WO2011151473A1 - Composición, método y kit para la detección de hongos y levaduras mediante secuenciación - Google Patents

Composición, método y kit para la detección de hongos y levaduras mediante secuenciación Download PDF

Info

Publication number
WO2011151473A1
WO2011151473A1 PCT/ES2010/000248 ES2010000248W WO2011151473A1 WO 2011151473 A1 WO2011151473 A1 WO 2011151473A1 ES 2010000248 W ES2010000248 W ES 2010000248W WO 2011151473 A1 WO2011151473 A1 WO 2011151473A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
seq
amplification
sequencing
pyrosequencing
Prior art date
Application number
PCT/ES2010/000248
Other languages
English (en)
French (fr)
Inventor
Jesús MINGORANCE CRUZ
Pablo CASTÁN GARCÍA
Pedro Manuel Franco De Sarabia Rosado
Original Assignee
2B Blackbio S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2B Blackbio S.L. filed Critical 2B Blackbio S.L.
Priority to PCT/ES2010/000248 priority Critical patent/WO2011151473A1/es
Publication of WO2011151473A1 publication Critical patent/WO2011151473A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention describes a method for detecting the presence and type of fungi and / or yeasts present in a sample, by means of stabilization and sequencing techniques, and subsequent analysis of microsequences in genes coding for ribosomal RNA of greater conservation, and on areas specific to the 18S ribosomal region with taxonomic value.
  • IFIs Invasive fungal infections
  • Candida spp. It is the most frequent globally (70-87%), but Aspergillus spp. they are increasingly described as the "new emerging fungi.”
  • nosocomial IFIs are: bacteraemia and urinary, respiratory, surgical wound and venous catheter-type devices.
  • the different species of Candida spp. Primarily C.
  • albicans are among the third and fifth class of microorganisms most frequently isolated in blood culture (in fact, there are specific blood culture formats for yeasts introduced in diagnostic praxis), representing an 8 -15% of the total of all pathogens identified (Ostrosky-Zeichner L et al. Invasive candidiasis in the intensive care unit. Crit Care Med 2006; 34: 857-63, and Messer SA et al. International surveillance of Candida spp. And Aspergillus spp .: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 2006; 44: 1782-7.).
  • ICU Intensive Care Units
  • transplanted patients Worldwide, more than 650,000 transplants are performed per year, with an average annual increase of 1.5%.
  • the population of transplanted patients constitutes one of the main risk groups for mycosis, since it is estimated that between 10% and 15% of these patients will develop a fungal infection.
  • AIDS sufferers are also susceptible to opportunistic fungal diseases.
  • certain invasive mycoses such as pneumocystosis, affected 70% to 80% of the population with AIDS, with an associated mortality of 20% to 40% (González A et al. Opportunistic fungal infections in patients with HIV / AIDS, Infect. 2006; 10 (4): 279-88).
  • the incidence of opportunistic infections has decreased; however, their morbidity and mortality rates associated with opportunistic fungal infection remain high, particularly in low-income countries.
  • the rapid diagnosis and early identification of the fungus causing the infection allow the administration of an accurate early therapy oriented towards the identified fungus, which is crucial for the reduction of the severity of the disease and even to ensure the survival and recovery of Infected patients
  • early diagnosis and identification and the total absence of sequelae associated with invasive fungal infection, as well as the pattern of minor antifungal concentrations that do not cause side effects of deterioration due to drug processing and toxicity.
  • the most immediate method for the detection of fungi in a clinical sample is the microscopic examination of the same, using clarifying liquids (for example 10-20% KOH or organic dilutions of lactophenol), also using various stains, or by identification phase contrast optics without staining.
  • This test can sometimes provide a definitive diagnosis (eg in direct isolates of Pityriasis versicolor) and in others, a tentative diagnosis prior to final confirmation by culture, directing the selection of appropriate means for the isolation of the sample.
  • the main limitations and problems presented by the microscopic examination are that a negative growth does not exclude infection (large number of false negatives), and there is also a high possibility of false positives, when certain cellular and tissue structures are confused with fungal elements ( Collagen or hyssop fibers, lymphocytes lysed by Cryptococcus neoformans in staining with Chinese ink, fat drops with twin yeasts, etc.)
  • Blood culture is the traditional method most commonly used in the identification of infectious fungi, which often involves several days or weeks of procrastination in obtaining the isolation and precise identification of the fungus. In this sense, the growth of dermatophyte fungi can extend up to 4 weeks, due to the long generation time and peculiar temperature and humidity conditions that it requires.
  • Opportunistic fungi are of more or less rapid development as shown by the members of the genus Crytococcus whose maximum isolation period is 48-72 hours. In short, the culture is an efficient but slow diagnostic method for the determination of the infecting fungus and, consequently, of the prescription of the appropriate therapy for the early treatment of the infection.
  • the most commonly used culture medium for fungal isolation and identification is the so-called Sabouraud glucosado agar, with and without antibiotics, with and without cyclohexamide, in which qualitative and semi-quantitative parameters such as development time, macroscopic characteristics are assessed. and microscopic (hyphae and spores), fermentation studies (zymogram) and carbon utilization (auxonogram). In this sense, the good quality of the media is essential to achieve isolation and identification in Mycology.
  • Diagnostic sensitivity is another additional problem of diagnostic techniques associated with culture.
  • blood cultures have low diagnostic sensitivity (20-30%) and are often positive late (after 72h), making patient management difficult.
  • immunocompetent patients with catheters may present with transient candidiasis, without significance. pathological, which makes blood cultures poorly specific for invasive candidiasis in these conditions.
  • pathological which makes blood cultures poorly specific for invasive candidiasis in these conditions.
  • neutropenic patients a candidiasis is related in more than 90% to invasive candidiasis; In turn, 50% of neutropenic patients have false negative blood cultures with no apparent growth of the fungus during the first 72 hours.
  • Radioimmunoassay and ELISA.
  • the latter has high sensitivity, reliability and has become widely used.
  • the sensitivity of the ELISA technique depends on many variables, such as the nature and type of antigens and their ability to bind to solid surfaces.
  • the complexity of the fungal membrane antigens used in these techniques and the variations inherent in the antigen preparations determine discrepancies in the results in the different laboratories. It has been proposed that both false positives and false negatives could be eliminated considering the results of different antigens and serological methods, although they are time-consuming procedures and are difficult to handle and implant in diagnostic routine (Pontón J. et al. Non-culture based diagnostics In: Calderone R (Ed), Candida and Candidiasis, Washington D.
  • the method object of this invention is suitable for detecting several pathogens in a single clinical sample regardless of the proportions of each of them, by allowing base analysis based on the specific sequences for each of the pathogens involved.
  • PCR nucleic acid amplification by polymerase chain reaction
  • RT-PCR - Reverse Transcriptase Polymerase Chain Reaction real-time nucleic acid amplification or quantitative PCR
  • LCR Lipoxide Chain Reaction Nucleic Acid Amplification
  • LPH liquid phase hybridization
  • nucleotide hybridization probes labeled primarily with non-radioisotopic molecules such as digoxigenin, biotin, fluorescein or alkaline phosphatase, in order to generate a detectable signal upon specific hybridization between nucleotide hybridization probe and the sequence of the genetic material, DNA and / or RNA, specific identification of the microorganism to be identified.
  • non-radioisotopic molecules such as digoxigenin, biotin, fluorescein or alkaline phosphatase
  • PCR-RFLP method in English Restriction Fragment Length Polymorphism
  • specific nucleotide sequences in DNA that are recognized and cut by enzymes of restriction usually generating different distance, length and arrangement patterns in the DNA of different pathogens within a polymorphic population for these restriction fragments.
  • PCR Saiki et al., Science, 230, 1350-1354 (1985), Mull ⁇ s et al., US patents US 4,683,195, US 4,683,202 and US 4,800,159. This technique allows serial exponential amplification of nucleic acids.
  • Said amplification is achieved by repetitive cycles of heat denaturation of the nucleic acid under study, binding of primers complementary to two opposite regions of the nucleic acid to be amplified, and extension of the bounded sequence between the two primers within the nucleic acid, by the action of a thermostable polymerase enzyme.
  • the repetition of successive cycles in this process achieves an exponential amplification of the nucleic acid under study.
  • this process does not generate a detectable and intrinsic signal, so the analysis of the presence of the amplified nucleic acid requires additional analysis of the products generated in the presence of an intercalating agent, usually by electrophoresis on agarose or acrylamide gels. .
  • Standard detection methods by amplifying DNA on a biological sample for the identification of fungi are not useful for the potential identification of multiple pathogens present in the same sample, since the precise identification by amplification depends on the use of specific primers. for each of the species present in the sample, which means knowing or presupposing previously the species present.
  • the identification is based on the predominance of the organism and is influenced by the prevalence of one fungus over another. There is evidence that in many clinical cases more than one microorganism may be present in the test sample, making detection by traditional methods very difficult.
  • the method object of this patent is suitable for the detection of several pathogenic fungi in a single clinical sample simultaneously without previously knowing or presupposing the fungal or yeast species present in the sample.
  • Simultaneous detection and / or identification of fungal species in a given sample requires the use of different nucleotide probes, different primers in the case of PCR, or different primers and / or fluorescent probes in the case of PCR in real time. All must be specific for each of the fungi to be detected, being usually necessary to perform different tests to identify each of the fungi in question. This need to use different probes and specific primers to identify each of the fungi possibly present in the sample complicates both the experimental development of the probes or primers to be used, as well as the feasibility and cost of the identification test of multiple microorganisms in one same sample. For this reason, multiplexed systems have not achieved wide implantation in the diagnostic routine.
  • the number of different species to be detected in the same test is limited by the number of fluorophores that the thermal cycler in which the test is performed is able to detect, and in the case of PCR denominated in final time, whose reading of results is carried out by means of agarose or acrylamide gel electrophoresis, due to the resolution capacity of said electrophoresis gels.
  • Examples of multiplexed real-time PCR identification of different species of the genus Candida can be found in Shin, J.H. et al. 1999. Rapid Identification of up to three Candida species in a single reaction tube by a 5 'exonuclease assay using fluorescent DNA probes. J Clin.Microbiol.
  • CRP Creactive protein amplification
  • two types of strategies have been used: the amplification of highly conserved gene fragments in fungi, with the intention of knowing whether the etiology of an infectious process is fungal or not, and the amplification of specific gene sequences that allow the identification of the species.
  • Highly conserved regions of ribosomal DNA are the most commonly used targets for amplification and identification by PCR.
  • Ribosomal RNA consists of three multicopy genes: the 25S long subunit, the 18S small subunit and the 5.8S gene, which are separated by the spacer regions (internal transcribed spacer or ITS), all defined by a unit of iterative sequence that is repeated multiple times (generally, the number of iterations has as much taxonomic value as their own micromodifications of the iterated sequence).
  • these subunits have conserved sequences that allow the design of universal primers of the PCR reaction flanking those areas of the ITS region that have great variability. All this allows the design of specific probes for obtaining amplicons whose sequence presents variations of each genus and species.
  • 560 research papers published in the citation index were published, of which approximately 84% developed group-specific identification systems using rDNA.
  • degenerate groups of pseudo-specific primers whose target was the 28S subunit of the rRNA have been developed, such as those described by Sandhu et al capable of identifying up to 5 species of the genus Aspergillus, 8 species of Candida, Blastomyces dermatitidis, Coccidioides immitis , Cryptococcus neoformans, Histoplasma capsulatum, Pseudallescheria boydii and Sporothrix schenckii. (Sandhu GS et al. Molecular probes for diagnosis of fungal infections. J Clin Microbiol 1995; 33: 2913-2919).
  • ITS spacer regions for the development of primers and gender-specific fungal identification by the PCR reaction can be found, among others, in: Hinrikson HP, et al. Assessment of ribosomal large- subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular Identification of medically important Aspergillus species. J ClinMicrobiol 2005; 43: 2092-103; Hsiao CR et al. Identification of medically important molds by an oligonucleotide assay. J Clin Microbiol 2005; 43: 3760-8; Iwen PC, et al.
  • HSP 90 Crampin AC, et al. (1993) Application of the polymerase chain reaction to the diagnosis of candidosis by amplification of an HSP 90 gene fragment. J Med Microbiol 39, 233-8).
  • NASBA Nucleic Acid Sequence Based Amplification
  • NASBA Nucleic Acid Sequence Based Amplification
  • This technique has been used for the identification of species of the genus Candida by identifying species-specific sequences of the 18S gene of fungal ribosomal RNA, (Widjojoatmodjo MN, et al. (1999) Nucleic acid sequence-based amplification (NASBA) detection of medically ⁇ mportant Candida species.
  • the RFLP Restriction Fragment Lengt Polymorphism
  • the RFLP allows us to establish the intraspecific and interspecific taxonomy of different microorganisms by analyzing band patterns, derived from endonuclease digestion of their respective chromosomes. These patterns, known as specific profiles of restriction, originate by the endonuclease activity of the aforementioned restriction enzymes. The smaller the size of the nucleotide sequence recognized as the target, the greater the number of fragments that are generated. The fragments are separated by agarose gel electrophoresis, obtaining characteristic restriction profiles. The profiles will depend on the restriction enzyme used as well as the starting chromosomal DNA.
  • Trost al. identified 16 species of yeast of clinical importance, including C. tropicalis, C. parapsilosis, C. krusei and C. glabrata, species difficult to identify by traditional methods (Trost A. et al. Identification of clinically relevant yeasts by PCR / RFLP J Microbiol Meth 2004; 56: 201-211).
  • the main problems presented by this technique are the complexity of realization, the difficulty in interpretation in the event that a high number of bands occurs for each enzymatic profile, and the practical impossibility of interpreting a pattern of bands in case of performing the analysis of restriction on a sample containing two microorganisms with similar restriction patterns.
  • Fluorescent in situ hybridization is a technique that consists of the use of fluorescently labeled oligonucleotide probes that hybridize with their complementary sequences in the DNA to be identified, which has been used in the detection and differentiation of various species of the genus Candida, using for this purpose species-specific nucleotide sequences of the 18S rRNA gene (Lischewski, A. et al. 1997. Detection and Identification of Candida species in experimentally infected tissue and human blood by rRNA-specific fluorescent in situ hybridization. J Clin. Microbiol. 35, 2943-2948).
  • PNA peptide nucleic acid
  • Nucleic acid microarrays usually DNA
  • DNA have begun to be used in the identification of species and fungal strains, as well as their sensitivity to various antifungal drugs.
  • DNA microarrays are microscopic groups of oligonucleotide probes of variable length and known design immobilized on a solid support, on which the previously purified nucleic acids of the sample to be analyzed are deposited and hybridized.
  • the perfectly complementary nucleotide sequences of the sample that hybridize perfectly with the oligonucleotide probes fixed in the microarray generate a fluorescent signal that is detected by a fluorescent scanner, subsequently identifying the sequences present in the sample by computer analysis. In this way, hundreds of sequences can be detected in the same hybridization process. Examples of the use of microarrays in the detection and typing of fungi and other pathogenic microorganisms can be found in Wang, RF et al, Molecular and Cellular Probes 223-224 (2004); Lehner, A. et al., FEMS Microbiol. Letter 133-142 (2005), in WO 2007/039319, EP 1310569, WO 92/07096 and US 6747137..
  • the methods of lysis, extraction and purification of nucleic acids from fungi are diverse, mostly part with a large component of manual manipulation - at least in the lysis part - and are not sufficiently standardized beyond the kits based on physical rupture such as those mentioned above. This lack of standardization and the excess of manual manipulation generate an additional uncertainty factor to the tests of molecular detection of fungi, which translates in many cases into lack of reproducibility, significant false negative rate and low sensitivity.
  • the method described in the present invention does not present these problems, since it does not require these procedures for prior lysis, extraction and purification of nucleic acids, when nucleic acid amplification is carried out directly from a preculture of the sample to be analyzed.
  • the protocol validated on a pool of 48 samples processed according to the standard protocol (ie.
  • Nucleotide from its genetic material is in many cases the only possibility of differentiation, and in any case, the most accurate, reflecting the genetic constitution of the microorganism subject to analysis.
  • This nucleotide sequence can be obtained using conventional sequencing protocols, based on the procedure described by Sanger and Coulson in 1975 (Sanger F, Coulson AR.
  • ddNTPs dideoxynucleotides
  • electrophoretic procedures in gel or by automated capillary electrophoresis, to solve the nucleotide sequence in incorporation triplets for each dideoxynucleotide species.
  • synthesis sequencing which uses the DNA polymerase DNA synthesis process to identify the bases present in the complementary DNA molecule.
  • synthesis sequencing uses the DNA polymerase DNA synthesis process to identify the bases present in the complementary DNA molecule.
  • the various synthesis sequencing methods developed so far consist of marking the oligonucleotide primer or terminators with a fluorescent compound, to subsequently activate the sequence reaction.
  • the products of the reaction are detected directly during electrophoresis by passing in front of a laser that excites fluorophores to detect the emitted fluorescence.
  • pyrosequencing a technique that uses the DNA-dependent polymerization of the DNA polymerase enzyme to polymerize nucleotides in sequence. The process is completed by incorporating a different type of deoxynucleotide each time to detect and then quantify the number and species of nucleotide added to a given location by means of the light emitted in the release of pyrophosphates (by-products of the extension by chain polymerization of DNA). Descriptions of this technique can be found in M. Margulies, et al. "Genome sequencing in microfabricated high-density picolitre reactors". 2005. Nature 437, 376-380 and in M. Ronaghi, S. et al.
  • Pyrosequencing is beginning to be a widely used technique to identify the species to which pathogenic microorganisms belong, both bacteria and fungi, whose presence is suspected or that has already been previously verified by other identification methods, such as real-time PCR . Its application on clinical samples even allows the identification of pathogenicity factors and / or antibiotic resistance of certain bacteria, but there is currently no pyrosequencing method that can be used in the taxon-specific identification of fungi from samples clinical, food or environmental, without having prior knowledge of the generic group to which the fungus (s) found in that sample belongs, as well as for the simultaneous identification of several fungi present in a sample, without knowing or suspecting previously What mushrooms can be found in it.
  • each of the components involved in the reaction that is, the enzyme DNA polymerase, the reaction buffer with the additives reaction enhancers or stabilizers, magnesium chloride, or manganese chloride in case of RT, oligonucleotides used as reaction primers, deoxyribonucleotides (dATP, dCTP, dGTP and dTTP) and the sample containing the nucleic acid to be amplified , are found separately, preserved by freezing, and must be mixed prior to the completion of the reaction, being necessary to add and mix very small amounts (microliters) of each of them.
  • aerosols are produced that frequently produce cross-contamination between samples to be analyzed (Kwok, S. et al., Nature, 1989, 339: 237-238), generating false positive results, of great importance in the case of human diagnosis.
  • Patent application WO 93/00807 describes a system for the stabilization of biomaterials during the lyophilization process.
