WO2004066401A2 - Solarkollektor - Google Patents

Solarkollektor Download PDF

Info

Publication number
WO2004066401A2
WO2004066401A2 PCT/EP2004/000564 EP2004000564W WO2004066401A2 WO 2004066401 A2 WO2004066401 A2 WO 2004066401A2 EP 2004000564 W EP2004000564 W EP 2004000564W WO 2004066401 A2 WO2004066401 A2 WO 2004066401A2
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
solar collector
shaped
collector according
ribs
Prior art date
Application number
PCT/EP2004/000564
Other languages
English (en)
French (fr)
Other versions
WO2004066401A3 (de
Inventor
Erwin Hölle
Klemens Jakob
Original Assignee
Carpe Diem Solar - Hölle & Jakob Gbr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carpe Diem Solar - Hölle & Jakob Gbr filed Critical Carpe Diem Solar - Hölle & Jakob Gbr
Priority to EP04704583A priority Critical patent/EP1586124A2/de
Priority to US10/542,609 priority patent/US20060150967A1/en
Publication of WO2004066401A2 publication Critical patent/WO2004066401A2/de
Publication of WO2004066401A3 publication Critical patent/WO2004066401A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention relates to a solar collector with the features of the preamble of claim 1.
  • the solar radiation is concentrated on a focal line by means of parabolically shaped mirrors, the mirror channel tracking the sun's movement in the longitudinal axis of the mirror.
  • These channel collectors have proven themselves for many years and are manufactured with different mirror support structures.
  • the collectors are up to 100 m long and have a width of just under 6 m and are driven by one or two motors.
  • very high wind forces act on the reflectors because they are exposed to the weather.
  • These wind forces place high demands on the stability of the supporting structure on every collector module.
  • this also applies to the twist or torsional rigidity of the reflector holding structure, since even with slight deformation, the concentrating reflection properties are severely impaired and thus reduce the efficiency of the system.
  • trusses In order to be able to offer sufficient resistance in the form of rigidity to these torsional forces, trusses are used, on which self-supporting, parabolic shaped mirrors are saddled and fastened. This decoupling of the support structure and preformed reflectors requires a very complex overall picture.
  • a solar collector is known from DE-A-198 01 078 in which the reflector is carried by a framework.
  • the truss is attached to a support tube that supports the torsional forces.
  • the truss itself does not contribute to torsional rigidity, which is why this structure is still susceptible to torsion.
  • a parabolic trough concentrator is known, which is also formed by a framework.
  • the Torsional rigidity is to be generated by cross struts between the individual support arms, such constructions are only suitable for short-design collectors, since the torsional rigidity is not optimal.
  • DE-A-199 52 276 discloses a parabolic trough collector in which the support arms are arranged pivotably about a central axis, the torsional rigidity here also resulting solely from the central axis, which is formed by a tube. The arms themselves make no contribution to torsional rigidity.
  • WO-A-02 103 256 also shows a parabolic solar collector which has a central tube and side arms attached to it. The side arms carry the reflector. Such a reflector is relatively rigid, but it has almost no torsional rigidity.
  • the invention is therefore based on the object of providing a solar collector which has a simple structure and is nevertheless torsionally rigid.
  • the shaped ribs are surrounded by an outer skin and in this way form one closed box, which has a very high torsional rigidity.
  • the shape ribs are shaped parabolic on their concave side, "they that the reflector material, the shape of the reflector, that is to impress the parabolic shape.
  • the reflector material therefore does not have rigid but may be designed resilient so it is not that more is needed to
  • the elastic reflector material can, for example, be delivered on a coil and cut to size on site, which means that the transport costs are significantly reduced and the reflector material is much cheaper than prefabricated parabolic reflectors.
  • the solar collector according to the invention therefore has the advantage that it has a very high torsional rigidity and that not only prefabricated parabolic reflectors can be attached to it, but that it can also be fitted with elastic reflector material, since the outer skin in the concave area of the shaped ribs is parabolic to the reflector material Groove shape.
  • the shaped rib has a sickle shape. Because of the sickle shape, the entire structure with the outer skin essentially has the shape of a wing, which is known, for example, from aircraft construction or shipbuilding, and which has a high degree of rigidity with regard to bending and torsion. In order to be able to give the shaped ribs the desired shape in a simple manner, they are produced by folding or corrugation, so that a concave side edge is created which is essentially parabolically shaped. The side edge opposite the parabolically shaped side edge can be part-circular.
  • the elastic reflector material is placed on this closed, torsionally rigid support box, which is formed by the shaped ribs and the outer skin, so that the reflector material takes on the parabolic shape.
  • a trapezoidal sheet is preferably placed on the outer skin lying on the parabolically shaped side edge, which has ribs running in the longitudinal direction of the trough-shaped reflector and on which the reflector material rests.
  • this has the advantage that the contact surface for the reflector material, which is formed by the ribs of the trapezoidal sheet, is free of interference, for example free of screw heads, rivet heads and the like, and the ribs form strip-shaped contact surfaces which run parallel to one another and which support the deformation of the reflector material.
  • This also easily compensates for materials that have different coefficients of thermal expansion, for example with a reflector material made of glass and an outer skin or supporting structure made of metal.
  • the ribs of the trapezoidal sheet form channels that can be closed at the front.
  • Channels closed in this way have the advantage that they can be evacuated.
  • the elastic reflector material is placed on the supporting surfaces of the ribs with the interposition of an adhesive layer, the channels between the ribs can be evacuated, as a result of which the elastic reflector material is retained. This can be done until the adhesive has hardened sufficiently. This saves special holding devices.
  • Another possibility of optimally pressing the elastic reflector material onto the ribs is that after laying the reflector material, the channel is closed at the end and filled with water. The reflector material is pressed onto the ribs by the water pressure so that the adhesive can cure optimally.
  • the trapezoidal sheet metal can be connected to the molded rib together with the outer skin, for example by means of rivets or screws. This saves a separate riveting or screwing process, since the outer skin lies between the shaped ribs and the ribs of the trapezoidal sheet and is attached to the shaped ribs when the trapezoidal sheet is fastened.
  • the reflector material is advantageously glued to the ribs of the trapezoidal sheet. This prevents interference with the surface of the reflector material, and a wide variety of materials, including glass, can be easily connected to the trapezoidal sheet.
  • the reflector material can be a film made of metal or plastic or a thin glass with a thickness of, for example, 1 mm, the film on the top and the glass on the top and / or bottom carrying a reflective coating.
  • the advantage is also created that a second or further layers can be applied to them, which considerably simplifies repairs.
  • the reflector surfaces gradually become blind due to environmental influences or the mirroring is attacked, so that they either have to be replaced or the mirroring has to be renewed, whereas a new layer of reflector material can be applied to the solar collector according to the invention.
  • Figure 1 is a perspective
  • Figure 2 shows a support structure for a
  • Figure 3 is an end view in the direction of
  • Figure 4 shows a blank for shaped ribs
  • Figures 5a to 5c individual steps for producing a
  • Figure 6 shows an alternative drive for one on one
  • FIG. 1 shows a reflector element, which is designated overall by 10, and of which a large number are present in a solar collector system.
  • This reflector element is fastened in a known manner in a holding frame (not shown) and is aligned such that the incident solar radiation strikes the concave region 12 and is reflected from there to an absorber tube 14 (FIG. 3).
  • the concave region 12 is formed by a reflector 16 which is parabolically shaped.
  • the reflector element 10 is formed by a multiplicity of shaped ribs 18 which, as indicated in FIG. 2, lie parallel next to one another.
  • the shape of ribs 18 are surrounded in their concave portion and -12 in their convex portion 20 by an outer skin 22, as shown in FIG 1 '.
  • the outer skin 22 is screwed, glued, riveted or otherwise connected to the shaped ribs 18.
  • the shaped ribs 18 and the outer skin 22 form a closed supporting structure.
  • rivets 24 are indicated with which the shaped rib 18 is riveted to a lower section 26 of the outer skin 22.
  • An upper section 28 of the outer skin 22 rests on the concave region 12 of the shaped rib 18 and a trapezoidal sheet 30 is placed on the upper section 28 of the outer skin 22.
  • the lower webs 23 of the trapezoidal sheet 30 are riveted to the shaped rib 18 by means of rivets 34 with the interposition of the upper section 28 of the outer skin 22.
  • the upper web 36 of the trapezoidal sheet 30 now forms the Au surface for a reflector material 38 which is elastic and conforms to the shape of the upper webs 36 snugly.
  • the shape of the concave region 12 is impressed on the reflector material 38 via the trapezoidal sheet 30.
  • This shape is the desired parabolic shape so that the incident radiation is directed onto the absorber tube 14.
  • the reflector material 38 which can be a mirrored metal or plastic film, or which is formed by a thin glass layer with a thickness of 1 mm, for example, is fastened by gluing to the upper web 36 /
  • FIG. 3 also shows a holding arm 40 which carries the absorber tube 14 and which is connected, in particular riveted, to the reflector 16 and thus to the upper webs 36 of the trapezoidal sheet 30 and / or to the molding rib 18 underneath.
  • FIG. 4 shows a sheet metal strip designated by reference number 42, which has a width of 1200 mm, and from which sections 44 and 46 are alternately cut out, which have a length of 6000 mm.
  • a section 44 or 46 is shown in FIG. 5a, which is processed by a folding tool (not shown) in such a way that its side edge 48 forming the concave region 12 is bent concavely. This is done by introducing beads 50 or folds.
  • the section 44 deformed in this way still has an essentially angular outer contour, which is rounded off in the next work step by means of punching or chamfering.
  • the side edge 48 is still cut and / or flanged in such a way that it has the desired parabolic shape after the upper section 26 of the outer skin 22 and the trapezoidal sheet 30 and the reflector material 38 have been put on.
  • recesses 52 are also introduced, through which lines for liquid or electrical current laid inside the reflector element 10 are passed. The flanged edge is used to attach the rivet
  • the solar collector according to the invention which has a multiplicity of reflector elements 10, has the essential advantage that each reflector element 10 has the required torsional rigidity and that flexible reflector material 38 can be used, which has the parabolic shape due to the shape of the ribs 18 shaped trapezoidal sheet 30 is embossed. It is therefore not necessary to use preformed, rigid reflector mirrors, which are relatively expensive. Inexpensive film material or thin glass can be used, which is also inexpensive.
  • the connecting webs 54 connecting the lower web 32 to the upper web 36 easily compensate for different thermal expansions between the reflector material 38 and the outer skin 22.
  • the warm tensions are therefore not built up.
  • the reflector elements 10 lie on a flat support and can be pivoted by a suitable drive.
  • the lower section 26 of the outer skin 22 is provided with a toothing 56 which engages in a toothing or in a gearwheel pair 58 on the plane. Reflector elements 10 fastened in this way are even more torsion-resistant than suspended elements. They are also less exposed to the wind.

