WO2004074857A1 - ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法 - Google Patents

ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法 Download PDF

Info

Publication number
WO2004074857A1
WO2004074857A1 PCT/JP2003/001966 JP0301966W WO2004074857A1 WO 2004074857 A1 WO2004074857 A1 WO 2004074857A1 JP 0301966 W JP0301966 W JP 0301966W WO 2004074857 A1 WO2004074857 A1 WO 2004074857A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable assembly
reflection coefficient
connection state
connector
amplitude value
Prior art date
Application number
PCT/JP2003/001966
Other languages
English (en)
French (fr)
Inventor
Yasushi Onodera
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004568495A priority Critical patent/JP3992715B2/ja
Priority to PCT/JP2003/001966 priority patent/WO2004074857A1/ja
Publication of WO2004074857A1 publication Critical patent/WO2004074857A1/ja
Priority to US11/094,579 priority patent/US7005862B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Definitions

  • Cable assembly electrical characteristics measurement device Description Cable assembly electrical characteristics measurement device, cable assembly electrical characteristics measurement program, and cable assembly electrical characteristics measurement method
  • the present invention relates to a cable assembly electrical characteristic measuring device for measuring a propagation delay time of a cable assembly for determining whether or not a skew of a cable assembly used for a notebook personal computer or the like is within a predetermined value.
  • the present invention relates to a cable assembly electrical characteristic measuring program and a cable assembly electrical characteristic measuring method, and particularly to an electrical characteristic measuring device for a cable assembly capable of measuring a propagation delay time with high accuracy, and an electrical characteristic measuring device for a cable assembly.
  • the present invention relates to a method for measuring electrical characteristics of a program and a cable assembly. Background art
  • FIG. 20 is a schematic diagram for measuring a propagation delay time of a cable assembly 30 to be measured using a conventional measuring device 110 for measuring a propagation delay time of a cable assembly.
  • the near end 30 a of the cable assembly 30 is directly connected to the conversion adapter 104 of the measuring device 110, and the other end is connected to the conversion adapter 104 of the measuring device 110.
  • the end 30b is electrically open.
  • the measuring apparatus 110 transmits a signal of a predetermined frequency to the cable assembly 30 side, reflection occurs at a location where the impedance is mismatched, and the reflected wave is generated. Therefore, in this measuring apparatus 110, as shown in FIG. 21, the time change of the reflection coefficient amplitude value p of the reflection coefficient, which is the ratio of the reflected wave to the incident wave, is obtained. Time Td is required.
  • the time change characteristic of the reflection coefficient amplitude value P is displayed and output on the display unit 107 of the measuring device 110.
  • the measurer visually measures the time difference between the two rapidly changing points PP 1 and PP 2 of the displayed time change characteristic, and determines one half of the time difference as the propagation delay time. .
  • This measurement method is called the open method because the far end 30b of the cable assembly 30 is open.
  • the short-circuit method for obtaining the propagation delay time by short-circuiting the far end 30b of the cable assembly 30 uses the cable assembly in the connected state shown in Fig. 20.
  • the propagation delay time is obtained by short-circuiting the far end 30a of 30 with the short-circuit pin 130.
  • FIG. 23 shows the time change characteristics of the reflection coefficient amplitude value p obtained by the short method. As shown in Fig. 23, at the point PP2 corresponding to the far end 30a of the cable assembly 30, the point where the reflection coefficient amplitude value / 0 sharply decreased was obtained by the open method. This is different from the time variation characteristic of the reflection coefficient amplitude value P.
  • An object of the present invention is to provide a method for measuring the electrical characteristics of a cable assembly. Disclosure of the invention
  • the present invention connects a cable assembly via a connecting portion, outputs a predetermined frequency signal to the cable assembly side, and outputs the predetermined frequency signal.
  • a cable assembly electrical characteristic measuring device for measuring a reflection coefficient amplitude value and measuring a propagation delay time of the cable assembly based on a time change characteristic of the reflection coefficient amplitude value, wherein a first terminal having both ends opened is provided.
  • a first connection state in which a connector is connected to the connection portion, and one end of the second connector having one end short-circuited and having the same propagation delay time as the propagation delay time of the first connector itself is connected to the connection portion.
  • a measurement unit and superimposes the measured time-change characteristics of the respective reflection coefficient amplitude values in the first connection state and the second connection state to output a visible output; or, measures the third connection state and the fourth connection state
  • a process of superimposing the time change characteristic of each reflection coefficient amplitude value with the state and performing a visual output is performed, or the time change characteristic of each measured reflection coefficient amplitude value of the first to fourth connection states is superimposed.
  • Output processing means for performing a process of performing visible output together, and a branch point of a time change characteristic of each reflection coefficient amplitude value in the first connection state and the second connection state; the fourth connection state; and 0 and obtaining one-half of the time difference between the branch point of time variation characteristic of the reflection coefficient amplitude value in the fourth connection state as the propagation delay time
  • the branch point when the time change characteristic of each reflection coefficient amplitude value of the first connector whose one end is open and the time change characteristic of each reflection coefficient of the second connector whose one end is short-circuited is overlapped with the cape assembly and the far end side thereof.
  • the time difference between the first connector connected to the cable assembly and the branch point when the time reflection characteristics of the respective reflection coefficient amplitude values of the cable assembly and the second connector connected to the far end of the cable assembly are superimposed. Since one-half is determined as the propagation delay time of the cable assembly, it is possible to clearly see the branch point, reduce the measurement error by the operator, and measure the propagation delay time of the cable assembly with high accuracy. it can.
  • the present invention provides an instructing means for instructing the two branch points, a time difference between each of the branch points on the visible output screen instructed by the instructing means, and further calculates one-half of the time difference as the propagation delay. And a propagation delay time calculating means for outputting as time.
  • the propagation delay time calculation means calculates the propagation delay time only by the designation means designating the branch point on the visible output screen, the burden on the measurer can be reduced. At the same time, the measurement error can be further reduced. Further, according to the present invention, the output processing means outputs a time change characteristic of the reflection coefficient amplitude value in the first connection state and a time change characteristic of the reflection coefficient amplitude value in the second connection state in different colors. It is characterized by doing.
  • the time change characteristics of the two reflection coefficient amplitude values to be superimposed are visually output in different colors, so that it is easy to visually recognize the branch point, and the measurement error by the operator is reduced. can do.
  • the present invention connects a cable assembly via a connecting portion, and And outputting a number signal to the cable assembly side, measuring a reflection coefficient amplitude value of the predetermined frequency signal, and a signal propagation delay time of the cable assembly based on a time change characteristic of the reflection coefficient amplitude value.
  • An electrical characteristic measuring device for a cable assembly for measuring the first connector in which a first connector having both ends opened is connected to the connection portion, and one end is short-circuited, and A second connection state in which the other end of the second connector having the same signal propagation delay time as the signal propagation delay time is connected to the connection portion; and a cable assembly in which one end of the cable assembly is connected to the connection portion.
  • a third connection state in which the other end of the cable assembly is connected to the first connector; and one end of the cable assembly is connected to the connection portion, and the other end of the cable assembly is connected to the other end of the second connector.
  • a reflection coefficient measuring means for measuring a time variation characteristic of each reflection coefficient amplitude value in the continued fourth connection state; and a reflection coefficient amplitude value in the measured first connection state and the second connection state.
  • a branch point in the case where the time change characteristics are superimposed on each other, and a branch point in a case where the time change characteristics of each reflection coefficient amplitude value in the measured third connection state and the fourth connection state are superimposed.
  • a time difference calculating means for outputting a half of the time difference at each branch point as the signal propagation delay time difference.
  • the branch point of the time change characteristic of the two reflection coefficient amplitude values to be superimposed is automatically detected, and the propagation delay time is calculated and output based on the detected branch point.
  • measurement errors by the operator can be eliminated.
  • the present invention is characterized in that, when the connector shape of one end and the other end of the cable assembly is different, the first connector and the second connector are changed to a connector shape of one end and the other end of the cable assembly.
  • the connector is a conversion connector having a matching connector shape, or the connecting portion is provided with a plurality of connector receiving portions that enable connectors of different connector shapes to be connected.
  • the propagation delay time can be measured with good workability even when the connector shapes at both ends of the cable assembly are different.
  • the cable assembly is connected via the connection portion, and A wave number signal is output to the cable assembly side, a reflection coefficient amplitude value of the predetermined frequency signal is measured, and a signal propagation delay of the cable assembly is determined based on a time change characteristic of the reflection coefficient amplitude value.
  • An electrical characteristic measurement program for a cable assembly for measuring time comprising: a first connection state in which a first connector having both ends opened is connected to the connection portion; a first connection state in which one end is short-circuited; A first measurement process for measuring a time-varying characteristic of each reflection coefficient amplitude value in a second connection state in which the other end of the second connector having the same signal propagation delay time as the signal propagation delay time is connected to the connection portion; A first output processing step of superimposing and visually outputting the time change characteristic of each reflection coefficient amplitude value measured by the first measurement processing procedure, and one end of the cable assembly A third connection state in which the other end of the cable assembly is connected to the connection portion and the other end of the cable assembly is connected to the first connector; and one end of the cable assembly is connected to the connection portion and the other end of the cable assembly is connected to the second connector.
  • a second measurement processing procedure for measuring a time change characteristic of each reflection coefficient amplitude value in a fourth connection state connected to the other end of the connector, and each reflection coefficient measured by the second measurement processing procedure A second output processing procedure for superimposing the time-varying characteristics of the amplitude value and visually outputting the same, and a program for measuring the electrical characteristics of a Cape-No-Rare assembly that causes a computer to execute the second output processing procedure.
  • the present invention also provides a cable assembly connected via a connection portion, a predetermined frequency signal is output to the cable assembly side, a reflection coefficient amplitude value of the predetermined frequency signal is measured, and the reflection coefficient is measured.
  • An electrical characteristic measurement program for a cable assembly for measuring a signal propagation delay time of the cable assembly based on a time change characteristic of an amplitude value, wherein a first connector having both open ends is connected to the connection portion.
  • a second connection state in which one end of the second connector is short-circuited at one end and has the same signal propagation delay time as the signal propagation delay time of the first connector itself, and the other end of the second connector is connected to the connection portion.
  • a computer executes a reflection coefficient measurement processing procedure for measuring a time change characteristic, and an output processing procedure for superimposing and visually outputting a time change characteristic of each reflection coefficient amplitude value measured by the reflection coefficient measurement processing procedure. This is a program for measuring the electrical characteristics of the cable assembly to be operated.
  • the branch point when the time change characteristics of the respective reflection coefficient amplitude values of the first connector whose one end is open and the second connector whose one end is short-circuited are superimposed, the cable assembly and the cable assembly.
  • the time difference of the cable assembly is determined as the propagation delay time of the cable assembly, so that the clear junction point can be clearly recognized, the measurement error by the operator can be reduced, and the propagation of the high-precision cable assembly The delay time can be measured.
  • the present invention provides a method according to the present invention, further comprising: a branch point of a time change characteristic of each reflection coefficient amplitude value between the first connection state and the second connection state instructed on a visible output screen; A time difference calculation process for obtaining a time difference between a branch point of a time change characteristic of each reflection coefficient amplitude value in the fourth connection state and the fourth connection state, and obtaining a half of the time difference as the signal propagation delay time. It is characterized by further including a procedure.
  • the propagation delay time calculation means calculates the propagation delay time only by the designation means designating the branch point on the visible output screen, the burden on the measurer can be reduced. At the same time, the measurement error can be further reduced.
  • the present invention provides the first output processing procedure, the second output processing procedure, or the output processing procedure, wherein the time change characteristic of the reflection coefficient amplitude value in the first connection state and the reflection in the second connection state.
  • the time-varying characteristic of the coefficient amplitude value and the time-varying characteristic of the reflection coefficient amplitude value in the third connection state and the time of the reflection coefficient amplitude value in the fourth connection state are visually output in different colors. It is characterized in that the change characteristic is output in a different color and visible.
  • the time change characteristics of the two reflection coefficient amplitude values to be superimposed are visually output in different colors, so that it is easy to visually recognize the branch point, and the measurement error by the operator is reduced. can do.
  • the present invention provides a method for controlling a position of a branch point of a time change characteristic of each reflection coefficient amplitude value in the first connection state and the second connection state, and in the fourth connection state and the fourth connection state.
  • the branch point of the time change characteristic of the two reflection coefficient amplitude values to be superimposed is automatically detected, and the propagation delay time is calculated and output based on the detected branch point.
  • measurement errors by the operator can be eliminated.
  • the present invention also provides a cape / knob assembly connected via a connection portion, a predetermined frequency signal is output to the cable assembly side, and a reflection coefficient amplitude value of the predetermined frequency signal is measured.
  • An electrical characteristic measuring program for a cable assembly for measuring a signal propagation delay time of the cable assembly based on a time change characteristic of a coefficient amplitude value, wherein a first connector having both open ends is connected to the connection portion.
  • a second connection in which one end is short-circuited and the other end of a second connector having the same signal propagation delay time as the signal propagation delay time of the first connector itself is connected to the connection portion;
  • a third connection state in which one end of the cable assembly is connected to the connection portion and the other end of the cable assembly is connected to the first connector;
  • Reflection coefficient measurement for measuring a time change characteristic of each reflection coefficient amplitude value in a fourth connection state in which one end of the cable assembly is connected to the connection portion and the other end of the cable assembly is connected to the other end of the second connector.
  • a branch point detection processing procedure for obtaining a position of a branch point of a time change characteristic of a value, and a time difference calculation processing procedure for obtaining a half of the time difference between the branch points as the signal propagation delay time. 4 is a program for measuring electrical characteristics of a cable assembly to be executed.
  • the branch point of the time change characteristic of the two reflection coefficient amplitude values to be superimposed is automatically detected, and the propagation delay time is calculated and output based on the detected branch point.
