WO2019105083A1 - 一种改进阻抗分析方法 - Google Patents

一种改进阻抗分析方法 Download PDF

Info

Publication number
WO2019105083A1
WO2019105083A1 PCT/CN2018/103437 CN2018103437W WO2019105083A1 WO 2019105083 A1 WO2019105083 A1 WO 2019105083A1 CN 2018103437 W CN2018103437 W CN 2018103437W WO 2019105083 A1 WO2019105083 A1 WO 2019105083A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
link
voltage
reflection
follows
Prior art date
Application number
PCT/CN2018/103437
Other languages
English (en)
French (fr)
Inventor
荣世立
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Publication of WO2019105083A1 publication Critical patent/WO2019105083A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design

Definitions

  • the invention relates to the technical field of high-speed circuit design, and in particular to an improved impedance analysis method.
  • Advanced Design System (English: Advanced Design System, ADS for short) is a commonly used software for high-speed circuit analysis. It can build simulation links based on ADS.
  • the principle of the impedance analyzer is used to generate a step signal at the signal source end, and the voltage value reflected back to the source end is approximated by a simple formula conversion to characterize the impedance distribution characteristics of the link.
  • An improved impedance analysis method includes the following steps:
  • the second impedance discontinuity point impedance value of the link far voltage source terminal is calculated based on the reflection principle and the first impedance discontinuity point impedance value.
  • the method further includes detecting a waveform of the reflected voltage signal at the detection point.
  • the system simulates a link according to the working principle of the impedance analyzer, including selecting a fast step signal generator as a voltage source, a voltage source followed by a calibration resistor, a calibration resistor followed by a coaxial cable, and a coaxial cable After the component under test is connected, the calibration resistor is connected to the coaxial cable as a detection point.
  • the first impedance discontinuity point impedance value of the link near the voltage source end is obtained based on the reflection principle, specifically, the first impedance discontinuity point impedance value Z 2 is reversely pushed according to the voltage V m1 at the detection point;
  • the initial voltage of the probe point is calculated as follows:
  • the reflection coefficient of the impedance discontinuity point is as follows:
  • the voltage value of the detection point after reflection is as follows:
  • V m1 V 0 + ⁇ V 0
  • the impedance values of the device under test are derived as follows:
  • the second impedance discontinuity impedance value of the link far voltage source is calculated based on the reflection principle and the first impedance discontinuity impedance value, and the specific calculation process is as follows: when the voltage signal is transmitted from the voltage source to the first The first reflection occurs when the impedance is discontinuous, part of the voltage is reflected back to the voltage source and the initial voltage is superimposed as V m3 , V m3 is the same as V m1 , and the voltage V t that continues to propagate forward is calculated as follows:
  • the reflected voltage V r is reflected at the first impedance discontinuity point when propagating toward the voltage source end, a part of which continues to propagate toward the voltage source end, and a part of which is reflected to the far end of the link, wherein the voltage V t1 continuing to propagate to the voltage source end Calculated as follows:
  • the position voltage is calculated as follows:
  • V m4 V m3 +V t1
  • the invention estimates the link impedance based on the link reflection principle, fully considers the complex reflection process caused by multiple impedance discontinuities of the link, and accurately estimates the impedance of multiple impedance discontinuities of the link by using the voltage and the conversion formula at the detection point. Value to optimize the link impedance design.
