WO2004061137A1 - 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2004061137A1
WO2004061137A1 PCT/JP2002/013712 JP0213712W WO2004061137A1 WO 2004061137 A1 WO2004061137 A1 WO 2004061137A1 JP 0213712 W JP0213712 W JP 0213712W WO 2004061137 A1 WO2004061137 A1 WO 2004061137A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
strength
temperature
hot
producing
Prior art date
Application number
PCT/JP2002/013712
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Honda
Masaharu Kameda
Yasuharu Sakuma
Akio Saito
Tetsuo Nishiyama
Atsushi Itami
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US10/540,589 priority Critical patent/US7413780B2/en
Priority to CA2511891A priority patent/CA2511891C/en
Priority to EP02792029A priority patent/EP1577407B1/en
Priority to ES02792029T priority patent/ES2320637T3/es
Priority to DE60231756T priority patent/DE60231756D1/de
Priority to CN02830100.5A priority patent/CN100529116C/zh
Priority to PCT/JP2002/013712 priority patent/WO2004061137A1/ja
Priority to AU2002361112A priority patent/AU2002361112A1/en
Publication of WO2004061137A1 publication Critical patent/WO2004061137A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/30Foil or other thin sheet-metal making or treating
    • Y10T29/301Method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength alloyed hot-dip galvanized steel sheet and a method for producing the same, and more particularly, to a steel sheet having excellent workability and various uses, for example,
  • the present invention relates to a plated steel sheet applicable as a steel sheet for automobiles.
  • the present invention solves the above-mentioned problems, and provides a high-strength alloyed hot-dip galvanized steel sheet with excellent workability and a high-strength alloyed hot-dip galvanized steel sheet with excellent workability without installing new equipment. It proposes a method for manufacturing a steel sheet with a slab.
  • the present inventors have conducted intensive studies on the plating treatment of high-strength steel sheets.As a result, the steel to which C, Si, and Mn were added in an amount equal to or greater than a certain amount was converted into a continuous hot-dip galvanized steel sheet having optimized heat treatment conditions and plating conditions. It has been found that high-strength alloyed hot-dip galvanized steel sheets with excellent workability can be manufactured by performing plating treatment with a plating facility.
  • the gist of the present invention is as follows. (1) Mass. /. so,
  • a 1 0.05 to 0.5%
  • N contains 0.060.0% or less
  • the balance consists of Fe and unavoidable impurities, plus% C,% Si,% A high-strength steel plate that satisfies (% Mn) / (% C) ⁇ 12 and (% Si) / (% C) ⁇ 4 when Mn is the content of C, Si, and Mn, respectively.
  • A1 0.05 to 0.5% by mass
  • Fe 5 to 15% by mass
  • the balance being alloyed molten zinc consisting of Zn and unavoidable impurities
  • the relationship between the tensile strength F (MPa) and the elongation (%) satisfies L ⁇ 52-0.035XF.
  • the slab having the chemical composition described in (1) is subjected to finish rolling at a temperature of at least Ar 3 points, cold-rolled at 50 to 85%, and then subjected to continuous hot-dip galvanizing.
  • a hot-dip galvanized layer is formed on the surface of the cold-rolled steel sheet, and then the steel sheet having the hot-dip galvanized layer formed thereon
  • a method for producing an alloyed hot-dip galvanized steel sheet by forming an alloyed hot-dip galvanized layer on the surface of the steel sheet by subjecting the steel
  • the above-mentioned hot-dip galvanizing treatment is performed in a hot-dip galvanizing bath having an effective A 1 concentration in the bath: 0.07 to 0.105 mass%, and a balance of Zn and unavoidable impurities. And said alloying process,
  • a method for producing a high-strength alloyed hot-dip galvanized steel sheet with excellent workability which is performed at an effective A1 concentration (mass%) in a bath that satisfies the following conditions.
  • the steel sheet is cooled to a temperature of 400 ° C or less after the hot-dip galvanizing.
  • the temperature of the hot-dip galvanizing bath should be less than 460 ° C.
  • C is steel by strengthening the structure with martensite and residual austenite It is an essential element when trying to increase the strength of the plate.
  • the reason for setting the C content to 0.05% or more is that if C is less than 0.05%, it is difficult to rapidly cool from the annealing temperature using mist or jet water as a cooling medium. This is because cementite-perlite is likely to be generated in the perforated line, and it is difficult to secure the required tensile strength.
  • the reason why the content of C is 0.15% or less is that if C exceeds 0.15%, it becomes difficult to form a sound weld by spot welding, and at the same time, This is because segregation becomes remarkable and workability deteriorates.
  • Si is added in an amount of 0.3 to 2.0% as an element that increases the strength without significantly impairing the workability of the steel sheet, particularly the elongation, and is set to be at least 4% by mass of the C content.
  • the reason why the content of Si is set to 0.3% or more is that if the content of Si is less than 0.3%, it is difficult to secure the required tensile strength.
  • the reason for setting it to 0% or less is that when Si exceeds 2.0%, the effect of increasing strength saturates and ductility decreases.
  • the C content By setting the C content to 4% by mass or more, the progress of pearlite and bainite transformation is remarkably slowed by reheating for the alloying treatment immediately after plating, and the volume ratio is maintained even after cooling to room temperature.
  • a metal structure in which 3 to 20% of martensite and residual austenite are mixed in ferrite can be obtained.
  • Mn is added together with C in order to lower the free energy of austenite, so that at least 1.0% is added to stabilize austenite before immersing the steel strip in the plating bath.
  • the reheating for the alloying treatment performed immediately after plating significantly slows down the progress of the pearlite and payinite transformations, and reduces the temperature to room temperature. Even after cooling, a metal structure in which martensite and residual austenite at a volume ratio of 3 to 20% are mixed in ferrite can be formed.
  • the amount is too large, the slab is liable to crack, Since the spot weldability also deteriorates, the upper limit is 2.8%.
  • P is generally contained in steel as an unavoidable impurity, but if its content exceeds 0.03%, the spot weldability deteriorates significantly and the tensile strength as in the present invention is 490. For high-strength steel sheets exceeding MPa, the toughness and the cold-rollability are significantly deteriorated, so the content should be 0.03% or less.
  • S is generally contained in steel as an unavoidable impurity, but if the amount exceeds 0.02%, the presence of MnS elongated in the rolling direction becomes remarkable, adversely affecting the bendability of the steel sheet. Therefore, its content should be 0.02% or less.
  • a 1 is used as a deoxidizing element in steel, and is used to improve the quality of the hot-rolled material by A 1 N in order to reduce the grain size of the hot-rolled material and to suppress the coarsening of crystal grains in a series of heat treatment steps to improve the material quality. It is necessary to add 5% or more. However, if the content exceeds 0.5%, the cost increases and the strength and surface properties deteriorate, so the content is set to 0.5% or less. N is also generally contained in steel as an unavoidable impurity, but if the amount exceeds 0.006%, the brittleness is deteriorated along with the elongation, so the content is 0.06% or less. And
  • the reason why the A1 composition of the alloyed hot-dip galvanized layer is limited to 0.05 to 0.5% by mass is that, when the content is less than 0.05% by mass, Zn—Fe is used during the alloying treatment. This is because alloying progresses too much and a brittle alloy layer develops too much at the interface of the base iron, and the plating adhesion deteriorates. If the value exceeds, the Fe-A 1 -Zn-based barrier layer is formed too thick, so that alloying does not proceed during the alloying treatment, so that plating with the desired iron content cannot be obtained.
  • the reason why the Fe composition is limited to 5 to 15% by mass is that if the content is less than 5% by mass, a soft Zn—Fe alloy is formed on the surface to be attached, and the press formability is deteriorated. If the content is more than 20% by mass, a brittle alloy layer is excessively developed at the interface of the base iron, and the plating adhesion is deteriorated. Preferably rather is 7-1 3 mass 0/0.
  • the steel sheet according to the present invention may be used for Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, L
  • the effect of the present invention is not impaired even if one or more of i, Ti, Be, Bi, and rare earth elements are contained or mixed, and the corrosion resistance and processability are improved depending on the amount. In some cases, it is preferable. No particular limitation is imposed on the amount of adhesion of the alloyed molten zinc, but it is preferable that the amount be 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g Zm 2 or less from the viewpoint of economy.
  • the high-strength alloyed hot-dip galvanized steel sheet with excellent workability has a tensile strength TS of at least 490 MPa and a relationship between the tensile strength F (MPa) and the elongation L (%). , L ⁇ 52-0.035 XF.
  • Elongation The reason for limiting L to [52-0.035 XF]% or more is that if the L force is lower than S [52-0.035XF], severe processing such as deep drawing may occur. This is because workability such as breakage sometimes is insufficient.
  • the purpose is to have a metal structure containing martensite and residual austenite in the range of 3 to 20 o / o, and to achieve both high strength and good press workability. Volume fraction of martensite and residual austenite If it is less than 3%, high strength will not be obtained. On the other hand, when the volume ratio of martensite and residual austenite exceeds 20%, the workability of the steel sheet is deteriorated although the strength is high, and the object of the present invention is not achieved.
  • the slab to be subjected to hot rolling is not particularly limited as long as it is manufactured by a continuous green slab or a thin slab caster. It is also suitable for processes such as continuous forging to direct rolling (CC to DR) where hot rolling is performed immediately after forging.
  • the finishing temperature of hot rolling must be at least Ar 3 points from the viewpoint of ensuring press formability of the steel sheet.
  • Cooling conditions after hot rolling ⁇ The winding temperature is not particularly limited, but the winding temperature is to avoid large variations in material at both ends of the coil and to avoid deterioration in pickling properties due to an increase in scale thickness. 750 ° C or less, and if the bainite-martensite is partially formed, ear cracks are likely to occur during cold rolling, and in extreme cases, the plate may break, so It is desirable to do above.
