WO2004068155A1 - プローブ装置及びそれを用いたディスプレイ基板の試験装置 - Google Patents

プローブ装置及びそれを用いたディスプレイ基板の試験装置 Download PDF

Info

Publication number
WO2004068155A1
WO2004068155A1 PCT/JP2004/000631 JP2004000631W WO2004068155A1 WO 2004068155 A1 WO2004068155 A1 WO 2004068155A1 JP 2004000631 W JP2004000631 W JP 2004000631W WO 2004068155 A1 WO2004068155 A1 WO 2004068155A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
test
electrode
drive circuit
probe
Prior art date
Application number
PCT/JP2004/000631
Other languages
English (en)
French (fr)
Inventor
Toshiaki Ueno
Norihide Yamada
Original Assignee
Agilent Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies, Inc. filed Critical Agilent Technologies, Inc.
Priority to US10/540,646 priority Critical patent/US7151384B2/en
Publication of WO2004068155A1 publication Critical patent/WO2004068155A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card

Definitions

  • the present invention relates to an electrical characteristic test in a production stage of a liquid crystal display or an organic EL display panel, and in particular, a probe device suitable for an electrical test of a thin film transistor (hereinafter referred to as a TFT) array and a display substrate using the same.
  • TFT thin film transistor
  • liquid crystal displays In liquid crystal displays, the pursuit of higher pixel count and larger screens is being pursued, and in order to realize the high image quality required in recent years, the active matrix method using TFT (Thin Film Transistor) has become mainstream ing.
  • TFT Thin Film Transistor
  • self-luminous organic EL also referred to as OLED [Organic Light Emitting Diode]
  • OLED Organic Light Emitting Diode
  • the stage at which the TFT array is formed on a glass substrate that is, whether the completed TFT array operates electrically before the encapsulation of liquid crystals or the organic EL coating step. It is very important to electrically test the so-called TP array test to improve the yield of the final product in display production. If an electrical failure is found in the TFT circuit that drives a specific pixel at the TFT array test stage, the defect is corrected if the failure can be recovered based on the information on the TFT array test. Treatment will be applied. In addition, if there are many defective parts and it is judged that they are defective in shipping inspection after display assembly in advance, the subsequent processes can be stopped.
  • the TFT array is formed on the glass substrate by the number according to the number of pixels of the display, and normally, a plurality of TFTs are used to form a drive circuit for one pixel.
  • amorphous silicon or low temperature polysilicon for forming a TFT array.
  • Figure 13 shows an example of a typical TFT drive circuit for one pixel in the mainstream liquid crystal display.
  • 250 indicates a data line
  • 25 1 indicates a gate line
  • 25 2 indicates a common line
  • 25 3 indicates a liquid crystal
  • 25 4 indicates a transparent electrode using 1 0 (indium tin oxide).
  • a drive circuit as shown in FIG. 13 formed in a two-dimensional manner on a glass substrate by the number of pixels is called a TFT array. Since the actual TFT array test for liquid crystal is generally performed before the liquid crystal 2 53 is sealed, in FIG. 13, the electrical test of the drive circuit is performed without the liquid crystal 2 5 3.
  • the exposed ITO electrodes 24 are two-dimensionally arranged by the number of pixels.
  • a test method of such a drive circuit it is common to electrically switch the TFT and measure and judge whether or not a normal potential is generated on the surface of the ITO electrode 24.
  • the selected TFT Tr can be set to the on state. At this time, if the same voltage as the voltage applied to the data line is generated in the ITO electrode 24, it can be determined that the TFT Tr is normal.
  • an electromagnetic wave source is disposed on the back of the inspection electrode so that an electromagnetic wave such as X-ray generated by the electromagnetic wave source is transmitted through the inspection electrode, and the electromagnetic wave is transmitted by the electromagnetic wave.
  • an electromagnetic wave such as X-ray generated by the electromagnetic wave source is transmitted through the inspection electrode, and the electromagnetic wave is transmitted by the electromagnetic wave.
  • an object of the present invention is to provide a test apparatus for testing the electrical characteristics of a light emitting diode array formed on a display substrate, in particular, the current driving capability of a current driven TFT array such as an organic EL. It is an object of the present invention to provide a probe means capable of performing measurement without physically contacting the ITO surface prior to the coating step. Another object of the present invention is to provide a test apparatus for a display substrate using such a probe means. Disclosure of the invention
  • the probe apparatus comprises a glass display substrate on which a TFT array to be tested is formed, a current injection electrode for injecting a test signal into plasma installed away from the glass display substrate, and a test A plasma generation means for filling the space between the ITO electrode connected to the circuit and the current injection electrode with a plasma, a current injection electrode, and It consists of an array test power supply for applying a voltage between the TF array and a current in the plasma, and a TFT array controller for generating a signal for electrically turning on and off the TFT array sequentially. Be done.
  • the plasma is in a state in which the substance is ionized into negative and positive ions by the energy supplied by high frequency or discharge. It is also electrically neutral and is conductive because it causes the movement of ions by the applied electric field. Therefore, it can be used as a conductive medium, and when an electric field is applied between the ITO filled with the plasma and the current injection electrode, a current can be caused to flow through the plasma by ion conduction.
  • plasma By using plasma as a conductive medium in this way, it is possible to provide a means by which the current drive capability of the TFT array can be tested without physically contacting the ITO surface.
  • the surface of the ITO electrode is exposed to the plasma, and at one end of the plasma, a current injection electrode for passing a test current into the plasma is similarly exposed to the plasma.
  • the plasma generating means for generating the conductive medium and the plasma has a plasma density to obtain the conductivity necessary for the test.
  • a current of about 1 ⁇ A to about 10 A, preferably about several ⁇ A to about 10 A is required.
  • a plasma with high electron temperature is required.
  • the data line and the gate line are controlled from the outside to the ITO electrode connected to the drain of the test target TFT using the TFT control device, and the TFT is set to the on state.
  • a voltage is applied between the drive line commonly connected to the source of the TFT and the current injection electrode, a current Ip flows between the current injection electrode and the ITO electrode through the plasma.
  • the driving circuit in contact with the plasma is sequentially turned on and the current flowing in the plasma is measured, all the electrical characteristics of the TFT array on the display can be tested.
  • the current Ip flowing in the plasma current is set to the maximum drive current of the organic EL, the current drive capability of all the TFTs on the panel is tested in advance before actually applying the organic EL to the ITO electrode surface. it can. If the desired current does not flow in the TFT even if it is set to the maximum drive current possessed by the drive circuit, a defect in TF occurs, or if the current does not flow in the plasma despite setting the TFT to be tested on. There is a suspicion that there is a short circuit defect in the TFT under test or a break in the wiring. If the plasma current does not match the current flowing through the TFT, current leakage on the gate line side of the TFT is suspected.
  • the probe apparatus of the present invention By using the probe apparatus of the present invention and the display substrate test apparatus using the same, it is possible to provide a test means which does not damage the surface of ⁇ as compared with a physical contact probe using a needle or the like. Furthermore, by simultaneously irradiating a plurality of TFT arrays with plasma simultaneously, it is possible to test at high speed only by electrical switching from outside of the TFT completed array by the TFT completed array control device. In addition, since mechanical alignment of the probe, which is essential when using a physical contact probe to the ITO electrode, is not necessary, it is possible to test all the TFT array in a short time. Today, high-density plasma generation methods are widely used for thin film formation, etching, etc. in silicon LSI processes, and do not react chemically with ITO electrodes by selecting the plasma generation conditions and gas types. It is possible to generate a plasma. In order to prevent damage to the ITO surface, it is preferable to use a glow discharge plasma.
  • the present invention generates a plasma of relatively high density between an electrode or wiring connected to a circuit under test and a test electrode, and between the electrode or wiring and the test electrode via the plasma.
  • the present invention provides a probe apparatus configured to transmit a test signal to be able to test the circuit under test without making contact with the electrode or wiring.
  • the circuit under test is an electronic circuit including a plurality of thin film transistors formed on a substrate.
  • the substrate is a display substrate
  • the circuit under test and the electrode or wiring constitute a drive circuit for driving one pixel of the display
  • the drive circuit is a two-dimensional array on the substrate.
  • the plasma is generated so as to be continuous across multiple units of the drive circuit.
  • the electrical characteristics of the predetermined drive circuit are tested by turning on only the predetermined drive circuit to be tested and testing and supplying the test signal to the predetermined drive circuit.
  • a control electrode is provided between the test electrode and the electrode or wiring, and the passing level of the test signal transmitted through the plasma is controlled by controlling the potential applied to the control electrode. Control.
  • the test electrode and two bias power supplies independently connected to each of the circuits under test are provided, and the electric field in the vicinity of the interface between the plasma and each of the test electrode and the electrode or wiring is selected. Configure to be controlled by one or both power supplies.
  • the plasma is generated by being separated on the substrate corresponding to the position of each unit of the drive circuit, and the test electrode is provided at each separated position, and the drive circuit is provided at each position.
  • the electrical characteristics of the drive circuit are tested by introducing the test signal.
  • the plasma processing apparatus further includes: a plasma generation source generating the plasma; and a chamber structure configured to release at least the electrode or the wiring of the drive circuit while confining the plasma.
  • the apparatus further comprises either means for evacuating the plasma or air curtain means at a position along the outer periphery of the chamber structure.
  • the plasma has a plasma density capable of setting the current flowing through the circuit under test to approximately 1 A to 10 ⁇ A.
  • the plasma is chemically inert to the electrode or wiring.
  • the plasma contains at least a component ionizing oxygen.
  • a probe apparatus as described above, a signal generation source for generating a test signal provided to the test electrode, the test signal, the plasma and the electrode or each of the drive circuits on the substrate. And a signal comparator for comparing the output signal output from the drive circuit when the test signal flows in through the wiring.
  • the test apparatus for a display substrate is an electronic circuit to be tested on a probe apparatus
  • a Y moving means is provided for moving in the horizontal two-dimensional direction along the display substrate surface.
  • FIG. 1 is a schematic diagram for explaining a first embodiment of the present invention.
  • FIG. 2 is a mounting diagram of a drive circuit using a TFT.
  • FIG. 3 is a diagram for explaining an example in which the drive circuit for one pixel shown in FIG. 2 is tested using the probe apparatus shown in FIG.
  • FIG. 4 is a diagram for explaining the plasma density, the electron temperature, the ITO surface area, and the current Ip flowing in the plasma.
  • FIG. 5 is a diagram for explaining voltage-current characteristics of current flowing in plasma.
  • FIG. 6 is a diagram for explaining the relationship between pressure and electron temperature in a typical glow discharge plasma.
  • FIG. 7 is a schematic diagram for explaining a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram for explaining a third embodiment of the present invention.
  • FIG. 9 is a view for explaining a structure for confining the plasma inside the probe head.
  • FIG. 10 is a view for explaining a block diagram of a TFT array electrical characteristic test apparatus using the probe device of the present invention.
  • FIG. 11 is a diagram for explaining the operation procedure of a TFT array electrical characteristics test device.
  • FIG. 12 is a diagram for explaining the operation on the TFT array panel of the probe head.
  • FIG. 13 is a diagram for explaining a TFT array for driving a liquid crystal and a test method thereof.
  • FIG. 1 is a schematic diagram for explaining a first embodiment of the present invention, and shows the basic structure of a display substrate test apparatus 10 using a probe device 5 according to the present invention.
  • 7 is a plasma
  • 11 is a glass display substrate (hereinafter simply referred to as a display substrate)
  • 12 is a TFT
  • 13 is an ITO electrode
  • 14 is a drive line
  • 16 is a current injection electrode. It shows.
  • a transparent ITO electrode (tin oxide) electrode 13 is formed on the surface of the display substrate 11.
  • the display substrate 11 has a drive circuit corresponding to a pixel, and the above-mentioned ITO electrode 13 is provided corresponding to each drive circuit.
  • drive circuits are two-dimensionally arranged on the display substrate 11 to form a pixel, and the above-mentioned ITO electrode 13 and the TFT 12 connected thereto are also two-dimensionally arranged.
  • This is called a TFT array.
  • FIG. 1 only a part of the TFT array is schematically shown. Further, although a drive circuit constituting one pixel usually includes two or more TFTs, FIG. 1 shows only the TFT 12 in the final stage for convenience.
  • the display substrate device 10 is to test the operation of the TFTs of each drive circuit in the display substrate 11.
  • the current does not contact the ITO electrodes 1'3 of the display substrate 11, and It provides a means of performing the injection.
  • a conductive plasma 7 is formed between the current injection electrode 16 and the ITO electrode 13.
  • the plasma generation means is not shown in FIG. 1, at least appropriate pressure reduction means, gas injection means and electrode means are disposed in the vicinity of the display substrate 1 1 for plasma generation.
  • the plasma 7 is generated, the surface of the ITO electrode 13 on the display substrate 11 is substantially in contact with the plasma 7, and the current injection electrode 16 substantially contacts the plasma 7 at the position facing the display substrate 11. I am in touch.
  • FIG. 2 is a schematic plan view showing a drive circuit equivalent to one pixel of a TFT array on a display substrate used particularly for an organic EL display.
  • the circuits for one pixel shown are arrayed in a two-dimensional array on the surface of the display substrate 11 (see FIG. 1).
  • reference numeral 12 denotes a TFT
  • 13 denotes an ITO electrode
  • 14 denotes a drive line
  • 15 denotes a data line
  • 17 denotes a gate line
  • 18 denotes a TFT
  • 19 denotes a capacitance Cs.
  • the gate lines, drive lines, TFTs, etc. excluding the ITO electrode 13 are covered with an insulator film, even if exposed to the plasma during the test, they are electrically shorted to each other due to the conductivity of the plasma. Will not cause malfunction.
