WO2004055934A1 - 光電気化学太陽電池 - Google Patents

光電気化学太陽電池 Download PDF

Info

Publication number
WO2004055934A1
WO2004055934A1 PCT/JP2003/015732 JP0315732W WO2004055934A1 WO 2004055934 A1 WO2004055934 A1 WO 2004055934A1 JP 0315732 W JP0315732 W JP 0315732W WO 2004055934 A1 WO2004055934 A1 WO 2004055934A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
photoelectrochemical
photoelectrochemical solar
semiconductor
solar cells
Prior art date
Application number
PCT/JP2003/015732
Other languages
English (en)
French (fr)
Inventor
Hideo Otaka
Michie Kira
Kentaro Yano
Shunichiro Ito
Hirofumi Mitekura
Toshio Kawata
Fumio Matsui
Original Assignee
Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo filed Critical Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Priority to JP2004560614A priority Critical patent/JPWO2004055934A1/ja
Publication of WO2004055934A1 publication Critical patent/WO2004055934A1/ja
Priority to FI20041076A priority patent/FI20041076A/fi
Priority to SE0402007A priority patent/SE0402007L/xx
Priority to NO20045363A priority patent/NO20045363L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectrochemical solar cell, and more particularly to a photoelectrochemical solar cell that displays pictures, characters, and the like by utilizing the difference in the color of a semiconductor electrode. .
  • photovoltaic power has come to the forefront as a clean alternative to thermal and nuclear power.
  • the principle of photovoltaic power generation which generates an electromotive force when a semiconductor is irradiated with light, has been known for a long time, and solar cells utilizing this principle have already been used in single-crystal silicon solar cells and polycrystalline silicon solar cells.
  • Amorphous solar cells, compound semiconductor solar cells, inorganic solar cells, organic solar cells, photoelectrochemical solar cells (wet solar cells), etc. have been devised.
  • some of these solar cells have been put into practical use, and as a light-weight, long-lasting power source, even though their electromotive force is small, they have rapidly spread as simple power generation means in portable devices and households. I am doing it.
  • photoelectrochemical solar cells can form a junction only by bringing a semiconductor into contact with a redox electrolyte, and a relatively high photoelectric conversion efficiency can be expected even if a polycrystalline material is used.
  • solar cells for example, Yoshihiro Hamakawa, Yukinori Kuwano, "Solar Energy Engineering", Baifukan Co., Ltd., published May 20, 1994, pp. 209 to 210).
  • the semiconductor electrode which is one of the main components of the photoelectrochemical solar cell, is usually photosensitized by an organic dye compound having a light absorbing ability, and as a result, the photoelectrochemical solar cell is
  • the color of the organic dye compound carried on the semiconductor electrode can be seen through the cell container, and depending on the field of application, the color limits the application. there were.
  • One of the attempts to turn the drawbacks of photoelectrochemical solar cells into advantages is that the colors of the semiconductor electrodes can be seen through, and the color of the semiconductor electrodes can be changed by appropriately arranging multiple photoelectrochemical solar cells.
  • an object of the present invention is to provide a photoelectrochemical solar cell capable of displaying colorful pictures, characters, and the like, and an application thereof. Disclosure of the invention
  • the present invention provides a photoelectrochemical solar cell using an iodine-based redox electrolyte, wherein the light transmittance of the electrolyte layer at a wavelength of 550 nm is 85% or more. Therefore, the above-mentioned problem is solved.
  • the present invention provides a plurality of such photoelectrochemical solar cells, and displays a desired pattern, character, or the like based on a difference in color of a semiconductor electrode in the plurality of photoelectrochemical solar cells.
  • the object is achieved by providing a battery assembly.
  • the electrolyte layer having a light transmittance of 85% or more at a wavelength of 550 nm is higher in concentration of the iodine-based oxidation-reduction electrolyte than that conventionally used in photoelectrochemical solar cells. Is significantly lower. Even if the iodine-based redox electrolyte, which plays a role in electron transfer, has such a low-concentration electrolyte layer, it is expected that photoelectrochemical solar cells can exhibit photoelectric conversion characteristics that do not hinder practical use. Contrary to this, it was a completely unexpected discovery. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic view of one example of a photoelectrochemical solar cell according to the present invention.