  • Biotools Biotechnological & Medical Laboratories, S.A has developed a stabilization system by gelation of complex mixtures of biomolecules that allows the stabilization of reaction mixtures for long periods of time under the most varied storage conditions (WO 02/072002).
  • complex reaction mixtures have been stabilized, such as mixtures for gene amplification reactions, which contain all the reagents necessary for carrying out the experiment, aliquoted in independent "ready-to-use” vials. use), in which it is only necessary to reconstitute the reaction mixture and add the problem nucleic acid.
  • the present invention aims to satisfy this need for simultaneous, fast, accurate, reproducible and simple taxon-specific identification of fungi present in a clinical sample, as well as their pathogenic potential plus their susceptibility to antifungal drugs, when not You know in advance the type of fungus or fungi that are present in the sample by the method and kit objects of the invention.
  • FIG. 2 Summary of the identification results obtained for the 48 samples submitted for analysis according to the procedure included in this patent.
  • the present invention consists of a new fast, precise and simple manipulation method for differentiation and identification of fungi and yeasts present in a biological sample, as well as the corresponding kit for carrying out the method of the invention.
  • the method of the present invention is directed to the differentiation and identification of fungi and yeasts in general, the applicability of the method in any of the various single-celled microscopic fungi defined by their ability to decompose by fermentation of bodies is contemplated in particular.
  • the method allows the identification of yeasts considered true belonging to the Ascomycota class. Therefore, this procedure allows the identification of all fungi with a predominance of a unicellular phase in their life cycle (including Basidiomycete fungi) present in a sample.
  • the method of the invention comprises the analysis by sequencing (method of sequencing by synthesis) of an amplified region of 500bp corresponding to the coding fraction for ribosomal RNA 18S, obtaining a taxon-specific genetic pattern based on the nucleotide sequence obtained. Consequently, the kit of the present invention contains stabilized by gelation and subsequently dried to a moisture degree of 10% to 30%, the reagents necessary to carry out said method. For the realization of this taxon-specific identification it is not necessary the previous knowledge or the assumption of the family, of the genus or of the species of the fungus / s or yeast / s contained in the sample.
  • the sequencing method used is sequencing by synthesis, and within the various sequencing methods by synthesis that are currently used, the method used is preferably pyrosequencing, although any other sequence analysis method could be used. of nucleic acids currently used or to be used in the future.
  • the nucleotide sequences that identify each of the fungi and yeasts are well known, and are available in various published genetic databases, such as GenBank and EMBL, among others.
  • the present invention also allows in a single analysis the multiple identification of the various species of fungi and yeasts that may be present in the biological sample, without the need for prior knowledge or assumption of the type that may be present, using only a pair of primers to sequence two regions of taxonomic value within the amplified 500bp fragment, whose taxonomic value allows overlapping the information generated by each sequence by advancing in the process of identifying levels of Family to Gender and finally to Species between pathogenic variants or potentially pathogenic
  • Table 1 shows the percentage of results successfully identified at the level of species, gender and family on 48 positive blood culture samples after incubation and percentage of results successfully identified at the level of species, gender and family over 12 negative blood culture samples after incubation. Identification% Taxon Family Taxon Genus Taxon Species
  • the exponential increase in the number of copies inherent in nucleic acid amplification requires the use of a high-fidelity DNA polymerase enzyme, in order to avoid the introduction of point mutations in the cycles. initial amplification that could falsify the sequence obtained. This alteration of the sequence obtained would be an erroneous result of the analysis.
  • the kit described in this patent incorporates the enzyme BlackZyme ultrapure DNA polymerase, marketed by 2B BlackBio S.L., to avoid this problem.
  • the present invention consists in a process that does not necessarily require an initial step of generic extraction by means of standardized, manual or automated techniques, but begins with a process of initial amplification of the ribosomal DNA of greater conservation, which allows -through the use of a single amplification reaction and two different and simultaneous sequencing reactions - a parallel identification of the results generated by the sequencing to reach the taxonomic levels of identification at the Gender, Family and Species level.
  • This initial amplification of the selected ribosomal region is aimed at generating a biotinylated fragment at the 3 ⁇ end, which will be subsequently immobilized, isolated by basic denaturation of the double helix generated and, finally, sequenced.
  • This amplification process is performed on a multiwell plate in which each well contains all the reagents necessary to perform the specific amplification for the subsequent sequencing process, that is, BlackZyme ultrapure DNA polymerase and high fidelity copy, primers biotinylated described in the present invention, deoxynucleotides to be incorporated in the amplification reaction (dATP, dCTP, dGTP, dTTP), and the optimized reaction buffer.
  • the biotinylated product obtained by the above amplification reaction constitutes the substrate for the immediately subsequent pyrosequencing reaction. This biotinylated product does not need to be purified prior to its transfer to the second plate in which the pyrosequencing process is carried out.
  • This second plate contains in each well all the reagents necessary to carry out the pyrosequencing reaction on the fragment marked in the previous amplification.
  • These enzymes and reagents incorporated into each of the wells of the plate are ultrapure and high fidelity DNA polymerase, ATP-sulfurilase, Luciferase, Apyrase, sequencing primer, luciferin, adenosine-5'-phosphosulfate (APS), deoxynucleotides to incorporate into the DNA chain extension reaction to be sequenced (dATP, dCTP, dGTP, dTTP), and the reaction buffer. All these reagents are stabilized by gelation as described in WO 02/072002, at the precise concentrations required to complete the sequencing reaction by synthesis.
  • the precise non-determination of the nucleotide base that makes up the nucleic acid sequence is considered.
  • the stabilizing mixture By adding the stabilizing mixture, a substantial improvement in the discrimination between the emission peak corresponding to the nucleotide incorporated and the background noise caused by the rest of the substrates of the pyrosequencing reaction is observed.
  • Quality is determined by how well defined the peak is . of emission of a dNTP that is integrated into the sequence, generating an intensity that clearly differentiates it from noise and background interference. Therefore, in the case of the non-gelled mixture, only the first three bases of maximum quality are obtained according to the pyrosequencer algorithm because as of the third round, the fund is less and less different from the emission peaks corresponding to each Built-in dNTP
  • the gelation mixture formed by trehalose, melezitose, glycogen or raffinose, and lysine or betaine is considered especially beneficial in the pyrosequencing reaction.
  • sequences obtained after the sequencing process by synthesis are compared with the sequences deposited and annotated in public databases in order to obtain the precise identification of the microorganisms present in the sample to be analyzed.
  • the alignment of the generated sequences is fully compatible with the search engines for standardized use in research and clinical and can be performed, for example, using the BLAST search engine based on GenBank sequences (NCBI), Assemble, ATCC, NCBI, etc.
  • the alignment of the exact sequences obtained by pyrosequencing in the present invention allows to identify with a certainty greater than 99% which species of fungus or pathogenic yeast is present in the sample.
  • the composition and the reagents described can be packaged in individual kits.
  • the kit incorporating the present invention is composed of a first multi-well plate containing in each well one of the nucleotide primers marked at its 3'OH end by biotin, or any other type of usable marking for amplification, such as fluorophores, necessary for obtaining the labeled sequential fragments, together with all the reagents necessary for amplification free of contaminating DNA (ultrapure and high fidelity DNA polymerase enzyme, deoxynucleotides and reaction buffer), dosed at the optimal concentrations for the generation of the amplification reaction, all premixed and stabilized by gelation.
  • the fragments resulting from this amplification could be sequenced by any known method of sequencing, the sequence obtained being identifying the species of fungus or yeast present in the sample.
  • these fragments resulting from this amplification are sequenced by sequencing techniques by synthesis, and more preferably, by the technique called pyrosequencing.
  • the sequentially labeled fragments are obtained, and which are transferred after purification to a second plate that in each well contains all the elements necessary to carry out the sequencing reaction, at the optimum concentrations for the generation of the amplification reaction, and stabilized by gelation.
  • these necessary elements that are premixed and stabilized are: ultrapure and high fidelity DNA polymerase, ATP-sulfurylase, Luciferase, Apyrase, sequencing primer (as described above), luciferin , adenosine-5'-phosphosulfate (APS), deoxynucleotides to be incorporated in the DNA chain extension reaction to be sequenced (dATP, dCTP, dGTP, dTTP), and the reaction buffer.
  • taxon-specific identification is understood as the ability of a specific analytical method to distinguish and identify at the taxonomic level of species, a certain fungus or yeast among several other species of microorganisms that may or may not be present in The sample to analyze.
  • sample is meant any type of sample that could potentially contain potentially pathogenic microorganisms fungi and / or yeast, and which can be analyzed by the method indicated in the present invention, either directly or indirectly, for example by microbial culture made from the initial sample.
  • the sample may be of blood, urine, cerebrospinal fluid, sputum, nasal secretion, or any other type of fluid or body secretion, or surface sample taken by contact, from both humans and animals, or microbial culture of any type or format , made from these fluids.
  • the sample can also come from food or food liquids, both intended for humans and animals, or from microbial culture made from these foods, or from samples taken in the environment, such as water, soil or air, concentrated or not. , or of the microbial culture made from said environmental samples.
  • oligonucleotide is meant a single stranded polymer composed of at least two nucleotide subunits linked together by a covalent bond or strong equivalent interaction.
  • the sugar groups of the nucleotide subunits can be ribose, deoxyribose, or modifications derived from these sugars.
  • the nucleotide units of an oligonucleotide may be linked by phosphodiester, phosphothioate, methylphosphate, or any other link that does not prevent the oligonucleotide's ability to hybridize.
  • an oligonucleotide may contain uncommon nucleotides or non-nucleotide molecules, such as peptides.
  • an oligonucleotide is a nucleic acid, preferably DNA, but may be RNA, or a molecule that contains a combination of covalently linked ribonucleotides or deoxyribonucleotides.
  • primer refers to an oligonucleotide that acts as the starting point of the enzymatic synthesis of DNA under conditions in which the polymerization of the nucleotides occurs from said primer, extending it, and introducing the nucleotides in a complementary manner to the nucleic acid chain that serves as a template. This chain elongation occurs under appropriate conditions of temperature and reaction buffer.
  • the primer is preferably a single stranded oligonucleotide of length between 15 and 40 nucleotides.
  • nucleic acid refers to oligomeric fragments composed of nucleotides. These terms should not be limited by their length expressed in the form of nucleotides that make up the linear polymer, the YTucleotides that comprise deoxyribonucleotides containing 2-deoxy-D-ribose, ribonucleotides containing D-ribose, and any other N-glycoside of a pyric or pyrimidine base, or modifications of these pyric and pyrimidine bases. These terms refer to single-stranded and double-stranded DNA, as well as single-stranded or double-stranded RNA.
  • amplification conditions refers to the reaction conditions (temperature, buffering conditions, etc.) in which the amplification reaction of the template nucleic acid to be amplified occurs.
  • the amplification conditions have the sole requirement of maintaining the banding temperature at 54 ° C. The rest of the parameters can be adjusted depending on the origin, extraction method and performance, without proven losses of robustness in the process.
  • amplification is meant the reaction that increases the number of copies of a given region of a nucleic acid.
  • RNA ribonucleic acid
  • DNA deoxyribonucleic acid
  • synthesis sequencing refers to any method of nucleic acid sequencing that requires the enzymatic activity necessary to consolidate nucleotide bonds between the subunits described above as deoxyribonucleotides, these being the functional substrates of the sequencing reaction.
  • nucleotide pattern is meant the product / result of sequencing, preferably of sequencing by synthesis.
  • the nucleotide pattern represents the order in which nucleotides are incorporated into the sequencing reaction.
  • stabilization is meant the preservation of the chemical and biochemical qualities of the various reagents, reaction buffers, reaction improvers, and enzymes involved in an enzymatic reaction, in this case the amplification of nucleic acids and the reactions associated with the sequencing by synthesis, once all these reagents, reaction buffers, reaction enhancers and enzymes are included in a same container, in this case multi-well tubes or plates, so that each one of them is dosed at the optimal reaction amounts, and they do not interact or react with each other, immobilizing the biochemical reaction in which they intervene, being able to activate the enzymatic reaction at the will of the user, without having produced a significant decrease in its activity, having elapsed days, weeks, months or even years after mixing and stabilization.
  • the stabilization thus understood is achieved by the addition of a stabilizing mixture to a solution containing the reaction mixture, and the subsequent elimination of all or part of the water present in the resulting solution.
  • This removal of all or part of the water can be achieved by lyophilization processes, dried in a fluid bed, dried at room temperature and atmospheric pressure, dried at room temperature and low pressure, dried at high temperature and atmospheric pressure, and dried at high Temperature and low pressure.
  • the stabilization method preferably used is the stabilization by gelation, described in WO 02/072002, assigned to Biotools Biotechnological & Medical Laboratories, S.A.
  • the stabilizing mixture of the reaction mixture is preferably composed of trehalose, melezitose, lysine or betaine and glycogen or raffinose, at different concentrations depending on the enzymatic reaction to be stabilized. More preferably the gelation mixture is composed of trehalose, melezitose, glycogen and lysine.
  • the method of extracting water from the reaction mixture after the addition of the mixture of stabilizing agents is preferably in the present invention vacuum drying at a temperature between 30 ° C and 40 ° C, depending on the enzymatic reaction at stabilize. Specifically, in the present invention the moisture content is maintained between 10-30% water.
  • the present invention refers to a method for performing the taxon-specific identification of one or more fungi and / or yeasts simultaneously in a sample, by analyzing the nucleotide pattern of the nucleotide sequence (s) obtained by sequencing by synthesis of two different regions belonging to the 18S gene of the ribosomal RNA, previously amplified in a single amplicon, before sequencing by synthesis.
  • the invention is based, in the first instance, on the possibility of identifying any of said microorganisms reaching the taxonomic level of the species, using the nucleotide pattern obtained by superimposing the sequences of two separate regions of the 18S gene of the ribosomal RNA.
  • This nucleotide pattern represents an unequivocal genetic signature identifying the different species of fungi or yeasts present in a sample, and can be compared with the reference patterns deposited in the various published genetic databases, thanks to search engines expressly designed for it.
  • a pair of different primers designed in order to amplify two different regions belonging to the 18s gene of the fungal ribosomal RNA in a single amplicon is used.
  • the specific sequences of this cistron are well known and are available in several published databases, such as GenBank and EMBL.
  • the amplification primers have been designed based on the state of the art, considering their content in the cytosine and guanine bases, as well as the multiple design alternatives that could overlap in the selected regions, in order to avoid the formation of internal secondary structures , preventing the formation of dimerizations between primers and weighing their melting temperatures to achieve an optimal adjustment to the template nucleotide chain.
  • a banding temperature standard has been set at 54 ° C, which could be modified based on changes between the sequences to hybridize.
  • Bio-FunS2 SEQ. ID. No. 4 5'- TCAAAGTAAAAGTCCTGGTTC-3 '
  • the first pair of primers indicated in Table 2 amplifies the region of the 18S gene bounded by its sequences, generating an average fragment of exactly 500 nucleotide base pairs within the highly conserved ribosomal region. Being a fragment of considerable size, the result of its sequencing by synthesis using the two defined sequencing primers, allows the obtaining two results throughout its extension. The superposition of the sequences obtained with these last two primers, provides the necessary information to reach a level of identification at the species level.
  • the amplification fragments obtained can be sequenced using any type of amplification reaction of specific sequences of the DNA or RNA of any organism.
  • the amplification fragment is obtained by the PCR technique, using the pair of primers indicated in Table 2.
  • a DNA polymerase that does not contain traces of contaminating exogenous DNA and at the same time have a low error rate in the incorporation of nucleotides, such as the enzyme BlackZyme ultrapure DNA polymerase (2B BlackBio SL).
  • PCR amplification conditions indicated in Table 3 as detailed below were optimized to achieve the appropriate reaction conditions for the amplification of the 500 base pair fragment within the 18S subunit of fungi and yeasts.
  • the amplification is carried out in a single reaction, whereby the region from which two fragments will subsequently be sequenced to identify the species or species of fungi and / or yeasts present in the sample is amplified.
  • each sample was amplified on a plate in which each well / container contained the reaction mixture consisting of 0.4 ⁇ of UltraZ Blackzyme DNA polymerase enzyme, marketed by 2B BlackBio SL, 5 ⁇ of the reaction buffer that accompanies the enzyme before cited and marketed next to it, between 0.1 ⁇ and 0.3 ⁇ of a 100mM solution containing the four deoxyribonucleotides that make up the deoxyribonucleic acid chain (dATP, dTTP, dGTP, dCTP), and 0.2 ⁇ / 0, 4 ⁇ (duplicate analysis) of a 100 ⁇ solution of the pair of primers identified in Table 2 as BioFunF (SEQ. ID. No.
  • the stabilization mixture composed of between 1 ⁇ and 4 ⁇ of a solution of trehalose dihydrate 1 M, between 1 ⁇ and 3 ⁇ of a solution of melezitose monohydrate 0.75 M, between 1 ⁇ and 4 ⁇ of glycogen at a concentration of 200 gr / l, and between 0.1 ⁇ and 0.5 ⁇ of lysine DL 0.05M.
  • the plate thus prepared was introduced in a vacuum drying oven and subjected to a drying process, heating it between 30 ° C and 37 ° C and subjecting it to a vacuum of 30 millibars for a time of two to four hours, up to get a degree of humidity between 10% and 20%, thus obtaining a stabilized reaction mixture, which contains in each well all the elements and reagents necessary for carrying out the amplification reaction of the target nucleic acid sequence.
  • the above procedure carried out to achieve the stabilized reaction mixture can be repeated, in any other container, reaction chamber or surface used or that could be used, for carrying out the amplification reaction of the nucleic acids.
  • the amplification was performed under the conditions illustrated in Table 3, generating a series of amplification products that were transferred to the pyrosequencing plate according to the protocol recommended by the manufacturer of the instrument used for pyrosequencing (Sample Preparation Guidelines for PyroMark TM ID System , marketed by the company Qiagen). Subsequent pyrosequencing was carried out in the PyroMarkTM ID System, marketed by the company Qiagen, using the enzymatic mixture for sequencing by synthesis described in previous sections (ultrapure and high fidelity DNA polymerase, ATP-sulfurylase, Luciferase, Apyrase, primer sequencing (SEQ. ID. No. 3 and SEQ. ID. No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención, describe un método para detectar la presencia y tipo de hongos y/o levaduras que se encuentran en una muestra, mediante las técnicas de amplificación y secuenciación de la región del ARN ribosómico 18S, y posterior análisis de las secuencias. Los cebadores de la PCR hibridan en una región conservada específica de hongos, mientras que la zona amplificada tiene valor taxonómico. Los reactivos necesarios para realizar tanto la PCR como la secuenciación, se presentan en una mezcla de reacción gelificada con trehalosa, melezitosa, glucógeno o rafinosa, y lisina o betaína.