  • Cold rolling may be performed under normal conditions, and the rolling ratio is 50% for the purpose of maximizing workability by finely dispersing martensite and residual austenite so that ferrite is easily work-hardened. It is above. On the other hand, performing cold rolling at a rolling ratio exceeding 85% is not realistic because a large amount of cold rolling load is required.
  • the annealing temperature should be in the range of 700 ° C to 850 ° C, in which ferrite and austenitic phases coexist. If the annealing temperature is lower than 700 ° C, recrystallization is insufficient, and the steel sheet cannot have the required press workability. Annealing at a temperature exceeding 850 ° C is not preferable because the growth of the oxide layer of Si or Mn on the surface of the steel strip is remarkable and plating failure is likely to occur. Also, in the process of continuing immersion in the plating bath and cooling, ferrite with a sufficient volume ratio did not grow even if the temperature was slowly cooled to 65 ° C. Austenite transforms into martensite during cooling down to the plating bath, and then is re-heated for alloying treatment to temper the martensite and precipitate cementite, which means high strength and good press workability. Compatibility is difficult.
  • the steel strip After annealing, the steel strip is cooled during the subsequent immersion in the plating bath.
  • the cooling rate in this case is 0.5 to 10 ° C on average from the highest temperature reached to 65 ° C, followed by an average cooling from 65 ° C to 500 ° C. Cool at a rate of 3 ° C / sec, hold from 500 ° C to the plating bath for 30 seconds or more and 240 seconds or less, and immerse it in the plating bath.
  • An average of 0.5 to 10 ° C / sec up to 65 ° C is achieved by increasing the volume fraction of ferrite and improving the C concentration of austenite to improve workability.
  • the purpose is to lower the free energy of formation and keep the temperature at which martensite transformation starts at or below the plating bath temperature.
  • the average cooling rate to 65 ° C shall be 0.5 ° CZ seconds or more.
  • the upper limit of the average cooling rate is not particularly specified, but it is difficult to cool the steel strip to exceed the average cooling rate of 20 ° C / sec in a dry atmosphere.
  • the reason why the temperature from 500 ° C to the plating bath is maintained for 30 seconds or more and 240 seconds or less is that if it is shorter than 30 seconds, the concentration of C in the austenite becomes insufficient, and This is because the C concentration does not reach a level that allows austenite to remain at room temperature. If the C concentration exceeds 240 seconds, bainite transformation proceeds excessively, and the amount of austenite decreases and becomes sufficient. This is because residual austenite cannot be generated.
  • the hot-dip galvanizing bath used is adjusted to have an A1 concentration of 0.07 to 0 • 105 mass% with an effective A1 concentration C in the bath.
  • the effective A 1 concentration in the plating bath is a value obtained by subtracting the Fe concentration in the bath from the A 1 concentration in the bath.
  • the reason for limiting the effective A1 concentration to 0.07 to 0.105 mass% is that if the effective A1 concentration is lower than 0.07%, the alloying par at the beginning of plating will be obtained. F e — A 1 — Zn phase formation is insufficient and plating This is because the brittle ⁇ phase can be thickened at the interface of the coated steel sheet during processing, so that only an alloyed hot-dip galvanized steel sheet with inferior coating film adhesion during processing can be obtained.
  • the effective A1 concentration is higher than 0.105%, alloying at a high temperature and for a long time is required, and austenite remaining in the steel is transformed into pearlite. It is difficult to achieve both good strength and good workability.
  • the alloying temperature at the time of the alloying treatment is set to 2 25 + 250 0 X [A 1%] ⁇ ⁇ ⁇ 2 95 5 + 250 0 ⁇ [ ⁇ 1%] where [ ⁇ 1 %]: Performed at a temperature T (° C) that satisfies the effective A1 concentration (% by mass) in the zinc plating bath.
  • the reason for limiting the alloying temperature T to [2 25 + 2500 x [A 1%]] ° C or higher and [295 + 2500 X [A 1%]] ° C or lower is as follows. If the alloying temperature is lower than T force s [2 25 + 250 0 X [A 1%]], alloying does not proceed, or alloying is not proceeded due to insufficient alloying. This is because the surface of the plating is covered with 7-phase and ⁇ -phase, which have poor workability. On the other hand, if the temperature is higher than [295 + 2500 ⁇ [A1%]] ° C, alloying proceeds excessively and exceeds the Fe% during the plating of the present invention, and the plating adheres during processing. This is because the decrease in power increases.
  • the alloying temperature is too high, austenite remaining in the steel is transformed into pearlite, and a steel sheet having the desired high strength and workability cannot be obtained. Therefore, in order to improve the workability as the addition amount of Si increases and the alloy becomes more difficult to alloy, it is effective to lower the effective A 1 concentration in the bath and lower the alloying temperature.
  • Effective A 1 concentration is [0.103-0.0.08XCSi%]]% or less. The reason is that if the effective A 1 concentration is higher than [0.103—0.008 X [S i%]]%, alloying at high temperature and for a long time is necessary, This is because the austenite remaining in the steel transforms into pearlite and the workability deteriorates.
  • the reason why the time required for cooling to a temperature of 400 ° C or less after hot-dip plating is limited to 10 seconds or more and 100 seconds or less is that if it is less than 10 seconds, the concentration of C in the austenite will not increase. This is because the C concentration in the austenite does not reach the level at which the austenite can remain at room temperature. This is because the amount is too small to produce a sufficient amount of residual austenite. Preferably it is 10 seconds or more and 80 seconds or less.
  • the method of heating the alloying furnace is not particularly limited. As long as the temperature of the present invention can be secured, radiant heating by a normal gas furnace or high-frequency induction heating may be used. In addition, it does not matter how to cool from the highest plate temperature after the alloying heating.If the heat is shut off by an air seal or the like after the alloying, it is sufficient to leave it open, and it is quicker. There is no problem with gas cooling, etc., in which cooling is performed quickly.
  • the reason for limiting the temperature of the hot-dip galvanizing bath to less than 460 ° C is that at temperatures above 460 ° C, the formation of the Fe-A1-Zn phase, which is an alloying barrier in the initial stage of plating, proceeds too much. This is because raising the alloying temperature tends to cause a reduction in workability, especially in steels with a high amount of Si added.
  • the lower limit of the bath temperature is not particularly limited, but since the melting point of zinc is 419.47 ° C, it can be melted only at a physically higher bath temperature.
  • a slab having the composition shown in Table 1 was heated to 115 ° C, and a hot-rolled steel strip of 4.5 mm was obtained at a finishing temperature of 910 ° C to 930 ° C. Winded at 0 ° C. After pickling, cold rolling is performed to form a 1.6 mm cold-rolled steel strip, and heat treatment and plating are performed using the in-line annealing type continuous hot-dip galvanizing equipment under the conditions shown in Table 2. To produce alloyed molten zinc-plated steel sheets.
  • a JIS No. 5 test piece was cut out from each steel sheet and subjected to a tensile test at room temperature to determine the tensile strength (T S) and elongation (E 1).
  • T S tensile strength
  • E elongation
  • a tensile strength of 49 OMPa or more was accepted, and an elongation of [52-0.035 X tensile strength]% or more was accepted.
  • the adhesion amount of the plating film and the concentrations of Fe and A1 were measured by dissolving the film with hydrochloric acid containing an inhibitor and measuring the concentration by ICP. The Fe concentration during plating was 5 to 15%.
  • the present invention was a galvannealed steel sheet having high strength and good workability.
  • a slab having the composition indicated by H in Table 1 was heated to 115 ° C, and a hot-rolled steel strip of 4.5 mm was formed at a finishing temperature of 910 ° C to 930 ° C. It was wound at 680 ° C.
  • cold rolling was performed to form a 1.6 mm cold-rolled steel strip, and heat treatment and plating were performed using the in-line annealing continuous hot-dip galvanizing equipment under the conditions shown in Table 3. Then, an alloyed hot-dip galvanized steel sheet was manufactured.
  • the tensile strength (T S) and elongation (E 1) were determined by cutting a JIS No. 5 test piece from each steel sheet and performing a tensile test at room temperature.
  • a tensile strength of 490 MPa or more was accepted, and an elongation of [52-0.0355 X tensile strength]% or more was accepted.
  • the adhesion amount of the plated film and the concentrations of Fe and A1 were measured by ICP after dissolving the film with hydrochloric acid containing an inhibitor. The Fe concentration during plating was 5 to 15%.
  • the plating adhesion was measured by bending the test piece with the adhesive tape (cellophane tape) on the compression side beforehand, bending the test piece in a V-shape so that the bending angle was 60 °, peeling off the adhesive tape after bending back, and plating The degree of peeling was visually observed and evaluated according to the following classification.
  • Plating layer peel width less than 1 mm : : Plating layer peel width lmm or more and less than 6 mm
  • Plating layer peel width of 6 mm or more and less than 12 mm
  • X Plating layer With a peel width of 12 m or more.
  • the evaluation results are as shown in Table 3.
  • No. 4 The plating adhesion was rejected because the effective A1 concentration in the plating bath was outside the range of the present invention.
  • No. 7 elongation was rejected because the effective A 1 concentration in the plating bath was outside the range of the present invention.
  • No. 8 Fe% during plating was rejected because the effective A1 concentration in the plating bath was outside the range of the present invention.
  • the products of the present invention were alloyed hot-dip galvanized steel sheets having high strength and good workability.
  • the present invention has made it possible to provide a high-strength alloyed hot-dip galvanized steel sheet having excellent workability and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