  • FIG. 3 is an illustration of a test of the drive circuit for one pixel shown in FIG. 2 using the probe apparatus shown in FIG.
  • a gate line drive circuit 21, a data line drive circuit 22 and a test power supply 23 are newly added.
  • the gate line drive circuit 2 1, the data line drive circuit 2 2 and the test power supply 23 are provided in a test apparatus 10 using the probe device 5.
  • voltage VI is applied from data line drive circuit 22 to data line 15
  • the on-state is obtained by applying voltage V 2 from gate line drive circuit 31 to TFT transistor rl to be tested via gate line 17.
  • the transistor Tr2 can be set to the on state.
  • a voltage Vp is applied to the drive line 14 by the test power supply 23, a closed circuit is formed via the plasma 7, the ITO electrode 13, and the current injection electrode 16.
  • the current Ip flowing through the plasma matches the current lb flowing to Tr2 via drive line 14. If Ip does not coincide with lb, there may be a defect such as a leak of the gate of r2, a leak of ITO and each control line. Be If Ip does not flow at all, a short circuit failure may occur.
  • the drive current required to drive each organic EL is about several microamperes to about 10 microamperes, so the lb flowing through r2 has a corresponding current that is normal. You should check that it flows.
  • the electrical characteristics of all the TFT arrays on the display panel can be tested by sequentially switching the data line 15 and the gate line 17 by measuring the same procedure as above.
  • reference numeral 34 indicates a current injection electrode using a parallel plate.
  • the surface area of the ITO electrode is S
  • the density of plasma 7 is Ne
  • the electron temperature in plasma 7 is Te.
  • the surface area of the current injection electrode 34 is much larger than the surface area of each ITO electrode 13, and the current Ip flowing through the plasma is determined by the current flowing through the surface area S of one ITO electrode 13. I assume. Also, in order to simplify the calculation, here, it is assumed to be a completely ionized plasma in which all atoms in the plasma 7 are ionized into electrons and positive ions.
  • Equation 2 the saturation current II indicating the intersection of the broken line is expressed by Equation 2.
  • ECR plasma source using cyclotron resonance maximum Ne; 18 l / m 3 , maximum electron temperature; 15 eV
  • ICP plasma using inductive coupling There are source sources (maximum Ne; 1 x lO pieces Zm 3 , maximum electron temperature: 1 O eV).
  • s is proportional to Te 3/2.
  • the relationship between the pressure and the electron temperature Te in a general glow discharge plasma shows the characteristics as shown in FIG. 6. Therefore, in order to obtain high conductivity, the pressure as low as the plasma can be generated (for example, 0.1. It is more desirable to generate at about Pa).
  • Table 1 shows a comparison of plasma generating gases required to obtain good conductivity.
  • a gas having a low ionization field in which atoms are easily ionized at low energy.
  • alkali metals such as sodium, potassium and cesium with low ionization field may be mixed with such gas.
  • elements with small mass are desirable in order to minimize damage in the case where accelerated positive ions collide with the electrode surface such as ITO.
  • a gas in which cations do not chemically bond with the ITO surface As an example, for acids such as ITO, oxygen having a relatively small ionizing electric field and mass without chemical bonding is suitable.
  • the present invention can provide means capable of realizing the characteristics of the drive circuit that requires current drive, such as organic EL, in particular, before the organic EL application process, it occurs due to a defect in the TFT array after display assembly. Product defects can be found in advance. In addition, it becomes possible to easily obtain the information necessary for repairing the defective portion, and the defect rate of the TFT array can be remarkably reduced.
  • FIG. 7 is a schematic diagram for explaining a second embodiment of the present invention.
  • reference numeral 55 is a current control electrode
  • 56 is an anode
  • 57 is a probe head
  • 58 is a magnet
  • 59 is a gas flow
  • 51 is an anode bias
  • 52 is a TFT.
  • the power supply biases are shown respectively.
  • the example of FIG. 7 shows an ECR plasma source using cyclotron resonance
  • the magnet 58 is an electromagnet.
  • a microwave source for plasma excitation is also required, but is omitted in Figure 7.
  • the type of plasma source is not limited to the ECR plasma source as long as it satisfies the plasma density and the electron temperature shown in the first embodiment of the present invention.
  • the plasma 7 generated by the plasma source is filled in the inside of the probe head 57 and is substantially in contact with the surface of the display substrate 11.
  • the ITO surface is charged to a negative potential, and furthermore, the neutral state of the plasma near the ⁇ surface is broken and the cation is increased. become.
  • the region where the neutral state of the plasma collapses is usually called the ion sheath (sheath) because the ions increase in this way.
  • a positive electric field is generated inside the sheath with respect to the ITO surface charged to a negative potential. This electric field accelerates positive ions toward the ITO surface.
  • a current corresponding to the number of accelerated cations flows into the on-state TFT 12 through the plasma 7.
  • the acceleration field by the diode sheath is excessively large, it is possible that a current equal to or greater than the design allowable value may flow to the TFT 12 and the TFT 12 may be destroyed.
  • An anode bias 51 is connected to one power S, and a TFT power supply bias 52 is connected to a power supply voltage of the TFT array 1 2. Both bias voltages are set to conditions that allow normal operation without destruction of the TFT by reducing excess current due to the case electric field.
  • the current control electrode 55 controls the current required for the test.
  • the shape of the current control electrode 55 for this purpose is preferably, for example, a net shape or a grid shape.
  • the plasma density and the electron temperature required for the test of the TFT 12 are the same as the conditions shown in the first embodiment. Further, the test method of the TFT and the judgment standard of the non-defective product or the defect are also the same as in the first embodiment.
  • the second embodiment of the present invention it is possible to avoid excessive current injection to the TFT by the ion sheath generated on the surface of the ITO electrode, and appropriate current without destroying the TFT from the excess current. It becomes possible to control to the value.
  • FIG. 8 is a schematic view similar to FIG. 7 illustrating a third embodiment of the present invention.
  • reference numeral 62 is a signal switch
  • 63 is a plasma blowout hole
  • 64 is a current injection electrode.
  • the plasma source in FIG. 8 is equivalent to the second embodiment described in FIG.
  • the bottom of the probe head 67 is provided with a plasma blowout hole 63 from which the plasma inside the probe head 6 blows out on the surface of the ITO electrode 13 by the pressure of the gas 59. .
  • the center position of the plasma blowout hole 63 is aligned with the center position of each ITO electrode 13 and is arrayed in two dimensions in the same manner as the ITO electrode 13.
  • the plasma can be concentrated and irradiated only in the vicinity of the surface of the ITO electrode 13.
  • a current injection electrode 64 is disposed at the center of each plasma blowout hole 83, and a signal from the current injection electrode 64 is led to a signal switch 22.
  • the current injection electrode 84 can be placed close to the ITO electrode 13 to reduce the conductive resistance of the air gap passing through the plasma.
  • the density of the plasma blown out from the plasma blowout hole 63 is low at the outer periphery of the blowout hole, the conductive resistance between the current injection electrodes 84 can be increased.
  • the probe head 67 is positioned so that all the current injection electrodes 64 correspond to the center position of the ITO electrode 13.
  • the drive line 14 of the TFT in the on state is connected to the signal switch 62 via the power supply Vp, and selects the signal of the current injection electrode 64 in synchronization with this. Effects of anode bias 51, TFT power supply bias 52 and setting conditions The same applies to the second embodiment.
  • the third embodiment of the present invention it becomes possible to selectively detect the signal from the ITO electrode 13 of interest, and noise such as leakage current of the adjacent TFT is tested through the plasma. It does not conduct to the target TFT. Therefore, it is possible to provide a test means with high detection accuracy.
  • FIG. 9 is a schematic view showing a cross-sectional view of the periphery of the probe head 57.
  • the reference numeral 75 indicates a TFT array area formed on the display substrate 11
  • 7 6 indicates a circuit area
  • 7 indicates a pad area.
  • Reference numeral 78 is an exhaust flow path formed in the probe head 17
  • reference numeral 79 is a nitrogen gas flow path.
  • the exhaust channel 78 always exhausts the plasma 7 to the outside so that the plasma 7 does not leak from the gap with the display substrate 11.
  • nitrogen gas is blown from the nitrogen gas flow path 79 onto the surface of the display substrate 11 to confine the plasma lamp 7 inside the probe head 57.
  • the plasma 7 can be maintained at a high density only in the TFT array region 75, thereby providing a probe device which is not affected by the plasma in the pad region 77 and the circuit region 76.
  • the structure of this probe head is applicable to both the first and second embodiments of the present invention.
  • FIG. 10 shows a configuration diagram of a test apparatus of a TFT array using the probe device according to the first to third embodiments of the present invention described above.
  • reference numeral 130 is a probe head
  • 13 1 is a ⁇ , ⁇ stage
  • 132 is a vacuum vessel
  • 133 is a plasma monitor
  • 134 is a vacuum gauge
  • 135 is a 35
  • Correction bias controller 1 3 6 is load lock / plasma controller
  • 1 3 7 is stage / port position controller
  • 1 3 8 is array test pattern generator
  • 1 3 9 is array driver
  • 14 1 is a D / A converter
  • 14 2 is a voltage-to-current converter
  • 14 3 and 14 are a single pass filter
  • 14 4 and 14 are a matrix
  • 1 4 7 is a current-to-voltage converter
  • 14 8 is an A / D converter
  • 1 4 9 is a digital comparator.
  • Fig. 11 shows the operation procedure of the test device shown
  • the display substrate 1 to be tested is mounted on the ⁇ , ⁇ stage 1 31 It can move in two dimensions in the Y direction.
  • the plasma 7 generated from the probe head 130 can be moved to an arbitrary area.
  • the movement of the eyelid and eyelid stage and the up and down control of the probe head 130 are performed by a stage / probe position controller 137.
  • the outer periphery of the probe head 130 may be provided with an exhaust passage 78 and a nitrogen gas passage 79 for preventing the plasma described in FIG. 9 from leaking to the outside of the probe.
  • the inside of the apparatus is housed inside a vacuum vessel 132, and the plasma monitor 133 monitors the density and electron temperature of the plasma generated from the plasma source.
  • the vacuum gauge 134 monitors the degree of vacuum inside the vacuum vessel 132.
  • another vacuum vessel is added so that the vacuum can be maintained at all times without the need to return the inside of the vacuum vessel 1 2 3 to the atmospheric pressure (Fig. 10).
  • the load lock is provided between the vacuum vessels. After the substrate is introduced into the vacuum vessel 132, it is confirmed by the vacuum gauge 134 that the desired degree of vacuum has been reached, and then a gas is introduced into the probe head 130. Supply a high frequency to generate plasma.
  • the load lock / plasma controller 136 provides a series of controls for this.
  • the array test pattern generator 138 electrically selects the matrix sequentially via the data line and the gate line and sets it in the on state.
  • the signal of the array test pattern generator is converted to the logic level of the external interface of the display substrate 11 to be tested by the array readout 1 3 9.
  • the signals for array driver 1 3 9 are performed using physical contact to pad area 7 7 using, for example, a metal needle.
  • the correction bias controller 135 has functions of an anode bias 51 and a TFT power supply bias 52 shown in FIG. 7 and FIG. 8 in order to correct an excessive potential difference due to the ion sheath generated in the plasma. .
  • the plasma current controller 140 controls the test current injected into the plasma. From the plasma current controller 140, the digital control signal is converted to an analog voltage by the D / A converter 141, and then converted to current by the voltage-to-current converter 142 as required.
  • the low-pass filter 143 has the purpose of removing the high frequency power supplied to the plasma source so that it does not generate noise in the test signal by mixing in the test device side.
  • Matrix 14 4 selectively controls plasma current to any current injection electrode inside the probe head ⁇ 30 The purpose is to supply the test current generated from the unit 140 and has the function of the signal switch 62 in the second embodiment of the present invention.
  • the current of the TFT set to the on state by the array test pattern generator 138 is led to the current-to-voltage converter 147 via the matrix 14 5 and the low pass filter 146.
  • the purpose of the low pass filter 1 4 6 is similar to that of the low pass filter 1 4 3.
  • the current converted into a voltage by the current-voltage converter 1 4 7 is converted into a digital signal by the A / D converter 1 4 8 and then compared with the plasma current 1 4 0 input in the digital comparator 1 4 9 Be done. If the input current and the current detected through the plasma and TFT are located, it is determined that the TFT under test is operating well. In the case of non-coincidence, it is determined to be defective. By performing this series of judgment operations automatically for all the TFT arrays, it is possible to test the electrical characteristics of the TFT array at high speed.
  • FIG. 12 is a view of the glass display substrate 11 viewed from the top of the probe head 130 to explain the movement of the probe head 130 shown in FIG. If the display panel to be tested is large, as shown in Fig. 12, the test is performed by sequentially moving the position of the probe 130 relative to one another, and finally all the TFT arrays have been tested. Do.
  • the shape of the probe head 130 for this purpose is not limited to the square illustrated in FIG. 12. For example, it has a rectangle covering the TFT array area in the vertical direction of the figure, and from the left side to the right side of the figure. Even with a configuration that covers all the TFT array with one movement toward the head, the object of the present invention can be sufficiently achieved.
  • a plurality of probe heads 130 shown in FIG. 10 can be provided in order to support mass production testing of such a plurality of display panels. In this case, testing the displays in parallel can significantly reduce the test time.
  • the probe apparatus using the three embodiments of the present invention and the display substrate testing apparatus using the same are suitable for testing the electrical characteristics of a TFT array on a glass substrate.
  • the probe device using the present invention and the display substrate testing device using the same are not limited to the TFT array formed on the glass substrate, for example, resin It can also be applied to the testing of TFT arrays formed on a substrate or silicon substrate.
  • the probe device of the present invention is not limited to display substrate test applications, and can be widely applied to the characteristic test of other electronic circuits.
  • the source of the plasma is single but the source may be plural, and in particular, it may be possible to generate a predetermined number of plasmas corresponding to each drive circuit. it can. Again, the measurements for each drive circuit can be made independently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