Description

COMPOSICIÓN, MÉTODO Y KIT PARA LA DETECCIÓN DE HONGOS Y LEVADURAS
MEDIANTE SECUENCIACIÓN
SECTOR TÉCNICO DE LA INVENCIÓN
La presente invención describe un método para detectar la presencia y tipo de hongos y/o levaduras presentes en una muestra, mediante técnicas de estabilización y de secuenciación, y posterior análisis de microsecuencias en genes codificantes para el RNA ribosomal de mayor conservación, y sobre áreas específicas de la región 18S ribosomal con valor taxonómico.
ANTECEDENTES DE LA INVENCIÓN
En los últimos años se ha registrado un incremento exponencial en la incidencia de las infecciones fúngicas (micosis) graves con una elevada morbilidad. Considerando que el avance en el descubrimiento de antimicóticos durante los últimos 50 años no ha rendido sustancias de alta especificidad sobre el patógeno, con ventanas terapéuticas amplias y que carezcan a priori de efectos secundarios, en la actualidad se está intentando obtener pruebas diagnósticas más rápidas y fiables para el diagnóstico de certeza. Esto permitiría identificar con criterios clínicos a los pacientes potencialmente candidatos para recibir precozmente un tratamiento antifúngico adecuado y así poder mejorar el pronóstico y el tratamiento de la infección.
Las infecciones fúngicas invasivas (IFI) son un grupo de infecciones que genera problemas de alta gravedad en los pacientes críticos. La incidencia de las infecciones fúngicas comunitarias y nosocomiales ha aumentado mucho en los últimos años; la infección por Candida spp. es la más frecuente globalmente (70-87%), pero las infecciones por Aspergillus spp. son cada vez más descritas como los «nuevos hongos emergentes». Las IFI nosocomiales más frecuentes son: bacteriemia e infecciones urinarias, respiratorias, de heridas quirúrgicas y de dispositivos tipo catéter venoso. Las diferentes especies de Candida spp., fundamentalmente C. albicans, están entre la tercera y quinta clase de microorganismos más frecuentemente aislados en hemocultivo (de hecho, se cuenta con formatos de hemocultivo específicos para levaduras introducidos en la praxis diagnóstica), representando un 8-15% del total de todos los patógenos identificados (Ostrosky-Zeichner L et al. Invasive candidiasis in the intensive care unit. Crit Care Med 2006;34:857-63, y Messer SA et al. International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 2006; 44:1782-7.). Las Unidades de Cuidados Intensivos (UCI) en Estados Unidos reportan el 25-50% del total de candidemias de un hospital, mientras la incidencia de IFI por Aspergillus spp. ha aumentado de forma exponencial y hay series necrósicas en las que ya ha superado en frecuencia a las IFI causadas por Candida (Pfaller A et al. Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clin Microbiol Rev 2007;20: 133-63)
También en los últimos años se ha observado un aumento importante de infecciones por hongos oportunistas debido a la expansión de la población de pacientes inmunocomprometidos, como pueden ser los pacientes trasplantados o los que padecen VIH (Walsh TJ et al. Emerging fungal pathogens: evolving challenges to immunocompromised patients for the twenty-first century).
En todo el mundo se realizan más de 650.000 trasplantes al año, con un incremento anual medio de 1 ,5%. La población de enfermos trasplantados constituye uno de los principales grupos de riesgo de micosis, ya que se calcula que entre el 10% y el 15% de estos pacientes desarrollarán una infección fúngica.
Los enfermos de SIDA son también susceptibles de padecer enfermedades oportunistas causadas por hongos. En la década de 1980, ciertas micosis invasoras, como la neumocistosis, afectaron de un 70% a un 80% de la población con SIDA, con una mortalidad asociada de 20% a 40% (González A et al. Infecciones micóticas oportunistas en pacientes con VIH/SIDA. Infectio. 2006; 10(4): 279-88). En las dos últimas décadas, como resultado de los tratamientos profilácticos y de la terapia antirretroviral de gran efectividad, la incidencia de las infecciones oportunistas ha disminuido; sin embargo, sus tasas de morbilidad y mortalidad asociadas a infección micótica oportunista siguen siendo elevadas, en particular en países de bajos recursos.
Además de las infecciones fúngicas oportunista clásicas, como candidiasis, criptococosis, aspergilosis y mucormicosis, han emergido infecciones causadas por otros hongos que hasta hace poco tiempo se consideraban simples contaminantes, como por ejemplo los integrantes de géneros productores de micotoxinas tipo Fusarium, Trichosporon, Malassezia... etcétera. (Perfect JR et al. The new fungal opportunists are coming. Clin Infect Dis.1996;22 (suppl 2):S112-8.).
Estudios epidemiológicos publicados en los últimos años han destacado que la elevada prevalencia de las infecciones fúngicas se acompaña de una mortalidad preocupante. De esta forma, la mortalidad atribuible a la candidemia se sitúa entre 20% y 50% de los casos; la correspondiente a la aspergilosis entre 40% y 80% de los casos y, en algunas infecciones por hongos emergentes, la tasa de mortalidad puede ir más allá de 90% (Martin GS et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003; 348(16): 1546-54). Las cifras de mortalidad dependen de muchos factores concomitantes, como la enfermedad de base, la zona geográfica, el tipo de infección y el tratamiento aplicado; sin embargo, en términos generales las infecciones fúngicas oportunistas se están convirtiendo en un problema sanitario de primer orden, en todo el mundo desarrollado (Pinner RW et al. Disease surveillance and the academic, clinical, and public Health communities. Emerg Infect Dis. 2003; 9(7)).
Esta nueva situación epidemiológica ha causado un incremento en el consumo de antifúngicos, así como el desarrollo de nuevas técnicas diagnósticas y terapéuticas. En la última década, el consumo de antifúngicos ha aumentado alrededor de 12% de media cada año, y según datos globales, el costo en antifúngicos asciende a 3 600 millones de euros anuales (Cuenca-Estrella M et al. In vitro susceptibilities of bloodstream isolates of Candida species to six antifungal agents: results from a population-based active surveillance programme, Barcelona, Spain, 2002- 2003. J Antimicrob Chemother. 2005; 55(2): 194-9.). El uso masivo de antifúngicos ha originado la aparición de resistencias secundarias y, muy probablemente, el desplazamiento de especies sensibles por otras más resistentes, por lo que se investiga activamente en la identificación de nuevas moléculas antifúngicas. Ante esta nueva situación, es necesario conocer el perfil de susceptibilidad de las especies fúngicas para instaurar el tratamiento más adecuado, por lo que se han desarrollado métodos estandarizados para realizar estudios de susceptibilidad in vitro a los antifúngicos.
Por todo ello, el diagnóstico precoz, la caracterización de las especies y la detección de la resistencia a los antifúngicos se perfilan como herramientas básicas para el control de las infecciones fúngicas.
El diagnóstico rápido y la identificación precoz del hongo causante de la infección, permiten la administración de una terapia temprana precisa orientada hacia el hongo identificado, lo cual es crucial para la disminución de la severidad de la enfermedad e incluso para asegurar la supervivencia y recuperación de los pacientes infectados. En este sentido, existe una correspondencia directa entre el diagnóstico e identificación precoces y la total ausencia de secuelas asociadas a la infección fúngica invasiva, así como a la pauta de concentraciones de antifúngicos menores que no conlleven efectos secundarios de deterioro por procesamiento y toxicidad del fármaco. El método más inmediato para la detección de hongos en una muestra clínica es el examen microscópico de la misma, utilizando líquidos clarificantes (por ejemplo el KOH al 10-20% o las diluciones orgánicas de lactofenol), utilizando también diversas tinciones, o mediante identificación óptica en contraste de fases sin tinción. Este examen puede aportar, en ocasiones, un diagnóstico definitivo (Ej. en aislados directos de Pitiríasis versicolor) y en otras, un diagnóstico tentativo previo a la confirmación definitiva por cultivo, dirigiendo la selección de los medios adecuados para el aislamiento de la muestra. Las principales limitaciones y los problemas que presenta el examen microscópico estriban en que un crecimiento negativo no excluye la infección (gran número de falsos negativos), y hay además una elevada posibilidad de falsos positivos, al confundirse ciertas estructuras celulares y tisulares con elementos fúngicos (fibras de colágeno o del hisopo, linfocitos lisados por Cryptococcus neoformans en la tinción con tinta china, gotas de grasa con levaduras gemantes, etc.)
El hemocultivo es el método tradicional más utilizado en la identificación de hongos infectantes, lo que supone, con frecuencia, varios días o semanas de dilación en obtener el aislamiento e identificación precisa del hongo. En este sentido, el crecimiento de los hongos dermatofitos puede extenderse hasta 4 semanas, debido al dilatado tiempo de generación y condiciones peculiares de temperatura y humedad que requiere. Los hongos oportunistas, en cambio, son de desarrollo más o menos rápido como muestran los integrantes del género Crytococcus cuyo período de aislamiento máximo es de 48-72 horas. En definitiva, el cultivo es un método de diagnóstico eficaz pero lento para la determinación del hongo infectante y, en consecuencia, de la prescripción de la terapia adecuada para el tratamiento temprano de la infección. El medio de cultivo más utilizado para el aislamiento e identificación de hongos es el denominado agar Sabouraud glucosado, con y sin antibióticos, con y sin ciclohexamida, en que se valoran parámetros cualitativos y sem ¡cuantitativos tales como el tiempo de desarrollo, las características macroscópicas y microscópicas (hifas y esporas), los estudios de fermentación (zimograma) y la utilización de carbono (auxonograma). En este sentido, la buena calidad de los medios es indispensable para conseguir el aislamiento y la identificación en Micología.
La sensibilidad diagnóstica es otro problema adicional de las técnicas diagnósticas asociadas al cultivo. Por ejemplo, en el caso del cultivo de Candida spp, Los hemocultivos tienen baja sensibilidad diagnóstica (20-30%) y muchas veces son positivos tardíamente (a partir de las 72h), dificultando el manejo del paciente. Además, los pacientes inmunocompetentes con catéteres pueden presentar candidiasis transitorias, sin significado patológico, lo que hace que los hemocultivos sean poco específicos para candidiasis invasiva en estas condiciones. No obstante, es necesario destacar que en pacientes neutropénicos una candidiasis se relaciona en más del 90% a candidiasis invasiva; a su vez el 50% de pacientes neutropénicos tienen hemocultivos falsos negativos sin crecimiento aparente del hongo durante las primeras 72h. Otras técnicas, como el aislamiento físico por lisis-centrifugación, aumentan el número de positivos y bajan el tiempo requerido para la detección de hemocultivos colonizados por hongos que sólo generan positivos de manera tardía. Actualmente se cuenta con métodos perfeccionados y automatizados en fase de implementación en rutina, como los procedimientos radiométricos y colorimétricos. En esta línea, los hemocultivos de hongos estándar pueden ser acelerados por ventilación mediante recirculación de corrientes pobres en 02 de los frascos, tomando diversas precauciones para evitar su contaminación. (Kaufman L. Laboratory methods for the diagnosis and confirmation of systemic mycoses. Clin Infect Dis 1992,14:S23)
Esta falta de sensibilidad también se aprecia en el método de diagnóstico mediante inmunoprecipitación, que además se ve afectado por cambios estacionales en los patrones de antígenos superficiales para ciertos hongos patógenos. Además, estas técnicas basadas en las características bioquímicas y fenotípicas de los microorganismos a menudo fallan cuando se aplican a variantes clínicas debido a los cambios morfológicos o al estado metabólico en que se encuentra el hongo patógeno en un determinado momento de su ciclo sexual (Sulahian A et al. Comparison of an enzyme immunoassay and látex agglutination test for detection of galactomannan in the diagnosis of invasive candidiasis. Eur J Clin Microbiol 1996; 15: 139-145)
Otros métodos usados son radioinmunoanálisis y ELISA. Este último tiene alta sensibilidad, confiabilidad y ha llegado a ser ampliamente usado. Sin embargo, la sensibilidad de la técnica de ELISA depende de muchas variables, como la naturaleza y tipo de antígenos y su capacidad para unirse a superficies sólidas. Usualmente, la complejidad de los antígenos de membrana de los hongos usados en estas técnicas y las variaciones inherentes a las preparaciones de antígenos, determinan discrepancias de los resultados en los diferentes laboratorios. Se ha propuesto qué se podrían eliminar tanto falsos positivos como falsos negativos considerando los resultados de diferentes antígenos y métodos serológicos, aunque son procedimientos que consumen tiempo y son de difícil manejo e implantación en rutina diagnóstica (Pontón J. et al. Non-culture based diagnostics. En: Calderone R (Ed). Candida and Candidiasis. Washington D. C, American Society for Microbiology, 2002: 395-425). Adicionalmente, los métodos tradicionales de laboratorio para la identificación de hongos casi nunca pueden identificar múltiples agentes patógenos en una sola muestra clínica, ya que la identificación a partir de un cultivo está basada en la predominancia del microorganismo cuyo ciclo de generación en esas condiciones resulta más corto, y puede ser influenciado por la selección positiva-negativa que induce el propio medio de cultivo en función de sus componentes. Existen evidencias que confirman la presencia en múltiples ocasiones de más de un microorganismo por muestra clínica, siendo estos cuadros polifúngicos muy difíciles de caracterizar mediante los métodos de cultivo tradicionales. El método objeto de esta invención es idóneo para detectar varios agentes patógenos en una sola muestra clínica independientemente de las proporciones de cada uno de ellos, al permitir el análisis base por base de las secuencias específicas para cada uno de los patógenos implicados.