  • FIG. 2 is a schematic diagram of one example of a solar cell assembly according to the present invention. Explanation of reference numerals
  • the photoelectrochemical solar cell as referred to in the present invention means a solar cell including a semiconductor electrode, a counter electrode, an electrolyte layer, and a partially or wholly transparent cell container accommodating them.
  • the present invention does not impose any particular restrictions on the shape and structure of the photoelectrochemical solar cell, in view of its main use as a solar cell assembly such as a solar cell module and a solar cell array, It does not become bulky, and usually is formed in a panel shape.
  • Preferred photoelectrochemical solar cells can be made thinner as a whole, and have high photoelectric conversion efficiency. (Title of Invention "Photosensitive Composition") ⁇ 1> Japanese Patent Application No. 2002-2966757 (Title of Invention "Semiconductor Electrode").
  • FIG. 1 is a schematic view showing an example of a photoelectrochemical solar cell according to the present invention.
  • reference numeral 1 denotes a semiconductor electrode
  • the semiconductor electrode 1 is, for example, transparent to one side of a substrate 1a.
  • Substrate 1a is substantially transparent in the entire visible region, for example, aluminosilicate glass, aluminoborosilicate glass, quartz glass, soda-lime glass, barium silicate glass, barium borosilicate glass, borosilicate glass Or glass, or aramide, polyacrylate, polyarylate, polyimide, polyurethane, polyetherketone, polyethersulfone, polyester, polyethylene, Polyethylene phthalate, polyolefin fin, polycarbonate, polysulfone, polyvinyl chloride, polypropylene, polymethyl acrylate, epoxy resin, phenolic resin, fluorine resin , Melamine-based resins, and other plastics, as well as alumina, silicon, quartz, silicon carbide, etc.
  • aluminosilicate glass aluminoborosilicate glass, quartz glass, soda-lime glass, barium silicate glass, barium borosilicate glass, borosilicate glass Or glass, or aramide
  • substrate material plate sheet-like
  • Preferred substrate materials include, for example, aluminosilicate glass, aluminoborosilicate glass, quartz glass, borosilicate glass, barium borosilicate glass, etc., both having a small alkali content and a small coefficient of thermal expansion.
  • the glass has a smooth surface, has no scratches, is easy to polish, and has excellent compatibility with the glass for photomasks and the adjacent electrically conductive film, and it is difficult to transmit moisture.
  • Examples include phenolic, polyarylate, polyimide, polyester, aromatic polyether, polyolefin, melamine, and fluorine plastics, and ceramic materials such as silicon. Is used in combination with a transparent substrate material. When using a glass with a large aluminum content, such as soda-lime glass, it is desirable to perform a pretreatment to form a film on the surface with silica, for example.
  • the electrically conductive layer 1 b is made of one or more of a metal or an electrically conductive material having an electrical low resistivity and a large light transmittance over the entire visible region.
  • a metal or an electrically conductive material having an electrical low resistivity and a large light transmittance over the entire visible region.
  • vacuum deposition, sputtering, chemical vapor deposition (CVD), atomic layer epitaxy (ALE), coating, immersion, etc. are preferably performed to a thickness of 10 nm or more on one side of the substrate 1a. Is formed by attaching it in a layer of 50 nm or more.
  • the metal and the electrically conductive material in the electrically conductive layer 1b include metals such as gold, platinum, aluminum, and nickel, and oxides mixed with trace amounts of zinc oxide, tin oxide, indium oxide, fluorine, and antimony.
  • Metal oxides such as tin (hereinafter abbreviated as “NESA”) and tin oxide mixed with a small amount of tin (hereinafter abbreviated as “ITO”), as well as aniline, thi-phen, Examples thereof include an electrically conductive oligomer and an electrically conductive polymer having pyrrole or the like as a repeating unit. Of these, NESA coated in a thin film is preferred.
  • the semiconductor layer 1c is usually prepared as an aqueous suspension containing semiconductor nanoparticles having a porous structure with an average particle diameter of 5 to 500 nm, and the suspension is applied by a method such as coating. It can be formed by attaching the conductive layer 1b to a thickness of 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, and then sintering.