優れた加工性と高強度を同時に達成できる、合金化溶融亜鉛めっき鋼板並びにその製造方法を提供することを目的とし、質量%で、C:0.05~0.15%、Si:0.3~2.0%、Mn:1.0~2.8%、P:0.03%以下、S:0.02%以下、Al:0.005~0.5%、N:0.0060%以下を含有し、残部Feおよび不可避的不純物からなり、さらに%C、%Si、%MnをそれぞれC、Si、Mn含有量とした時に(%Mn)/(%C)≧12かつ(%Si)/(%C)≧4が満たされる高強度鋼板上にAl:0.05~0.5質量%、Fe:5~15質量%を含有し、残部がZnおよび不可避的不純物からなる合金化溶融亜鉛めっき層を有し、引張強さF(MPa)と伸びL(%)の関係が、L≧52−0.035×Fを満足することを特徴とする加工性の優れた高強度合金化溶融亜鉛めっき鋼板。

Description

加工性の優れた高強度合金化溶融亜鉛めつき鋼板及びその製造方法
技術分野
本発明は、 高強度合金化溶融亜鉛めつき鋼板及びその製造方法に 係わ.り、 更に詳しく は優れた加工性を有し、 種々の用途、 例えば建 明
材用ゃ自動車用鋼板と して適用できるめつき鋼板に関する。
背景技術 書 耐食性の良好なめっき鋼板として合金化溶融亜鉛めつき鋼板があ る。 この合金化溶融亜鉛めつき鋼板は、 通常、 鋼板を脱脂後、 無酸 化炉にて予熱し、 表面の清浄化および材質確保のために還元炉にて 還元焼鈍を行い、 溶融亜鉛浴に浸漬し、 付着量制御した後合金化を 行う ことによって製造される。 その特徴と して、 耐食性およびめつ き密着性等に優れることから、 自動車、 建材用途等を中心と して広 く使用されている。
特に近年、 自動車分野においては衝突時に乗員を保護するような 機能の確保と共に燃費向上を目的と した軽量化を両立させるために 、 めっき鋼板の高強度化が必要とされてきている。
加工性を悪化させずに鋼板を高強度化するためには、 S iや M n 、 P といった元素を添加することが有効であるが、 これらの元素の 添加は合金化を遅延させるため、 軟鋼に比べて高温長時間の合金化 を必要とする。 この高温長時間の合金化は、 鋼板中に残存していた オーステナイ トをパーライ トに変態させ、 加工性を低下させるため 、 結果として添加元素の効果を相殺することになる。 S i 添加高強 度鋼板の合金化に関しては、 特開平 5— 2 7 9 8 2 9号公報におい て、 連続溶融亜鉛めつきラインでも実現可能な製造方法が開示され ているが、 その製造条件の範囲が極めて広く記述されており、 実際 の生産における有用性に乏しい。 また、 特開平 1 1 一 1 3 1 1 4 5 号公報に開示されている製造方法は、 残留オーステナイ トを生成さ せるためにめつき後低温保持を行っているが、 これは設備の増大を 招くため生産性を悪化させる。 発明の開示
そこで、 本発明は上記問題点を解決し、 加工性の優れた高強度合 金化溶融亜鉛めつき鋼板と、 新たな設備を設置することなく、 加工 性の優れた高強度合金化溶融亜鉛めつき鋼板を製造する方法を提案 するものである。
本発明者らは、 高強度鋼板のめっき処理について鋭意研究を重ね た結果、 C、 S i 、 Mnがー定量以上添加された鋼を、 熱処理条件 及びめつき条件を最適化した連続溶融亜鉛めつき設備でめっき処理 することにより、 加工性の優れた高強度合金化溶融亜鉛めつき鋼板 を製造できることを見いだした。
すなわち、 本発明の要旨とするところは、 以下のとおりである。 ( 1 ) 質量。/。で、
C : 0. 0 5〜 0. 1 5 %、
S i : 0. 3〜'2. 0 %、
M n : 1. 0〜 2. 8 %、
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、
残部 F eおよび不可避的不純物からなり、 さ らに% C、 % S i 、 % M nをそれぞれ C、 S i 、 M n含有量と した時に (% M n ) / (% C) ≥ 1 2、 かつ (% S i ) / ( % C ) ≥ 4が満たされる高強度鋼 板の表面上に、 A 1 : 0. 0 5〜 0. 5質量%、 F e : 5〜 1 5質 量%を含有し、 残部が Z nおよび不可避的不純物からなる合金化溶 融亜鉛めつき層を有する鋼板において、 引張強さ F (MP a ) と伸 び (%) の関係が、 L≥ 5 2— 0. 0 3 5 X F、 を満足すること を特徴とする加工性の優れた高強度合金化溶融亜鉛めつき鋼板。
( 2 ) ( 1 ) に記載の化学成分からなる組成のスラブを A r 3 点以 上の温度で仕上圧延を行い、 5 0〜 8 5 %の冷間圧延を施した後、 連続溶融亜鉛めつき設備で 7 0 0 °C以上 8 5 0 °C以下のフェライ ト 、 オーステナイ トの二相共存温度域で焼鈍し、 その最高到達温度か ら 6 5 0 °Cまでを平均冷却速度 0. 5〜 1 0 °C/秒で、 引き続いて 6 5 0 °Cから 5 0 0 °Cまでを平均冷却速度 3 °CZ秒以上で冷却し、 5 0 0 °Cからめつき浴までを 3 0秒以上 2 4 0秒以下保持した後、 溶融亜鉛めつき処理を行う ことによって、 前記冷延鋼板の表面上に 溶融亜鉛めつき層を形成し、 次いで、 前記溶融亜鉛めつき層が形成 された前記鋼板に対し合金化処理を施すことによって、 前記鋼板の 表面上に合金化溶融亜鉛めつき層を形成する合金化溶融亜鉛めつき 鋼板の製造方法において、
前記溶融亜鉛めつき処理を、 浴中有効 A 1濃度 : 0. 0 7〜 0. 1 0 5質量%、 残部が Z nおよび不可避的不純物からなる成分組成の 溶融亜鉛めつき浴中で行い、 そして、 前記合金化処理を、
2 2 5 + 2 5 0 0 X 〔A 1 %〕 ≤ T≤ 2 9 5 + 2 5 0 0 X [A 1 %
] 、
伹し、 〔A 1 %〕 : 亜鉛めつき浴中の浴中有効 A 1濃度 (質量%) を満足する温度 T (°C) において行う ことを特徴とする加工性の優 れた高強度合金化溶融亜鉛めつき鋼板の製造方法。
( 3 ) ( 2 ) に記載の高強度合金化溶融亜鉛めつき鋼板の製造方法 において、 浴中有効 A 1濃度を、
〔A 1 %〕 ≤ 0. 1 0 3 - 0. 0 0 8 X 〔S i %〕 、
但し、 〔 S i %〕 : 鋼板中の S i含有量 (質量%) 、
を満足する浴中有効 A 1濃度 (質量%) において行う ことを特徴と する加工性の優れた高強度合金化溶融亜鉛めつき鋼板の製造方法。
( 4) ( 2 ) 〜 ( 3 ) のいずれかの項に記載の高強度合金化溶融亜 鉛めつき鋼板の製造方法において、 溶融めつき後 4 0 0 °C以下の温 度に冷却されるまでの時間を 1 0秒以上 1 0 0秒以下とすることを 特徴とする加工性の優れた高強度合金化溶融亜鉛 つき鋼板の製造 方法。
( 5 ) ( 2 ) 〜 ( 4 ) のいずれかの項に記載の高強度合金化溶融亜 鉛めつき鋼板の製造方法において、 溶融亜鉛めつき浴の温度を 4 6 0 °C未満とすることを特徴とする加工性の優れた高強度合金化溶融 亜鉛めつき鋼板の製造方法。
( 6 ) ( 2 ) 〜 ( 5 ) のいずれかの項に記載の高強度合金化溶融亜 鉛めつき鋼板の製造方法において、 焼鈍後 4 5 0 °C以下まで冷却し た後、 4 5 0 °Cを超える温度まで再加熱を行い溶融亜鉛めつき処理 を行う ことを特徴とする加工性の優れた高強度合金化溶融亜鉛めつ き鋼板の製造方法。 発明を実施のための最良の形態
以下に本発明を詳細に説明する。
まず、 C、 S i 、 Mn、 P、 S、 A l 、 Nの数値限定理由につい て述べる。
Cは、 マルテンサイ トゃ残留オーステナイ トによる組織強化で鋼 板を高強度化しよう とする場合に必須の元素である。 Cの含有量を 0. 0 5 %以上とする理由は、 Cが 0. 0 5 %未満ではミ ス トや噴 流水を冷却媒体と して焼鈍温度から急速冷却することが困難な溶融 亜鉛めつきラインにおいてセメ ンタイ トゃパーライ トが生成しやす く、 必要とする引張強さの確保が困難であるためである。 一方、 C の含有量を 0. 1 5 %以下とする理由は、 Cが 0. 1 5 %を超える と、 スポッ ト溶接で健全な溶接部を形成することが困難となる と同 時に Cの偏析が顕著となり加工性が劣化するためである。
S i は、 鋼板の加工性、 特に伸びを大きく損なう ことなく強度を 増す元素と して 0. 3〜 2. 0 %添加しかつ C含有量の 4倍以上の 質量%とする。 S i の含有量を 0. 3 %以上とする理由は、 S i が 0. 3 %未満では必要とする引張強さの確保が困難であるためであ り、 S i の含有量を 2. 0 %以下とする理由は、 S i が 2. 0 %を 超えると強度を増す効果が飽和すると共に延性の低下が起こるため である。 また C含有量の 4倍以上の質量%とすることで、 めっき直 後に行う合金化処理のための再加熱でパーライ トおよびべィナイ ト 変態の進行を著しく遅滞させ、 室温まで冷却後にも体積率で 3〜 2 0 %のマルテンサイ トおよび残留オーステナイ トがフェライ ト中に 混在する金属組織とすることができる。