De las diversas técnicas existentes para la identificación y caracterización de hongos, las técnicas basadas en el material genético de los mismos, ADN (ácido desoxirribonucleico) y/o ARN (ácido ribonucleico), adquieren cada día mayor importancia. Así, actualmente existen varios ensayos de hibridación de ácidos nucleicos que pueden ser utilizados para identificar hongos. De éstos, entre los más utilizados se encuentran la amplificación de ácidos nucleicos mediante la reacción en cadena de la polimerasa (PCR - Polymerase Chain Reaction) y la transcripción reversa acompañada de posterior amplificación del cDNA transcrito (RT-PCR - Reverse Transcriptase Polymerase Chain Reaction), la amplificación de ácidos nucleicos en tiempo real o PCR cuantitativa (qPCR - quantitative PCR, también llamada Real Time PCR), la LCR (Ligase Chain Reaction Nucleic Acid Amplification), la hibridación en fase líquida (LPH), y la hibridación ¡n situ, entre otras. Estos ensayos de identificación específica de un determinado hongo utilizan diversos tipos de sondas nucleotídicas de hibridación marcadas principalmente con moléculas no-radioisotópicas tales como la digoxigenina, biotina, fluoresceína o fosfatasa alcalina, a fin de generar una señal detectable al producirse la hibridación específica entre la sonda nucleotídica de hibridación y la secuencia del material genético, ADN y/o ARN, específica identif ¡cativa del microorganismo a identificar. Otra alternativa que asocia el diagnóstico de la infección a la identificación del patógeno y sus peculiaridades es el método de PCR-RFLP (del inglés Restriction Fragment Length Polymorphism), referido a secuencias específicas de nucleótidos en el ADN que son reconocidas y cortadas por las enzimas de restricción generando usualmente patrones de distancia, longitud y disposición diferentes en el ADN de distintos patógenos dentro de una población polimórfica para estos fragmentos de restricción. De entre las técnicas citadas, el procedimiento más ampliamente utilizado es el denominado PCR (Saiki et al., Science, 230, 1350-1354 (1985), Mullís et al., patentes norteamericanas US 4.683.195, US 4.683.202 y US 4.800.159). Esta técnica permite la amplificación exponencial seriada de ácidos nucleicos. Dicha amplificación se consigue mediante ciclos repetitivos de desnaturalización por calor del ácido nucleico a estudio, unión de cebadores complementarios a dos regiones enfrentadas del ácido nucleico a amplificar, y extensión de la secuencia acotada entre los dos cebadores dentro del ácido nucleico, por acción de una enzima polimerasa termoestable. La repetición de ciclos sucesivos en este proceso consigue una amplificación exponencial del ácido nucleico a estudio. Así mismo, este proceso no genera una señal detectable e intrínseca, por lo que el análisis de la presencia del ácido nucleico amplificado requiere un análisis adicional de los productos generados en presencia de un agente intercalante, generalmente mediante electroforesis sobre geles de agarosa o de acrilamida.
A fin de evitar este paso de detección sobre diferentes soportes, se ha desarrollado una variante de la PCR, la PCR en tiempo real o PCR cuantitativa, donde los procesos de amplificación y detección se producen de manera simultánea, sin necesidad de ninguna acción posterior. Además, mediante la detección por fluorescencia de los fragmentos amplificados, se puede medir la cantidad de ADN sintetizado en cada momento durante la amplificación, ya que la emisión de fluorescencia producida en la reacción es proporcional a la cantidad de ADN formado, lo que permite conocer y registrar en todo momento la cinética de la reacción de amplificación (Higuchi R et al. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio/Technology 1993; 11 : 1026-30).
Los métodos de detección estándar mediante amplificación de ADN sobre una muestra biológica para la identificación de hongos, no son útiles para la potencial identificación de múltiples agentes patógenos presentes en la misma muestra, dado que la identificación precisa mediante amplificación depende de la utilización de cebadores específicos para cada una de las especies presentes en la muestra, lo que supone conocer o presuponer previamente las especies presentes. En el caso de utilizar en la reacción de amplificación cebadores genéricos, la identificación está basada en la predominancia del organismo y resulta influenciada por la prevalencia de un hongo sobre otro. Existen evidencias de que en numerosos cuadros clínicos más de un microorganismo puede estar presente en la muestra de análisis, haciendo muy difícil su detección por métodos tradicionales. El método objeto de esta patente es idóneo para la detección de varios hongos patógenos en una sola muestra clínica de manera simultánea sin conocer o presuponer previamente las especies de hongos o levaduras presentes en la muestra.
La detección simultánea y/o la identificación de especies de hongos en una muestra determinada requiere la utilización de diferentes sondas nucleotídicas, de diferentes cebadores en el caso de la PCR, o de diferentes cebadores y/o sondas fluorescentes en el caso de la PCR en tiempo real. Todos han de resultar específicos para cada uno de los hongos a detectar, siendo necesario usualmente realizar ensayos diferentes para identificar cada uno de los hongos en cuestión. Esta necesidad de usar diferentes sondas y cebadores específicos para identificar cada uno de los hongos posiblemente presentes en la muestra complica, tanto el desarrollo experimental de las sondas o cebadores a utilizar, como la viabilidad y el coste del ensayo de identificación de múltiples microorganismos en una misma muestra. Por este motivo los sistemas multiplexados no han conseguido una implantación amplia en la rutina diagnóstica. En el caso de la PCR en tiempo real, el número de especies diferentes a detectar en una misma prueba viene limitado por el número de fluoróforos que el termociclador en el que se realiza el ensayo es capaz de detectar, y en el caso de la PCR denominada en tiempo final, cuya lectura de resultados se realiza mediante electroforesis en gel de agarosa o acrilamida, por la capacidad de resolución de dichos geles de electroforesis. Ejemplos de identificación multiplexada mediante PCR en tiempo real de diferentes especies del género Candida puede encontrarse en Shin, J.H. et al. 1999. Rapid Identification of up to three Candida species in a single reaction tube by a 5' exonuclease assay using fluorescent DNA probes. J Clin.Microbiol. 37, 165-170, y en Selvarangan, R. et al. 2002. Rapid Identification and differentiation of Candida albicans and Candida dubliniensis by capillary-based amplification and fluorescent probé hybridization. J Clin. Microbiol. 40, 4308-4312.
En el caso de la PCR, en general, se han utilizado dos tipos de estrategias: la amplificación de fragmentos génicos altamente conservados en los hongos, con la intención de saber si la etiología de un proceso infeccioso es fúngica o no, y la amplificación de secuencias génicas específicas que permitan la identificación de la especie. Las regiones altamente conservadas del DNA ribosomal son los objetivos más utilizados para su amplificación e identificación mediante PCR. El RNA ribosomal (rRNA) consta de tres genes multicopia: la subunidad larga 25S, la subunidad pequeña 18S y el gen 5.8S, los cuales están separados por las regiones espaciadoras (internal transcribed spacer o ITS), definidas todas ellas por una unidad de secuencia iterativa que se repite múltiples veces (generalmente, el número de iteraciones tienen tanto valor taxonómico como las propias micromodificaciones de la secuencia iterada). En general, estas subunidades tienen secuencias conservadas que permiten el diseño de cebadores universales de la reacción de PCR flanqueando aquellas zonas de la región ITS que presentan una gran variabilidad. Todo ello permite el diseño de sondas específicas para la obtención de amplicones cuya secuencia presente variaciones propias de cada género y especie. Entre 1990 y 2003, se publicaron 560 trabajos de investigación recogidos en el citation index, de los cuales aproximadamente el 84% desarrollaba sistemas de identificación grupo-específica utilizando rDNA.
Ilustrando estas aproximaciones, se han desarrollado grupos degenerados de cebadores pseudo-específicos cuyo blanco era la subunidad 28S del rRNA, como las descritas por Sandhu et al capaces de identificar hasta 5 especies del género Aspergillus, 8 especies de Candida, Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Pseudallescheria boydii y Sporothrix schenckii. (Sandhu GS et al. Molecular probes for diagnosis of fungal infections. J Clin Microbiol 1995;33:2913-2919).
Paralelamente, se han diseñado otros cebadores universales para la identificación de especies de hongos a partir de regiones conservadas y pseudo-variables del gen 18S del rRNA. Así, por ejemplo, Einsele et al. desarrollaron otro grupo de cebadores que fueron probados exitosamente contra 134 especies fúngicas y 85 no fúngicas (Einsele H., et al. Detection and Identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 1997;35:1353-1360.). Otros ejemplos de utilización de estos genes ribosomales pueden encontrarse en Reiss E, et al. (1998) Molecular diagnosis and epidemiology of fungal infections. Med Mycol 36, 249-57.
Ejemplos de utilización de las regiones espaciadores ITS para el desarrollo de cebadores e identificación género-específica de hongos mediante la reacción de PCR pueden encontrarse, entre otros, en: Hinrikson HP, et al. Assessment of ribosomal large- subunit D1-D2, internal transcribed spacer 1 , and internal transcribed spacer 2 regions as targets for molecular Identification of medically important Aspergillus species. J ClinMicrobiol 2005; 43:2092-103; Hsiao CR et al. Identification of medically important molds by an oligonucleotide assay. J Clin Microbiol 2005; 43:3760-8; Iwen PC, et al. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 2002; 40:87-109, y Lindsley MD et al. Rapid Identification of dimorphic and yeast-like fungal pathogens using specific DNA probes. J Clin Microbiol 2001 ;39:3505-3511. Otro grupo de genes multicopia comúnmente utilizados para su amplificación e identificación mediante PCR son los pertenecientes a la familia de las aspartyl-proteinasas secretadas por levaduras y otros hongos (Flahaut M et al. (1998) Rapid detection of Candida albicans in clinical samples by DNA amplification of common regions from C. albicans- secreted aspartic proteinase genes. J Clin Microbiol 36, 395-401). Además, hay múltiples ejemplos de genes de copia simple en el genoma que han sido utilizados para la identificación precisa de la especie de hongo presente en una muestra, como por ejemplo el gen de la P450 lanosterol-14a demetilasa (Burgener-Kairuz P. et al. (1994) Rapid detection and Identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species specific nested PCR amplification of a cytochrome P- 450 lanosterol- alpha-demethylase (L1A1) gene fragment. J Clin Microbiol 32, 1902-7), el gen de la actina de las levaduras (Kan VL. (1993) Polymerase chain reaction for the diagnosis of candidaemia. J Infecí Dis 168, 779-83) y el gen denominado HSP 90 (Crampin AC, et al. (1993) Application of the polymerase chain reaction to the diagnosis of candidosis by amplification of an HSP 90 gene fragment. J Med Microbiol 39, 233-8).
Otros métodos moleculares al margen de la PCR, basados en la utilización como marcadores de los genes ribosomales para la identificación específica de levaduras y hongos son los denominados NASBA, RFLP, FISH, los microarrays de ácidos nucleicos y la secuenciación fragmentos nucleotídicos obtenidos por restricción.
El NASBA (Nucleic Acid Sequence Based Amplification), es una técnica específica y muy sensible de amplificación de ácidos nucleicos que se sirve de un cóctel enzimático formado por una reverso transcriptasa, una RNAsa H y una T7 RNA polimerasa en un proceso de amplificación isotérmica para la detección de una secuencia nucleotídica específica. Esta técnica ha sido utilizada para la identificación de especies del género Candida mediante la identificación de secuencias especie-específicas del gen 18S del RNA ribosomal de los hongos, (Widjojoatmodjo MN, et al. (1999) Nucleic acid sequence-based amplification (NASBA) detection of medically ¡mportant Candida species. J Microbiol Methods 38, 81-90; Loeffler J, et al. (2003) Development and evaluation of the Nuclisens Basic Kit NASBA for the detection of RNA from Candida species frequently resistant to antifungal drugs. Diagn Microbiol Infect Dis 45, 217-20).
La técnica de RFLP (Restriction Fragment Lengt Polymorphism) permite establecer la taxonomía intraespecífica e interespecífica de diferentes microorganismos mediante el análisis de patrones de bandas, derivados de la digestión mediante endonucleasas de sus respectivos cromosomas. Estos patrones, conocidos como perfiles específicos de restricción, se originan mediante la actividad endonucleásica de las citadas enzimas de restricción. Cuanto menor sea el tamaño de la secuencia nucleotídica reconocida como diana, mayor será el número de fragmentos que se generen. Los fragmentos se separan mediante electroforesis en gel de agarosa, obteniéndose perfiles de restricción característicos. Los perfiles dependerán de la enzima de restricción empleada así como del ADN cromosómico de partida. La comparación entre los perfiles permite diferenciar varias especies entre sí o incluso poblaciones o cepas dentro de una misma especie. Utilizando esta técnica, Trost el al. identificaron 16 especies de levaduras de importancia clínica, entre ellas C. tropicalis, C.parapsilosis, C. krusei y C. glabrata, especies de difícil identificación por métodos tradicionales (Trost A. et al. Identification of clinically relevant yeasts by PCR/RFLP. J Microbiol Meth 2004;56:201-211). Los principales problemas que presenta esta técnica son la complejidad de realización, la dificultad en la interpretación en caso de que se produzca un elevado número de bandas por cada perfil enzimático, y la práctica imposibilidad de interpretar un patrón de bandas en caso de realizar el análisis de restricción sobre una muestra que contenga dos microorganismos con patrones de restricción semejantes.
La hibridación fluorescente in situ, FISH (Fluorescent in situ hybridisation), es una técnica que consiste en la utilización de sondas oligonucleotídicas marcadas con fluorescencia que hibridan con sus secuencias complementarias en el ADN a identificar, que ha sido utilizada en la detección y diferenciación de diversas especies del género Candida, usando para ello secuencias nucleotídicas especie-específica del gen 18S rRNA (Lischewski, A. et al. 1997. Detection and Identification of Candida species in experimentally infected tissue and human blood by rRNA-specific fluorescent in situ hybridization. J Clin. Microbiol. 35, 2943-2948). Un nuevo método de FISH, que usa sondas oligonucleótidas- peptídicas denominadas PNA (peptide nucleic acid) ha sido desarrollado por la empresa AdvanDx para la identificación de diversas especies del género Candida en base a secuencias especie-específicas altamente estructuradas del gen 25S del RNA ribosomal, aplicando estas sondas PNA directamente sobre un frotis procedente de un hemocultivo positivo de la muestra clínica, siendo los resultados visualizados mediante un microscopio de fluorescencia tras la hibridación y lavado del frotis (Kempf VAJ, et al. (2000) Fluorescent in situ hybridization allows rapid Identification of microorganisms in blood cultures. J Clin Microbiol 38, 830-8, y Trnovsky J. et al. Rapid and accurate Identification of Candida albicans isolates by use of PNA FISHFIow. J Clin Microbiol. 2008 Apr;46(4): 1537-40). Los microarrays de ácidos nucleicos, generalmente ADN, se han empezado a utilizar en la identificación de especies y de cepas de hongos, así como de su sensibilidad a diversos fármacos antifúngicos. Los microarrays de ADN son grupos microscópicos de sondas oligonucleotídicas de longitud variable y diseño conocido inmovilizadas sobre un soporte sólido, sobre las cuales se depositan e hibridan los ácidos nucleicos previamente purificados de la muestra a analizar. Las secuencias nucleotídicas de la muestra perfectamente complementarias que hibridan perfectamente con las sondas oligonucleotídicas fijadas en el microarray generan una señal fluorescente que es detectada mediante un escáner fluorescente, identificándose posteriormente mediante análisis informático las secuencias presentes en la muestra. De esta manera, se pueden detectar cientos de secuencias en un mismo proceso de hibridación. Ejemplos de utilización de microarrays en la detección y tipado de hongos y otros microorganismos patógenos pueden encontrarse en Wang, R. F. et al, Molecular and Cellular Probes 223-224 (2004); Lehner, A. et al., FEMS Microbiol. Letter 133-142 (2005), en las patentes WO 2007/039319, EP 1310569, WO 92/07096 y US 6747137. . Sin embargo, esta técnica tiene un coste económico alto en maquinaria y en reactivos, necesitándose programas informáticos más o menos complejos para el diseño de los microarrays y su posterior interpretación de resultados una vez realizada la hibridación. Además, se requiere el diseño e interpretación de controles adicionales formados por sondas oligonucleotídicas adicionales que indiquen si se han producido hibridaciones inespecíficas en el caso de que el tamaño de estas sondas oligonucleotídicas inmovilizadas sobre la superficie sólida sea inferior a los 40 pares de bases con el consecuente incremento en la complejidad del microarray y, en consecuencia, la gran dificultad de obtener unas condiciones de hibridación consenso para todas las sondas que aseguren un resultado reproducible y confiable (Stears, R.L. et al., Nat. Med. 9:140-145 (2003)),