Abstract

Die Erfindung betrifft einen Solarkollektor zum Fokussieren der solaren Einstrahlung auf eine Brennlinie, mit einem Träger für einen rinnenförmig gebogenen Reflektor, wobei der Träger mehrere Formrippen aufweist und jede Formrippe eine parabolisch geformte Seitenkante aufweist, wobei die Formrippen von einer Aussenhaut umgeben sind, wobei der Reflektor aus einem elastischen Reflektormaterial besteht und wobei über die parabolisch geformte Seitenkante direkt oder unter Zwischenschaltung eines Trägers dem elastischen Reflektormaterial die Form des Reflektors aufgeprägt wird.

Description

Solarkollektor
Beschreibung
Die Erfindung betrifft einen Solarkollektor mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Bei Solarkollektoren wird die solare Einstrahlung durch parabolisch geformte Spiegel auf eine Brennlinie konzentriert, wobei die Spiegelrinne dem Sonnenlauf in der Längsachse des Spiegels nachgeführt wird. Diese Rinnenkollektoren haben sich seit vielen Jahren bewährt und werden mit unterschiedlichen Spiegeltragkonstruktionen gefertigt . Die Kollektoren sind heutzutage bis zu 100 m lang und besitzen eine Breite von knapp 6 m und werden von einem oder zwei Motoren angetrieben.. Wie aus den Kollektordimensionen ersichtlich, greifen an den Reflektoren sehr hohe Windkräfte an, da diese der Witterung frei ausgesetzt sind. Diese Windkräfte stellen an ein jedes Kollektormodul hohe Anforderungen bezüglich der Standfestigkeit der Tragstruktur. Insbesondere gilt dies aber auch für die Verdreh beziehungsweise Torsionssteifigkeit der Reflektor- Haltestruktur, da schon bei geringer Deformation die konzentrierenden Reflektionseigenschaften stark beeinträchtigt werden und somit den Wirkungsgrad der Anlage vermindern. Um diesen Torsionskräften genügend Widerstand in Form von Steifigkeit entgegensetzen zu können, werden Fachwerke eingesetzt, auf welche selbsttragende, parabolische Formspiegel aufgesattelt und befestigt werden. Diese Entkopplung von Tragstruktur und vorgeformten Reflektoren bedingen ein sehr komplexes Gesamtbild.
So ist zum' Beispiel .aus der DE-A-198 01 078 ein Solarkollektor bekannt, bei welchem der Reflektor von einem Fachwerk getragen wird. Das Fachwerk ist an einem Tragrohr befestigt, welches die Torsionskräfte abstützt. Das Fachwerk selbst trägt jedoch keinen Beitrag zur Torsionssteifigkeit bei, weshalb dieser Aufbau nach wie vor torsionsanfällig ist.
Aus der DE-A-197 44 767 ist ein Parabolrinnenkonzentrator bekannt, der ebenfalls von einem Fachwerk gebildet wird. Die Torsionssteifigkeit soll durch Querverstrebungen zwischen den einzelnen Tragarmen erzeugt werden, wobei derartige Konstruktionen lediglich für kurz bauende Kollektoren geeignet sind, da die Torsionssteifigkeit nicht optimal ist.
Die DE-A-199 52 276 offenbart einen Parabolrinnenkollektor, bei welchem die Tragarme verschwenkbar um eine zentrale Achse angeordnet sind, wobei auch hier die Torsionssteifigkeit allein durch die zentrale Achse, die von einem Rohr gebildet wird, herrührt. Die Arme selbst leisten keinen Beitrag zur Torsionssteifigkeit.
Auch die WO-A-02 103 256 zeigt einen parabolischen Solarkollektor, welcher ein zentrales Rohr und daran befestigte Seitenarme aufweist. Die Seitenarme tragen den Reflektor. Zwar ist ein derartiger Reflektor relativ biegesteif, jedoch besitzt er nahezu keine Torsionssteifigkeit .
Der Erfindung liegt daher die Aufgabe zugrunde, einen Solarkollektor bereitzustellen, welcher einen einfachen Aufbau besitzt und dennoch torsionssteif ist.
Diese Aufgabe wird mit einem Solarkollektor gelöst, der die Merkmale des Anspruchs 1 aufweist.
Beim erfindungsgemäßen Solarkollektor sind die Formrippen von einer Außenhaut umgeben und bilden auf diese Weise einen geschlossenen Kasten, der eine sehr hohe Torsionssteifigkeit besitzt. Außerdem sind die Formrippen an ihrer konkaven Seite parabolisch geformt", so dass sie dem Reflektormaterial die Form des Reflektors, das heißt die Parabolrinnenform aufprägen können. Das Reflektormaterial muss daher nicht biegesteif sondern kann elastisch ausgestaltet sein, so dass es nicht mehr erforderlich ist, auf relativ teuere vorgefertigte Parabolreflektoren zurückgreifen zu müssen. Das elastische Reflektormaterial kann zum Beispiel auf einem Coil angeliefert werden und vor Ort auf die benötigte Größe zurechtgeschnitten werden. Die Transportkosten werden dadurch wesentlich verringert, außerdem ist das Reflektormaterial wesentlich preiswerter als vorgefertigte Parabolreflektoren.
Der erfinduήgsgemäße Solarkollektor besitzt also den Vorteil, dass er eine sehr hohe Torsionssteifigkeit aufweist und dass an ihm nicht nur vorgefertigte Parabolreflektoren befestigt werden können, sondern dass dieser auch mit elastischem Reflektormaterial bestückt werden kann, da die Außenhaut im konkaven Bereich der Formrippen dem Reflektormaterial die parabolische Rinnenform aufprägt.