  • the semiconductor constituting the semiconductor layer 1 c include compound semiconductors generally used in the art, especially cerium oxide, titanium oxide, zirconium oxide, vanadium oxide, niobium oxide, tungsten oxide, iron oxide, Metal oxides such as nickel oxide, indium oxide, tin oxide and bismuth oxide, and composite metal oxides such as strontium titanate, barium titanate, potassium niobate, and sodium tantalate Substances, metal halides such as tin iodide, copper iodide, and copper bromide, zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, and silver sulfide Metal sulfides, such as copper sulfide, copper sulfide, tin sulfide, tungsten sulfide, and molybden
  • the compound semiconductor comprising a group of semiconductor particles having a plurality of peaks in the particle size distribution described in Japanese Patent Application Laid-Open No. 2001-357879, filed by Useful.
  • these semiconductors are merely examples, and the semiconductors used in the present invention are not limited thereto, and may be appropriately selected from p-type semiconductors and n-type semiconductors without departing from the purpose of the invention. You just have to choose one.
  • a molecular weight of 50,000 to 500,000 daltons may be used to increase the surface area of the porous structure in the semiconductor layer. 5 to 50% by mass, preferably 10 to 30% by mass of a water-soluble synthetic polymer such as polyethylene glycol and a water-soluble natural polymer such as pullulan and ercinan based on the semiconductor. % Is desirable.
  • one or a plurality of organic dye compounds having a light-absorbing ability can be used at a concentration of 0.01 mM to a saturation concentration, preferably 0.1 to 0.
  • the solvent is evaporated, and the semiconductor electrode 1 is allowed to carry the organic dye compound.
  • the organic dye compound has a negatively chargeable atomic group. What can be carried on layer 1 c There is no particular limitation as long as the semiconductor layer 1 c can be substantially photosensitized.
  • organic dye compounds those used as photosensitizers in the art include, for example, acridine, azanulene, azo, anthraquinone, indigo, and indance Len, oxazine, xanthene, coumarin, dioxazine, thiazine, thiindigo, tetrapolphyrazine, triphenylmethane, triphenothiazine, naphtho Organic dye compounds of quinone type, phthalocyanine type, benzoquinone type, benzopyran type, benzofuranone type, po, limetine type, porphyrin type, and rhodamine type are mentioned. Used in combination.
  • Preferred organic dye compounds include, for example, coumarin-based organic dye compounds having a negatively chargeable atomic group such as a hydroxyl group, a sulfo group, and a phenolic hydroxyl group, and oxonol.
  • Polymethine-based organic dye compounds including dyes, cyanine dyes, styrene dyes, merocyanine dyes, and rhodanine dyes, are mentioned.
  • the coumarin-based and polymethine-based organic dye compounds disclosed in the specification of No. 21 (title of the invention, "photosensitizing composition") are particularly preferred.
  • the solvent is not particularly limited as long as it is easily evaporated and the organic dye compound is substantially dissolved.
  • Specific solvents include, for example, methanol, ethanol, 2,2,2-triethanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol.
  • Alcohols such as ethanol, isobutyl alcohol, isopentyl alcohol, and cyclohexanol; hydrocarbons such as benzene, toluene, and xylene; acetate bottles; propionitol bottles; Trityls such as synonitrile, ethers such as getyl ether, diisopropyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane Etc. These are used in combination as necessary.
  • solvents alcohols such as methanol and ethanol, alcohols such as methanol, ethanol and the like, and mixtures thereof, because the organic dye compound is easily dissolved and easily evaporated. Is preferred.
  • reference numeral 2 denotes a counter electrode, which is usually applied to one side of the substrate 2a similar to that of the semiconductor electrode 1, for example, general-purpose such as vacuum deposition, chemical vapor deposition, sputtering, atomic layer epitaxy, coating, and immersion.
  • metal such as iron, ruthenium, cobalt, rhodium, nickel, platinum, copper, silver, gold, zinc, aluminum, tin, or similar to carbon or semiconductor electrode 1 It can be obtained by forming the electrically conductive layer 2b by attaching a semiconductor having a thickness of 0.1 nm or more, preferably 10 nm or more, and more preferably 100 nm or more.
  • the photoelectrochemical solar cell of the present invention can be obtained by immersing the thus obtained semiconductor electrode 1 and counter electrode 2 in an electrolyte layer in a cell container.
