte de los componentes (reactivos, factores, aditivos, etc.) necesarios para la realización de la reacción y del ensayo en cuestión, excepto la molécula problema (ácido nucleico, péptido, proteína, antígeno, anticuerpo, etc.).
A modo ilustrativo, la invención proporciona un kit para la amplificación y/o detección en tiempo real de secuencias específicas de ácidos nucleicos (ARN o ADN) que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición de la invención una enzima que cataliza la polimerización de ácidos nucleicos, por ejemplo, una enzima de amplificación génica o de transcripción en reverso acoplada a amplificación génica, y, además, todos los reactivos necesarios, incluyendo cebadores específicos marcados con fluoróforos o sondas que comprenden un fluoróforo y, opcionalmente, un quencher, por ejemplo, sondas Taqman, MB, FRET o Scorpion, excepto el ácido nucleico problema.
En otra realización particular, la invención proporciona un kit de amplificación y/o detección en tiempo real de secuencias específicas de ácidos nucleicos (ARN o ADN) que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición de la invención una enzima que cataliza la polimerización de ácidos nucleicos, por ejemplo, una enzima de amplificación génica o de transcripción en reverso acoplada a amplificación génica, y, además, los reactivos necesarios, incluyendo nucleótidos marcados con marcadores fluorescentes, excepto el ácido nucleico problema.
En otra realización particular, la invención proporciona un kit de amplificación y/o detección en tiempo real de secuencias específicas de ácidos nucleicos (ARN o ADN) que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición de la invención una enzima que cataliza la polimerización de ácidos nucleicos, por ejemplo, una enzima de amplificación génica o de transcripción en reverso acoplada a amplificación génica, y, además, los reactivos necesarios, incluyendo sustancias fluorescentes intercalantes en dsADNs, por ejemplo, Sybr Green, excepto el ácido nucleico problema. En otra realización particular, la invención proporciona un kit de secuenciación de ácidos nucleicos mediante amplificación génica que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición de la invención una enzima que cataliza la polimerización de ácidos nucleicos, por ejemplo, una enzima de amplificación génica, y, además, los reactivos necesarios, incluyendo cebadores o nucleótidos terminadores marcados con un marcador fluorescente.
En otra realización particular, la invención proporciona un kit de secuenciación de ácidos nucleicos mediante reacciones de elongación de ácidos nucleicos que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición de la invención una enzima que cataliza la polimerización de ácidos nucleicos, por ejemplo, una enzima de amplificación génica, y, además, los reactivos necesarios, incluyendo cebadores o nucleótidos terminadores marcados con un marcador fluorescente. En otra realización particular, la invención proporciona un kit para la detección de ácidos nucleicos que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición de la invención los reactivos necesarios, incluyendo compuestos que contienen un miembro de un par de unión específica conjugado a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, por ejemplo, un compuesto que comprende un grupo avidina o biotina, o cualquier otra modificación utilizada para posteriores análisis colorimétricos o quimio-luminiscentes.
En otra realización particular, la invención proporciona un kit para la detección de anticuerpos que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición un compuesto que comprende un miembro de un par de unión específica conjugado a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente.
En otra realización particular, la invención proporciona un kit para la detección de antígenos que comprende, al menos, un contenedor que contiene una composición de la invención, estabilizada y lista para usar, comprendiendo dicha composición un compuesto que comprende un miembro de un par de unión específica conjugado a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente.
Por tanto, la presente invención proporciona composiciones (mezclas de reacción), por ejemplo, del tipo "lista para usar" (ready-to-use), y kits, cerrados y listos para uso, que incluyen (i) un compuesto que comprende un fluoróforo, (ii) un compuesto que comprende un ligando capaz de reconocer e interaccionar con un receptor específico, en el que dicho ligando o dicho receptor está unido a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, (iii) una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, o (iv) un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio- luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica. Dichas composiciones son útiles para la realización de ensayos fluorescentes, colorimétricos o quimio-luminiscentes. En general, cuando la composición de la invención comprende un miembro de un par de unión específica, el otro miembro de dicho par de unión específica estará contenido en otro contenedor del kit de la invención. Asimismo, los kits destinados a la realización de los ensayos colorimétricos o quimio-luminiscentes incluirán un contenedor separado con el sustrato para dichas actividades enzimáticas que catalizan una reacción colorimétrica o quimio-luminiscente.
Mediante la presente invención, se simplifica el proceso de preparación de reacciones de amplificación utilizando mareajes fluorescentes, colorimétricos o quimio- luminiscentes mediante el desarrollo de sistemas de reacción listos para su uso en contenedores (viales) independientes. El desarrollo de sistemas de reacción listos para uso en contenedores independientes, permite agilizar la realización de un gran número de técnicas de uso común en laboratorios de diagnóstico y de investigación, tales como reacciones de amplificación en tiempo real, secuenciación y mareajes con grupos fluorescentes o intermediarios de reacciones de colorimetría y quimio-luminiscencia. Además de agilizar la realización del método experimental, se incrementa la reproducibilidad de resultados y se elimina en gran manera el factor error experimental.
En otra realización particular el kit es un soporte sólido, tal como microplacas ELISA, soportes de microarrays o chips, que contiene inmovilizadas y estabilizadas moléculas que pueden ser utilizadas en ensayos de detección fluoriméirica, colorimétrica o quimio-luminiscentes.
3. Procedimiento
3.1. Estabilización de mezclas líquidas
En otro aspecto, la invención proporciona un procedimiento para preparar una composición estabilizada, con un grado de humedad igual o inferior al 30% (composición de la invención), que comprende
a) poner en contacto en un único contenedor:
una solución acuosa que comprende, al menos, un componente (A) seleccionado del grupo formado por: un compuesto que comprende un fluoróforo (componente Al), - un compuesto que comprende un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica (componente A2), una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente (componente A3), un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica (componente A4), y sus mezclas; y
una solución acuosa que comprende un componente (B) constituido por - al menos, un agente protector frente a la desecación (componente B 1), al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3),
para obtener una solución acuosa que comprende dichos componentes A y B; y
b) retirar la totalidad o parte del agua contenida en dicha solución acuosa que contiene los componentes A y B obtenida en la etapa a), hasta obtener una composición que comprende dichos componentes A y B, y tiene un grado de humedad igual o inferior al 30%.
La solución acuosa que comprende el componente A puede prepararse fuera del contenedor y añadirse posteriormente al mismo tal cual o bien puede formarse directamente en el contenedor mediante la adición y mezcla de los distintos componentes de dicha solución acuosa en el propio contenedor. Asimismo, la solución acuosa que comprende el componente B (mezcla estabilizante) puede preparase fuera del contenedor y añadirse posteriormente al mismo tal cual o bien puede formarse directamente en el contenedor mediante la adición y mezcla de los distintos componentes en el propio contenedor.
El contenedor puede ser cualquier recipiente apropiado, por ejemplo, un vial, de cualquier material apropiado (vidrio, plástico, etc.) Los componentes A1-A4 y B1-B3 han sido descritos previamente en relación con la composición de la invención. La composición de la invención también puede contener, si se desea, uno o más de los componentes opcionales mencionados previamente, tales como una o más enzimas distintas a las actividades enzimáticas eventualmente presentes en la composición de la invención, por ejemplo, enzimas (termoestables o termolábiles) de amplificación de ácidos nucleicos, enzimas de restricción, enzimas que intervienen en las reacciones de amplificación, secuenciación o caracterización (identificación) de ácidos nucleicos, etc., junto con la totalidad o parte de los reactivos necesarios para la realización de las reacciones en las que intervienen tales enzimas, por ejemplo, cofactores, sustratos, aditivos que mejoran las reacciones enzimáticas, etc. Dichos componentes opcionales pueden añadirse a la solución acuosa que contiene el componente A o bien a la solución acuosa que contiene el componente B o bien pueden añadirse a la solución acuosa resultante de la mezcla de las soluciones acuosas que contienen los componentes A y B. Tras la mezcla en el contenedor de la solución acuosa que comprende el componente A con la solución acuosa que comprende el componente B se forma una solución acuosa que comprende dichos componentes A y B de la que se retira la totalidad o parte del agua contenida en dicha solución acuosa hasta alcanzar un grado de humedad igual o inferior al 30%, obteniéndose, por tanto, una composición estabilizada, total o parcialmente desecada, que comprende al menos un componente A y un componente B y que constituye la composición de la invención.
La retirada de la totalidad o parte del agua presente en la solución acuosa resultante de mezclar las soluciones acuosas que comprenden los componentes A y B en el contenedor puede realizarse por cualquier método de desecación convencional, incluyendo, por ejemplo, liofilización, desecado en lecho fluido, desecado a temperatura ambiente y presión atmosférica, desecado a temperatura ambiente y presión disminuida, desecado a alta temperatura y presión atmosférica, desecado a alta temperatura y presión disminuida. El método de desecación preferido es el desecado a una temperatura comprendida entre 15°C y 60°C, y presión disminuida inferior a la atmosférica. Otros métodos, como los anteriormente nombrados, pueden ser aplicados en la desecación, aunque su mayor coste o menor eficiencia o mayor agresividad frente a los componentes de la mezcla de reacción a desecar desaconsejan su utilización. En ocasiones, por ejemplo, cuando la mezcla de reacción está contenida en un tubo capilar, dado que la deposición de la muestra se realiza en la pared del tubo, puede ser necesario centrifugar para conseguir que baje hasta el fondo.