被試験回路であるTFTアレイを含むディスプレイ基板(11)上の電極(13)と試験電極(16)との間に所定の密度を有するプラズマ(7)を生成し、このプラズマ(7)を介して電極(13)と試験電極(16)との間に試験信号を伝送させる。ディスプレイ基板(11)上に形成されたTFTアレイの電気的特性を非接触にして計測することのできるプローブ手段及び試験装置を提供する。

Description

明細 プロ一ブ装置及ぴそれを用いた 技術分野
本発明は、 液晶ディスプレイ或いは有機 ELディスプレイパネルの生産段階にお ける電気的特性試験に係り、 特に薄膜トランジスタ (以下に TFT と呼ぶ) アレイ の電気的試験に好適なプローブ装置及びそれを用いたディスプレイ基板試験装置 に関する。 背景技術
液晶ディスプレイにおいては、 高画素数化と大画面化が追求されており、 近年要 求される高い画像品質を実現するために、 TFT[Thin Film Transistor] を用いたァ クティブマトリクス方式が主流になっている。 また、 バックライトを必要とする液 晶ディスプレイに対して、 自己発光型の有機 EL (又は OLED[Organic Light Emitting Diode] ともいう。) は、 液晶ディスプレイにはない利点を有し、 近年急 ピッチに開発が進められている。
TFT方式の液晶ディスプレイ又は有機 ELディスプレイの生産において、 TFT ァレイをガラス基板上に形成した段階、 即ち液晶の封入あるいは有機 EL塗布工程 の前に、 完成した TFT アレイが電気的に動作するか否かを電気的に試験する、 い わゆる TP アレイテストを行うことは、 ディスプレイ生産における最終完成品の 歩留まりを向上する上で非常に重要である。 TFTアレイテストの段階で、 もしも特 定の画素を駆動する TFT回路に電気的不良が発見された場合には、 TFTアレイテ ストの情報に基づいて、 その不良が回復可能な場合には欠陥の修正処置が施される。 また、 不良個所が多く、 事前にディスプレイ組立後の出荷検査において不良と判断 される場合には、 以後の工程を停止できる。 即ち、 そのような不良製品について、 液晶方式の場合は、 カラーフィルタとの接着及び液晶封入工程、 有機 EL方式の場 合は、 有機 ELの塗布工程といったその後のコストのかかる工程を省略できるとい ぅメリツトがある。 TFTァレイはディスプレイの画素数に応じた数だけガラス基板上に形成され、通 常は複数個の TFTを用いて 1画素分の駆動回路を形成する。 近年、 TFTアレイの 形成にはアモルファスシリコンあるいは低温ポリシリコンを用いるのが一般的で ある。 主流である液晶ディスプレイにおける代表的な 1画素分の TFT駆動回路の 例を図 1 3に示す。 図において、 2 5 0はデータ線、 2 5 1はゲート線、 2 5 2は コモン線、 2 5 3は液晶、 2 5 4は1 0 (インジウム錫酸化物) を用いた透明電極 を示す。 通常、 図 1 3に示すような駆動回路が 2次元状に画素の数だけガラス基板 上に形成されたものを TFTアレイと呼んでいる。 実際の液晶用 TFTアレイテスト は液晶 2 5 3の封入前に行われるのが一般的であるため、 図 1 3においては液晶 2 5 3が無い状態で駆動回路の電気的試験が行われる。
即ち、 TFTアレイを形成した段階のガラス基板の表面には、 露出した ITO電極 2 5 4が画素の数だけ二次元的に配列されることになる。 この様な駆動回路の試験 方法としては、 TFTを電気的にスィツチングさせて、 正常な電位が ITO電極 2 5 4の表面に発生しているかどうかを計測して判断するのが一般的である。 電圧をデ ータ線 5 0に印加した状態で、試験対象となる駆動回路のゲート線 2 5 1に電圧を 印加することで、 選択した TFT Trをオン状態に設定できる。 この時に、 ITO電極 2 5 4にデータ線の印加電圧と同じ電圧が生じていれば TFT Trは正常であると判 断できる。
ITOの表面電位の測定方法としては、 ( 1 )一旦静電容量 Csに貯えられた電荷を 反対にデータ線を介して読み出す方法、 (2 ) 電子ビームを ITO表面に照射して、 表面電位に対応して発生する二次電子の量から電位を測定する方法、 (3 ) ポッケ ルス効果などの電気一光非線型効果を用いて光情報として間接的に電位を測定す る方法などが提案されている。
従来、図 1 3に示す液晶用駆動回路の例ではこの様に ITOの表面電位を測定する ことで駆動回路の良否判定を行うことが可能であった。 一方、 有機 ELディスプレ ィの場合には、 バックライトを必要としない自発光ディスプレイであるために、 各々の画素の輝度を制御可能とすべく、各素子の駆動電流の制御能力が必要となる。 このため、 TFTアレイテスタとしては、 有機 ELを塗布する前に ITO等からなる 電極表面から駆動回路の電流駆動能力を測定しなければならない。 従って、 従来用 いられてきた定電圧駆動回路の特性評価を対象とした液晶用 TFT は、 有機 ELディスプレイの評価には対応出来なかった。
上述の課題を解決するべく、 追加の検查用導電膜を利用する検査方法 (日本国特 許公開公報第 2 0 0 2— 1 0 8 2 4 3号参照)、及び TFTァレイの画素電極と対向 検出電極との間に電解液を充填させる検查方法(日本国特許公開公報第 2 0 0 2— 7 2 1 9 8号参照) 等が提案されている。 しかしながら、 前者によれば、 検査のた めに導電膜を作成し、 検查後にはこれを除去する必要があり、 追加の工程が必要に なるため不良発生の要因も増えることになるので、生産の歩留まり等を考慮した場 合に、 必ずしも好適とは言えない。 後者によれば、 TFTアレイを含む基板は、 必ず しも電解液に浸すべきでない部品も含まれるので、やはり不良発生の要因を形成し 得る。 従って、 このような 「ウエット」 プロセスは避けられることが好ましい。 更 に、 他の方法として、 検査電極の背面に電磁波源を配置して、 該電磁波源で発生し た X線等の電磁波が検査電極を透過するようにし、 この電磁波によつて透過検查電 極と画素電極との間の空気を電離して、検查電極と画素電極との間に電流が流れる ようにする方法が考えられている(日本国特許公開公報第 2 0 0 2 - 1 2 3 1 9 0 号参照)。 しかしながら、 かかる構成では、 回路の電気的な導通は検査できるとし ても、 T F T等の素子の動作を検查するに十分な電流密度を得ることはできない。 そこで、 本発明の目的は、 ディスプレイ基板上に形成された ΤΪ アレイの電気 的特性を試験するための試験装置にあって、 特に有機 EL等の電流駆動型 TFTァ レイの電流駆動能力を有機 ELの塗布工程の前に、 ITO表面に物理的に接触するこ となく計測を行うことのできるプローブ手段を提供することにある。 また、 本発明 の他の目的は、 かかるプローブ手段を用いたディスプレイ基板の試験装置を提供す ることにある。 発明の開示
本発明のプローブ装置は、 被試験対象の TFTァレイを形成したガラスディスプ レイ基板と、 ガラスディスプレイ基板から離れて設置されるプラズマ中に試験用信 号を注入するための電流注入電極と、被試験回路に接続される ITO電極と電流注入 電極との間の空間をブラズマで満たすためのブラズマ発生手段と、電流注入電極と TF アレイとの間に電圧を加えてプラズマ中に電流を流すためのアレイ試験用電 源と、 TFT アレイを電気的に順次オンオフ制御するための信号を発生するための TFTアレイ制御装置とによって構成される。
プラズマは高周波や放電によつて供給されたエネルギーによって、物質がマイナ スとプラスを帯びたイオンに電離した状態にある。 また電気的に中性でかつ、加え た電界によってイオンの移動を生ずることから導電性を有する。 このために導電媒 体として用いることが可能であり、プラズマで満たした ITOと電流注入電極との間 に電界を加えると、ィォン伝導によってプラズマを介して電流を流すことができる。 この様にプラズマを導電媒体として用いることによって、 ITO表面に物理的に接 触することなく TFTァレイの電流駆動能力を試験出来る手段を提供できる。 ITO 電極の表面はプラズマ中に曝されており、 プラズマの一方の端には試験用電流をプ ラズマ中に流すための電流注入電極が同様にプラズマに曝されている。導電媒体と なるブラズマを発生するためのブラズマ発生手段は、試験に必要な導電率をプラズ マに得るための、 プラズマ密度を有する。 TFT素子の検査のためには、 例えば、 略 1 μ A乃 1 0 A程度、 好ましくは数 μ A乃至 1 0 A程度の電流が要求される。 プラズマ中の電子を導電の主な担い手とする場合には、電子温度の高いプラズマが 必要である。 後述の実施形態に関連して、 図中には電流注入電極は針の形状にして 例示しているが、 形状はこれに限定されず、 例えば平行板でも得られる効果に変わ りはない。
試験対象 TFTのドレインに接続された ITO電極に、 TFT了レイ制御装置によつ て外部からデータ線とゲート線とを制御して、 TFTをオン状態に設定する。この時、 TFT のソースに共通に接続されるドライブ線と電流注入電極との間に電圧を加え ると、 プラズマを介して電流注入電極と ITO電極との間に電流 Ipが流れる。 この プラズマ中を流れる電流を計測することによって、 TFTの電流駆動能力を知ること が出来る。 同様にしてプラズマに接する駆動回路を順次オン状態にして、 プラズマ 中を流れる電流を計測すればディスプレイ上の TFTアレイの全ての電気的特性を 試験できる。 また、 プラズマ電流中を流れる電流 Ipを、 有機 ELの最大駆動電流 に設定すれば、実際に有機 ELを ITO電極表面に塗布する前に、事前にパネル上の 全ての TFTの電流駆動能力を試験できる。 駆動回路の持つ最大駆動電流に設定しても TFTに所望の電流が流れない場合に は TF の不良が、 また試験対象の TFTをオンに設定したにも係わらずプラズマ中 に電流が流れない場合は、 試験対象 TFTの短絡不良或いは配線の断線などが疑わ れる。 プラズマ電流と TFTを流れる電流が一致しない場合には、 TFTのゲートリ 一クゃドライプ線側での電流リークが疑われる。 この様にして TFTアレイの不良 診断が可能となり、 有機 EL塗布工程の前に通常行われる不良救済を行う場合の判 断基準を提供できる。 この為、 有機 ELディスプレイパネルの製造において最終組 立製品の不良の歩留まりを大きく向上できる。