  • reference numeral 3 denotes its electrolyte layer, which is usually mainly composed of an organic solvent or an ionic liquid, and contains iodine and, if necessary, for example, imidazodium iodide derivatives, lithium iodide, and lithium iodide.
  • An iodine compound such as potassium iodide or tetraalkylammonium iodide is added as an iodine-based redox electrolyte.
  • the amount of the iodine-based redox electrolyte to be added is such that the light transmittance of the electrolyte layer at a wavelength of 550 nm is 85% or more of a control to which the iodine-based redox-electrolyte is not added, preferably 90 to 99. Set to%. If the light transmittance of the electrolyte layer at a wavelength of 550 nm is less than 85%, the color of the semiconductor electrode seen through the cell container becomes dull, and it becomes difficult to obtain a vivid display. Depending on the type of semiconductor or photosensitizer used, if the light transmittance exceeds 99%, the photoelectric conversion efficiency may decrease to a level that causes practical problems. It is desirable to adjust within the range described above.
  • the organic solvent for forming the electrolyte layer 3 is not particularly limited as long as it is easy to handle, stable, and substantially dissolves the iodine-based redox electrolyte.
  • a solvent include, for example, nitriles such as acetonitril, methoxyacetonitrile, propionitol, methoxypropionitol, and succinonitrile; Esters such as ethylene and propylene carbonate, N, N-dimethylformamide, N, N-amides such as dimethylacetamide, hexamethyldiacid, triamide, tetrahydrofuran 1,4-dioxane, dicyclohexyl-18-ethers such as crown-16, amines such as pyridine, nitro compounds such as nitromethane, dimethyl Examples thereof include sulfur-containing compounds such as sulfoxide, and these are used in combination as necessary.
  • Examples of the ionic liquid for forming the electrolyte layer 3 include those commonly used in the art, for example, imidazolium salt, oxazolium salt, sulfonium salt, thiazolium salt, and triazolidium salt. Salt, villazolium salt, pyridium salt, pyridazime salt, pyrimidium salt, phosphonium salt and the like.
  • Examples of the counter ion in the ionic liquid include chloride ion, bromide ion, iodine ion, iodine trimer (I 3 —), sulfate ion, nitrate ion, tetraborate ion, and antimony hexafluoride.
  • Inorganic cations such as acid ion and hexafluorosulfonate ion, thiocyanate ion, tris (trifluoromethanesulfone) carbide ion, trifluromethanesulfonate ion, trifluoromethanesulfonate ion, Organic anions such as bis (trifluromethanesulfonyl) imidion are exemplified, and among them, iodide ion and iodine trimer ion are preferable.
  • a particularly preferred liquid is an imidazole salt represented by the general formula 1.
  • R 1 and R 2 represent the same or different aliphatic hydrocarbon groups.
  • the aliphatic hydrocarbon group for R 1 and R 2 include a C 1 to C 20 group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a 1-propenyl group, —Propenyl, butyl, isobutyl, sec-butyl, tert —butyl, 3 —butenyl, 1,3-butenyl, pentyl, isopentyl, neopentyl, tert —pentyl , 1 —methylpentyl group, 2 —methylpentyl group, hexyl group, isohexyl, xyl group, 5 —methylhexyl group, heptyl group, octyl group, nonyl group, decyl
  • X in the general formula 1 is a counter ion as described above.
  • a spacer for preventing physical contact between the semiconductor electrode 1 and the counter electrode 2 is not hindered, if necessary.
  • the material of the spacer include polyester, polycarbonate, polysulfone, polymethylpolyacrylate, and polypropylene.
  • Plastics such as pyrene and polyethylene, glass such as quartz, glass, soda-lime glass, aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, barium silicate glass, and barium borosilicate glass, quartz,
  • Non-electrically conductive materials such as ceramics, such as ceramics, may be used alone or in combination as appropriate, with a film thickness of 1 m or more, preferably 10 to 50 m, It is formed into a film or sheet.
  • the spacer can be omitted.
  • the substrates 1a, 2a due to the difference in the refractive index between the atmosphere and the substrates 1a, 2a
  • anti-reflection layers 4a and 4b mainly composed of magnesium fluoride and cryolite
  • photoelectrochemical solar cells to minimize deterioration in the use environment
  • a sealing device such as a sealing glass or metal cap, or a moisture-proof paint is applied, or a UV-curable resin, a thermosetting resin, etc. It is desirable to cover with a protective film.