Bei einer Weiterbildung ist vorgesehen, dass die Formrippe eine Sichelform aufweist. Aufgrund der Sichelform besitzt das ganze Tragwerk mit Außenhaut im Wesentlichen die Form eines Tragwerkflügels, der zum Beispiel aus dem Flugzeugbau oder Schiffsbau bekannt ist, und der eine hohe Steifigkeit hinsichtlich Biegung und Torsion aufweist. Um den Formrippen die gewünschte Form auf einfache Weise geben zu können, sind diese durch Faltung oder Wellung hergestel-lt, so dass eine konkave Seitenkante entsteht, die im Wesentlichen parabolisch geformt ist. Dabei kann die der parabolisch geformten Seitenkante gegenüberliegende Seitenkante teilkreisformig sein.
Auf diesen geschlossenen, torsionssteifen Trag lachenkasten, der von den Formrippen und der Außenhaut gebildet wird, wird das elastische Reflektormaterial aufgelegt, so dass das Reflektormaterial die Parabolform übernimmt.
Mit Vorzug ist der an der parabolisch geformten Seitenkante anliegenden Außenhaut ein Trapezblech aufgesetzt, welches in Längsrichtung des rinnenformig gebogenen Reflektors verlaufende Rippen aufweist und auf welchen das Reflektormaterial aufliegt. Dies hat zum einen den Vorteil, dass die Auflageflache für das Reflektormaterial, welche von den Rippen des Trapezbleches gebildet wird, frei von Störungen, zum Beispiel frei von Schraubenkopfen, Nietkopfen und dergleichen ist, und die Rippen bilden parallel zueinander verlaufende, streifenformige Auflageflachen, welche die Verformung des Reflektormaterials unterstutzen. Dadurch wird auch auf einfache Weise ein Ausgleich bei Materialien geschaffen, die unterschiedliche Wärmeausdehnungskoeffizienten besitzen, zum Beispiel bei einem Reflektormaterial aus Glas und einer Außenhaut bzw. Tragkonstruktion aus Metall. Die Rippen des Trapezbleches bilden Kanäle, die stirnseitig verschließbar sind. Derartig verschlossene Kanäle besitzen den Vorteil, dass sie evakuiert werden können. Wird also das elastische Reflektormaterial unter Zwischenschaltung einer Klebeschicht auf die Tragflächen der Rippen aufgesetzt, dann können die Kanäle zwischen den Rippen evakuiert werden, wodurch das elastische Reflektormaterial festgehalten wird. Dies kann so lange erfolgen, bis der Kleber ausreichend ausgehärtet ist. Hierdurch werden spezielle Haltevorrichtungen eingespart. Eine andere Möglichkeit das elastische Reflektormaterial optimal an die Rippen anzupressen, erfolgt dadurch, dass nach dem Auflegen des Reflektormaterials die Rinne stirnseitig verschlossen und mit Wasser angefüllt wird. Durch den Wasserdruck wird das Reflektormaterial auf die Rippen gepresst, so dass der Kleber optimal aushärten kann.
Bei einem Ausführungsbeispiel ist das Trapezblech zusammen mit der Außenhaut mit der Formrippe verbindbar, zum Beispiel mittels Nieten oder Schrauben. Dadurch wird ein gesonderter Niet- oder Schraubvorgang eingespart, da die Außenhaut zwischen den Formrippen und den Rippen des Trapezbleches liegt und bei der Befestigung des Trapezbleches an den Formrippen befestigt wird.
Wie bereits erwähnt, wird das Reflektormaterial vorteilhafterweise mit den Rippen des Trapezbleches verklebt. Dadurch werden Störungen der Oberflache des Reflektormaterials vermieden, außerdem können problemlos unterschiedlichste Materialien, auch Glas, mit dem Trapezblech verbunden werden.
Dabei kann das Reflektormaterial erfmdungsgemaß eine Folie aus Metall oder Kunststoff oder ein Dunnglas mit einer Dicke von zum Beispiel 1 mm sein, wobei die Folie oberseitig und das Glas ober- und/oder unterseitig eine Verspiegelung tragt. Insbesondere bei dünnen Materialien wird noch der Vorteil geschaffen, dass auf diese eine zweite oder weitere Schichten aufgebracht werden können, wodurch Reparaturen wesentlich vereinfacht werden. Die Reflektorflachen werden durch Umwelteinflusse allmählich blind beziehungsweise wird die Verspiegelung angegriffen, so dass sie entweder ausgetauscht werden müssen oder die Verspiegelung erneuert werden muss, wohingegen beim erfmdungsgemaßen Solarkollektor eine neue Lage Reflektormaterials aufgebracht werden kann.
In der Brennlime ist ein Absorberrohr vorgesehen, das von Haltearmen getragen wird, die entweder an den Formrippen und/oder auf der Oberseite des Reflektors (16) sind. Dieser einfache Aufbau tragt dazu bei, den erfmdungsgemaßen Solarkollektor preiswert zu erstellen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung besonders bevorzugte Ausfuhrungsbeispiele im Einzelnen dargestellt sind. Dabei können die in der Zeichnung dargestellten sowie in der Beschreibung und in den Ansprüchen erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.
In der Zeichnung zeigen:
Figur 1 ein perspektivisch dargestelltes
Reflektorelement;
Figur 2 eine Tragkonstruktion für ein
Reflektorelement;
Figur 3 eine stirnseitige Ansicht in Richtung des
Pfeils III gemäß Figur 2 auf eine Formrippe;
Figur 4 einen Zuschnitt für Formrippen;
Figuren 5a bis 5c einzelne Arbeitsschritte zum Herstellen einer
Formrippe; und
Figur 6 einen alternativen Antrieb für ein auf einer
Ebene abgesetztes Reflektorelement.