本発明のプローブ装置とこれを用いたディスプレイ基板試験装置を用いること によって、針などを用いた物理的接触プローブと比較して、 ιτο表面に損傷を与え ない試験手段を提供できる。 更に、 プラズマを同時に複数の TFTアレイに照射す ることによって、 TFT了レイ制御装置による TFT了レイの外部からの電気的な切 り替えのみで高速に試験できる。 また、 ITO電極への物理的接触プローブを用いた 場合に必須となるプローブの機械的な位置合わせが不要となることから、 全ての TFTァレイの試験を短時間で行うことが出来る。今日、高密度のプラズマ発生手段 は、シリコン LSIプロセスにおいて薄膜成 S莫ゃエッチング等に広く用いられており、 プラズマの発生条件やガスの種類を選ぶことによって ITO 電極に対して化学的に 反応しないプラズマを発生することが可能である。 尚、 ITO表面に損傷を与えない ためには、 グロ一放電プラズマを使用することが好ましい。
即ち、 本発明は、 被試験回路に接続される電極又は配線と試験電極との間に比較 的高密度のプラズマを生成し、該プラズマを介して前記電極又は配線と前記試験電 極との間に試験信号を伝送させ、前記電極又は配線に対して非接触にして前記被試 験回路を試験できるよう構成されることを特徴とするプローブ装置を提供する。 好ましくは、 前記被試験回路は、 基板上に形成された複数の薄膜トランジスタを 含む電子回路とされる。
好ましくは、 前記基板は、 ディスプレイ用基板であり、 前記被試験回路及び前記 電極或いは配線は、 ディスプレイの 1画素を駆動するための駆動回路を構成し、 該 駆動回路は前記基板上に二次元ァレイを形成する。
好ましくは、前記駆動回路の複数単位に亘つて前記プラズマを連続するように生 成し、試験される所定の駆動回路のみをオン状態にして前記所定の駆動回路に前記 試験信号を流入させることにより、 前記所定の駆動回路の電気的特性を試験する。 好ましくは、 前記試験電極と、 前記電極又は配線との間に制御電極を設け、 該制 御電極に加える電位を制御することによって、前記プラズマを介して伝送される前 記試験信号の通過レベルを制御する。
好ましくは、 前記試験電極と、 前記被試験回路の各々に独立して接続される 2つ のバイァス電源を備え、前記プラズマと試験電極及び前記電極又は配線のそれぞれ との界面近傍の電界を前記バイァス電源の一方又は双方によって制御できるよう 構成する。
好ましくは、前記駆動回路の各単位の位置に対応して前記プラズマを前記基板上 で分離させて生成し、 且つ分離された位置毎に前記試験電極を設け、 それぞれの位 置で前記駆動回路に前記試験信号を流入させることにより、前記駆動回路の電気的 特性を試験する。
好ましくは、 更に、 前記プラズマを発生するプラズマ発生源と、 前記プラズマを 閉じ込めつつ少なくとも前記駆動回路の前記電極又は配線に対して解放する構成 のチャンバ構造とを有する。
好ましくは、 更に、 前記チャンバ構造の外周に沿う位置に、 前記プラズマを排気 する手段又はエアカーテン手段のいずれかを備える。
好ましくは、 前記プラズマは、 前記被試験回路に流れる電流を略 1 A乃至 1 0 μ Aとすることのできるプラズマ密度を有する。
好ましくは、 前記プラズマは、 前記電極又は配線に対して化学的に不活性とされ る。
好ましくは、 前記プラズマは、 少なくとも酸素を電離した成分を含む。
更に、 本発明は、 上述のプローブ装置と、 前記試験電極に提供される試験信号を 発生する信号発生源と、 前記試験信号と、 前記基板上の前記駆動回路の各々に前記 ブラズマ及び前記電極又は配線を介して前記試験信号が流入したときに前記駆動 回路から出力される出力信号とを比較する信号比較器とを備えることを特徴とす るディスプレイ基板の試験装置を提供する。
好ましくは、 ディスプレイ基板の試験装置は、 プローブ装置を試験対象電子回路 或いはディスプレイ基板表面に沿つて水平二次元方向に移動するための Y移動手 段を備える。
上述の構成、 或いは後述する実施形態からも理解されるように、 本発明は、 以下 のような効果を奏する。
( 1 ) プラズマを導電媒体として用いることで、 試験対象の TP アレイの表面に 物理的な接触をすることなく TFT アレイの電気的な特性を試験できることから、 ITO電極表面に物理的な損傷を与えないプローブ手段を提供できる。
( 2 ) プラズマを導伝する電流から TFT アレイの不良個所と不良モードを特定で きることから、 TFTアレイの欠陥救済に必要な試験情報を得ることができる。 ( 3 ) 電流駆動が必要な有機 EL用の TFTァレイの特性試験においては、 有機 EL の塗布工程の前に電流駆動特性を試験できる手段を提供できることから、電気的な 不良を TFT アレイパネルを組み立て前に発見できる。 このため量産工程における 不良歩留まりを大幅に向上できる。 (4 ) 複数のプローブヘッドを備えて、 同時並 列的に動作させることによって大型ガラス基板上に形成された複数枚の TFT ァレ ィパネルを短時間で試験できる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態を説明する概略図である。
図 2は、 TFTを用いた駆動回路の実装図である。
図 3は、 図 1に示したプローブ装置を用いて、 図 2に示した 1画素分の駆動回路 の試験を行う例を説明する図である。
図 4は、 プラズマ密度、 電子温度、 ITO表面積とプラズマ中を流れる電流 Ipを 説明する図である。
図 5は、 プラズマ中を流れる電流の電圧一電流特性を説明する図である。
図 6は、代表的なグロ一放電プラズマにおける圧力と電子温度の関係を説明する 図である。
図 7は、 本発明の第 2の実施形態を説明する概略図である。
図 8は、 本発明の第 3の実施形態を説明する概略図である。
図 9は、 プラズマをプローブへッドの内部に閉じ込め構造を説明する図である。 図 1 0は、 本発明のプローブ装置を用いた TFT アレイの電気的特性試験装置の ブロック図を説明する図である。
図 1 1は、 TFTァレイの電気的特性試験装置の動作手順を説明する図である。 図 1 2は、 プローブヘッドの TFTアレイパネル上の動作を説明する図である。 図 1 3は、 液晶駆動用 TFTァレイとその試験方法を説明する図である。 発明を実施するための最良の形態
以下に添付図面を参照して、本発明の好適実施形態となるプローブ装置及びそれ を用いたディスプレイ基板の試験装置につ!/、て詳細に説明する。
図 1は、 本発明の第 1の実施形態を説明する概略図であり、 本発明によるプロ一 ブ装置 5を用いたディスプレイ基板試験装置 1 0の基本構造が示される。 図中にお いて、 7はプラズマ、 1 1はガラスディスプレイ基板 (以下単にディスプレイ基板 ともいう。)、 1 2は TFT、 1 3は ITO電極、 1 4はドライブ線、 1 6は電流注入 電極を示している。 図示されるように、 ディスプレイ基板 1 1の表面には透明な ITOdndium Tin Oxide)電極 1 3が形成される。 通常、 ディスプレイ基板 1 1は、 画素に対応した駆動回路を有しており、上述の ITO電極 1 3は、各駆動回路に対応 して設けられる。 即ち、 ディスプレイ基板 1 1には、 駆動回路が二次元的に配列さ れて、 画素を構成しており、 上述の ITO電極 1 3及びそれに接続される TFT 1 2 も二次元的に配置され、 これを TFTアレイと呼んでいる。 図 1では、 その TFTァ レイの一部分のみが模式的に示される。また、一つの画素を構成する駆動回路には、 通常 2以上の TFTが含まれるが、 図 1では、 便宜上最終段の TFT 1 2のみが示さ れる。
本実施形態によるディスプレイ基板装置 1 0は、ディスプレイ基板 1 1における 各駆動回路の TFTの動作を試験すベく、 ディスプレイ基板 1 1の ITO電極 1' 3に 対して非接触にして駆動回路に電流注入を行う手段を提供するものである。本発明 では、電流注入電極 1 6と ITO電極 1 3との間に、導電性を有するプラズマ 7が形 成される。 図 1中には、 プラズマ生成手段は図示されないが、 プラズマ生成のため に、 少なくとも適当な減圧手段、 ガス注入手段、 電極手段がディスプレイ基板 1 1 近傍に配置される。 プラズマ 7を発生させたときには、ディスプレイ基板 1 1上の ITO電極 1 3の表 面はプラズマ 7に略接しており、ディスプレイ基板 1 1に対向した位置では電流注 入電極 1 6がプラズマ 7に略接している。この状態で所定の TFT 1 2をオン状態と し、 電流注入電極 1 6とドライブ線 1 4との間に電圧 Vpを加えた場合には、 ブラ ズマ中を電流 Ip が流れるので、 これを計測することによって駆動回路における TF 1 2の動作を確認することができる。従って、 TFTアレイを順番にオン状態に してそれぞれの電流 Ipを計測することで全ての TFTァレイの電気的特性を知るこ とができる。