Mnは、 Cと ともにオーステナイ 卜の自由エネルギーを下げるた め、 めっき浴に鋼帯を浸漬するまでの間にオーステナイ トを安定化 する目的で 1. 0 %以上添加する。 また、 C含有量の 1 2倍以上の 質量%を添加することによ り、 めっき直後に行う合金化処理のため の再加熱でパーライ トおよびペイナイ ト変態の進行を著しく遅滞さ せ、 室温まで冷却後にも体積率で 3〜 2 0 %のマルテンサイ トおよ び残留オーステナイ トがフェライ ト中に混在する金属組織とできる 。 しかし、 添加量が過大になる とスラブに割れが生じやすく、 また スポッ ト溶接性も劣化するため、 2. 8 %を上限とする。
Pは一般に不可避的不純物と して鋼に含まれるが、 その量が 0. 0 3 %を超えるとスポッ ト溶接性の劣化が著しいうえ、 本発明にお けるような引張強さが 4 9 0 MP a を超すよ うな高強度鋼板では靭 性とともに冷間圧延性も著しく劣化するため、 その含有量は 0. 0 3 %以下とする。 Sも一般に不可避的不純物と して鋼に含まれるが 、 その量が 0. 0 2 %を超えると、 圧延方向に伸張した M n Sの存 在が顕著.となり、 鋼板の曲げ性に悪影響をおよぼすため、 その含有 量は 0. 0 2 %以下とする。
A 1 は、 鋼の脱酸元素と して、 また A 1 Nによる熱延素材の細粒 化、 および一連の熱処理工程における結晶粒の粗大化を抑制し材質 を改善するために 0. 0 0 5 %以上添加する必要がある。 ただし、 0. 5 %を超えるとコス ト高となるばかり力 、 表面性状を劣化させ るため、 その含有量は 0. 5 %以下とする。 Nもまた一般に不可避 的不純物と して鋼に含まれるが、 その量が 0. 0 0 6 %を超える と 、 伸びと ともに脆性も劣化するため、 その含有量は 0. 0 0 6 %以 下とする。
また、 これらを主成分とする鋼に N b、 T i 、 B、 M o、 C u、 S n、 Z n、 Z r、 W、 C r、 N i 、 C o、 C a、 希土類元素 (Y を含む) 、 V、 T a、 H f 、 P b、 M g、 A s、 S b、 B i を合計 で 1 %以下含有しても本発明の効果を損なわず、 その量によっては 耐食性や加工性が改善される等好ましい場合もある。
次に、 合金化溶融亜鉛めつき層について述べる。
本発明において合金化溶融亜鉛めつき層の A 1組成を 0. 0 5〜 0. 5質量%に限定した理由は、 0. 0 5質量%未満では合金化処 理時において Z n— F e合金化が進みすぎ、 地鉄界面に脆い合金層 が発達しすぎてめっき密着性が劣化するためであり、 0. 5質量% を超えると F e - A 1 一 Z n系パリア層が厚く形成され過ぎ合金化 処理時において合金化が進まないため目的とする鉄含有量のめっき が得られないためである。
また、 F e組成を 5〜 1 5質量%に限定した理由は、 5質量%未 満ではめつき表面に柔らかい Z n— F e合金が形成されプレス成形 性を劣化させるためであり、 1 5質量%を超えると地鉄界面に脆い 合金層が発達し過ぎてめっき密着性が劣化するためである。 好まし く は 7〜 1 3質量0 /0である。
本発明鋼板は、 溶融亜鉛めつき浴中あるいは亜鉛めつき中に P b 、 S b、 S i 、 S n、 M g、 Mn、 N i 、 C r、 C o、 C a、 C u 、 L i 、 T i 、 B e、 B i 、 希土類元素の 1種または 2種以上を含 有、 あるいは混入してあっても本発明の効果を損なわず、 その量に よっては耐食性や加工性が改善される等好ましい場合もある。 合金 化溶融亜鉛めつきの付着量については特に制約は設けないが、 耐食 性の観点から 2 0 g /m2以上、 経済性の観点から 1 5 0 g Zm2以 下であることが望ましい。
本発明における加工性の優れた高強度合金化溶融亜鉛めつき鋼板 とは、 引張強さ T Sが 4 9 0 MP a以上で、 引張強さ F (M P a ) と伸び L (%) の関係が、 L≥ 5 2— 0. 0 3 5 X Fを満足する性 能を持つ鋼板である。
伸び : Lを [ 5 2— 0. 0 3 5 X F ] %以上と限定した理由は、 L力 S [ 5 2 - 0. 0 3 5 X F ] よ り低い場合、 深絞り等の厳しい加 ェのときに破断する等加工性が不十分であるためである。
次に、 製造条件の限定理由について述べる。
その目的はマルテンサイ トおよび残留オーステナイ トを 3〜 2 0 o/o含む金属組織と し、 高強度とプレス加工性が良いことが両立させ ることにある。 マルテンサイ トおよび残留オーステナイ トの体積率 が 3 %未満の場合には高強度とならない。 一方、 マルテンサイ トぉ よび残留オーステナイ トの体積率が 2 0 %を超える と、 高強度では あるものの鋼板の加工性が劣化し、 本発明の目的が達成されない。 熱間圧延に供するスラブは特に限定するものではなく、 連続铸造 スラブや薄スラブキャスター等で製造したものであればよい。 また 铸造後直ちに熱間圧延を行う連続铸造〜直送圧延 (C C〜D R ) の ようなプロセスにも適合する。
熱間圧延の仕上温度は鋼板のプレス成形性を確保するという観点 から A r 3点以上とする必要がある。 熱延後の冷却条件ゃ卷取温度 は特に限定しないが、 巻取温度はコイル両端部での材質ばらつきが 大ききなることを避け、 またスケール厚の増加による酸洗性の劣化 を避けるためには 7 5 0 °C以下とし、 また部分的にべィナイ トゃマ ルテンサイ トが生成すると冷間圧延時に耳割れを生じやすく、 極端 な場合には板破断することもあるため 5 5 0 °C以上とすることが望 ましい。 冷間圧延は通常の条件でよく、 フェライ トが加工硬化しや すいよ うにマルテンサイ トおよび残留オーステナイ トを微細に分散 させ、 加工性の向上を最大限に得る 目的からその圧延率は 5 0 %以 上とする。 一方、 8 5 %を超す圧延率で冷間圧延を行う ことは多大 の冷延負荷が必要となるため現実的ではない。
ライン内焼鈍方式の連続溶融亜鉛めつき設備で焼鈍する際、 その 焼鈍温度は 7 0 0 °C以上 8 5 0 °C以下のフェライ ト、 オーステナイ トニ相共存域とする。 焼鈍温度が 7 0 0 °C未満では再結晶が不十分 であり、 鋼板に必要なプレス加工性を具備できない。 8 5 0 °Cを超 すよ うな温度で焼鈍することは鋼帯表面に S iや M nの酸化物層の 成長が著しく、 めっき不良が起こりやすくなるため好ましくない。 また、 引き続きめっき浴へ浸潰し冷却する過程で、 6 5 0 °Cまでを 緩冷却しても十分な体積率のフェライ トが成長せず、 6 5 0 °Cから めっき浴までの冷却途上でオーステナイ トがマルテンサイ トに変態 し、 その後合金化処理のための再加熱でマルテンサイ トが焼き戻さ れてセメ ンタイ トが析出するため高強度とプレス加工性の良いこと の両立が困難となる。
鋼帯は焼鈍後、 引き続きめっき浴へ浸漬する過程で冷却されるが
、 この場合の冷却速度はその最高到達温度から 6 5 0 °Cまでを平均 0 . 5〜 1 0 °Cノ秒で、 引き続いて 6 5 0 °Cから 5 0 0 °Cまでを平 均冷却速度 3 °C /秒で冷却し、 5 0 0 °Cからめつき浴までを 3 0秒 以上 2 4 0秒以下保持した後、 めっき浴へ浸漬する。
6 5 0 °Cまでを平均 0 . 5〜 1 0 °C /秒とするのは加工性を改善 するためにフェライ トの体積率を増すと同時に、 オーステナイ トの C濃度を増すことにより、 その生成自由エネルギーを下げ、 マルテ ンサイ ト変態の開始する温度をめつき浴温度以下とすることを目的 とする。 6 5 0 °Cまでの平均冷却速度を 0 . 5 °C /秒未満とするた めには連続溶融亜鉛めつき設備のライン長を長くする必要があり コ ス ト高となるため、 6 5 0 °Cまでの平均冷却速度は 0 . 5 °C Z秒以 上とする。
6 5 0 °Cまでの平均冷却速度を 0 . 5 °C /秒未満とするためには 、 最高到達温度を下げ、 オーステナイ トの体積率が小さい温度で焼 鈍することも考えられるが、 その場合には実際の操業で許容すべき 温度範囲に比べて適切な温度範囲が狭く、 僅かでも焼鈍温度が低い とオーステナイ トが形成されず目的を達しない。
一方、 6 5 0 °Cまでの平均冷却速度を 1 0 °C Z秒を超えるように すると、 フェライ トの体積率の増加が十分でないばかり力 、 オース テナイ ト中 C濃度の増加も少 いため、 鋼帯がめっき浴に浸漬され る前にその一部がマルテンサイ ト変態し、 その後合金化処理のため の加熱でマルテンサイ トが焼き戻されてセメ ンタイ トとして析出す るため高強度と加工性の良いことの両立が困難となる。
