WO2004071077A1 - 画像処理装置、画像処理プログラムおよび当該プログラムを記録した記録媒体 - Google Patents

画像処理装置、画像処理プログラムおよび当該プログラムを記録した記録媒体 Download PDF

Info

Publication number
WO2004071077A1
WO2004071077A1 PCT/JP2004/001226 JP2004001226W WO2004071077A1 WO 2004071077 A1 WO2004071077 A1 WO 2004071077A1 JP 2004001226 W JP2004001226 W JP 2004001226W WO 2004071077 A1 WO2004071077 A1 WO 2004071077A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image signal
level
level conversion
signal
Prior art date
Application number
PCT/JP2004/001226
Other languages
English (en)
French (fr)
Inventor
Kazunori Sumiya
Manabu Yata
Tarou Hizume
Makoto Sube
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/544,430 priority Critical patent/US20060177148A1/en
Priority to EP04708504A priority patent/EP1592235B1/en
Publication of WO2004071077A1 publication Critical patent/WO2004071077A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response

Definitions

  • Some conventional image processing apparatuses can obtain images with a wide dynamic range.
  • One example of this type of image processing apparatus is disclosed in Japanese Patent Application Laid-Open No. 6-141229.
  • FIG. 9 shows a configuration diagram of a conventional image processing apparatus.
  • the conventional image processing apparatus includes an image sensor 1, a memory 2, an integrator 3, first and second level weighting processors 4, 5, an adder 6, a speed converter It is composed of a unit 7 and a level compression unit 8.
  • the image sensor 1 images a subject.
  • a subject is imaged by the image sensor 1 with a shorter exposure time and a longer exposure time, and an image signal with a shorter exposure time and an image signal with a longer exposure time are sequentially output from the image sensor 1 for each field.
  • Both image signals having a short exposure time and an image signal having a long exposure time are combined to form an image signal after predetermined processing.
  • the image signal having a short exposure time is output to the memory 2 and the exposure time is determined.
  • the long image signal is output to the first weighting processing unit 4.
  • the image signal having a short exposure time is stored in the memory 2, and the timing is synchronized with the image signal having a long exposure time output from the image sensor 1 by the timing control section 9, and the integration section 3 determines the short exposure time and the long exposure time.
  • the exposure time ratios are integrated and output to the second level weighting processing section 5.
  • the second level weighting section 5 integrates the image signal with a short exposure time from the integrating section 3 with a weighting coefficient according to the signal level of the image signal.
  • the first level weighting processing unit 4 A weighting coefficient is added to the output image signal having a long exposure time according to the signal level of the image signal.
  • the image signal having a short exposure time and the image signal having a long exposure time weighted by the first level weighting processing section 4 and the second level weighting processing section 5 are added by an adding section 6.
  • the image signal added by the adder 6 is converted into an addition speed because the image sensor 1 reads out the image signal having a shorter exposure time and the image signal having a longer exposure time faster than a normal reading speed.
  • the image signal speed is converted in accordance with the processing speed of the components related to the output of the monitor and the like in the unit 7, and the high-level part of the image signal in accordance with the dynamic range of the components related to the output is converted in the level compression unit 8. It is compressed and output to a monitor.
  • the conventional image processing apparatus uses an image signal with a long exposure time in a dark part of a subject, uses a signal with a short exposure time in a bright part of the subject, and performs non-linear compression on a part with a high signal level of the image signal.
  • the image is compressed by, and a wide dynamic range image is obtained without blackout in dark areas and overexposed areas in bright areas.
  • the conventional image processing apparatus integrates the ratio of the exposure time with the image signal with a short exposure time and adjusts the signal level to the image signal with a long exposure time to process the image signal.
  • the number of bits of the image signal is complicated and the circuit scale is accordingly increased.
  • the image signal is divided into a luminance signal and a chrominance signal, and the chrominance signal is controlled by a change rate of a non-linear change by the luminance signal, it is necessary to calculate the change rate of the luminance signal.
  • the circuit scale is further increased.
  • the present invention has been made in order to solve such a conventional problem, and it is possible to simply obtain a wide dynamic range image, and furthermore, process delays and minute image information due to accumulation of arithmetic errors. It is an object of the present invention to provide an image processing apparatus for reducing omissions, a program therefor, and a recording medium therefor. Disclosure of the invention
  • An image processing apparatus includes: an image signal input unit that inputs a plurality of image signals having different exposure times; a level conversion coefficient operation unit that calculates a level conversion coefficient of the plurality of image signals; and the plurality of image signals.
  • a weighting coefficient calculating unit for calculating the weighting coefficient of the above, and an adding unit for adding the products obtained by multiplying the plurality of image signals by the respective level conversion coefficients and the weighting coefficients. .
  • the level conversion coefficient calculation unit may adjust a signal level of the plurality of image signals based on the level conversion coefficient, and may perform a high level portion of the plurality of image signals. It has a structure to perform level compression for compression at the same time.
  • the image processing apparatus further includes: a high-frequency component extraction unit that extracts a high-frequency component from each of the plurality of image signals; and a high-frequency level conversion coefficient operation that calculates a high-frequency level conversion coefficient having a characteristic corresponding to the high-frequency component. And an adder, wherein the adder adds a value obtained by integrating the high-frequency level conversion coefficient to the high-frequency component to the image signal in which the level conversion coefficient is integrated, and integrates the weighting coefficient. ing.
  • the image processing apparatus of the present invention calculates a representative value from each of the plurality of color image signals.
  • a representative value calculation unit that calculates the level conversion coefficient and the weighting coefficient from the representative value.
  • the image signal input unit accumulates image signals during a predetermined exposure time, synthesizes the accumulated image signals at the same timing, and generates a synthesized image signal. It has a configuration for inputting an image signal from an imaging device to output.
  • the program of the image processing apparatus of the present invention is configured to input a plurality of image signals having different exposure times, calculate a level conversion coefficient of the plurality of image signals, calculate a weighting coefficient of the plurality of image signals, A step of adding a product obtained by multiplying the plurality of image signals by the level conversion coefficient and the weighting coefficient.
  • the program of the image processing apparatus of the present invention in accordance with the level conversion coefficient, simultaneously performs level adjustment for adjusting the signal levels of the plurality of image signals and level compression for compressing a high signal level portion of the image signal. Have a procedure. With this program, the number of operations on the image signal can be reduced, and the circuit can be easily simplified without increasing the circuit scale.
  • the program of the image processing apparatus of the present invention has a procedure for calculating the level conversion coefficient based on characteristic data of a predetermined level conversion coefficient.
  • the recording medium of the image processing apparatus of the present invention receives a plurality of image signals having different exposure times, calculates a level conversion coefficient of the plurality of image signals, and A program for calculating a weighting coefficient of a signal and adding a product obtained by multiplying each of the plurality of image signals by the level conversion coefficient and the weighting coefficient is recorded.
  • this program recording medium it can be operated with a microphone processor or digital signal processor, and high quality images can be easily obtained with a wide dynamic range.
  • the recording medium of the image processing apparatus may further include: level adjustment for adjusting the signal levels of the plurality of image signals using the level conversion coefficient; and level compression for compressing a high signal level portion of the image signal. Record the program that performs at the same time.
  • the recording medium of this program With the recording medium of this program, the number of operations on the image signal can be reduced, and level adjustment for easily adjusting the signal level of the image signal and compression of a portion having a high signal level can be realized simultaneously.
  • the recording medium of the image processing apparatus of the present invention records a program for calculating the level conversion coefficient by using characteristic data of a predetermined level conversion coefficient.
  • FIG. 1 is a block diagram of an image processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram of a graph of an image signal with respect to a subject luminance.
  • Figure 3 is a graph of the characteristic data of the level compression function and the level conversion coefficient for the image signal of the image with a long exposure time (long image signal) and the image signal of the image with a short exposure time (short image signal). is there.
  • FIG. 4 is a graph of a characteristic when an image signal is multiplied by the conversion coefficient shown in FIG.
  • FIG. 5 is a diagram showing weighting coefficients calculated by the weighting coefficient calculator shown in FIG.
  • FIG. 6 is a block diagram of an image processing device according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram of an image processing apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a block diagram of an imaging device used in the image processing device according to the embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a conventional image processing apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram of the image processing apparatus according to the first embodiment of the present invention.
  • the image processing apparatus according to the first embodiment of the present invention includes an image signal of an image having a long exposure time (hereinafter, referred to as a long image signal) and an image signal of an image having a short exposure time ( (Hereinafter referred to as a short image signal) and a first level for calculating a level coefficient for simultaneously performing signal level conversion of a long image signal and non-linear compression of a portion having a high signal level.
  • Second level conversion coefficient calculation unit 13 that calculates the level coefficient that simultaneously converts the signal level of the short image signal and nonlinearly compresses the high signal level portion, and shorts the long image signal
  • Weighting coefficient calculator 14 for calculating weighting coefficients used for weighting addition of image signals
  • Integrator 15a for integrating the output of the weighting coefficient calculator 14 and the output of the second level transform coefficient calculator 13 for the short image signal
  • the integration unit 16a that integrates the output of the image signal and the long image signal from the image signal input unit 11, and the integration that integrates the output of the integration unit 15b and the short image signal from the image signal input unit 11 It comprises a unit 16b and an adding unit 17 for adding the output of the integrating unit 16a and the output of the integrating unit 16b to combine them.
  • the image signal input unit 11 inputs synchronized image signals so that image signals of a plurality of images of the same subject having different exposure times are simultaneously processed.
  • the long image signal of the plurality of image signals from the image signal input unit 11 is input to the first level conversion coefficient operation unit 12 for the long image signal, and the level conversion coefficient for integrating the long image signal into the long image signal is calculated. It is calculated.
  • the short image signal is also input to the short image signal second level conversion coefficient calculator 13, and the level conversion coefficient for integration with the short image signal is calculated. The method of calculating the level conversion coefficients of the long and short image signals will be described later.
  • the weighting coefficient calculating section 14 calculates weighting coefficients used for weighting addition of the long image signal and the short image signal based on the signal level of the long image signal. The method of calculating the weighting coefficient will be described later.
  • the level conversion coefficient of the short image signal calculated by the second level conversion coefficient calculation unit 13 and the weighting coefficient calculated by the weighting coefficient calculation unit 14 are integrated by the integration unit 15,
  • the short image signal from the signal input unit 11 is integrated by the integrating unit 16b, and the signal level of the image signal is level-matched and level-compressed by the level conversion coefficient, and the short image signal is weighted by the weighting coefficient.
  • the adding unit 17 adds the weighted long image signal and the short image signal output from the integrating units 16a and 16b, and outputs the image signal to a monitor or the like.
  • the long image signal 21 is saturated in the area where the subject brightness is high. It is saturated at level 23, and it can be seen that the slope of the short image signal 22 is smaller than that of the kiss image signal 21 by the exposure time ratio.
  • the image of the lips image signal 21 of the bright part of the subject with high subject brightness is an image that flew white
  • the image of the short image signal 22 of the dark part of the subject with low subject brightness is an image that is dark and unremovable. It turns out that it becomes.
  • the image processing apparatus converts both the long image signal 21 and the short image signal 22 into a subject in order to obtain good image quality from a bright portion to a dark portion. Synthesize according to brightness.
  • the signal levels of the image signals are adjusted to combine the long image signal 21 and the short image signal 22.
  • the image signal 24 obtained by multiplying the short image signal 22 by the exposure time ratio for level adjustment is Since the range of the image signal 24 is increased, the number of bits is increased, and the number of bits of the output destination of the image signal, such as a monitor, is limited.
  • level compression is performed to nonlinearly compress the high signal level portion of the image signal, and the bit number of the image signal is compressed.
  • FIG. 3 shows a graph of characteristic data of a level compression function and a level conversion coefficient for a long image signal and a short image signal.
  • FIG. 3 shows a graph of characteristic data of the level compression function for a long image signal.
