WO2004068491A1 - データ記録再生システム及び方法 - Google Patents

データ記録再生システム及び方法 Download PDF

Info

Publication number
WO2004068491A1
WO2004068491A1 PCT/JP2003/000920 JP0300920W WO2004068491A1 WO 2004068491 A1 WO2004068491 A1 WO 2004068491A1 JP 0300920 W JP0300920 W JP 0300920W WO 2004068491 A1 WO2004068491 A1 WO 2004068491A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
decoding
error correction
recording
reliability
Prior art date
Application number
PCT/JP2003/000920
Other languages
English (en)
French (fr)
Inventor
Akiyoshi Uchida
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/000920 priority Critical patent/WO2004068491A1/ja
Priority to AU2003211904A priority patent/AU2003211904A1/en
Priority to JP2004567539A priority patent/JP4011583B2/ja
Publication of WO2004068491A1 publication Critical patent/WO2004068491A1/ja
Priority to US11/039,939 priority patent/US7430705B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1866Error detection or correction; Testing, e.g. of drop-outs by interleaving
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2948Iterative decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3738Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with judging correct decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3746Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with iterative decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6331Error control coding in combination with equalisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6343Error control coding in combination with techniques for partial response channels, e.g. recording

Definitions

  • the present invention relates to a data reproduction system, and more particularly to a data reproduction system capable of decoding data with higher accuracy even when a data error has occurred.
  • Magneto-optical recording / reproducing devices which are one example of a data recording / reproducing system, include various types of devices such as those capable of recording computer image codes from recording and reproducing image image information. This is an area where the market is expanding rapidly due to the properties of media such as large capacity, interchangeability, and high device reliability. In such optical disk storage devices, there is a growing demand for an increase in the data storage capacity of the optical disk medium year by year.
  • a method of recording and reproducing data with higher accuracy is desired as the data recording density of a recording medium increases.
  • a method of recording and reproducing data with high precision there are turbo encoding method, data is recorded on a recording medium, reproduced and decoded from the recording medium, a turbo decoding method, a low-density parity check (LD PC).
  • LD PC low-density parity check
  • the data sequence to be recorded is once rearranged and modulated, and then the modulated signal is recorded on a recording medium.
  • the recording medium reproduces the modulated signal, and, at the time of decoding the reproduced signal, decodes the original data while repeatedly executing the decoding process of one unit.
  • the above-mentioned turbo code is a code with a large coding gain, and is a technology that has attracted attention in the communication field.
  • FIG. 1 is an example of a data recording / reproducing apparatus.
  • an optical disc apparatus which records data on an optical disk such as a magneto-optical disk and reproduces the data using iterative decoding.
  • FIG. 3 is a diagram illustrating a configuration. The operation of such an optical disk device will be described below with reference to the drawings.
  • the data recording / reproducing apparatus 100 in FIG. 1 mainly includes a recording system 110, an optical disk 120 of a recording medium, and a reproducing system 130.
  • the recording system 110 of the data recording / reproducing apparatus 100 in FIG. 1 is mainly output by an ECC (error-correcting code) encoder 111 for performing iterative decoding when reproducing data. It has an encoder unit 110 for encoding a data sequence to which an error correction code has been added using a turbo code or the like, and a laser light drive circuit 116. Further, the encoder unit 110 of the recording system of the data recording / reproducing unit shown in FIG. 1 mainly has an encoder 113, a MUX and puncture unit 114, and an interleaver ( ⁇ ) 1 I5 .
  • ECC error-correcting code
  • the ECC encoder 111 uses the input user data u k 160 as information symbols and generates a detection symbol having a predetermined relationship from these information symbols. Then, the user data 160 and the check symbol are combined and output as an error correction code.
  • the ECC encoder 111 can also perform interleaving and output after adding the above error correction code.
  • the error correction code encoded by the ECC encoder 111 can correct an error generated in the error correction code at the time of decoding by recording and reproducing on a recording medium.
  • an error generated in this way can be corrected by calculating an error position and an error value in the error correction code.
  • a second method when the position of an error generated in the error correction code at the time of decoding is divided in advance by some method, it is assumed that the data at this error position is lost. Can be corrected.
  • the second erasure correction method can correct a larger number of errors in one error correction code than the first error correction method.
  • the position of the lost data needs to be specified in advance, as described above.
  • the encoder 113 generates a parity bit sequence pfc corresponding to the ECC encoder output 161 to be recorded.
  • the symbol 1 1 3 shown in Fig. 2 is mainly composed of adders 201 and 202 modulo 2 and a delay element 20 3 and 204.
  • the delay elements 203 and 204 are configured by a shift register. It can be done.
  • the ECC encoder output 161 is input to the adder 201, and is added to the outputs of the delay elements 203 and 204.
  • the output of the adder 201 is input to the delay element 203.
  • the adder 201 and the delay elements 203 and 204 form a feedback part.
  • the parity bit sequence p k l 62 are the outputs of the delay element 204 of the adder 201 is generated by adding by the adder 202.
  • the MUX and puncture unit 114 in FIG. 1 combines the ECC encoder output 161 with the parity bit string Pkl 62 generated by the encoder 113 according to a predetermined rule, and extracts bits from the obtained bit string according to a predetermined rule. Decimation (this is called the “puncture function”) is performed, and the encoded data bit string a! Generates 163.
  • the interleaver ( ⁇ ) 115 changes the order of the coded data bit sequence a! L 63 output from the MUX and puncture unit 114, and generates another coded data bit sequence 64.
  • the laser drive circuit 116 controls the light emission amount of the laser based on the encoded data bit sequence Ci 164, and writes the encoded data bit sequence Ci 64 on the optical disc 120.
  • the reproduction system 130 of the data recording / reproducing apparatus 100 shown in FIG. 1 mainly includes an amplifier 131, an automatic loop gain control unit (AGC, automatic gain controller) 132, a low-pass filter 133, and an equalizer. 143, analog / digital metamorphosis (hereinafter referred to as A / D) 1.35, iterative decoding ⁇ 136, controller 137 and ECC decoder 138. Further, the iterative decoder 136 of the reproduction system 130 in FIG. 1 has a memory at its input.
  • APC automatic loop gain control unit
  • a / D analog / digital metamorphosis
  • the MO reproduction signal 122 reproduced from the optical disk 120 by the optical head is resonated by the amplifier 131, the AGC 132, the low-pass filter 133, and the like fb
  • the reproduced signal 122 from the magneto-optical disk 120 is used for PR data.
  • PR data Physical response waveform
  • the system constituted by the low-pass filter 133, the low-pass filter 133 and the like 134 can be considered as a PR channel (partial response channel) 140.
  • the output signal 123 of the equality 134 can be considered to be a signal substantially encoded by passing data through such a PR channel (partial response channel) 140.
  • a configuration for further turbo-coding the output signal 161 of the ECC encoder is realized by the above-described encoding function of the recording system 110 and the substantial encoding function of the PR channel 140 described above.
  • the signal 123 whose waveform has been equalized by the PR channel 140 is converted into a digital value by / D135.
  • the sampling values y! L 24 sequentially output from the A / D 135 are stored in the memory in the iterative decoding 136.
  • the sampling value y! L 24 stored in the memory is iteratively decoded (turbo decoded) by iterative decoding “ ⁇ 136”.
  • this iterative decoding ⁇ 136 is a decoding function which has a decoding function corresponding to the code ⁇ 113 in the recording system 110 and the substantial coding function in the PR channel 140. It is configured as shown in 3.
  • the iterative decoding ⁇ 300 shown in FIG. 3 is an example of the iterative decoding 136, and mainly includes a memory 301, a PR channel recovery ⁇ " ⁇ 302, a subtracting unit 303, a interleaver ( ⁇ - 1 ) 304, and a DEMUX. It has a depuncturing section 305, a code decoding section 306, a MUX and puncturing section 307, a subtracting section 308, an interleaver ( ⁇ ). 309 and a hard half-fixer 310.
  • the memory 301 stores the digital value converted by the A / D 135 as described above.
  • the PR channel decoder 302 is a decoder corresponding to the substantial encoding function of the PR channel 140 described above, and is a first posterior probability that performs a posterior probability decoding (APP). It is a return ⁇ .
  • APP posterior probability decoding
  • the likelihood information L ( Ci *) output from the PR channel decoder 302 and prior information La ( Ci ) based on the output from the code decoder 306 are subtracted by the subtracter 303, as described later, Then, external likelihood information Le (c) is obtained.
  • the sequence of the external likelihood information Le (c) sequentially obtained in this manner is supplied to the MUX and depuncture unit 305 after the arrangement order is changed by the interleaver ( ⁇ - 1 ) 304.
  • MUX ⁇ Pi Depankuchiya unit 305 a column of the likelihood information sequentially input, a column of data bits u k likelihood information corresponding to the L (u k), likelihood information corresponding to the parity bit p k L ( p k ).
  • the thinned information is added according to the rule corresponding to the rule of the thinning (puncture function) by the MUX and the puncture unit 114 of the recording system 110 in FIG. This is called the depunctrue function.
  • the code decoder-3-06 is a decoder corresponding to the encoder 113 of the recording system 1-10- in FIG. 1 described above, and the second posterior probability for performing the posterior probability decoding (APP). Decryption.
  • the log-likelihood ratio L (p *) expressed by The sequence of the log likelihood ratio L (u *) and the sequence of the log likelihood ratio L (p *) sequentially output from the code decoding unit 306 are supplied to the MUX and the 'puncture unit 307.
  • the MUX and puncture unit 307 connects the column of each I ratio L (u *) and the column of L (p *).
  • likelihood information L (c *) is output from MUX and puncture section 307.
  • the prior information Le (c) power (before L (3 ⁇ 4) and (p k )) is supplied to the code decoder 306 described above, and the likelihood information L (c *) power is Is subtracted from the As a result, external likelihood information La ( Ci ) is obtained. It is.
  • This external likelihood information La ( Ci ) is supplied as pre-information to the above-mentioned PR recovery section 302 via an interleaver ( ⁇ ) 309.
  • Iterative decoding " ⁇ 136 having both R channel decoding” ⁇ 302 and code decoding 306 can perform the decoding process repeatedly using the prior information supplied from the other decoding "". Is called iterative decoding.