6 5 0 °Cから 5 0 0 °Cまでの平均冷却速度を 3 °C /秒以上とする のは、 その冷却途上でオーステナイ トがパーライ トに変態するのを 避けるためであり、 その冷却速度が 3 °C /秒未満では本発明で規定 する温度で焼鈍し、 また 6 5 0 °Cまで冷却したと してもパーライ ト の生成を避けられない。 平均冷却速度の上限は特に規定しないが、 平均冷却速度 2 0 °C /秒を超えるように鋼帯を冷却するこ とは ドラ ィな雰囲気では困難である。
5 0 0 °Cからめつき浴までを 3 0秒以上 2 4 0秒以下保持する理 由は、 3 0秒未満ではオーステナイ ト中への Cの濃化が不十分とな り、 オーステナイ ト中の C濃度が、 室温でのオーステナイ トの残留 を可能とする水準まで到達しないためであり、 2 4 0秒を超えると 、 ベイナイ ト変態が進行し過ぎて、 オーステナイ ト量が少なくなり 、 十分な量の残留オーステナイ トを生成できないためである。
さ らに、 この 5 0 0 °Cからめつき浴まで保持する間、 一度 4 5 0 °C以下まで冷却し、 2 5秒以上保持するとオーステナイ ト中への C の濃化が促進され加工性の優れた高強度合金化溶融亜鉛めつきが得 られる。 ただし、 4 5 0 °C以下でめっき浴中へ板を浸漬させるとめ つき浴が冷却され凝固するため、 4 5 0 °Cを超える温度まで再加熱 を行った後、 溶融亜鉛めつき処理を行う必要がある。
本発明による合金化溶融亜鉛めつき鋼板の製造において、 用いる 溶融亜鉛めつき浴は A 1濃度が浴中有効 A 1濃度 Cで 0 . 0 7 〜 0 • 1 0 5質量%に調整する。 ここで、 めっき浴中の有効 A 1濃度と は浴中 A 1濃度から浴中 F e濃度を差し引いた値である。
有効 A 1濃度を 0 . 0 7 〜 0 . 1 0 5質量%に限定する理由は、 有効 A 1 濃度が 0 . 0 7 %よ り も低い場合には、 めっき初期の合金 化パリ ァとなる F e — A 1 — Z n相の形成が不十分であってめっき 処理時にめっき鋼板界面に脆い Γ相が厚くできるため、 加工時のめ つき皮膜密着力が劣る合金化溶融亜鉛めつき鋼板しか得られないた めである。 一方、 有効 A 1濃度が 0. 1 0 5 %よ り も高い場合には 、 高温長時間の合金化が必要となり、 鋼中に残存していたオーステ ナイ トがパーライ トに変態するため、 高強度と加工性の良いことの 両立が困難となる。
更に、 本発明において合金化処理時の合金化温度を 2 2 5 + 2 5 0 0 X [A 1 %] ≤ Τ≤ 2 9 5 + 2 5 0 0 Χ 〔Α 1 %〕 但し、 〔Α 1 %〕 : 亜鉛めつき浴中の浴中有効 A 1濃度 (質量%) を満足する 温度 T (°C) において行う。
合金化温度 Tを 〔 2 2 5 + 2 5 0 0 x 〔A 1 %〕 ] °C以上、 〔 2 9 5 + 2 5 0 0 X 〔 A 1 %〕 〕 °C以下に限定した理由は、 合金化温 度 T力 s [ 2 2 5 + 2 5 0 0 X 〔A 1 %〕 〕 でよ り も低いと合金化が 進行しないか、 或いは合金化の進行が不十分で合金化未処理となり めつき表層が加工性の劣る 7?相や ζ相に覆われるためである。 また 、 丁が [ 2 9 5 + 2 5 0 0 Χ 〔A 1 %〕 〕 °Cよ り も高いと、 合金化 が進み過ぎて本発明のめつき中 F e %を超え、 加工時にめっき密着 力が低下することが増えるためである。
本発明において合金化温度が高すぎると鋼中に残存していたォー ステナイ トがパーライ トに変態し、 目的の高強度と加工性を両立し た鋼板を得ることができない。 従って、 S i の添加量が大きくなり 難合金化するほど、 加工性を向上させるためには、 浴中有効 A 1 濃 度を低下させ合金化温度を下げることが有効となる。
具体的には、 〔 A 1 %〕 ≤ 0. 1 0 3 - 0. 0 0 8 X .〔 S i %〕 但し、 〔 S i %:) : 鋼板中の S i含有量 (質量%) を満足する浴中 有効 A 1濃度 (質量%) においてめっきを行う。
有効 A 1 濃度を 〔 0. 1 0 3— 0. 0 0 8 X C S i % ] 〕 %以下 に限定する理由は、 有効 A 1濃度が 〔 0 . 1 0 3— 0 . 0 0 8 X [ S i %〕 〕 %よ り高い場合には、 高温長時間の合金化が必要となり 、 鋼中に残存していたオーステナイ 卜がパーライ トに変態し、 加工 性が劣化するためである。
溶融めっき後 4 0 0 °C以下の温度に冷却されるまでの時間を 1 0 秒以上 1 0 0秒以下に限定する理由は、 1 0秒未満ではオーステナ ィ ト中への Cの濃化が不十分となり、 オーステナイ ト中の C濃度が 、 室温でのオーステナイ トの残留を可能とする水準まで到達しない ためであり、 1 0 0秒を超えると、 ベイナイ ト変態が進行し過ぎて 、 オーステナイ ト量が少なく なり、 十分な量の残留オーステナイ ト を生成できないためである。 好ましく は 1 0秒以上 8 0秒以下であ る。
本発明において合金化炉加熱方式については特に限定するもので はなく、 本発明の温度が確保できれば、 通常のガス炉による輻射.加 熱でも、 高周波誘導加熱でもかまわない。 また、 合金化加熱後の最 高到達板温度から冷却する方法も、 問う ものではなく、 合金化後、 エアーシール等によ り、 熱を遮断すれば、 開放放置でも十分であり 、 よ り急速に冷却するガスクーリ ング等でも問題ない。
溶融亜鉛めつき浴の温度を 4 6 0 °C未満に限定する理由は、 4 6 0 °C以上ではめつき初期の合金化パリアとなる F e - A 1 一 Z n相 の形成が進み過ぎ合金化温度を上昇させるため、 特に S i 添加量の 高い鋼種で加工性を低下させる原因となり易いためである。 浴温の 下限は特に限定しないが、 亜鉛の融点が 4 1 9 . 4 7 °Cであること から、 物理的にそれ以上の浴温でしか溶融めつきできない。 実施例
以下、 実施例によ り本発明を具体的に説明する。 (実施例 1 )
表 1 に示す組成からなるスラブを 1 1 5 0 °Cに加熱し、 仕上温度 9 1 0〜 9 3 0 °Cで 4. 5 mmの熱間圧延鋼帯と し、 5 8 0〜 6 8 0 °Cで卷き取った。 酸洗後、 冷間圧延を施して 1. 6 mmの冷間圧 延鋼帯と した後、 ライン内焼鈍方式の連続溶融亜鉛めつき設備を用 いて表 2に示すような条件の熱処理とめつきを行い、 合金化溶融亜 鉛めつき鋼板を製造した。
各鋼板から J I S 5号試験片を切り出し、 常温での引張試験を行 う ことによ り、 引張強さ (T S ) 、 伸び (E 1 ) を求めた。 引張強 さは 4 9 O MP a以上を合格と し、 伸びは 〔 5 2— 0. 0 3 5 X引 張強さ〕 %以上を合格と した。 めっき被膜の付着量及び F e、 A 1 濃度は、 被膜をィンヒ ビター入りの塩酸で溶解し、 I C Pにより測 定した。 めっき中の F e濃度は 5〜 1 5 %を合格と した。
評価結果は表 2に示す通りである。 番号 1 は鋼中の C含有量が本 発明の範囲外であるため引張り強さが不足した。 番号 2は鋼中の S i含有量が本発明の範囲外であるため引張り強さ、 伸び共に不合格 であった。 番号 3は鋼中の P含有量が本発明の範囲外であるため伸 びが不合格であった。 番号 7、 8、 1 7は焼鈍時の最高到達温度が 本発明の範囲外であるため伸びが不合格であった。 番号 9は鋼中の M n含有量が本発明の範囲外であるため引張り強さ、 伸び共に不合 格であった。 番号 1 2、 2 9は合金化温度が本発明の範囲外である ため伸びが不合格であった。 番号 1 5は合金化温度が本発明の範囲 外であるためめつき中の F e %が不合格であった。 番号 2 0、 3 0 は最高到達温度から 6 5 0 °Cまでの平均冷速が本発明の範囲外であ るため伸びが不合格であった。 番号 2 1 は 5 0 0 °Cからめつき浴ま での保持時間が含有量が本発明の範囲外であるため伸びが不合格で あった。 番号 2 6は鋼中の Mn含有量 ZC含有量が本発明の範囲外 であるため伸びが不合格であった。 番号 2 7は鋼中の S i含有量/ C含有量が本発明の範囲外であるため伸びが不合格であった。 番号 3 1 は 6 5 0 °Cから 5 0 0 °Cまでの平均冷速が本発明の範囲外であ るため伸びが不合格であった。 番号 3 2は鋼中の M n含有量が本発 明の範囲外であるため伸びが不合格であつた。 番号 3 3は鋼中の C 含有量が本発明の範囲外であるため伸びが不合格であった。 これら 以外の本発明品は、 高強度で加工性が良好な合金化溶融亜鉛めつき 鋼板であった。
また、 めっき浴温 4 6 0 °C未満では、 鋼中 S i含有量に関係なく 高強度で加工性が良好な合金化溶融亜鉛めつき鋼板の製造が可能で あった。 一方、 4 7 0 °Cでは、 番号 5の低 S i含有量の場合や、 番 号 3 5の高 S i含有量で低 F e %の場合は製造可能であるが、 番号 3 6の高 S i含有量で F e %を上げよう とすると、 合金化温度を上 げる必要があり、 結果と して伸びが不合格になる。