  • the method of evaluating the link impedance based on the improved algorithm avoids the shortcomings of the existing method for inaccurate evaluation of multiple impedance discontinuous point links, improves the accuracy of link impedance analysis, and can optimize the link based on the result of accurate analysis. Impedance, improve system design success rate.
  • FIG. 1 is a flow chart of an improved impedance analysis method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an emulation link based on an ADS setup system in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an emulation link including only one impedance discontinuity point in the embodiment of the present invention
  • FIG. 4 is a voltage waveform diagram of the simulation link detection point of FIG. 3;
  • Figure 5 is a waveform diagram of impedance analysis of the simulated link of Figure 3;
  • FIG. 6 is a schematic diagram of an emulation link including two impedance discontinuities in an embodiment of the present invention
  • Figure 7 is a voltage waveform diagram of the simulation link detection point of Figure 6;
  • Figure 8 is a waveform diagram of impedance analysis of the simulated link of Figure 6.
  • an improved impedance analysis method includes the following steps:
  • the voltage source is a fast step signal generator, and the voltage source is a 50 ⁇ calibration resistor to ensure the signal source.
  • the resistance is exactly 50 ⁇ .
  • Close to the resistor is the actual probe point.
  • Connected to the probe point is a short coaxial cable that connects the signal to the connector on the front panel and connects to the original being tested. The signal enters the original being tested from the source and detects the reflected signal at the sampling point.
  • the reflection principle a signal reflection related to the magnitude of the impedance is generated at the discontinuity of the impedance, and the impedance value of the reflection point can be reversed by the reflected voltage.
  • the initial voltage of the probe point is calculated as follows:
  • the reflection coefficient of the impedance discontinuity point is as follows:
  • the voltage value of the detection point after reflection is as follows:
  • V m1 V 0 + ⁇ V 0 ;(3)
  • the impedance value of the device under test can be derived as follows:
  • the signal propagation process of the topology of Figure 6 is analyzed.
  • the voltage signal is transmitted from the source to the impedance discontinuity point 1, reflection occurs.
  • a part of the voltage continues to propagate forward, and a part of the voltage is reflected back to the source and superimposed with the initial voltage as V m3 , and V m3 is the same as V m1 .
  • the voltage V t that continues to propagate forward is calculated as follows:
  • V t When V t is transmitted to the impedance discontinuity point 2, a second reflection occurs, and the reflected voltage V r is calculated as follows:
  • V t1 The voltage V t1 that continues to propagate to the source end is calculated as follows :
  • the position voltage is calculated as follows:
  • V m4 V m3 +V t1 .(8)
  • the impedance value of the first impedance discontinuity can be accurately calculated based on the voltage of the first reflection to the detection point, based on the second reflection to the detection point.
  • the voltage and the impedance value of the first impedance discontinuity point accurately calculate the impedance value of the second impedance discontinuity point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种改进阻抗分析方法,包括以下步骤:根据阻抗分析仪工作原理搭建系统仿真链路(S1);基于反射原理获取链路近电压源端的第一阻抗不连续点阻抗值(S2);基于反射原理及第一阻抗不连续点阻抗值计算出链路远电压源端的第二阻抗不连续点阻抗值(S3)。该方法基于链路反射原理推算链路阻抗,充分考虑链路多处阻抗不连续点引起的复杂反射过程,利用探测点处的电压及转换公式精确推算出链路多处阻抗不连续点的阻抗值,以此优化链路阻抗设计。该方法基于改进算法评估链路阻抗,避免了现有方法对多处阻抗不连续点链路评估不准确的缺点,提高了对链路阻抗分析的精度,进而能够基于精确分析的结果优化链路阻抗,提高系统设计成功率。