  • the decrypted data 153 is sent to the controller 137, and the controller 137 performs a CRG (cy-c li-red redundancy check) to detect an error in the decrypted data 153. To determine whether a retry (replay) is necessary.
  • CRG cy-c li-red redundancy check
  • the decoded data 153 decoded by the iterative decoding 136 is sent to the ECC decoder 138. If there is an error in the decoded data 153, the ECC decoder 138 corrects the error by calculating an error position and an error value in the error correction code. Alternatively, if the position of the error that occurred in the error correction code is known in advance by some method, the data at this error position is treated as lost, and the error is lost and corrected.
  • turbo decoding As the recording density of the recording medium increases, the signal quality (Signal to Noise Ratio or SNR) decreases, so that a demodulation method with higher accuracy is always desired.
  • SNR Signal to Noise Ratio
  • Turbo decoding enables decoding with higher accuracy.
  • user data is encoded and recorded, and this is decoded using iterative decoding, so that short but large-amplitude noise is encoded.
  • the error spreads over the entire turbo-coded data unit, causing a problem that it cannot be corrected using ECC.
  • the turbo-coded data unit is often a relatively long data unit in order to obtain a large improvement in SNR by decoding. Therefore, if such a long data unit as a whole is treated as lost data, erroneous data, errors, and data in the turbo-coded data unit will be treated as lost data. The erasure correction process is wasted, and if errors occur frequently, the result cannot be corrected by the ECC decoder. Disclosure of the invention
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a data recording / reproducing system capable of decoding original data with high accuracy even when reproduced data is generated.
  • a data recording / reproducing system generates a first code block by adding a first error correction code to input data, and further converts the first code block into a second code block. Generates a second code block by encoding with an error correction code, generates a recording block by interleaving the second code block, and records and reproduces the recording block via a partial response channel including a recording medium.
  • a tentative determination and reliability detection unit that tentatively determines the decoded data and determines the reliability of the tentatively determined decoded data from the likelihood information in the iterative decoding in the iterative decoding unit;
  • the first error correction code decoding unit decodes the first error correction code, and the tentative determination and the so-called degree detection unit temporarily determine the first error correction code It supplies decrypted data and reliability information of the decrypted data.
  • turbo decoding there are generally two decodings, PR channel decoding and code decoding. The decoding is performed using. Between these two decodings, the data decoded by one decoding is received by the other decoding, and the decoding process is repeated.
  • the hard decision processing and the decision of the reliability of the data are performed by using the soft decision data before or after further decoding the once decoded data. Do both.
  • the final decoding result of the iterative decoding is subjected to error detection by CRC or the like. If a large number of errors exist in the final decoding result, the result of the hard decision processing determined to have high reliability described above is determined data as ⁇ , The data determined to have a low level is regarded as lost data, and the ECC decoder performs erasure error correction processing to decode the data.
  • FIG. 1 is a diagram showing the configuration of a conventional optical disc recording / reproducing system using iterative decoding.
  • FIG. 2 is a diagram showing a configuration example of an encoder used for a conventional turbo code.
  • FIG. 3 is a diagram showing a basic configuration diagram of a conventional iterative decoder.
  • FIG. 4 is a diagram showing one embodiment of the present invention.
  • FIG. 5 is a diagram showing another embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of the signal L (u k ) obtained in the embodiment of the present invention.
  • FIG. 4 shows the configuration of the iterative decoder 400 according to one embodiment of the present invention.
  • the repetition 400 is mainly composed of a memory 301, a PR channel recovery 302, a subtraction unit 303, a dinter lever- 1 ) 304, a DEMUX and depuncture unit 305, a code recovery unit 306, a MUX and a puncture. It has a unit 307, a subtraction unit 308, an interleaver ( ⁇ ) 309, a hard decision unit 310, and a provisional decision and reliability detection unit 401.
  • FIG. 4 shows the configuration of the iterative decoder 400 according to one embodiment of the present invention.
  • the repetition 400 is mainly composed of a memory 301, a PR channel recovery 302, a subtraction unit 303, a dinter lever- 1 ) 304, a DEMUX and depuncture unit 305, a code recovery unit 306, a MUX and a puncture. It has a unit 307
  • the detection unit 401 mainly includes a temporary determination unit 402, CRC circuits 403 and 404, and a multiplexer 405.
  • the reproduction signal yi 124 digitized by the A / D 135 in FIG. 1 is stored in the memory 301 in the same manner as described with reference to FIG. Then, first, while reading out the reproduction signal yil 24 stored in the memory 301 from the memory 301, the posterior probability decoding is performed from the PR channel decoding 302. Next, prior information La ( Ci ) based on the output from the code decoder 306 is subtracted by the subtractor 303 from the likelihood information L (c ; *) output from the PR channel decoder 302. Then, external likelihood information Le (c) is obtained. The sequence of the external likelihood information Le (c) is changed by the Dinter Lever ( ⁇ ' 1 ) 304 to change the array order, and the MUX and depuncture part
  • MUX and Depankuchiya 305 the columns of likelihood information sequentially input, a column of likelihood information L (u k) corresponding to the data bits u k, Paritibi Tsu preparative p k likelihood information corresponding to the L ( p k ).
  • the sequence of likelihood information L (u k ) is a soft decision result of the user data sequence.
  • the temporary determination unit 402 obtains the temporary determination data 411 by determining the soft decision result L (u k ) output from the DE MUX and depuncturing unit 305 by a predetermined threshold. At the same time, the brightness information 412 of the temporary judgment data is also judged, and the judgment data 411 and the reliability information 412 of the temporary judgment are output. The method of determining the reliability information will be described later.
  • the CRC section 404 performs a CRC check of 1.
  • the final A CRC check is performed on the decoded data 153 decoded by the hard format 310, which is a result of the iterative decoding.
  • the multiplexer 405 is controlled, and the determination of the temporary decision ⁇ 402 is made.
  • Either the temporary hard decision data 411 and the reliability information 412 or the decoded data 153 decoded by the hard decision unit 310 is sent from the multiplexer 405 to the ECC decoder 138.
  • the multiplexer 405 selects the iterative decoded data 153 and sends the iterative decoded data 153 to the ECC decoder 138.
  • the number of errors is equal to or more than a certain number ⁇
  • a CRC check is performed on the temporary judgment data 411 determined by the unit 402. If it is determined that the error data S is included in the temporary determination data 411, the temporary determination data 411 is selected by the multiplexer 405, and the temporary determination data 411 is sent to the ECC decoder 138. At the same time, the reliability information 412 is sent to the ECC decoder 138 as a disappearance flag of the temporary judgment data 411.
  • the ECC decoder 138 performs error correction using the hard decision data and the erasure flag thus transmitted. If no erasure flag is sent, the ECC decoder 138 corrects the error by calculating the error location and error value in the error correction code. On the other hand, if the erasure flag is sent, the ECC decoder 138 Performs erasure correction by treating the data at the position indicated by the erasure flag in the error correction code as erasure data.
  • FIG. 5 is a diagram showing a configuration of another embodiment of the present invention.
  • components denoted by the same reference numerals as those in FIG. 4 indicate the same components.
  • a temporary judgment and reliability detection unit 401 further includes a memory 406 for storing temporary judgment data 411 and reliability information 412. .
  • the CRC check of the iterative decoded data 153 output from the hard decision unit 310 is performed by the CRC unit 404, and It is described that the CRC check is performed on the temporary determination data 411 output from the temporary hardening determination unit 402 based on the result.
  • the above-described operation of the temporary 3 ⁇ 4g determination unit 402 is performed to determine the temporary determination data 411 and the reliability information 412, and then the CRC of the temporary determination data 411 is performed.
  • the determination data 411 and the degree of importance information 412 are stored in the memory 406 provided in the provisional determination and reliability detection unit 401.
  • a CRC check of the iterative decoded data 153 which is the final decoding result of the iterative decoding ⁇ 400 output by the hard decision unit 310, is performed by the CRC unit 404, and according to the result, a temporary check in the memory 406 is performed. Whether to output the hard decision data 411 and the reliability ′ information 412 to the ECC decoder 138 or to output the iterative decoded data 153 to the ECC decoder 138 may be determined.
  • FIG. 6 is a diagram illustrating an example of the size of the likelihood information L (u k ).
  • the white circle “1 oerror” indicates that the decoded data 153 resulting from the final decoding by the iterative decoder 400 in FIG. 4 or FIG.
  • the point of “error” indicates that the error data S is included in the decoded data 153 that is the result of the final decoding by the iterative decoder 400 in FIG. 4 or FIG.
  • the value 0 shown in FIG. As a result, it is possible to perform a preliminary judgment on the likelihood information L (u k ). That is, if the likelihood information L (u k ) is equal to or greater than 0 with the value 0 as the threshold, the decoded data 153 is set to 1, ”, and the likelihood information L (u k ) is set to 0. If smaller, the decoded data 153 is set to “0.” The result is stored, for example, in the above-mentioned memory 406, and at the same time, the reliability of the temporarily determined data is determined.
  • the likelihood information L (u k ) in the middle of the iterative decoding of the iterative decoding 400 in FIG. 4 or FIG. it is determined that the reliability of the data 511 that has been subjected to the temporary determination is high.
  • the value of the likelihood information L (uk) during the iterative decoding of the iterative decoding of FIG. 4 or FIG. 5 is not more than the threshold value +4 and not less than ⁇ 4. Determines that the reliability of the data 511 that has been subjected to the temporary determination is low.
  • the thresholds are set to +4 and 1 to 4.
  • the white circle “no error” has 6 points from 601 to 606, and the black square “error” has 6 points from 611 to 614. Are four or less in absolute value, and these points are judged to have low i degrees. The other white circle points and black square points are judged to have high reliability.
  • the temporary-hardness determination unit 402 can perform the temporary-hardness determination of the likelihood information L (uk) and the reliability determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