91
Figure imgf000016_0001
Figure imgf000016_0003
Figure imgf000016_0004
Figure imgf000016_0005
Figure imgf000016_0002
試料 鋼板 焼純 B B 650oCまて 500 Cまで 500°Cから 有効 AI 合金化 400°C I引張強さ 伸び めっき組成 めっき 備考 番号 記号 到達' ί の平均冷 51の平均冷速めっき浴までの ik度 までの時間 付着量
(°C) (°cz秒) (°cz秒) 保持時間 (秒) (%) (°C) (°C) (秒) (MPa) (%) Al% Fe°/o (s/m2)
1 A 770 5 15 5 0.095 450 490 60 423 38 0.3 10.2 36 比較例
2 B 760 2 8 10 0.1 450 500 60 459 34 0.3 11.5 35
3 C 760 4 10 10 0.095 450 490 60 630 28 0.3 10.8 35
4 D 760 2 8 30 0.095 450 490 60 597 35 0.3 10.4 37本発明例
5 D 760 2 8 30 0.095 470 490 60 596 35 0.3 10.5 35
6 D 760 2 8 30 0.095 440 490 60 597 35 0.3 10.5 3 &
7 D 660 2 8 30 0.095 450 490 60 967 5 0.3 10.6 36 比較例
8 D 860 2 8 30 0.095 450 490 60 566 18 0.3 10.5 38
9 E 780 3 15 10 0.095 450 490 60 431 35 0.3 10.3 40
10 F 780 3 10 40 0.095 450 490 60 543 38 0.3 10.2 35本発明例
11 F 780 3 10 40 0.095 450 525 50 522 35 0.3 1 1.5 37
12 F 800 3 6 30 0.095 450 550 50 516 26 0.3 12.3 38 比較例
13 G 770 1 6 35 0.095 450 490 60 595 36 0.3 9.8 40本発明例
14 G 830 1 6 35 0.095 450 465 70 ' 734 28 0.3 7.6 36
15 G 830 1 6 35 0.095 450 450 80 751 30 0.3 4.9 38 比較例
16 G 830 1 6 35 0.095 450 490 60 71 1 31 0.3 10 37本発明例
17 G 890 2 8 - 30 0.095 450 490 60 713 17 0.3 9.8 39 比較例
18 H 780 2 7 30 0.09 450 490 60 600 37 0.3 9.7 35本発明例
19 H 820 1 4 30 0.09 450 490 60 61 1 36 0.3 9.9 36
20 H 820 15 18 5 0.09 450 490 60 718 14 0.3 9.6 39 比較例
21 H 820 1 4 20 0.09 450 490 60 604 30 0.3 10 36
22 H 820 1 4 150 0.09 450 470 80 627 39 0.3 8.9 36本発明例
23 I 800 2 4 35 0.085 450 500 60 620 35 0.3 9.3 37
24 J 770 0.8 3 50 0.095 450 490 60 777 29 0.3 9.7 3 &
25 J 770 0.8 3 50 0.095 450 465 70 770 27 0.3 7.9 35
26 K 790 2 4 30 0.095 450 490 60 627 26 0.3 10.3 37 比較例
27 し 760 2 10 30 0.095 450 490 60 683 22 0.3 10.6 36
28 Μ 770 3 12 - 30 0.095 450 490 60 828 27 0.3 10.3 39 本発明例
29 Μ 770 3 12 30 0.095 450 550 50 670 18 0.3 1 1.9 41 比較例
30 Μ 770 0.3 15 30 0.095 450 490 60 695 18 0.3 10.2 38
31 Μ 770 5 1 90 0.095 450 490 60 645 19 0.3 10.4 35
32 Ν 760 2 4 30 0.095 450 490 60 987 12 0.3 9.9 36
33 Ο 770 2 4 30 0.095 450 500 60 1120 8 0.3 9.5 36
34 Ρ 830 2 4 30 0.085 450 500 60 875 27 0.3 8.4 37本発明例
35 Ρ 830 2 4 30 0.085 470 500 60 875 27 0.3 6.9 38
36 Ρ 830 2 ' 4 30 0.085 470 520 60 798 21 0.3 8.1 38 比較例
37 Q 830 2 4 30 0.085 450 500 60 783 27 0.3 8.6 36 本発明例
(実施例 2 )
表 1 の Hに示す組成からなるスラブを 1 1 5 0 °Cに加熱し、 仕上 温度 9 1 0〜 9 3 0 °Cで 4 . 5 m mの熱間圧延鋼帯と し、 5 8 0〜 6 8 0 °Cで卷き取った。 酸洗後、 冷間圧延を施して 1 . 6 m mの冷 間圧延鋼帯と した後、 ライン内焼鈍方式の連続溶融亜鉛めつき設備 を用いて表 3に示すような条件の熱処理とめっきを行い、 合金化溶 融亜鉛めつき鋼板を製造した。 引張強さ (T S ) 、 伸び (E 1 ) は 、 各鋼板から J I S 5号試験片を切り出し、 常温での引張試験を行 う ことにより求めた。 引張強さは 4 9 0 M P a以上を合格とし、 伸' びは 〔 5 2— 0 . 0 3 5 X引張強さ〕 %以上を合格と した。 めっき 被膜の付着量及び F e、 A 1濃度は、 被膜をイ ンヒ ビター入りの塩 酸で溶解し、 I C Pによ り測定した。 めっき中の F e濃度は 5〜 1 5 %を合格と した。
めっき密着性は、 あらかじめ圧縮側に密着テープ (セロハンテー プ) を貼った試験片を曲げ角度が 6 0 ° となるよ うに V字状に試験 片を曲げ、 曲げ戻し後に密着テープをはがして、 めっきの剥離の程 度を目視で観察して、 以下の分類で評価し、 △以上を合格と した。 ◎ : めっき層の剥離幅が 1 m m未満のもの〇 : めっき層の剥離幅が l m m以上 6 m m未満のもの△ : めっき層の剥離幅が 6 m m以上 1 2 m m未満のもの X : めっき層の剥離幅が 1 2 m以上のもの。
評価結果は表 3に示す通りである。 番号 4はめつき浴中の有効 A 1濃度が本発明の範囲外であるためめつき密着性が不合格であった 。 番号 7はめつき浴中の有効 A 1 濃度が本発明の範囲外であるため 伸びが不合格になった。 番号 8はめつき浴中の有効 A 1濃度が本発 明の範囲外であるためめつき中の F e %が不合格であつた。 これら 以外の本発明品は、 高強度で加工性が良好な合金化溶融亜鉛めつき 鋼板であった。 · 試料 鋼板 焼鈍時 650。Cまで 500oCまで 500。C力、ら 有効 AI /& /皿 合金化 400°C I引張強さ 伸び めっき組成 めっき めっき 備考 杳可 記 ·¾■ 最高到達温度の平均冷速の平均冷連めっき浴までの までの時間 付着量 密着性
(°C) (°C 秒) (Dcノ秒) 保持時間 (秒) (%) (°C) (°C) (秒) (MPa) (%) Al% Fe% (g/m2)
1 H 820 1 4 30 0.09 450 490 60 611 36 0.3 9.9 36 〇 本発明例
2 H 820 1 4 30 0.08 450 470 60 615 37 0.3 10.9 36 〇
3 H 820 1 4 30 0.07 450 460 70 622 38 0.3 12.1 35 Δ
4 H 820 4 30 0.065 450 450 80 629 39 0.2 13.2 35 比較例
5 H 820 1 4 30 0.1 450 490 60 612 36 0.3 6.7 37 〇 本発明例
6 H 820 1 4 30 0.1 450 510 " 60 605 32 0.3 9.4 36 〇
7 H 820 1 4 30 0.11 450 530 70 570 27 0.3 9.1 37 〇 比較例
8 H 820 1 4 30 0.11 450 510 70 604 32 0.3 4.7 36 〇
産業上の利用可能性
以上述べたよ うに、 本発明は加工性に優れる高強度合金化溶融亜 鉛めつき鋼板とその製造方法を提供することを可能と したものであ る。