  • the level compression function 31 can freely set a characteristic that boosts a portion of a long image signal having a low signal level and suppresses a portion of a long image signal having a high signal level.
  • the low signal level that is, the dark part of the image, is emphasized to make it easier to see, and the high signal level is compressed below the signal saturation level.
  • the characteristics of the level compression function s-shaped according to the subject and the application, it is possible to make the intermediate level signal easier to see, and the level is adaptively adjusted by a microcomputer etc. according to the state of the subject.
  • the characteristics of the compression function 31 can be controlled, and good image quality can be obtained.
  • (B) of FIG. 3 shows a graph of characteristic data of a level conversion coefficient for a long image signal.
  • a long (X) can be expressed as (Equation 2) with respect to the long (X) of the level compression function 31.
  • (C) of Fig. 3 shows a graph of the characteristic data of the level compression function for the short image signal.
  • (D) of Fig. 3 shows a graph of the characteristic data of the level conversion coefficient for the short image signal.
  • the level conversion coefficient 34 of the short image signal is
  • the level compression function 33 can be expressed as (Equation 6) for the F short (X) ′ of 3. '
  • a short (X) F short (X) / X (Equation 6)
  • the long image signal and the short image signal are simultaneously compressed with the level.
  • Level matching can be performed to adjust the signal levels. Note that the signal levels of the long image signal and the short image signal do not always have to be exactly the same.
  • the level conversion coefficients 32, 34 shown in (b) of FIG. 3 and (d) of FIG. 3 are calculated in advance by a microcomputer or the like, recorded in a memory or the like as a table, and stored in a memory or the like. By referring to the table by level, the corresponding level conversion coefficients 32, 34 can be obtained.
  • the representative points of the level conversion coefficients 32 and 34 shown in (b) and (d) of FIG. 3 are selected, and only the representative points are recorded as a table in a memory or the like, and the representative points are recorded. Can be complemented by linear interpolation, etc., and this method is also preferable in terms of memory reduction.
  • Fig. 4 shows a graph of the characteristics when the conversion coefficient shown in Fig. 3 is added to the image signal.
  • the horizontal axis is the input image signal before level conversion
  • the vertical axis is the output image signal after level conversion. .
  • the output is boosted at the low signal level portion of the input signal, and the output is suppressed at the high signal level portion of the input signal.
  • the input of the long image signal 41 and the input of the short image signal 42 coincide with each other in a portion where the signal level is low.
  • FIG. 5 shows the weighting coefficients calculated by the weighting coefficient calculator 14 shown in FIG.
  • the weighting factor of the long image signal input level long image signal weighting factor 5 1 and c input level is low portion defining a weighting factor 5 2 short image signal of the long image signal in accordance with the 5 1 is increased, and the weighting number 52 of the short image signal is increased in the portion where the input level is large.
  • the image processing apparatus separately processes a long image signal and a short image signal.
  • the processing is the same except for the value of the level conversion coefficient.Therefore, the processing is reduced to a single component, the image signal is doubled in speed, and the long image signal and the short image signal are time-division-converted into level signals. Only the coefficient value is switched, the switching is performed so that only the long image signal is input to the weighting coefficient calculation unit 14, and the speed conversion is performed by the addition unit 17 where the image signals are added together. This can be preferable in terms of the circuit scale.
  • the image processing apparatus according to the first embodiment of the present invention has been described with respect to two image signals having different exposure times, but the same processing is performed using three or more image signals having different exposure times. The same applies to the image processing apparatuses of the following embodiments.
  • the image processing apparatus provides level adjustment and level compression of an image signal by a level conversion coefficient, and weighting by a weighting coefficient.
  • the number of operations on image signals can be reduced, and high-quality images can be obtained in a wide dynamic range without darkening of dark areas or overexposed areas of bright areas without increasing the circuit scale.
  • the conversion coefficient and the weighting coefficient By multiplying the conversion coefficient and the weighting coefficient, the number of operations on the image signal is small, and processing delay and minute loss of image information due to accumulation of operation errors 5 can be reduced.
  • the level conversion coefficient it is possible to simultaneously adjust the signal level of the image signal and compress the level of the high signal level portion, thereby increasing the number of bits due to the integration of the level adjustment of the image signal. Increases can easily be avoided.
  • FIG. 6 shows a block diagram of an image processing device according to the second embodiment of the present invention.
  • the image processing apparatus includes HPFs (high-pass filters) 65a and 65b, which are high-frequency component extraction units that extract high frequencies of an image signal, and a short image.
  • HPFs high-pass filters
  • the configuration is such that a second high-frequency level conversion coefficient calculation unit 67 is added to the image processing apparatus according to the first embodiment of the present invention.
  • the high frequency component of the input long image signal is extracted
  • HP H ⁇ F65b the high frequency component of the input short image signal is extracted.
  • the first high-frequency level compression coefficient calculation unit 66 receives the high-frequency component of the short image signal as input and obtains a high-frequency level conversion coefficient.
  • the table of the high-frequency level conversion coefficients calculated in advance is different from the level conversion coefficient of the short image signal and has characteristics suitable for high-frequency components, for example, compression of high signal level parts is not performed very much. By having characteristics, high-frequency components remain when all image signals are added later, and a sharp image can be obtained.
  • the second high-frequency level compression coefficient calculation unit 67 receives the high-frequency component of the long image signal as an input and obtains a high-frequency level conversion coefficient.
  • a characteristic suitable for high-frequency components different from the signal level conversion coefficient for example, a characteristic that does not perform much compression of high signal level parts should be provided.
  • the adder 70 a is composed of a long image signal from the image signal input unit 61 in which the level conversion coefficient from the first level conversion coefficient calculator 62 is integrated by the integration unit 68 a, and an integration unit 69 In a, the high-frequency level conversion coefficient from the second high-frequency level conversion coefficient calculation unit 67 is added to the high-frequency component long image signal from the HPF 65a, which is integrated, and synthesized.
  • the adder 70 b is configured to include a short image signal from the image signal input unit 61 in which the level conversion coefficient from the second level conversion coefficient calculator 63 is integrated by the integration unit 68 b, and an integration unit In 69 b, the high-frequency level conversion coefficient from the first high-frequency level conversion coefficient calculation unit 66 is added to the high-frequency component short image signal from the HPF 65 b in which the high-frequency level conversion coefficient is integrated, and synthesized.
  • the adding unit 72 includes a long image signal obtained by weighting the synthesized long image signal from the adding unit 70a by the integrating unit 71a, and a short image signal obtained by combining the long image signal from the adding unit 70b. And the short image signal weighted by the integrator 71b.
  • the image signal added by the adder 72 is output to a monitor or the like to display an image.
  • the image processing apparatus extracts a high-frequency component of an image signal and integrates a high-frequency level conversion coefficient having characteristics suitable for the high-frequency component as in the related art.
  • a high-quality image with a sharp and wide dynamic range can be obtained by the high-frequency components of the image signal without increasing the circuit scale due to the increase in the number of bits by adjusting the signal level of the image signal.
  • FIG. 7 shows a block diagram of the image processing apparatus according to the third embodiment of the present invention.
  • the image processing apparatus according to the third embodiment of the present invention performs color image processing.
  • a first representative value calculation unit 82a that calculates a representative value of a long image signal is provided.
  • the second representative value calculating unit 82b for calculating the representative value of the short image signal is added to the image processing apparatus according to the first embodiment of the present invention.
  • image data can be red (R), green (G), blue (B) primary color signals, cyan (Cy;), magenta (Mg), yellow (Ye), green. It is generally input as a complementary color signal of (G). Since the image signal of each color component has a different signal level of the image signal, if the first embodiment is carried out as it is, the ratio of the image signal of each color component is changed by the non-linear conversion, and the hue is changed. It may change.
  • the first and second representative value calculating sections 82a and 82b calculate representative values from the image signals of each color component.
  • the calculated representative value includes an average value, a maximum value, and the like, which are luminance values in a color capture signal.
  • the luminance value can be calculated by a general equation (8) and used as a representative value.
  • a first level conversion coefficient calculation unit 83 for calculating and a second level conversion coefficient calculation unit 84 for calculating a level conversion coefficient for converting the signal level of the short image signal obtain a level conversion coefficient.
  • the input to the weighting coefficient calculator 85 is also the representative value of the long image signal calculated by the first representative value calculator 82a. Thereafter, similarly to the image processing device according to the first embodiment of the present invention, the sum of the original image signal of each color component and the level conversion coefficient and the weighting coefficient are added.
  • the image processing apparatus since the same coefficient obtained by the representative value is added to each image signal of the input color component, the ratio of each color component The circuit size does not change, the circuit scale increases with the increase in the number of bits due to the adjustment of the signal level of the image signal, and there is no change in the hue without a division process to obtain the rate of change of the image signal. A high-quality color image with a dynamic range can be obtained.
  • FIG. 8 shows a plot of an image pickup apparatus used in the image processing apparatus according to the embodiment of the present invention.
  • An image pickup device used in the image processing apparatus includes an image pickup device 91, an analog processing unit 92 that performs image processing of an analog image signal from the image pickup device 91, and a digital image It is composed of an AD converter 93 for converting into a signal, and an image signal processing unit 94 for performing image processing of a digital image signal.
  • the image signal processing unit 94 includes a timing control unit 95 for synchronizing the image signals, a memory 96, an image signal synthesizing unit 97 for synthesizing a long image signal and a short image signal, and an image processing unit. It consists of 98 parts.
  • the image sensor 91 is composed of a solid-state image sensor (CCD or CMOS) sensor, and converts light into an electric signal.
  • the image signal is processed by an analog processing section 92 such as correlated double sampling (CDS) and automatic amplitude control (AGC), and then digitized by an AD conversion section 93.
  • the image signal processing section unit 94 To enter.
  • the timing control unit 95 records and records the image signal using the memory 96, and adjusts the timing of the image signal of the same subject such as the mouth image signal and the short image signal so that they are simultaneously processed. A long image signal and a short image signal are synthesized, and then the image signal synthesized by the image processing section 98 is processed and output.
  • the image sensor 91, the analog processing section 92, and the AD conversion section 93 are moved at a speed which is twice the number of images having different exposure times, and the image data is obtained.
  • the data is recorded in the memory 96 by the timing control section 95 and read out in synchronization with other image signals.
  • Memory capacity data for one entire screen * (1 for the number of images with different exposure times)
  • Memory capacity data for one line * (number of images with different exposure times-1) (Equation 10)
  • the image sensor 91, the analog processing unit 92, and the AD conversion unit 93 are provided in a plurality of series, and the timing control unit 95 and the memory 96 do not need to synchronize image signals. You can also
  • a light amount limiting filter (hereinafter, referred to as an ND filter) that suppresses the signal level of the image signal without changing the frequency characteristics of the image signal is disposed in the image sensor 91 in a pine or stripe shape, thereby exposing light. It is also possible to obtain a plurality of images with different brightness similar to the method of changing the time. In this case, the pixels of the high-brightness image and the low-brightness image are alternately output by the ND filter, so that the time lag can be reduced and the synchronization by the timing control section 95 can be facilitated. .
  • the image processing apparatus has been described. However, each processing is performed as a program of the image processing apparatus, and a high-quality image can be easily obtained with a wide dynamic range. It is also possible to reduce the accumulation of delays and calculation errors, and to reduce the loss of minute image information.
  • a plurality of image signals having different exposure times are input, and the number of operations performed on the image signals is reduced by using a conversion coefficient that performs level conversion and weighting at the same time. And no bright spots in bright areas, A high-quality image can be obtained simply with a wide dynamic range without increasing the circuit scale. Furthermore, processing delays and accumulation of calculation errors can be reduced, and the loss of minute image information can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明は、露光時間の異なる複数の画像信号を入力する画像信号入力部11と、複数の画像信号のレベル変換係数を演算する第1及び第2レベル変換係数演算部12、13と、複数の画像信号の重み付け係数を演算する重み付け係数演算部14と、複数の画像信号にそれぞれのレベル変換係数と重み付け係数とを積算したもの同士を加算する加算部17とを備えた構成を有することにより、広いダイナミックレンジの画像を簡潔に得ることができ、さらに処理遅延や演算誤差の累積による微小な画像情報の欠落を低減する画像処理装置を提供する。