再生されたデータにエラーが発生した場合でも、高い確度でもとのデータを復号できるデータ記録再生システムを提供することを目的とする。この目的を達成するために、本発明のデータ記録再生システムは、入力データに、第1の誤り訂正符号を付加して第1の符号ブロックを発生し、第1の符号ブロックを更に第2の誤り訂正符号により符号化して第2の符号ブロックを発生し、第2の符号ブロックをインターリーブして記録ブロックを発生し、記録ブロックを、記録媒体を含むパーシャルレスポンスチャネルを介して記録し且つ再生する、データ記録再生システムにおいて、 パーシャルレスポンスチャネルの出力信号を反復復号して、第2の符号ブロックを復号する、反復復号部と、反復復号部内の反復復号途中の尤度情報から、復号データを仮判定し且つ仮判定された復号データの信頼度を判定する、仮判定及び信頼度検出部と、第1の誤り訂正符号を復号する第1の誤り訂正符号復号部とを有し、仮判定及び信頼度検出部は、第1の誤り訂正符号復号部に、仮判定された前記復号データと前記復号データの信頼度情報を供給する。

Description

明 細 書 データ記録再生システム及び方法 技術分野
本発明は、 データ再生システムに関し、 特に、 データのエラーが発生した^ でも、 より高い確度でデータを復号できるデータ再生システムに関する。 背景技術
データ記録再生システムの一つの例である光磁気記録再生装置は、 画像ゃィメ ージ情報の記録再生から、 コンピュータ用のコードの記録が可能なもののような 多種の装置があり、 光磁気記録媒体が、 大容量、 可換性、 及び装置の高信頼性等 の性質を有していることにより、 その市場が急速に拡がっている分野である。 こ のような光ディスク記繊置では、 年々、 その光ディスク媒体のデータ記鍵量 の大容量化の要望が高まっている。
このような光ディスク記^ ¾置では、 記録媒体のデータ記録密度が増大するの に伴って、 より高い精度で、 データの記録及び再生を行う手法が望まれている。 高レヽ精度でデータの記録及ぴ再生を行なう手法としては、 データをターボ符号化 して記録媒体に記録し、 記録媒体からこれを再生して復号する、 ターボ復号方法 や、 低密度パリティ検査 (LD P C) などのような方法がある。 このような方法 では、 記録時には、 記録されるデータ列を、 一旦、 再配列しそして、 変調を行つ てから、 変調された信号を記録媒体に記録する。 そして、 再生時には、 記録媒体 力 、 変調された信号を再生し、 そして、 この再生された信号を復号する時に、 1つの単位の復号処理を反復して実行しながら、 元のデータを復号する方法が提 案されている。
上述のターボ符号とは、 符号化利得の大きな符号であり, 通信分野において注 目されている技術である。
図 1は、 データ記録再生装置の例である、 例えば、 光磁気ディスクのような光 ディスクにデータを記録しそして反復復号を用いて再生する、 光ディスク装置の 構成を示す図である。 以下に、 このような光ディスク装置の例の動作を、 図面を 参照して説明する。
図 1のデータ記録再生装置 1 0 0は、 主に、 記録系 1 1 0、 記録媒体の光ディ スク 1 2 0、 及び再生系 1 3 0により構成される。
図 1のデータ記録再生装置 1 0 0の記録系 1 1 0は、 主に、 E C C (誤り訂正 符号) エンコーダ 1 1 1、 データの再生時に反復復号を行うために、 E C Cェン コーダにより出力される誤り訂正符号が付加されたデータ系列をターボ符号等に より符号化するエンコーダ部 1 1 0及び、 レーザ光駆動回路 1 1 6を有する。 さ らに、 図 1のデータ記録再^ ¾置の記録系のエンコーダ部 1 1 0は主に、 符号器 1 1 3、 MUX及びパンクチヤ部 1 1 4、インターリーバ(π) 1 I 5を有する。
E C Cエンコーダ 1 1 1は、 入力するユーザデータ u k 1 6 0を情報記号とし て、 これらの情報記号から所定の関係を有する検查記号を発生する。 そして、 ュ 一ザデータ 1 6 0と検査記号とを合わせて、 誤り訂正符号として出力する。 E C Cエンコーダ 1 1 1は、 上述の誤り訂正符号を付加したのちに、 更にインターリ ーブを行って出力することも可能である。
E C Cエンコーダ 1 1 1により符号化された誤り訂正符号は、 記録媒体への記 録及ぴ再生により、 その誤り訂正符号の中に発生された誤りを、 復号時に訂正す ることが可能である。 このように発生された誤りは、 第 1の方法として、 誤り訂 正符号中の誤り位置と誤りの値を計算することにより、 訂正することが可能であ る。又、第 2の方法として、復号時に、誤り訂正符号中に発生した誤りの位置が、 予め何らかの方法で分かつている^^には、 この誤り位置のデータが消失したと して极 、、 誤りを消失訂正することもできる。 一般的には、 第 1の誤り訂正方法 よりも、 第 2の消失訂正方法の方が、 1つの誤り訂正符号中のより多くの個数の 誤りを訂正できる。 しカゝし、 消失訂正を行うためには、 上述のように、 消失した データの位置が、 予め特定されることが必要である。
符号器 1 1 3は、 記録すべき E C Cエンコーダ出力 1 6 1に対応したパリティ ビット列 pfcを生成する。符"^ 1 1 3の構成例を図 2に示す。図 2に示された符 ¾ 1 1 3は、 主に、 2を法とする加算器 2 0 1及び 2 0 2、 遅延素子 2 0 3及 ぴ 2 0 4より構成される。 遅延素子 2 0 3と 2 0 4は、 シフトレジスタにより構 成されてもよレ、。 ECCエンコーダ出力 161は、加算器 201に入力され、 そ して、 遅延素子 203及ぴ 204の出力と加算される。 この加算器 201の出力 は、 遅延素子 203に入力される。 加算器 201·と遅延素子 203及ぴ 204に より、帰還部分を構成する。 一方、パリティビット列 pkl 62は、加算器 201 の出力と遅延素子 204の出力を、 加算器 202により加算することにより生成 される。
図 1の MUX及びパンクチヤ部 114は、 ECCエンコーダ出力 161と符号 器 113により生成されたパリテイビット列 Pkl 62を所定の規則に従って結 合するとともに、 そこで得られたビット列から所定の規則に従ってビットを間引 いて (これを punc t u r e 機能と呼ぶ)、符号化データビット列 a! 163を 生成する。
インターリーバ (π) 115は、 MUX及びパンクチヤ部 114から出力され る符号化データビット列 a!l 63の順序を変更して、別の符号化データビット列 64を生成する。
レ一ザ駆動回路 116は、 符号化データビット列 Ci 164に基づいて、 レー ザの発光量を制御し、符号化データビット列 Cil 64を、光ディスク 120に書 込む。
—方、 図 1のデータ記録再生装置 100の再生系 130は、 主に、 増幅器 13 1、 自動ループゲイン制御部 (AGC、 Au t oma t i c Ga i n Con t r o l l e r) 132、 ローパスフィルタ 133、 等化器 143、 アナログ/ デジタル変観 (以下, A/Dという) 1.35、 反復復^^ 136、 コントロー ラ 137及ぴ、 E C Cデコーダ 138を有する。 また、 図 1の再生系 130の反 復復号器 136はその入力にメモリを有する。