En general, el grado de desecación elegido dependerá principalmente de factores económicos (coste del proceso, tiempo necesario para alcanzar un determinado grado de desecación, etc.) y de la relación existente entre el grado de desecación y la estabilidad de la composición. Por ello, en una realización particular, el grado de humedad remanente en la composición de la invención está comprendido entre el 1% y el 20%. Las composiciones completamente desecadas, es decir, con una presencia de agua residual igual o inferior al 1%, tienden a tener una estabilidad (durante el almacenamiento) inferior a aquéllas que contienen un mayor porcentaje de agua, observándose en las composiciones completamente desecadas una significativa disminución en los rendimientos de la reacción tras rehidratación y adición del sustrato de reacción. Aunque la composición de la invención, debido a su estabilidad, puede ser almacenada durante una o más semanas a temperatura ambiente (25°C), parece recomendable que se almacena a temperaturas comprendidas entre 4°C y 10°C para asegurar su correcta funcionalidad a lo largo del tiempo.
Durante el proceso de desecación, el componente Bl estabiliza la estructura terciaria de las macromoléculas presentes en la solución acuosa que comprende el componente A, sustituyendo en esa misión a las moléculas de agua que, en solución acuosa, forman la envoltura protectora que ayuda a mantener la estructura tridimensional de dichas macromoléculas, bloqueando además las reacciones que pudieran producirse entre los grupos químicos reactivos que pudieran encontrarse en dichas macromoléculas, con lo que ejercen, además, un efecto estabilizante de las composiciones desecadas. El componente B2 inhibe las reacciones de condensación que pueden producirse entre los grupos reactivos carboxilo, carbonilo, aniino y fosfato que se encuentran en las macromoléculas presentes en la composición de la invención. El componente B3 mejora la estabilidad de la composición de la invención al generar una malla que impide la movilidad de los diferentes reactivos que la componen, de manera que quedan inmovilizados en mayor o menor medida en las celdillas que forma el polímero y, en consecuencia, estos reactivos no pueden aproximarse entre sí, evitándose la reacción química de sus grupos reactivos superficiales. La cantidad de polímero inerte a añadir debe ser la suficiente como para asegurar la generación de una malla lo suficientemente tupida que impida la movilidad de las macromoléculas, sin que luego interfiera en las reacciones posteriores. La actuación conjunta de los tres componentes (Bl, B2 y B3) de la mezcla estabilizante (componente B) da como resultado que la composición de la invención sea funcional tras su almacenamiento. La adición de sólo uno o dos de los componentes Bl, B2 o B3 citados, sin la presencia de los otros dos o del restante componente, genera composiciones que se inactivan durante el procedimiento de obtención de la composición de la invención o bien son inestables, desapareciendo su actividad a los pocos días de obtener la composición de la invención, presentando, por tanto, una estabilidad muy reducida durante el almacenamiento.
3.2 Estabilización de moléculas unidas a soportes sólidos
3.2. A Estabilización de moléculas pre-inmovilizadas
En otro aspecto, la invención proporciona un procedimiento para preparar una composición estabilizada que comprende un soporte sólido con uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, que comprende
poner en contacto un componente (A) consistente en un soporte sólido que contiene uno o más compuestos previamente inmovilizados sobre dicho soporte sólido con un componente (B) consistente en una mezcla estabilizante que comprende
al menos, un agente protector frente a la desecación (componente B 1), - al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3); y
retirar la totalidad o parte del agua contenida en la mezcla resultante de dichos componentes (A) y (B), hasta obtener una composición que comprende un soporte sólido con uno o más compuestos inmovilizados y estabilizados y dicho componente (B) y tiene un grado de humedad igual o inferior al 30%.
El componente (A) comprende un soporte sólido de plástico, vidrio o superficies de oro, opcionalmente pretratado para permitir la adsorción o unión covalente de compuestos. El compuesto o compuestos inmovilizados en el soporte sólido puede ser cualquier compuesto de interés, por ejemplo, una o más biomoléculas, tales como ácidos nucleicos (oligo- o polinucleótidos, etc.), péptidos, proteínas, anticuerpos, etc. Dichos compuestos se inmovilizan por métodos convencionales sobre dicho soporte sólido o bien los soportes sólidos cargados con uno o más compuestos inmovilizados sobre dicho soporte sólido se adquieren comercialmente. El componente (B) se añade sobre el soporte sólido cargado con dicho compuesto o compuestos formando una fina capa que recubre a dicho soporte sólido y, finalmente, se procede a retirar la totalidad o parte del agua presente en la mezcla resultante mediante cualquier método de desecación convencional, incluyendo, por ejemplo, liofilización, desecado en lecho fluido, desecado a temperatura ambiente y presión atmosférica, desecado a temperatura ambiente y presión disminuida, desecado a alta temperatura y presión atmosférica, desecado a alta temperatura y presión disminuida. El método de desecación preferido es el desecado a una temperatura comprendida entre 15°C y 60°C, y presión disminuida inferior a la atmosférica. Otros métodos, como los anteriormente nombrados, pueden ser aplicados en la desecación, aunque su mayor coste o menor eficiencia o mayor agresividad frente a los componentes de la mezcla de reacción a desecar desaconsejan su utilización.
La composición estabilizada que comprende un soporte sólido que contiene uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, obtenible según el procedimiento definido previamente, puede utilizarse como sustrato de detección de sistemas colorimétricos, fluorescentes o quimio-luminiscentes o bien como sustrato de detección en un método de análisis de resultados como medida de conductividad eléctrica o medida de índice de refracción. Por tanto, los soportes sólidos cumplirán las condiciones necesarias para poder ser utilizados en tales aplicaciones.
3.2.B Fijación de moléculas estabilizadas a soportes sólidos
En otro aspecto, la invención proporciona un procedimiento para preparar una composición estabilizada que comprende un soporte sólido que contiene uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, que comprende
poner en contacto (i) un soporte sólido, opcionalmente tratado para inmovilizar compuestos, con (ii) uno o más compuestos estabilizados mediante la mezcla de dicho compuesto o compuestos con un componente (B) consistente en una mezcla estabilizante que comprende
al menos, un agente protector frente a la desecación (componente B 1), - al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3); y
retirar la totalidad o parte del agua contenida en la mezcla resultante hasta obtener una composición que comprende un soporte sólido con uno o más compuestos inmovilizados y estabilizados y dicho componente B, y tiene un grado de humedad igual o inferior al 30%.
El soporte sólido puede ser un soporte sólido de plástico, vidrio o superficies de oro, opcionalmente pretratado para permitir la adsorción o unión covalente de compuestos. El compuesto o compuestos a fijar en el soporte sólido puede ser cualquier compuesto de interés, por ejemplo, una o más biomoléculas, tales como ácidos nucleicos (oligo- o polinucleótidos, etc.), péptidos, proteínas, anticuerpos, etc. Dichos compuestos se estabilizan poniendo en contacto dichos compuestos con dicho componente (B) y, a continuación, se añaden sobre el soporte sólido opcionalmente tratado para inmovilizar dichos compuestos. Posteriormente, se procede a retirar la totalidad o parte del agua presente en la mezcla resultante mediante cualquier método de desecación convencional, incluyendo, por ejemplo, liofilización, desecado en lecho fluido, desecado a temperatura ambiente y presión atmosférica, desecado a temperatura ambiente y presión disminuida, desecado a alta temperatura y presión atmosférica, desecado a alta temperatura y presión disminuida. El método de desecación preferido es el desecado a una temperatura comprendida entre 15°C y 60°C, y presión disminuida inferior a la atmosférica. Otros métodos, como los anteriormente nombrados, pueden ser aplicados en la desecación, aunque su mayor coste o menor eficiencia o mayor agresividad frente a los componentes de la mezcla de reacción a desecar desaconsejan su utilización. La composición estabilizada que comprende un soporte sólido que contiene uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, obtenible según el procedimiento definido previamente, puede utilizarse como sustrato de detección de sistemas colorimétricos, fluorescentes o quimio-luminiscentes o bien como sustrato de detección en un método de análisis de resultados como medida de conductividad eléctrica o medida de índice de refracción. Por tanto, los soportes sólidos cumplirán las condiciones necesarias para poder ser utilizados en tales aplicaciones.
Los siguientes ejemplos ilustran la invención y no deben ser considerados limitativos del alcance de la misma.
EJEMPLO 1
Preparación de una mezcla de reacción desecada y estabilizada con sistema de sondas FRET (fluorescence resonance energy transfer), para amplificación en tiempo real
La enzima ADN polimerasa termoestable usada en este y en los siguientes ejemplos, salvo indicación en caso contrario, es una ADN polimerasa recombinante de
Thermus íhermophϊlus expresada en Escherichia coli, propiedad de Biotools B&M Labs
S.A., España, y purificada mediante mi método no cromatográfico desarrollado por la misma empresa (BIOTOOLS DNA Polymerase). Tras su purificación, la enzima se guardó a -20°C en un tampón de almacenamiento conteniendo Tris HC1 30 mM, pH 8, glucosa 25 mM, KCl 25 mM, PMSF 0,5 mM, Tween 20 0,25% y NP40 0,25%. Se preparó un tampón de reacción conteniendo Tris HC1, pH 8, 750 mM, (NH )2SO4 200 mM, Tween 20 0,1% y MgCl2 20 mM.
Se prepararon mezclas de reacción para la amplificación de un fragmento de aproximadamente 750 pares de bases (pb) correspondiente a la región codificante de la fracción 18S del RNA ribosomal (rRNA procedente de la subunidad pequeña- "small subunit" o "SSUrRNA") del género Plasmodium (el tamaño amplificado presenta pequeñas variaciones dependiendo de la especie). Para ello, en tubos de amplificación capilares, específicos para su uso en el sistema LightCycler System (Roche Applied Science, Mannheim, Geπnany) se añadió 1 microlitro de enzima ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 2 microlitros del tampón de reacción y 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP). Asimismo, se añadió 1 μl a concentración 10 mM de los cebadores Al (5 -AGT GTG TAT CAÁ TCG AGT TTC-3') y A2 (5'-CGC AGT TGT TTG TCT CCA GAA-3 ), los oligonucleótidos cuya función es primar la reacción de amplificación. Finalmente, se añadió 1 μl a concentración 10 μM de las sondas FRET A3 (5 -TGT AAC TAT TCT AGG GGA ACT- F-3') y A4 (5'-LCRed640-TTT AGC TTT TGG CTT TAA TAC-P-3'). Ambas sondas presentan la misma polaridad e hibridan en zonas adyacentes de la región amplificada por los primers Al y A2, dejando únicamente dos bases de separación entre ambas sondas al hibridar. La sonda A3 se encuentra marcada con fluoresceína en posición 3' y la sonda A4 contiene un grupo LC Red 640 en el extremo 5' y se encuentra fosforilada en el extremo 3' para evitar la reacción de elongación primada por Taq polimerasa, de esta manera, al hibridar ambas sondas los grupos fluorescefna y LC Red 640 se sitúan adyacentes favoreciéndose el proceso de resonancia. Las sondas A3 y A4 se diseñaron sobre una zona variable del genoma de Plasmodium, de manera que hibridan con el producto amplificado de P. falciparum, pero no con el producto amplificado de otras especies de Plasmodium como P. vivax, P. inalariae o P. ovale.