  • the photoelectrochemical solar cell of the present invention is usually formed by combining a plurality of battery units, for example, a solar cell module, a solar cell array, and other solar cells. Used as a battery assembly.
  • a plurality of photoelectrochemical solar cells as a whole are individually connected while connecting a plurality of photoelectrochemical solar cells according to the present invention in series or in parallel. It can be obtained by arranging so as to display desired pictures, patterns, figures, characters, symbols, etc. according to the difference in the color of the semiconductor electrode.
  • FIG. 2 is a schematic diagram showing one example of a solar cell assembly according to the present invention.
  • 6a, 6b, 6c, and 6d are the photoelectrochemical solar cells of the present invention, which are connected in series with each other by wires 7a, 7b, and 7c.
  • the support member 8 made of a physically tough non-electrically conductive material such as tempered glass, reinforced plastic, etc., respectively, to the photoelectrochemical solar cells 6a, 6b, 6c, 6 It is arranged with the opposite electrode side of d facing. In order to display pictures, characters, etc.
  • the photoelectrochemical solar cells 6a, 6b, 6cs 6d are formed into squares, rectangles, rhombuses, trapezoids, triangles, circles, etc., while the semiconductor electrodes are changed to purple, blue, green, yellow, red, black, etc., depending on the picture, character, etc. to be displayed.
  • the size of the photoelectrochemical solar cells 6a, 6b, 6c, 6d is as follows. For example, while taking into account the type, size, accuracy, etc. If the photoelectrochemical solar cell has a rectangular shape, the length of one side of the photoelectrochemical solar cell should be about 1 mm to 1 m.
  • a solar cell assembly includes a plurality of photoelectrochemical solar cells according to the present invention arranged in columns and rows or rows, and their electrode ends are connected to wires 7a, 7b, and 7c. Connected appropriately in series or parallel with each other as necessary, covered with a moisture-proof sheet such as ethylene vinyl acetate sheet or vinyl fluoride sheet as necessary, and heated under reduced pressure to laminate. After that, it can be mounted on a general-purpose aluminum frame or the like to make a solar cell module. In this case, the colors of the semiconductor electrodes in the photoelectrochemical solar cells constituting each solar cell module may be the same or different in the modules.
  • a solar cell assembly in the form of a solar cell array will display the desired picture, characters, etc. as a whole Needless to say.
  • the photoelectrochemical solar cells are connected in series or in parallel, combining solar cells with similar open-circuit voltage and short-circuit current in terms of stable operation of the solar cell assembly Is desirable.
  • the output of the solar cell assembly exceeds 1 kW, for example, the assembly is separated into multiple blocks from the viewpoint of maintenance, and a breaker, backflow, and prevention die are inserted for each block. It is desirable to do it.
  • the photoelectrochemical solar cell and the aggregate thereof according to the present invention can be advantageously used as a display means having a power generation function in a wide variety of situations requiring display of pictures, characters, and the like. be able to.
  • the solar cell assembly according to the present invention can be attached to an outer wall or a window glass of a company building to display a company name, a company mark, a catch phrase, etc., and the generated power is consumed by the business establishment. It can be used for part of the electricity generated.
  • In vehicles and ships by attaching solar cell assemblies to side walls, ceiling walls, windows, etc., the affiliation, ship name, ship registration, etc.
  • the generated power is, for example, an indicator or display It can be used for lighting.
  • the generated power can be used, for example, as a backup power supply for memory. can do.
  • the solar cell assembly of the present invention When the solar cell assembly of the present invention is used outdoors, for example, by attaching it to a gantry or the like, as in a conventionally known solar cell, the solar cell assembly displays, for example, slogans related to ecology. You may do so.
  • Example 1 Semiconductor electrode
  • NESA is vapor-deposited on one side of a substrate 1a (1.8 mm thick, 1 cm long, 1 cm wide) of soda-lime glass whose surface is treated with silica, and the thickness is 100 nm.
  • the electrically conductive layer 1b was formed.
  • titanium nanoparticles having an average particle diameter of 23 nm and titanium oxide nanoparticles having an average particle diameter of 12 nm were mixed at a mass ratio of 4: 1 to obtain 20% by mass of polyethylene glycol. It is suspended in an aqueous solution, applied to the electrically conductive layer ⁇ b to a thickness of 0.1 nm, dried, and then sintered at 450 ° C. for 30 minutes to form a semiconductor electrode.