光学へッドにより光ディスク 120から再生された MO再生信号 122は、 増 φ畐器 131、 AGC132, ローパスフィルタ 133及び等 fb|§l 34により波 开靈形される。 記録媒体 120上に記録されるデータの |«ビット間で波形干渉 が発生するような高密度で、 データが記録されている ¾ ^には、 光磁気ディスク 120からの再生信号 122を、 PR波形 (パーシャルレスポンス波形) 123 に、 等化することができる。 即ち, 光ディスク 120、 増幅器 131、 AGC1 32、 ローパスフィルタ 133及び等 134により構成される系を、 PRチ ャネル(パーシャルレスポンスチャネル) 140と考えることができる。そして、 等ィ 134の出力信号 123は、 データが、 このような PRチャネル (パーシ ャルレスポンスチャネル) 140を通ることにより、 実質的に符号化がなされた 信号であると考えることができる。 このようにして、 上述の記録系 110による 符号化機能と、 上述の PRチャネル 140による実質的な符号ィ 能により、 E CCエンコーダの出力信号 161を、 更にターボ符号化する構成が実現される。 上述のように PRチヤネノレ 140により、 波形等化された信号 123は、 / D135によって、 デジタル値に変換される。 この A/D135から順次出力さ れるサンプリング値 y!l 24は、反復復 136内のメモリに格納される。そ して,そのメモリに格納されたサンプリング値 y!l 24が反復復"^ 136によ り、 反復復号 (ターボ復号) される。
この反復復^^ 136は, 前述したように, 記録系 110における符^^ 11 3と PRチャネル 140での実質的な符号 ¾能に対応した復号機能を有する復 "^であり、 例えば、 図 3に示すように構成される。
図 3に示された反復復^ ^300は、 反復復 136の一例であり、 主に、 メモリ 301、 PRチヤネノレ復^ "^302、減算部 303、ディンターリーバ(π -1 ) 304、 DEMUX及ぴデパンクチヤ部 305、 コード復 306、 MU X及びパンクチヤ部 307、 減算部 308、 インターリーバ (π). 309及ぴ、 硬半定器 310を有する。
メモリ 301は、上述のように、 A/D 135により変換されたデジタル値を、 格納する。
PRチャネル復号器 302は、 前述した PRチヤネノレ 140による実質的な符 号化機能に対応した復^^であり、 事後確率復号 (APP : A p o s t e r ! o r i p r ob a b i l i t y d e c o d i ng) を行なう第 1の事後確率 復^^である。
具体的には、 PRチャネル復号器 302では、 A/D 135によりサンプリン グされた、 入力されるサンプリング値 Y (yl5 y2, ··', yn) が検出されたとい う条件のもとで、 ビット Ciが 1 になる確率 P (Ci=l I Y) とそれが 0になる 確率 P (Ci=0 I Y) との比となる対 度比 L (Ci*) が演算される。
そして、 PRチャネル復 302が出力した尤度情報 L (Ci*) 力ら、 後述 するように、 コード復 306からの出力に基づいた事前情報 La (Ci) が減 算器 303にて減算され、 そして、 外部尤度情報 Le (c) が得られる。 このよ うにして順次得られる外部尤度情報 Le (c) の列は、 ディンターリーバ (π—1) 304により、 配列順序が変えられて、 MUX及ぴデパンクチヤ部 305に供給 される。 MUX及ぴデパンクチヤ部 305は、 順次入力される尤度情報の列を、 データビット ukに対応した尤度情報 L (uk) の列と、 パリティビット p kに対応 した尤度情報 L (pk) の列に連する。
そして、 処理の際に、 図 1の記録系 110の MUX及びパンクチヤ部 11 4による間引き (pun c t ur e機能) の規則に対応した規則に従って、 間引 かれた情報の追加を行なう。 これを d e pun c t u r e 機能と呼ぶ。
次に、コ一ド復号器- 3 -06は、前述した図 1の記録系 1- 10-の符号器 113に 対応した復号器であり、 事後確率復号 (APP) を行なう第 2の事後確率復号で ある。
具体的には、上述のようにデータビットに関する尤度情報である事前情報 L (u k) およびパリティビットに関する尤度情報である事前情報 L (pk) に基づいて、 データビットに関する事後確率 (uk=lとなる確率、 uk=0となる確率) で表 される対 K:度比 L (u*) およびパリティビットに関する事後確率 (pk=lと なる確率、 Pk=0となる確率) で表される対数尤度比 L (p*) を計算する。 上述のコード復^ ^306から順次出力される対数尤度比 L (u*)の列及び対 数尤度比 L (p*) の列は、 MUX及び'パンクチヤ部 307に供給される。 この M UX及びパンクチヤ部 307は、 各対 «I度比 L (u*) の列と L (p*) の列と を結合する。
そして、 結合処理の際に、 所定の規則に従ってその情報の間引きを行なう (p un c t u r e機能)。その結果、 MUX及びパンクチヤ部 307から尤度情報 L (c*)が出力される。そして、上述のコード復号器 306に供給される (L (¾) と (pk) への 前の) 事前情報 Le (c) 力 減算器 308により、上述の 尤度情報 L (c*) 力ら減算される。 その結果, 外部尤度情報 La (Ci) が得ら れる。 この外部尤度情報 La (Ci) は、 インターリーバ (π) 309を介して、 上記 PR復"^ 302に、 事前情報として供給される。
上記のように? Rチヤネノレ復"^ 302とコード復 306の両方を有する 反復復"^ 136は、 互いに他方の復 "^から供給される事前情報を用いて、 繰 り返して復号処理を行なうことができる。 これを反復復号と呼ぶ。
このようにして、 上記反復復号の処理が所定の回数行なわれた際にコ一ド復号 器から出力されるデータビット ¾に関する対数尤度比 L (u*) に基づいて、硬判 定器 310は、データビット Ukが 1または 0のいずれであるかを判定する。 この 判定は、 上記対数尤度比 L (u*) >0の場合には、 データビット Uk=lと判定 しそして、 上記対数尤度比 L (u*) く 0の場合には、 データビット Uk=0と判 定する。 この判 果が、 反復復^^ 136の復号結果の復号データ 153とし て、 反復復 136から出力される。 復号データ 153は、 コントローラ 13 7に送ちれ、 そして、 コントローラ 137により CRG (cy-c l i—じ r e d undancy che ck、 サイクリックリダンダンシーチェック) を行うこ とにより、 復号データ 153内の誤りを検出して、 リトライ (再度再生) が必要 であるか否かを判断する。