Description

明 細 書 画像処理装置、 画像処理プログラムおよび当該プログラムを記録した記録媒体 技術分野
本発明は、 ディジタルの画像処理装置に関し、 特に、 ダイナミックレンジの 広い画像を得ることができる画像処理装置おょぴそのプログラムおよびその記 録媒体に関する。 背景技術
従来の画像処理装置には、 広いダイナミックレンジの画像を得ることができ るものもある。 この種の画像処理装置には、 例えば、 特開平 6— 1 4 1 2 2 9 号公報に開示されているものがあった。
図 9に、 従来の画像処理装置の構成図を示す。 図 9に示すように、 従来の画 像処理装置は、 撮像素子 1と、 メモリ 2と、 積算部 3と、 第 1及び第 2 レベル 重み付け処理部 4、 5と、 加算部 6と、 速度変換部 7と、 レベル圧縮部 8とか ら構成されている。 撮像素子 1は、 被写体を撮像する。 被写体が撮像素子 1に より短い露光時間と長い露光時間で撮像され、 1フィールドごとに露光時間の 短い画像信号と露光時間の長い画像信号とが撮像素子 1から順次出力される。 露光時間の短い画像信号と露光時間の長い画像信号との両方の画像信号は所定 の処理後に合成されて画像信号となるもので、 露光時間の短い画像信号はメモ リ 2に出力され、 露光時間の長い画像信号は第 1重み付け処理部 4に出力され る。 露光時間の短い画像信号はメモリ 2に蓄積され、 タイミング制御部 9によ り撮像素子 1から出力される露光時間の長い画像信号とタイミングが合わされ、 積算部 3で短い露光時間と長い露光時間との露光時間の比が積算され第 2 レべ ル重み付け処理部 5に出力される。 第 2 レベル重み付け処理部 5は、 積算部 3 よりの露光時間の短い画像信号に、 その画像信号の信号レベルに合わせて重み 付け係数を積算する。 一方、 第 1 レベル重み付け処理部 4は、 撮像素子 1から 出力される露光時間の長い画像信号にその画像信号の信号レベルに合わせて重 み付け係数を積算する。 第 1 レベル重み付け処理部 4と第 2 レベル重み付け処 理部 5により重み付けされた露光時間の短い画像信号と露光時間の長い画像信 号とは、 加算部 6にて加算される。 露光時間の短い画像信号と露光時間の長い 画像信号の読出しのために撮像素子 1で通常の読出し速度よりも速い読出しを 行っているため、 加算部 6により加算された画像信号は、 加算速度変換部 7で モニタなどの出力に係る構成要素の処理速度に合わせて画像信号速度が変換さ れ、 レベル圧縮部 8では出力に係る構成要素のダイナミックレンジに合わせて 画像信号の信号レベルの高い部分が圧縮され、 モニタなどに出力される。
従って、 従来の画像処理装置は、 被写体の暗い部分では露光時間の長い画像 信号を使用し、 被写体の明るい部分では露光時間の短い信号を使用し、 画像信 号の信号レベルの高い部分は非線形圧縮により圧縮され、 暗い部分の黒つぶれ や明るい部分の白飛びのない、 広いダイナミックレンジの画像を得ている。
しかしながら、 従来の画像処理装置は、 上記したごとく露光時間の短い画像 信号に露光時間の比を積算して露光時間の長い画像信号に信号レベルを合わせ 画像信号の処理を行っているため、処理が複雑で画像信号のビット数が増加し、 それに伴い回路規模が増大してしまうという問題があった。
また、 画像信号に対する演算回数が多く、 処理遅延の増加や、 演算誤差の累 積により微小な画像情報が欠落するという問題もあつた。
さらに、カラー画像信号の場合には、画像信号を輝度信号と色差信号に分け、 輝度信号で非線形変化の変化率で色差信号を制御しているため、 輝度信号の変 化率を求める演算が必要であり、 さらに回路規模が増大するという問題があつ た。
本発明は、 このような従来の問題を解決するためになされたもので、 広いダ イナミックレンジの画像を簡潔に得ることができ、 さらに処理遅延や、 演算誤 差の累積による微小な画像情報の欠落を低減する画像処理装置およびそのプロ グラムおよぴその記録媒体を提供するものである。 発明の開示
本発明の画像処理装置は、 露光時間の異なる複数の画像信号を入力する画像 信号入力部と、 前記複数の画像信号のレベル変換係数を演算するレベル変換係 数演算部と、 前記複数の画像信号の重み付け係数を演算する重み付け係数演算 部と、 前記複数の画像信号にそれぞれの前記レベル変換係数と前記重み付け係 数とを積算したもの同士を加算する加算部とを備えた構成を有している。
この構成により、 レベル変換係数を用いることで画像信号に対する演算回数 を減らし、 喑ぃ部分の黒つぶれや明るい部分の白飛ぴのない、 広いダイナミツ クレンジで良質の画像を回路規模が増大することなく簡潔に得ることができ、 さらに処理遅延や、 演算誤差の累積による微小な画像情報の欠落を低減するこ とができる。
また、 本発明の画像処理装置は、 前記レベル変換係数演算部が、 前記レベル 変換係数により、前記複数の画像信号の信号レベルを合わせるレベル合わせと、 前記複数の画像信号の信号レベルの高い部分を圧縮するレベル圧縮とを同時に 行う構成を有している。
この構成により、 画像信号に対する演算回数を減らし、 回路規模が増大する ことなく的確に簡潔構成とすることができる。
また、 本発明の画像処理装置は、 前記複数の画像信号からそれぞれ高周波成 分を取り出す高周波成分取出部と、 前記高周波成分に応じた特性の高周波レべ ル変換係数を演算する高周波レベル変換係数演算部とを備え、 前記加算部は、 前記高周波成分に前記高周波レベル変換係数を積算したものを前記レベル変換 係数が積算された前記画像信号に加算して、 前記重み付け係数を積算する構成 を有している。
この構成により、 画像の高周波成分を活かしてメリハリを利かせて暗い部分 から明るい部分まで広いダイナミックレンジで良質の画像を回路規模が増大す ることなく簡潔に得ることができる。
また、 本発明の画像処理装置は、 前記画像信号が複数の色成分信号からなる カラー画像信号のとき、 複数の前記カラー画像信号から代表値をそれぞれ算出 する代表値算出部を備え、 前記代表値から前記レベル変換係数と前記重み付け 係数を算出する構成を有している。
この構成により、 各色信号成分に対して同一のレベル変換係数を用い、 色相 の変化のない、 暗い部分から明るい部分まで広いダイナミックレンジで良質の カラーを回路規模が増大することなく簡潔に得ることができる。
また、 本発明の画像処理装置は、 前記画像信号入力部が、 予め定めた露光時 間の画像信号を蓄積し、 前記蓄積した画像信号同士のタイミングを合わせて合 成し、 合成した画像信号を出力する撮像装置からの画像信号を入力する構成を 有している。
この構成により、 暗い部分の黒つぶれや明るい部分の白飛びのない、 広いダ ィナミックレンジで良質の画像を容易に得ることができる。
また、 本発明の画像処理装置のプログラムは、 露光時間の異なる複数の画像 信号を入力し、 前記複数の画像信号のレベル変換係数を演算し、 前記複数の画 像信号の重み付け係数を演算し、 前記複数の画像信号にそれぞれの前記レベル 変換係数と前記重み付け係数とを積算したもの同士を加算する手順を有してい る。
このプログラムにより、 マイク口プロセッサゃデジタノレシグナノレプロセッサ で動作させ、広いダイナミックレンジで良質の画像を容易に得ることができる。 また、 本発明の画像処理装置のプログラムは、 前記レベル変換係数により、 前記複数の画像信号の信号レベルを合わせるレベル合わせと、 前記画像信号の 信号レベルの高い部分を圧縮するレベル圧縮とを同時に行う手順を有している。 このプログラムにより、 画像信号に対する演算回数を減らし、 回路規模が增 大することなく容易に簡潔にすることができる。
また、 本発明の画像処理装置のプログラムは、 前記レベル変換係数を予め定 めたレベル変換係数の特性データにより演算する手順を有している。
このプログラムにより、 的確なレベル変換係数を容易に得ることができる。 また、 本発明の画像処理装置の記録媒体は、 露光時間の異なる複数の画像信 号を入力し、 前記複数の画像信号のレベル変換係数を演算し、 前記複数の画像 信号の重み付け係数を演算し、 前記複数の画像信号にそれぞれの前記レベル変 換係数と前記重み付け係数とを積算したもの同士を加算するプログラムを記録 する。
このプログラムの記録媒体により、 マイク口プロセッサやデジタルシグナル プロセッサで動作させ、 広いダイナミックレンジで良質の画像を容易に得るこ とができる。