Die Figur 1 zeigt ein Reflektorelement, welches insgesamt mit 10 bezeichnet ist, und von welchem eine Vielzahl in einer Solarkollektoranlage vorhanden sind. Dieses Reflektorelement ist in bekannter Weise in einem (nicht dargestellten) Halterahmen befestigt und wird so ausgerichtet, dass die einfallende Sonnenstrahlung auf den konkaven Bereich 12 auftrifft und von dort zu einem Absorberrohr 14 (Figur 3) reflektiert wird. Hierfür wird der konkave Bereich 12 von einem Reflektor 16 gebildet, der parabolisch geformt ist.
Das Reflektorelement 10 wird von einer Vielzahl von Formrippen 18 gebildet, die, wie in der Figur 2 andeutungsweise dargestellt, parallel nebeneinander liegen. Die Formrippen 18 sind in ihrem konkaven Bereich -12 und in ihrem konvexen Bereich 20 von einer Außenhaut 22 umgeben, wie es 'in der Figur 1 dargestellt ist. Die Außenhaut 22 ist mit den Formrippen 18 verschraubt, verklebt, vernietet oder auf andere Weise verbunden. Dabei bilden die Formrippen 18 und die Außenhaut 22 eine geschlossene Tragkonstruktion.
In der Figur 3 sind andeutungsweise Nieten 24 dargestellt, mit denen die Formrippe 18 mit einem unteren Abschnitt 26 der Außenhaut 22 vernietet ist. Auf dem konkaven Bereich 12 der Formrippe 18 liegt ein oberer Abschnitt 28 der Außenhaut 22 auf und auf den oberen Abschnitt 28 der Außenhaut 22 ist ein Trapezblech 30 aufgesetzt. Dabei sind die unteren Stege 23 des Trapezbleches 30 mittels Nieten 34 unter Zwischenschaltung des oberen Abschnitts 28 der Außenhaut 22 mit der Formrippe 18 vernietet. Der obere Steg 36 des Trapezbleches 30 bildet nunmehr die Au lagefläche für ein Reflektormaterial 38, welches elastisch ist und sich der Form der oberen Stege 36 anschmiegt. Dadurch wird die Form des konkaven Bereichs 12 über das Trapezblech 30 dem Reflektormaterial 38 aufgeprägt. Diese Form ist die gewünschte parabolische Form, so dass die einfallende Strahlung auf das Absorberrohr 14 gelenkt wird. Die Befestigung des Reflektormaterials 38, welches eine verspiegelte Metall- oder Kunststofffolie sein kann, oder welches von einer Dünnglasschicht mit einer Dicke von zum Beispiel 1 mm gebildet wird, erfolgt über eine Verklebung mit dem oberen Steg 36/
In der Figur 3 ist außerdem- ein Haltearm 40 dargestellt, der das Absorberrohr 14 trägt, und der mit dem Reflektor 16 und somit mit den oberen Stegen 36 des Trapezbleches 30 und/oder mit der darunter liegenden Formrippe 18 verbunden, insbesondere vernietet ist.
Die Figur 4 zeigt einen mit dem Bezugszeichen 42 bezeichneten Blechstreifen, der eine Breite von 1200 mm aufweist, und aus welchem abwechselnd Abschnitte 44 und 46 herausgeschnitten werden, die eine Länge von 6000 mm aufweisen. Ein derartiger Abschnitt 44 bzw. 46 ist in der Figur 5a dargestellt, der von einem (nicht dargestellten) Faltwerkzeug derart bearbeitet wird, dass seine den konkaven Bereich 12 bildende Seitenkante 48 konkav gebogen wird. Dies erfolgt durch Einbringung von Formsicken 50 oder Faltungen. Der auf diese Weise verformte Abschnitt 44 besitzt nach wie vor eine im Wesentlichen eckige Außenkontur, die im nächsten Arbeitsschritt durch Formstanzen oder Formabkanten abgerundet wird. Bei diesem Arbeitsgang wird die Seitenkante 48 noch derart zugeschnitten und/oder umgebördelt, dass sie nach dem Aufsetzen des oberen Abschnitts 26 der Außenhaut 22 und de,m Trapezblech 30 sowie dem Reflektormaterial 38 die gewünschte parabolische Form besitzt. Ferner werden noch Ausnehmungen 52 eingebracht, durch welche innerhalb des Reflektorelements 10 verlegte Leitungen für Flüssigkeit oder elektrischen Strom hindurchgefuhrt werden. Der umgebordelte Rand dient zum Befestigen der Niete
Insgesamt kann festgehalten werden, dass der erfindungsgemaße Solarkollektor, welcher eine Vielzahl von Reflektorelementen 10 aufweist, den wesentlichen Vorteil besitzt, dass ein jedes Reflektorelement 10 die geforderte Torsionssteifigkeit aufweist und dass flexibles Reflektormaterial 38 verwendet werden kann, welchem die parabolische Form durch das von den Formrippen 18 geformte Trapezblech 30 aufgeprägt wird. Es ist also nicht erforderlich, vorgeformte, starre Reflektorspiegel zu verwenden, die relativ teuer sind. Es kann preiswertes Folienmaterial oder es kann Dunnglas verwendet werden, welches ebenfalls preiswert ist.
Die den unteren Steg 32 mit dem oberen Steg 36 verbindenden Verbindungsstege 54 gleichen unterschiedliche Wärmedehnungen zwischen dem Reflektormaterial 38 und der Außenhaut 22 problemlos aus . Die Warmespannungen werden daher nicht aufgebaut . Bei einem Ausführungsbeispiel (Figur 6) liegen die Reflektorelemente 10 auf einer ebenen Auflage auf und können durch einen geeigneten Antrieb verschwenkt werden. Der untere Abschnitt 26 der Außenhaut 22 ist hierfür mit einer Verzahnung 56 versehen, die in eine Verzahnung oder in ein Zahnradpaar 58 auf der Ebene eingreift. Derartig befestigte Reflektorelemente 10 sind noch verwindungssteifer als aufgehängte Elemente. Außerdem sind sie weniger dem Wind ausgesetzt.