そして、 このように、 反復復 136で復号された復号データ 153は、 E CCデコーダ 138に送られる。 復号データ 153中に誤りがある場合には、 E CCデコーダ 138により、 誤り訂正符号中の誤り位置と誤りの値を計算するこ とにより、 誤りが訂正される。 或は、 誤り訂正符号中に発生した誤りの位置が、 予め何らかの方法で分かってレ、る場 には、 この誤り位置のデータが消失したと して扱われ、 誤りが消失訂正される。
記録媒体の記録密度の増大に伴って、信号品質(S i gn a 1 t o No i s e Ra t i。又は、 SNR) は低下するので、 常に、 より高い精度の復調方式 が望まれている。 ターボ復号は、 より高い精度での復号を可能としている。 しか し、 一方では、 ターボ復号では、 図 1に示すように、 ユーザデータを符号化して 記録し、 これを反復復号を用いて復号するので、 短いがしかし振幅の大きなノィ ズが、 符号化したデータ単位の全体に影響及してしまうという問題がある。 これは、 反復復号を行うことにより、 記録媒体への記録又は再生中に発生した エラーが、 ターボ符号化したデータ単位全体にわたって拡散し、 E C Cを用いて も訂正することが出来なくなるという問題を発生する。
また、 上述のようなエラ一が発生した には、 ターポ符号化したデータ単位 の全体を、 消失データとして扱って、誤りを訂正する方法も提案されている。 し かし、 ターボ符号化したデータ単位は、 復号による S NRの大きな改善効果を得 るために、 比較的長いデータ単位とすることが多い。 従って、 そのような長いデ ータ単位全体を消失データとして扱うと、 ターボ符号化したデータ単位内の誤つ てレ、なレ、データにっレ、ても、 消失データとして极うこととなり、 消失訂正処理に 無駄が生じることとなり、 また更に、 誤りが頻発すれば、 やはり E C Cデコーダ で訂正できな 、結果となる。 発明の開示
本発明は上記の点に鑑みてなされたもので、 再生されたデータ ラ一が発生 した場合でも、 高い確度でもとのデータを復号できるデータ記録再生システムを »することを目的とする。
この目的を達成するために、 本発明のデータ記録再生システムは、 入力データ に、 第 1の誤り訂正符号を付加して第 1の符号ブロックを発生し、 第 1の符号ブ ロックを更に第 2の誤り訂正符号により符号化して第 2の符号プロックを発生し、 第 2の符号ブロックをインターリーブして記録プロックを発生し、 記録ブロック を、記録媒体を含むパーシャルレスポンスチャネルを介して記録し且つ再生する、 データ記録再生システムにおいて、
パーシャルレスポンスチャネルの出力信号を反復復号して、 第 2の符号ブロッ クを復号する、 反復復 と、
反復復号部内の反復復^ i中の尤度情報から、 復号データを仮判定し且つ仮判 定された復号データの信頼度を判定する、 仮判定及び信頼度検出部と、
第 1の誤り訂正符号を復号する第 1の誤り訂正符号復"^とを有し、 仮判定及 Ό«ί謂度検出部は、 第 1の誤り訂正符号復^ 1に、 仮判定された復号 データと復号データの信頼度情報を供給する。
ターボ復号では、 一般的に P Rチャネル復 とコ ド復 の 2つの復 を用いて復号を行う。 それらの 2つの復"^の間で、 一方の復^^で復号された データを他方の復^が受取り、 そして、 繰返して復号処理を行う。
このように、 一度復号された復号データを、 更に繰返して復号することによつ て、 最初の復号時に、 データ内に存在してたエラーが、 他のデータ部分に伝播し てしまうことがあるので、 本発明では、 一度復号された復号データを更に繰返し て復号する前に、 あるいは更に繰返して復号している途中の軟判定データを用い て、 硬判定処理と、 データの信頼度の判定の両方を行う。
そして、 反復復 の、 最終的な復号結果を、 C R C等で誤り検出する。 そし て、 最終的な復号結果の中にエラーが多数存在する場合には、 上述の信頼度が高 いと判定された硬判定処理の結果を、 確定されたデ一タとして极 、、 また、 信頼 度が低レヽと判定されたデータを消失データとみなして、 E C Cデコーダにより、 消失誤り訂正処理を行って、 データの復号を行う。
従って、 本発明によれば、 記録媒体等への記録又は再生時などで生じるノイズ によるデータ誤りの伝播を最小限にとどめ且つ、更に、 E C Cデコーダ等により、 消失訂正を行うことができるので、 高レ、雌でデータを復号できる。 図面の簡単な説明
本発明の他の目的、 特徴及ひ利点は、 添付の図面を参照しながら以下の詳細な 説明を読むことにより一層明瞭となるであろう。
図 1は、 従来の反復復号を用いた光ディスクの記録再生システムの構成図を示 す図である。
図 2は、 従来のターボ符号に用 、る符号器の構成例を示す図である。
図 3は、 従来の反復復号器の基本構成図を示す図である。
図 4は、 本発明の一実施例を示す図である。
図 5は、 本発明の他の実施例を示す図である。
図 6は、 本発明の実施例中で得られる信号 L (u k) の一例を示す図である。 発明を実施するための最良の形態
以下に、本発明を実施するための実施の形態について、図面を用いて説明する。 図 4は、 本発明の一実施例の反復復号器 400の構成を示す。 図 4に示す、 反 復復 400は、 主に、 メモリ 301、 PRチヤネノレ復 302、 減算部 3 03、ディンターリーバ -1 ) 304、 DEMUX及ぴデパンクチヤ部 305、 コード復^ 306、 MUX及びパンクチヤ部 307、 減算部 308、 インター リーバ (π) 309、 硬判定器 310、 及び、 仮判定及び信頼度検出部 401を 有する。 図 4に示す実施例は、 図 3に示 1~¾§来の反復復" ^300の構成に、 更 に、 仮判定及び信頼度検出部 401を追加したものである。 仮判定及び信頼度検 出部 401は、 主に、 仮硬判定部 402、 CRC回路 403及び 404、 及び、 マルチプレクサ 405より構成される。
図 1の A/D 135によりディジタル化された再生信号 yi 124は、図 3を参 照して説明したのと同様に、 ー且メモリ 301に格納される。 そして、 先ず最初 に、メモリ 301に格納された再生信号 yil 24をメモリ 301から読み出しな がら、 PRチャネル復 302 より事後確率復号を行う。 次に、 PRチヤネ ル復号器 302が出力した尤度情報 L (c;*) から、 コード復号器 306からの 出力に基づいた事前情報 La (Ci) が減算器 303にて減算される。 そして、 外 部尤度情報 Le (c) が得られる。 外部尤度情報 Le (c) の列は、 ディンター リーバ (π'1) 304により、配列順序が変えられて、 MU X及ぴデパンクチャ部
305に供給される。 MUX及びデパンクチヤ部 305は、 順次入力される尤度 情報の列を、 データビット ukに対応した尤度情報 L (uk) の列と、 パリティビ ット pkに対応した尤度情報 L (pk) の列に連する。尤度情報 L (uk) の列は、 ユーザデータ列の軟判定結果である。
次に、 仮判定及び信頼度検出部 401の動作について、 以下に説明する。