Description

一种改进阻抗分析方法
本发明要求于2017年11月30日提交中国专利局、申请号为201711240350.5、申请名称为“一种改进阻抗分析方法”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及高速电路设计技术领域,具体涉及一种改进阻抗分析方法。
背景技术
在高速电路设计过程中,随着电路速率的不断提高,芯片加工工艺的改进,互联通道对信号的影响越来越明显,发现并解决信号完整性问题成为产品开发的关键。因此,工程师必须提前预估信号完整性(英文:Signal Integrity,简称:SI)问题,利用合适的方法和分析仿真工具评估设计可行性及风险点,并依据仿真结果优化设计,提高系统设计成功率,缩短研发周期。链路的阻抗是影响系统设计风险的关键电气特性。
由于在项目前期没有成品电路板,无法借助阻抗分析仪对系统链路进行阻抗分析,只能通过仿真软件进行近似分析。在项目前期借助仿真软件分析链路的阻抗特性显得尤为重要。先进设计系统(英文:Advanced Design System,简称:ADS)是高速电路分析中的常用软件,可以基于ADS搭建仿真链路。
利用阻抗分析仪的原理在信号源端发出阶跃信号,将反射回源端的电压值通过简单的公式转换近似表征链路的阻抗分布特性。这种近似虽然可以实现链路的粗略阻抗仿真分析,但不能保证仿真准确度,尤其是当链路裕量本身就很小的情况下,这种分析方法就显得意义不大。
此外,当链路阻抗不连续点多的时候会在链路中出现复杂的多次反射,过于简单的转换公式使得阻抗计算偏差过大,失去参考意义。
发明内容
本发明的目的是提供一种改进阻抗分析方法,解决在高速电路设计前期的链路阻抗仿真分析中由于阻抗分析方法过于简单而无法准确评估复杂链路阻抗的问题。
为实现上述目的,本发明采用下述技术方案:
一种改进阻抗分析方法,包括以下步骤:
根据阻抗分析仪工作原理搭建系统仿真链路;
基于反射原理获取链路近电压源端的第一阻抗不连续点阻抗值;
基于反射原理及第一阻抗不连续点阻抗值计算出链路远电压源端的第二阻抗不连续点阻抗值。
进一步地,所述根据阻抗分析仪工作原理搭建系统仿真链路步骤之后,包括,在探测点处探测反射电压信号波形。
进一步地,所述根据阻抗分析仪工作原理搭建系统仿真链路,包括,选择快速阶跃信号发生器作为电压源,电压源后接校准电阻器,校准电阻器后接同轴电缆,同轴电缆后接被测元件,校准电阻器与同轴电缆之间为探测点。
进一步地,所述基于反射原理获取链路近电压源端的第一阻抗不连续点阻抗值,具体 为,根据探测点处的电压V m1反推第一阻抗不连续点阻抗值Z 2
根据分压原理,探测点的初始电压计算公式如下:
Figure PCTCN2018103437-appb-000001
根据反射原理,阻抗不连续点的反射系数如下:
Figure PCTCN2018103437-appb-000002
经反射后探测点的电压值如下:
V m1=V 0+ρV 0
推导出被测器件的阻抗值如下:
Figure PCTCN2018103437-appb-000003
进一步地,所述基于反射原理及第一阻抗不连续点阻抗值计算出链路远电压源端的第二阻抗不连续点阻抗值,具体计算过程如下:当电压信号从电压源端传输到第一阻抗不连续点时发生第一次反射,部分电压被反射回电压源端与初始电压叠加为V m3,V m3与V m1相同,继续往前传播的电压V t计算公式如下:
Figure PCTCN2018103437-appb-000004
当V t传输到第二阻抗不连续点时发生第二次反射,反射电压V r计算公式如下:
Figure PCTCN2018103437-appb-000005
反射电压V r在往电压源端传播时在第一阻抗不连续点发生反射,其中一部分继续往电压源端传播,一部分被反射到链路远端,其中继续往电压源端传播的电压V t1计算如下:
Figure PCTCN2018103437-appb-000006
当反射电压到达探测点处时,此时该位置电压计算公式如下:
V m4=V m3+V t1
根据上述公式推导,可得到Z 3的评估公式如下:
Figure PCTCN2018103437-appb-000007
发明内容中提供的效果仅仅是实施例的效果,而不是发明所有的全部效果,上述技术方案中的一个技术方案具有如下优点或有益效果:
本发明基于链路反射原理推算链路阻抗,充分考虑链路多处阻抗不连续点引起的复杂反射过程,利用探测点处的电压及转换公式精确推算出链路多处阻抗不连续点的阻抗值,以此优化链路阻抗设计。基于改进算法评估链路阻抗的方法,避免了现有方法对多处阻抗不连续点链路评估不准确的缺点,提高了对链路阻抗分析的精度,进而能够基于精确分析的结果优化链路阻抗,提高系统设计成功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本发明实施例提供的一种改进阻抗分析方法的流程图;