また、 本発明の画像処理装置の記録媒体は、 前記レベル変換係数により、 前 記複数の画像信号の信号レベルを合わせるレベル合わせと、 前記画像信号の信 号レベルの高い部分を圧縮するレベル圧縮とを同時に行うプログラムを記録す る。
このプログラムの記録媒体により、 画像信号に対する演算回数を減らし、 容 易に画像信号の信号レベルを合わせるレベル合わせと信号レベルの高い部分の 圧縮を同時に実現できる。
さらに、 本発明の画像処理装置の記録媒体は、 前記レベル変換係数を予め定 めたレベル変換係数の特性データにより演算するプログラムを記録する。
このプログラムの記録媒体により、 的確なレベル変換係数を容易に得ること ができる。 図面の簡単な説明
本発明に係る画像処理装置、 画像処理プログラムの特徴および長所は、 以下 の図面と共に、 後述される記載から明らかになる。
第 1図は、 本発明の第 1の実施の形態の画像処理装置のプロック図である。 第 2図は、 被写体輝度に対する画像信号のグラフの図である。
第 3図は、 露光時間の長い画像の画像信号 (ロング画像信号) と露光時間の 短い画像の画像信号 (ショー ト画像信号) とに対するレベル圧縮関数とレベル 変換係数の特性データのグラフの図である。
第 4図は、 画像信号に図 3に示した変換係数を積算したときの特性のグラフ の図である。 第 5図は、 図 1に示す重み付け係数演算部で演算される重み付け係数を示す 図である。
第 6図は、 本発明の第 2の実施の形態の画像処理装置のブロック図である。 第 7図は、 本発明の第 3の実施の形態の画像処理装置のプロック図である。 第 8図は、 本発明の実施の形態の画像処理装置に用いられる撮像装置のプロ ック図である。
第 9図は、 従来の画像処理装置の構成図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。
図 1は、 本発明の第 1の実施の形態の画像処理装置のプロック図を示す。 図 1に示すように、 本発明の第 1の実施の形態の画像処理装置は、 露光時間 の長い画像の画像信号 (以下、 ロング画像信号と称する) と露光時間の短い画 像の画像信号 (以下、 ショート画像信号と称する) とを入力する画像信号入力 部 1 1と、 ロング画像信号の信号レベルの変換と信号レベルの高い部分の非線 形圧縮を同時に行うレベル係数を演算する第 1 レベル変換係数演算部 1 2と、 ショート画像信号の信号レベルの変換と信号レベルの高い部分の非線形圧縮を 同時に行うレベル係数を演算する第 2 レベル変換係数演算部 1 3と、 ロング画 像信号とショート画像信号の重み付け加算に用いる重み付け係数を演算する重 み付け係数演算部 1 4と、 重み付け係数演算部 1 4の出力とロング画像信号の 第 1 レベル変換係数演算部 1 2の出力とを積算する積算部 1 5 aと、 重み付け 係数演算部 1 4の出力とショート画像信号の第 2 レベル変換係数演算部 1 3の 出力とを積算する積算部 1 5 bと、 積算部 1 5 aの出力と画像信号入力部 1 1 よりのロング画像信号とを積算する積算部 1 6 aと、 積算部 1 5 bの出力と画 像信号入力部 1 1 よりのショート画像信号とを積算する積算部 1 6 bと、 積算 部 1 6 aの出力と積算部 1 6 bの出力とを合成するため加算する加算部 1 7か ら構成されている。
次に、 本発明の第 1の実施の形態の画像処理装置の動作につき説明する。 画像信号入力部 1 1は、 露光時間の異なる同じ被写体の複数の画像の画像信 号が同時に処理されるように同時化された画像信号を入力する。 画像信号入力 部 1 1よりの複数の画像信号のうちのロング画像信号は、 ロング画像信号の第 1 レベル変換係数演算部 1 2に入力され、 ロング画像信号に積算するためのレ ベル変換係数が演算される。 同様に、 ショート画像信号もショート画像信号の 第 2 レベル変換係数演算部 1 3に入力され、 ショート画像信号に積算するため のレベル変換係数が演算される。 このロングとショートの画像信号のレベル変 換係数の演算方法については後述することとする。
重み付け係数演算部 1 4では、 ロング画像信号の信号レベルを元にロング画 像信号とショート画像信号の重み付け加算に用いる重み付け係数をそれぞれ演 算する。 この重み付け係数の演算方法については後述することとする。
第 1 レベル変換係数演算部 1 2で演算されたロング画像信号のレベル変換係 数と、 重み付け係数演算部 1 4で演算された重み付け係数とは積算部 1 5 aで 積算された後、 画像信号入力部 1 1 よりのロング画像信号に積算部 1 6 aで積 算され、 レベル変換係数による画像信号の信号レベルのレベル合わせとレベル 圧縮と、重み付け係数により重み付けがされたロング画像信号となる。同じく、 第 2 レベル変換係数演算部 1 3で演算されたショート画像信号のレベル変換係 数と、 重み付け係数演算部 1 4で演算された重み付け係数とは積算部 1 5 で 積算された後、 画像信号入力部 1 1よりのショート画像信号に積算部 1 6 bで 積算され、 レベル変換係数による画像信号の信号レベルのレベル合わせとレべ ル圧縮と、 重み付け係数により重み付けがされたショート画像信号となる。 加算部 1 7では、 積算部 1 6 a、 1 6 bより出力された重み付がされたロン グ画像信号とショート画像信号を加算し、 画像信号をモニタなどに出力する。 続いて、 ロング画像信号とショート画像信号のレベル変換係数の演算方法に ついて説明する。
図 2は、 被写体輝度に対する画像信号のグラフを示し、 横軸は被写体輝度、 縦軸は画像信号の信号レベルを示している。
図 2に示すように、 ロング画像信号 2 1は、 被写体輝度が高い部分では飽和 レベル 2 3で飽和しており、 ショート画像信号 2 2は、 口ング画像信号 2 1に 対して露光時間比の分だけ傾きが小さいことが分かる。 つまり、 被写体輝度が 高い被写体の明るい部分の口ング画像信号 2 1の画像は白く飛んだ画像となり、 被写体輝度が低い被写体の暗い部分のショート画像信号 2 2の画像は暗くては つきりしない画像となることが分かる。
そこで、 本発明の第 1の実施の形態の画像処理装置は、 明るい部分から暗い 部分まで良質の画質を得るために、 ロング画像信号 2 1とショート画像信号 2 2の両方の画像信号を被写体の明るさに応じて合成する。 ロング画像信号 2 1 とショート画像信号 2 2とを合成するために画像信号の信号レベルの合わせを 行うが、 レベル合わせのためにショート画像信号 2 2を露光時間比倍した画像 信号 2 4は、 画像信号 2 4のレンジが大きくなるためビット数が増加したもの となり、画像信号の例えばモニタなどの出力先のビット数は限られているため、 所定のビット数に収める処理が必要となる。
そこで、 画像信号の信号レベルの高い部分を非線形に圧縮するレベル圧縮を 行い、 画像信号のビット数の圧縮を行う。
図 3は、 ロング画像信号とショート画像信号とに対するレベル圧縮関数とレ ベル変換係数の特性データのグラフを示す。
図 3の (a ) は、 ロング画像信号に対するレベル圧縮関数の特性データのグ ラフを示す。
ロング画像信号のレベル圧縮関数 3 1を Fロング (X ) とすると、 この F口 ング (X ) の算出値 Yは、 (式 1 ) として表すことができる。
Y = Fロング (X ) (式 1 )
X :入力画像信号
レベル圧縮関数 3 1は、 ロング画像信号の信号レベルの低い部分をブース ト し、 ロング画像信号の信号レベルの高い部分は抑圧するような特性を自由に設 定可能であり、 これにより、 画像信号の信号レベルの低い部分つまり画像の暗 い部分は強調されて見やすくなり、 信号レベルの高い部分は信号飽和レベル以 下に圧縮される。 また、 被写体や用途に合わせて、 レベル圧縮関数の特性を s字状にすること で、 中間レベルの信号をより見やすくすることも可能であり、 被写体の状態に 合わせてマイコンなどで適応的にレベル圧縮関数 3 1の特性を制御することが 可能であり、 良好の画質とすることができる。
図 3の (b) は、 ロング画像信号に対するレベル変換係数の特性データのグ ラフを示す。
レベル変換係数 32を Aロング (X) とすると、 Aロング (X) は、 レベル 圧縮関数 31の ロング (X) に対して (式 2) として表すことができる。
Aロング (X) =Fロング (X) /X (式 2)