  • measurement errors by the operator can be eliminated.
  • the present invention provides a cable assembly connected via a connecting portion, a predetermined frequency signal is output to the cable assembly side, and a reflection coefficient amplitude value of the predetermined frequency signal is measured.
  • a method for measuring a signal propagation delay time of a cable assembly based on a time change characteristic of a coefficient amplitude value comprising: measuring a signal propagation delay time of the cable assembly; The second connector having one end short-circuited and having the same signal propagation delay time as the signal propagation delay time of the first connector itself, and the other end connected to the connection portion.
  • a first measurement processing step of measuring a time change characteristic of each reflection coefficient amplitude value in the connection state and a time change characteristic of each reflection coefficient amplitude value measured by the first measurement processing procedure are superimposed.
  • the time difference between the time at the branch point of the time change characteristic of each output reflection coefficient amplitude value and the time at the branch point of the time change characteristic of each reflection coefficient amplitude value visually output in the second output processing step is 2 One in one The determination as the signal propagation delay time and feature.
  • the present invention also provides a cable assembly connected via a connection portion, a predetermined frequency signal is output to the cable assembly side, a reflection coefficient amplitude value of the predetermined frequency signal is measured, and the reflection coefficient is measured. Based on the time change characteristics of the amplitude value, A method for measuring an electric characteristic of a cape / reassembly for measuring a signal propagation delay time of a pre, wherein a first connector in which both ends are opened is connected to the connection portion, and one end is short-circuited.
  • One half of the time difference between the time of the branch point of the Eich characteristic and the time of the branch point of the time change characteristic of each reflection coefficient amplitude value in the third connection state and the fourth connection state is represented by the signal. It is obtained as a propagation delay time.
  • the branch point when the time change characteristic of each reflection coefficient amplitude value of the first connector whose one end is open and the second connector whose one end is short-circuited are superimposed, and the cable assembly and its far end.
  • the first connector connected to the end and the branch point when the time reflection characteristics of the reflection coefficient amplitude values of the cable assembly and the second connector connected to the far end are superimposed. Since one-half of the time difference is determined as the propagation delay time of the Cape-no-reassembly, it is possible to clearly see the branch point, reduce the measurement error by the operator, and measure the propagation delay time of the cable assembly with high accuracy. be able to.
  • the first output processing step, the second output processing step, or the output processing step may include a time change characteristic of a reflection coefficient amplitude value in the first connection state and a reflection in the second connection state.
  • Visually output the time change characteristic of the coefficient amplitude value in a different color, and / or the time change characteristic of the reflection coefficient amplitude value in the third connection state and the fourth connection It is characterized in that the reflection of the state and the time change characteristic of the coefficient amplitude value are visually output in different colors.
  • the time-varying characteristics of the two reflection coefficient amplitude values to be superimposed are visually output in different colors, so that it is easy to visually recognize the branch point, and the measurement error by the operator Can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a measuring device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a connection state between a conversion adapter of the measurement device and a connector whose one end is open.
  • FIG. 3 is a diagram showing a process of superposing the time-change characteristics of the respective reflection coefficient amplitude values when the connector is opened and when the connector is short-circuited.
  • FIG. 4 is a diagram showing a connection state between a conversion adapter of the measurement device and a cable assembly to which a connector whose one end is opened is connected.
  • FIG. 1 is a block diagram showing a configuration of a measuring device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a connection state between a conversion adapter of the measurement device and a connector whose one end is open.
  • FIG. 3 is a diagram showing a process of superposing the time-change characteristics of the respective reflection coefficient amplitude values when the connector is opened
  • FIG. 5 is a diagram showing a process of superposing the time-varying characteristics of the respective reflection coefficient amplitude values when the cable assembly is connected and the connector is opened and when the connector is short-circuited.
  • FIG. 6 is a diagram illustrating the principle by which the propagation delay time can be measured.
  • FIG. 7 is a flowchart showing a procedure for measuring a propagation delay time of a cable assembly by the measuring apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a process of superimposing the time change characteristics of four reflection coefficient amplitude values simultaneously.
  • FIG. 9 is a flowchart showing a procedure for measuring a propagation delay time of a cable assembly by a measuring apparatus according to a modification of the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a measurement result of a propagation delay time of the cable assembly measured by the measuring device according to the first embodiment of the present invention.
  • FIG. 11 is a diagram showing a measurement result of a propagation delay time of a cable assembly measured by a conventional open method.
  • FIG. 12 is a diagram showing an example of a connector used when the connector shapes at both ends of the cable assembly are the same.
  • FIG. 13 is a diagram showing an example of a connector used in another case where the connector shapes at both ends of the cable assembly are the same.
  • Fig. 14 shows the cable case It is a figure which shows an example of the connector used when the kind of the connector of both ends of an amplifier differs.
  • FIG. 15 is a diagram showing an example of a conversion adapter used when the types of connectors at both ends of the cable assembly are different.
  • FIG. 16 is a block diagram showing a configuration of a measuring apparatus according to a second embodiment of the present invention.
  • FIG. 17 is a flowchart showing a procedure for measuring the propagation delay time of the cable assembly by the measuring apparatus according to the second embodiment of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a measuring apparatus according to a third embodiment of the present invention.
  • FIG. 19 is a flowchart showing a procedure for measuring a propagation delay time of a cable assembly by the measuring apparatus according to the third embodiment of the present invention.
  • FIG. 16 is a block diagram showing a configuration of a measuring apparatus according to a second embodiment of the present invention.
  • FIG. 17 is a flowchart showing a procedure for measuring the propagation delay time of the cable assembly by the measuring apparatus according to the second embodiment of the present invention.
  • FIG. 18 is a block
  • FIG. 20 is a diagram showing a connection relationship between a measuring device and a cable assembly according to a conventional open method.
  • FIG. 21 is a diagram showing a time change characteristic of the reflection coefficient amplitude value obtained by the conventional open method.
  • FIG. 22 is a diagram showing a connection relationship between a measuring device using a conventional short method and a kefle assembly.
  • FIG. 23 is a diagram showing a time change characteristic of the reflection coefficient amplitude value obtained by the conventional short method.
  • FIG. 1 is a block diagram showing a configuration of a measuring device according to a first embodiment of the present invention.
  • this measuring device measures the propagation delay time of a cable assembly 30 to be measured, and includes a sampling head 11, a recording unit 5, a display processing unit 6, a display unit 7, an input It has a unit 8, an output unit 9, and a control unit C for controlling these units.
  • the sampling head 11 has a signal generation unit 1, a measurement unit 2 and a circulator 3, and is carried to the vicinity of the cable assembly 30 to perform measurement using a high-frequency signal. Connected to the measuring device 10 body. By this High-precision, high-frequency measurements can be performed with the effects of cable length and other factors minimized.
  • the signal generator 1 generates a high-frequency signal to be transmitted by the cable assembly 30 and is transmitted to the cable assembly 30 via the circulator 3.
  • the high-frequency signal reflected and returned from the cable assembly 30 is input to the measurement unit 2 via the circulator 3.
  • the measurement unit 2 measures the time change characteristic of the reflection coefficient amplitude value P , which is the ratio between the incident wave of the high-frequency signal output from the signal generation unit 1 and the reflected wave returned from the cable assembly 30. Output to the recording unit 5.
  • the conversion adapter 4 connected to the sampling head 11 has a connector 21 with one end open, a connector 22 with one end short-circuited, and a cable adapter with a connector 21 connected to the far end of the cable assembly 30.
  • the near end of the cable assembly 30 in which the connector 22 is connected to the near end of the assembly 30 and the far end of the cable assembly 30 are sequentially connected, and the time variation of the reflection coefficient amplitude value p in these four connection states Characteristics are measured sequentially by the sampling head 11.
  • the time change characteristics 5 a to 5 d of the reflection coefficient amplitude value P which are the measurement results of these four states, are recorded in the recording unit 5.
  • the display processing unit 6 superimposes the time change characteristics 5a and 5b of the respective reflection coefficient amplitude values ⁇ when the connectors 21 and 22 are connected to the conversion adapter 4 and superimposes and displays them on the display unit 7. And a process of superimposing and outputting the time change characteristic 5c5d of each reflection coefficient amplitude value p when the connectors 21 and 22 are connected to the far end side of the cable assembly 30 on the display unit 7. I do.
  • the display unit 7 is realized by LCD or the like.
  • the input unit 8 is realized by a keyboard, a numeric keypad, an input panel, a pointing device such as a mouse, and the like, and inputs various instructions.
  • the output unit 9 is realized by a printer or the like, and performs a print output according to an instruction from the input unit 8. Note that the input unit 8 and the output unit 9 may be configured to be capable of external input and external output via an input interface and an output interface, respectively.
  • a process of measuring a propagation delay time using the measuring device 10 will be described. . As shown in Fig. 2, the sampling head 11 of the measuring device 10 is connected to the conversion adapter 4 via a coaxial cable 10a with a characteristic impedance of 50 ⁇ and a SMA type connector 10b. Have been.
  • a connector 21 whose both ends are open is connected to the connector receiving portion 4b of the conversion adapter 4, and the time change characteristic Lo 1 of the reflection coefficient amplitude value p shown in FIG. 3 (a) is measured. And recorded in the recording unit 5.
  • a connector 22 whose one end is short-circuited is connected to the connector receiving portion 4 of the conversion adapter 4, and the time change characteristic Ls1 of the reflection coefficient amplitude value p shown in FIG. 3 (b) is measured. And stored in the storage unit 5.
  • the display processing unit 6 superimposes the time change characteristics Lo 1 and L s 1 of the reflection coefficient amplitude value P recorded in the recording unit 5 and outputs the superimposed display to the display unit 7.
  • the time variation characteristic L o 1 of the reflection coefficient amplitude value P indicates that the reflection wave is generated due to impedance mismatch between the connector 21 and the connector receiving portion 4b over time, and the reflection After that, the reflection coefficient amplitude value p rapidly increases due to the open end of the connector 21.
  • the time-varying characteristic L si of the reflection coefficient amplitude value p is similar to that of the connection of the connector 21 due to the impedance mismatch existing between the connector 2 ′ 2 and the connector receiving part with the passage of time. reflected wave increases reflection coefficient amplitude value P occurs, but then shows a characteristic with short-circuit end of the connector 2 2 the reflection coefficient amplitude value P rapidly decreases.
  • the time change characteristics L ol and L s 1 of the reflection coefficient amplitude value P are superimposed, as shown in FIG. 3 (c), the time change characteristics L o 1 and L o of the reflection coefficient amplitude value p are obtained.
  • the branch point P1 of Ls1 can be objectively and accurately recognized.
  • the branch point P1 is the open end of the connector 21 and corresponds to the position of each short end of the connector 22. Therefore, it is possible to eliminate the measurement error of the measurer due to the fluctuation of the time change characteristic as shown in FIG.
  • FIG. 5 (a) As shown in (1), the time change characteristic Lo 2 of the reflection coefficient amplitude value p is measured and recorded in the recording unit 5. In addition, replace connector 2 1 with connector 22.
  • the cable assembly 30 is connected to the connector receiver 4 b of the conversion adapter 4, and the connector 22 is connected to the far end of the cable assembly 30.
  • the change characteristic L S 2 is recorded in the recording unit 5.
  • the display processing unit 6 performs a process of superimposing the time change characteristics Lo 2 and L s 2 of the reflection coefficient amplitude value ⁇ on the display unit 7 for output.
  • the time variation characteristics L o 2 and L s 2 of the reflection coefficient amplitude value P are superimposed, the time variation characteristics L ⁇ 1 and L s 1 of the reflection coefficient amplitude value ⁇ are shifted in the increasing direction of time.
  • This branch point corresponds to the open end of the connector 21 and the position of the short-circuited end of the connector 22. Since the branch point ⁇ 2 also largely branches in the direction of the passage of time, the branch point ⁇ 2 can be visually recognized with high accuracy objectively, and the measurement error of the operator due to the fluctuation of the time change characteristic is reduced. Can be eliminated.
  • a half of the time difference between the time t1 of the branch point ⁇ 1 and the time t2 of the branch point P2 is the propagation delay time Td of the cable assembly.
  • the reason for reducing this time difference to one half is that the high-frequency signal travels back and forth.
  • the propagation delay time T1 of the conversion adapter 4 itself is the same, and the propagation delay time T2 of the connector 21 or the connector 22 itself is also the same.
  • the propagation delay time T3 between the positions P3 and P4 corresponding to the above is the same as the propagation delay time Td of the cable assembly 30 itself.
  • the propagation delay time Td of the Cape-no-Reamplifier 30 can be obtained by obtaining a half of the time difference between the time t1 and the time t2 described above.
  • the control unit C determines whether or not a measurement instruction has been received from the input unit 8 (step S101). If there is no measurement instruction (step S101, NO), this determination process is repeated. If there is a measurement instruction (step S101, YES), the signal generator 1 generates a high-frequency signal (step S101). Step S102). Then, the measurement unit 2 converts the incident wave from the signal generation unit 1 and the conversion adapter. The reflection coefficient amplitude value P is measured based on the reflected wave from the data 4 side (step S103), and its time change characteristic is recorded in the recording unit 5 (step S104). When the recording of the time change characteristic is completed, the generation of the high-frequency signal from the signal generator 1 is stopped (step S105).
  • step S106 it is determined based on a counter (not shown) whether or not the above-described time change characteristic of the reflection coefficient amplitude value has been measured twice (step S106). If the measurement has been performed once (step S106, NO), the process proceeds to step S101, and the above-described processing is repeated.
  • step S106 if the measurement is performed twice (step S106, YES), the counter value is cleared (step S107), and the display processing unit 6 sets the two reflection coefficient amplitudes stored in the recording unit 5
  • step S108 The process of superimposing the time change characteristics of the values on the display unit 7 is performed (step S108).
  • the display processing unit 6 performs a process of displaying the time change characteristics of each reflection coefficient amplitude value in different colors in order to further easily recognize the branch point of the time change characteristics of the two reflection coefficient amplitude values. Is preferable.
  • the control unit C determines whether or not the force has received the end instruction from the input unit 8 (step S109). If there is no end instruction (step S109, NO), the control unit C proceeds to step S101. Then, the above-described processing is repeated, and if there is a termination instruction (step S109, YES), this processing is terminated.
  • the time change characteristics L o 1 and L s 1 of the reflection coefficient amplitude value are superimposed and displayed to obtain the time t 1 of the branch point P 1
  • the time change characteristics L o 2 and L of the reflection coefficient amplitude value s2 is superimposed to obtain the time t2 of the branch point P1
  • the propagation delay of the cable assembly is calculated by calculating one half of the time difference between the times t1 and t2. Time will be gained.
  • the superposition display of the time change characteristics Lo 1 and L s 1 of the reflection coefficient amplitude value and the superposition display of the time change characteristics L o 2 and L s 2 of the reflection coefficient amplitude value are all superimposed and displayed.
  • the times t 1 and t 2 of the branch points P 1 and P 2 may be obtained simultaneously from the superimposed display screen.
  • step S201 to S205 the time change characteristic of one reflection coefficient amplitude value is measured and recorded in the recording unit 5 (steps S201 to S205). Thereafter, the control section C determines whether or not this series of processing has been repeated four times (step S206). In this case, a series of processes is repeated four times, so that the time-varying characteristics of the four reflection coefficient amplitude values Lo1, Ls1, Lo2, and Ls2 are recorded in the recording unit 5. .