Claims

Patentansprüche
1. Solarkollektor zum Fokussieren der solaren Einstrahlung auf eine Brennlinie, mit einem Träger für einen rinnenförmig gebogenen Reflektor (10) , wobei der Träger mehrere Formrippen (18) aufweist und jede Formrippe (18) eine parabolisch geformte Seitenkante (48) aufweist, dadurch gekennzeichnet, dass die Formrippen (18) von einer Außenhaut (22) umgeben sind, dass der Reflektor (16)- aus einem elastischen Reflektormaterial (38) besteht und dass über die parabolisch geformte Seitenkante (48) direkt oder unter Zwischenschaltung eines Trägers -dem elastischen Reflektormaterial (38) die Form des Reflektors (16) aufgeprägt wird.
2. Solarkollektor nach Anspruch 1 dadurch gekennzeichnet, dass die Formrippe (18) eine Sichelform aufweist.
3. Solarkollektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die parabolisch geformte Seitenkante (48) der Formrippe (18) durch Faltung oder Wellung (50) der Formrippe (18) hergestellt ist.
4. Solarkollektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die der parabolisch geformten Seitenkante (48) gegenüberliegende Seitenkante teilkreisförmig ist.
5. Solarkollektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Formrippe (18) und die Außenhaut (22) einen geschlossenen, formstabilen Tragflächenkasten bilden.
6. Solarkollektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der an der parabolisch geformten Seitenkante (48) anliegenden Außenhaut (22) ein Trapezblech (30) aufgesetzt ist, welches in Längsrichtung des rinnenförmig gebogenen Reflektors (16) verlaufende Rippen aufweist, auf welchen das Reflektormaterial (38) aufliegt .
7. Solarkollektor nach Anspruch 6, • dadurch gekennzeichnet, dass die Rippen Kanäle bilden, die stirnseitig verschließbar sind.
8. Solarkollektor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Trapezblech (30) zusammen mit der Außenhaut (22) mit der Formrippe (18), zum Beispiel mittels Nieten (34) oder Schrauben, verbindbar und/oder verklebt ist.
9. Solarkollektor nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das Reflektormaterial (38) mit den Rippen des Trapezbleches (30) verklebt ist.
10. Solarkollektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Reflektormaterial (38) eine Folie aus Metall oder Kunststoff oder ein Dünnglas mit einer Dicke von zum Beispiel 1 mm ist und die Folie oberseitig und das Glas ober- und/oder unterseitig eine Verspiegelung trägt .
11. Solarkollektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Brennlinie ein Absorberrohr (14) vorgesehen ist, dass das Absorberrohr (14) von Haltearmen (40) getragen wird und dass die Haltearme (40) entweder an den Formrippen (18) und/oder auf der Oberseite des Reflektors (16) befestigt sind.
PCT/EP2004/000564 2003-01-24 2004-01-23 Solarkollektor WO2004066401A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04704583A EP1586124A2 (de) 2003-01-24 2004-01-23 Solarkollektor
US10/542,609 US20060150967A1 (en) 2003-01-24 2004-01-23 Solar collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10303476 2003-01-24
DE10303476.5 2003-01-24