  • a polymethine-based organic dye compound represented by Chemical Formula 1 (maximum absorption wavelength: 570 nm) or a polymethine-based organic dye compound represented by Chemical Formula 2 (maximum absorption wavelength: 586 nm) Or a mixture (molar ratio 1: 4) of a polymethine-based organic dye compound represented by Chemical Formula 2 and a coumaran-based organic dye compound represented by Chemical Formula 3 (maximum absorption wavelength: 4 21 nm) and their respective, after dissolving the meta Nord so that the concentration of the organic dye compound is a whole and to 2 X 1 0- 4 M, to each resultant solution obtained in the semiconductor
  • the electrodes were soaked for 10 hours. After that, the semiconductor electrodes were taken out, and allowed to stand at room temperature to evaporate methanol, thereby obtaining three types of photosensitized semiconductor electrodes.
  • a counter electrode having an electric conductive layer having a thickness of 100 nm is formed.
  • An anti-reflection layer made of magnesium fluoride is provided on the side of the semiconductor electrode and the counter electrode that does not have the electric conductive layer.
  • the iodine concentration was 16% by mass.
  • the light transmittance of the electrolyte layer should be more than 80%, specifically, 85% or more, and preferably 9% or more. He says that it is important to make it 0% or more.
  • Example 2 Three types of photoelectrochemical solar cells obtained by the method of Example 2 and having a light transmittance of the electrolyte layer at a wavelength of 550 nm of 90% were obtained. A xenon lamp and a bandpass filter were used as light sources. Using a general-purpose solar simulator (air mass 1.5, illuminance 96,500 Iux, radiant energy density 97 mWZ cm 2 ) that combines was examined. Table 1 shows the results.
  • the solar cell assembly of this example having excellent photoelectric conversion characteristics can be advantageously used indoors and outdoors as a display means having a power generation function.
  • Example 5 Photoelectrochemical solar cell Acetonitrile solution containing 45 mM of iodine, 30 mM of lithium iodide, 330 mM of dimethylhexylmidazolium iodide and 100 mM of 4-tert-butylbutylidine Three types of photoelectrochemical solar cells were produced in the same manner as in Example 2 except that an electrolyte layer composed of the following (a light transmittance at a wavelength of 550 nm of 95%) was used. .
  • All of the photoelectrochemical solar cells of the present example exhibit good photoelectric conversion characteristics, and the semiconductor electrodes are bright blue and green through the substrate on the semiconductor electrode side constituting a part of the cell container. Or it looked red.
  • a solar cell assembly was produced in the same manner as in Example 3, except that three types of photoelectrochemical solar cells produced by the method of Example 5 were used.
  • the photoelectrochemical solar cell and the solar cell assembly according to the present invention can be used as a display means having a power generation function, for example, in a business place, a vehicle, a ship, an electric / mechanical device, or the like. It can be used to advantage in a wide variety of situations where textual display is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、色鮮やかな絵模様や文字を表示することができる光電気化学太陽電池とその用途を提供することを課題とし、沃素系酸化還元電解質を用いる光電気化学太陽電池において、波長550nmにおける電解質層の光透過率が85%以上である光電気化学太陽電池と、斯かる光電気化学太陽電池を複数配設してなり、その複数の光電気化学太陽電池における半導体電極の色の違いによって所望の絵模様、文字などを表示する太陽電池集合体とを提供することによって前記課題を解決するものである。

Description

光電気化学太陽電池 技術分野
本発明は光電気化学太陽電池に関するものであり、 とりわけ、 半導体 電極の色の違いを利用して絵模明様、 文字などを表示する光電気化学太陽 電池に関する。 .