图2是本发明实施例中基于ADS搭建系统仿真链路示意图;
图3是本发明实施例中只包含一个阻抗不连续点的仿真链路示意图;
图4是图3仿真链路探测点的电压波形图;
图5是图3仿真链路的阻抗分析波形图;
图6是本发明实施例中包含两个阻抗不连续点的仿真链路示意图;
图7是图6仿真链路探测点的电压波形图;
图8是图6仿真链路的阻抗分析波形图。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。
如图1所示,一种改进阻抗分析方法,包括以下步骤:
S1、根据阻抗分析仪工作原理搭建系统仿真链路;
S2、基于反射原理获取链路近电压源端的第一阻抗不连续点阻抗值;
S3、基于反射原理及第一阻抗不连续点阻抗值计算出链路远电压源端的第二阻抗不连续点阻抗值。
如图2所示,本设计基于ADS搭建系统仿真链路,利用阻抗分析仪的工作原理,电压源是一个快速阶跃信号发生器,紧接电压源的是50Ω校准电阻器,以确保信号源内阻是精 确的50Ω。紧靠电阻器的是实际探测点,与探测点相连的是一段很短的同轴电缆,它把信号接到前面板的连接件上,再与被测原件相连接。信号从源端进入被测原件,在采样点处探测反射信号。根据反射原理,在阻抗不连续处会产生与阻抗大小有关的信号反射,通过反射电压可反推出反射点的阻抗值。
如图3所示,为进一步说明本设计分析方法,以某特定链路为例详细说明,仿真链路被测器件为阻抗为60Ω的传输线,阶跃信号的幅值V s=1V。
假定被测器件的阻抗未知(Z 2),根据探测点处的电压E反推器件阻抗值Z 2。根据分压原理,探测点的初始电压计算公式如下:
Figure PCTCN2018103437-appb-000008
根据反射原理,阻抗不连续点的反射系数如下:
Figure PCTCN2018103437-appb-000009
经反射后探测点的电压值如下:
V m1=V 0+ρV 0               ……(3)
根据上述公式可以推导出被测器件的阻抗值如下:
Figure PCTCN2018103437-appb-000010
探测点的波形如图4所示。可知V m1=0.5455,因此由公式4可推出Z 2=60Ω,若将此公式直接编辑在ADS中,可直接得到阻抗的波形如图5所示。可见,基于上述理论分析的转化公式,可以精确的得到链路的阻抗值,实际上目前大多阻抗分析也都是基于上述方法。
考虑如图6拓扑,其中被测器件中有两个阻抗不连续点Z 2、Z 3,探测点处的波形,如图7所示。若仍按照公式4推算链路阻抗,可得到链路阻抗波形,如图8所示。
可以看出,通过该方法精确的推算出了Z 1=60Ω,但对于Z 2的评估却有偏差(实际为40Ω,评估约为40.3Ω)。分析可知,出现这种偏差的主要原因是该评估方法只考虑到单次反射的影响,即只针对链路中只有一个阻抗不连续点的情况。而图6中有两个阻抗不连续点,在信号传播过程中会出现多次反射,因而上述评估方法就会降低评估精度。
针对图6拓扑的信号传播过程进行分析。当电压信号从源端传输到阻抗不连续点1时会发生反射,此时一部分电压继续往前传播,一部分电压被反射回源端与初始电压叠加为V m3,V m3与V m1相同。而继续往前传播的电压V t计算公式如下:
Figure PCTCN2018103437-appb-000011
当V t传输到阻抗不连续点2时会发生第二次反射,反射电压V r计算公式如下:
Figure PCTCN2018103437-appb-000012
反射电压V r在往源端传播时又会在阻抗不连续点1发生反射,其中一部分继续往源端传播,一部分被反射到链路远端,其中继续往源端传播的电压V t1计算如下:
Figure PCTCN2018103437-appb-000013
当反射电压到达探测点处时,此时该位置电压计算公式如下:
V m4=V m3+V t1              ……(8)
根据上述公式推导,可得到Z 3的评估公式如下:
Figure PCTCN2018103437-appb-000014
由于V m3和V m4可通过测量得到,V 0和Z 1可视为已知的初始条件,Z 2可通过前述的评估方法得到精确值,所以公式(9)中只有一个Z 3为未知变量,计算可得Z 3=40Ω。
基于上述分析,若链路中有两处阻抗不连续点,可以基于第一次反射到探测点的电压精确计算出第一个阻抗不连续点的阻抗值,基于第二次反射到探测点的电压及第一个阻抗不连续点的阻抗值精确推算出第二个阻抗不连续点的阻抗值。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (5)