Se prepararon diversos tubos de la forma antes descrita, y a cada uno de ellos se le añadieron los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se centrifugaron durante 10 segundos a 4000 rpm en una centrífuga de mesa (Eppendorf) para garantizar que la mezcla quedaba en el fondo del capilar. Finalmente, se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre muestras de sangre de pacientes infectados con P. falciparum, P. vivax, P. ovale o P. malariae.
Para ello se añadió a cada tubo 50 ng de DNA de cada muestra en un volumen de 20 microlitros y se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, para permitir la hidratación de la mezcla desecada y estabilizada, y, a continuación, 45 ciclos de desnaturalización (95°C, 10 segundos), anillamiento (55°C, 5 segundos), y extensión (72°C, 10 segundos), con una razón de transición de temperatura de 20°C/segundo en todos los casos, utilizando un termociclador LightCycler (Roche). En paralelo, y para comprobar la evolución de la actividad de los tubos desecados, se amplificaron muestras de ADN utilizando una mezcla fresca, en las mismas condiciones de amplificación.
El resultado de la reacción de amplificación se analizó en todos los casos mediante visualización de la curva de fluorescencia y determinación del "crossing point", siguiendo las instrucciones del software del equipo, de cada uno de los tubos de reacción, tanto frescos como desecados y estabilizados.
Se observó, en todos los casos, que aquellas mezclas estabilizantes que contienen melezitosa o palatinitol, en conjunción con lisina y glucógeno o goma arábiga, o bien rafinosa con betaήia y glucógeno, presentan máxima actividad, con un coeficiente de variación en el "crossing point" del 2% con respecto a los valores obtenidos en las mezclas frescas. Las muestras de pacientes infectados con P. falciparum dieron, en todos los casos, resultados positivos, mientras que los pacientes infectados con otras especies dieron, en todos los casos, resultados negativos. Por el contrario, al analizar los productos amplificados en gel de agarosa al 1,5% teñida con bromuro de elidió, se observó que todas las muestras incluidas presentaban una banda de amplificación de aproximadamente 750 pb. Estos resultados confirmaban que la reacción de amplificación había funcionado correctamente en todos los casos, y que la detección de P. falcipamm había sido específica (Tabla 1). Los resultados obtenidos demuestran la posibilidad de estabilizar sondas marcadas fluorescentemente sin que afecten a su funcionalidad. Por otro lado, el hecho de que la curva de fluorescencia sigue un comportamiento ascendente durante el proceso, sin aparición de señal fluorescente al inicio de la reacción, indicaría que la mezcla estabilizante utilizada no presenta emisión de fluorescencia basal en las condiciones ensayadas. EJEMPLO 2
Preparación de una mezcla de reacción desecada y estabilizada con sondas TaqMan, para amplificación en tiempo real
Para ensayar la eficiencia de sondas TaqMan incluidas en mezclas de reacción desecadas y estabilizadas se prepararon mezclas de reacción para la amplificación de la misma región descrita en el Ejemplo 1, utilizando los mismos reactivos descritos. A cada tubo de reacción capilar, específicos para su uso en el sistema LightCycler System (Roche Applied Science, Mannheim, Germany) se le añadió 1 microlitro de dicha enzima ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 2 microlitros del tampón de reacción, 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP), 1 microlitro del cebador Al (5'- AGT GTG TAT CAÁ TCG AGT TTC-3') a una concentración 10 μM y 1 microlitro del cebador A2 (5'-CGC AGT TGT TTG TCT CCA GAA-3') a una concentración 10 μM. Asimismo se añadió a cada vial 1 microlitro de la sonda de hidrólisis A5 (sonda TaqMan: 5'-FAM-TTT AGC TTT TGG CTT TAA TAC-TAMRA-3' ) a una concentración 10 mM, que contiene un grupo FAM en el extremo 5' y un grupo TAMRA en posición 3'. La sonda A5 híbrida con el genoma de P. falciparum, pero no reconoce el producto amplificado de otras especies de Plasmodium, como P. vivax, P. malariae o P. ovale. Se prepararon diversos tubos de la forma antes descrita, y a cada uno de ellos se le añadieron los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se centrifugaron durante 10 segundos a 4000 rpm en una centrífuga de mesa (Eppendorf). Finalmente, se desecaron en un evaporador centtífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre muestras de sangre de pacientes infectados con P. falciparum, P. vivax, P. ovale o P malariae.
Para ello, se añadió a cada tubo 50 ng de los DNAs problema en un volumen final de 20 microlitros. A continuación se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, con el objeto de conseguir la rehidratación de la mezcla desecada y estabilizada, y a continuación, 45 ciclos de desnaturalización (95°C, 10 segundos), anillamiento (55°C, 5 segundos), y extensión (72°C, 10 segundos), con una razón de transición de temperatura de 20°C/segundo en todos los casos, utilizando un termociclador LightCycler (Roche). En paralelo, y para comprobar la evolución de la actividad de los tubos desecados, se amplificaron muestras de ADN utilizando una mezcla fresca, en las mismas condiciones de amplificación.
El resultado de la reacción de amplificación se analizó en todos los casos mediante visualización de la curva de fluorescencia y determinación del "crossing point", siguiendo las instrucciones del software del equipo, de cada uno de los tubos de reacción, tanto frescos como estabilizados. Se observó, en todos los casos, que aquellas mezclas estabilizantes que contienen melezitosa o palatinitol, en conjunción con lisina y glucógeno o goma arábiga, o bien rafinosa con betaína y glucógeno, presentan máxima actividad, con un coeficiente de variación en el "crossing point" del 2% con respecto a los valores obtenidos en las mezclas frescas. Las muestras de pacientes infectados con P. falciparum dieron, en todos los casos, resultados positivos, mientras que los pacientes infectados con otras especies dieron, en todos los casos, resultados negativos. Por el contrario, al analizar los productos amplificados en gel de agarosa al 1,5% teñida con bromuro de etidio, se observó que todas las muestras incluidas presentaban una banda de amplificación de aproximadamente 750 pb. Estos resultados confirmabaii que la reacción de amplificación había funcionado correctamente en todos los casos, y que la detección de P. falciparum había sido específica (Tabla 1).
EJEMPLO 3
Preparación de una mezcla de reacción desecada y estabilizada con sistema de sondas Molecular Beacon (MB), para amplificación en tiempo real
Para ensayar la eficiencia de sondas MB incluidas en mezclas de reacción desecadas y estabilizadas se prepararon mezclas de reacción para la amplificación de la misma región descrita en el Ejemplo 1, utilizando los mismos reactivos descritos. En este caso, se utilizó el equipo "DNA Engine OPTICON™ 2 System" (MJ Research). En tubos de amplificación de 0,2 mi con tapa óptica, específicos para su uso en el sistema OPTICON se añadió 1 microlitro de ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 2,5 microlitros del tampón de reacción, 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP), 1 microlitro del cebador A1(5'-AGT GTG TAT CAÁ TCG AGT TTC-3') y 1 microlitro del cebador A2 (5'-CGC AGT TGT TTG TCT CCA GAA-3'), ambos a una concentración 10 μM. Asimismo se añadió a cada vial 1 microlitro de la sonda MB A6 (5 -F-CCT GCT GTA ACT ATT CTA GGG GAA CTG CAG G-DABCYL-3') a una concentración 10 μM, que contiene un grapo Fluoresceína (F en la secuencia) en el extremo 5' y un grupo DABCYL en el extremo 3' que actúa como quencher. Los 5 primeros nucleótidos son complementarios a los 5 últimos (marcados en negrita en la secuencia), lo que permite que el oligo adquiera una configuración en horquilla, que permite la aproximación espacial del grapo fluoresceína al quencher, inhibiendo así la emisión de fluorescencia. En presencia de la secuencia específica amplificada por los otros dos oligonucleótidos (Al y A2) presentes en la mezcla de reacción, la región central de 21 pb del oligonucleótido A6 híbrida con los amplicones rompiendo así la estructura en horquilla y permitiendo la emisión de fluorescencia por el grupo fluoresceína, al separarse espacialmente del grapo DABCYL. La región central de la sonda A6 híbrida con el genoma de P falciparum, pero no reconoce el producto amplificado de otras especies de Plasmodium, como P. vivax, P. malariae o P. ovale.
Se prepararon diversos tubos de la forma antes descrita, y a cada uno de ellos se le añadieron los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Finalmente, se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre muestras de sangre de pacientes infectados con P falciparum, P vivax, P ovale ó P malariae.
Para ello, se añadió a cada tubo 50 ng de los DNAs problema en un volumen final de 25 microlitros. A continuación se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, para garantizar la rehidratación de la mezcla desecada y estabilizada, y a continuación, 45 ciclos de desnaturalización (95°C, 30 segundos), anillamiento (55°C, 30 segundos), y extensión (72°C, 30 segundos), utilizando un equipo "DNA Engine OPTICON™ 2 System". En paralelo, y para comprobar la evolución de la actividad de los tubos desecados, se amplificaron muestras de ADN utilizando una mezcla fresca, en las mismas condiciones de amplificación.
El resultado de la reacción de amplificación se analizó en todos los casos mediante visualización de la curva de fluorescencia y determinación del "crossing point", siguiendo las instrucciones del software del equipo, de cada uno de los tubos de reacción, tanto frescos como estabilizados. Se observó, en todos los casos, que aquellas mezclas estabilizantes que contienen melezitosa o palatinitol, en conjunción con lisina y glucógeno o goma arábiga, o bien rafinosa con betaína y glucógeno, presentan máxima actividad, con un coeficiente de variación en el "crossing point" del 2% con respecto a los valores obtenidos en las mezclas frescas. Las muestras de pacientes infectados con P. falciparum dieron, en todos los casos, resultados positivos, mientras que los pacientes infectados con otras especies dieron, en todos los casos, resultados negativos. Por el contrario, al analizar los productos amplificados en gel de agarosa al 1,5% teñida con bromuro de etidio, se observó que todas las muestras incluidas presentaban una banda de amplificación de aproximadamente 750 pb. Estos resultados confirmaban que la reacción de amplificación había funcionado correctamente en todos los casos, y que la detección de P. falciparum había sido específica (Tabla 1).