Los métodos de detección molecular de hongos antes citados, exceptuando el método FISH que también puede utilizar las sondas oligonucleótido-peptídicas PNAs, como en el formato comercializado por la empresa AdvanDx, requieren en todos los casos la extracción y purificación de los ácidos nucleicos de la muestra previamente a la realización del ensayo de identificación. En el caso de los hongos, debido a las especiales características de su pared celular, esta extracción y purificación de los ácidos nucleicos requiere en todos los casos un paso previo de lisis para liberar el ADN o el ARN del hongo, generalmente utilizando micropartículas abrasivas que fragmentan las diferentes cubiertas que se asocian y rompen la pared celular de los hongos por fricción. Los métodos de lisis, extracción y purificación de ácidos nucleicos a partir de hongos son diversos, en su mayor parte con un gran componente de manipulación manual -al menos en la parte de la lisis- y no están suficientemente estandarizados más allá de los kits basados en ruptura física como los anteriormente mencionados. Esta falta de estandarización y el exceso de manipulación manual generan un factor de incertidumbre adicional a las pruebas de detección molecular de hongos, que se traduce en muchos casos en falta de reproducibilidad, tasa significativa de falsos negativos y baja de sensibilidad.
El método descrito en la presente invención no presenta estos problemas, pues no requiere de estos procedimientos de lisis previa, extracción y purificación de ácidos nucleicos, al realizarse la amplificación de ácidos nucleicos directamente desde un precultivo de la muestra a analizar. El protocolo, validado sobre un pool de 48 muestras procesadas según el protocolo standard (ie. Aislamiento en agar cromogénico y caracterización posterior mediante técnicas de microscopía -tinción de Gram- y sistemas homologados en clínica -API 20c AUX [Biomerieux] y sistema VITEC [Biomerieux]), sólo requiere la deposición de una gota de hemocultivo preincubado sobre un soporte tipo card para secado y taladrado de una pequeña porción, que será directamente sometida a detección, previa amplificación in situ del material genético perteneciente al hongo/s o levadura/s inmovilizados.
Con el fin de poder distinguir entre especies y entre cepas o genotipos dentro de la misma especie, o mostrar variaciones genéticas tales como la presencia de factores de resistencia o virulencia dentro de una misma especie de levadura o de hongo filamentoso, la obtención de la secuencia nucleotídica desde su material genético constituye en muchos casos la única posibilidad de diferenciación, y en cualquier caso, la más precisa, al reflejar la propia constitución genética del microorganismo sujeto a análisis. Esta secuencia nucleotídica puede ser obtenida usando protocolos de secuenciación convencionales, basados en el procedimiento descrito por Sanger y Coulson en 1975 (Sanger F, Coulson AR. "A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase". J Mol Biol. Mayo 25, 1975, 94(3):441^448 y Sanger F, Nicklen s, y Coulson AR, "DNA sequencing with chain-terminating inhibitors", Proc Nati Acad Sci U S A. 1977 Diciembre; 74(12): 5463-5467). Estos métodos están basados en el empleo de dideoxinucleótidos (ddNTPs) que carecen de uno de los grupos hidroxilo, de manera que cuando uno de estos nucleótidos se incorpora a una cadena de ADN en crecimiento, está cadena no puede continuar elongándose, ya que la enzima ADN polimerasa utilizada para realizar la elongación necesita un extremo 3' OH para añadir el siguiente nucleótido y el deoxinucleótido incorporado carece de este grupo hidroxilo. Posteriormente, se utilizan procedimientos electroforéticos, en gel o mediante electroforesis capilar automatizada, para resolver la secuencia nucleotídica en tripletes de incorporación para cada especie de dideoxinucleótidos. Estos procedimientos electroforéticos son de difícil introducción en la práctica clínica, debido principalmente a su coste económico y al tiempo que se requiere para el análisis.
Ejemplos de aplicación de la secuenciación convencional basada en el método Sanger en la identificación de levaduras y hongos filamentosos pueden encontrarse en Shanley D et al. (1997) Molecular and phenotypic analysis of Candida dubliniensis: a recently identified species linked with oral candidosis in HlV-infected patients. Oral Dis 3, 96- 101.87; Botterel F. et al. (2001) Analysis of microsatellíte markers of Candida albicans used for rapid typing. J Clin Microbiol 39, 4076-81 ; Aanensen DM, Spratt BG. (2005) The multilocus sequence typing network: mlst.net. Nucleic Acids Res 33, W728-W733; Roberts, D. et al. (2004) Experience with the MicroSeq D2 Large-Subunit Ribosomal DNA Sequencing Kit for Identification of Filamentous Fungí Encountered in the Clinical Laboratory, Journal of Clinical Microbiology p.622:626.
La elevada demanda de secuenciación de bajo coste que se ha generado desde el planteamiento de iniciativas como el Proyecto Genoma Humano y sus derivaciones a otros modelos animales, vegetales y microbianos, principalmente, ha dado lugar a la aparición de nuevas tecnologías de secuenciación. Una de estas nuevas tecnologías de secuenciación es la denominada "secuenciación mediante síntesis", la cual utiliza el proceso de síntesis de ADN por ADN polimerasa para identificar las bases presentes en la molécula complementaria de ADN. Básicamente, los diversos métodos de secuenciación mediante síntesis desarrollados hasta el momento consisten en marcar el cebador oligonucleotídico o los terminadores con un compuesto fluorescente, para posteriormente activar la reacción de secuencia. Los productos de la reacción se detectan directamente durante la electroforesis al pasar por delante de un láser que excitando los fluoróforos permite detectar la fluorescencia emitida.
Uno de los métodos de secuenciación más difundidos mediante síntesis es la pirosecuenciación, técnica que utiliza la polimerización del ADN dependiente de la enzima ADN polimerasa para polimerizar nucleótidos en secuencia. El proceso se completa incorporando cada vez un tipo de deoxinucleótidos diferente para detectar y cuantificar después el número y especie de nucleótido añadido a una determinada localización por medio de la luz emitida en la liberación de los pirofosfatos (subproductos de la extensión por polimerización de la cadena de ADN). Descripciones de esta técnica pueden encontrarse en M. Margulies, et al. "Genome sequencing in microfabricated high-density picolitre reactors". 2005. Nature 437, 376-380 y en M. Ronaghi, S. et al. "Real-time DNA sequencing using detection of pyrophosphate reléase". 1996. Analytical Biochemistry 242, 84:89. Métodos de secuenciación utilizando la pirosecuenciación pueden encontrarse en las solicitudes de patentes W01998/028440 y WO2000/043540, asignadas a Pyrosecuencing AB, y WO2005/060345, asignada a Biotage AB. Debido a las limitaciones inherentes a la técnica, la pirosecuenciación únicamente permite la secuenciación de fragmentos cortos de ADN, con un máximo de entre 50 y 80 nucleótidos por reacción completada.
La pirosecuenciación está empezando a ser una técnica ampliamente utilizada para identificar la especie a la que pertenecen microorganismos patógenos, tanto bacterias como hongos, cuya presencia se sospecha o que ya ha sido previamente comprobada por otros métodos de identificación, tales como la PCR en tiempo real. Su aplicación sobre muestras clínicas permite incluso efectuar la identificación de factores de patogeneidad y/o resistencias a antibióticos de determinadas bacterias, pero no existe en la actualidad un método de pirosecuenciación que pueda ser utilizado en la identificación taxón-específica de hongos a partir de muestras clínicas, de alimentos o medioambientales, sin tener un conocimiento previo del grupo genérico al que pertenece el/los hongo/s que se encuentran en esa muestra, así como para la identificación simultánea de varios hongos presentes en una muestra, sin conocer ni sospechar previamente qué hongos pueden encontrarse en ella.
Se citan a continuación, a modo de referencia, diversos ejemplos de la utilización focalizada de esta técnica en el campo de la identificación y genotipado de hongos, así como de susceptibilidad a fármacos antifúngicos con aplicación clínica diseminada (dermatológica, sistémica... etc.): Boyanton, B. L.et al.. DNA pyrosequencing-based Identification of pathogenic Candida species by using the internal transcribed spacer 2 región. Arch Pathol Lab Med 2008. 132, 667-74; Gharizadeh B. et al, Identification of medically important fungi by the PyrosequencingTM technology. Mycoses. 2004 Feb; 47(1- 2):29-33. Montero, C. I. et al,."Evaluation of Pyrosequencing(R) technology for the Identification of clinically relevant non-dematiaceous yeasts and related species. Eur J Clin Microbiol Infecí Dis 2008. Trama JP et al. Detection of Aspergillus fumigatus and a Mutation That Confers Reduced Susceptibility to Itraconazole and Posaconazole by Real-Time PCR and Pyrosequencing. J. Clin. Microbiol., Feb 2005; 43: 906 - 908. Trama JP et al. Detection and Identification of Candida species associated with Candida vaginitis by real-time PCR and pyrosequencing. Mol Cell Probes, Apr 2005; 19(2): 145-52. Wiederhold, N. P.et al. Pyrosequencing to Detect Mutations in FKS1 that Confer Reduced Echinocandin Susceptibility in Candida albicans. Antimicrob. Agents Chemother. 2008. AAC.00959-08.
En la amplificación de ácidos nucleicos mediante estas técnicas (amplificación que también es utilizada en los procedimientos de secuenciación mediante síntesis), cada uno de los componentes que intervienen en la reacción, es decir, la enzima ADN polimerasa, el tampón de reacción con los aditivos mejorantes de la reacción o estabilizantes, el cloruro de magnesio, o cloruro de manganeso en caso de RT, los oligonucleótidos utilizados como cebadores de la reacción, los desoxirribonucleótidos (dATP, dCTP, dGTP y dTTP) y la muestra conteniendo el ácido nucleico a amplificar, se encuentran por separado, conservados mediante congelación, y deben ser mezclados de manera previa a la realización de la reacción, siendo necesario añadir y mezclar cantidades muy pequeñas (microlitros) de cada uno de ellos. Esta acción produce frecuentes errores en la administración y pipeteo de cada uno de los reactivos citados, lo que acaba generando una incertidumbre acerca de la reproducibilidad de los resultados obtenidos mediante la aplicación de estas técnicas, incertidumbre especialmente preocupante en el caso del diagnóstico humano. Esta variabilidad por la posibilidad de error en el pipeteo de los diversos reactivos a añadir a la reacción de amplificación también afecta a la sensibilidad de la técnica, lo cual genera una nueva incertidumbre acerca de la aplicación de estas técnicas en el diagnóstico humano de enfermedades, y especialmente en la determinación de niveles de infección y de niveles de expresión génica.
Además, durante el pipeteo y adición a la mezcla de reacción de la muestra a analizar, se producen aerosoles que frecuentemente producen contaminaciones cruzadas entre muestras a analizar (Kwok, S. et al., Nature, 1989, 339:237 238), generándose resultados falsos positivos, de gran transcendencia en el caso del diagnóstico humano.
Se han desarrollado diversos sistemas de preparación y estabilización de actividades enzimáticas con el objetivo de evitar errores inherentes a la excesiva manipulación que habitualmente requiere su utilización, así como para eliminar problemas de contaminaciones cruzadas. La solicitud de patente WO 93/00807 describe un sistema para la estabilización de biomateriales durante el proceso de liofilización. Otras referencias son las patentes y documentos que se indican a continuación: US 5.861.251 asignada a Bioneer Corporation; WO 91/18091 , US 4.891.319 y US 5.955.448, asignadas a Quadrant Holdings Cambridge Limited; US 5.614.387, asignada a Gen-Probe Incorporated; US 5.935.834, asignada a Asahi Kasei Kogyo Kabushiki Kaisha, y las publicaciones: Pikal M.J., BioPharm 3:18-20, 22- 23, 26-27 (1990); Carpenter et al., Cryobiology 25:459-470 (1988); Roser B., Biopharm 4:47- 53 (1991); Colaco et al, Bio/Technol. 10:1007-1011 (1992); y Carpenter et al., Cryobiology 25:244-255 (1988).
Biotools Biotechnological & Medical Laboratories, S.A, ha desarrollado un sistema de estabilización mediante gelificación de mezclas complejas de biomoléculas que permite la estabilización de mezclas de reacción durante largos periodos de tiempo en las más variadas condiciones de almacenamiento (WO 02/072002). Mediante la utilización de este sistema se han conseguido estabilizar mezclas de reacción complejas, tales como mezclas para reacciones de amplificación génica, que contienen todos los reactivos necesarios para la realización del experimento, alicuotados en viales independientes "listos para usar" (ready-to-use), en los que únicamente es necesario reconstituir la mezcla de reacción y añadir el ácido nucleico problema.
En resumen, actualmente existe una demanda creciente de métodos diagnósticos capaces de identificar hongos de una manera rápida y precisa en muestras clínicas, evitando contaminaciones cruzadas y simplificando la compleja manipulación humana que generalmente requieren los métodos moleculares anteriormente descritos, mejorando sustancialmente la reproducibilidad y confiabilidad de los resultados diagnósticos obtenidos. En situaciones de emergencia clínica causadas por septicemia fúngica, la identificación certera, rápida y precisa del hongo o de los hongos presentes y/o causantes de la infección o potencial futura infección es una necesidad de primer orden en la práctica médica para la prescripción del mejor tratamiento disponible adecuado. Esta necesidad diagnóstica rápida, precisa, reproducible y de sencilla realización no se encuentra satisfecha en la actualidad.
La presente invención tiene por propósito satisfacer esta necesidad de identificación taxón-específica simultánea, rápida, precisa, reproducible y de sencilla realización de los hongos presentes en una muestra clínica, así como de su potencial patógeno más su susceptibilidad a fármacos antifúngicos, cuando no se conoce previamente el tipo de hongo u hongos que se encuentran presentes en la muestra mediante el método y kit objetos de la invención.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Flujo de identificación definido por el protocolo de identificación descrito en la patente y que resultó aplicado a las 48 muestras con las que se realizó el ensayo descrito en el ejemplo 1. Tal y como puede comprobarse, el flujo estandarizado con este procedimiento permite prescindir del proceso de purificación previo a la detección, que pasa a ser opcional y sólo recomendable en casos de multiinfección fúngica, que generan señales de pirosecuencia más baja por interferencia.