(式 3) に表すように、 ロング画像信号にレベル変換係数 32を積算すると、 レベル圧縮関数 31を用いたときと同じ結果を得ることができる。
Aロング (X) * X = Fロング (X) /X*X = Y (式 3)
つまり、 ロング画像信号にレベル変換係数 32を積算することで、 信号の信 号レベルの高い部分の圧縮を行うことができる。
図 3の (c) は、 ショート画像信号に対するレベル圧縮関数の特性データの グラフを示す。
ロング画像信号の場合と同様に、 ショート画像信号のレベル圧縮関数 33を Fショート (X) とすると、 この Fショート (X) の算出値 Υは、 (式 4) とし て表すことができる。
Y = Fショート (X) (式 4)
ここで、 Fショート (X) は、 (式 5) を用いることで、 レベル圧縮と同時に 口ング画像信号とショート画像信号の信号レベルを合わせるレベル合わせを行 うことができる。
Fショート (X) =Fロング (X*N) (式 5)
N:露光時間の比率
図 3の (d) は、 ショート画像信号に対するレベル変換係数の特性データの グラフを示す。
口ング画像信号の場合と同様に、 ショート画像信号のレベル変換係数 34は、 レベル圧縮関数 3 3の Fショート (X ) 'に対して (式 6 ) として表すことがで きる。 '
Aショート (X) = Fショート (X) / X (式 6 )
(式 7 ) に示すように、 ショート画像信号にレベル変換係数 3 4を積算する と、 レベル圧縮関数 3 3を用いた時と同じ結果を得ることができる。
Aショート (X ) * X = Fショート (X ) ZX * X = Y (式 7 ) つまり、 ショート画像信号にレベル変換係数 3 4を積算することで、 レベル 圧縮と同時にロング画像信号とショート画像信号の信号レベルを合わせるレべ ル合わせを行うことができる。 なお、 ロング画像信号とショート画像信号の信 号レベルは必ずしも厳密に一致させる必要はない。
なお、 図 3の (b ) と図 3の (d ) とに示したレベル変換係数 3 2、 3 4は 予めマイコンなどで計算し、 テーブルとしてメモリなどに記録しておき、 入力 画像信号の信号レベルでテーブルを参照することで、 対応するレベル変換係数 3 2、 3 4を得ることができる。
また、 図 3の (b ) と図 3 ( d ) とに示したレベル変換係数 3 2、 3 4の代 表点を選ぴ、 代表点のみをテーブルとしてメモリなどに記録しておき、 代表点 の間は線形補間などで補完することも可能であり、 この方法はメモリ削減の点 でも好ましいものとなる。
図 4は、 画像信号に図 3に示した変換係数を積算したときの特性のグラフを 示し、 横軸はレベル変換前の入力画像信号であり、 縦軸はレベル変換後の出力 画像信号である。 ロング画像信号 4 1とショート画像信号 4 2ともに、 入力信 号のうち信号レベルの低い部分は出力がブーストされており、 入力信号のうち 信号レベルの高い部分は出力が抑圧されている。 また、 ロング画像信号 4 1と ショート画像信号 4 2は、 互いに入力が信号レベルの低い部分で一致している ことが分かる。
さらに、 画像信号の重み付け係数の演算方法について説明する。
図 5は、 図 1に示す重み付け係数演算部 1 4で演算される重み付け係数を示 す。 重み付け係数演算部 1 4では、 ロング画像信号の入力レベルに応じてロング 画像信号の重み付け係数 5 1とショート画像信号の重み付け係数 5 2を定める c 入力レベルが低い部分ではロング画像信号の重み付け係数 5 1を大きく、 入力 レベルが大きい部分ではショート画像信号の重み付け 数 5 2を大きくする。 これにより、 被写体の暗い部分でノイズによる画質劣化の少ないロング画像 信号を使用し、 明るい部分では飽和していないショート画像信号を使用するこ とで、 良質の画質を得ることができる。
また、 ロング画像信号の重み付け係数 5 1とショート画像信号の重み付け係 数 5 2の和を常に 1に保ちつつ、 信号レベルに従ってロング画像信号の重み付 け係数 5 1とショート画像信号の重み付け係数 5 2を変化させることで、 重み 付け係数を積算した画像信号を加算したときにレベル変動がなく、 複数の画像 信号を信号レベルに従つた比率で滑らかに合成することができる。
さらに、 画像信号乗り換え開始レベル 5 3と、 画像信号乗り換えの傾き 5 4 は可変とすることで、 様々な条件の画像に対応することができる。
なお、 本発明の第 1の実施の形態の画像処理装置は、 ロング画像信号とショ 一ト画像信号とをそれぞれ別々に処理することとしたが、 口ング画像信号とシ ョート画像信号とで行われる処理はレベル変換係数の値を除いて同じであるた め、 処理に係る構成要素を 1つにして、 画像信号を 2倍速化してロング画像信 号とショート画像信号を時分割信号としてレベル変換係数の値のみを切替える ようにし、 重み付け係数演算部 1 4にはロング画像信号のみが入力されるよう スイッチングし、 加算部 1 7にて画像信号同士を加算処理する部分で速度変換 を行うこともでき、 回路規模の点から好ましいものとすることができる。
また、 本発明の第 1の実施の形態の画像処理装置は、 露光時間の異なる 2つ の画像信号につき説明したが、 3つ以上の異なる露光時間の画像信号を用いて も同様の処理を行うことができ、 以下の実施の形態の画像処理装置でも同様で ある。
以上のように、 本発明の第 1の実施の形態の画像処理装置は、 レベル変換係 数による画像信号のレベル合わせとレベル圧縮と、 重み付け係数による重み付 けにより、 画像信号に対する演算回数を減らし、 暗い部分の黒つぶれや明るい 部分の白飛びのない、 広いダイナミックレンジで良質の画像を回路規模が増大 することなく簡潔に得ることができ、 さらに、 レベル変換係数と重み付け係数 を積算することで画像信号に対する演算回数が少なく、 処理遅延や、 演算誤差 5 の累積による微小な画像情報の欠落を低減することができる。
また、 レベル変換係数を用いることで画像信号の信号レベルのレベル合わせ と信号レベルの高い部分のレベル圧縮とを同時に行うことができ、 画像信号の レベル合わせの積算によるビット数增加に伴う回路規模の増大を容易に避ける ことができる。
L0 図 6は、 本発明の第 2の実施の形態の画像処理装置のブロック図を示す。
図 6に示すように、 本発明の第 2の実施の形態の画像処理装置は、 画像信号 の高周波を取り出す高周波成分取出部である H P F (ハイパスフィルタ) 6 5 a、 6 5 bと、 ショート画像信号の高周波成分の信号レベルを変換する高周波 レベル変換係数を演算する第 1高周波レベル変換係数演算部 6 6と、 ロング画 15 像信号の高周波成分の信号レベルを変換する高周波レベル変換係数を演算する 第 2高周波レベル変換係数演算部 6 7とを本発明の第 1の実施の形態の画像処 理装置に追加した構成となっている。
以下、本発明の第 1の実施の形態の画像処理装置との相違点につき説明する。 H P F 6 5 aでは、 入力されたロング画像信号の高周波成分を抽出し、 H P ϊθ F 6 5 bでは、 入力されたショート画像信号の高周波成分を抽出する。 第 1高 周波レベル圧縮係数演算部 6 6はショート画像信号の高周波成分を入力として, 高周波レベル変換係数を求める。 ここで、 予め演算しておく高周波レベル変換 係数のテーブルは、 ショート画像信号のレベル変換係数と異なった、 高周波成 分に適した特性、 例えば信号レベルの高い部分の圧縮をあまり行わないような 55 特性を持たせておくことで、 後に全ての画像信号を加算したときに高周波成分 が残り、 メリハリのある画像を得ることができる。
第 2高周波レベル圧縮係数演算部 6 7も同様にロング画像信号の高周波成分 を入力として、 高周波レベル変換係数を求め、 レベル変換係数にはロング画像 信号のレベル変換係数とは異なった高周波成分に適した特性、 例えば信号レべ ルの高い部分の圧縮をあまり行わないような特性を持たせておく。
加算部 7 0 aは、 積算部 6 8 aで第 1 レベル変換係数演算部 6 2よりのレべ ル変換係数が積算された画像信号入力部 6 1 よりのロング画像信号と、 積算部 6 9 aで第 2高周波レベル変換係数演算部 6 7よりの高周波レベル変換係数が 積算された H P F 6 5 a よりの高周波成分のロング画像信号とを加算して合成 する。