図 2は、 特に、 有機 ELディスプレイに用いられるディスプレイ基板上の TFT アレイの 1画素分に相当する駆動回路を示す概略平面図である。 図示される 1画素 分の回路が、 ディスプレイ基板 1 1 (図 1参照) の表面に二次元にアレイ配列され ている。 図中の参照番号 1 2は TFT、 1 3は ITO電極、 1 4はドライブ線、 1 5 はデータ線、 1 7はゲート線、 1 8は TFT、 1 9は静電容量 Csをそれぞれ示して いる。 ITO電極 1 3を除いたゲート線、 ドライブ線、 TFT等は絶縁体膜で表面を覆 われているために、試験時にプラズマ中に曝されてもプラズマの導電性によって互 いに電気的に短絡して動作不良を起こすことはない。
図 3は、 図 1に示したプローブ装置を用いて、 図 2に示した 1画素分の駆動回路 の試験の例示である。 図においてゲート線駆動回路 2 1、 データ線駆動回路 2 2及 び試験用電源 2 3が新たに付加されている。 ゲート線駆動回路 2 1、 データ線駆動 回路 2 2及び試験用電源 2 3はプローブ装置 5を用いる試験装置 1 0に備えられ る。 データ線駆動回路 2 2からデータ線 1 5に電圧 VIを印加した状態で、 ゲート 線駆動回路 3 1から試験対象の TFT トランジスタ rlをゲート線 1 7を介して電 圧 V2を加えることによってオン状態とし、 これにより トランジスタ Tr2をオン状 態に設定できる。 この時、 試験用電源 2 3によって電圧 Vpをドライブ線 1 4に印 加すればプラズマ 7、 ITO電極 1 3、 電流注入電極 1 6を介して閉回路が形成され る。
Tv2が正常に動作している場合には、プラズマを介して流れる電流 Ipはドライブ 線 1 4を経由して Tr2に流れる電流 lbと一致する。 仮に Ipが lbに一致しない場 合には、 r2のゲートのリーク、 ITOと各々の制御線のリークなどの不良が考えら れる。 また I pが全く流れない場合には、 ¾2の短絡不良等が考えられる。 通常の 有機 ELディスプレイにおいては、 各々の有機 ELを駆動するために必要なドライ ブ電流は、数マイクロアンペアから 1 0マイクロアンペア程度であることから、 r2 を流れる lb はそれに対応した電流が正常に流れることを確認すれば良い。 上記と 同様の手順の測定をデータ線 1 5及ぴゲート線 1 7を順次切り替えて行うことに よって、 ディスプレイパネル上の全ての TFTァレイの電気的特性を試験できる。 次に本発明で使用されるプラズマの特性について図 4を用いて説明する。 図 4に おいて、参照番号 3 4は平行平板を用いた電流注入電極を示す。 ここで ITO電極の 表面積を S、 プラズマ 7の密度を Ne、 プラズマ 7中の電子温度を Teとする。 ここ で、電流注入電極 3 4の表面積は各々の ITO電極 1 3の表面積に比べて遥かに大き く、 プラズマ中を流れる電流 Ipは 1つの ITO電極 1 3の表面積 Sを流れる電流に よって決まるものとする。 また計算を簡単にするために、 ここでは、 プラズマ 7中 の全ての原子が電子と陽イオンに電離した状態にある完全電離プラズマとする。 こ の時、 電流注入電極 3 4とからプラズマ 7を介して ITO電極 1 3に流れる電流 Ip と、 両者の電極の間に加えた電圧 Vpとの関係は、 図 5の様な三つ折れ線で近似さ れ、 式 1に示される電流一電圧特性になる。
Ip = II tanh (e Vd / 2 k Te) (式 1 )
ここで、 kはボルツマン定数、 mは電子の質量、 eは電子の電荷である。 また、 折れ線の交点を示す飽和電流 IIは式 2で示される。
II = Ne e s (k Te / 2 p m) 1 / 2 (式 2 ) ここで、 代表的なグロ一放電プラズマの例を考えて、 電子温度 Te を 23,200K (= 2.2eV)、 ITO電極の表面積を S を 1 χ10 · 8 πι2 (= 100 ΙΟΟ μ πι)と する。 TFTに流れる最大電流 Tlを lOuAとすると、 折れ線の交点に相当する飽和 電圧 Vpは 8 Vとなる。 この様な電流一電圧特性を得るために必要となるプラズマ 密度は、 式 2から求められ 2.6 X 10 I6個 Ζηι3となる。
上記の検討から必要となるプラズマ密度 Ne = 2.6 X 10 ^個 Ζιη3、 電子温度 Te = 23,200K (= 2.2eV) のプラズマが必要になる。 この様なプラズマを発生する 手段としては、例えばサイクロトロン共鳴を用いた ECRプラズマ源(最大 Ne ; 1 lO 18 個/ m3、 最大電子温度; 1 5 eV)、 或いは誘導結合を用いた ICPプラズ マ源 (最大 Ne ; 1 x lO 個 Zm3 、 最大電子温度; 1 O eV) などが有る。 ま た、 式 1と式 2力、ら、 電子温度 Teとプラズマの導電率 sとの関係は、 sが Te 3/2 に比例する。 一般的なグロ一放電プラズマにおける圧力と電子温度 Te との関係は 図 6の様な特性を示すことから、 高い導電率を得るためには、 プラズマが発生でき る限り低い圧力 (例えば 0 . l Pa程度) で発生させる方が望ましい。
表 1は、 良好な導電率を得るために必要なプラズマ発生用ガスの比較を示してい る。 一般的に高いプラズマの導電率を得るためには、 低いエネルギーで原子が電離 され易い、 低い電離電界を有するガスが望ましい。 また、 その種のガスに電離電界 の低いナトリウム、 カリウム、 セシウム等のアルカリ金属を混ぜても良い。 更に、 ITO 等の電極表面に加速された陽イオンが衝突した場合の損傷を極力少なくする ために、質量の小さな元素が望ましい。更には、陽イオンが ITO表面と化学的に結 合しないガスが望ましい。一例としてではあるが、 ITOのような酸ィ匕物に対しては、 化学的な結合をせずに、力つ比較的小さな電離電界と質量を有する酸素が適してい る。
<表 1 >
Figure imgf000013_0001
以上、本発明の第 1の実施形態により、 TFTァレイの表面に物理的に接触するこ となく、 各々の TFT並びに駆動回路の電気的試験を行うことが出来る。 このため TFTアレイと ITO電極に物理的な損傷を与えずに試験が可能である。 また本実施 形態においては TFTァレイを広範にプラズマと接触させることが可能なことから、 プローブと各々の TFTアレイとの物理的な位置決めを必要としない。 このために TFTアレイ 1個あたりの試験時間は、 基本的にプラズマ中で TP が電気的にスィ ツチングし得る速度で決まることから、 高速の試験手段を提供できる。 本発明は、 特に有機 E L等の電流駆動が必要となる駆動回路の特性を、有機 E Lの塗布工程の 前に実現できる手段を提供できることから、 ディスプレイ組立後に TFT アレイの 不良が原因となって発生する製品不良を事前に発見できる。 また不良個所の修復に 必要な情報を容易に得ることが可能となり、 TFTァレイの不良率を著しく低減でき る効果がある。
図 7は、 本発明の第 2の実施形態を説明する概略図である。 図 7においては、 参 照番号 5 5は電流制御電極、 5 6はアノード、 5 7はプロープへッド、 5 8は磁石、 5 9はガスの流れ、 5 1はアノードバイアス、 5 2は TFT電源バイアスをそれぞ れ示している。 図 7の例では、 サイクロトロン共鳴を用いた ECRプラズマ源を例 示しており、 磁石 5 8は電磁石である。 またプラズマ励起のためのマイクロ波源も 必要とされるが、 図 7では省略される。 プラズマ源の種類としては、 本発明の第 1 の実施形態で示したプラズマ密度と電子温度を満足するものであれば ECRプラズ マ源に限定されない。 プラズマ源によって発生されたプラズマ 7はプローブへッド 5 7の内部に満たされた状態となり、 ディスプレイ基板 1 1の表面に略接する。 一般的にプラズマが ITO電極 1 3の表面に触れた場合には、 ITO表面が負の電 位に帯電して、更には ιτο表面近傍のプラズマの中性状態が崩れて陽イオンが増加 した状態になる。通常この様にィオンが増加してプラズマの中性状態が崩れた領域 をイオンシース (鞘) と呼ぶ。 陽イオンを含むイオンシースが発生した場合には、 負の電位に帯電した ITO表面に対しシース内部には正の電界が発生する。この電界 は ITO表面に向かって陽イオンを加速させる。即ち、加速された陽イオンの数に応 じた電流が、 プラズマ 7を介してオン状態の TFT 1 2に流入する。 この時に、 ィォ ンシースによる加速電界が過剰に大きな場合には TFT 1 2に設計許容値以上の電 流が流れて TFT 1 2が破壊される場合が有り得る。 また電源 Vpの電位の制御のみ では適正な電流値への設定が難しくなる。
図 7に示すように、イオンシースの発生による過剰な電界を補正するための手段 が設けられる。 アノード 5 6にはアノードバイアス 5 1力 S、 また TFT アレイ 1 2 の電源電圧には TFT電源バイアス 5 2が接続される。 両方のバイアス電圧は、 シ ース電界による過剰な電流を低減して、 TFTが破壊されることなく正常に動作でき る条件に設定する。 この様な最大電流条件に各々のバイアス電源を設定した後に、 電流制御電極 5 5によつて試験に必要な電流を制御する。 この目的のための電流制 御電極 5 5の形状としては、 例えば網状あるいは格子状が好適である。 本実施形態 においても TFT 1 2の試験に必要となるプラズマの密度と電子温度は、第 1の実施 形態で示した条件と同様である。 また、 TFTの試験方法及び、 良品または不良の判 断基準についても第 1の実施形態と同様である。
以上、本発明の第 2の実施形態を用いることによって、 ITO電極表面に発生する ィオンシースによる TFTへの過剰な電流注入を避けることが可能となり、 TFTを 過剰電流から破壊すること無く、 適切な電流値に制御することが可能となる。