Publications (2)

Publication Number Publication Date
WO2004066401A2 true WO2004066401A2 (de) 2004-08-05
WO2004066401A3 WO2004066401A3 (de) 2005-06-16

Family

ID=32747503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000564 WO2004066401A2 (de) 2003-01-24 2004-01-23 Solarkollektor

Country Status (3)

Country Link
US (1) US20060150967A1 (de)
EP (1) EP1586124A2 (de)
WO (1) WO2004066401A2 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027003A1 (de) * 2004-09-06 2006-03-16 Holger Schweyher Kollektor für ein solarthermisches kraftwerk
EP1644669A1 (de) * 2003-07-01 2006-04-12 Solar Heat and Power Pty Ltd Träger- und antriebsanordnung für ein sonnenenergiereflektorsystem
EP1644670A1 (de) * 2003-07-01 2006-04-12 Solar Heat and Power Pty Ltd Träger für ein sonnenenergiereflektorelement
DE102006025007A1 (de) * 2006-05-30 2007-12-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rinnenkonzentratorelement
ITTO20080706A1 (it) * 2008-09-26 2010-03-27 Ocap S P A Riflettore solare con struttura di supporto in lamiera metallica cellulare e procedimento per la sua fabbricazione
ITMO20080287A1 (it) * 2008-11-07 2010-05-08 Sun Gen Srl Gruppo di convogliamento di raggi solari, particolarmente per sistemi di conversione dell'energia solare in energia elettrica e/o termica
WO2010118885A1 (de) * 2009-04-18 2010-10-21 Muellejans Heinrich Trägersystem für parabolrinnenspiegel
EP2300753A1 (de) * 2008-05-07 2011-03-30 Airlight Energy IP SA Rinnenkollektor für ein solarkraftwerk
KR101076318B1 (ko) 2010-01-06 2011-10-26 강원대학교산학협력단 흡수율은 높이고 열손실은 줄일 수 있는 집열기 흡수관
AT509397B1 (de) * 2009-12-17 2012-01-15 Kornmueller Manfred Sonnenkollektor für dächer
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US8739512B2 (en) 2007-06-06 2014-06-03 Areva Solar, Inc. Combined cycle power plant
US8807128B2 (en) 2007-08-27 2014-08-19 Areva Solar, Inc. Linear fresnel solar arrays
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007211836A1 (en) * 2006-02-03 2007-08-09 Miralite Pty Ltd Improved trough reflectors for solar energy collectors
ES2344311T3 (es) * 2006-03-28 2010-08-24 Rahmi Oguz Capan Sistemas de colector solar parabolico con medios de seguimiento giratorio.
US8056555B2 (en) * 2006-04-12 2011-11-15 Prueitt Melvin L Thin film trough solar collector
US20080083405A1 (en) * 2006-06-08 2008-04-10 Sopogy, Inc. Mirror assemblies for concentrating solar energy
ITMI20061381A1 (it) * 2006-07-17 2008-01-18 Laterzi Gambettola S R L Metodo semplificato per la creazione di collettori parabolici lineari d'energia solare
AU2007288137B2 (en) * 2006-08-25 2012-11-15 Areva Solar Pty Ltd Energy collector system having east-west extending linear reflectors
DE102007026473B4 (de) * 2007-03-30 2008-11-20 Amaton Sa Parabolrinnenkollektor
US7975686B2 (en) * 2007-04-05 2011-07-12 Prueitt Melvin L High leverage trough solar collector
WO2008153936A1 (en) * 2007-06-08 2008-12-18 Sopogy, Inc. Parking solar energy collectors
ITMI20071702A1 (it) * 2007-08-29 2009-02-28 Donati Group S P A Struttura parabolica riflettente per impianti per la produzione di calore da energia solare.
DE102008011547B4 (de) * 2008-02-28 2010-05-06 Flagsol Gmbh Selbstlernende Sonnenkollektornachführsteuerung
US9127822B2 (en) * 2008-10-10 2015-09-08 Sunflower Corporation Afocal optical concentrator
US20100294261A1 (en) * 2009-05-19 2010-11-25 John Bradley Deforge Asymmetric solar collector system
DE102009033490A1 (de) * 2009-07-15 2011-01-20 Solarlite Gmbh Segment eines Solarkollektors sowie Solarkollektoren
US20110186041A1 (en) * 2010-02-03 2011-08-04 Kalex, Llc Apparatus for pivoting solar troughs on a central axis
US20110271999A1 (en) 2010-05-05 2011-11-10 Cogenra Solar, Inc. Receiver for concentrating photovoltaic-thermal system
US8686279B2 (en) 2010-05-17 2014-04-01 Cogenra Solar, Inc. Concentrating solar energy collector
WO2011149589A1 (en) * 2010-05-24 2011-12-01 Cogenra Solar, Inc. Concentrating solar energy collector
FR2960944B1 (fr) * 2010-06-02 2014-01-31 Mediterranee Const Ind Dispositif en forme de caisson destine a supporter au moins un miroir pour reflechir l'energie solaire
CA2843780C (en) * 2011-08-04 2015-02-03 6637418 Canada Inc. Carrying On Business As Rackam Heat exchanger and method of manufacturing thereof
CN102621680A (zh) * 2012-04-24 2012-08-01 汪砚秋 二维太阳能聚光镜
US20140124014A1 (en) 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
US9270225B2 (en) 2013-01-14 2016-02-23 Sunpower Corporation Concentrating solar energy collector
WO2014147491A1 (en) 2013-03-20 2014-09-25 Brenmiller Energy Ltd. Integrated thermal storage, heat exchange, and steam generation
IL225456A (en) * 2013-03-24 2017-01-31 Brenmiller Energy Ltd Modular solar field
US20170115034A1 (en) * 2014-06-06 2017-04-27 6637418 Canada Inc. Carrying On Business As Rackam Solar collector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263893A (en) * 1978-10-03 1981-04-28 Consuntrator, Inc. Solar energy collector construction
US4268332A (en) * 1978-05-08 1981-05-19 Sun Trac Industries, Inc. Method of making precision parabolic reflector apparatus
EP0260209A1 (de) * 1986-09-08 1988-03-16 Pascale Giordano Vorrichtung zum Erhitzen von Wasser durch Sonnenenergie mit einem Isolationsschild
WO2002103256A1 (en) * 2001-06-18 2002-12-27 Enea-Ente Per Le Nuove Tecnologie, L'energia E L'ambiente A parabolic solar concentrator