  1. 一种改进阻抗分析方法,其特征是,包括以下步骤:
    根据阻抗分析仪工作原理搭建系统仿真链路;
    基于反射原理获取链路近电压源端的第一阻抗不连续点阻抗值;
    基于反射原理及第一阻抗不连续点阻抗值计算出链路远电压源端的第二阻抗不连续点阻抗值。
  2. 如权利要求1所述的一种改进阻抗分析方法,其特征是,所述根据阻抗分析仪工作原理搭建系统仿真链路步骤之后,包括,在探测点处探测反射电压信号波形。
  3. 如权利要求1所述的一种改进阻抗分析方法,其特征是,所述根据阻抗分析仪工作原理搭建系统仿真链路,包括,选择快速阶跃信号发生器作为电压源,电压源后接校准电阻器,校准电阻器后接同轴电缆,同轴电缆后接被测元件,校准电阻器与同轴电缆之间为探测点。
  4. 如权利要求3所述的一种改进阻抗分析方法,其特征是,所述基于反射原理获取链路近电压源端的第一阻抗不连续点阻抗值,具体为,根据探测点处的电压V m1反推第一阻抗不连续点阻抗值Z 2
    根据分压原理,探测点的初始电压计算公式如下:
    Figure PCTCN2018103437-appb-100001
    根据反射原理,阻抗不连续点的反射系数如下:
    Figure PCTCN2018103437-appb-100002
    经反射后探测点的电压值如下:
    V m1=V 0+ρV 0
    推导出被测器件的阻抗值如下:
    Figure PCTCN2018103437-appb-100003
  5. 如权利要求4所述的一种改进阻抗分析方法,其特征是,所述基于反射原理及第一阻抗不连续点阻抗值计算出链路远电压源端的第二阻抗不连续点阻抗值,具体计算过程如下:当电压信号从电压源端传输到第一阻抗不连续点时发生第一次反射,部分电压被反射回电压源端与初始电压叠加为V m3,V m3与V m1相同,继续往前传播的电压V t计算公式如下:
    Figure PCTCN2018103437-appb-100004
    当V t传输到第二阻抗不连续点时发生第二次反射,反射电压V r计算公式如下:
    Figure PCTCN2018103437-appb-100005
    反射电压V r在往电压源端传播时在第一阻抗不连续点发生反射,其中一部分继续往电压源端传播,一部分被反射到链路远端,其中继续往电压源端传播的电压V t1计算如下:
    Figure PCTCN2018103437-appb-100006
    当反射电压到达探测点处时,此时该位置电压计算公式如下:
    V m4=V m3+V t1
    根据上述公式推导,可得到Z 3的评估公式如下:
    Figure PCTCN2018103437-appb-100007
PCT/CN2018/103437 2017-11-30 2018-08-31 一种改进阻抗分析方法 WO2019105083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711240350.5A CN108090259A (zh) 2017-11-30 2017-11-30 一种改进阻抗分析方法
CN201711240350.5 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019105083A1 true WO2019105083A1 (zh) 2019-06-06