図 8は、 本発明の第 3の実施形態を説明する図 7に類似の概略図である。 図 8に おいて、 参照番号 6 2は信号切替器、 6 3はプラズマ吹出し穴、 6 4は電流注入電 極である。図 8におけるプラズマ源は、図 7に記載の第 2の実施形態と同等である。 プローブへッド 6 7の底面には、 プラズマ吹出し穴 6 3が設けられており、 そこか らプローブへッド 6 7内部のプラズマがガス 5 9の圧力によって ITO 電極 1 3の 表面に吹出す。プラズマ吹出し穴 6 3の中心位置は各 ITO電極 1 3の中心位置に一 致しており、 ITO電極 1 3と同様に二次元にアレイ配列される。 これによつて ITO 電極 1 3の表面近傍のみにプラズマを集中して照射できる。 各々のプラズマ吹出し 穴 8 3の中心には電流注入電極 6 4が配置されており、 電流注入電極 6 4からの信 号は信号切替器 2 2に導かれる。電流注入電極 8 4は ITO電極 1 3に近接して設置 されこと力ゝら、 プラズマを通過する空隙の導電抵抗を低くできる。 一方、 吹出し穴 の外周ではプラズマ吹出し穴 6 3から吹出されたプラズマの密度が低いために、電 流注入電極 8 4の相互間の導電抵抗を高くできる。
プロープへッド 6 7は全ての電流注入電極 6 4が ITO 電極 1 3の中心位置に対 応する位置に位置決めされる。 オン状態にある TFT のドライブ線 1 4は電源 Vp を介して信号切替器 6 2に接続されており、 これと同期して電流注入電極 6 4の信 号を選択する。 アノードバイアス 5 1、 TFT電源バイアス 5 2の効果と設定条件に ついては、 第 2の実施形態と同様である。 本発明の第 3の実施形態を用いることに よって、 着目する ITO電極 1 3からの信号を選択的に検出することが可能となり、 隣接の TFTの漏れ電流などの雑音が、 プラズマを介して試験対象の TFTに伝導し ない。 このため、 検出精度の高い試験手段を提供できる。
図 9は、 プローブヘッド 5 7の周辺部の断面図を示す概略図である。 図 9におい て、 参照番号 7 5はディスプレイ基板 1 1上に形成された TFTアレイ領域、 7 6 は回路領域、 7 7はパッド領域を示す。 7 8はプローブへッド 1 7に形成された排 気流路、 7 9は窒素ガス流路である。 導電性を有するプラズマ 7がプローブヘッド 5 7の外周に漏れて回路領域 7 6ゃパッド領域 7 7に接触した場合には、パッド相 互間で電気的な短絡を生じて動作不良を引き起こしたり、或いは雑音の原因になり 得る。 このためプラズマ 7を極力プローブへッド 1 7から外部に漏らさない構造が 必要である。 図 9においては、 プラズマ 7がディスプレイ基板 1 1との隙間から漏 れない様に、 排気流路 7 8によって常にプラズマ 7を外部に排気する。 同時に、 窒 素ガス流路 7 9からは窒素ガスをディスプレイ基板 1 1の表面に吹き付けて、 ブラ ズマ 7をプローブヘッド 5 7の内部に閉じ込める。 これによつて、 TFTアレイ領域 7 5のみにプラズマ 7を高密度で維持できることから、パッド領域 7 7及び回路領 域 7 6においてプラズマの影響を受けないプローブ装置を提供できる。 このプロ一 ブへッドの構造は、 本発明の第 1と第 2の実施形態の双方に適用可能である。
図 1 0には、上述した本発明の第 1から第 3までの実施形態によるプローブ装置 を用いた TFT アレイの試験装置の構成図を示す。 図 1 0において、 参照番号 1 3 0はプローブへッド、 1 3 1は Χ,Υステージ、 1 3 2は真空容器、 1 3 3はプラズ マモニタ、 1 3 4は真空計、 1 3 5は補正バイアス制御器、 1 3 6はロードロック /プラズマ制御器、 1 3 7はステージ /プ口一ブ位置制御器、 1 3 8はアレイテスト パターン発生器、 1 3 9はアレイドライバ、 1 4 0はプラズマ電流制御、 1 4 1は D/A変換器、 1 4 2は電圧一電流変換器、 1 4 3及び 1 4 6は口一パスフィルタ、 1 4 4及び 1 4 5はマトリクス、 1 4 7は電流一電圧変換器、 1 4 8は A/D変換器、 1 4 9はディジタル比較器である。 図 1 1には、 図 1 0に示した試験装置の動作手 順を示している。
被試験対象のディスプレイ基板 1は Χ,Υステージ 1 3 1上に搭載されており、 Y方向に二次元に移動できる。 これによつてプローブヘッド 1 3 0から発生した プラズマ 7を任意の ΤΡΤァレイ領域に移動できる。 Χ,Υステージの移動及びプロ 一ブへッド 1 3 0の上下制御はステージ/プローブ位置制御器 1 3 7によって行う。 プローブへッド 1 3 0の外周には、 図 9に説明したプラズマをプローブの外部に漏 洩しないための排気流路 7 8及ぴ窒素ガス流路 7 9を備え得る。
プラズマを発生するために装置内部は真空容器 1 3 2の内部に収納されており、 プラズマモニタ 1 3 3によってプラズマ源から発生するプラズマの密度と電子温 度をモニタする。 真空計 1 3 4は、 真空容器 1 3 2内部の真空度をモニタする。 デ イスプレイ基板 1 1を真空容器 1 3 2から出し入れする際に、真空容器 1 3 2内部 をー且大気圧に戻す必要なく、 常に真空を維持できるように別の真空容器が併設 (図 1 0では省略) されており、 真空容器の間にはロードロックが設けられる。 デ イスプレイ基板が真空容器 1 3 2の内部に導入された後に、真空計 1 3 4によって 所望の真空度に到達したことを確認した後に、 ガスをプローブへッド 1 3 0の内部 に導入して、高周波を供給してプラズマを発生する。 ロードロック/プラズマ制御器 1 3 6はこのための一連の制御を行う。
アレイテストパターン発生器 1 3 8は、データ線とゲート線を介して電気的にマ トリタスを順次選択してオン状態に設定する。 アレイテストパターン発生器の信号 は、 アレイドライノ 1 3 9によって試験対象となるディスプレイ基板 1 1の外部ィ ンターフェースの論理レベルに変換される。 アレイ ドライバ 1 3 9の信号は、 例え ば金属針を用いたパッド領域 7 7への物理的な接触を用いて行う。補正バイアス制 御器 1 3 5は、 プラズマ中に発生したイオンシースによる過剰な電位差を補正する ために、 図 7及ぴ図 8に示したアノードバイアス 5 1及び TFT電源バイアス 5 2 の機能を有する。
プラズマ電流制御器 1 4 0は、 プラズマ中に注入する試験電流を制御する。 プラ ズマ電流制御器 1 4 0からディジタル制御信号は D/A変換器 1 4 1によってアナ ログ電圧に変換され、電圧一電流変換器 1 4 2によって必要に応じて電流に変換さ れる。 ローパスフィルタ 1 4 3はプラズマ源に供給する高周波が試験装置側に混入 して試験信号に雑音を発生させない様に除去する目的を有する。 マトリクス 1 4 4 はプローブへッド丄 3 0内部の任意の電流注入電極に選択的にプラズマ電流制御 器 1 4 0から発生した試験電流を供給する目的を持ち、本発明の第 2の実施形態に おける信号切替器 6 2の機能を有する。
アレイテストパターン発生器 1 3 8によって、 オン状態に設定された TFTの電 流はマトリタス 1 4 5とローパスフィルタ 1 4 6を介して電流一電圧変換器 1 4 7に導かれる。 ローパスフィルタ 1 4 6の目的は、 ローパスフィルタ 1 4 3と同様 である。電流—電圧変換器 1 4 7によって電圧に変換された電流は A/D変換器 1 4 8によってディジタル信号に変換された後に、ディジタル比較器 1 4 9において入 力したプラズマ電流 1 4 0と比較される。 入力電流とプラズマ並びに TFTを通じ で検出された電流が位置すれば、 試験対象の TFTは良好に動作しているものと判 定される。 不一致の場合には不良と判定される。 この様な一連の判定作業を、 全て の TFTァレイに対し全て自動的に行うことで、 TFTァレイの電気的な特性を高速 で試験できる。
図 1 2は、 図 1 0に示したプローブヘッド 1 3 0の動きを説明するために、 プロ 一プへッド 1 3 0の上面からガラスディスプレイ基板 1 1を見た図である。試験対 象のディスプレイパネルが大きな場合には、 図 1 2に示す様にプローブ 1 3 0の位 置を相対的に順次移動させて試験を行い、 最終的に全ての TFT アレイの試験を終 了する。 このためのプローブへッド 1 3 0の形状は、 図 1 2に例示した正方形に限 定されず、 例えば図の上下方向に TFT アレイ領域をカバーする長方形を有し、 図 の左側から右側に向かって 1回の移動で全ての TFTァレイをカバーする構成を有 しても、 十分に本発明の目的を遂げることができる。 また、 通常、 ディスプレイパ ネルの生産においては、大型のガラス基板上に複数枚のディスプレイを同時に形成 して、 組み立て後に切り離す場合が多い。 この様な複数のディスプレイパネルの量 産試験に対応するためには、 図 1 0に示すプローブへッド 1 3 0を複数備えること ができる。 この場合に、 同時並行してディスプレイの試験を行うことによって試験 時間を大幅に短縮できる。
以上、本発明の 3つの実施例を用いたプ口ーブ装置及ぴそれを用いたディスプレ ィ基板試験装置は、 ガラス基板上の TFT アレイの電気的特性試験に好適である。 また本発明を用いるプローブ装置及びそれを用いたディスプレイ基板試験装置は、 ガラス基板上に形成された TFT アレイのみに限定される物ではなく、 例えば樹脂 基板あるいはシリコン基板上に形成された TFT アレイの試験にも適用できる。 ま た、本発明のプロ一ブ装置はディスプレイ基板の試験用途に限定される物ではなく、 他の電子回路の特性試験に広く適用できることは言うまでもない。
' 上述した本発明の好適実施形態はあくまでも例示的なものであり、本発明を制限 するものではなく、 当業者によって様々な変形、 変更が可能である。 例えば、 上述 の好適実施形態では、 プラズマの発生源は単一とされるが、 発生源は複数であって も良く、 特に、 各駆動回路に対応して所定の数のプラズマを発生させることもでき る。 この場合も各駆動回路のための計測は独立して行われ得る。