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912380A (en) * 1973-06-25 1975-10-14 Boeing Co Composite type structure for large reflective mirrors
US3906927A (en) * 1973-10-19 1975-09-23 Harry W Caplan Solar-thermal power system employing adjustable curvature reflective panels and method of adjusting reflective panel curvature
US4135493A (en) * 1977-01-17 1979-01-23 Acurex Corporation Parabolic trough solar energy collector assembly
US4136671A (en) * 1977-03-24 1979-01-30 Whiteford Carl L Electromagnetic radiation reflector
US4127926A (en) * 1977-06-16 1978-12-05 Whiteline, Inc. Method of making solar reflectors
DE2738595C2 (de) * 1977-08-26 1984-12-13 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Reflektor für Sonnenkollektoren
US4240406A (en) * 1977-11-21 1980-12-23 Solar Kinetics, Inc. Solar reflector structure
US4249514A (en) * 1978-03-09 1981-02-10 Westinghouse Electric Corp. Tracking solar energy concentrator
US4209231A (en) * 1978-08-24 1980-06-24 Westinghouse Electric Corp. Heliostat assemblies
US4256088A (en) * 1978-09-14 1981-03-17 Acurex Corporation Solar concentrator utilizing a point focusing solar concentrating panel assembly
US4243019A (en) * 1978-10-25 1981-01-06 Honeywell Inc. Light-weight-trough type solar concentrator shell
US4432343A (en) * 1980-03-03 1984-02-21 Viking Solar Systems, Incorporated Solar energy collector system
US4372027A (en) * 1980-04-03 1983-02-08 Solar Kinetics, Inc. Method of manufacturing parabolic trough solar collector
US4423719A (en) * 1980-04-03 1984-01-03 Solar Kinetics, Inc. Parabolic trough solar collector
US4343533A (en) * 1980-12-31 1982-08-10 Dow Corning Corporation Solar radiation reflector with a cellulosic substrate and method of making
US4678292A (en) * 1981-05-01 1987-07-07 Rca Corporation Curved structure and method for making same
GB2104238B (en) * 1981-08-21 1985-01-30 Glaverbel Composite mirror panels
FR2516220B1 (fr) * 1981-11-12 1986-01-17 Rossignol Sa Collecteur cylindro-parabolique d'energie solaire
US4416263A (en) * 1981-12-10 1983-11-22 Niedermeyer William P High ratio solar energy linear type concentrating collector
US4468849A (en) * 1982-03-08 1984-09-04 Atlantic Richfield Company Method of making a curved mirror module
US4502200A (en) * 1982-03-08 1985-03-05 Atlantic Richfield Company Method of preparing lightweight mirror module
US4571812A (en) * 1984-02-16 1986-02-25 Industrial Solar Technology Method for making a solar concentrator and product
US4611575A (en) * 1984-03-07 1986-09-16 Powell Roger A Parabolic trough solar reflector
US4559926A (en) * 1984-10-03 1985-12-24 Butler Barry L Centerless-drive solar collector system
DE3644759A1 (de) * 1986-12-30 1988-07-14 Sick Optik Elektronik Erwin Solarspiegelanordnung
US4870949A (en) * 1987-07-27 1989-10-03 Butler Barry L Wind resistant two axis tracker for energy or radiation concertrators
ATE123134T1 (de) * 1989-03-01 1995-06-15 Bomin Solar Gmbh & Co Kg Solarkonzentrator-anordnung.
US5108419A (en) * 1990-08-16 1992-04-28 Evi Corporation Endovascular filter and method for use thereof
US5069540A (en) * 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
US5613761A (en) * 1994-09-21 1997-03-25 Raby, Sr.; Frederick R. Material and method for fabricating a light fixture reflector, and, reflector produced thereby
US5804278A (en) * 1997-01-03 1998-09-08 Fixtures Manufacturing Corporation Laminated panel construction with honeycomb grid core
DE19744767C2 (de) * 1997-10-10 2001-05-17 Deutsch Zentr Luft & Raumfahrt Parabolrinnenkonzentrator
US6371970B1 (en) * 1999-07-30 2002-04-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6290710B1 (en) * 1999-12-29 2001-09-18 Advanced Cardiovascular Systems, Inc. Embolic protection device
US6739729B1 (en) * 2000-06-27 2004-05-25 The Boeing Company Composite backed prestressed mirror for solar facet
US6994082B2 (en) * 2002-09-20 2006-02-07 Hochberg Eric B Lightweight, low-cost solar energy collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268332A (en) * 1978-05-08 1981-05-19 Sun Trac Industries, Inc. Method of making precision parabolic reflector apparatus
US4263893A (en) * 1978-10-03 1981-04-28 Consuntrator, Inc. Solar energy collector construction
EP0260209A1 (de) * 1986-09-08 1988-03-16 Pascale Giordano Vorrichtung zum Erhitzen von Wasser durch Sonnenenergie mit einem Isolationsschild
WO2002103256A1 (en) * 2001-06-18 2002-12-27 Enea-Ente Per Le Nuove Tecnologie, L'energia E L'ambiente A parabolic solar concentrator