Claims

1 . 質量%で、
C : 0. 0 5〜 0. 1 5 %、
S i : 0. 3〜 2. 0 %、
M n : 1. 0〜 2. 8 %、
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、の
N : 0. 0 0 6 0 %以下を含有し、
残部 F eおよび不可避的不純物からなり、 さ らに% C、 % S i 、 % M nをそれぞれ C、 S i 、 M n含有量と した時に (% M n ) / (% C) ≥ 1 2かつ (% S i ) / ( % C ) ≥ 4が満たされる高強度鋼板 の表面上に、 A 1 : 0. 0 5〜 0. 5質量%、 F e : 5〜 1 5質量 %を含有し、 残部が Z nおよび不可避的不純物からなる合金化溶融 亜鉛めつき層を有する鋼板において、 引張強さ F (MP a ) と伸び L (%) の関係が、 L≥ 5 2— 0. 0 3 5 X F、 を満足することを 特徴とする加工性の優れた高強度合金化溶融亜鉛めつき鋼板。
2. 請求項 1に記載の化学成分からなる組成のスラブを A r 3 点 以上の温度で仕上圧延を行い、 5 0〜 8 5 %の冷間圧延を施した後 、 連続溶融亜鉛めつき設備で 7 0 0 °C以上 8 5 0 °C以下のフェライ ト、 オーステナイ トの二相共存温度域で焼鈍し、 その最高到達温度 から 6 5 0 °Cまでを平均冷却速度 0. 5〜 1 0 °CZ秒で、 引き続い て 6 5 0 °Cから 5 0 0 °Cまでを平均冷却速度 3 °CZ秒以上で冷却し 、 5 0 0 °Cからめつき浴までを 3 0秒以上 2 4 0秒以下保持した後 、 溶融亜鉛めつき処理を行う ことによって、 前記冷延鋼板の表面上 に溶融亜鉛めつき層を形成し、 次いで、 前記溶融亜鉛めつき層が形 成された前記鋼板に対し合金化処理を施すことによって、 前記鋼板 の表面上に合金化溶融亜鉛めつき層を形成する合金化溶融亜鉛めつ き鋼板の製造方法において、
前記溶融亜鉛めつき処理を、 浴中有効 A 1濃度 : 0. 0 7〜 0. 1 0 5 w t % , 残部が Z nおよび不可避的不純物からなる成分組成 の溶融亜鉛めつき浴中で行い、 そして、 前記合金化処理を、
2 2 5 + 2 5 0 0 X 〔A 1 %〕 ≤ T≤ 2 9 5 + 2 5 0 0 X 〔Α 1 %] 、
但し、 〔Α 1 %〕 : 亜鉛めつき浴中の浴中有効 A 1濃度 (質量% ) 、
を満足する温度 T (°C) において行う ことを特徴とする加工性の優 れた高強度合金化溶融亜鉛めつき鋼板の製造方法。
3. 請求項 2に記載の高強度合金化溶融亜鉛めつき鋼板の製造方 法において、 浴中有効 A 1濃度を、
[A 1 %3 ≤ 0. 1 0 3 - 0. 0 0 8 X 〔 S i %〕
但し、 〔 S i %〕 : 鋼板中の S i 含有量 (質量%)
を満足する浴中有効 A 1濃度 (質量%) において行うことを特徴と する加工性の優れた高強度合金化溶融亜鉛めつき鋼板の製造方法。
4. 請求項 2〜請求項 3のいずれかの項に記載の高強度合金化溶 融亜鉛めつき鋼板の製造方法において、 溶融めつき後 4 0 0 °C以下 の温度に冷却されるまでの時間を 1 0秒以上 1 0 0秒以下とするこ とを特徴とする加工性の優れた高強度合金化溶融亜鉛めつき鋼板の 製造方法。
5. 請求項 2〜請求項 4のいずれかの項に記載の高強度合金化溶 融亜鉛めつき鋼板の製造方法において、 溶融亜鉛めつき浴の温度を 4 6 0 °C未満とすることを特徴とする加工性の優れた高強度合金化 溶融亜鉛めつき鋼板の製造方法。
6 . 請求項 2〜請求項 5のいずれかの項に記載の高強度合金化溶 融亜鉛めつき鋼板の製造方法において、 焼鈍後 4 5 0 °C以下まで冷 却した後、 4 5 0 °Cを超える温度まで再加熱を行い溶融亜鉛めつき 処理を行うことを特徴とする加工性の優れた高強度合金化溶融亜鉛 めっき鋼板の製造方法。
PCT/JP2002/013712 2002-12-26 2002-12-26 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法 WO2004061137A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/540,589 US7413780B2 (en) 2002-12-26 2002-12-26 High strength galvannealed steel sheet excellent in workability and a method of production of the same
CA2511891A CA2511891C (en) 2002-12-26 2002-12-26 High strength galvannealed steel sheet excellent in workability and a method of production of the same
EP02792029A EP1577407B1 (en) 2002-12-26 2002-12-26 Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
ES02792029T ES2320637T3 (es) 2002-12-26 2002-12-26 Lamina de acero bañada con zinc aleado, que posee excelente trabajabilidad y alta resistencia y procedimiento para su produccion.
DE60231756T DE60231756D1 (de) 2002-12-26 2002-12-26 Mit zinklegierungsschmelze überzogenes stahlblech mit sehr guter verarbeitbarkeit und hoher festigkeit sowie herstellungsverfahren dafür
CN02830100.5A CN100529116C (zh) 2002-12-26 2002-12-26 加工性优异的高强度合金化热浸镀锌钢板及其制造方法
PCT/JP2002/013712 WO2004061137A1 (ja) 2002-12-26 2002-12-26 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
AU2002361112A AU2002361112A1 (en) 2002-12-26 2002-12-26 Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/013712 WO2004061137A1 (ja) 2002-12-26 2002-12-26 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2004061137A1 true WO2004061137A1 (ja) 2004-07-22