Family

ID=62172347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103437 WO2019105083A1 (zh) 2017-11-30 2018-08-31 一种改进阻抗分析方法

Country Status (2)

Country Link
CN (1) CN108090259A (zh)
WO (1) WO2019105083A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108090259A (zh) * 2017-11-30 2018-05-29 郑州云海信息技术有限公司 一种改进阻抗分析方法
CN109188103B (zh) * 2018-10-12 2021-04-27 福州大学 一种基于阻抗分析仪测量磁芯损耗的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105389441A (zh) * 2015-12-07 2016-03-09 杨公义 1553b网络中指定位置的反射电压的获取方法及装置
CN108090259A (zh) * 2017-11-30 2018-05-29 郑州云海信息技术有限公司 一种改进阻抗分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954886A (zh) * 2014-04-24 2014-07-30 华南理工大学 一种时域反射法电缆故障定位仿真方法
CN107037311A (zh) * 2016-10-27 2017-08-11 国家电网公司 一种变压器绕组匝间绝缘故障诊断方法与装置
CN106771849B (zh) * 2016-11-15 2019-07-26 中国电子科技集团公司第四十一研究所 一种传输线上两个阻抗不连续点反射响应的测试方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105389441A (zh) * 2015-12-07 2016-03-09 杨公义 1553b网络中指定位置的反射电压的获取方法及装置
CN108090259A (zh) * 2017-11-30 2018-05-29 郑州云海信息技术有限公司 一种改进阻抗分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YONGQIANG: "Design and Implementation of Broadband Detection Antenna and Wireless Spectrum Monitoring System", INFORMATION SCIENCE & TECHNOLOGY, CHINE MASTER'S THESES FULL-TEXT DATABASE, 15 October 2014 (2014-10-15), pages 5; 6 *
LI, XIAOMEI: "Difference Measurement Method And Multi-point Calibration Technology Research And Software Implementation in TDR", ENGINEERING TECHNOLOGY II, CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 March 2016 (2016-03-15), pages 55 - 58 *

Also Published As

Publication number Publication date
CN108090259A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
US10598719B2 (en) Method of characterizing a section of a transmission line, in particular section corresponding to a connector or series of connectors linking a measurement apparatus to a cable
CN109324248B (zh) 用于数据域分析的一体化矢量网络分析仪及其测试方法
TWI470248B (zh) 量測待測物散射參數的方法
EP3051302A1 (en) S-parameter measurements using real-time oscilloscopes
WO2019105083A1 (zh) 一种改进阻抗分析方法
CN109709420B (zh) 一种基于矢量网络分析仪的一体化线缆测试方法
KR102090014B1 (ko) 주파수 영역에서의 교정을 이용한 시간 영역 측정 방법
US11929902B2 (en) PCIe signal bandwidth determining method, apparatus and device
US20200072895A1 (en) Method for calculating a reflectogram to analyse faults in a transmission line
US10746771B2 (en) Method of determining lineal parameters of a transmission line
US8271220B2 (en) Evaluating high frequency time domain in embedded device probing
TWI451108B (zh) 時序分析裝置及時序分析方法
US9995814B2 (en) Method for compensating for propagation inhomogeneities for a temporal reflectometry signal
US10591522B2 (en) Measurement apparatus
Siccardi et al. Delay measurements of PPS signals in timing systems
CN106896270A (zh) 一种传输线阻抗的测量方法
US20230018215A1 (en) Noise intrusion position estimation device and noise intrusion position estimation method
Ferrero et al. Uncertainty in multiport S-parameters measurements
CN110441723B (zh) 一种太赫兹探针瞬态响应校准方法和装置
US9673862B1 (en) System and method of analyzing crosstalk without measuring aggressor signal
WO2007090467A1 (en) Detecting a transmission behavior by sampling a reflection signal
Mubarak et al. Residual error analysis of a calibrated vector network analyzer
WO2020043012A1 (en) Signal skew measurement method, apparatus, medium, and electronic device
US9286177B1 (en) S-parameter analysis tool
CN104280639A (zh) 一种高速视频总线连接器的测试装置及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882336

Country of ref document: EP

Kind code of ref document: A1