  • step S206 If the series of processing has not been repeated four times (step S206, NO), the flow proceeds to step S201 to measure and record the above-described time change characteristic of the reflection coefficient amplitude value, and perform a series of processing. Is repeated four times (step S206, YES), the display processing unit 6 determines that the time change characteristics Lo1, Ls1, Lo2, and Ls2 of the four reflection coefficient amplitude values A process for superimposing and displaying all the images is performed and output to the display unit 7 (Step S207). The times t 1 and t 2 of the two branch points P 1 and P 2 are read from the time change characteristics of the superposed reflection coefficient amplitude values, and a half of the time difference is obtained to determine the propagation delay time T of the cable assembly. d can be obtained.
  • control unit C determines whether or not a termination instruction has been received from the input unit 8 (step S208). If no termination instruction has been received (step S208, NO), the control unit C proceeds to step S201. Then, the measurement processing of the propagation delay time of the next signal line or the signal line of another cable assembly is repeatedly performed, and when the termination instruction is received (step S208, YES), the processing is terminated. .
  • the measurement result of the above-described cable assembly propagation delay time measurement will be described.
  • the same coaxial cable assembly was measured by the above-described embodiment and the measurement by the conventional open method and the short method were performed by two operators A, Performed by B.
  • the coaxial cable assembly had 10 pins and was measured for each signal line.
  • Figure 10 shows the measurement results when the conventional open method was used.
  • the mean square of the difference between the measured values of the measurers A and B was 72 (ps / m).
  • the mean square of the difference between the measured values of measurers A and B when the conventional short method was used was 80 (ps / m).
  • the measurement result when the measurement method according to the embodiment of the present invention is used is as shown in FIG. 1, and the mean square of the difference between the measurement values of the measurers A and B is 15 (ps) / m).
  • the connectors corresponding to the connectors 21 and 22 may be provided with two connectors '41 and 42.
  • the connector receiving portion of the conversion cable has an o-shape.
  • the propagation delay times of the two connectors 41 and 42 themselves need to be set the same.
  • the connector 41 has an open end at both ends, a female shape at one end, and a female shape at the other end, and the connector 42 has a short end at one end.
  • the short-circuit end has a female shape and the open end has a female shape.
  • the time change characteristics Lo 1 and L s1 of the reflection coefficient amplitude value when the connectors 41 and 42 are respectively connected to the connector receiving portion 4b are obtained.
  • This can be realized by obtaining the time change characteristics Lo 2 and L s 2 of the reflection coefficient amplitude value in the state where 41 and 42 are respectively connected to the far end side of the cable assembly 30. According to this, all the measurements can be performed with only the two connectors 41 and 42 without preparing four connectors having the same propagation delay time.
  • both ends of the cable assembly 30 are female as shown in FIG. 13, the connectors 41 and 42 can be used.
  • Connector 43 It can be used only when directly connected to the connector receiving part 4b, and one end is short-circuited with a female shape and the other end is opened with a female shape to short-circuit at the far end of the cable assembly 30 Connector 43 must be prepared. That is, it is necessary to prepare three connectors 41 to 43 and make the propagation delay time of all of them the same.
  • both ends of the cable assembly shown in FIGS. 12 and 13 show the same case where the female / female shape is different.
  • the measurement can be performed by using the connector shape at both ends of the cable assembly and using the conversion connectors provided at both ends.
  • one end has a female shape and a different connector shape from the connector receiving portion 4b, and the other end has a female shape and the same type of connector shape as the connector receiving portion 4b.
  • both ends are open, one end has a female shape and has the same type of connector shape as the connector receiving portion 4b, and the other end has a male shape and a different type of connector shape from the connector receiving portion 4b. 4 and one end is short-circuited.
  • the short-circuited one end has a female shape and the other end has a female shape and the same type of connector shape as the connector receiving portion 4b.
  • the provision of the connector 45 provided allows the propagation delay time of the cable assembly 31 to be measured.
  • the measurement of the propagation delay time of a cable assembly having different connector shapes at both ends is performed by using two connector receptacles corresponding to the connector types at both ends of the cable assembly 32, as shown in Fig. 15. This can also be realized by providing parts 54a and 54b.
  • both ends of the cape assembly 32 are female, at least one end has a female shape corresponding to the connector receiving portion 54b and the other end is open, and at least one end has a connector.
  • Has a female shape corresponding to the receiving part 5 4 b What is necessary is just to prepare the connector 52 whose other end is short-circuited. It is necessary to adjust the electrical length of the conversion adapter 54 by using a conductive pattern, a wire, or the like so that the propagation delay time for the connector receiving portions 54a and 54b becomes the same. In FIG. 15, the electric length is adjusted by the wires LI and L2.
  • the connectors 51 and 52 are sequentially connected to the connector receiving portion 54b, and the time variation characteristic L of the reflection coefficient amplitude value is determined. o 1 and L s 1 are measured, and then one end of the cable assembly 32 is connected to the connector receiving portion 54a, and the connectors 51 and 52 are sequentially connected to the other end of the cable assembly 32. Then, it is sufficient to measure the time change characteristics L o 2 and L s 2 of the reflection coefficient amplitude value.
  • the short-circuit processing for a plurality of pins of the connector is not specifically described, but this short-circuit is short-circuited by a short-circuit pin or the like. .
  • a connector having the same propagation delay time is used, and the time change characteristics Lo 1 and L s 1 of the reflection coefficient amplitude value of the connector itself when the connector is opened and short-circuited are measured.
  • L s 2 are measured, superimposed and displayed, and the time t 2 of the branch point P 1 is read, and one half of this time difference is obtained as the propagation delay time of the 'cape assembly.
  • the measurer can easily read the branch point P l, ⁇ 2, the reading error between the measurers is reduced, and the propagation delay time of the cable assembly itself can be objectively and accurately determined.
  • the measurer visually reads the time points tl and t2 of the branch points on the display screen: ⁇ 1 and ⁇ 2, but in the second embodiment, When only branch points P 1 and P 2 are specified, and the time between branch points P 1 and P 2 is between time t 1 and t 2 or between time t 1 and t 2 The difference between them can be determined.
  • FIG. 16 is a block diagram showing a configuration of a measuring apparatus according to the second embodiment.
  • the measuring device 60 further includes a propagation delay time calculating unit 61 in the configuration of the measuring device 10.
  • the other configuration is the same as that of the measuring apparatus 10, and the same components are denoted by the same reference numerals.
  • the propagation delay time calculation unit 61 indicates the branch points P 1 and P 2 with a pointer or the like when the time change characteristic of the reflection coefficient amplitude value is superimposed and displayed on the display unit 7. Times t 1 and t 2 corresponding to the position are obtained, and a half of the time difference is obtained as a propagation delay time Td, and the obtained propagation delay time Td is displayed in a display area 7 a of the display unit 7. Like that.
  • step S306 the control unit C determines whether or not the force has been obtained by repeating this series of processes twice.
  • step S306 If this series of processing is performed only once (step S306, NO), the processing shifts to step S301 and the above-described series of processing is repeated, and this series of processing is performed twice. If it is repeated (step S306, YES), the number of times of counter measurement is further cleared (step S307), and the display processing unit 6 determines the time of two reflection 'coefficient amplitude values. A process of superimposing and displaying the change characteristics Lo 1 and L s 1 is performed and output to the display unit 7 (step S 308). Then, the measurer recognizes the branch point P1 on the display screen, moves the pointer from the input unit 8 to the branch point P1, and confirms the instruction, so that the time t1 of the branch point P1 is recorded in the recording unit. Recorded in 5 (step S309).
  • step S310 it is determined whether or not the force at the branch point has been recorded twice (step S310), and if it has not been recorded twice (step S310, NO), step S310 Then, the above processing is repeated, and the time t2 of the branch point P2 is recorded in the recording unit 5. Perform the recording process.
  • step S310 if the time at the branch point is recorded twice (step S310, YES), a time that is half the time difference between the times t1 and t2 recorded in the recording unit 5 is obtained, and A display is output to the display area 7a of the display unit 7 as the delay time Td (step S311). Thereafter, it is determined whether or not the end is instructed from the input unit 8 (step S312). If there is no end instruction (step S312, NO), the next signal line or the other cable assembly is disconnected. If the measurement of the propagation delay time is continued and an end instruction is given (step S312, YES), this processing is ended.
  • the propagation delay time is obtained and displayed and output.
  • the propagation delay time can be automatically obtained only by designating the branch points P 1 and P 2 on the display screen, so that the propagation can be performed more easily and objectively with higher accuracy. Delay time measurement can be performed.
  • the propagation delay time is automatically obtained and displayed on the display only by the measurer pointing at the branch points P1 and P2 on the display screen with a pointer.
  • the branch points P 1 and P 2 are automatically determined, and the propagation delay time is automatically determined and output.
  • FIG. 18 is a block diagram showing the configuration of the measuring device according to the third embodiment.
  • the measuring device 70 further includes a branch point detecting unit 71 in the configuration of the measuring device 20.
  • Other configurations are the same as those of the measuring device 60, and the same components are denoted by the same reference numerals.
  • the branch point detecting unit 71 performs an arithmetic process for obtaining the branch points P1 and P1 of the time change characteristics of the two reflection / coefficient amplitude values.
  • the obtained positions of the branch points P 1 and P 2 are input to the propagation delay time calculation unit 61, and the propagation delay time calculation unit 61 calculates the times t 1 and t 2 corresponding to the branch points P 1 and P 2, respectively.
  • One-half of this time difference is the propagation delay time T
  • the calculated propagation delay time T d is displayed in the display area 7 a of the display unit 7.
  • step S406 the control unit C determines whether or not this series of processing has been repeated twice.
  • step S 406 the process proceeds to step S 401 and the above-described series of processing is repeated. If this series of processing is repeated twice ( In step S 406, YES), the number of times of measurement of the counter is further cleared (step S 407).
  • step S 407 the display processing unit 6 sets the time change characteristics L o 1, L s 1 Are superimposed and displayed on the display unit 7 (step S408).
  • the branch point detection unit 71 performs an arithmetic process for obtaining the position of the branch point P1 of the time change characteristics Lo1 and Ls1 of the two superposed reflection coefficient amplitude values (step S409). The position of the branch point P1 is recorded in the recording unit 5 (step S410).
  • step S41 it is determined whether or not the position of the branch point has been recorded twice. If the position has not been recorded twice (step S41 1, NO), the process proceeds to step S401. The processing described above is repeated to record the position of the branch point P2 in the recording unit 5.
  • step S411, YES if the position of the branch point is recorded twice (step S411, YES), the time t 1.t 2 corresponding to the position recorded in the recording unit 5 is obtained, and the time difference of one half is calculated. The time 1 is obtained, and is displayed and output as the propagation delay time Td in the display area 7a of the display unit 7 (step S412). Thereafter, it is determined whether or not an end instruction has been received from the input unit 8 (step S413). If there is no end instruction (step S413, NO), the propagation delay time of the next signal line or another cable assembly is determined. Measurement is continued, and if there is a termination instruction (step S413, YES), End the process.
  • the display processing unit 6 does not need to perform the display output (step S408) of the time change characteristics of two or four reflection coefficient amplitude values.
  • the branch points P 1 and P 2 on the display screen are automatically calculated, and the time t 1 .t corresponding to the calculated positions of the branch points P 1 and P 2 Since the propagation delay time can be automatically obtained on the basis of 2, the accurate and accurate measurement of the general delay time can be performed more easily and objectively.
  • the cable assembly to be measured described in the above-described first to third embodiments is used for high-speed parallel transmission or high-speed serial transmission of several hundred Mbps to several tens of Gbps.
  • the transmission system may be unbalanced transmission or balanced transmission, or may be a cable assembly for various transmission systems such as the TMDS system, the LVDS system, and the GV IF system. '
  • the display output is performed on the display unit 7.
  • the present invention is not limited to this. May be printed out.
  • each device shown in the drawings are conceptual and functional, and need not necessarily be physically configured as shown in the drawings.
  • the specific form of distribution / integration of each device is not limited to the one shown in the drawing, and all or a part thereof is functionally or physically divided into arbitrary units according to various loads and usage conditions. ⁇ Can be integrated and configured.
  • each processing function performed in each device is realized by a CPU (not shown) corresponding to the control unit C and a program analyzed and executed by this CPU. It can be realized as hardware.
  • the measurement processing function or the measurement processing method of the measurement device described in the above-described first to third embodiments can be realized by software using a measurement processing program.
  • the electrical characteristic measuring method described in this embodiment can be realized by executing a prepared program on a computer such as a personal computer or a workstation.
  • the control unit C described above is realized by a CPU and a RAM (not shown), and the above-described programs and the like are stored in the RAM and executed by the CPU.
  • This program can be distributed via networks such as the Internet.
  • this program is recorded on a computer-readable recording medium such as a hard disk, a flexi-predisk (FD), a CD-ROM, MO, and DVD, and is executed by being read from the recording medium by the computer. You can also.
  • a computer-readable recording medium such as a hard disk, a flexi-predisk (FD), a CD-ROM, MO, and DVD
  • a branch point when the time change characteristic of each reflection coefficient amplitude value of the first connector having one open end and the time change characteristic of each reflection coefficient of the second connector having one end short-circuited is provided.
  • the branch point when the time reflection characteristics of each reflection coefficient amplitude value are superimposed since one of the half of the time difference is determined as the propagation delay time of the cable ⁇ Sen pre enables visual certification clarity branch points, can be reduced measurement error due to the measurer, propagation ⁇ delay accurate Keburuase Nburi This has an effect that time can be measured.
  • the propagation delay time calculation means calculates the propagation delay time only by the designation means designating the branch point on the display screen. At the same time, there is an effect that the measurement error can be further reduced.
  • the time change characteristics of the two reflection and coefficient amplitude values to be superimposed are displayed and output in different colors, it is easy to visually recognize the branch point. However, if the measurement error by the measurer can be reduced, a ray effect is exhibited.
  • the branch point of the time change characteristic of the two reflection coefficient amplitude values to be superimposed is automatically detected, and the propagation delay time is calculated and output based on the detected branch point. Therefore, there is an effect that the measurement error by the measurer can be eliminated.
  • the first connector and the second connector are converted connectors each having a connector shape matching the connector shape of the one end and the other end of the cable assembly.
  • the connector is provided with a plurality of connector receiving portions that allow connectors of different connector shapes to be connected to the connecting portion, so that even if the connector shapes at both ends of the cable assembly are different, workability is improved. This has the effect that the propagation delay time can be measured well.
  • the cable assembly electrical characteristic measuring apparatus, the cable assembly electrical characteristic measuring program, and the cable assembly electrical characteristic measuring method according to the present invention minimize the measurement error of the cable assembly propagation delay time by the measurer. and, it is possible to measure the high propagation delay time accuracy, suitable measuring apparatus for measuring the number 1 0 0 M bp propagation delay time of the cable ⁇ Senpuri used for high-speed parallel transmission or high-speed serial transmission of S ⁇ number G bps ing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