同様に、 加算部 7 0 bは、 積算部 6 8 bで第 2 レベル変換係数演算部 6 3よ りのレベル変換係数が積算された画像信号入力部 6 1よりのショート画像信号 と、 積算部 6 9 bで第 1高周波レベル変換係数演算部 6 6よりの高周波レベル 変換係数が積算された H P F 6 5 bよりの高周波成分のショート画像信号とを 加算して合成する。
加算部 7 2は、 加算部 7 0 aよりの合成されたロング画像信号に積算部 7 1 aで重み付けがされたロング画像信号と、 加算部 7 0 bよりの合成されたショ ート画像信号に積算部 7 1 bで重み付けがされたショート画像信号とを加算す る。 加算部 7 2で加算された画像信号はモニタなどに出力され画像表示が行わ れる。
以上のように、 本発明の第 2の実施の形態の画像処理装置は、 画像信号の高 周波成分を取り出し、 高周波成分に適した特性の高周波レベル変換係数を積算 することで、 従来のように画像信号の信号レベルのレベル合わせによるビット 数増加に伴う回路規模の増加なしに、 画像信号の高周波成分によるメリハリの 利いた広いダイナミックレンジの良質の画像を得ることができる。
図 7は、 本発明の第 3の実施の形態の画像処理装置のプロック図を示す。 本発明の第 3の実施の形態の画像処理装置は、 カラー画像の処理を行うもの で、 図 7に示すように、 ロング画像信号の代表値を算出する第 1代表値算出部 8 2 aと、 ショート画像信号の代表値を算出する第 2代表値算出部 8 2 bとを 本発明の第 1の実施の形態の画像処理装置に追加した構成となっている。
以下、本発明の第 1の実施の形態の画像処理装置との相違点につき説明する。 カラー画像を扱う場合、 画像データはレッ ド (R )、 グリーン (G )、 ブルー ( B ) の原色信号か、 シアン (C y;)、 マゼンダ (M g )、 イェロー (Y e )、 グ リーン (G ) の補色信号として入力されることが一般的である。 各色成分の画 像信号はそれぞれ画像信号の信号レベルが異なるため、 第 1の実施の形態をそ のまま実施した場合、 非線形変換によってそれぞれの色成分の画像信号の比率 が変わってしまい、 色相が変化してしまうことがある。
本発明の第 3の実施の形態の画像処理装置は、 第 1及び第 2代表値算出部 8 2 a、 8 2 bが各色成分の画像信号から代表値を算出する。 算出される代表値 としては、 捕色信号においては輝度値となる平均値や、 最大値などがある。 原 色データの画像信号の場合には、 輝度値を、 一般的な (式 8 ) により算出し、 代表値とすることができる。
輝度値 = 0 . 3 * R + 0 . 6 * G + 0 . 1 * B (式 8 )
第 1及び第 2代表値算出部 8 2 a、 8 2 bにて算出された、 ロング画像信号 とショート画像信号の各々の代表値を入力としてロング画像信号の信号レベル を変換するレベル変換係数を演算する第 1 レベル変換係数演算部 8 3とショー ト画像信号の信号レベルを変換するレベル変換係数を演算する第 2レベル変換 係数演算部 8 4でそれぞれレベル変換係数を求める。 また、 重み付け係数演算 部 8 5への入力も、 第 1代表値算出部 8 2 aにて算出されたロング画像信号の 代表値とする。 以降、 本発明の第 1の実施の形態の画像処理装置と同様に、 元 の各々の色成分の画像信号にレベル変換係数と重み付け係数が積算されたもの 同士が加算される。
以上のように、 本発明の第 3の実施の形態の画像処理装置は、 入力された色 成分の各画像信号に、 代表値により求められた同じ係数が積算されるため、 各 色成分の比率が変化することはなく、 画像信号の信号レベルのレベル合わせに よるビット数増加に伴う回路規模の増加や、 画像信号の変化率を得るための割 り算処理なしに、 色相の変化のない広いダイナミックレンジの良質のカラー画 像を得ることができる。
図 8は、 本発明の実施の形態の画像処理装置に用いられる撮像装置のプロッ ク図を示す。
本発明の実施の形態の画像処理装置に用いられる撮像装置は、 撮像素子 9 1 と、 撮像素子 9 1よりのアナログ画像信号の画像処理を行うアナログ処理部 9 2と、 アナログ画像信号をディジタル画像信号に変換する A D変換部 9 3と、 ディジタル画像信号の画像処理を行う画像信号処理ュニット 9 4から構成され ている。 画像信号処理ユニット 9 4は、 画像信号の同時化を行うためのタイミ ング制御部 9 5と、 メモリ 9 6と、 ロング画像信号とショート画像信号を合成 する画像信号合成部 9 7と、 画像処理部 9 8から構成されている。
撮像素子 9 1は固体撮像素子 (C C Dや C M O S ) のセンサで構成され、 光 を電気信号に変換する。 画像信号はアナログ処理部 9 2で、 相関 2重サンプリ ング (C D S ) や自動振幅制御 (A G C ) といった処理を行った後、 A D変換 部 9 3にてディジタル化され、 画像信号処理部ュニット 9 4に入力する。
タイミング制御部 9 5は、 メモリ 9 6を使用して画像信号をー且記録し、 口 ング画像信号とショート画像信号との同じ被写体の画像信号が同時処理される ように両者のタイミングを合わせ、 ロング画像信号とショート画像信号との合 成を行い、 その後画像処理部 9 8で合成した画像信号の画像信号処理を行って 出力する。
また、 露光時間の異なる複数の画像信号を得るために、 撮像素子 9 1とアナ ログ処理部 9 2と A D変換部 9 3とを露光時間の異なる画像の個数倍の速度で 動かし、 画像データをタイミング制御部 9 5によりー且メモリ 9 6に記録して おき、 他の画像信号とタイミングを合わせて読み出すことを行っている。
そのため、 画面の単位で露光時間を切替える場合には、 (式 9 ) のメモリ容量 が必要となり、
メモリ容量 = 1画面全体分のデータ * (露光時間の異なる画像の個数一 1 )
(式 9 ) 行の単位で露光時間を切替える場合には、 (式 1 0 ) のメモリ容量が必要とな る。
メモリ容量 = 1ライン分のデータ * (露光時間の異なる画像の個数一 1 ) (式 1 0 ) また、 撮像素子 9 1とアナログ処理部 9 2と A D変換部 9 3とを複数系列用 意し、 タイミング制御部 9 5とメモリ 9 6による画像信号の同時化が必要ない 構成にすることもできる。
また、 撮像に係る構成要素を複数にすることで撮像した複数の画像間に時間 的なずれがない構成とすることもできる。
さらに、 画像信号の周波数特性を変えずに画像信号の信号レベルを抑える光 量制限フィルタ (以下、 N Dフィルタと称する) を撮像素子 9 1に巿松状また はストライプ状に配置することで、 露光時間を変化させる方法と同様の明るさ の異なる複数の画像を得ることもできる。 この場合には、 高輝度画像と低輝度 画像の画素が N Dフィルタにより交互に出力されるため、 時間的なずれを少な くでき、 かつタイミング制御部 9 5による同時化も容易にすることができる。 以上のように、 上記した撮像装置を本発明の実施の形態の画像処理装置に用 いることにより、 明るさの異なる複数の画像を撮像し、 それらを合成する構成 により、 暗い部分の黒つぶれや、 明るい部分の白飛ぴのない、 良質の画像を得 ることのできる広いダイナミックレンジの画像を得ることができる。
なお、 上記の実施の形態では、 本発明に関する画像処理装置について説明し たが各処理を手順として画像処理装置のプログラムとし、 広いダイナミックレ ンジで良質の画像を容易に得ることができ、 さらに処理遅延や演算誤差の累積 を減少し、 微小な画像情報の欠落を低減することもできる。
また、 このプログラムを記憶する画像処理装置の記憶^体とし、 広いダイナ ミックレンジで良質の画像を容易に得ることができ、 さらに処理遅延や演算誤 差の累積を減少し、 微小な画像情報の欠落を低減することもできる。 産業上の利用可能性
以上説明したように、 本発明によれば、 露光時間の異なる複数の画像信号を 入力し、 レベル変換と重み付けを同時に行う変換係数を用いることで画像信号 に対する演算回数を減らし、暗い部分の黒つぶれや明るい部分の白飛びのない、 広いダイナミックレンジで良質の画像を回路規模が増大することなく簡潔に得 ることができ、 さらに処理遅延や演算誤差の累積を減少し、 微小な画像情報の 欠落を低減することができる。