Claims

請求の範囲
1 . 被試験回路に接続される電極又は配線と試験電極との間に比較的高密度のブラ ズマを生成し、該プラズマを介して前記電極又は配線と前記試験電極との間に試験 信号を伝送させ、前記電極又は配線に対して非接触にして前記被試験回路を試験で きるよう構成されることを特徴とするプローブ装置。
2 . 前記被試験回路は、 基板上に形成された複数の薄膜 含む電子回 路とされることを特徴とする請求項 1に記載のプローブ装置。
3 . 前記基板は、 ディスプレイ用基板であり、 前記被試験回路及び前記電極又は配 線は、 ディスプレイの 1画素を駆動するための駆動回路を構成し、 該駆動回路は前 記基板上に二次元ァレイを形成することを特徴とする請求項 2に記載のプローブ
4 . 前記駆動回路の複数単位に亘つて前記プラズマを連続するように生成し、 試験 される所定の駆動回路のみをオン状態にして前記所定の駆動回路に前記試験信号 を流入させることにより、前記所定の駆動回路の電気的特性を試験することを特徴 とする請求項 3に記載のプローブ装置。
5 . 前記試験電極と、 前記電極又は配線との間に制御電極を設け、 該制御電極に加 える電位を制御することによって、前記プラズマを介して伝送される前記試験信号 の通過レベルを制御することを特徴とする請求項 1に記載のプローブ装置。
6 . 前記試験電極と、 前記被試験回路の各々に独立して接続される
電源を備え、前記プラズマと試験電極及び前記電極又は配線のそれぞれとの界面近 傍の電界を前記バイァス電源の一方又は双方によって制御できるよう構成される ことを特 とする請求項 4に記載のプローブ装置。
7 . 前記駆動回路の各単位の位置に対応して前記プラズマを前記基板上で分離させ て生成し、 且つ分離された位置毎に前記試験電極を設け、 それぞれの位置で前記駆 動回路に前記試験信号を流入させることにより、前記駆動回路の電気的特性を試験 することを特 ί敷とする請求項 3に記載のプ口ーブ装置。
8 . 更に、 前記プラズマを発生するプラズマ発生源と、 前記プラズマを閉じ込めつ つ少なくとも前記駆動回路の前記電極又は配線に対して解放する構成のチャンバ 構造とを有することを特徴とする請求項 3に記載のプローブ装置。
9 . 更に、 前記チャンバ構造の外周に沿う位置に、 前記プラズマを排気する手段又 はエアカーテン手段のいずれかを備えることを特徴とする請求項 1に記載のプロ ーブ装置。
1 0 . 前記プラズマは、 前記被試験回路に流れる電流を略 1 μ Α乃至 1 0 Αとす ることのできるプラズマ密度を有することを特徴とする請求項 1に記載のプロ一 ブ装置。
1 1 . 前記プラズマは、 前記電極又は配線に対して化学的に不活性とされることを 特徴とする請求項 1に記載のプ口一ブ装置。
1 2 . 前記プラズマは、 少なくとも酸素を電離した成分を含むことを特徴とする請 求項 1に記載のプローブ装置。
1 3 . 請求項 1に記載のプローブ装置と、
前記試験電極に提供される試験信号を発生する信号発生源と、
前記試験信号と、前記基板上の前記駆動回路の各々に前記プラズマ及び前記電極 又は配線を介して前記試験信号が流入したときに前記駆動回路から出力される出 力信号とを比較する信号比較器とを備えることを特徴とするディスプレイ基板の
1 4 . プロープ装置を試験対象電子回路或いはディスプレイ基板表面に沿って水平 二次元方向に移動するための XY移動手段を備えたことを特徴とする請求項 1 3に 記載のディスプレイ基板の試験装置。
PCT/JP2004/000631 2003-01-27 2004-01-23 プローブ装置及びそれを用いたディスプレイ基板の試験装置 WO2004068155A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/540,646 US7151384B2 (en) 2003-01-27 2004-01-23 Probe device and display substrate testing apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-018042 2003-01-27
JP2003018042A JP2004264035A (ja) 2003-01-27 2003-01-27 プローブ装置及びそれを用いたディスプレイ基板の試験装置