EJEMPLO 4 Preparación de una mezcla de reacción con sondas Scorpion, para amplificación en tiempo real
Para ensayar la eficiencia de sondas Scorpion incluidas en mezclas de reacción desecadas y estabilizadas se prepararon mezclas de reacción para la amplificación de una región de 125 pb del gen rpo de Mycobacterium tuberculosis, utilizando un equipo LightCycler y los mismos reactivos descritos en el Ejemplo 1. A cada tubo de reacción capilar, específicos para su uso en el sistema LightCycler System (Roche Applied Science, Mannheim, Germany). En tubos de reacción capilares, específicos para su uso en el sistema LightCycler System (Roche Applied Science, Mannheim, Germany) se añadió 1 microlitro de dicha enzima ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 2 microlitros del tampón de reacción, 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP) y 1 microlitro del cebador A7 (5'-GAC AGC GAG CCG ATC AGA CCG-3') a una concentración 10 μM . Asimismo se añadió a cada vial 1 microlitro del cebador A8 (sonda Scorpion: 5 -FAM-CCGCGACGGACCTCCAGCCCGGCACGCTGGCGCT MR HEG CCCGGCGGTCTGTCACGTG-3') a una concentración 10 mM, que contiene un grupo FAM en posición 5', un grupo "methyl red" (MR) unido a la posición 1 de la desoxirribosa de un nucleótido central y un grupo hexetilenglycol (HEG) que actúa como inhibidor de la elongación.
Se prepararon diversos tubos de la forma antes descrita, y a cada uno de ellos se le añadieron los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se centrifugaron durante 10 segundos a 4000 rpm en una centtífuga de mesa (Eppendorf). Finalmente, se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos mdicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre muestras de sangre de pacientes infectados con M tuberculosis y muestras de pacientes no infectados.
Para ello, se añadió a cada tubo 50 ng de DNA problema en un volumen final de 20 microlitros. A continuación se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, y, a continuación, 45 ciclos de desnaturalización (95°C, 10 segundos), anillamiento (55°C, 5 segundos), y extensión (72°C, 10 segundos), con una razón de transición de temperatura de 20°C/segundo en todos los casos, utilizando un termociclador LightCycler (Roche). En paralelo, y para comprobar la evolución de la actividad de las mezclas de reacción desecadas y estabilizadas, se amplificaron muestras de ADN utilizando una mezcla fresca, en las mismas condiciones de amplificación.
El resultado de la reacción de amplificación se analizó en todos los casos mediante visualización de la curva de fluorescencia y determinación del "crossing point", siguiendo las instrucciones del software del equipo, de cada uno de los tubos de reacción, tanto frescos como estabilizados. Se observó, en todos los casos, que aquellas mezclas estabilizantes que contienen melezitosa o palatinitol, en conjunción con Usina y glucógeno o goma arábiga, o bien rafinosa con betaína y glucógeno, presentan máxima actividad, con un coeficiente de variación en el "crossing point" del 2% con respecto a los valores obtenidos en las mezclas frescas (Tabla 1). Las muestras de pacientes infectados con M tuberculosis dieron, en todos los casos, resultados positivos, mientras que las muestras de donantes sanos dieron, en todos los casos, resultados negativos.
EJEMPLO 5 Preparación de una mezcla de reacción desecada y estabilizada con SYBR Green para amplificación en tiempo real Para ensayar la eficiencia de fluoróforos intercalantes, como SYBR Green, incluidos en mezclas de reacción desecadas y estabilizadas se prepararon mezclas de reacción para la amplificación de un fragmento de 250 pb correspondiente a la región E6-E7 de papilomavirus oncogénicos, utilizando los reactivos descritos en el Ejemplo 1. En este caso, se utilizó el equipo "DNA Engine OPTICON™ 2 System" (MJ Research). En tubos de amplificación de 0,2 mi con tapa óptica, específicos para su uso en el sistema OPTICON se añadió 1 microlitro de ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 2,5 microUtros del tampón de reacción, 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP), 1 microlitro del cebador A9 (5'-TGTCAAAAACCGTTGTGTCC-3 ) y 1 microlitro del cebador AlO (5'-GAGCTGTCGCTTAATTGCTC-3'), ambos a una concentración 10 μM. Asimismo se añadió a cada vial 0,3 microlitros de SYBR Green 1 (Molecular Probes).
Se prepararon diversos tubos de la forma antes descrita, y a cada uno de ellos se le añadieron los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Finalmente, se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar. Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre muestras de sangre de pacientes infectados con papilomavirus oncogénicos o no oncogénicos. A continuación se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, y, a continuación, 45 ciclos de desnaturalización (95°C, 30 segundos), anillamiento (55°C, 30 segundos), y extensión (72°C, 30 segundos), utilizando un equipo "DNA Engine OPTICON™ 2 System". En paralelo, y para comprobar la evolución de la actividad de los tubos desecados, se amplificaron muestras de ADN utilizando una mezcla fresca, en las mismas condiciones de amplificación.
El resultado de la reacción de amplificación se analizó en todos los casos mediante visualización de la curva de fluorescencia y determinación del "crossing point", siguiendo las instrucciones del software del equipo, de cada uno de los tubos de reacción, tanto frescos como desecados y estabilizados. Se observó, en todos los casos, que aquellas mezclas estabilizantes que contienen melezitosa o palatinitol, en conjunción con Usina y glucógeno o goma arábiga, o bien rafinosa con betaína y glucógeno, presentan máxima actividad, con un coeficiente de variación en el "crossing point" del 2% con respecto a los valores obtenidos en las mezclas frescas. Las muestras de pacientes infectados con especies de HPV oncogénicas dieron, en todos los casos, resultados positivos, mientras que las muestras de los pacientes infectados con especies de HPV no- oncogénicas, o no infectados con HPV, dieron en todos los casos resultados negativos. Confirmando estos resultados, al analizar los productos amplificados en gel de agarosa al 1,5% teñida con bromuro de etidio, se observó que únicamente las muestras de pacientes infectados con HPV oncogénico presentaban una banda de amplificación de aproximadamente 250 pb. Estos resultados confirmaban que la reacción de amplificación había funcionado correctamente en todos los casos, y que la detección de especies de HPV oncogénicas había sido específica (Tabla 1).
Un hecho especialmente llamativo fue el nivel de reproducibilidad encontrado al realizar las reacciones de amplificación con mezclas de reacción desecadas y estabilizadas, observándose que los perfiles de fluorescencia durante el proceso de amplificación prácticamente se superponían en dos muestras ensayadas, mientras que las reacciones realizadas utilizando una mezcla fresca de la misma composición rendía una mayor variabilidad. Por otro lado, si bien las gráficas de los reactivos de las mezclas desecadas y estabilizadas presentaban un perfil más tumbado, especialmente en las fase final del proceso de amplificación, los datos de "crossing point" fueron prácticamente iguales que los obtenidos en las mezclas frescas.
Finalmente el mantenimiento de la actividad en las mezclas de reacción desecadas y estabilizadas que incluían la actividad Taq polimerasa y el intercalante SYBR green, durante un periodo de hasta un mes garantiza que, en las condiciones de estabilización utilizadas, la coexistencia de ambas moléculas no conlleva una pérdida de actividad de la Taq polimerasa.
EJEMPLO 6 Preparación de mezclas de reacciones de secuenciación desecadas y estabilizadas utilizando marcadores fluorescentes Para comprobar la posibilidad de gelificar mezclas de reacción de secuenciación de ácidos nucleicos se utilizó el kit CEQ 2000 Dye Terminator Cycle Sequencing (DTCS) Quick Start Kit (Beckman Coulter), que utiliza un sistema de secuenciación por PCR en un solo tubo, mediante incorporación de 4 terminadores fluorescentes diferentes. Las reacciones de secuenciación se analizaron posteriormente en el equipo de secuenciación automática por electroforesis capilar CEQ 2000 XL DNA Análisis System (Beckman Coulter).
Se prepararon mezclas de reacción que contenían 4 microlitros de DTCS Quick Start Master Mix, 1 microlitro de primer universal MI 3 -47 y los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre un plásmido pONC, que contiene clonado un fragmento de 250 pb del genoma de papilomavirus humano en el poli-linker del plásmido pBluescript II SK (-) siguiendo las instrucciones del kit de secuenciación.
A continuación se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, y a continuación, 30 ciclos de desnaturalización (96°C, 20 segundos), anillamiento (55°C, 20 segundos), y extensión (60°C, 4 minutos), utilizando un termociclador Minicycler (MJ Reasearch). En paralelo, y para comprobar la evolución de la actividad de los tubos desecados y estabilizados, se secuenció el mismo plásmido utilizando una mezcla de secuenciación fresca en condiciones estándar. Finalmente, las reacciones de secuenciación se analizaron en el equipo CEQ 2000XL siguiendo las instrucciones del proveedor. Los datos obtenidos reflejan que aquellas mezclas estabilizantes que contienen melezitosa o palatinitol, en conjunción con Usina y glucógeno o goma arábiga, o bien rafinosa con betaína y glucógeno, fueron eficientes en las reacciones de secuenciación. La comparación de las secuencias obtenidas con las mezclas desecadas y estabilizadas y las mezclas de secuenciación estándar reflejó que el rendimiento de las reacciones fue muy similar. Así, el número de bases leídas con el sistema desecado y estabilizado (638) fue similar al obtenido al utilizar el sistema estándar (686). Con respecto al porcentaje de coincidencia con la secuencia teórica, éste se analizó en las 593 bases coincidentes en ambas lecturas, encontrándose que el comportamiento de la mezcla desecada y estabilizada y de la mezcla estándar fue similar. Así, el porcentaje de homología de la secuencia obtenida con la mezcla desecada y estabilizada con respecto a la secuencia teórica fue de 572/593 (96,5%) de las bases analizadas y de 577/593 (97%) para la mezcla estándar.
Estos resultados confirman que la estabilización de mezclas de reacción con cuatro fluoróforos simultáneamente es posible, sin que se vea afectada la funcionalidad del sistema.
EJEMPLO 7 Preparación de reacciones de amplificación con avidina/biotina y posterior ensayo colorimétrico 7.A Utilización de oligonucleótidos químicamente modificados v estabilizados por desecación en reacciones de amplificación génica Se analizó la posibilidad de estabilizar mezclas de reacción que contuvieran oligonucleótidos químicamente modificados por inclusión de grupos biotina y/o digoxigenina, y su funcionalidad como cebadores en reacciones de amplificación génica, así como la persistencia de su capacidad de unión a sus ligandos (estreptoavidina y anticuerpos anti-digoxigenina, respectivamente), habitualmente utilizados en ensayos de colorimetría. Para ello, se diseñaron 4 oligonucleótidos que hibridaban con el genoma de la región E6-E7 de especies de HPV oncogénico. Dos de los oligonucleótidos, A9 ( - TGTCAAAAACCGTTGTGTCC-3') y All (5'-Bio-TGTCAAAAACCGTTGTGTCC-3 ), de polaridad positiva, eran idénticos en su secuencia, salvo que uno de ellos (All) incluía un grupo biotina (Bio en la secuencia) en posición 5'. Los otros dos oligonucleótidos, AlO (5 -GAGCTGTCGCTTAATTGCTC-3 ) y A12 (5 -Dig-