先ず最初に、 仮硬判定部 402は、 DE MUX及ぴデパンクチヤ部 305の出 力する軟判定結果 L (uk) を、 予め定められた閾値で判定することにより、 仮 硬判定データ 411を取得し、 同時に、 仮硬判定データの ί麵度情報 412も判 定して、 «判定データ 411と仮硬判 果の信頼度情報 412を出力する。 信頼度情報の判定の方法については、 後述する。
次に、 0RC部 403では、 仮硬判定部 402の判定した仮硬判定データ 41
1の C R C検査を行う。 一方、 C R C部 404では、 反復復号器 400の最終的 な反復復号結果である、 硬判 310により復号された復号データ 153の C RC検查を行う。 そして、 上述の CRC部 403の検査結果と CRC部 404の 検査結果とにより、 以下の (1) から (3) に示すように、 マルチプレクサ 40 5を制御して、 仮硬判^ 402の判定した仮硬判定データ 411と信頼度情報 412又は、 硬判定部 310により復号された復号データ 153のいずれかが、 マルチプレクサ 405から、 ECCデコーダ 138に送られる。
(1) 硬判定部 310の出力する反復復号データ 153の CRC検査を CRC 部 404で行つた結果、 誤りが検出されなレ、:^又は、 誤りの数がある一定の数 以下である場合には、 マルチプレクサ 405により、 反復復号データ 153が選 択されて、 反復復号データ 153が EC Cデコーダ 138に送られる。
( 2 ) 硬判定部 310の出力する反復復号データ 153の C R C検查を C R C 部 404で行つた結果、 誤りの数がある一定の数以上である場合には、 CRC部 403で、 仮硬判定部 402の判定した仮硬判定データ 411の CR C検査を行 う。 そして、 仮硬判定データ 411に誤り力含まれないと判断された場合には、 マルチプレクサ 405により、 仮硬判定データ 411が選択されて、 仮硬判定デ ータ 411のみが EC Cデコーダ 138に送られ、 信頼度情報 412は EC Cデ コーダ 138に送られない。
(3) 硬判定部 310の出力する反復復号データ 153の CRC検查を CRC 部 404で行った結果、 誤りの数がある一定の数以上である ^には、 CRC部 403で、 仮硬判定部 402の判定した仮硬判定データ 411の C R C検査を行 う。 そして、 仮硬判定データ 411に誤り力 S含まれると判断された場合には、 マ ルチプレクサ 405により、 仮硬判定データ 411が選択されて、 仮硬判定デー タ 411が ECCデコーダ 138に送られるそして、 同時に、 信頼度情報 412 力 仮硬判定データ 411の消失フラグとして、 ECCデコーダ 138に送られ る。
このようにして、 送られた、硬判定データと、 消失フラグを用いて、 ECCデ コーダ 138は、 誤り訂正が行う。 消失フラグが送られなレ、場合には、 ECCデ コーダ 138は、 誤り訂正符号中の誤り位置と誤りの値を計算することにより、 誤りを訂正する。 一方、 消失フラグが送られる場合には、 ECCデコーダ 138 は、 誤り訂正符号中の、 消失フラグにより示される位置のデータを消失データと して扱って、 消失訂正を実行する。
このようにして、 従来、 ターポ復号のような反復復号を行う復号系において、 ノイズにより伝播してしまうエラ一が発生しても、 E C C等との組み合わせによ り、 正しい復号を行うことができる。
図 5は、 本発明の他の実施例の構成を示す図である。 図 5において、 図 4と同 —の番号を付した構成要素は、 同一の構成要素を示すものとする。
図 5に示された実施例は、 図 4の実施例に対して、 更に、 仮判定及び信頼度検 出部 401に、 仮硬判定データ 411と信頼度情報 412を記憶するメモリ 40 6を有する。
図 4に示された実施例については、 上述の (1) 力ら (3) の説明では、 硬判 定部 310の出力する反復復号データ 153の CRC検査を CRC部 404で行 いそして、 その結果により、 仮硬判定部 402の出力する仮判定データ 411の CRC検査を行うように構成として説明されている。 しかし、 先ず最初に、 上述 の仮 ¾g判定部 402の動作を行って、 仮硬判定データ 411と信頼度情報 412 を決定し、 そして、 仮判定データ 411の CRC検査を行い、 次に、 仮硬判定デ ータ 411と ί謹度情報 412を、 仮判定及び信頼度検出部 401内に設けられ たメモリ 406に記憶する。 そして、 硬判定部 310の出力する、 反復復^^ 4 00の最終復号結果である、 反復復号データ 153の CRC検查を CRC部 40 4で行い、 その結果に応じて、 メモリ 406内の仮硬判定データ 411と信頼度 ' 情報 412を EC Cデコーダ 138に出力するのか又は、 反復復号データ 153 を EC Cデコーダ 138に出力するのかを、 決定するようにしてもよい。
次に、 信頼度の判定の方法について図 6を参照して、 説明する。
図 6は、 尤度情報 L (uk) の大きさの一例を示す図である。 白い丸印の" 1 o e r r o r" の点は、 図 4又は図 5の反復復号器 400が最終的に復号した 結果の復号データ 153に、誤りカ含まれない^を示しており、黒い四角印の" e r r o r" の点は、 図 4又は図 5の反復復号器 400が最終的に復号した結果 の復号データ 153に、 誤り力 S含まれる を示している。
図 4又は図 5に示された仮硬判定部 402では、 図 6に示す、 値 0を閾値とし て、 尤度情報 L (uk) の仮硬判定 行うことができる。 即ち、 値 0を閾値とし て、 尤度情報 L (uk) が 0以上である場合には、 復号データ 153を,, 1" と し、 また、 尤度情報 L (uk) が 0より小さい場合には、 復号データ 153を" 0" とする。 この結果を、 例えば、 上述のメモリ 406に格納し、 同時に仮硬判 定されたデータの信頼度の判定も行う。
信頼度の判定については、 例えば、 一例として、 図 4又は図 5の反復復 4 00の反復復号の途中の尤度情報 L (uk) 力 しきい値 +4以上である力又は、 一 4以下であるかのいずれかである場合には、 仮硬判定されたデータ 511の信 頼度が高いと判定するする。 一方、 図 4又は図 5の反復復^^ 400の反復復号 の復 中の尤度情報 L (uk) の値が、 しきい値 +4以下であり且つ、 ー4以 上である »^には、 仮硬判定されたデータ 511の信頼度が低いと判定する。 図 6に示された実施例においては、 閾値を +4及ぴ一 4と設定しているが、 このし きい値には記録再生系に応じて決まる他の最適値を使用することが可能である。 例えば、 図 6に示されているように、 白い丸印の" no e r r o r" の には点 601から 606の 6点が、 そして、 黒い四角印の" e r r o r" の場合 には、 点 611から 614の 4点が、 絶対値 4以下となり、 これらの点は、 i 度が低いと判定される。 そして、 それ以外の白い丸印の点と、 黒い四角印の点は 信頼度が高いと判定される。
以上のように、 本実施例により、 仮硬判定部 402で、 尤度情報 L (uk) の 仮硬判定と、 信頼度の判定を行うことができる。