Claims

請求の範囲
1 . 露光時間の異なる複数の画像信号を入力する画像信号入力部と、 前記複 数の画像信号のレベル変換係数を演算するレベル変換係数演算部と、 前記複数 の画像信号の重み付け係数を演算する重み付け係数演算部と、 前記複数の画像 信号にそれぞれの前記レベル変換係数と前記重み付け係数とを積算したもの同 士を加算する加算部とを備えたことを特徴とする画像処理装置。
2 . 前記レベル変換係数演算部は、 前記レベル変換係数により、 前記複数の 画像信号の信号レベルを合わせるレベル合わせと、 前記複数の画像信号の信号 レベルの高い部分を圧縮するレベル圧縮とを同時に行うことを特徴とする請求 項 1に記載の画像処理装置。
3 . 前記複数の画像信号からそれぞれ高周波成分を取り出す高周波成分取出 部と、 前記高周波成分に応じた特性の高周波レベル変換係数を演算する高周波 レベル変換係数演算部とを備え、 前記加算部は、 前記高周波成分に前記高周波 レベル変換係数を積算したものを前記レベル変換係数が積算された前記画像信 号に加算して、 前記重み付け係数を積算することを特徴とする請求項 1または 請求項 2に記載の画像処理装置。
4 . 前記画像信号が複数の色成分信号からなるカラー画像信号のとき、 複数 の前記カラー画像信号から代表値をそれぞれ算出する代表値算出部を備え、 前 記代表値から前記レベル変換係数と前記重み付け係数を算出することを特徴と する請求項 1から請求項 3の何れかに記載の画像処理装置。
5 . 前記画像信号入力部は、 予め定めた露光時間の画像信号を蓄積し、 前記 蓄積した画像信号同士のタイミングを合わせて合成し、 合成した画像信号を出 力する撮像装置からの画像信号を入力することを特徴とする請求項 1から請求 項 4の何れかに記載の画像処理装置。
6 . 露光時間の異なる複数の画像信号を入力し、 前記複数の画像信号のレべ ル変換係数を演算し、 前記複数の画像信号の重み付け係数を演算し、 前記複数 の画像信号にそれぞれの前記レベル変換係数と前記重み付け係数とを積算した もの同士を加算することを特徴とする画像処理装置のプログラム。
7 . 前記レベル変換係数により、 前記複数の画像信号の信号レベルを合わせ るレベル合わせと、 前記画像信号の信号レベルの高い部分を圧縮するレベル圧 縮とを同時に行うことを特徴とする請求項 6に記載の画像処理装置のプロダラ ム。
8 . 前記レベル変換係数を予め定めたレベル変換係数の特性データにより演 算することを特徴とする請求項 6に記載の画像処理装置のプログラム。
9 . 露光時間の異なる複数の画像信号を入力し、 前記複数の画像信号のレべ ル変換係数を演算し、 前記複数の画像信号の重み付け係数を演算し、 前記複数 の画像信号にそれぞれの前記レベル変換係数と前記重み付け係数とを積算した もの同士を加算するプログラムを記録することを特徴とする画像処理装置の記 録媒体。
1 0·. 前記レベル変換係数により、 前記複数の画像信号の信号レベルを合わ せるレベル合わせと、 前記画像信号の信号レベルの高い部分を圧縮するレベル 圧縮とを同時に行うプログラムを記録することを特徴とする請求項 9に記載の 画像処理装置の記録媒体。
1 1 . 前記レベル変換係数を予め定めたレベル変換係数の特性データにより 演算するプログラムを記録することを特徴とする請求項 9に記載の画像処理装 置の記録媒体。
PCT/JP2004/001226 2003-02-05 2004-02-05 画像処理装置、画像処理プログラムおよび当該プログラムを記録した記録媒体 WO2004071077A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/544,430 US20060177148A1 (en) 2003-02-05 2004-02-05 Image processing device, image processing program, and program-recording medium
EP04708504A EP1592235B1 (en) 2003-02-05 2004-02-05 Image processing device, image processing program and recording medium for said program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003028652A JP4272443B2 (ja) 2003-02-05 2003-02-05 画像処理装置および画像処理方法
JP2003-028652 2003-02-05