GAGCTGTCGCTTAATTGCTC-3'), eran de polaridad inversa, y al igual que en el caso anterior la secuencia de nucleótidos de ambos era idéntica, salvo que uno de ellos (A12) incluía un grapo digoxigenina (Dig en la secuencia) en posición 5'.
Se prepararon 4 mezclas estabilizantes diferentes según se describe a continuación. En tubos de amplificación de 0,2 mi se añadió 1 microlitro de ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 5 microlitros del tampón de reacción y 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP). A continuación se añadió 1 microlitro de cada cebador a concentración 20 micromolar, siguiendo el siguiente esquema:
Mezcla estabilizante 1 Primer no modificado (A9) + Primer con digoxigenina (A 12)
Mezcla estabilizante 2 Primer no modificado (AlO) + Primer con biotina (All) Mezcla estabilizante 3 Primer con digoxigenina (A12) + Primer con biotina (All)
Mezcla estabilizante 4 Primers no modificados (A9 + AlO)
Los tubos así preparados se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad mediante la realización de la reacción de amplificación génica sobre un plásmido pOnc, que contiene clonado un fragmento de la región E6-E7 de HPV 16, amplificada por la combinación de cebadores A9 ó All + AlO ó A12. Para ello, se procedió a realizar los ciclos de incubación, que constaban de una incubación inicial a 95°C durante 10 minutos, y, a continuación, 35 ciclos de desnaturalización (95°C, lminuto), anillamiento (55°C, 1 minuto), y extensión (72°C, 1 minuto), utilizando un termociclador Minicycler (MJ Reasearch). Finalmente, las reacciones de amplificación se analizaron mediante electroforesis en gel de agarosa al 1,5%, teñida con bromuro de etidio. La eficiencia de la reacción de amplificación fue analizada por densitometría de las bandas amplificadas utilizando un sistema Gelsuper (TDI).
Los resultados obtenidos demostraban que todas las reacciones de amplificación en las que se utilizó uno o dos oligonucleótidos marcados funcionaron correctamente, e incluso el rendimiento final de la reacción fue mayor que el obtenido en reacciones de amplificación realizadas con oligonucleótidos no modificados.
7.B Mantenimiento de capacidad de unión de oligonucleótidos químicamente modificados y estabilizados por desecación en presencia de una mezcla estabüizante a sus ligandos
Para ensayar el mantenimiento de la capacidad de unión de los grupos biotina y digoxigenina, estabilizados por desecación en presencia de una mezcla estabilizante, a los ligandos habitualmente utilizados en ensayos de colorimetría (estreptoavidina y anticuerpos anti-digoxigenina, respectivamente), se realizó un ensayo en placa ELISA utilizando los productos amplificados obtenidos en el Ejemplo 7.A.
Para ello, se activo una microplaca ELISA de alta capacidad de unión (Costar) con estreptoavidina (Biospa) siguiendo un protocolo estándar de fijación. A continuación y tras bloquear la placa por incubación con gelatina, los productos amplificados de las mezclas estabilizantes 1, 2 y 3 descritas en el Ejemplo 7. A se analizaron por ensayo de colorimetría siguiendo el siguiente esquema experimental:
A.- Productos de amplificación utilizando un oligonucleótido marcado con digoxigenina (mezcla 1 en el Ejemplo 7.A): Se fijó la sonda biotinilada All a la placa y se híbrido el producto amplificado. A continuación el híbrido se incubó con anticuerpo- antidigoxigenina conjugada con fosfatasa alcalina (Sigma), y se reveló colorimétricamente utilizando como sustrato pNpp (Roche), analizándose los niveles de absorbancia a 415 n con un equipo lector de placas (Beckman).
B.- Productos amplificados utilizando cebadores marcados con biotina (mezcla 2 en el Ejemplo 7.A): Se fijó el producto de amplificación a la placa a través del primer biotinilado y a continuación se híbrido con el primer A12 marcado con digoxigenina. Los resultados se analizaron según se describe en el paso previo.
C- Productos amplificados simultáneamenete con cebadores marcados con biotina y digoxigenina (mezcla 3 en el Ejemplo 7.A): Se fijó el producto de amplificación a la placa, a través del primer biotinilado y directamente se incubó con el conjugado anti- digoxigenina PA, revelándose el resultado según se describe en los apartados A y B de este experimento.
En todos los casos, las reacciones de bloqueo de placa, hibridación, lavados y revelado colorimétrico se realizaron siguiendo el protocolo recomendado por el sistema de placas DNA-Bind de Costar.
Los resultados del ensayo colorimétrico demuestran que ambos grupos biotina y digoxigenina en las mezclas de reacción desecadas y estabilizadas retienen su capacidad de unión a estreptoavidina y anticuerpos anti-digoxigenina respectivamente. Así, todos los productos amplificados con primers modificados con biotina y digoxigenina simultáneamente rendían una señal colorimétrica intensa, reflejando la capacidad de unión del grupo biotina a la estreptoavidina fijada en la placa, así como la unión de la digoxigenina a su anticuerpo conjugado. Estos resultados se confirmaron por aparición de señal colorimétrica en los productos amplificados con biotina ó digoxigenina, que dieron una señal intensa al hibridar con su sonda específica. No se observaron señales inespecíficas en pocilios no activados o al hibridar con primers no específicos al producto amplificado.
Finalmente, al repetir el experimento de análisis colorimétrico sobre amplificaciones de diluciones seriadas del plásmido pOnc, utilizando la mezcla estabilizante 1 descrita en el Ejemplo 7.A (amplificación con un oligonucleótido marcado con digoxigenina) y analizado según se describe en este apartado, se confirma que la utilización de primers marcados con biotina o digoxigenina y estabilizados por desecación mantienen perfectamente su capacidad de amplificación y unión a ligandos, pudiendo ser utilizados en ensayos colorimétricos, obteniéndose un buen nivel de reproducibilidad en diferentes experimentos (Tabla 1).
EJEMPLO 8
Estabilización de anticuerpos y actividades proteicas implicadas en ensayos colorimétricos
Se analizó la posibilidad de estabilizar diferentes conjugados, como estreptoavidina conjugada con HRP (Str-HRP) y anti-digoxigenina conjugada con fosfatasa alcalina (anti-DIG-PA) implicados en análisis colorimétricos.
En tubos de 0,2 mi se añadieron 100 microlitros de una dilución 1/250 en solución de bloqueo del conjugado Str-HRP (Biospa). Por otro lado y en paralelo se prepararon viales de 0,2 mi en los que se añadió 100 microlitros de una dilución 1/250 en solución de bloqueo de anti-DIG-PA (Sigma). A cada uno de los viales se les añadió los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se resuspendieron los tubos desecados y estabilizados en 100 microlitros de H O destilada estéril y se ensayó su actividad mediante la realización de la reacción de detección colorimétrica en placa ELISA de productos amplificados de HPV oncogénico (HPV 16), obtenidos por amplificación del plásmido pOnc utilizando primers marcados con digoxigenina (A12) y biotina (All), utilizando una mezcla de reacción desecada y estabilizada según se describe en el Ejemplo 7.A, mezcla estabilizante 3.
Para el ensayo de actividad del conjugado anti-DIG-PA, se utilizo una placa ELISA en la que los pocilios habían sido previamente recubiertos por estreptoavidina. Por el contrario, para el ensayo de actividad del conjugado Str-HRP, se utilizó una placa, cuyos pocilios habían sido recubiertos previamente con anticuerpos anti-DIG. Los productos amplificados fueron incubados en cada placa para permitir la inmovilización de los amplicones en la placa. Finalmente, se añadió a cada placa el conjugado a ensayar y se reveló utilizando como sustrato de la reacción pNpp en el caso de la actividad PA, o para la actividad HRP. Finalmente los resultados se analizaron en un lector de placas, midiendo la absorbancia a 405 nm.
Los resultados obtenidos fueron positivos en todas las muestras desecadas y estabilizadas y similares a los obtenidos al utilizar ambos conjugados en formato estándar no desecado. Estos datos confirman que tanto la estreptoavidina, como los anticuerpos anti-DIG conservaban su capacidad de unión a sus ligandos específicos (biotina y digoxigenina, respectivamente). Por otro lado, se confirmaba el mantenimiento de la actividad enzimática de la peroxidasa y fosfatasa alcalina conjugadas (Tabla 1).
EJEMPLO 9 Estabilización de mezclas de reacción para síntesis de sondas marcadas para su posterior uso en experimentos de hibridación molecular
Se analizó la posibilidad de sintetizar sondas marcadas con grupos biotina o digoxigenina, para su posterior ensayo en experimentos de hibridación molecular. Para ello, se prepararon tubos de 0,2 mi en los que se añadieron 1 microlitro de ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 5 microlitros del tampón de reacción, 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP), 1 microlitro del cebador AlO, a una concentración 20 μM y del cebador A9 a una concentración de 0,2 μM. La concentración de los cebadores específicos de HPV oncogénico, se desaparearon en un factor de 100 veces, con el objeto de realizar una amplificación asimétrica, en la que se generara un exceso de una de las bandas (la banda primada por el cebador A9) en estructura de banda simple, que pudiera ser posteriormente utilizada como sonda de hibridación. Asimismo se añadió a cada vial 0,3 microlitros de dUTP marcado con digoxigenina. A cada uno de los viales se le añadió los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Las temperaturas y los tiempos antes citados varían según el volumen final de mezcla a desecar.
Tras su desecación, se añadió a cada tubo 10 picogramos de plásmido pOncl y se ajustó el volumen a 50 microlitros con H2O destilada estéril. A continuación, se procedió a realizar los ciclos de amplificación, que constaban de una incubación inicial a 95°C durante 10 minutos, y, a continuación, 35 ciclos de desnaturalización (95°C, lminuto), anillamiento (55°C, 1 minuto), y extensión (72°C, 1 minuto), utilizando un termociclador Minicycler (MJ Reasearch).
A cada uno de los tubos amplificados se le añadieron los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1. Los tubos así preparados se centrifugaron durante 10 segundos a 4000 rpm en una centrífuga de mesa (Eppendorf). Finalmente, se desecaron en un evaporador centrífugo marca Eppendorf modelo 5301, a temperaturas comprendidas entre 10°C y 60°C, durante un periodo de tiempo comprendido entre 30 y 120 minutos. Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su actividad utilizándolos como sondas para la detección por hibridación molecular de secuencias específicas de HPV 16. Para ello, se resuspendieron en 50 microlitros de H2O destilada estéril, y se añadieron a una placa ELISA a la que se había fijado previamente el oligonucleótido All (específico de HPV 16 y de polaridad opuesta a la banda asimétrica obtenida en la reacción de amplificación). La placa se incubó a continuación durante 30 minutos a 45°C y se reveló posteriormente tras incubar con el conjugado anti-DIG-PA, siguiendo las instrucciones del protocolo de hibridación recomendado en las placas DNA- Bind. Los resultados obtenidos fueron positivos en todos los casos. Este experimento demostraba la posibilidad de realizar reacciones de incorporación de nucleótidos marcados con digoxigenina, utilizando mezclas desecadas que incluían dichos nucleótidos. Asimismo se confirmaba la posibilidad de estabilizar los productos amplificados y marcados con digoxigenina, y su posterior utilización como sondas de hibridación molecular (Tabla 1).