Claims

請 求 の 範 囲
1 . 入力データに、 第 1の誤り訂正符号を付加して第 1の符号プロックを発生 し、 f&IE第 1の符号ブロックを更に第 2の誤り訂正符号により符号化して第 2の 符号プロックを発生し、 ffilB第 2の符号プロックをインターリーブして記録プロ ックを発生し、 ¾ίί|Β記録プロックを、 記録媒体を含むパーシャルレスポンスチヤ ネルを介して記録し且つ再生する、 データ記録再生システムにおレ、て、
前記パーシャルレスポンスチャネルの出力信号を反復復号して、 第 2の符号ブ ロックを復号する、 反復復号部と、
filB反復復"^内の反復復 中の尤度情報から、 復号データを仮判定し且つ 仮判定された t&t己復号データの信頼度を判定する、 仮判定及び信頼度検出部と、 前記第 1の誤り訂正符号を復号する第 1の誤り訂正符号復号部とを有し、 tfiiB仮判定及 言頼度検出部は、 悲第 1の誤り訂正符号復"^に、 仮判定さ れた lift己復号データと仮判定された MIB復号データの fit己信頼度情報を供給する、 データ記録再生システム。
2. t&iB仮判定された ttiia復号データの肅己信頼度情報は、 tffia反復復 中 の尤度情報の値を、 予め定められた閾値を用いて判定した結果の値を有する、 請 求項 1に記載のデータ記録再生システム。
3. ΙίίΙΒ仮判定及び信頼度検出部は、 難反復復^^の fiia第 2の符号プロッ クの復号結果に基づいて、廳己仮判定された前記復号データの ItilB信頼度情報を、 t&IS第 1の誤り訂正符号復号部に、 供給するか否かを決定する、 請求項 2に記載 のデータ記録再生システム。
4. I lE仮判定及び信頼度検出部は、 反復復^ 中の編己尤度情報から、 仮硬 判定を行う、 請求項 1に記載のデータ記録再生システム。
5. 前記反復復号部は、 パーシャルレスポンスチャネルの事後確率復号を行う 第 1の事後確率復^^と、 第 2の符号プロックを復号する、 第 2の事後確率復号 部を有し、
爾己仮判定及び信頼度検出部は、 第 1の事後確率復^ 1の供給する tins反復復
"^中の t&lB尤度情報から、 '仮硬判定を行う、 請求項 4に記載のデータ記録再生 システム。
6. 歸己仮判定及び信頼度検出部は、 メモリを有し、 且つ、 ΙΐίΐΒ仮判定された ΙίϊΙΒ復号データと tiflB復号データの前記信頼度情報を廳己メモリに記憶し、 且つ 更に、 歸己反復復号部の ΙϋΐΒ第 2の符号プロックの復号結果に基づ 、て、 ΙίίΙΒメ モリ内の ΙίίΙΞ仮判定された tHIE復号データと前記復号データの ΙίίΙΒ信頼度情報を、 tiiia第 1の誤り訂正符号復号部に出力する力 又は、 編己反復復号部の聽第 2 の符号プロックの復号結果を、 前記第 1の誤り訂正符号復号部に出力するかを決 定する、 請求項 1に記載のデータ記録再生システム。
7. 入力データに、 第 1の誤り訂正符号を付加して第 1の符号プロックを発生 し、 前記第 1の符号プロックを更に第 2の誤り訂正符号により符号化して第 2の 符号プロックを発生し、 tiflE第 2の符号プロックをインターリ—ブして記録プロ ックを発生し、 肅己記録プロックを、 記録媒体を含むパーシャルレスポンスチヤ ネルを介して記録し且つ再生する、 データ記録再生方法にぉ 、て、
前記パーシャルレスポンスチャネルの出力信号を反復復号して、 第 2の符号ブ ロックを復号する、 反復復号ステップと、
前記反復復号部内の反復復 中の尤度情報から、 復号データを仮判定し且つ 仮判定された ΙΐϊΙΒ復号データの信頼度を判定する、 仮判定及び信頼度検出ステツ プと、
ΙίίΙΒ第 1の誤り訂正符号を復号する第 1の誤り訂正符号復号ステップとを有し、 嫌己仮判定及び信頼度検出ステップは、 ΙίΠΒ第 1の誤り訂正符号復号ステップ に、 仮判定された ItJlB復号データと仮判定された觀己復号データの廳己信頼度情 報を供給する、 データ記録再生方法。 s . 觸己仮判定された廳己復号データの tiiia麵度情報は、 ia反復復 中 の尤度情報の値を、 予め定められた閾値を用いて判定した結果の値を有する、 請 求項 7に記載のデータ記録再生方法。
9 · 前記仮判定及び信頼度検出ステップは、 前記反復復号ステップの前記第 2 の符号プロックの復号結果に基づいて、 ΐίίΐΒ仮判定された ffia復号データの it己 信頼度情報を、 藤己第 1の誤り訂正符号復号ステップに、 供給する力、否力を決定 する、 請求項 8に記載のデータ記録再生方法。
1 0. 鎌己仮判定及び信頼度検出ステップは、 反復復"^中の編己尤度情報か ら、 仮硬判定を行う、 請求項 7に記載のデータ記録再生方法。
1 1 . 前記反復復号ステップは、 パーシャルレスポンスチャネルの事後確率復 号を行う第 1の事後確率復号ステツプと、 第 2の符号ブロックを復号する、 第 2 の事後確率復号ステップを有し、
tfria仮判定及び信頼度検出ステップは、 第 1の事後確率復号ステップの供給す る ΙϋΙΒ反復復^ 中の tiiia尤度情報から、 仮硬判定を行う、 請求項 1 0に記載の データ記録再生方法。
1 2. tiflH仮判定及び信頼度検出ステップは、 前記仮判定された 1 B復号デ一 タと!ita復号データの lift己信頼度情報を記憶し、 且つ更に、 膽己反復復号ステツ プの前記第 2の符号プロックの復号結果に基づ!/、て、 fflB記憶した前記仮判定さ れた前記復号データと ΙΐίΙΒ復号データの I5信頼度情報を、 ΙίίΙΕ第 1の誤り訂正 符号復号ステップに供給する力、、 又は、 前記反復復号ステップの前記第 2の符号 プロックの復号結果を、 前記第 1の誤り訂正符号復号ステップに供給するかを決 定する、 請求項 7に記載のデータ記録再^"法。
PCT/JP2003/000920 2003-01-30 2003-01-30 データ記録再生システム及び方法 WO2004068491A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2003/000920 WO2004068491A1 (ja) 2003-01-30 2003-01-30 データ記録再生システム及び方法
AU2003211904A AU2003211904A1 (en) 2003-01-30 2003-01-30 Data recording/reproducing system and method
JP2004567539A JP4011583B2 (ja) 2003-01-30 2003-01-30 データ記録再生システム及び方法
US11/039,939 US7430705B2 (en) 2003-01-30 2005-01-24 Data recording and reproducing system, and data recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/000920 WO2004068491A1 (ja) 2003-01-30 2003-01-30 データ記録再生システム及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/039,939 Continuation US7430705B2 (en) 2003-01-30 2005-01-24 Data recording and reproducing system, and data recording and reproducing method