ケーブルアセンブリの伝搬遅延時間を測定する測定装置であって、この測定装置の変換アダプタに一端が開放されたコネクタと一端が短絡されたコネクタとを順次接続して得られた2つの反射係数振幅値の時間変化特性を重ね合わせ表示し、その分岐点位置の時間と、遠端側において一端が開放されたコネクタが接続されたケーブルアセンブリと遠端側において一端が短絡されたコネクタが接続されたケーブルアセンブリとを順次接続して得られた2つの反射係数振幅値の時間変化特性を重ね合わせ表示し、その分岐点位置の時間とを求め、さらに、これら求めた時間の時間差の2分の1を伝搬遅延時間として求めるようにし、分岐点位置の読み取り容易性による測定者の測定誤差を小さくしている。

Description

明 細 書 ケーブルァセンブリの電気特性測定装置、 ケーブルァセンブリの電気特性測定プ ログラムおよびケーブルァセンブリの電気特性測定方法 技術分野
この発明は、 ノートパソコンなどに用いられるケーブルアセンブリのスキュー が所定値以内であるカゝ否かを判断するための該ケーブルァセンブリの伝搬遅延時 間を測定するケーブルァセンブリの電気特性測定装置、 ケーブルァセンブリの電 気特性測定プログラムおよびケーブルァセンブリの電気特性測定方法に関し、 特 に、 伝搬遅延時間を精度高く測定することができるケーブルアセンブリの電気特 性測定装置、 ケーブルァセンブリの電気特性測定プログラムおよびケーブルァセ ンプリの電気特性測定方法に関するものである。 背景技術
近年、 ノート型パソコンなどでは、 軽量小型ィ匕が推進されているとともに、 高 速高解像度化が推進され、 これに伴って高速伝送が可能なケーブルアセンブリが 組み込まれるようになつている。 ケーブルの信号伝送速度の高速ィ匕に伴って、 ケ 一ブルアセンブリに許容される伝搬遅延時間差であるスキューの範囲が狭くなつ ている。 これは、 伝搬遅延時簡差が生じると、 信号間の同期がずれ、 信号誤りが 発生し易くなるからであり、 高速伝送である場合、 特に小さレ、伝搬遅延時間差が 要求される。 このため、 ケーブルアセンブリは、 伝搬遅延時間差が所定範囲内に 収まっているか否かの測定を行う必要がある。
第 2 0図は、 従来のケーブルァセンブリの伝搬遅延時間を測定する測定装置 1 1 0を用いて、 被測定対象であるケーブルアセンブリ 3 0の伝搬遅延時間を測定 する模式図を示している。 第 2 0図において、 測定装置 1 1 0の変換アダプタ 1 0 4には、 直接にケーブルアセンブリ 3 0の近端側 3 0 aが接続され、 他方の遠 端側 3 0 bは電気的に開放されている。 この接続状態で、 測定装置 1 1 0側が所 定周波数の信号をケーブルアセンブリ 3 0側に送信すると、 インピーダンスの不 整合箇所で反射が生じ、 その反射波が生じる。 そこで、 この測定装置 1 1 0では 、 第 2 1図に示すように、 入射波に対する反射波の比である反射係数の反射係数 振幅値 pの時間変化を求め、 この時間変化特性から、 伝搬遅延時間 T dを求めて いる。
第 2 1図で求めた反射係数振幅値 pの時間変化特性では、 時間の経過とともに 、 最初に、 反射係数振幅値 pがケーブルアセンブリ 3 0の近端側 3 0 a近傍に対 応する点 P P 1で急激に大きくなり、 その後、 開放端となっているケーブルァセ ンブリ 3 0の遠端側 3 0 bに対応する点 P P 2で急激に大きくなっている。 この 反射係数振幅値 Pの時間変化特性は、 測定装置 1 1 0の表示部 1 0 7に表示出力 される。 測定者は、 この表示された時間変化特性の急激に変化する 2つの点 P P 1, P P 2間の時間差を目視で計測し、 この時間差の 2分の 1を伝搬遅延時間と して求めている。 この測定法は、 ケーブルアセンブリ 3 0の遠端側 3 0 bを開放 しているので、 オープン法と呼ばれる。
一方、 ケーブルァセンプリ 3 0の遠端側 3 0 bを短絡して伝搬遅延時間を求め るショート法は、 第 2 2図に示すように、 第 2 0図に示した接続状態のケーブル アセンブリ 3 0の遠端側 3 0 aを短絡ピン 1 3 0で短絡して伝搬遅延時間を求め ている。 第 2 3図は、 ショート法によって得られた反射係数振幅値 pの時間変化 特性を示している。 第 2 3図に示すように、 ケーブルアセンブリ 3 0の遠端側 3 0 aに対応する点 P P 2で、 反射係数振幅値 /0が急激に小さくなっている点がォ ープン法で得られた反射'係数振幅値 Pの時間変化特性と異なっている。 ただし、 オープン法と同様に、 このショート法でも、 反射係数振幅値 pが極端に変化する 点 P P 1, P P 2間の時間差の 2分の 1を伝搬遅延時間 T dとして求めている。 しかしながら、 オープン法おょぴショート法のいずれを採用しても、 点 P P 1 , P P 2近傍では、 これらの拡大図 E l, E 2に示すように、 反射係数振幅値 P が大きく波打った特性を有している。 このため、 測定者は、 点 P P 1の位置を読 み誤る場合があり、 精度の高い伝搬遅延時間を測定することができない場合が生 ずるという問題点があった。 例えば、 点 P P 1の位置を、 ピーク値の点 P t 1と して読み取る場合と、 点 P t 2として読み取る場合があった。
このことは、 測定者による計測誤差が助長され、 一層精度の低!/ヽ伝搬遅延時間 の測定が行われることになる。
そこで、 この発明は上述した問題点を除去し、 測定者による測定誤差を小さく し、 客観的に精度の高レ、伝搬遅延時間の測定を行うことができるケーブルァセン ブリの電気特性測定装置、 ケープノレァセンブリの電気特性測定プログラムおょぴ ケーブルァセンブリの電気特性測定方法を提供することを目的とする。 発明の開示
上述した課題を解決し、 目的を達成するため、 この発明は、 接続部を介してケ 一ブルアセンブリを接続し、 所定の周波数信号を前記ケーブルアセンブリ側に出 力し、 該所定の周波数信号の反射係数振幅値を測定し、 該反射係数振幅値の時間 変化特性をもとに該ケーブルァセンブリの伝搬遅延時間を測定するケーブルァセ ンプリの電気特性測定装置であって、 両端が開放された第 1コネクタが前記接続 部に接続された第 1接続状態と、 一端が短絡され、 かつ前記第 1コネクタ自体の 伝搬遅延時間と同じ伝搬遅延時間を有する第 2コネクタの他端が前記接続部に接 続された第 2接続状態と、 前記ケーブルアセンブリの一端が前記接続部に接続さ れ該ケーブルァセンブルの他端が前記第 1コネクタに接続された第 3接続状態と 、 前記ケーブルアセンブリの一端が前記接続部に接続され該ケーブルアセンブリ の他端が前記第 2コネクタの他端に接続された第 4接続状態とにおける各反射係 数振幅値の時間変化特性を計測する反射係数計測手段と、 前記計測された第 1接 続状態と第2接続状態とにおける各反射係数振幅値の時間変化特性を重ね合わせ て可視出力し、 または前記計測された第 3接続状態と第 4接続状態とにおける各 反射係数振幅値の時間変化特性を重ね合わせて可視出力する処理を行レヽ、 あるい は前記計測された第 1〜第 4接続状態の各反射係数振幅値の時間変化特性を重ね 合わせて可視出力する処理を行う出力処理手段と、 を備え、 前記第 1接続状態と 前記第 2接続状態とにおける各反射係数振幅値の時間変化特性の分岐点と、 前記 第 4接続状態と前記第 4接続状態とにおける各反射係数振幅値の時間変化特性の 分岐点との時間差の 2分の 1を前記伝搬遅延時間として求めることを特徴とする 0
この発明によれば、 一端が開放した第 1コネクタと一端が短絡された第 2コネ クタの各反射係数振幅値の時間変化特性を重ね合わせたときの分岐点と、 ケープ ルァセンブリおよびその遠端側に接続された第 1コネクタとケーブルァセンブリ およびその遠端側に接続された第 2コネクタとの各反射係数振幅値の時間反射特 性を重ね合わせたときの分岐点との間の時間差の 2分の 1をケーブルァセンブリ の伝搬遅延時間として求めているので、 明瞭な分岐点の視認が可能となり、 測定 者による測定誤差を小さくでき、 精度の高いケーブルアセンブリの伝搬遅延時間 を測定することができる。
また、 この発明は、 2つの前記分岐点を指示する指示手段と、 前記指示手段が 指示した可視出力画面上の各分岐点の時間差を算出し、 さらにこの時間差の 2分 の 1を前記伝搬遅延時間として出力する伝搬遅延時間算出手段と、 をさらに備え たことを特徴とする。 ,
この発明によれば、 指示手段が可視出力画面上の分岐点を指示するのみで、 伝 搬遅延時間算出手段が、 伝搬遅延時間を算出するようにしているので、 測定者に かかる負担を軽減できるとともに、 測定誤差を一層小さくすることができる。 また、 この発明によれば、 前記出力処理手段は、 前記第 1接続状態の反射係数 振幅値の時間変化特性と前記第 2接続状態の反射係数振幅値の時間変化特性とを 異なる色で可視出力することを特徴とする。
この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変化特性を異な る色で可視出力するようにしているので、 分岐点の視認がー層容易になり、 測定 者による測定誤差を小さくすることができる。
また、 この発明は、 接続部を介してケーブルアセンブリを接続し、 所定の周波 数信号を前記ケーブルァセンブリ側に出力し、 該所定の周波数信号の反射係数振 幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセンブリ の信号伝搬遅延遅延時間を測定するケーブルァセンブリの電気特性測定装置であ つて、 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と 、 一端が短絡され、 力つ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝 搬遅延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態 と、 前記ケーブルアセンブリの一端が前記接続部に接続され該ケーブルァセンブ ルの他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケーブルァセン プリの一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第 2コネ クタの他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変ィ匕特 性を計測する反射係数計測手段と、 前記計測された第 1接続状態と第 2接続状態 とにおける各反射係数振幅値の時間変化特性を重ね合わせた場合における分岐点 と、 前記計測された第 3接続状態と第 4接続状態とにおける各反射係数振幅値の 時間変化特性を重ね合わせた場合における分岐点とを求め、 各分岐点の時間差の 2分の 1を前記信号伝搬遅延時間差として出力する時間差演算手段と、 を備えた ことを特 i とする。
この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変化特性の分岐 点が自動検出され、 この検出された分岐点をもとに伝搬遅延時間を演算して出力 するようにしているので、 測定者による測定誤差をなくすことができる。
また、 この発明は、 前記ケーブルアセンブリの一端と他端とのコネクタ形状が 異なる場合、 前記第 1コネクタ^よぴ前記第 2コネクタを、 前記ケーブルァセン ブリの一端と他端とのコネクタ形状にそれぞれ合致したコネクタ形状を有する変 換コネクタとし、 あるいは、 前記接続部に、 異なるコネクタ形状のコネクタを接 続可能とする複数のコネクタ受け部を備えるようにしている。
この発明によれば、 ケーブルアセンブリの両端のコネクタ形状が異なる場合で あっても、 作業性良く伝搬遅延時間を測定することができる。
また、 この発明は、 接続部を介してケーブルアセンブリが接続され、 所定の周 波数信号が前記ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係 数振幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセン プリの信号伝搬遅延遅延時間を測定するケーブルアセンブリの電気特性測定プロ グラムであって、 両端が開放された第 1コネクタが前記接続部に接続された第 1 接続状態と、 一端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と 同じ信号伝搬遅延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態とにおける各反射係数振幅値の時間変ィヒ特性を計測する第 1測定処理 手順と、 前記第 1測定処理手順によつて計測された各反射係数振幅値の時間変化 特性を重ね合わせて可視出力する第 1出力処理手順と、 前記ケーブルアセンブリ の一端が前記接続部に接続され該ケーブルァセンブルの他端が前記第 1コネクタ に接続された第 3接続状態と、 前記ケーブルアセンブリの一端が前記接続部に接 続され該ケーブルァセンブリの他端が前記第 2コネクタの他端に接続された第 4 接続状態とにおける各反射係数振幅値の時間変化特性を計測する第 2測定処理手 順と、 前記第 2測定処理手順によつて計測された各反射係数振幅値の時間変ィ匕特 性を重ね合わせて可視出力する第 2出力処理手順と、 をコンピュータに実行させ るケープノレァセンプリの電気特性測定プログラムである。
また、 この発明は、 接続部を介してケーブルアセンブリが接続され、 所定の周 波数信号が前記ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係 数振幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセン プリの信号伝搬遅延遅延時間を測定するケーブルアセンブリの電気特性測定プロ グラムであっ 、 両端が開放された第 1コネクタが前記接続部に接続された第 1 接続状態と、 一端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と 同じ信号伝搬遅延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケープノレアセンブリの一端が前記接続部に接続され該ケープ ルァセンブルの他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケー ブルアセンブリの一端が前記接続部に接続され該ケーブルアセンブリの他端が前 記第 2コネクタの他端に接続された第 4接続状態とにおける各反射係数振幅値の 時間変化特性を計測する反射係数測定処理手順と、 前記反射係数測定処理手順に よつて計測された各反射係数振幅値の時間変化特性を重ね合わせて可視出力する 出力処理手順と、 をコンピュータに実行させるケーブルアセンブリの電気特性測 定プログラムである。