EJEMPLO 10 Estabilización de ácidos nucleicos y proteínas inmovilizadas en diferentes sustratos 10.1 Estabilización de ácidos nucleicos inmovilizados en microplacas ELISA
Para ensayar la posibilidad de estabiUzar ácidos nucleicos previamente inmovilizados en microplacas ELISA para la posterior realización de ensayos colorimétricos o fluorescentes, se utilizaron las placas NucleoLink (Costar), que han sido especialmente diseñadas para la inmovilización de biomoléculas en un plástico especialmente tratado y que manteniendo un alto nivel de transparencia, lo que permite su utilización en ensayos de colorimetría, es asimismo resistente a temperaturas elevadas. Estas características le hacen susceptibles de su utilización en reacciones de amplificación génica y posterior ensayo colorimétrico. Se fijó a los pocilios de la placa el cebador A13 (5 -P-
GAGCTGTCGCTTAATTGCTC-3 ) complementario al genoma de HPV, fosforilado en el extremo 5' (P en la secuencia) para permitir su fijación a los pocilios. La fijación de la sonda se realizó siguiendo el protocolo recomendado por el distribruidor de las placas NucleoLink. Una vez fijada la sonda, se incluyó en cada pocilio, una mezcla que constaba de 1 microlitro de ADN polimerasa (1 U/μl) conservada en su tampón de almacenamiento, 5 microlitros del tampón de reacción, 1 microlitro de una disolución que contiene en proporción equimolar los cuatro desoxirribonucleótidos (dNTPs) que intervienen en la reacción de amplificación de ADN (dATP, dCTP, dGTP y dTTP), 1 microlitro del cebador A9 a una concentración 20 μM. Finalmente se añadió a cada pocilio los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1.
Las placas así preparadas se desecaron en una estufa de vacio Memmert (Modelo V0400) a 25° C y 50 mbar de presión durante 1 hora y 30 minutos. Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó su funcionalidad mediante la realización de una reacción de amplificación. Para ello, se añadió a cada pocilio 50 microlitros de una dilución de 0,5 pmol/microlitro de plámido pOnc. La reacción de amplificación se llevó a cabo mediante los siguientes ciclos: una incubación inicial a 95°C durante 10 minutos, y, a continuación, 35 ciclos de desnaturalización (95°C, 1 minuto), anillamiento (55°C, 1 minuto), y extensión (72°C, 1 minuto), utilizando un termociclador Minicycler (MJ Reasearch).
Una vez realizada la reacción de amplificación se procedió a realizar el ensayo de detección colorimétrica de la banda amplificada y fijada en el sustrato sólido, siguiendo el protocolo recomendado por el fabricante de las placas NucleoLink. El oligonucleótido utilizado como sonda de hibridación fue el All, marcado con biotina. El conjugado utilizado fue estreptoavidina-HRP, y el sustrato ABTS.
El análisis de los resultados demostró que las placas retenían su capacidad de amplificación, lo que indicaba la correcta estabilización de la sonda inmovilizada. Asimismo se comprobaba que la inclusión de la mezcla de estabilización no interfería en los posteriores ensayos colorimétricos (Tabla 1).
10.2 Estabilización de proteínas inmovilizadas en microplacas ELISA Para ensayar la posibilidad de estabilizar proteínas previamente inmovilizadas en microplacas ELISA para la posterior realización de ensayos colorimétricos o fluorescentes, se utilizaron al igual que en el Ejemplo 10.1 las placas NucleoLink (Costar). Para ello, se incubó cada pocilio con 1 μg de anticuerpo anti-digoxigenina (Roche). Tras incubar durante 30 minutos a 37°C, se añadió a cada pocilio los volúmenes adecuados de cada una de las mezclas estabilizantes que se recogen en la Tabla 1.
Las placas así preparadas se desecaron en una estufa de vacío Memert a 25°C y 50 mbar de presión durante 1 hora y 30 minutos. Tras su desecación, los tubos fueron conservados a las temperaturas y tiempos indicados en la Tabla 1. Al cumplirse los tiempos indicados en la Tabla 1, se ensayó la estabilidad del anticuerpo inmovilizado mediante un ensayo de colorimetría.
Un producto de amplificación del genoma de HPV, amplificado con el par de primers A12 (marcado con digoxigenina en el extremo 5') y All (marcado con biotina en el extremo 5'). El producto amplificado se incubó durante 30 minutos en los pocilios con el anticuerpo inmovilizado. Las productos amplificados inmovilizados en la placa a través de la unión del grapo digoxigenina de los amplicones y el anticuerpo anti- digoxigenina inmovilizado, se analizó mediante ensayo colorimétrico. Para ello, se incubó cada pocilio con estreptoavidina conjugada con HRP, y se reveló tras lavados con ABTS. La reacción colorimétrica se analizó finalmente mediante medida de absorción a 415 nm. El análisis de los resultados demostró que el anticuerpo inmovilizado en la placa retenía su capacidad de reconocimiento y unión del grupo digoxigenina, lo que indicaba la correcta estabilización de la proteína inmovilizada. Asimismo se comprobaba que la inclusión de la mezcla de estabilización no interfería en los posteriores ensayos colorimétricos (Tabla 1).
10.3 Inmovilización de ácidos nucleicos en vidrios modificados
Para ensayar la posibilidad de estabilizar ácidos nucleicos previamente inmovilizados en soportes de vidrio pre-tratados, el formato habitual del sistema de microarrays, se ensayaron dos alternativas diferentes:
Estrategia 1. Estabilización de soportes con ácidos nucleicos ya fijados: Se fijaron sondas específicas de HPV a portas de vidrio pre-tratados con poli-Usina, aldehido, epoxi, super- epoxi y silano. Para ello, se aplicaron en cada porta spots de 1 microlitro de la solución de cada oligonucleótido a una concentración de 20 μM, en las condiciones indicadas para cada formato de vidrio. Los portas con los oligonucleótidos inmovilizados fueron a continuación recubiertos con una fina película de cada una de las mezclas estabilizantes y desecados en una estufa de vacío a 25°C y 50 mbar de presión. Finalmente, los portas recubiertos con la fina película desecada se almacenaron en las condiciones y durante los tiempos indicados en la Tabla 1.
Estrategia 2. Fijación a los portas de ácidos nucleicos premezclados con las mezclas estabilizantes: Se preparó una mezcla de cada una de las sondas, con los volúmenes adecuados de las mezclas estabilizantes descritas en la Tabla 1. A continuación se aplicaron las mezclas de oligonucleótidos a los diferentes portas utilizando las condiciones de fijación indicadas para cada formato de vidrio. Finalmente, los portas se secaron al vacío en las condiciones anteriormente descritas. Tras la desecación de los portas, éstos se almacenaron en las condiciones y durante los tiempos indicados en la Tabla 1.
Para ensayar la viabilidad de cada uno de los portas preparados, se realizó un ensayo colorimétrico con formación de productos precipitantes. Para ello, los portas se lavaron durante 5 minutos en PBS IX a temperatura ambiente con el objeto de eliminar la superficie protectora. A continuación, se incubaron los portas en presencia de un producto amplificado y previamente desnaturalizado de HPV 16 utilizando las sondas All y A12. A continuación los portas se incubaron con el conjugado estreptoavidina- HRP y se reveló con DAB. El análisis de los resultados demostró que los oligonucleótidos inmovilizados en los portas, cualquiera que fuera su formato, y tanto cuando se utilizaba la estrategia de estabiUzación del porta completo, como la estabilización de los oligonucleótidos previamente a su aplicación, retenían su capacidad de reconocimiento y unión a secuencias complementarias de ácidos nucleicos. Asimismo se comprobó que la inclusión de la mezcla de estabilización no interfería en los posteriores ensayos colorimétricos (Tabla 1).
10.4 Inmovilización de proteínas en vidrios modificados Para ensayar la posibilidad de estabilizar proteínas previamente inmovilizadas en soportes de vidrio pre-tratados, el formato habitual del sistema de microarrays, se ensayaron al igual que en el experimento previo dos alternativas diferentes:
Estrategia 1. Estabilización de soportes con proteína previamente fijados: Se fijaron anticuerpos anti-digoxigenina a portas de vidrio pre-tratados con aldehido. Para ello, se aplicaron en cada porta spots de 1 microlitro de la solución de la proteήia a una concentración de 30 ng/μl. Los portas con la proteína inmovilizada fueron a continuación recubiertos con una fina película de cada una de las mezclas estabilizantes y desecados en una estufa de vacío a 25°C y 50 mbar. Finalmente, los portas recubiertos con la fina película desecada se almacenaron en las condiciones y durante los tiempos mdicados en la Tabla 1.
Estrategia 2. Fijación a los portas de la proteína prcmczclada con las mezclas estabilizantes: Se preparó una mezcla de cada una de las sondas, con los volúmenes adecuados de las mezclas estabilizantes descritas en la Tabla 1. A continuación se aplicaron las mezclas de proteína al porta tratado con aldehido. Finalmente, los portas se secaron al vacío en las condiciones anteriormente descritas. Tras la desecación de los portas, éstos se almacenaron en las condiciones y durante los tiempos indicados en la Tabla 1.
Para ensayar la viabilidad de cada uno de los portas preparados se realizó un ensayo colorimétrico con formación de productos precipitantes. Para ello, los portas se lavaron durante 5 minutos en PBS IX a temperatura ambiente con el objeto de eliminar la superficie protectora. A continuación, se incubaron los portas en presencia de un producto amplificado y sin desnaturalizar de P. falciparum utilizando las sondas All (marcada con biotina en el extremo 5') y A12 (marcada con digoxigenina en el extremo 5'). A continuación los portas se incubaron con el conjugado estreptoavidina-HRP, y se reveló con DAB.
El análisis de los resultados demostró que los anticuerpos anti-digoxigenina inmoviUzados en los portas, tanto si se utilizaba la estrategia de estabilización del porta completo, como la estabilización de la proteína previamente a su apUcación, retenían su capacidad de reconocimiento y unión del grupo digoxigenina. Asimismo se comprobó que la inclusión de la mezcla de estabilización no interfería en los posteriores ensayos colorimétricos (Tabla 1).
Tabla 1
Resultados de actividad de mezclas estabilizantes en los diferentes ejemplos ensayados
Los resultados se expresan como: Ng, resultado negativo; +, positivo débil, por debajo del 50% de actividad de la mezcla fresca; ++, positivo entre el 50-90 % de la actividad obtenida en la mezcla fresca; y +++, positivo con nivel de actividad no inferior al 90% de la actividad de la mezcla fresca. PVP: polivinilpirrolidona. PEG: polietilenglicol; G. arábiga: goma arábiga
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001