Publications (1)

Publication Number Publication Date
WO2004068491A1 true WO2004068491A1 (ja) 2004-08-12

Family

ID=32800827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000920 WO2004068491A1 (ja) 2003-01-30 2003-01-30 データ記録再生システム及び方法

Country Status (4)

Country Link
US (1) US7430705B2 (ja)
JP (1) JP4011583B2 (ja)
AU (1) AU2003211904A1 (ja)
WO (1) WO2004068491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522735A (ja) * 2010-03-12 2013-06-13 エルエスアイ コーポレーション フラッシュメモリ用のldpc消失復号化

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321394B2 (ja) * 2004-07-21 2009-08-26 富士通株式会社 符号化装置、復号装置
KR101351140B1 (ko) * 2005-11-22 2014-01-15 조지아 테크 리서치 코오포레이션 통신 시스템에서 신호 송수신 장치 및 방법
US7685494B1 (en) * 2006-05-08 2010-03-23 Marvell International, Ltd. Error correction coding for varying signal-to-noise ratio channels
US8122314B1 (en) 2006-11-08 2012-02-21 Marvell International Ltd. Defect recovery for iteratively-decoded data channel
US7885028B2 (en) * 2008-04-08 2011-02-08 Samsung Electronics Co., Ltd. Data error recovery using voting on multiple retrials
US9069687B2 (en) * 2010-01-29 2015-06-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Memory read-channel with selective transmission of error correction data
US10970363B2 (en) * 2017-10-17 2021-04-06 Microsoft Technology Licensing, Llc Machine-learning optimization of data reading and writing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165260A (ja) * 1998-11-27 2000-06-16 Yrp Ido Tsushin Kiban Gijutsu Kenkyusho:Kk 復号装置
JP2001230677A (ja) * 2000-02-16 2001-08-24 Kawasaki Steel Corp ターボ復号器
JP2002009635A (ja) * 2000-04-06 2002-01-11 Lucent Technol Inc ソースデコーダにおいて、エラー低減および/または隠蔽するためのチャネルエラーフラグを生成する方法および装置
JP2003006993A (ja) * 2001-06-25 2003-01-10 Fujitsu Ltd データ再生装置及びデータ記録再生装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029264A (en) * 1997-04-28 2000-02-22 The Trustees Of Princeton University System and method for error correcting a received data stream in a concatenated system
JP2000134114A (ja) 1998-10-27 2000-05-12 Hitachi Ltd 軟判定ml復号器、誤り訂正回路及びそれを用いたディジタル磁気記録再生装置
KR100321978B1 (ko) * 1998-12-31 2002-07-02 윤종용 통신시스템에서반복복호장치및방법
US6795507B1 (en) * 1999-09-30 2004-09-21 Skyworks Solutions, Inc. Method and apparatus for turbo decoding of trellis coded modulated signal transmissions
US6829305B2 (en) * 1999-12-08 2004-12-07 Lg Electronics Inc. Concatenated convolutional encoder and decoder of mobile communication system
EP1170870A4 (en) 2000-02-15 2006-08-02 Jfe Steel Corp turbo decoder
JP2001274698A (ja) * 2000-03-24 2001-10-05 Sony Corp 符号化装置、符号化方法及び符号化プログラムが記録された記録媒体、並びに、復号装置、復号方法及び復号プログラムが記録された記録媒体
JP2001285375A (ja) * 2000-03-30 2001-10-12 Sony Corp 符号化装置、符号化方法及び符号化プログラムが記録された記録媒体、並びに、復号装置、復号方法及び復号プログラムが記録された記録媒体
US6965652B1 (en) * 2000-06-28 2005-11-15 Marvell International Ltd. Address generator for LDPC encoder and decoder and method thereof
US7000177B1 (en) * 2000-06-28 2006-02-14 Marvell International Ltd. Parity check matrix and method of forming thereof
JP3823731B2 (ja) 2001-01-17 2006-09-20 株式会社日立製作所 誤り訂正復号器
US6950975B2 (en) * 2001-08-03 2005-09-27 Combasis Technology, Inc. Acceleration of convergence rate with verified bits in turbo decoding
JP2003223764A (ja) * 2002-01-24 2003-08-08 Fujitsu Ltd データ再生装置
JP4044774B2 (ja) * 2002-03-13 2008-02-06 富士通株式会社 データ記録装置及びデータ再生装置
JP3887255B2 (ja) * 2002-03-25 2007-02-28 富士通株式会社 反復復号を用いたデータ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165260A (ja) * 1998-11-27 2000-06-16 Yrp Ido Tsushin Kiban Gijutsu Kenkyusho:Kk 復号装置
JP2001230677A (ja) * 2000-02-16 2001-08-24 Kawasaki Steel Corp ターボ復号器
JP2002009635A (ja) * 2000-04-06 2002-01-11 Lucent Technol Inc ソースデコーダにおいて、エラー低減および/または隠蔽するためのチャネルエラーフラグを生成する方法および装置
JP2003006993A (ja) * 2001-06-25 2003-01-10 Fujitsu Ltd データ再生装置及びデータ記録再生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522735A (ja) * 2010-03-12 2013-06-13 エルエスアイ コーポレーション フラッシュメモリ用のldpc消失復号化

Also Published As

Publication number Publication date
US20050149826A1 (en) 2005-07-07
JPWO2004068491A1 (ja) 2006-05-25
US7430705B2 (en) 2008-09-30
AU2003211904A1 (en) 2004-08-23
JP4011583B2 (ja) 2007-11-21

Similar Documents

Publication Publication Date Title
KR101337736B1 (ko) 에러 정정 성능 조정 시스템, 디스크 드라이브 테스트 방법 및 디스크 드라이브 테스트 시스템
KR20070025145A (ko) 소프트 복호화 방법 및 장치, 에러 정정 방법 및 장치,소프트 출력 방법 및 장치
US8341506B2 (en) Techniques for correcting errors using iterative decoding
US7414941B2 (en) Data recording device and data reproducing device
JP2005166089A (ja) ディスク記憶装置、データ再生装置及びデータ再生方法
US7430705B2 (en) Data recording and reproducing system, and data recording and reproducing method
JP4102859B2 (ja) 記録システムのためのデータ符号化/復号化方法及び装置
US7287211B2 (en) Data readout device and data readout method
JP2003006993A (ja) データ再生装置及びデータ記録再生装置
US7240276B2 (en) Method and apparatus for turbo coding and decoding in a disk drive
US20030101410A1 (en) Method and apparatus for detecting and correcting errors in a magnetic recording channel of a mass storage system
US20080115038A1 (en) Dynamic early termination of iterative decoding for turbo equalization
JP4015906B2 (ja) バーストエラーの置換手段を有する記録再生装置及び、バーストエラーを置換する方法
JP2003223764A (ja) データ再生装置
JP4006446B2 (ja) データ記録再生システム
JP4224818B2 (ja) 符号化方法及び符号化装置並びに復号方法及び復号装置
JP4071771B2 (ja) データ記録再生装置及び方法
JP2001189059A (ja) 記録再生装置
JP2008108337A (ja) 復号装置および方法
JP2003228923A (ja) ディスク記憶装置及びデータ記録再生方法
JP2005108332A (ja) 反復復号を用いたデータ再生装置及び方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004567539

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11039939

Country of ref document: US

122 Ep: pct application non-entry in european phase