こられの発明によれば、 一端が開放した第 1コネクタと一端が短絡された第 2 コネクタの各反射係数振幅値の時間変化特性を重ね合わせたときの分岐点と、 ケ 一ブルアセンブリおよびその遠端側に接続された第 1コネクタとケーブルァセン ブリおよびその遠端側に接続された第 2コネクタとの各反射係数振幅値の時間反 射特性を重ね合わせたときの分岐点との間の時間差の 2分の 1をケーブルァセン ブリの伝搬遅延時間として求めているので、 明瞭な分岐点の視認が可能となり、 測定者による測定誤差を小さくでき、 精度の高レヽケーブルァセンブリの伝搬遅延 時間を測定することができる。
また、 この発明は、 可視出力画面上で指示された前記第 1接続状態と前記第 2 接続状態とにおける各反射係数振幅値の時間変化特性の分岐点と、 可視出力画面 上で指示された前記第 4接続状態と前記第 4接続状態とにおける各反射係数振幅 値の時間変化特性の分岐点との間の時間差を求め、 この時間差の 2分の 1を前記 信号伝搬遅延時間として求める時間差演算処理手順をさらに含むことを特徴とす る。
この発明によれば、 指示手段が可視出力画面上の分岐点を指示するのみで、 伝 搬遅延時間算出手段が、 伝搬遅延時間を算出するようにしているので、 測定者に かかる負担を軽減できるとともに、 測定誤差を一層小さくすることができる。 また、 この発明は、 前記第 1出力処理手順、 前記第 2出力処理手順、 または前 記出力処理手順は、 前記第 1接続状態の反射係数振幅値の時間変化特性と前記第 2接続状態の反射係数振幅値の時間変ィ匕特性とを異なる色で可視出力し、 および Zまたは前記第 3の接続状態の反射係数振幅値の時間変化特性と前記第 4の接続 状態の反射係数振幅値の時間変化特性とを異なる色で可視出力することを特徴と する。 この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変化特性を異な る色で可視出力するようにしているので、 分岐点の視認がー層容易になり、 測定 者による測定誤差を小さくすることができる。
また、 この発明は、 前記第 1接続状態と前記第 2接続状態とにおける各反射係 数振幅値の時間変化特性の分岐点の位置と、 前記第 4接続状態と前記第 4接続状 態とにおける各反射係数振幅値の時間変化特性の分岐点の位置とを求める分岐点 検出処理手順と、 前記分岐点間の時間差の 2分の 1を前記信号伝搬遅延時間とし て求める時間差演算処理手順と、 をさらに含むことを特徴とする。
この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変化特性の分岐 点が自動検出され、 この検出された分岐点をもとに伝搬遅延時間を演算して出力 するようにしているので、 測定者による測定誤差をなくすことができる。
また、 この発明は、 接続部を介してケープノレアセンブリが接続され、 所定の周 波数信号が前記ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係 数振幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセン プリの信号伝搬遅延遅延時間を測定するケーブルアセンブリの電気特性測定プロ グラムであって、 両端が開放された第 1コネクタが前記接続部に接続された第 1 接続状態と、 一端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と 同じ信号伝搬遅延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケーブルァセンプリの一端が前記接続部に接続され該ケープ ルァセンプルの他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケー ブルアセンブリの一端が前記接続部に接続され該ケーブルアセンブリの他端が前 記第 2コネクタの他端に接続された第 4接続状態とにおける各反射係数振幅値の 時間変化特性を計測する反射係数測定処理手順と、 前記第 1接続状態と前記第 2 接続状態とにおける各反射係数振幅値の時間変化特性の分岐点の位置と、 前記第 4接続状態と前記第 4接続状態とにおける各反射係数振幅値の時間変化特性の分 岐点の位置とを求める分岐点検出処理手順と、 前記分岐点間の時間差の 2分の 1 'を前記信号伝搬遅延時間として求める時間差演算処理手順と、 をコンピュータに 実行させるケーブルアセンブリの電気特性測定プログラムである。
この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変化特性の分岐 点が自動検出され、 この検出された分岐点をもとに伝搬遅延時間を演算して出力 するようにしているので、 測定者による測定誤差をなくすことができる。
また、 この発明は、 接続部を介してケーブルアセンブリが接続され、 所定の周 波数信号が前記ケーブルァセンプリ側に出力され、 該所定の周波数信号の反射係 数振幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセン プリの信号伝搬遅延遅延時間を測定するケーブルアセンブリの電気特性測定方法 であって、 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状 態と、 一端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信 号伝搬遅延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続 状態とにおける各反射係数振幅値の時間変化特性を計測する第 1測定処理工程と 、 前記第 1測定処理手順によつて計測された各反射係数振幅値の時間変化特性を 重ね合わせて可視出力する第 1出力処理工程と、 前記ケーブルアセンブリの一端 が前記接続部に接続され該ケーブルァセンブルの他端が前記第 1コネクタに接続 された第 3接続状態と、 前記ケーブルアセンブリの一端が前記接続部に接続され 該ケーブルァセンブリの他端が前記第 2コネクタの他端に接続された第 4接続状 態とにおける各反射係数振幅値の時間変化特性を計測する第 2測定処理工程と、 前記第 2測定処理手順によつて計測された各反射係数振幅値の時間変化特性を重 ね合わせて可視出力する第 2出力処理工程と、 を含み、 前記第 1出力処理工程に よつて可視出力された各反射係数振幅値の時間変化特性の分岐点の時間と、 前記 第 2出力処理工程によって可視出力された各反射係数振幅値の時間変化特性の分 岐点の時間との時間差の 2分の 1を前記信号伝搬遅延時間として求めることを特 徴とする。
また、 この発明は、 接続部を介してケーブルアセンブリが接続され、 所定の周 波数信号が前記ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係 数振幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセン プリの信号伝搬遅延遅延時間を測定するケープ/レアセンブリの電気特性測定方法 であって、 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状 態と、 一端が短絡され、 力つ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信 号伝搬遅延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続 状態と、 前記ケーブルァセンブリの一端が前記接続部に接続され該ケーブルァセ ンブルの他端が前記第 1コネ.クタに接続された第 3接続状態と、 前記ケーブルァ センプリの一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第 2 コネクタの他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変 化特性を計測する測定処理工程と、 前記測定処理手順によつて計測された各反射 係数振幅値の時間変化特性を重ね合わせて可視出力する出力処理工程と、 を含み 、 前記出力処理工程によつて可視出力された前記第 1接続状態と前記第 2接続状 態における各反射係数振幅値の時間変ィヒ特性の分岐点の時間と、 前記第 3接続状 態と前記第 4接続状態とにおける各反射係数振幅値の時間変化特性の分岐点の時 間との時間差の 2分の 1を前記信号伝搬遅延時間として求めることを特徴とする 。
これらの発明によれば、 一端が開放した第 1コネクタと一端が短絡された第 2 コネクタの各反射係数振幅値の時間変化特性を重ね合わせたときの分岐点と、 ケ 一ブルアセンブリおよびその遠端側に接続された第 1コネクタとケーブルァセン プリおよびその遠端側に接続された第 2コネクタとの各反射係数振幅値の時間反 射特性を重ね合わせたときの分岐点との間の時間差の 2分の 1をケープノレァセン プリの伝搬遅延時間として求めているので、 明瞭な分岐点の視認が可能となり、 測定者による測定誤差を小さくでき、 精度の高いケーブルアセンブリの伝搬遅延 時間を測定することができる。
また、 この発明は、 前記第 1出力処理工程、 前記第 2出力処理工程、 または前 記出力処理工程は、 前記第 1接続状態の反射係数振幅値の時間変化特性と前記第 2接続状態の反射係数振幅値の時間変化特性とを異なる色で可視出力し、 および /または前記第 3の接続状態の反射係数振幅値の時閬変化特性と前記第 4の接続 状態の反射-係数振幅値の時間変化特性とを異なる色で可視出力することを特徴と する。
この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変ィ匕特性を異な る色で可視出力するようにしているので、 分岐点の視認がー層容易になり、 測定 者による測定誤差を小さくすることができる。 図面の簡単な説明
第 1図は、 この発明の第 1の実施の形態である測定装置の構成を示すプロック 図である。 第 2図は、 測定装置の変換アダプタと一端が開放されたコネクタとの 接続状態を示す図である。 第 3図は、 コネクタを開放した場合とコネクタを短絡 した場合との各反射係数振幅値の時間変化特性の重ね合わせ処理を示す図である 。 第 4図は、 測定装置の変換ァダプタと一端が開放されたコネクタが接続された ケーブルアセンブリとの接続状態を示す図である。 第 5図は、 ケーブルァセンブ リを接続し、 コネクタを開放した場合とコネクタを短絡した場合との各反射係数 振幅値の時間変ィヒ特性の重ね合わせ処理を示す図である。 第 6図は、 伝搬遅延時 間が測定できる原理を説明する図である。 第 7図は、 この発明の第 1の実施の形 態である測定装置によるケーブルァセンブリの伝搬遅延時間の測定処理手順を示 すフローチャートである。 第 8図は、 4つの反射係数振幅値の時間変化特性を同 時に重ね合わせる処理を説明する図である。 第 9図は、 この発明の第 1の実施の 形態の変形例である測定装置によるケーブルァセンブリの伝搬遅延時間の測定処 理手順を示すフローチャートである。 第 1 0図は、 この発明の第 1の実施の形態 である測定装置によつて計測されたケーブルァセンブリの伝搬遅延時間の測定結 果を示す図である。 第 1 1図は、 従来のオープン法によって計測されたケーブル アセンブリの伝搬遅延時間の測定結果を示す図である。 第 1 2図は、 ケーブルァ センプリの両端のコネクタ形状が同じ場合に用いられるコネクタの一例を示す図 である。 第 1 3図は、 ケーブルアセンブリの両端のコネクタ形状が同じである他 の場合に用いられるコネクタの一例を示す図である。 第 1 4図は、 ケーブルァセ ンプリの両端のコネクタの種類が異なる場合に用いられるコネクタの一例を示す 図である。 第 1 5図は、 ケーブルアセンブリの両端のコネクタの種類が異なる場 合に用いられる変換アダプタの一例を示す図である。 第 1 6囪は、 この発明の第 2の実施の形態である測定装置の構成を示すブロック図である。 第 1 7図は、 こ の発明の第 2の実施の形態である測定装置によるケーブルアセンブリの伝搬遅延 時間の測定処理手順を示すフローチャートである。 第 1 8図は、 この発明の第 3 の実施の形態である測定装置の構成を示すブロック図である。 第 1 9図は、 この 発明の第 3の実施の形態である測定装置によるケーブルアセンブリの伝搬遅延時 間の測定処理手順を示すフローチャートである。 第 2 0図は、 従来のオープン法 による測定装置とケーブルアセンブリとの接続関係を示す図である。 第 2 1図は 、 従来のオープン法によって得られた反射 ·係数振幅値の時間変化特性を示す図で ある。 第 2 2図は、 従来のショート法による測定装置とケーフレアセンブリとの 接続関係を示す図である。 第 2 3図は、 従来のショート法によって得られた反射 係数振幅値の時間変化特性を示す図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 この発明に係るケーブルァセンブリの電気特性測 定装置、 ケーブルアセンブリの電気特性測定プログラムおよびケーブルァセンブ リの電気特性測定方法の好適な実施の形態を詳細に説明する。
まず、 この発明の第 1の実施の形態について説明する。 第 1図は、 この発明の 第 1の実施の形態である測定装置の構成を示すプロック図である。 第 1図におい て、 この測定装置は、 被測定対象のケーブルアセンブリ 3 0の伝搬遅延時間を測 定するものであり、 サンプリングヘッド 1 1、 記録部 5、 表示処理部 6、 表示部 7、 入力部 8、 出力部 9、 およびこれら各部を制御する制御部 Cを有する。 サンプリングへッド 1 1は、 信号発生部 1、 計測部 2およぴサーキュレータ 3 を有し、 高周波信号を用いた測定を行うため、 ケーブルアセンブリ 3 0の近傍ま で持ち運ばれ、 ケーブルを介して測定装置 1 0本体に接続される。 これによつて 、 ケーブル長などの影響を極力なくした精度の高レ、高周波測定を行うことができ る。 信号発生部 1は、 ケーブルアセンブリ 3 0が伝.送する高周波信号を発生し、 サーキユレータ 3を介してケーブルアセンブリ 3 0側に送出される。 ケーブルァ センプリ 3 0側から反射して戻る高周波信号は、 サーキユレータ 3を介して計測 部 2に入力される。 計測部 2は、 信号発生部 1が出力した高周波信号の入射波と ケーブルアセンブリ 3 0側から戻った反射波との比である反射係数振幅値 Pの時 間変化特性を計測し、 計測結果を記録部 5に出力する。
サンプリングヘッド 1 1に接続された変換アダプタ 4には、 一端が開放された コネクタ 2 1、 一端が短絡されたコネクタ 2 2、 ケーブルアセンブリ 3 0の遠端 側にコネクタ 2 1が接続されたケーブルァセンブリ 3 0の近端側、 ケーブルァセ ンプリ 3 0の遠端側にコネクタ 2 2が接続されたケーブルアセンブリ 3 0の近端 側が順次接続され、 この 4つの接続状態における反射係数振幅値 pの時間変化特 性がサンプリングへッド 1 1によって順次計測される。 この 4つの状態の計測結 果である反射係数振幅値 Pの時間変化特性 5 a〜5 dは、 記録部 5に記録される 。
表示処理部 6は、 変換ァダプタ 4にコネクタ 2 1 , 2 2が接続されたときの各 反射係数振幅値 βの時間変化特性 5 a , 5 bを表示部 7に重ね合わせて表示出力 させる処理を行うとともに、 ケーブルアセンブリ 3 0の遠端側にコネクタ 2 1, 2 2が接続されたときの各反射係数振幅値 pの時間変化特性 5 c 5 dを表示部 7に重ね合わせて表示出力させる処理を行う。 表示部 7は、 L C Dなどによって 実現される。