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926480B2 (en) 2003-07-01 2011-04-19 Areva Solar Pty Limited Carrier and drive arrangement for a solar energy reflector system
EP1644669A1 (de) * 2003-07-01 2006-04-12 Solar Heat and Power Pty Ltd Träger- und antriebsanordnung für ein sonnenenergiereflektorsystem
EP1644670A1 (de) * 2003-07-01 2006-04-12 Solar Heat and Power Pty Ltd Träger für ein sonnenenergiereflektorelement
EP1644670A4 (de) * 2003-07-01 2011-11-23 Solar Heat And Power Pty Ltd Träger für ein sonnenenergiereflektorelement
EP1644669A4 (de) * 2003-07-01 2011-11-23 Solar Heat And Power Pty Ltd Träger- und antriebsanordnung für ein sonnenenergiereflektorsystem
US7950386B2 (en) 2003-07-01 2011-05-31 Areva Solar Pty Limited Carrier for a solar energy reflector element
WO2006027003A1 (de) * 2004-09-06 2006-03-16 Holger Schweyher Kollektor für ein solarthermisches kraftwerk
DE102006025007A1 (de) * 2006-05-30 2007-12-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rinnenkonzentratorelement
US8739512B2 (en) 2007-06-06 2014-06-03 Areva Solar, Inc. Combined cycle power plant
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US8807128B2 (en) 2007-08-27 2014-08-19 Areva Solar, Inc. Linear fresnel solar arrays
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor
EP2300753A1 (de) * 2008-05-07 2011-03-30 Airlight Energy IP SA Rinnenkollektor für ein solarkraftwerk
WO2010035083A3 (en) * 2008-09-26 2011-08-25 O.C.A.P. S.P.A. Solar reflector with metal sheet cellular support structure, and process for making such reflector
ITTO20080706A1 (it) * 2008-09-26 2010-03-27 Ocap S P A Riflettore solare con struttura di supporto in lamiera metallica cellulare e procedimento per la sua fabbricazione
ITMO20080287A1 (it) * 2008-11-07 2010-05-08 Sun Gen Srl Gruppo di convogliamento di raggi solari, particolarmente per sistemi di conversione dell'energia solare in energia elettrica e/o termica
WO2010052282A1 (en) * 2008-11-07 2010-05-14 Sun Gen Srl Assembly for conveying solar rays, particularly for systems for converting solar energy into electric and/or thermal energy
WO2010118885A1 (de) * 2009-04-18 2010-10-21 Muellejans Heinrich Trägersystem für parabolrinnenspiegel
AT509397B1 (de) * 2009-12-17 2012-01-15 Kornmueller Manfred Sonnenkollektor für dächer
KR101076318B1 (ko) 2010-01-06 2011-10-26 강원대학교산학협력단 흡수율은 높이고 열손실은 줄일 수 있는 집열기 흡수관

Also Published As

Publication number Publication date
WO2004066401A3 (de) 2005-06-16
EP1586124A2 (de) 2005-10-19
US20060150967A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
WO2004066401A2 (de) Solarkollektor
DE3216845C2 (de)
EP1764565B1 (de) Verfahren zur Herstellung eines optischen Spiegels
DE60208680T2 (de) Parabolisches sonnenkonzentratormodul
DE19744767C2 (de) Parabolrinnenkonzentrator
DE3216844A1 (de) Zusamengesetzte spiegelanordnung und verfahren zu deren herstellung
DE2806545C2 (de) Sonnenenergie-Kollektor
DE2726530A1 (de) Glasspiegelplatte, verfahren zur herstellung derselben und deren verwendung
DE2939203A1 (de) Sonnenenergiekollektor
WO2010078902A2 (de) Solarmodul und solaranlage
EP2531781B1 (de) Segment eines solarkollektors sowie solarkollektor
AT510324B1 (de) Spiegelmodul
WO2009040065A2 (de) Photovoltaikanlage und verfahren zur nachführung
WO2011039372A2 (de) Verfahren zur herstellung eines formspiegels, formspiegel und parabolrinne für solarkollektoren
DE2935425A1 (de) Heliostat und verfahren zu seiner herstellung
DE102006025007A1 (de) Rinnenkonzentratorelement
DE3130471A1 (de) "spiegelanordnung zum reflektieren und konzentrieren von strahlungsenergie"
DE3010523C2 (de) Wärmetauscher für Hausdächer, Fassaden, Zäune o.dgl.
CH697865A2 (de) Sonnenkollektor.
WO2014118293A1 (de) Parabolrinnenspiegel
DE102008046049A1 (de) Tragevorrichtung für einen Parabolspiegel
EP2576219B1 (de) Verfahren zum herstellen eines flächigen materialschichtverbundes
EP3126754B1 (de) Zentralsymmetrischer heliostat und solarkraftwerk mit einem receiver und einer vielzahl von heliostaten
DE2935341A1 (de) Reflektor
EP1284395A2 (de) Röhrenkollektor mit einem Reflektor sowie Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004704583

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006150967

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542609

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004704583

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004704583

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10542609

Country of ref document: US