Family

ID=32697321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013712 WO2004061137A1 (ja) 2002-12-26 2002-12-26 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法

Country Status (8)

Country Link
US (1) US7413780B2 (ja)
EP (1) EP1577407B1 (ja)
CN (1) CN100529116C (ja)
AU (1) AU2002361112A1 (ja)
CA (1) CA2511891C (ja)
DE (1) DE60231756D1 (ja)
ES (1) ES2320637T3 (ja)
WO (1) WO2004061137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155902B2 (en) * 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844281B1 (fr) * 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
WO2007048883A1 (fr) 2005-10-27 2007-05-03 Usinor Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
BRPI0621257A2 (pt) * 2006-01-26 2016-11-08 Giovanni Arvedi processo para produzir tiras de aço
DE112007003465T5 (de) * 2007-04-27 2010-05-06 Shine Metal Hot - Galvanization Enterprise Verfahren zum bleifreien Feuerverzinken und bleifrei feuerverzinktes Produkt
JP5176431B2 (ja) * 2007-08-24 2013-04-03 Jfeスチール株式会社 高強度熱延鋼板の製造方法
US8726512B2 (en) * 2009-02-27 2014-05-20 A. Zahner Company Metal building panel and method of making same
IN2014DN07405A (ja) * 2012-02-22 2015-04-24 Nippon Steel & Sumitomo Metal Corp
CN104446327A (zh) * 2014-11-04 2015-03-25 无锡贺邦金属制品有限公司 铌钽合金冲压件
KR101561008B1 (ko) * 2014-12-19 2015-10-16 주식회사 포스코 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
KR101657822B1 (ko) * 2014-12-24 2016-09-20 주식회사 포스코 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
CN104947023B (zh) * 2015-06-10 2017-08-08 武汉钢铁(集团)公司 无粉化厚规格锌铁合金化板的生产方法
JP6610113B2 (ja) * 2015-09-16 2019-11-27 日本製鉄株式会社 高強度合金化溶融亜鉛めっき鋼板と該鋼板用熱延鋼板及びそれらの製造方法
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법
CN106282760A (zh) * 2016-10-18 2017-01-04 河池学院 一种关节机器人的旋转轴材料
CN117165844A (zh) * 2023-04-23 2023-12-05 鞍钢股份有限公司 一种42kg级低屈强比高性能海上风电用钢及生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163561A (ja) * 1991-12-10 1993-06-29 Kurosaki Refract Co Ltd 金属粉含有溶射材
JPH0748662A (ja) * 1993-08-06 1995-02-21 Nippon Steel Corp めっき密着性、外観性に優れた溶融亜鉛めっき鋼板の製造法
JPH11193419A (ja) * 1997-12-29 1999-07-21 Kobe Steel Ltd 成形性に優れた合金化溶融亜鉛めっき高強度冷延鋼板の製造方法
JPH11279691A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 加工性の良い高強度合金化溶融亜鉛めっき鋼板とその製造方法
JPH11323492A (ja) * 1998-05-12 1999-11-26 Kobe Steel Ltd 耐めっき剥離性に優れた高強度合金化溶融亜鉛めっき鋼板
JP2001140022A (ja) * 1999-08-27 2001-05-22 Nippon Steel Corp プレス成形性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU744962B2 (en) * 1999-02-22 2002-03-07 Nippon Steel & Sumitomo Metal Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
JP3750789B2 (ja) * 1999-11-19 2006-03-01 株式会社神戸製鋼所 延性に優れる溶融亜鉛めっき鋼板およびその製造方法
DE60144062D1 (de) 2000-12-29 2011-03-31 Nippon Steel Corp Hochfeste, mit schmelzflüssigem zink verzinkte stahlplatte, die eine hervorragende auftragsadhäsion aufweist und zum pressformen geeignet ist, und verfahren zu ihrer herstellung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163561A (ja) * 1991-12-10 1993-06-29 Kurosaki Refract Co Ltd 金属粉含有溶射材
JPH0748662A (ja) * 1993-08-06 1995-02-21 Nippon Steel Corp めっき密着性、外観性に優れた溶融亜鉛めっき鋼板の製造法
JPH11193419A (ja) * 1997-12-29 1999-07-21 Kobe Steel Ltd 成形性に優れた合金化溶融亜鉛めっき高強度冷延鋼板の製造方法
JPH11279691A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 加工性の良い高強度合金化溶融亜鉛めっき鋼板とその製造方法
JPH11323492A (ja) * 1998-05-12 1999-11-26 Kobe Steel Ltd 耐めっき剥離性に優れた高強度合金化溶融亜鉛めっき鋼板
JP2001140022A (ja) * 1999-08-27 2001-05-22 Nippon Steel Corp プレス成形性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155902B2 (en) * 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same

Also Published As

Publication number Publication date
US20060222882A1 (en) 2006-10-05
AU2002361112A1 (en) 2004-07-29
EP1577407A4 (en) 2006-01-25
ES2320637T3 (es) 2009-05-27
DE60231756D1 (de) 2009-05-07
CA2511891C (en) 2010-03-30
CA2511891A1 (en) 2004-07-22
CN1717499A (zh) 2006-01-04
EP1577407A1 (en) 2005-09-21
CN100529116C (zh) 2009-08-19
EP1577407B1 (en) 2009-03-25
US7413780B2 (en) 2008-08-19

Similar Documents

Publication Publication Date Title
JP3527092B2 (ja) 加工性の良い高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP4119804B2 (ja) 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP4741376B2 (ja) 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
CN101297051B (zh) 耐粉化性优异的高强度合金化熔融镀锌钢板及其制造方法
JP5092507B2 (ja) 高張力合金化溶融亜鉛めっき鋼板とその製造方法
JP5354600B2 (ja) 機械的な性質及び表面品質に優れた高強度亜鉛メッキdp鋼板及びその製造方法
WO2004061137A1 (ja) 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP3598087B2 (ja) 加工性の優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
EP3749790A1 (en) High strength hot rolled or cold rolled and annealed steel and method of producing it
JP2006283071A (ja) 加工性の良好な合金化溶融亜鉛メッキ高強度鋼板の製造方法
US11313021B2 (en) Hot dipped medium manganese steel and manufacturing method therefor
KR101647225B1 (ko) 표면품질 및 내파우더링성이 우수한 고강도 합금화용융아연도금강판 및 그 제조방법
KR20160077594A (ko) 도금성이 우수한 오스테나이트계 고강도 고망간 용융 알루미늄 도금강판 및 그의 제조방법
JP5212056B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
KR100676935B1 (ko) 가공성이 우수한 고강도 합금화 용융 아연 도금 강판 및 그제조 방법
JP3823613B2 (ja) 高張力溶融亜鉛めっき鋼板の製造方法
JP3598086B2 (ja) 加工性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2812770B2 (ja) 焼付硬化性及び耐パウダリング性に優れた深絞り用合金化溶融亜鉛めっき冷延鋼板の製造方法
JP4299451B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP3875958B2 (ja) 加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法
JP3921101B2 (ja) 形状凍結性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法
JP2002160044A (ja) プレス加工性の良い高強度複層鋼板およびその製造方法
JP2956361B2 (ja) めっき密着性の優れた強加工用合金化溶融亜鉛めっき鋼板の製造方法
JP3257715B2 (ja) めっき密着性の優れた高加工用高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2555484B2 (ja) バーリング性の優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2511891

Country of ref document: CA

Ref document number: 2802/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20028301005

Country of ref document: CN

Ref document number: 2002792029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057012092

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057012092

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002792029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006222882

Country of ref document: US

Ref document number: 10540589

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10540589

Country of ref document: US