Figura 2: Resumen de los resultados de identificación obtenida para las 48 muestras sometidas a análisis según el procedimiento recogido en esta patente.
OBJETO DE LA INVENCIÓN
La presente invención consiste en un nuevo método rápido, preciso y de sencilla manipulación para diferenciación e identificación de hongos y levaduras presentes en una muestra biológica, así como el kit correspondiente para llevar a cabo el método de la invención.
Si bien el método de la presente invención se dirige a la diferenciación e identificación de hongos y levaduras en general, se contempla en particular la aplicabilidad del método en cualquiera de los diversos hongos microscópicos unicelulares definidos por su capacidad para realizar la descomposición mediante fermentación de cuerpos orgánicos. Igualmente, el método permite la identificación de las levaduras consideradas verdaderas pertenecientes a la clase Ascomycota. Por tanto, este procedimiento permite la identificación de todos los hongos con predominio de una fase unicelular en su ciclo de vida (incluyendo a los hongos Basidiomicetes) presentes en una muestra.
El método de la invención comprende el análisis por secuenciación (método de secuenciación mediante síntesis) de una región amplificada de 500bp correspondientes a la fracción codificante para el RNA ribosomal 18S, obteniéndose un patrón genético taxón- específico basado en la secuencia nucleotídica obtenida. Consecuentemente, el kit de la presente invención contiene estabilizados por gelificación y posteriormente secados hasta un grado de humedad del 10% al 30%, los reactivos necesarios para llevar a cabo dicho método. Para la realización de esta identificación taxón-específica no es necesario el conocimiento previo ni la suposición de la familia, del género ni de la especie del hongo/s o levadura/s contenidas en la muestra. Preferentemente, el método de secuenciación utilizado es la secuenciación mediante síntesis, y dentro de los diversos métodos de secuenciación mediante síntesis que se utilizan en la actualidad, el método utilizado preferentemente es la pirosecuenciación, si bien podría ser utilizado cualquier otro método de análisis de secuencias de ácidos nucleicos actualmente utilizado o por utilizar en un futuro. Las secuencias nucleotídicas que identifican a cada uno de los hongos y levaduras son bien conocidas, y se encuentran disponibles en diversas bases de datos genéticas publicadas, tales como GenBank y EMBL, entre otras.
Mediante la utilización de la pirosecuenciación y de la estabilización mediante el proceso de gelificación de los diversos reactivos que intervienen en la pirosecuenciación en cada uno de los pocilios de las placas en las que se realiza el análisis, se obtiene un resultado diagnóstico rápido, fiable y con una muy baja manipulación manual.
Además, sorprendentemente, al llevar a cabo la estabilización mediante el proceso de gelificación por adición al medio de una solución acuosa estabilizante y posterior secado hasta un grado de humedad entre un 10% y un 30%, se obtiene la ventaja inesperada de una mejora en la resolución de entre un 75% y un 90%, incluso en tamaños de secuencias normales (30-50 bases). Como consecuencia de dicha ventaja se puede obtener también una secuenciación de fragmentos que son entre un 20% y un 35% más largos que los obtenidos con los métodos que no incluyen dicha estabilización.
La presente invención permite además en un único análisis la identificación múltiple de las diversas especies de hongos y levaduras que pudieran estar presentes en la muestra biológica, sin necesidad de tener un conocimiento previo ni suposición del tipo que pudieran estar presentes, utilizando para ello únicamente un par de cebadores para secuenciar dos regiones de valor taxonómico dentro del fragmento de 500bp amplificado, cuyo valor taxonómico permite solapar la información generada por cada secuencia avanzando en el proceso de identificación de los niveles de Familia a Género y finalmente a Especie entre las variantes patógenas o potencialmente patógenas.
Adicionalmente, la presente invención permite descartar falsos negativos procedentes de hemocultivos. Por ejemplo, en la Tabla 1 se muestra el porcentaje de resultados identificados con éxito a nivel de especie, género y familia sobre 48 muestras de hemocultivo positivas tras la incubación y porcentaje de resultados identificados con éxito a nivel de especie, género y familia sobre 12 muestras de hemocultivo negativas tras la incubación. % De identificación Taxón Familia Taxón Género Taxón Especie
Hemocultivo positivo 100% 99% 82%
Hemocultivo negativo 35% 35% 8%
TABLA 1 : Se muestra el porcentaje de resultados identificados con éxito a nivel de especie, género y familia
Debido a la gran sensibilidad del análisis es imprescindible la utilización de una enzima ADN polimerasa ultrapurificada (libre de cualquier contaminación con ADN bacteriano o de levadura, que pudiera generarse durante el proceso de síntesis biológica de la enzima) en el paso de secuenciación mediante síntesis, pues la presencia de este ADN contaminante puede dar lugar a falsos positivos que modificarían el resultado del diagnóstico (CE. Corless, J. Clin. Microbiol, 2000, 1747-1752). Esta posible contaminación es especialmente importante cuando la enzima ADN polimerasa ha sido sintetizada como recombinante en un modelo eucariota tipo Candida albicans, pues el fenómeno de carry-over supondría la identificación como positiva de la levadura empleada en el proceso industrial de producción. Además, dada la proximidad evolutiva existente, el incremento exponencial en el número de copias inherente a la amplificación de ácidos nucleicos exige el uso de una enzima ADN polimerasa de alta fidelidad de copia, con el fin de evitar la introducción de mutaciones puntuales en los ciclos iniciales de amplificación que pudieran falsear la secuencia obtenida. Esta alteración de la secuencia obtenida supondría un resultado erróneo del análisis. El kit descrito en esta patente incorpora la enzima BlackZyme ADN polimerasa ultrapura, comercializada por 2B BlackBio S.L., para evitar este problema.
Más concretamente, la presente invención consiste en un proceso que no requiere necesariamente un paso inicial de extracción genérico mediante técnicas estandarizadas, manuales o automatizadas, sino que comienza con un proceso de amplificación inicial del ADN ribosomal de mayor conservación, que permite -mediante la utilización de una sóla reacción de amplificación y dos reacciones de secuenciación diferentes y simultáneas- una identificación en paralelo de los resultados generados por la secuenciación para alcanzar los niveles taxonómicos de identificación a nivel de Género, Familia y Especie. Esta amplificación inicial de la región ribosomal seleccionada tiene como objeto la generación de un fragmento marcado por biotinilización en el extremo 3ΌΗ, que será posteriormente inmovilizado, aislado por desnaturalización básica de la doble hélice generada y, finalmente, secuenciado. Este proceso de amplificación se realiza en una placa multipocillo en la cual cada uno de los pocilios contiene todos los reactivos necesarios para realizar la amplificación específica para el proceso de secuenciación posterior, es decir, BlackZyme ADN polimerasa ultrapura y de alta fidelidad de copia, cebadores biotinilados descritos en la presente invención, deoxinucleótidos a incorporar en la reacción de amplificación (dATP, dCTP, dGTP, dTTP), y el tampón de reacción optimizado. Previo a la reacción de amplificación, todos estos reactivos son estabilizados mediante gelificación según el proceso descrito en la patente WO 02/072002, de manera que para realizar esta amplificación únicamente es necesario agregar agua bidestilada y el ácido nucleico pues el resto de los reactivos necesarios ya se encuentran dispensados previamente sobre la placa multipocillo a las concentraciones precisas requeridas.
El producto biotinilado obtenido mediante la reacción de amplificación anterior constituyen el sustrato para la reacción de pirosecuenciacion inmediatamente posterior. Este producto biotinilado no requiere ser purificado previamente a su transferencia a la segunda placa en la cual se lleva a cabo el proceso de pirosecuenciacion.
Esta segunda placa contiene en cada pocilio todos los reactivos necesarios para llevar a cabo la reacción de pirosecuenciacion sobre el fragmento marcado en la amplificación previa. Estas enzimas y reactivos incorporados a cada uno de los pocilios de la placa son la ADN polimerasa ultrapura y de alta fidelidad, ATP-sulfurilasa, Luciferasa, Apirasa, cebador de secuenciación, luciferina, adenosin-5'-fosfosulfato (APS), deoxinucleótidos a incorporar en la reacción de extensión de la cadena de ADN a secuenciar (dATP, dCTP, dGTP, dTTP), y el tampón de reacción. Todos estos reactivos se encuentran estabilizados mediante gelificación según se describe en la patente WO 02/072002, a las concentraciones precisas requeridas para completar la reacción de secuenciación mediante síntesis.
Se ha comprobado que los componentes integrantes de la mezcla de gelificación descritos en la patente WO 02/072002, estabilizan los reactivos y enzimas que intervienen en las reacciones, tanto de amplificación como de pirosecuenciacion posterior, mejorando el rendimiento de la capacidad de resolución y consiguiéndose como consecuencia, la secuenciación de fragmentos oligonucleotídicos más largos que los que es posible secuenciar cuando estos reactivos y enzimas no se encuentran estabilizados mediante gelificación. La mejora entre un 75% y un 90% de la resolución de la pirosecuenciacion es inesperada y además importante para llegar a obtener cifras de hasta el 100% de certidumbre en la identificación de los hongos y/o levaduras en la muestra.
Por indeterminación de secuencia se considera la no determinación precisa de la base nucleotídica que compone la secuencia del ácido nucleico. Al añadir la mezcla estabilizante, se observa una sustancial mejora de la discriminación entre el pico de emisión que corresponde al nucleótido que se incorpora y el ruido de fondo causado por el resto de los sustratos de la reacción de pirosecuenciación. La calidad viene determinada por lo bien definido que queda el pico.de emisión de un dNTP que se integra a la secuencia, generando una intensidad que claramente lo diferencia del ruido e interferencia del fondo. Por eso, en el caso de la mezcla no gelificada, sólo se obtienen las tres primeras bases de máxima calidad según el algoritmo del pirosecuenciador porque a partir de la tercera ronda, el fondo se diferencia cada vez menos de los picos de emisión correspondientes a cada dNTP incorporado.
Concretamente, se considera especialmente beneficiosa la mezcla de gelificación formada por trehalosa, melezitosa, glucógeno o rafinosa, y lisina o betaína, en la reacción de pirosecuenciación.
Las secuencias obtenidas tras el proceso de secuenciación mediante síntesis son comparadas con las secuencias depositadas y anotadas en bases de datos públicas con el fin de obtener la identificación precisa de los microorganismos presentes en la muestra a analizar. El alineamiento de las secuencias generadas es totalmente compatible con los motores de búsqueda de uso estandarizado en investigación y clínica pudiendo ser realizado, por ejemplo, utilizando el motor de búsqueda BLAST sobre la base de secuencias GenBank (NCBI), Assemble, ATCC, NCBI, etc.
El alineamiento de las secuencias exactas obtenidas mediante la pirosecuenciación en la presente invención, permite identificar con una certeza superior al 99% qué especie de hongo o levadura patógena está presente en la muestra.
La composición y los reactivos descritos pueden ser empaquetados en kits individuales. El kit que incorpora la presente invención está compuesto por una primera placa multipocillo que contiene en cada pocilio uno de los cebadores nucleotídicos marcados en su extremo 3' OH mediante biotina, o cualquier otro tipo de mareaje utilizable para la amplificación, tales como fluoróforos, necesarios para la obtención de los fragmentos secuenciables marcados, junto con todos los reactivos necesarios para una amplificación libre de DNA contaminante (enzima ADN polimerasa ultrapura y de alta fidelidad, deoxinucleótidos y tampón de reacción), dosificados a las concentraciones óptimas para la generación de la reacción de amplificación, todos ellos premezclados y estabilizados mediante gelificación. Los fragmentos resultantes de esta amplificación podrían ser secuenciados mediante cualquier método conocido de secuenciación, siendo la secuencia obtenida identificativa de la especie de hongo o levadura presentes en la muestra. Preferentemente, estos fragmentos resultantes de esta amplificación son secuenciados mediante técnicas de secuenciación mediante síntesis, y más preferentemente, mediante la técnica denominada pirosecuenciación.
En esta primera placa anteriormente descrita se obtienen los fragmentos marcados secuenciables, y que son transferidos tras purificación a una segunda placa que en cada pocilio contiene premezclados todos los elementos necesarios para llevar a cabo la reacción de secuenciación, a las concentraciones óptimas para la generación de la reacción de amplificación, y estabilizados mediante gelificación. En el caso preferente de la utilización de la pirosecuenciación, estos elementos necesarios que se encuentran premezclados y estabilizados son: la ADN polimerasa ultrapura y de alta fidelidad, ATP-sulfurilasa, Luciferasa, Apirasa, cebador de secuenciación (según lo descrito anteriormente), luciferina, adenosin-5'-fosfosulfato (APS), deoxinucleótidos a incorporar en la reacción de extensión de la cadena de ADN a secuenciar (dATP, dCTP, dGTP, dTTP), y el tampón de reacción.
Se prevén otras aplicaciones del método y kit de la presente invención, tales como, caracterización de un cultivo polifúngico para investigación, etc. En estos casos, podrá ser necesario realizar una extracción genérico como paso previo a la amplificación así como purificar el producto biotinilado previo a su transferencia a la placa en la cual se lleva a cabo la pirosecuenciación, utilizando para ello el procedimiento e instrumentación recomendados por el fabricante del aparato seleccionado para la secuenciación mediante síntesis. Dicho proceso de purificación podrá ser realizado en tres pasos y requerirá un sistema de dispensación conectado a una bomba de vacío.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En la presente invención, se entiende por "identificación taxón-específica" la capacidad que tiene un determinado método analítico de distinguir e identificar a nivel taxonómico de especie, un determinado hongo o levadura entre otras varias especies de microorganismos que pudieran estar presentes o no en la muestra a analizar. Por "muestra" se entiende cualquier tipo de muestra que potencialmente pudiera contener microorganismos potencialmente patógenos tipo hongos y/o levaduras, y la cual es posible analizar mediante el método indicado en la presente invención, bien directamente o bien indirectamente, por ejemplo mediante cultivo microbiano realizado a partir de la muestra inicial. La muestra puede ser de sangre, orina, líquido cefalorraquídeo, esputo, secreción nasal, o cualquier otro tipo de fluido o secreción corporal, o muestra superficial tomada por contacto, procedente tanto de humanos como animales, o el cultivo microbiano de cualquier tipo o formato, realizado a partir de estos fluidos. La muestra también puede proceder de alimentos o líquidos alimentarios, tanto destinados a humanos como para animales, o del cultivo microbiano realizado a partir de estos alimentos, o de muestras tomadas en el medio ambiente, tales como aguas, suelos o aire, concentradas o no, o del cultivo microbiano realizado a partir de dichas muestras medioambientales.