Publications (1)

Publication Number Publication Date
WO2004071077A1 true WO2004071077A1 (ja) 2004-08-19

Family

ID=32844210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001226 WO2004071077A1 (ja) 2003-02-05 2004-02-05 画像処理装置、画像処理プログラムおよび当該プログラムを記録した記録媒体

Country Status (5)

Country Link
US (1) US20060177148A1 (ja)
EP (1) EP1592235B1 (ja)
JP (1) JP4272443B2 (ja)
CN (1) CN100355271C (ja)
WO (1) WO2004071077A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855704B2 (ja) * 2005-03-31 2012-01-18 株式会社東芝 固体撮像装置
JP2008092416A (ja) * 2006-10-04 2008-04-17 Sony Corp 撮像装置及び画像処理方法
JP4905229B2 (ja) 2007-04-11 2012-03-28 セイコーエプソン株式会社 画像処理装置、画像処理方法及び画像処理用プログラム
KR101665511B1 (ko) * 2010-02-11 2016-10-12 삼성전자 주식회사 광역 역광 보정 하드웨어 장치 및 이를 포함하는 촬영 장치
DE102010023166B4 (de) * 2010-06-07 2016-01-21 Dräger Safety AG & Co. KGaA Wärmebildkamera
US8994843B2 (en) * 2010-09-01 2015-03-31 Qualcomm Incorporated High dynamic range image sensor
JP5762756B2 (ja) 2011-01-20 2015-08-12 オリンパス株式会社 画像処理装置、画像処理方法、画像処理プログラム、および撮影装置
JP2013066145A (ja) * 2011-08-31 2013-04-11 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP2013115470A (ja) 2011-11-25 2013-06-10 Sony Corp 固体撮像素子の信号処理回路、固体撮像素子の信号処理方法、及び、電子機器
EP2798847B1 (en) * 2011-12-30 2018-08-22 Barco NV Method and system for determining image retention
JP5567235B2 (ja) * 2012-03-30 2014-08-06 富士フイルム株式会社 画像処理装置、撮影装置、プログラム及び画像処理方法
JP6563646B2 (ja) 2014-12-10 2019-08-21 ハンファテクウィン株式会社 画像処理装置および画像処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141229A (ja) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd 高ダイナミックレンジ撮像・合成方法及び高ダイナミックレンジ撮像装置
JPH06245151A (ja) * 1993-02-16 1994-09-02 Hitachi Denshi Ltd テレビジョンカメラ装置
JPH1175109A (ja) * 1997-06-27 1999-03-16 Matsushita Electric Ind Co Ltd 固体撮像装置
JPH11168659A (ja) * 1997-12-05 1999-06-22 Olympus Optical Co Ltd 電子カメラ
JPH11191860A (ja) * 1997-10-23 1999-07-13 Olympus Optical Co Ltd 撮像装置
JP2001169177A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd ダイナミックレンジ拡大カメラ
JP2003204450A (ja) * 2001-12-28 2003-07-18 Toshiba Corp 撮像装置及び映像信号処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247366A (en) * 1989-08-02 1993-09-21 I Sight Ltd. Color wide dynamic range camera
EP0739571A1 (en) * 1993-02-08 1996-10-30 I Sight, Inc. Color wide dynamic range camera using a charge coupled device with mosaic filter
US6219097B1 (en) * 1996-05-08 2001-04-17 Olympus Optical Co., Ltd. Image pickup with expanded dynamic range where the first exposure is adjustable and second exposure is predetermined
US6587149B1 (en) * 1997-10-17 2003-07-01 Matsushita Electric Industrial Co., Ltd. Video camera with progressive scanning and dynamic range enlarging modes
KR100335408B1 (ko) * 1998-03-03 2002-08-21 삼성전자 주식회사 포커스옵셋조정가능한광픽업장치
US6285798B1 (en) * 1998-07-06 2001-09-04 Eastman Kodak Company Automatic tone adjustment by contrast gain-control on edges
JP3458741B2 (ja) * 1998-12-21 2003-10-20 ソニー株式会社 撮像方法及び撮像装置、画像処理方法及び画像処理装置
KR100363826B1 (ko) * 1999-06-07 2002-12-06 히다치덴시 가부시키가이샤 넓은 다이내믹레인지의 영상신호를 생성하는텔레비젼신호처리장치와 그 신호처리장치를 가지는텔레비젼카메라 및 텔레비젼신호처리방법
US6687400B1 (en) * 1999-06-16 2004-02-03 Microsoft Corporation System and process for improving the uniformity of the exposure and tone of a digital image
JP3642245B2 (ja) * 2000-01-14 2005-04-27 松下電器産業株式会社 固体撮像装置
US6738510B2 (en) * 2000-02-22 2004-05-18 Olympus Optical Co., Ltd. Image processing apparatus
DE10064184C1 (de) * 2000-12-22 2002-04-04 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Bilderzeugung unter Verwendung mehrerer Belichtungszeiten

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141229A (ja) * 1992-10-27 1994-05-20 Matsushita Electric Ind Co Ltd 高ダイナミックレンジ撮像・合成方法及び高ダイナミックレンジ撮像装置
JPH06245151A (ja) * 1993-02-16 1994-09-02 Hitachi Denshi Ltd テレビジョンカメラ装置
JPH1175109A (ja) * 1997-06-27 1999-03-16 Matsushita Electric Ind Co Ltd 固体撮像装置
JPH11191860A (ja) * 1997-10-23 1999-07-13 Olympus Optical Co Ltd 撮像装置
JPH11168659A (ja) * 1997-12-05 1999-06-22 Olympus Optical Co Ltd 電子カメラ
JP2001169177A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd ダイナミックレンジ拡大カメラ
JP2003204450A (ja) * 2001-12-28 2003-07-18 Toshiba Corp 撮像装置及び映像信号処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1592235A4 *

Also Published As

Publication number Publication date
JP4272443B2 (ja) 2009-06-03
CN1748409A (zh) 2006-03-15
EP1592235A4 (en) 2010-02-24
US20060177148A1 (en) 2006-08-10
JP2004266347A (ja) 2004-09-24
EP1592235A1 (en) 2005-11-02
CN100355271C (zh) 2007-12-12
EP1592235B1 (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP4003399B2 (ja) 画像処理装置および方法、並びに記録媒体
JP4837365B2 (ja) 画像処理システム、画像処理プログラム
JP4163353B2 (ja) 画像処理装置
US8896722B2 (en) Image data processing apparatus and electronic camera
JP3074967B2 (ja) 高ダイナミックレンジ撮像・合成方法及び高ダイナミックレンジ撮像装置
JP3948229B2 (ja) 画像撮像装置及び方法
CN102387373B (zh) 图像处理设备和图像处理方法
JP4217041B2 (ja) フィルタ処理
WO2004071077A1 (ja) 画像処理装置、画像処理プログラムおよび当該プログラムを記録した記録媒体
JP2004328117A (ja) ディジタルカメラおよび撮像制御方法
US7327876B2 (en) Image processing device
JP2004246644A (ja) 画像処理装置、画像処理方法および画像処理プログラム
KR20000057992A (ko) 디지털 스틸 카메라용 화상 파이프라인 처리 시스템
JP3674420B2 (ja) 固体撮像装置
JP2001238129A (ja) 画像処理装置、記録媒体
JP3817635B2 (ja) カラ−画像処理装置および処理方法
JP3988760B2 (ja) 固体撮像装置
JP2006333113A (ja) 撮像装置
US7551204B2 (en) Imaging apparatus having a color image data measuring function
JP2004354913A (ja) 画像表示装置及び画像表示方法
JP4240261B2 (ja) 画像処理装置および方法、並びに記録媒体
JP2003333422A (ja) シェーディング補正方法およびディジタルカメラ
JP2009022044A (ja) 画像処理装置及び画像処理プログラム
JP3943762B2 (ja) ノイズ低減装置
JP3905342B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004708504

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006177148

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10544430

Country of ref document: US

Ref document number: 20048035058

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004708504

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10544430

Country of ref document: US