Publications (1)

Publication Number Publication Date
WO2004068155A1 true WO2004068155A1 (ja) 2004-08-12

Family

ID=32820574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000631 WO2004068155A1 (ja) 2003-01-27 2004-01-23 プローブ装置及びそれを用いたディスプレイ基板の試験装置

Country Status (6)

Country Link
US (1) US7151384B2 (ja)
JP (1) JP2004264035A (ja)
KR (1) KR20050089095A (ja)
CN (1) CN1742210A (ja)
TW (1) TW200416637A (ja)
WO (1) WO2004068155A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791023B2 (ja) * 2004-11-08 2011-10-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Tftの検査装置および検査方法
US20060139041A1 (en) * 2004-12-23 2006-06-29 Nystrom Michael J System and method of testing and utilizing a fluid stream
JP2006194699A (ja) * 2005-01-12 2006-07-27 Tokyo Cathode Laboratory Co Ltd プロービング装置
JP2006194787A (ja) * 2005-01-14 2006-07-27 Oht Inc センサ、検査装置および検査方法
DE102006054777B4 (de) * 2006-11-17 2014-12-11 Siemens Aktiengesellschaft Verfahren zur Untersuchung der Funktion von in ein Substrat integrierten Bauelementen
JP5327551B2 (ja) * 2008-04-21 2013-10-30 オー・エイチ・ティー株式会社 回路検査装置及びその回路検査方法
KR101002429B1 (ko) * 2008-10-06 2010-12-21 주식회사 탑 엔지니어링 어레이 테스트 장치
CN101719352B (zh) * 2008-10-09 2012-07-25 北京京东方光电科技有限公司 液晶盒成盒后检测装置和方法
JP2010147204A (ja) * 2008-12-18 2010-07-01 Oht Inc プラズマを用いたスクリーニング装置及びそのスクリーニング方法
JP2010190603A (ja) * 2009-02-16 2010-09-02 Hioki Ee Corp プローブ、プローブユニットおよび測定装置
KR101278349B1 (ko) * 2009-11-12 2013-06-25 삼성전기주식회사 기판의 회로 검사장치 및 검사방법
CN102467863B (zh) * 2010-11-17 2014-09-03 北京京东方光电科技有限公司 Tft-lcd电学不良测试电路和测试方法
JP2014521932A (ja) 2011-07-15 2014-08-28 オーボテック リミテッド 電子ビーム誘導プラズマプローブを用いた電子装置の電気検査
WO2013134422A1 (en) * 2012-03-06 2013-09-12 Northwestern University Probe assembly and method for contactless electrical characterization of buried conducting layers
US8761941B2 (en) 2012-06-12 2014-06-24 Roche Diagnostics Operations, Inc. Method for displaying medical data by a medical device during display failure
KR102011873B1 (ko) * 2013-05-02 2019-10-22 삼성디스플레이 주식회사 유기 발광 표시 장치의 제조 방법
US9063146B2 (en) 2013-10-25 2015-06-23 Roche Diagnostics Operations, Inc. System and method for display type detection of a handheld medical device
CN103730384A (zh) * 2013-12-13 2014-04-16 深圳市华星光电技术有限公司 一种tft电性量测方法及装置
CN104317081A (zh) * 2014-11-17 2015-01-28 合肥京东方光电科技有限公司 一种点灯设备
CN109243343B (zh) * 2018-09-12 2024-04-05 江西兴泰科技股份有限公司 一种电子纸用tft玻璃基板检测方法及装置
CN112578307A (zh) * 2019-09-29 2021-03-30 成都辰显光电有限公司 发光器件测试装置、系统及测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022969A (ja) * 1987-12-21 1990-01-08 Siemens Ag 配線板の電気的機能試験装置の制御装置
JPH11174106A (ja) * 1997-12-12 1999-07-02 Ishikawajima Harima Heavy Ind Co Ltd 液晶駆動基板の検査装置及びその検査方法
WO2000024048A1 (en) * 1998-10-19 2000-04-27 Applied Materials, Inc. Method of etching patterned layers useful as masking during subsequent etching or for damascene structures
JP2001093871A (ja) * 1999-09-24 2001-04-06 Tadahiro Omi プラズマ加工装置、製造工程およびそのデバイス
JP2001272431A (ja) * 2000-02-02 2001-10-05 Delaware Capital Formation Inc 間隔が密なテスト部位のための走査式試験機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202623A (en) * 1992-02-26 1993-04-13 Digital Equipment Corporation Laser-activated plasma chamber for non-contact testing
US5908565A (en) * 1995-02-03 1999-06-01 Sharp Kabushiki Kaisha Line plasma vapor phase deposition apparatus and method
US6729922B2 (en) * 2000-06-05 2004-05-04 Semiconductor Energy Laboratory Co., Ltd. Device for inspecting element substrates and method of inspection using this device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022969A (ja) * 1987-12-21 1990-01-08 Siemens Ag 配線板の電気的機能試験装置の制御装置
JPH11174106A (ja) * 1997-12-12 1999-07-02 Ishikawajima Harima Heavy Ind Co Ltd 液晶駆動基板の検査装置及びその検査方法
WO2000024048A1 (en) * 1998-10-19 2000-04-27 Applied Materials, Inc. Method of etching patterned layers useful as masking during subsequent etching or for damascene structures
JP2001093871A (ja) * 1999-09-24 2001-04-06 Tadahiro Omi プラズマ加工装置、製造工程およびそのデバイス
JP2001272431A (ja) * 2000-02-02 2001-10-05 Delaware Capital Formation Inc 間隔が密なテスト部位のための走査式試験機

Also Published As

Publication number Publication date
JP2004264035A (ja) 2004-09-24
US7151384B2 (en) 2006-12-19
CN1742210A (zh) 2006-03-01
US20060087327A1 (en) 2006-04-27
KR20050089095A (ko) 2005-09-07
TW200416637A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
WO2004068155A1 (ja) プローブ装置及びそれを用いたディスプレイ基板の試験装置
KR100671640B1 (ko) 박막 트랜지스터 어레이 기판과 이를 이용한 표시장치와그의 제조방법
CN103649764B (zh) 非机械性接触信号测量装置及其信号测量方法
JP3563283B2 (ja) 基板検査用高速電子線計測装置及び基板検査方法
US7875880B2 (en) Light emitting display device having a dummy pixel and method for fabricating the same
KR101301517B1 (ko) 액정표시장치용 기판 검사장치 이를 사용하는 기판검사방법
US11264442B2 (en) Flat panel display including plurality of pads
US7012583B2 (en) Apparatus and method for testing pixels of flat panel display
TWI345751B (en) Control-device with improved test-properties
JP2011134489A (ja) 有機elディスプレイ基板の点灯検査設備及び点灯検査方法、有機elディスプレイ基板の欠陥検査修正装置及び欠陥検査修正方法並びに有機elディスプレイ製造システム及び製造方法。
KR20090126614A (ko) 유기 발광 표시 장치의 불량 화소를 수리하기 위한 시스템및 방법
JP2007183265A (ja) 表面電子放出素子アレイを利用したtft検査装置、及びその検査方法
KR101471391B1 (ko) 유기발광다이오드 표시장치 검사방법 및 검사장치
TWI240083B (en) Method of inspecting array substrate and array substrate inspecting apparatus
JP2004219706A (ja) 表示素子及び表示素子の駆動電圧検出方法
CN118038775B (zh) 发光二极管显示面板的检测方法和显示设备
KR102711893B1 (ko) 기판 상의 라인 결함을 식별하기 위한 방법, 및 기판 상의 라인 결함을 식별하기 위한 장치
KR100928925B1 (ko) 얼라인 마크를 포함하는 스위칭 소자 어레이 기판
KR100390183B1 (ko) Fpd 검사장치의 티칭방법
JP2009069643A (ja) アレイ基板の製造方法
JPH07151808A (ja) スイッチング素子を有したアクティブ基板の欠陥検査装置および欠陥検査方法
JP2004361235A (ja) Tftアレイ検査装置
KR20040001713A (ko) 액정표시패널의 패드구조 및 검사장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006087327

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540646

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057013745

Country of ref document: KR

Ref document number: 20048028514

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057013745

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10540646

Country of ref document: US