Por "oligonucleótido" se entiende un polímero monocatenario integrado por, al menos, dos subunidades nucleotídicas unidas entre sí mediante un enlace de tipo covalente o interacción fuerte equivalente. Los grupos azúcares de las subunidades nucleotídicas pueden ser ribosa, deoxiribosa, o modificaciones derivadas de estos azúcares. Las unidades nucleotídicas de un oligonucleótido pueden estar unidas por enlaces fosfodiester, fosfotioato, metilfosfoato, o cualquier otro enlace que no evite la capacidad de hibridación del oligonucleótido. Además, un oligonucleótido puede contener nucleótidos no comunes o moléculas no nucleotídicas, tales como péptidos. Tal y como es utilizado en la presente invención, un oligonucleótido es un ácido nucleico, preferentemente ADN, pero pudiendo ser ARN, o una molécula que contiene una combinación de ribonucleótidos o deoxiribonucleótidos covalentemente unidos.
El término "cebador" hace referencia a un oligonucleótido que actúa como punto de iniciación de la síntesis enzimática del ADN bajo condiciones en las cuales la polimerización de los nucleótidos se produce a partir del citado cebador, extendiéndolo, e introduciendo los nucleótidos de manera complementaria a la cadena de ácido nucleico que sirve como molde. Esta elongación de la cadena se produce en unas condiciones apropiadas de temperatura y de tampón de reacción. En la presente invención, el cebador es preferiblemente un oligonucleótido monocatenario de longitud comprendida entre 15 y 40 nucleótidos.
En la presente invención los términos "ácido nucleico", "oligonucleótido" y "cebador" hacen referencia a fragmentos oligoméricos integrados por nucleótidos. Estos términos no deben ser limitados por su longitud expresada en forma de nucleótidos que integran el polímero lineal, siendo los YTucleótidos que los componen deoxiribonucleótidos conteniendo 2-deoxi-D-ribosa, ribonucleótidos conteniendo D-ribosa, y cualquier otro N-glicósido de una base púrica o pirimidínica, o de modificaciones de estas bases púricas y pirimidínicas. Estos términos hacen referencia a ADN monocatenario y bicatenario, así como ARN monocatenario o bicatenario.
El término "condiciones de amplificación" hace referencia a las condiciones de reacción (temperatura, condiciones de tamponamiento, etc.) en las que se produce la reacción de amplificación del ácido nucleico molde que se pretende amplificar. En la presente invención, las condiciones de amplificación tienen como único requerimiento mantener la temperatura de anillamiento en 54°C. El resto de los parámetros pueden ser ajustados dependiendo de la procedencia, método de extracción y rendimiento, sin pérdidas contrastadas de robustez en el proceso.
Por "amplificación" se entiende la reacción que aumenta el número de copias de una región determinada de un ácido nucleico.
Por "secuenciación" se entiende cualquier proceso químico, físico o enzimático destinado a conocer la secuencia nucleotídica específica de un fragmento de ácido ribonucleico (ARN) o de ácido desoxirribonucleico (ADN) procedente de una muestra determinada.
El término "secuenciación mediante síntesis" hace referencia a cualquier método de secuenciación de ácidos nucleicos que requiera la actividad enzimática necesaria para consolidar enlaces nucleotídicos entre las subunidades anteriormente descritas como deoxirribonucleótidos, siendo éstos los sustratos funcionales de la reacción de secuenciación.
Por "patrón nucleotídico" se entiende el producto/resultado de la secuenciación, preferentemente de la secuenciación mediante síntesis. El patrón nucleotídico representa el orden en el que los nucleótidos son incorporados en la reacción de secuenciación.
Por "estabilización" se entiende la preservación de las cualidades químicas y bioquímicas de los diversos reactivos, tampones de reacción, mejorantes de reacción, y enzimas que intervienen en una reacción enzimática, en este caso la amplificación de ácidos nucleicos y las reacciones asociadas a la secuenciación mediante síntesis, una vez incluidos todos estos reactivos, tampones de reacción, potenciadores de reacción y enzimas en un mismo contenedor, en este caso tubos o placas multipocillo, de manera que se encuentran dosificados cada uno de ellos a las cantidades óptimas de reacción, y no interactúan ni reaccionan entre sí, inmovilizando la reacción bioquímica en la que intervienen, pudiéndose activar la reacción enzimática a voluntad del usuario, sin haberse producido una disminución significativa de su actividad, habiendo trascurrido días, semanas, meses o incluso años después de su mezcla y estabilización.
La estabilización así entendida se consigue mediante la adición de una mezcla estabilizante a una solución que contiene la mezcla de reacción, y la posterior eliminación de la totalidad o parte del agua presente en la solución resultante. Esta eliminación de la totalidad o parte del agua puede ser conseguida mediante procesos de liofilización, desecado en lecho fluido, desecado a temperatura ambiente y presión atmosférica, desecado a temperatura ambiente y baja presión, desecado a alta temperatura y presión atmosférica, y desecado a alta temperatura y baja presión.
En la presente invención, el procedimiento de estabilización preferentemente utilizado es la estabilización mediante gelificación, descrito en la patente WO 02/072002, asignada a Biotools Biotechnological & Medical Laboratories, S.A. La mezcla estabilizante de la mezcla de reacción preferentemente está compuesta por trehalosa, melezitosa, lisina o betaína y glucógeno o rafinosa, a diferentes concentraciones en dependencia de la reacción enzimática a estabilizar. Más preferentemente la mezcla de gelificación está compuesta por trehalosa, melezitosa, glucógeno y lisina. El método de extracción del agua de la mezcla de reacción tras la adición de la mezcla de agentes estabilizantes es preferentemente en la presente invención la desecación mediante vacío a temperatura comprendida entre los 30°C y los 40°C, dependiendo de la reacción enzimática a estabilizar. Concretamente, en la presente invención el contenido de humedad se mantiene entre un 10-30% de agua.
La presente invención hace referencia a un método para realizar la identificación taxón-específica de uno o varios hongos y/o levaduras simultáneamente en una muestra, mediante el análisis del patrón nucleotídico de la/las secuencia/s de nucleótidos obtenidas mediante secuenciación mediante síntesis de dos regiones diferentes pertenecientes al gen 18S del ARN ribosomal, previamente amplificadas en un único amplicón, antes de proceder a su secuenciación mediante síntesis. La invención se basa en primera instancia, en la posibilidad de identificar cualquiera de los citados microorganismos llegando al nivel taxonómico de especie, utilizando el patrón nucleotídico obtenido por la superposición de las secuencias de dos regiones separadas del gen 18S del ARN ribosomal. Este patrón nucleotídico representa una firma genética inequívoca identificativa de las diferentes especies de hongos o levaduras presentes en una muestra, y puede ser comparado con los patrones de referencia depositados en las diversas bases de datos genéticas publicadas, gracias a los motores de búsqueda expresamente diseñados para ello.
Para llevar a cabo la invención, se utiliza un par de cebadores diferentes diseñados con el fin de amplificar dos regiones diferentes pertenecientes al gen 18s del ARN ribosomal fúngico en un único amplicón. Las secuencias específicas de este cistrón son bien conocidas y se encuentran disponibles en varias bases de datos publicadas, tales como GenBank y EMBL. Los cebadores de amplificación han sido diseñados en base al estado del arte, considerando su contenido en las bases citosina y guanina, así como las múltiples alternativas de diseño que pudieran solaparse en las regiones seleccionadas, con el fin de evitar la formación de estructuras secundarias internas, previniendo la formación de dimerizaciones entre cebadores y ponderando sus temperaturas de fusión para alcanzar un óptimo ajuste a la cadena nucleotídica molde. Se ha fijado un estándar de temperatura de anillamiento a 54°C, que podría verse modificado en función de cambios entre las secuencias a hibridar.
Cebadores de amplificación
Bio-FunF SEQ. ID. No.1 5'-Biotin- ATTGGAGGGCAAGTCTGGTG-3'
Bio-FunR SEQ. ID. No. 2 5'- CCGATCCCTAGTCGGCAT- 3'
Cebadores de secuenciación Bio-FunS1 SEQ. ID. No. 3 5'-YTCAMAGTAAAAGTCCTGG-3'
Bio-FunS2 SEQ. ID. No. 4 5'- TCAAAGTAAAAGTCCTGGTTC-3'
TABLA 2: Secuencias de los cebadores utilizados en la amplificación y secuenciación posterior del gen 18S del ARNr en hongos y levaduras.
La primera pareja de cebadores indicados en la Tabla 2 amplifica la región del gen 18S acotada por sus secuencias, generando un fragmento promedio de exactamente 500 pares de bases nucleotídicas dentro de la región ribosomal altamente conservada. Al tratarse de un fragmento de considerable tamaño, el resultado de su secuenciación mediante síntesis utilizando los dos cebadores de secuenciación definidos, permite la obtención de dos resultados a lo largo de su extensión. La superposición de las secuencias obtenidas con estos dos últimos cebadores, aporta la información necesaria para alcanzar un nivel de identificación a nivel de especie.
Los fragmentos de amplificación obtenidos, pueden ser secuenciados utilizando cualquier tipo de reacción de amplificación de secuencias específicas del ADN o del ARN de un organismo cualquiera. En la presente invención, el fragmento de amplificación es obtenido mediante la técnica de PCR, utilizando la pareja de cebadores indicada en la Tabla 2. De cara al diseño de un procedimiento robusto, es prácticamente necesario el uso de una ADN polimerasa que no contenga trazas de ADN exógeno contaminante y que a la par tenga una baja tasa de error en la incorporación de los nucleótidos, tal como la enzima BlackZyme ADN polimerasa ultrapura (2B BlackBio S.L.).
Las condiciones de amplificación mediante PCR indicadas en la Tabla 3 según se detalla a continuación, fueron optimizadas para conseguir las condiciones de reacción apropiadas para la amplificación del fragmento de 500 pares de bases dentro de la subunidad 18S de hongos y levaduras. En la presente invención, la amplificación se realiza en una única reacción, mediante la cual se amplifica la región de la que posteriormente se secuenciarán dos fragmentos para identificar la especie o las especies de hongos y/o levaduras presentes en la muestra.
Figure imgf000029_0001
TABLA 3: Tabla orientativa de las condiciones de amplificación. (La amplificación tiene como único requerimiento mantener la temperatura de anillamiento en 54°C, el resto de los parámetros pueden ser ajustados dependiendo de la procedencia, método de extracción y rendimiento, sin pérdidas contrastadas de robustez en el proceso). EJEMPLOS Ejemplo 1 :
48 muestras de sangre original fueron recogidas en el Servicio de Microbiología del Hospital Universitario La Paz en formato estándar de extracción sanguínea en planta por vía intravenosa. El cuadro presentado por cada paciente donante requería una identificación exacta del patógeno, porque no permitía definir origen ni evolución de la infección, encontrándose en algún caso sometido a tratamiento antifúngico profiláctico, según la práctica habitual para infecciones diagnosticadas pero no caracterizadas.
Un mililitro (1 mi) de la muestra de sangre fue inoculado a un hemocultivo estándar para el enriquecimiento en hongos y levaduras de la muestra, tardando 7h en generar el resultado positivo de crecimiento microbiano por incubación a 37°C. Dos gotas del hemocultivo fueron depositadas sobre el sistema GenoCard® (Hain Lifescience), para la inmovilización de muestras procedente de hemocultivo, resultando adsorbidas a la superficie de la tarjeta perforable. Utilizando un sacabocados, se realizaron seis perforaciones para extraer seis trozos de superficie adsorbida, que fueron inmediatamente transferidos a razón de dos por pocilio a una placa multipocillo preparada como se explica a continuación.
Cada muestra fue amplificada en una placa en la que cada pocilio/contenedor contenía la mezcla de reacción compuesta por 0,4 μΙ de enzima BlackZyme ADN polimerasa ultrapura, comercializada por 2B BlackBio S.L., 5 μΙ del tampón de reacción que acompaña a la enzima antes citada y comercializado junto a ella, entre 0,1 μΙ y 0,3 μΙ de una solución 100mM contiendo los cuatro deoxirribonucleótidos que conforman la cadena del ácido deoxirribonucleico (dATP, dTTP, dGTP, dCTP), y 0,2 μΙ/0,4 μΙ (análisis duplicado) de una solución 100 μΜ de la pareja de cebadores identificados en la Tabla 2como BioFunF (SEQ. ID. No. 1) y BioFunR (SEQ. ID. No. 2). A esta mezcla de reacción se le añadió la mezcla de estabilización, compuesta por entre 1 μΙ y 4 μΙ de una solución de trehalosa dihidrato 1 M, entre 1 μΙ y 3 μΙ de una solución de melezitosa monohidrato 0,75M, entre 1 μΙ y 4 μΙ de glucógeno a una concentración de 200 gr/l, y entre 0,1 μΙ y 0,5 μΙ de DL lisina 0,05M.
La placa así preparada, se introdujo en una estufa de desecación al vacío y se sometió a un proceso de desecación, calentándola entre 30°C y 37°C y sometiéndola a un vacío de 30 milibares durante un tiempo de dos a cuatro horas, hasta conseguir un grado de humedad entre el 10% y el 20%, obteniéndose de esta manera una mezcla de reacción estabilizada, que contiene en cada pocilio todos los elementos y reactivos necesarios para la realización de la reacción de amplificación de la secuencia del ácido nucleico objetivo. El procedimiento anterior realizado para conseguir la mezcla de reacción estabilizada puede ser repetido, en cualquier otro contenedor, cámara de reacción o superficie utilizada o que pudieran llegar a utilizarse, para la realización de la reacción de amplificación de los ácidos nucleicos.
La amplificación se realizó bajo las condiciones ilustradas en la Tabla 3, generando una serie de productos de amplificación que fueron transferidos a la placa de pirosecuenciación según el protocolo recomendado por el fabricante del instrumento utilizado para la pirosecuenciación (Sample Preparation Guidelines for PyroMark™ ID System, comercializado por la empresa Qiagen). La pirosecuenciación posterior se realizó en el aparato PyroMarkTM ID System, comercializado por la empresa Qiagen, utilizando la mezcla enzimática para la secuenciación por síntesis descrita en apartados anteriores (ADN polimerasa ultrapura y de alta fidelidad, ATP-sulfurilasa, Luciferasa, Apirasa, cebador de secuenciación (SEQ. ID. No. 3 y SEQ. ID. No. 4), luciferina, adenosin-5'-fosfosulfato (APS), deoxinucleótidos a incorporar en la reacción de extensión de la cadena de ADN a secuenciar (dATP, dCTP, dGTP, dTTP), y tampón de reacción, generando el flujo de identificación estructurado en la figura 1 , en el que los pirogramas resultantes fueron automáticamente procesados por el software IdentiFire® (Qiagen). El resultado de las alineaciones automáticas según lo descrito en la descripción de la invención, produjo el resultado inequívoco con un 100% de identidad para cada uno de los 48 patógenos tal y como se refleja en la figura 2. Todas las identificaciones recogidas en este ejemplo, fueron contrastadas por crecimiento en medios selectivos confirmando un 100% de correspondencia con las técnicas microbiológicas estandarizadas por el propio hospital.