■ 入力部 8は、 キーボード、 テンキー、 入力パネル、 マウスなどのポインティン グデバイスなどによって実現され、 各種の指示入力を行う。 また、 出力部 9は、 プリンタなどによって実現され、 入力部 8の指示のもとに、 プリント出力を行う 。 なお、 入力部 8および出力部 9は、 それぞれ入力インターフェースおよび出力 インターフェースを介して外部入力および外部出力できるようにしてもよい。 つぎに、 この測定装置 1 0を用いた伝搬遅延時間の測定処理について説明する 。 第 2図に示すように、 測定装置 1 0のサンプリングヘッド 1 1は、 特性インピ 一ダンスが 5 0 Ωの同軸ケーブル 1 0 aおよび S MA型のコネクタ 1 0 bを介し て変換アダプタ 4が接続されている。 まず、 変換アダプタ 4のコネクタ受け部 4 bには、 両端が開放状態のコネクタ 2 1が接続され、 第 3図 (a ) に示した反射' 係数振幅値 pの時間変化特性 L o 1が計測され、 記録部 5に記録される。 その後 、 変換アダプタ 4のコネクタ受け部 4には、 一端が短絡されたコネクタ 2 2が接 続され、 第 3図 (b ) に示した反射係数振幅値 pの時間変化特性 L s 1が計測さ れ、 記憶部 5に記録される。 その後、 表示処理部 6によって、 記録部 5に記録さ れた反射係数振幅値 Pの時間変化特性 L o 1 , L s 1が重ね合わせられて表示部 7に表示出力される。
反射係数振幅値 Pの時間変化特性 L o 1は、 時間の経過とともに、 コネクタ 2 1とコネクタ受け部 4 bとの間に存在するインピーダンス不整合によって反射波 が生じて反射 ·係数振幅値 Pが増大し、 その後コネクタ 2 1の開放端によって反射 係数振幅値 pが急激に大きくなる特性を示す。 一方、 反射係数振幅値 pの時間変 化特性 L s iは、 コネクタ 2 1の接続時と同様に、 時間の経過とともに、 コネク タ 2' 2とコネクタ受け部との間に存在するインピーダンス不整合によって反射波 が生じて反射係数振幅値 Pが増大するが、 その後コネクタ2 2の短絡端によって 反射係数振幅値 Pが急激に減少する特性を示す。 ここで、 反射係数振幅値 Pの時 間変化特性 L o l , L s 1が重ね合わされると、 第 3図 (c ) に示すように、 反 射係数振幅値 pの時間変化特性 L o 1 , L s 1の分岐点 P 1を客観的に精度高く 視認することができる。 なお、 この分岐点 P 1は、 コネクタ 2 1の開放端であつ てコネクタ 2 2の短各端の位置に対応する。 したがって、 第 2 3図に示したよう な時間変化特性のふらつきによる測定者の測定誤差をなくすことができる。
その後、 変換アダプタ 4のコネクタ受け部 4 bにはケーブルアセンブリ 3 0が 接続され、 かつケーブルアセンブリ 3 0の遠端側にコネクタ2 1が接続され、 'こ の状態で、 第 5図 (a ) に示すように、 反射係数振幅値 pの時間変化特性 L o 2 が計測され、 記録部 5に記録される。 さらに、 コネクタ 2 1をコネクタ 2 2に代 えて接続し、 変換アダプタ 4のコネクタ受け部 4 bに、 ケーブルアセンブリ 3 0 が接続され、 かつケーブルアセンブリ 3 0の遠端部にコネクタ 2 2が接続された 状態にし、 反射係数振幅値 pの時間変化特性 L S 2が記録部 5に記録される。 表 示処理部 6は、 反射係数振幅値 ρの時間変化特性 L o 2, L s 2を重ね合わせて 表示部 7に表示出力する処理を行う。
反射係数振幅値 Pの時間変化特性 L o 2 , L s 2が重ね合わせられると、 反射 係数振幅値 Ρの時間変化特性 L ο 1 , L s 1の分岐点 Ρ 1が時間の増大方向にシ フトした特性を示し、 コネクタ 2 1 , 2 2のみを接続したときと同様に分岐点 Ρ 2が形成される。 この分岐点は、 コネクタ 2 1の開放端であってコネクタ 2 2の 短絡端の位置に対応する。 この分岐点 Ρ 2も、 時間の経過方向に向かって大きく 分岐しているので、 分岐点 Ρ 2を客観的に精度高く視認することができ、 時間変 化特性のふらつきによる測定者の測定誤差をなくすことができる。
ここで、 分岐点 Ρ 1の時間 t 1と分岐点 P 2の時間 t 2との時間差の 2分の 1 、 ケーブルアセンブリの伝搬遅延時間 T dである。 この時間差を 2分の 1にす るのは、 高周波信号が往復する時間だからである。
第 6図に示すように、 変換アダプタ 4自体の伝搬遅延時間 T 1は同じであり、 コネクタ 2 1あるいはコネクタ 2 2自体の伝搬遅延時間 T 2も同じであるため、 分岐点 P 1, P 2に対応する位置 P 3, P 4間の伝搬遅延時間 T 3は、 ケーブル アセンブリ 3 0自体の伝 »遅延時間 T dと同じなる。 これによつて、 上述した時 間 t 1と時間 t 2との時間差の 2分の 1を求めることによって、 ケープノレァセン プリ 3 0の伝搬遅延時間 T dを求めることができる。
ここで、 第 7図に示したフローチャートをもとに、 測定装置 1 0による伝搬遅 延時間の測定処理手順について説明する。 まず、 制御部 Cは、 入力部8からの計 測指示があつたか否かを判断する (ステップ S 1 0 1 ) 。 計測指示がない場合 ( ステップ S 1 0 1, N O) 、 この判断処理を繰り返し、 計測指示があった場合 ( ステップ S 1 0 1, Y E S ) 、 信号発生部 1から高周波信号を発生させる (ステ ップ S 1 0 2 ) 。 その後、 計測部 2は、 信号発生部 1からの入射波と変換ァダプ タ 4側からの反射波とをもとに反射係数振幅値 Pを計測し (ステップ S 103) 、 その時間変化特性を記録部 5に記録する (ステップ S 104) 。 そして、 この 時間変化特性の記録が終了すると、 信号発生部 1からの高周波信号発生を停止さ せる (ステップ S 105) 。
その後、 上述した反射係数振幅値の時間変化特性を 2回計測したか否かを図示 しないカウンタをもとに判断する (ステップ S 106) 。 1回の計測である場合 (ステップ S 106, NO) には、 ステップ S 101に移行し、 上述した処理を 繰り返す。
一方、 2回の計測である場合 (ステップ S 106, YES) には、 カウンタの 値をクリアにし (ステップ S 107) 、 表示処理部 6は、 記録部 5に記憶されて いる 2つの反射係数振幅値の時間変化特性を重ね合わせて表示部 7に表示出力す る処理を行う (ステップ S 108) 。 ここで、 表示処理部 6は、 2つの反射係数 振幅値の時間変化特性の分岐点を一層視認し易くするために、 各反射係数振幅値 の時間変化特性を異なる色で表示する処理を行うようにすることが好ましい。 そ の後、 制御部 Cは、 入力部 8から終了指示を受けた力否かを判断し (ステップ S 109) 、 終了指示がない場合 (ステップ S 109, NO) には、 ステップ S 1 01に移行し、 上述した処理を繰り返し、 終了指示があった場合 (ステップ S 1 09, YES) には、 本処理を終了する。
この処理によって、 反射係数振幅値の時間変化特性 L o 1, L s 1が重ね合わ せ表示されて分岐点 P 1の時間 t 1が得られ、 反射係数振幅値の時間変化特性 L o 2, L s 2が重ね合わせ表示されて分岐点 P 1の時間 t 2が得られ、 その後、 この時間 t 1, t 2の時間差の 2分の 1を計算することによつてケーブルァセン プリの伝搬遅延時間が得られることになる。
ところで、 これまで説明した実施の形態では、 反射係数振幅値の時間変化特性 Lo 1, L s 1の重ね合わせ表示と反射係数振幅値の時間変化特性 L o 2, L s 2の重ね合わせ表示とを別に行っていたが、 第 8図に示すように、 反射係数振幅 値の時間変化特性 L o l, L s 1, Lo 2, L s 2をすベて重ね合わせ表示し、 この重ね合わせ表示された表示画面から同時に分岐点 P 1, P 2の時間 t 1, t 2を得るようにしてもよい。
ここで、 第 9図に示すフローチャートを参照して、 4つの反射係数振幅値の時 間変化特性 L o l, L s 1 , L o 2, L s 2を同時に重ね合わせ表示する場合に おける測定装置の処理手順について説明する。
まず、 ステップ S 101〜S 105と同様にして、 1つの反射係数振幅値の時 間変化特性を計測して記録部 5に記録させる (ステップ S 201〜S 205) 。 その後、 制御部 Cは、 この一連の処理を 4回繰り返したか否かを判断する (ステ ップ S 206) 。 この場合、 一連の処理が 4回繰り返されることによって、 4つ の反射係数振幅値の時間変化特性 L o 1, L s 1, Lo 2, L s 2が記録部 5に 記録されることになる。
一連の処理が 4回繰り返されなかった場合 (ステップ S 206, NO) には、 ステップ S 201に移行して上述した反射係数振幅値の時間変化特性の計測と記 録とを行い、 一連の処理が 4回繰り返された場合 (ステップ S 206, YES) には、 '表示処理部 6が、 4つの反射係数振幅値の時間変化特性 L o 1, L s 1, L o 2, L s 2のすベてを重ね合わせ表示する処理を行って表示部 7に表示出力 する (ステップ S 207) 。 この重ね合わされた反射係数振幅値の時間変化特性 から 2つの分岐点 P 1 , P 2の時間 t 1, t 2を読み取り、 その時間差の 2分の 1を求めてケーブルァセンブリの伝搬遅延時間 T dを得ることができる。 その後 、 制御部 Cは、 入力部 8からの終了指示を受けたか否かを判断し (ステップ S 2 08) 、 終了指示を受けていない場合 (ステップ S 208, NO) には、 ステツ プ S 201に移行し、 つぎの信号線あるいは他のケーブルァセンブリの信号線の 伝搬遅延時間の測定処理を繰り返し行い、 終了指示を受けた場合 (ステップ S 2 08, YES) には、 本処理を終了する。
ここで、 上述したケーブルァセンブリの伝搬遅延時間測定の測定結果にっレ、て 説明する。 この測定は、 同一の同軸ケーブルアセンブリを上述した実施の形態に よる測定と従来のオープン法およぴショート法による測定とを 2人の測定者 A, Bによって行った。 なお、 この同軸ケーブルアセンブリは、 ピン数が 10本であ り、 1本の信号線毎に測定が行われた。
従来のオープン法を用いた場合における測定結果は、 第 10図に示すとおりで ある。 従来のオープン法を用いた場合、 測定者 A, Bの測定値の差の 2乗平均は 、 72 (p s/m) であった。 また、 従来のショート法を用いた場合における測 定者 A, Bの測定値の差の 2乗平均は、 80 (p s/m) であった。 これに対し 、 この発明の実施の形態による測定方法を用いた場合における測定結果は、 第 1 図に示すとおりであり、 測定者 A, Bの測定値の差の 2乗平均は、 15 (p s/ m) であった。 この結果、 この実施の形態で説明した測定方法を用いれば、 測定 者間の測定誤差を極端に滅少することができることになる。
ところで、 上述した実施の形態では、 ケーブルアセンブリ 30の両端のォス / メス形状を考慮する必要がある。 第 12図に示すように、 ケーブルアセンブリ 3 0の一端がメスであり、 他端がォスである場合、 コネクタ 21, 22に対応する コネクタは、 2つのコネクタ' 41, 42を用意すればよい。 なお、 第 12図では 、 変換ケーブルのコネクタ受け部がォス形状となっている。 この場合、 2つのコ ネクタ 41, 42自体の伝搬遅延時間は同じに設定しておく必要がある。 2つの コネクタ 41, 42のうちコネクタ 41は、 両端が開放端となっており、 一端が メス形状であり、 他端がォス形状をなし、 コネクタ 42は、 一端が短絡端となつ ており、 短絡端側がォス形状で、 開放端側がメス形状となっている。 このコネク タ 41 , 42を用いた計測を行う場合、 コネクタ 41, 42をそれぞれコネクタ 受け部 4 bに接続した状態の反射係数振幅値の時間変化特性 Lo 1, L s 1を求 め、 またコネクタ 41, 42をそれぞれケーブルアセンブリ 30の遠端側に接続 した状態の反射係数振幅値の時間変化特性 Lo 2, L s 2を求めることによって 、 実現できる。 これによれば、 伝搬遅延時間を同一とした 4つのコネクタを用意 せずに、 2つのコネクタ 41, 42のみで全ての計測を行うことができる。 一方、 第 13図に示すように、 ケーブルアセンブリ 30の両端がともにメス形 状である場合、 コネクタ 41, 42を用いることができるが、 コネクタ 42は、 コネクタ受け部 4 bに直接接続した場合のみしか用いることができず、 ケーブル アセンブリ 3 0の遠端側において短絡させるために、 一端がメス形状で短絡され 、 他端がォス形状で開放されたコネクタ 4 3を用意する必要がある。 すなわち、 3つのコネクタ 4 1〜4 3を用意し、 これら全ての伝搬遅延時間を同じにしてお く必要がある。
ここで、 第 1 2図および第 1 3図に示したケ ブルアセンブリの両端は、 ォス /メス形状が異なる場合と同じ場合を示し、 同じ種類のコネクタ形状であつたが 、 両端が異なる種類のコネクタ形状であるケーブルアセンブリの場合には、 ケー ブルアセンブリの両端のコネクタ形状を、 その両端に備えた変換コネクタを用レ、 ることによって、 測定を行うことができる。
たとえば、 第 1 4図に示すように、 一端がメス形状でコネクタ受け部 4 bとは 異なる種類のコネクタ形状と、 他端がォス形状でコネクタ受け部 4 bと同じ種類 のコネクタ形状とを有したケーブルアセンブリ 3 1の伝搬遅延時間を計測する場 合を考える。 この場合、 両端が開放され、 一端がメス形状でコネクタ受け部 4 b と同じ種類のコネクタ形状をもち、 他端がォス形状でコネクタ受け部 4 bと異な る種類のコネクタ形状をもたせたコネクタ 4 4と、 一端が短絡され、 短絡された 一端がォス形状でコネクタ受け部 4 bと異なる種類のコネクタ形状をもち、 他端 がメス形状でコネクタ受け部 4 bと同じ種類のコネクタ形状をもたせたコネクタ 4 5とを用意することによって、 ケーブルァセンプリ 3 1の伝搬遅延時間を測定 することができる。
また、 両端が異なるコネクタ形状をもつケーブルアセンブリの伝搬遅延時間測 定は、 第 1 5図に示すように、 変換アダプタ 5 4に、 ケーブルアセンブリ 3 2の 両端のコネクタ種類に対応した 2つのコネクタ受け部 5 4 a , 5 4 bを設けるこ とによっても実現できる。