Claims

REIVINDICACIONES
1. Una composición estabilizada que comprende:
(i) un componente (A) seleccionado del grupo formado por: - un compuesto que comprende un fluoróforo (componente Al), un compuesto que comprende un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica (componente A2), una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente (componente A3), un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica (componente A4), - uno o más compuestos unidos a un soporte sólido (componente A5), sus mezclas; y (ii) un componente (B) constituido por una mezcla estabilizante que comprende al menos, un agente protector frente a la desecación (componente B 1), - al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3).
2. Composición según la reivindicación 1, que comprende, además, un componente seleccionado entre agua, enzimas, reactivos para las reacciones en las que intervienen tales enzimas y mezclas de los mismos.
3. Composición según cualquiera de las reivindicaciones 1 ó 2, que comprende, además de los componentes (A) y (B), una enzima que cataliza la polimerización de ácidos nucleicos, junto con la totalidad o parte de los componentes necesarios para la realización de dicha reacción de polimerización de ácidos nucleicos.
4. Composición según cualquiera de las reivindicaciones anteriores, en la que el grado de humedad es igual o inferior al 30%, preferentemente, comprendido entre 1% y 20%.
1
5. Composición según la reivindicación 1, que comprende un componente Al,
A2, A3 o A4.
6. Composición según la reivindicación 1, en la que dicho componente Al comprende un compuesto fluorescente; un nucleótido marcado con un fluoróforo; un oligonucleótido que contiene un fluoróforo y, opcionalmente, un compuesto modulador de la fluorescencia (quencher); un polinucleótido que contiene un fluoróforo y, opcionalmente, un compuesto modulador de la fluorescencia (quencher); un péptido marcado con un fluoróforo; una proteína marcada con un fluoróforo; un antígeno marcado con un fluoróforo; o un anticuerpo marcado con un fluoróforo.
7. Composición según la reivindicación 1, en la que dicho componente A2 se selecciona entre un compuesto que comprende biotina, ficoeritrina, digoxigenina, un anticuerpo, un péptido, una proteína, un ácido nucleico o un compuesto susceptible de ser fijado por adsorción o por unión covalente.
8. Composición según la reivindicación 7, en la que dicho componente A2 se selecciona entre un anticuerpo unido a biotina o ficoeritrina, un antígeno unido a biotina o ficoeritrina, un oligonucleótido unido a digoxigenina y un polinucleótido unido a digoxigenina.
9. Composición según la reivindicación 1, en la que dicho componente A3 comprende una actividad enzimática seleccionada entre las actividades peroxidasa y fosfatasa alcalina.
10. Composición según la reivindicación 1, en la que dicho componente A3 comprende una actividad enzimática seleccionada entre las actividades β-D- galactosidasa, xantina oxidasa, glucosa oxidasa, luciferasa, proteína verde fluorescente (GFP), peroxidasa y fosfatasa alcalina.
11. Composición según la reivindicación 1, en la que dicho componente A4 comprende un conjugado avidina-actividad enzimática susceptible de catalizar una reacción colorimétrica o quimio-luminiscente, un conjugado estreptavidina-actividad enzimática susceptible de catalizar una reacción colorimétrica o quimio-luminiscente, o un conjugado antidigoxigenina-actividad enzimática susceptible de catalizar una reacción colorimétrica o quimio-lumimscente.
12. Composición según la reivindicación 1, en la que dicho componente A5 comprende un soporte sólido que contiene uno o más compuestos inmovilizados sobre dicho soporte sólido, susceptible de ser utilizado como componente de sistemas de detección fluorimétricos, colorimétricos, quimio-luminiscentes, de análisis de conductividad eléctrica o de análisis de cambios de índice de refracción.
13. Composición según la reivindicación 12, en la que dicho soporte sólido se selecciona entre soportes sólidos de plástico, vidrios y superficies de oro, opcionalmente tratados para permitir la adsorción o unión covalente de macromoléculas.
14. Composición según la reivindicación 12, en la que dicho compuesto o compuestos inmovilizados sobre dicho soporte sólido comprenden biomoléculas.
15. Composición según la reivindicación 14, en la que dichas biomoléculas se seleccionan entre ácidos nucleicos y proteínas.
16. Composición según la reivindicación 12, en la que dicho componente A5 se selecciona entre microplacas de pocilios ELISA, chips y microarrays que contienen, inmovilizados sobre sus superficies, una o más biomoléculas seleccionadas entre ácidos nucleicos y proteínas.
17. Composición según la reivindicación 1, en la que dicho componente Bl comprende, al menos un carbohidrato no reductor.
18. Composición según la reivindicación 17, en la que dicho carbohidrato no reductor se selecciona del grupo formado por un disacárido no reductor, un trisacárido no reductor y sus mezclas.
19. Composición según la reivindicación 17, en la que dicho carbohidrato no reductor se selecciona entre palatinitol, trehalosa, rafinosa, melezitosa y sus mezclas.
20. Composición según cualquiera de las reivindicaciones 17 a 19, que comprende, además, un poliol.
21. Composición según la reivindicación 20, en la que dicho poliol se selecciona entre glicerol, sorbitol y sus mezclas.
22. Composición según la reivindicación 1, en la que dicho componente B2 se selecciona entre un aminoácido, betaína, aininoguanidina, derivados de aminoguanidina y sus mezclas.
23. Composición según la reivindicación 22, en la que dicho aminoácido se selecciona entre Usina, arginina, triptófano y sus mezclas.
24. Composición según la reivindicación 1, en la que el componente B3 se selecciona del grupo formado por polivinilpirrolidona (PVP), polietilenglicol (PEG) de diversos grados de polimerización, dextrano, almidón, Ficoll, glucógeno, goma arábiga y sus mezclas.
25. Composición según la reivindicación 3, que comprende un fluoróforo intercalante entre dsADNs o un compuesto que comprende un fluoróforo y, opcionalmente, un quencher, seleccionándose dicho compuesto entre un nucleótido, un oligonucleótido y un polinucleótido, y, además, una enzima que cataliza la polimerización de ácidos nucleicos.
26. Composición según la reivindicación 1, que comprende un anticuerpo conjugado a un compuesto fluorescente, o un anticuerpo conjugado a biotina, o un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y avidina o estreptavidina.
27. Composición según la reivindicación 1, que comprende un antígeno conjugado a un compuesto fluorescente, o un antígeno conjugado a biotina, o un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y avidina o estreptavidina.
28. Un kit que comprende, al menos, un contenedor que contiene una composición según cualquiera de las reivindicaciones 1 a 27.
29. Kit según la reivindicación 28, seleccionado entre: un kit para la amplificación y/o detección en tiempo real de secuencias específicas de ácidos nucleicos que comprende, al menos, un contenedor que contiene una composición que comprende una enzima que cataliza la polimerización de ácidos nucleicos y un componente Al seleccionado entre (i) dATP, dGTP, dCTP y dTTP ó dUTP marcados con fluoróforos; (ii) un cebador marcado con un fluoróforo; (iii) una sonda que comprende un fluoróforo y, opcionalmente, un quencher; y (iv) un compuesto fluorescente intercalante en dsADNs; un kit para la secuenciación de ácidos nucleicos mediante amplificación génica que comprende, al menos, mi contenedor que contiene una composición que comprende una enzima que cataliza la polimerización de ácidos nucleicos y un compuesto Al seleccionado entre (i) dATP, dGTP, dCTP y dTTP ó dUTP marcados con fluoróforos; y (ii) un cebador marcado con un fluoróforo; un kit para la secuenciación de ácidos nucleicos mediante reacciones de elongación de ácidos nucleicos que comprende, al menos, un contenedor que contiene una composición que comprende una enzima que cataliza la polimerización de ácidos nucleicos y un compuesto Al seleccionado entre (i) dATP, dGTP, dCTP y dTTP marcados con fluoróforos; y (ii) un cebador marcado con un fluoróforo; un kit para la detección de ácidos nucleicos que comprende, al menos, un contenedor que contiene una composición según la reivindicación 1, comprendiendo dicha composición un compuesto que comprende un miembro de un par de unión específica conjugado a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente, un kit para la detección de anticuerpos que comprende, al menos, un contenedor que contiene una composición según la reivindicación 1, comprendiendo dicha composición un compuesto que comprende un miembro de un par de unión específica conjugado a una actividad enzimática que cataliza una reacción colorimétrica o quimio- lumimscente, y un kit para la detección de antígenos que comprende, al menos, un contenedor que contiene una composición según la reivindicación 1, comprendiendo dicha composición un compuesto que comprende un miembro de un par de unión específica conjugado a una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente.
30. Un procedimiento para preparar una composición estabilizada, con un grado de humedad igual o inferior al 30%, que comprende
a) poner en contacto en un único contenedor:
una solución acuosa que comprende, al menos, un componente (A) seleccionado del grupo formado por: un compuesto que comprende un fluoróforo (componente Al), - un compuesto que comprende un primer miembro de un par de unión específica capaz de reconocer e interaccionar con un segundo miembro de dicho par de unión específica (componente A2), una actividad enzimática que cataliza una reacción coloriméírica o quimio-luminiscente (componente A3), - un conjugado que comprende una actividad enzimática que cataliza una reacción colorimétrica o quimio-luminiscente y un miembro de un par de unión específica con capacidad de reconocimiento y unión a un segundo miembro de dicho par de unión específica (componente A4), y - sus mezclas; y
una solución acuosa que comprende un componente (B) constituido por al menos, un agente protector frente a la desecación (componente B 1), al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3),
para obtener una solución acuosa que comprende dichos componentes A y B; y
b) retirar la totalidad o parte del agua contenida en dicha solución acuosa que contiene los componentes A y B obtenida en la etapa a), hasta obtener una composición que comprende dichos componentes A y B, y tiene un grado de humedad igual o inferior al 30%.
31. Procedimiento según la reivindicación 30, en el que la retirada de la totalidad o parte del agua presente en la solución acuosa resultante de mezclar las soluciones acuosas que comprenden los componentes A y B en el contenedor se realiza mediante liofilización, desecado en lecho fluido, desecado a temperatura ambiente y presión atmosférica, desecado a temperatura ambiente y presión disminuida, desecado a alta temperatura y presión atmosférica, o desecado a alta temperatura y presión disminuida.
32. Procedimiento según la reivindicación 31, en el que la retirada de la totalidad o parte del agua presente en la solución acuosa resultante de mezclar las soluciones acuosas que comprenden los componentes A y B en el contenedor se realiza mediante desecado a una temperatura comprendida entre 15°C y 60°C, y presión disminuida inferior a la atmosférica.
33. Un procedimiento para preparar una composición estabilizada que comprende un soporte sólido con uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, que comprende
poner en contacto un componente (A) consistente en un soporte sólido que contiene uno o más compuestos previamente inmovilizados sobre dicho soporte sólido con un componente (B) consistente en una mezcla estabilizante que comprende
al menos, un agente protector frente a la desecación (componente B 1), al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3); y
retirar la totalidad o parte del agua contenida en la mezcla resultante de dichos componentes (A) y (B), hasta obtener una composición que comprende un soporte sólido con uno o más compuestos inmoviUzados y estabilizados y dicho componente (B) y tiene un grado de humedad igual o inferior al 30%.
34. Procedimiento según la reivindicación 33, en el que dicho componente (A) comprende un soporte sólido de plástico, vidrio o superficies de oro, opcionalmente pretratado para permitir la adsorción o unión covalente de compuestos.
35. Procedimiento según cualquiera de las reivindicaciones 33 ó 34, en el que dicho compuesto o compuestos inmovilizados en el soporte sólido comprende una o más biomoléculas.
36. Procedimiento según la reivindicación 35, en el que dicha biomolécula se selecciona entre ácidos nucleicos, proteínas, péptidos y anticuerpos.
37. Un procedimiento para preparar una composición estabilizada que comprende un soporte sólido que contiene uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, que comprende
poner en contacto (i) un soporte sólido, opcionalmente tratado para inmovilizar compuestos, con (ii) uno o más compuestos estabilizados mediante la mezcla de dicho compuesto o compuestos con un componente (B) consistente en una mezcla estabilizante que comprende al menos, un agente protector f ente a la desecación (componente B 1), al menos, un inhibidor de la reacción de condensación entre grupos carbonilo o carboxilo y grupos amino o fosfato (componente B2), y ,5 - al menos, un polímero inerte capaz de generar una estructura en forma de malla que impide la movilidad de los reactivos desecados (componente B3); y
retirar la totalidad o parte del agua contenida en la mezcla resultante hasta obtener 0 una composición que comprende un soporte sólido con uno o más compuestos inmovilizados y estabilizados y dicho componente B, y tiene un grado de humedad igual o inferior al 30%.
38. Procedimiento según la reivindicación 37, en el que dicho soporte sólido es un 5 soporte sólido de plástico, vidrio o superficies de oro, opcionalmente pretratado para permitir la adsorción o unión covalente de compuestos.
39. Procedimiento según cualquiera de las reivindicaciones 37 ó 38, en el que dicho compuesto o compuestos estabilizados comprende una o más biomoléculas. 0
40. Procedimiento según la reivindicación 39, en el que dicha biomolécula se selecciona entre ácidos nucleicos, proteínas, péptidos y anticuerpos.
41. Un kit que contiene una composición estabilizada que comprende un soporte 5 sólido que contiene uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, obtenible mediante el procedimiento de cualquiera de las reivindicaciones 33 a 40, como sustrato de detección de sistemas colorimétricos, fluorescentes o quimio-luminiscentes.
0 42 Un kit que contiene una composición estabilizada que comprende un soporte sólido que contiene uno o más compuestos inmovilizados y estabilizados, con un grado de humedad igual o inferior al 30%, obtenible mediante el procedimiento de cualquiera de las reivindicaciones 33 a 40, como sustrato de detección en un método de análisis de resultados como medida de conductividad eléctrica o medida de índice de refracción.
43. Empleo de una composición según cualquiera de las reivindicaciones 1 a 27, o de un kit según cualquiera de las reivindicaciones 28, 29, 41 ó 42, en la realización de un ensayo fluorimétrico, colorimétrico o quimio-luminiscente.
PCT/ES2004/000024 2003-02-26 2004-01-20 Composición estabilizada para ensayos fluorimétricos, colorimétricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtención WO2004076656A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04703407A EP1598418A1 (en) 2003-02-26 2004-01-20 Stabilised composition for fluorimetric, colorimetric or chemoluminescent assays, kits containing same and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200300472A ES2214144B1 (es) 2003-02-26 2003-02-26 Composicion estabilizada para ensayos fluorimetricos, colorimetricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtencion.
ESP200300472 2003-02-26