Claims

REIVINDICACIONES
1. Un método para la detección, diferenciación e identificación taxón-específica de hongos y levaduras presentes en una muestra biológica, mediante el análisis por técnicas de secuenciación, concretamente pirosecuenciación de dos regiones comprendidas dentro de un amplicón de 500 pares de bases integrado en la secuencia del gen 18S del RNA ribosomal fúngico, caracterizado porque comprende los siguientes pasos: a. Estabilización de la mezcla de reacción por gelificación, mediante adición al medio de una solución acuosa estabilizante y posterior secado, hasta un grado de humedad entre un 10% y un 30%. b. Reacción de amplificación mediante PCR del ADN total extraído de la muestra, utilizando los pares de cebadores especificados en la tabla 2 (SEQ . ID. No. 1 y SEQ. ID. No. 2). c. Secuenciación mediante síntesis, concretamente pirosecuenciación de los productos de PCR obtenidos en el paso b., usando los cebadores indicados en la tabla 2 (SEQ. ID. No. 3 y SEQ. ID. No. 4)
2. Método de acuerdo con la reivindicación 1 , caracterizado porque la reacción de amplificación se lleva a cabo mediante una reacción de amplificación de ácidos nucleicos (PCR) integrada por una desnaturalización inicial a 94°C durante 5 minutos y 40 ciclos de desnaturalización a 94°C durante 20 segundos, anillamiento a 54°C durante 20 segundos, extensión a 72°C durante 40 segundos, y una extensión final a 70°C durante 5 minutos.
3. Método de acuerdo con las reivindicaciones 1-2, caracterizado porque las secuencias obtenidas de la amplificación de la PCR, se someten a pirosecuenciación y posteriormente se identifican mediante comparación con las secuencias depositadas y anotadas en bases de datos públicas o privadas.
4 Método de acuerdo con las reivindicaciones 1-3, caracterizado porque cada una de las secuencias obtenidas por la secuenciación de los fragmentos amplificados mediante la reacción de amplificación descrita en la reivindicación 3, aporta un nivel de información adicional, de modo que si la secuencia obtenida utilizando el cebador BioFun-S1 (SEQ. ID. No. 3) sobre la reacción que fue amplificada utilizando los cebadores de amplificación BioFun-F (SEQ. ID. No. 1) y BioFun-R (SEQ. ID. No. 2), no aportara un nivel de información suficiente para garantizar la identificación precisa de la Especie de hongo o levadura presente en la muestra, el solapamiento de esta secuencia con la secuencia obtenida mediante la reacción que fue amplificada utilizando el cebador BioFun-S2 (SEQ: ID. No. 4), puede llegar a dar información precisa a nivel Especie y Género microbiano.
5. Método de acuerdo con las reivindicaciones 1-4, caracterizado por que, al utilizar la mezcla de gelificación formada por trehalosa, melezitosa, glucógeno o rafinosa y lisina o betaína, en la reacción de pirosecuenciación, se obtiene mejora de la resolución de la pirosecuenciación de entre un 75% y 90% y como consecuencia, también se obtiene una secuenciación de fragmentos de mayor longitud.
6. Método de acuerdo con la reivindicación 5, caracterizado porque la mezcla de gelificación está compuesta por trehalosa, melezitosa, glucógeno y lisina.
7. Un kit integrado por una serie de tubos o recipientes de reacción, conteniendo cada uno de estos tubos o recipientes todos los elementos necesarios para la realización de la reacción de PCR que comprende: ADN polimerasa ultrapura, deoxinucleótidos dATP, dCTP, dGTP, dTTP, tampón de reacción y cebadores de reacción, según la reivindicación 1, de modo que el primer tubo contiene los cebadores BioFun-F (SEQ. ID. No. 1) y BioFun-R (SEQ. ID. No. 2).
8. Kit de acuerdo con la reivindicación 7, caracterizado porque está integrado por los citados tubos o recipientes conteniendo todos los reactivos necesarios para llevar a cabo la reacción de pirosecuenciación: ADN polimerasa ultrapura y de alta fidelidad, ATP- sulfurilasa, luciferasa, apirasa, cebador de secuenciación, luciferina, adenosin-5'- fosfosulfato, deoxinucleótidos dATP, dCTP, dGTP, dTTP, tampón de reacción y cebador de pirosecuenciación, caracterizado porque el primer tubo comprende el cebador de pirosecuenciación Bio-FunS1 (SEQ. ID. No. 3) con el fin de secuenciar parte del amplicón obtenido mediante la amplificación realizada con los cebadores de amplificación BioFun-F (SEQ. ID. No. 1) y BioFun-R (SEQ: ID. No. 2), y el segundo tubo comprende el cebador de pirosecuenciación Bio-FunS2 (SEQ. ID. No. 4) con el fin de secuenciar parte del amplicón obtenido mediante la amplificación realizada con los cebadores de amplificación BioFun-F (SEQ. ID. No. 1) y BioFun-R (SEQ. ID. No. 2).
9. Kit de acuerdo con la reivindicación 8, caracterizado porque cada uno de los tubos indicados en la reivindicación anterior se encuentran estabilizados mediante la adición de una mezcla de estabilización conteniendo trehalosa, melezitosa, lisina y glucógeno, siendo posteriormente desecados mediante aplicación de vacío a una temperatura de 30°C.
10. Kit de acuerdo con las reivindicaciones 7-9, caracterizado porque contiene todos los tubos con los ingredientes necesarios para llevar a cabo el método de las reivindicaciones 1-6.
PCT/ES2010/000248 2010-06-02 2010-06-02 Composición, método y kit para la detección de hongos y levaduras mediante secuenciación WO2011151473A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/000248 WO2011151473A1 (es) 2010-06-02 2010-06-02 Composición, método y kit para la detección de hongos y levaduras mediante secuenciación

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/000248 WO2011151473A1 (es) 2010-06-02 2010-06-02 Composición, método y kit para la detección de hongos y levaduras mediante secuenciación

Publications (1)

Publication Number Publication Date
WO2011151473A1 true WO2011151473A1 (es) 2011-12-08

Family

ID=45066207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000248 WO2011151473A1 (es) 2010-06-02 2010-06-02 Composición, método y kit para la detección de hongos y levaduras mediante secuenciación

Country Status (1)

Country Link
WO (1) WO2011151473A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046006A (en) * 1996-08-31 2000-04-04 Eberhard-Karls-Universitat Sequential hybridization of fungal cell DNA and method for the detection of fungal cells in clinical material
US20030119042A1 (en) * 2001-03-12 2003-06-26 Biotools Biotechnological & Medical Laboratories, S.A. Process for preparing stabilized reaction mixtures which are totally or partially dried, comprising at least one enzyme, reaction mixtures and kits containing said mixtures
US20030186259A1 (en) * 2000-01-28 2003-10-02 Loeffler J?Uuml;Rgen Method , kit and dna probes for detecting a fungal species in clinical material
US20040002592A1 (en) * 2000-10-30 2004-01-01 Hermann Einsele Detection of rare Candida species
ES2214144B1 (es) * 2003-02-26 2005-09-01 BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. Composicion estabilizada para ensayos fluorimetricos, colorimetricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtencion.
ES2301170T3 (es) * 1995-08-17 2008-06-16 Myconostica Limited Extraccion,amplificacion e hibridacion secuencial de adn micotico y metodos para detectar celulas micoticas en material clinico.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2301170T3 (es) * 1995-08-17 2008-06-16 Myconostica Limited Extraccion,amplificacion e hibridacion secuencial de adn micotico y metodos para detectar celulas micoticas en material clinico.
US6046006A (en) * 1996-08-31 2000-04-04 Eberhard-Karls-Universitat Sequential hybridization of fungal cell DNA and method for the detection of fungal cells in clinical material
US20030186259A1 (en) * 2000-01-28 2003-10-02 Loeffler J?Uuml;Rgen Method , kit and dna probes for detecting a fungal species in clinical material
US20040002592A1 (en) * 2000-10-30 2004-01-01 Hermann Einsele Detection of rare Candida species
US20030119042A1 (en) * 2001-03-12 2003-06-26 Biotools Biotechnological & Medical Laboratories, S.A. Process for preparing stabilized reaction mixtures which are totally or partially dried, comprising at least one enzyme, reaction mixtures and kits containing said mixtures
ES2214144B1 (es) * 2003-02-26 2005-09-01 BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. Composicion estabilizada para ensayos fluorimetricos, colorimetricos o quimio-luminiscentes, kits que la contienen y procedimiento para su obtencion.

Similar Documents

Publication Publication Date Title
CN111254228B (zh) 一种检测新型冠状病毒和流感病毒的试剂盒
Iwen et al. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens
Borman et al. Candida nivariensis, an emerging pathogenic fungus with multidrug resistance to antifungal agents
White et al. Detection of seven Candida species using the Light-Cycler system
US9523131B2 (en) PCR diagnostics of dermatophytes and other pathogenic fungi
Jiang et al. Rapid detection of Candida albicans by polymerase spiral reaction assay in clinical blood samples
JP2008278871A (ja) プローブセット、プローブ担体、及び真菌の判別同定方法
McManus et al. Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans
Frickmann et al. Next-generation sequencing for hypothesis-free genomic detection of invasive tropical infections in poly-microbially contaminated, formalin-fixed, paraffin-embedded tissue samples–a proof-of-principle assessment
CN113862393A (zh) 一种快速检测格特隐球菌的方法
JP5835702B2 (ja) クリプトコックス症起因菌の検出法と検出キット
CN108070675B (zh) 一种同时检测三种曲霉的引物探针组合和荧光定量pcr试剂盒
CN113508182A (zh) 用于检测人乳头状瘤病毒(hpv)的测定
US9434986B2 (en) Methods and kits used in the detection of fungus
Perlin et al. Molecular diagnostic platforms for detecting Aspergillus
US20130157265A1 (en) Composition, method and kit for detecting bacteria by means of sequencing
Hardak et al. Diagnostic role of polymerase chain reaction in bronchoalveolar lavage fluid for invasive pulmonary aspergillosis in immunocompromised patients–a retrospective cohort study
CN108707691A (zh) 一种特异性检测烟曲霉的引物探针组合和基于荧光pcr法检测烟曲霉的试剂盒
CN103205485B (zh) 一种检测蜡样芽孢杆菌核苷酸的方法及检测用引物和探针
CN111961745A (zh) 用于一次性检测多种皮肤真菌的方法和试剂盒
Hizel et al. Polymerase chain reaction in the diagnosis of invasive aspergillosis.
Trecourt et al. Fungal Integrated Histomolecular diagnosis using targeted next-generation sequencing on Formalin-fixed paraffin-embedded tissues
Oliveira et al. Feasibility of mitochondrial single nucleotide polymorphisms to detect and identify Aspergillus fumigatus in clinical samples
Ahmad et al. Development of a nested PCR assay for the detection of Fusarium solani DNA and its evaluation in the diagnosis of invasive fusariosis using an experimental mouse model
WO2011151473A1 (es) Composición, método y kit para la detección de hongos y levaduras mediante secuenciación

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852453

Country of ref document: EP

Kind code of ref document: A1