たとえば、 ケープノレアセンブリ 3 2の両端がメス形状である場合、 少なくとも 一端がコネクタ受け部 5 4 bに対応したォス形状をもち、 他端が開放されたコネ クタ 5 1と、 少なくとも一端がコネクタ受け部 5 4 bに対応したォス形状をもち 、 他端が短絡されたコネクタ 5 2とを用意すればよい。 なお、 変換アダプタ 5 4 は、 コネクタ受け部 5 4 a, 5 4 bに対する伝搬遅延時間が同じになるように、 導電パターンやワイヤなどによって電気長を調整する必要がある。 第 1 5図では 、 ワイヤ L I , L 2によって電気長を調整している。
この変換アダプタ 5 4を用いて伝搬遅延時間の測定を行ゔ場合、 まず、 コネク タ 5 1, 5 2をコネクタ受け部 5 4 bに順次接続して、 反射係数振幅値の時間変 化特性 L o 1, L s 1を測定し、 その後、 ケーブルアセンブリ 3 2の一端をコネ クタ受け部 5 4 aに接続し、 かつコネクタ 5 1 , 5 2をケーブルアセンブリ 3 2 の他端に順次接続して、 反射係数振幅値の時間変化特性 L o 2, L s 2を測定す ればよい。
なお、 上述した第 1の実施の形態では、 コネクタの複数のピンに対する短絡処 理につレ、て特に言及していなかったが、 この短絡は短絡ピンなどによつて短絡す るようにしている。
この第 1の実施の形態では、 伝搬遅延時間が同じコネクタを用い、 開放したと きと短絡したときのコネクタ自体の反射係数振幅値の時間変化特性 L o 1 , L s 1を計測し、 重ね合わせ表示してその分岐点 P 1の時間 t 1を読み取り、 ケープ ルァセンプリと、 その遠端側に、 開放または短絡したコネクタを接続し、 ケープ ルァセンブリおよびコネクタの反射係数振幅値の時間変化特性 L o 2 , L s 2を 計測し、 重ね合わせ表示してその分岐点 P 1の時間 t 2を読み取り、 この時間差 の 2分の 1を 'ケープ アセンブリの伝搬遅延時間として求めるようにしているの で、 測定者は分岐点 P l, Ρ 2を容易に読み取ることができ、 測定者間の読み取 り誤差が小さくなり、 ケーブルアセンブリ自体の伝搬遅延時間を客観的に精度良 く求めることができる。
つぎに、 この発明の第 2の実施の形態について説明する。 上述した第 1の実施 の形態では、 測定者が表示画面上の分岐点: Ρ 1, Ρ 2の時間 t l, t 2を目視で 読み取るものであつたが、 この第 2の実施の形態では、 分岐点 P 1, P 2を指示 するのみで、 分岐点 P 1, P 2の時間 t 1, t 2あるいは時間 t 1 , t 2間の時 間差を求めることができるようにしている。
第 1 6図は、 この第 2の実施の形態である測定装置の構成を示すブロック図で ある。 この測定装置 6 0は、 測定装置 1 0の構成に、 伝搬遅延時間計算部 6 1を さらに設けている。 その他の構成は、 測定装置 1 0と同じであり、 同一構成部分 には同一符号を付している。
伝搬遅延時間計算部 6 1は、 表示部 7上に反射係数振幅値の時間変化特性が重 ね合わせ表示されたときに、 分岐点 P l, P 2をポインタ等によって指示すると 、 この指示された位置に対応する時間 t 1, t 2を求め、 この時間差の 2分の 1 を伝搬遅延時間 T dとして求め、 表示部 7の表示領域 7 aに、 求めた伝搬遅延時 間 T dを表示するようにしている。
ここで、 第 1 7図に示すフローチャートを参照して、 この第 2の実施の形態の 測定装置による測定処理手順について説明する。 まず、 ステップ S 1 0 1〜S 1 0 5と同様にして、 1つの反射係数振幅値の時間変化特性を計測して記録部 5に 記録させる (ステップ S 3 0 1〜S 3 0 5 ) 。 その後、 制御部 Cは、 この一連の 処理を 2回繰り返した力否かを判断する (ステップ S 3 0 6 ) 。
この一連の処理が 1回のみである場合 (ステップ S 3 0 6., N O) には、 ステ ップ S 3 0 1に移行して上述した一連の処理を繰り返し、 この一連の処理が 2回 繰り返された場合 (ステップ S 3 0 6, Y E S ) には、 さらにカウンタの計測回 数をクリアし (ステップ S 3 0 7 ) には、 表示処理部 6が、 2つの反射'係数振幅 値の時間変化特性 L o 1, L s 1を重ね合わせ表示する処理を行って表示部 7に 表示出力する (ステップ S 3 0 8 ) 。 その後、 測定者が分岐点 P 1を表示画面上 で認識し、 入力部 8から、 ポインタを分岐点 P 1に移動させ、 指示確定すること によって、 この分岐点 P 1の時間 t 1が記録部 5に記録される (ステップ S 3 0 9 ) 。
その後、 分岐点の時間が 2回記録された力否かを判断し (ステップ S 3 1 0 ) 、 2回記録されていない場合 (ステップ S 3 1 0, N O) には、 ステップ S 3 0 1に移行して、 上述した処理を繰り返し、 分岐点 P 2の時間 t 2を記録部 5に記 録する処理を行う。
一方、 分岐点の時間が 2回記録された場合 (ステップ S 310, YES) には 、 記録部 5に記録されている時間 t 1. t 2の時間差の 2分の 1の時間を求め、 伝搬遅延時間 T dとして表示部 7の表示領域 7 aに表示出力する (ステップ S 3 1 1) 。 その後、 入力部 8から、 終了指示があった力否かを判断し (ステップ S 312) 、 終了指示がない場合 (ステップ S 312, NO) は、 つぎの信号線あ るいは他のケーブルアセンブリの伝搬遅延時間の測定を続けて行レ、、 終了指示が あった場合 (ステップ S 312, YES) には、 本処理を終了する。
なお、 4つの反射係数振幅値の時間変化特性 L o 1, L s 1, L o 2, L s 2 のすベてを同時に重ね合わせ表示する場合には、 ポインダを用いて 2つの分岐点 P 1, P 2を指示することによって伝搬遅延時間が求められ、 表示出力される。 この第 2の実施の形態では、 表示画面上の分岐点 P 1, P 2を指示するのみで 、 自動的に伝搬遅延時間を得ることができるので、 一層容易にかつ客観的に精度 の良い伝搬遅延時間測定を行うことができる。
つぎに、 この発明の第 3の実施の形態について説明する。 上述した第 2の実施 の形態では、 測定者が表示画面上の分岐点 P 1, P 2をポインタで指示するのみ で、 伝搬遅延時間を自動的に求め、 表示出力するものであつたが、 この第 3の実 施の形態では、 分岐点 P 1, P 2を自動的に求め、 さらに伝'搬遅延時間を自動的 に求めて、 表示出力するようにしている。
第 18図は、 この第 3の実施の形態である測定装置の構成を示すプロック図で ある。 この測定装置 70は、 測定装置 20の構成に、 分岐点検出部 71をさらに 設けている。 その他の構成は、 測定装置 60と同じであり、 同一構成部分には同 一符号を付している。
分岐点検出部 71は、 2つの反射 ·係数振幅値の時間変化特性の分岐点 P 1, P 1を求める演算処理を行う。 この求められた分岐点 P 1, P 2の位置は伝搬遅延 時間計算部 61に入力され、 伝搬遅延時間計算部 61は、 それぞれ分岐点 P 1, P 2に対応する時間 t 1 , t 2を求め、 この時間差の 2分の 1を伝搬遅延時間 T dとして求め、 表示部 7の表示領域 7 aに、 求めた伝搬遅延時間 T dを表示する ようにしている。
ここで、 第 19図に示すフローチャートを参照して、 この第 3の実施の形態の 測定装置による測定処理手順について説明する。 まず、 ステップ S 301〜S 3 05と同様にして、 1つの反射係数振幅値の時間変化特性を計測して記録部 5に 記録させる (ステップ S 401〜S 405) 。 その後、 制御部 Cは、 この一連の 処理を 2回繰り返したか否かを判断する (ステップ S 406) 。
この一連の処理が 1回のみである場合 (ステップ S 406, NO) には、 ステ ップ S 401に移行して上述した一連の処理を繰り返し、 この一連の処理が 2回 繰り返された場合 (ステップ S 406, YES) には、 さらにカウンタの計測回 ,数をクリアし (ステップ S 407) には、 表示処理部 6が、 2つの反射係数振幅 値の時間変化特性 L o 1, L s 1を重ね合わせ表示する処理を行って表示部 7に 表示出力する (ステップ S 408) 。 その後、 分岐点検出部 71は、 重ね合わさ れた 2つの反射係数振幅値の時間変化特性 L o 1 , L s 1の分岐点 P 1の位置を 求める演算処理を行って (ステップ S 409) 、 この分岐点 P 1の位置を記録部 5に記録する (ステップ S 410) 。
その後、 分岐点の位置が 2回記録された力否かを判断し (ステップ S 41 1) 、 2回記録されていない場合 (ステップ S41 1, NO) には、 ステップ S40 1に移行して、 上述した処理を繰り返し、 分岐点 P 2の位置を記録部 5に記録す る処理を行う。
一方、 分岐点の位置が 2回記録された場合 (ステップ S41 1, YES) には 、 記録部 5に記録されている位置に対応する時間 t 1. t 2を求め、 この時間差 の 2分の 1の時間を求め、 伝搬遅延時間 T dとして表示部 7の表示領域 7 aに表 示出力する (ステップ S412) 。 その後、 入力部 8から、 終了指示があつたか 否かを判断し (ステップ S 413) 、 終了指示がない場合 (ステップ S 413, NO) は、 つぎの信号線あるいは他のケーブルアセンブリの伝搬遅延時間の測定 を続けて行い、 終了指示があった場合 (ステップ S 413, YES) には、 本処 理を終了する。
なお、 4つの反射係数振幅値の時間変化特性 L o 1 , L s 1 , L o 2 , L s 2 のすベてを取得してから、 分岐点 P l, P 2の位置を同時に求めるようにしても よい。
また、 表示処理部 6による 2つあるいは 4つの反射係数振幅値の時間変化特性 の表示出力 (ステップ S 4 0 8 ) は行わなくてもよい。
'この第 3の実施の形態では、 表示画面上の分岐点 P 1, P 2が自動的に演算さ れ、 この演算された分岐点 P 1, P 2の位置に対応する時間 t 1 . t 2をもとに 自動的に伝搬遅延時間を得ることができるので、 一層容易にかつ客観的に精度の 良 ヽ伝 3般遅延時間測定を行う とができる。
なお、 上述した第 1〜第 3の実施の形態で説明した被測定対象のケーブルァセ ンブリは、 数 1 0 0 M b p s〜数 1 0 G b p sの高速パラレル伝送用あるいは高 速シリアル伝送用に用いられるが、 その伝送方式が不平衡伝送であっても平衡伝 送であってもよいし、 TMD S方式、 L V D S方式や GV I F方式などの各種の 伝送方式用のケーブルアセンブリであってもよい。 '
また、 上述した第 1〜第 3の実施の形態では、 表示部 7に表示出力するように ' していたが、 これに限らず、 計測結果が可視表示されればよく、 たとえば出力部 9などによって印刷出力するようにしてもよい。
さらに、 図面中で示した各装置の各構成要素は機能概念的なものであり、 必ず しも物理的に図示したように構成されていることを必要としなレ、。 すなわち、 各 装置の分散 ·統合の具体的形態は図面中のものに限られず、 その全部または一部 を、 各種の負荷や使用状況などに応じて、 任意の単位で機能的または物理的に分 散 ·統合して構成することができる。
なお、 各装置において行われる各処理機能は、 その全部または任意の一部が、 制御部 Cに対応する図示しない C P Uおよびこの C P Uで解析実行されるプログ ラムによって実現され、 あるいは、 ワイヤードロジックによるハードウェアとし て実現され得る。 ここで、 上述した第 1〜第 3の実施の形態で説明した測定装置の測定処理機能 あるいは測定処理方法は、 測定処理プログラムを用いてソフトウエアで実現する ことができる。
すなわち、 この実施の形態で説明した電気特性測定方法は、 予め用意されたプ ログラムをパーソナノレ ' コンピュータやワークステーションなどのコンピュータ で実行することによって実現することができる。 上述した制御部 Cは、 図示しな い C P U.および R AMによつて実現され、 上述したプログラムなどが R AMに記 憶され、 C P Uによって実行される。
このプログラムは、 インターネットなどのネットワークを介して配布すること ができる。 また、 このプログラムは、 ハードディスク、 フレキシプレディスク ( F D) 、 C D - R OM, MO、 D V Dなどのコンピュータで読み取り可能な記録 媒体に記録され、 コンピュータによつて記録媒体から読み出されることによって 実行することもできる。
以上説明したように、 この発明によれば、 一端が開放した第 1コネクタと一端 が短絡された第 2コネクタの各反射係数振幅値の時間変化特性を重ね合わせたと きの分岐点と、 ケーブルアセンブリおよびその遠端側に接続された第 1コネクタ とケーブルアセンブリおよびその遠端側に接続された第 2コネクタとの各反射係 数振幅値の時間反射特性を重ね合わせたときの分岐点との間の時間差の 2分の 1 をケーブルァセンプリの伝搬遅延時間として求めているので、 明瞭 分岐点の視 認が可能となり、 測定者による測定誤差を小さくでき、 精度の高いケーブルァセ ンブリの伝搬 ϋ遅延時間を測定することができるという効果を奏する。
また、 この発明によれば、 指示手段が表示画面上の分岐点を指示するのみで、 伝搬遅延時間算出手段が、 伝搬遅延時間を算出するようにしているので、 測定者 にかかる負担を軽減できるとともに、 測定誤差を一層小さくすることができると いう効果を奏する。
また、 この発明によれば、 重ね合わせる 2つの反射 ·係数振幅値の時間変化特性 を異なる色で表示出力するようにしているので、 分岐点の視認がー層容易になり 、 測定者による測定誤差を小さくすることができるとレヽぅ効果を奏する。
また、 この発明によれば、 重ね合わせる 2つの反射係数振幅値の時間変化特性 の分岐点が自動検出され、 この検出された分岐点をもとに伝搬遅延時間を演算し て出力するようにしているので、 測定者による測定誤差をなくすことができると いう効果を奏する。
また、 ケーブルアセンブリの一端と他端とのコネクタ形状が異なる場合、 前記 第 1コネクタおよび前記第 2コネクタを、 前記ケーブルアセンブリの一端と他端 とのコネクタ形状にそれぞれ合致したコネクタ形状を有する変換コネクタとし、 あるいは、 接続部に、 異なるコネクタ形状のコネクタを接続可能とする複数のコ ネクタ受け部を備えるようにしているので、 ケーブルアセンブリの両端のコネク タ形状が異なる場合であっても、 作業性良く伝搬遅延時間を測定することができ るという効果を奏する。 産業上の利用可能性
以上のように、 この発明に係るケーブルアセンブリの電気特性測定装置、 ケー ブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性 測定方法は、 測定者によるケーブルアセンブリの伝搬遅延時間の測定誤差を極力 小さくし、 精度の高い伝搬遅延時間を測定できるので、 数 1 0 0 M b p S〜数 G b p sの高速パラレル伝送あるいは高速シリアル伝送用に用いられるケーブルァ センプリの伝搬遅延時間を測定する測定装置に適している。