Publications (1)

Publication Number Publication Date
WO2004076656A1 true WO2004076656A1 (es) 2004-09-10

Family

ID=32921762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000024 WO2004076656A1 (es) 2003-02-26 2004-01-20 Composición estabilizada para ensayos fluorimétricos, colorimétricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtención

Country Status (3)

Country Link
EP (1) EP1598418A1 (es)
ES (1) ES2214144B1 (es)
WO (1) WO2004076656A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739169A1 (en) * 2005-06-29 2007-01-03 Sysmex Corporation Clinical diagnostic reagent comprising glucose 6-phosphate dehydrogenase (G6PDH), method for stabilizing G6PDH, and use of a stabilizer for G6PDH

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529850A (ja) * 2007-06-16 2010-09-02 エニグマ ディアグノスティックス リミテッド 組成物
GB201008125D0 (en) * 2010-05-14 2010-06-30 Biofortuna Ltd Tissue typing assays and kits
WO2011151473A1 (es) * 2010-06-02 2011-12-08 2B Blackbio S.L. Composición, método y kit para la detección de hongos y levaduras mediante secuenciación
WO2021146814A1 (en) * 2020-01-24 2021-07-29 Uti Limited Partnership Ultrasensitive loop mediated isothermal amplification (us-lamp) to detect malaria

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900666A (en) * 1983-07-12 1990-02-13 Lifescan, Inc. Colorimetric ethanol analysis method and test device
WO1993000807A1 (en) * 1991-07-03 1993-01-21 Cryolife, Inc. Method for stabilization of biomaterials
US5834254A (en) * 1995-02-10 1998-11-10 Gen-Probe Incorporated Stabilized enzyme compositions for nucleic acid amplification
ES2125237T3 (es) * 1990-05-14 1999-03-01 Quadrant Holdings Cambridge Estabilizacion de substancias macromoleculares biologicas y de otros compuestos organicos.
WO2002072002A2 (es) * 2001-03-12 2002-09-19 Biotools Biotechnological & Medical Laboratories, S.A. Procedimiento para la preparación de mezclas de reacción estabilizadas, total o parcialmente desecadas, que comprenden, al menos, una enzima, mezclas de reacción y kits que las contienen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900666A (en) * 1983-07-12 1990-02-13 Lifescan, Inc. Colorimetric ethanol analysis method and test device
ES2125237T3 (es) * 1990-05-14 1999-03-01 Quadrant Holdings Cambridge Estabilizacion de substancias macromoleculares biologicas y de otros compuestos organicos.
WO1993000807A1 (en) * 1991-07-03 1993-01-21 Cryolife, Inc. Method for stabilization of biomaterials
US5834254A (en) * 1995-02-10 1998-11-10 Gen-Probe Incorporated Stabilized enzyme compositions for nucleic acid amplification
WO2002072002A2 (es) * 2001-03-12 2002-09-19 Biotools Biotechnological & Medical Laboratories, S.A. Procedimiento para la preparación de mezclas de reacción estabilizadas, total o parcialmente desecadas, que comprenden, al menos, una enzima, mezclas de reacción y kits que las contienen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739169A1 (en) * 2005-06-29 2007-01-03 Sysmex Corporation Clinical diagnostic reagent comprising glucose 6-phosphate dehydrogenase (G6PDH), method for stabilizing G6PDH, and use of a stabilizer for G6PDH

Also Published As

Publication number Publication date
EP1598418A1 (en) 2005-11-23
ES2214144B1 (es) 2005-09-01
ES2214144A1 (es) 2004-09-01

Similar Documents

Publication Publication Date Title
ES2832609T3 (es) Métodos para la amplificación y detección de polinucleótidos a base de helicasas
ES2314664T3 (es) Procedimiento para estabilizar reactivos de ensayo, recipiente de reactivos con reactivos de ensayo estabilizados y su utilizacion.
US7122659B2 (en) Assay methods and systems
EP2217928B1 (en) Alternate labeling strategies for single molecule sequencing
JP5543052B2 (ja) アプタマーを用いた標的分子の検出方法
ES2136059T5 (es) Deteccion de una secuencia de acidos nucleicos o de un cambio en la misma.
ES2439951T3 (es) Detección y cuantificación multiplex de ácidos nucleicos microbianos controlada de forma interna
ES2549410T3 (es) Controles para ensayos con ácidos nucleicos
CA2562775A1 (en) Nucleic acid detection system
US20070054308A1 (en) Fluorescence polarization assay
ES2617258T5 (es) Preparación de muestras genéricas
ES2606688T3 (es) Ácidos nucleicos de control para parámetros múltiples
JP2007506404A (ja) 核酸分子を検出するための迅速な方法
CN105525010A (zh) 一种茎环结构组合探针及其应用
US20150044672A1 (en) Streptavidin complexes and uses thereof
ES2214144B1 (es) Composicion estabilizada para ensayos fluorimetricos, colorimetricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtencion.
ES2317081T3 (es) Chip de analisis con gama patron, maletines y procedimientos de analisis.
WO2021012063A4 (es) Kit de diagnóstico de fundamento molecular para la deteccion de secuencias nucleotídicas y métodos para detectar agentes infecciosos usando dicho kit
US10457978B2 (en) Cyclopentane-peptide nucleic acids for qualitative and quantitative detection of nucleic acids
US20030082571A1 (en) Linear nucleic acid and sequence therefor
RU2538168C2 (ru) Наборы олигонуклеотидов-праймеров и зондов, биологический микрочип и тест-система для идентификации и типирования вируса гриппа а и в с их использованием
US20060084101A1 (en) Two-color chemiluminescent microarray system
Delahunty et al. Studies on primer binding of HIV-1 reverse transcriptase using a fluorescent probe
JP7357063B2 (ja) ニューモシスチス・イロベチイ検出用プライマー対、これを用いたニューモシスチス・イロベチイの検出方法及びそのための試薬キット
US20050191657A1 (en) Stringency modifiers in hybridization assays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004703407

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004703407

Country of ref document: EP