Claims

請 求 の 範 囲
1 . 接続部を介してケーブルアセンブリを接続し、 所定の周波数信号を前記ケ 一ブルアセンブリ側に出力し、 該所定の周波数信号の反射係数振幅値を測定し、 該反射係数振幅値の時間変ィ匕特性をもとに該ケーブルァセンブリの伝搬遅延時間 を測定するケーブルァセンブリの電気特性測定装置であって、
両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の伝搬遅延時間と同じ伝搬遅延時間を 有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケー ブルアセンブリの一端が前記接続部に接続され該ケーブルァセンブルの他端が前 記第 1コネクタに接続された第 3接続状態と、 前記ケーブルアセンブリの一端が 前記接続部に接続され該ケープノレアセンブリの他端が前記第 2コネクタの他端に 接続された第 4接続状態とにおける各反射係数振幅値の時間変化特性を計測する 反 係数計測手段と、
前記計測された第 1接続状態と第 2接続状態とにおける各反射係数振幅値の時 間変ィ匕特性を重ね合わせて可視出力し、 または前記計測された第 3接続状態と第 4接続状態とにおける各反射係数振幅値の時間変化特性を重ね合わせて可視出力 する処理を行う出力処理手段と、
を備え、 前記第 1接続状態と前記第 2接続状態とにおける各反射係数振幅値の 時間変化特性の分岐点と、 前記第 4接続状態と前記第 4接続状態とにおける各反 射係数振幅値の時間変化特性の分岐点との時間差の2分の 1を前記伝搬遅延時間 として求めることを特徴とするケーブルアセンブリの電気特性測定装置。
2 · 前記出力処理手段は、 前記計測された第 1〜第 4接続状態の各反射係数振 幅値の時間変化特性を重ね合わせて可視出力することを特徴とする請求の範囲第 1項に記載のケーブルァセンブリの電気特性測定装置。
3 . 2つの前記分岐点を指示する指示手段と、
前記指示手段が指示した可視出力画面上の各分岐点の時間差を算出し、 さらに この時間差の 2分の 1を前記伝搬遅延時間として出力する伝搬遅延時間算出手段 と、
をさらに備えたことを特徴とする請求の範囲第 1項に記載のケーブルァセンブ リの電気特性測定装置。
4 . 前記出力処理手段は、 前記第 1接続状態の反射係数振幅値の時間変化特性 と前記第 2接続状態の反射係数振幅値の時間変化特性とを異なる色で可視出力す ることを特徴とする請求の範囲第 1項に記載のケーブルァセンブリの電気特性測 定装置。
5 . 接続部を介してケーブルアセンブリを接続し、 所定の周波数信号を前記ケ 一ブルアセンブリ側に出力し、 該所定の周波数信号の反射係数振幅値を測定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセンプリの信号伝搬遅延 遅延時間を測定するケーブルアセンブリの電気特性測定装置であって、
両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝搬遅 延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケーブルアセンブリの一端が前記接続部に接続され該ケーブルァセンブノレの 他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケーブルアセンブリ の一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第2コネクタ の他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変化特性を 計測する反射係数計測手段と、
前記計測された第 1接続状態と第 2接続状態とにおける各反射係数振幅値の時 間変ィ匕特性を重ね合わせた場合における分岐点と、 前記計測された第 3接続状態 と第4接続状態とにおける各反射係数振幅値の時間変化特性を重ね合わせた場合 における分岐点とを求め、 各分岐点の時間差の 2分の 1を前記信号伝搬遅延時間 差として出力する時間差演算手段と、
を備えたことを特徴とするケーブルァセンブリの電気特性測定装置。
6 . 前記ケーブルァセンブリの一端と他端とのコネクタ形状は異なり、 前記第 1コネクタおよび前記第 2コネクタは、 前記ケーブルァセンプリの一端 と他端とのコネクタ形状にそれぞれ合致したコネクタ形状を有する変換コネクタ であることを特徴とする請求の範囲第 1項または第 5項に記載のケーブルァセン プリの電気特性測定装置。
7 . 前記接続部は、 異なるコネクタ形状のコネクタを接続可能とする複数のコ ネクタ受け部を備えたことを特徴とする請求の範囲第 1項または第 5項に記載の ケープノレアセンブリの電気特性測定装置。
8 . 接続部を介してケーブルアセンブリが接続され、 所定の周波数信号が前記 ケープノレァセンブリ側に出力され、 該所定の周波数信号の反射係数振幅値を測定 し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセンブリの信号伝搬 遅延遅延時間を測定するケーブルァセンブリの電気特性測定プログラムであって 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝搬遅 延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態とに おける各反射係数振幅値の時間変化特性を計測する第 1測定処理手順と、 前記第 1測定処理手順によつて計測された各反射'係数振幅値の時間変化特性を 重ね合わせて可視出力する第 1出力処理手順と、
前記ケーブルァセンブリの一端が前記接続部に接続され該ケーブルァセンブル の他端が前記第 1コネクタに接続された第3接続状態と、 前記ケーブルァセンブ リの一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第 2コネク タの他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変化特性 を計測する第 2測定処理手順と、
前記第 2測定処理手順によつて計測された各反射係数振幅値の時間変化特性を 重ね合わせて可視出力する第 2出力処 手順と、
をコンピュータに実行させるケーブルァセンブリの電気特性測定プログラム。
9 . 接続部を介してケーブルアセンブリが接続され、 所定の周波数信号が前記 ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係数振幅値を測定 し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセンブリの信号伝搬 遅延遅延時間を測定するケーブルアセンブリの電気特性測定プログラムであって 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝搬遅 延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケープルァセンプリの一端が前記接続部に接続され該ケーブルアセンブルの 他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケーブルァセンブリ の一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第 2コネクタ の他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変化特性を 計測する反射係数測定処理手順と、
前記反射係数測定処理手順によつて計測された各反射係数振幅値の時間変化特 性を重ね合わせて可視出力する出力処理手順と、
をコンピュータに実行させるケーブルアセンブリの電気特性測定プログラム。
1 0 . 可視出力画面上で指示された前記第 1接続状態と前記第 2接続状態とに おける各反射係数振幅値の時間変化特性の分岐点と、 可視出力画面上で指示され た前記第 4接続状態と前記第 4接続状態とにおける各反射係数振幅値の時間変化 特性の分岐点との間の時間差を求め、 この時間差の 2分の 1を前記信号伝搬遅延 時間として求める時間差演算処理手順をさらに含むことを特徴とする請求の範囲 第 8項または第 9項に記載のケーブルァセンブリの電気特性測定プログラム。
1 1 . 前記第 1出力処理手順、 前記第 2出力処理手順、 または前記出力処理手 順は、 前記第 1接続状態の反射係数振幅値の時間変化特性と前記第 2接続状態の 反射係数振幅値の時間変化特性とを異なる色で可視出力し、 および Zまたは前記 第 3の接続状態の反射係数振幅値の時間変化特性と前記第 4の接続状態の反射係 数振幅値の時間変化特性とを異なる色で可視出力することを特徴とする請求の範 囲第 8項または第 9項に記載のケーブルアセンブリの電気特性測定プログラム。
1 2 . 前記第 1接続状態と前記第 2接続状態とにおける各反射係数振幅値の時 間変化特性の分岐点の位置と、 前記第 4接続状態と前記第 4接続状態とにおける 各反射係数振幅値の時間変化特性の分岐点の位置とを求める分岐点検出処理手順 と、
前記分岐点間の時間差の 2分の 1を前記信号伝搬遅延時間として求める時間差 演算処理手順と、
をさらに含むことを特徴とする請求の範囲第 8項または第 9項に記載のケープ ルァセンブリの電気特性測定プログラム。
1 3 . 接続部を介してケーブルアセンブリが接続され、 所定の周波数信号が前 記ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係数振幅値を測 定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルアセンブリの信号伝 搬遅延遅延時間を測定するケーブルアセンブリの電気特性測定プログラムであつ て、
両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝搬遅 延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケーブルァセンプリの一端が前記接続部に接続され該ケーブルァセンブルの 他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケーブルァセンブリ の一端が前記接続部に接続され該ケーブルァセンブリの他端が前記第 2コネクタ の他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変ィ匕特性を 計測する反射係数測定処理手順と、
前記第 1接続状態と前記第 2接続状態とにおける各反射係数振幅値の時間変化 特性の分岐点の位置と、 前記第 4接続状態と前記第 4接続状態とにおける各反射 係数振幅値の時間変化特性の分岐点の位置とを求める分岐点検出処理手順と、 前記分岐点間の時間差の 2分の 1を前記信号伝搬遅延時間として求める時間差 演算処理手順と、
をコンピュータに実行させるケープノレァセンブリの電気特性測定プログラム。
1 4 . 接続部を介してケーブルアセンブリが接続され、 所定の周波数信号が前 記ケーブルァセンブリ側に出力され、 該所定の周波数信号の反射係数振幅値を測 定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセンブリの信号伝 搬遅延遅延時間を測定するケーブルァセンブリの電気特性測定方法であって、 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝搬遅 延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態とに おける各反射係数振幅値の時間変化特性を計測する第 1測定処理工程と、 前記第 1測定処理手順によつて計測された各反射係数振幅値の時間変化特性を 重ね合わせて可視出力する第 1出力処理工程と、
前記ケーブルァセンブリの一端が前記接続部に接続され該ケーブルァセンブル の他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケーブルァセンブ リの一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第2コネク ■ タの他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変化特性 を計測する第 2測定処理工程と、
前記第 2測定処理手順によつて計測された各反射係 p:振幅値の時間変化特性を 重ね合わせて可視出力する第 2出力処理工程と、
を含み、 前記第 1出力処理工程によって出力された各反射係数振幅値の時間変 化特性の分岐点の時間と、 前記第 2出力処理工程によって出力された各反射係数 振幅値の時間変化特性の分岐点の時間との時間差の 2分の 1を前記信号伝搬遅延 時間として求めることを特徴とするケーブルアセンブリの電気特性測定方法。
1 5 . 接続部を介してケーブルアセンブリが接続され、 所定の周波数信号が前 記ケープルァセンブリ側に出力され、 該所定の周波数信号の反射係数振幅値を測 定し、 該反射係数振幅値の時間変化特性をもとに該ケーブルァセンブリの信号伝 搬遅延遅延時間を測定するケーブルアセンブリの電気特性測定方法であって、 両端が開放された第 1コネクタが前記接続部に接続された第 1接続状態と、 一 端が短絡され、 かつ前記第 1コネクタ自体の信号伝搬遅延時間と同じ信号伝搬遅 延時間を有する第 2コネクタの他端が前記接続部に接続された第 2接続状態と、 前記ケーブルァセンブリの一端が前記接続部に接続され該ケーブルァセンブルの 他端が前記第 1コネクタに接続された第 3接続状態と、 前記ケーブルアセンブリ の一端が前記接続部に接続され該ケーブルアセンブリの他端が前記第 2コネクタ の他端に接続された第 4接続状態とにおける各反射係数振幅値の時間変化特性を 計測する測定処理工程と、
前記測定処理手順によつて計測された各反射係数振幅値の時間変化特性を重ね 合わせて可視出力する出力処理工程と、
を含み、 前記出力処理工程によって出力された前記第 1接続状態と前記第 2接 続状態における各反射係数振幅値の時間変ィ匕特性の分岐点の時間と、 前記第 3接 続状態と前記第 4接続状態とにおける各反射係数振幅値の時間変化特性の分岐点 の時間との時間差の 2分の 1を前記信号伝搬遅延時間として求めることを特徴と するケープノレァセンブリの電気特性測定方法。
1 6 . 前記第 1出力処理工程、 前記第 2出力処理工程、 または前記出力処理ェ 程は、 前記第 1接続状態の反射係数振幅値の時間変化特性と前記第 2接続状態の 反射係数振幅値の時間変化特性とを異なる色で可視出力し、 および/または前記 第 3の接続状態の反射係数振幅値の時間変ィ匕特性と前記第 4の接続状態の反射係 数振幅値の時間変化特性とを異なる色で可視出力することを特徴とする請求の範 囲第 1 4項または第 1 5項に記載のケーブルアセンブリの電気特性測定方法。
PCT/JP2003/001966 2003-02-24 2003-02-24 ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法 WO2004074857A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004568495A JP3992715B2 (ja) 2003-02-24 2003-02-24 ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法
PCT/JP2003/001966 WO2004074857A1 (ja) 2003-02-24 2003-02-24 ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法
US11/094,579 US7005862B2 (en) 2003-02-24 2005-03-31 Method and apparatus for measuring electric characteristics of cable assembly, and computer product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001966 WO2004074857A1 (ja) 2003-02-24 2003-02-24 ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/094,579 Continuation US7005862B2 (en) 2003-02-24 2005-03-31 Method and apparatus for measuring electric characteristics of cable assembly, and computer product

Publications (1)

Publication Number Publication Date
WO2004074857A1 true WO2004074857A1 (ja) 2004-09-02

Family

ID=32894255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001966 WO2004074857A1 (ja) 2003-02-24 2003-02-24 ケーブルアセンブリの電気特性測定装置、ケーブルアセンブリの電気特性測定プログラムおよびケーブルアセンブリの電気特性測定方法

Country Status (3)

Country Link
US (1) US7005862B2 (ja)
JP (1) JP3992715B2 (ja)
WO (1) WO2004074857A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693046B2 (en) * 2017-07-20 2023-07-04 Tektronix, Inc. Monitoring waveforms from waveform generator at device under test
US11995389B2 (en) 2018-12-25 2024-05-28 Zte Corporation Connector structure, and skew calculation method and device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103713A1 (en) * 2006-10-27 2008-05-01 Barford Lee A Labeling Asymmetric Cables For Improved Network Clock Synchronization
US10162002B2 (en) * 2015-07-20 2018-12-25 International Business Machines Corporation Tuning a testing apparatus for measuring skew
US10684319B2 (en) 2015-07-20 2020-06-16 International Business Machines Corporation Tuning a testing apparatus for measuring skew
FR3066825B1 (fr) * 2017-05-29 2019-07-19 Dcns Systeme de reflectometrie pour la detection de defaut sur un connecteur multipoints durci d'un reseau electrique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199127A (ja) * 1986-02-26 1987-09-02 Fujitsu Ltd ケ−ブルデイレ−測定装置
JPS63191979A (ja) * 1987-02-05 1988-08-09 Yokogawa Hewlett Packard Ltd 伝送路パラメ−タ測定装置
JPH0836037A (ja) * 1994-07-20 1996-02-06 Advantest Corp 伝送経路の伝播遅延時間測定回路
JPH1038938A (ja) * 1996-07-22 1998-02-13 Ando Electric Co Ltd 伝送線路伝搬遅延時間測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420512A (en) * 1991-11-21 1995-05-30 Paladin Corporation Electronic cable testing system
US6366097B1 (en) * 2000-04-26 2002-04-02 Verizon Laboratories Inc. Technique for the measurement of reflection coefficients in stored energy systems
JP3968956B2 (ja) 2000-05-30 2007-08-29 日立電線株式会社 マルチフラットケーブルのスキュー調整方法及び装置
US6486676B2 (en) * 2001-03-19 2002-11-26 Agilent Technologies, Inc. Reflection measurement method and apparatus for devices that are accessed through dispersive elements
US6825672B1 (en) * 2002-06-07 2004-11-30 Marvell International Ltd. Cable tester
US6853198B2 (en) * 2002-11-14 2005-02-08 Agilent Technologies, Inc. Method and apparatus for performing multiport through-reflect-line calibration and measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199127A (ja) * 1986-02-26 1987-09-02 Fujitsu Ltd ケ−ブルデイレ−測定装置
JPS63191979A (ja) * 1987-02-05 1988-08-09 Yokogawa Hewlett Packard Ltd 伝送路パラメ−タ測定装置
JPH0836037A (ja) * 1994-07-20 1996-02-06 Advantest Corp 伝送経路の伝播遅延時間測定回路
JPH1038938A (ja) * 1996-07-22 1998-02-13 Ando Electric Co Ltd 伝送線路伝搬遅延時間測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693046B2 (en) * 2017-07-20 2023-07-04 Tektronix, Inc. Monitoring waveforms from waveform generator at device under test
US11995389B2 (en) 2018-12-25 2024-05-28 Zte Corporation Connector structure, and skew calculation method and device
JP7498176B2 (ja) 2018-12-25 2024-06-11 中興通訊股▲ふん▼有限公司 コネクタ試験治具、遅延時間差の計算方法および試験装置

Also Published As

Publication number Publication date
JPWO2004074857A1 (ja) 2006-06-01
US7005862B2 (en) 2006-02-28
US20050168229A1 (en) 2005-08-04
JP3992715B2 (ja) 2007-10-17

Similar Documents

Publication Publication Date Title
KR100682005B1 (ko) S 파라미터 산출 장치, s 파라미터 산출 방법, 및 s 파라미터 산출 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
US20140343883A1 (en) User Interface for Signal Integrity Network Analyzer
CN109324248B (zh) 用于数据域分析的一体化矢量网络分析仪及其测试方法
US20040201383A1 (en) Balanced device characterization including test system calibration
US20110286506A1 (en) User Interface for Signal Integrity Network Analyzer
JPH11352163A (ja) ネットワ―ク・アナライザの校正方法
JP2007519892A (ja) 複数のテストフィクスチャを使用するときのテストシステム校正の補正および装置測定値の変換
CN109406884B (zh) 具有数字接口的矢量网络分析仪
JP6360901B2 (ja) 周波数ドメインでの校正を伴う時間ドメイン測定方法
US7005862B2 (en) Method and apparatus for measuring electric characteristics of cable assembly, and computer product
KR20130117841A (ko) 측정 오차의 보정방법 및 전자부품 특성 측정장치
EP3242143B1 (en) Measurement apparatus
KR101840327B1 (ko) 채널 전환 장치, 임피던스 측정 시스템, 및 그 제어 방법
US20230018215A1 (en) Noise intrusion position estimation device and noise intrusion position estimation method
WO2019105083A1 (zh) 一种改进阻抗分析方法
JP3965701B2 (ja) 測定誤差の補正方法及び電子部品特性測定装置
JP2010019865A (ja) 周波数特性評価装置、tdr波形測定器、および周波数特性評価装置用のプログラム
JP2008014781A (ja) ネットワーク・アナライザの校正方法、および、ネットワーク・アナライザ
KR20050022313A (ko) 검사 장치 및 파형 표시 장치
JP4149428B2 (ja) ベクトルネットワークアナライザ及びその校正方法
US20240039644A1 (en) Measurement application device calibration unit, measurement system, method
JP2006242799A (ja) 測定誤差の補正方法及び電子部品特性測定装置
JP4478879B2 (ja) 測定誤差の補正方法及び電子部品特性測定装置
US11693046B2 (en) Monitoring waveforms from waveform generator at device under test
JP6612795B2 (ja) 測定モジュール、測定システム及び測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004568495

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11094579

Country of ref document: US