背景技術
ェコロジー重点文明が喧伝される昨今、 太陽光発電が火力発電や原子 力発電に代わるク リーンな発電手段としてにわかに脚光を浴びるように なった。 半導体を光照射すると起電力が生じるという太陽光発電の原理 は古くから知られ、 この原理を利用する太陽電池と して、 すでに、 単結 晶シ リ コン太陽電池、 多結晶シ リ コン太陽電池、 ァモルフ ァ ス太陽電池、 化合物半導体太陽電池、 無機太陽電池、 有機太陽電池、 光電気化学太陽 電池 (湿式太陽電池) などが考案されている。 これらの太陽電池は、 周 知のとおり、 その一部が実用化され、 起電力は小さくても、 軽量にして 長寿命な電源として携帯機器や一般家庭などにおける簡易発電手段と し て急速に普及しつつある。
太陽電池の開発における焦眉の急は、 火力発電をはじめとする既存の 発電手段を代替するに足る発電コス ト の低減、 特に、 モジュールの大面 積化と低廉化である。 上記した太陽電池のうちで、 光電気化学太陽電池 は、 半導体を酸化還元電解質へ接触させるだけで接合が形成でき、 しか も、 多結晶材料を用いても比較的高い光電変換効率が期待できるなどの 理由により、潜在的に優れた太陽電池であると考えられている (例えば、 浜川圭弘、 桑野幸徳編、 「太陽エネルギー工学」、 株式会社培風館、 1 9 9 4年 5月 2 0 日発行、 2 0 9乃至 2 1 0頁などを参照)。 ところが、 光 電気化学太陽電池を構成する主要な部材の一つである半導体電極は、 通 常、 吸光能を有する有機色素化合物によって光増感され、 その結果と し て、 光電気化学太陽電池は、 他の太陽電池とは違って、 半導体電極へ担 持されている有機色素化合物の色がセル容器を透かして見えることとな リ、適用分野によっては、その色が用途を制限するという問題があった。 半導体電極の色が透かして見えるとい,う光電気化学太陽電池の欠点を 利点に転じる試みの一つと して、 複数の光電気化学太陽電池を適宜配設 することによって、 半導体電極の色の違いにより所望の絵模様、 文字な どを表示することができるカラー太陽電池が提案されている (例えば、 特開 2 0 0 2 — 7 5 4 7 2号公報、 特開 2 0 0 2 — 1 6 4 5 6 3号公報 などを参照)。斯かる太陽電池は、発電機能を具備する表示手段と して、 例えば、 社屋などにおいて、 社名や社標を表示する手段と して潜在的な 用途を有すると考えられるけれども、 従来の光電気化学太陽電池は、 セ ル容器を透かして見える半導体電極の色がくすみ易く、 色鮮やかな表示 を得るのが難しいという問題があった。 .
斯かる状況に鑑み、 この発明の課題とするところは、 色鮮やかな絵模 様、 文字などを表示することができる光電気化学太陽電池とその用途を 提供することにある。 発明の開示
この課題を解決すべく、 本発明者が、 沃素系酸化還元電解質を用いる 光電気化学太陽電池において、 視認性が高い波長 5 5 0 n m付近におけ る電解質層の光透過率に着目 して鋭意研究したところ、 波長 5 5 0 n m における電解質層の光透過率が 8 5 %以上である光電気化学太陽電池は、 実用上支障のない光電変換効率を維持しつつ、 セル容器を透かして見え る半導体電極が色鮮やかで、 発電機能を具備する表示手段として、 絵模 様、 文字などによる表示を必要とする多種多様の場面において有利に用 い得ることを見出した。
すなわち、 この発明は、 沃素系酸化還元電解質を用いる光電気化学太 陽電池において、 波長 5 5 0 n mにおける電解質層の光透過率が 8 5 % 以上である光電気化学太陽電池を提供することによつて前記課題を解決 するものである。
さらに、 この発明は、斯かる光電気化学太陽電池を複数配設してなり、 その複数の光電気化学太陽電池における半導体電極の色の違いによつて 所望の絵模様、 文字などを表示する太陽電池集合体を提供することによ つて前記課題を解決するものである。
波長 5 5 0 n mにおける光透過率が 8 5 %以上である電解質層は、 従 来、 光電気化学太陽電池において一般的に採用されていたものと比較す ると、 沃素系酸化還元電解質の濃度が著しく低い。 電子移動の担い手で ある沃素系酸化還元電解質がさように低濃度の電解質層であっても、 光 電気化学太陽電池において、 実用上支障のない光電変換特性を発揮し得 るということ自体、 予想に反した、 全く意外な発見であった。 図面の簡単な説明
第 1 図は、この発明による光電気化学太陽電池の 1 例の模式図である。 第 2図は、 この発明による太陽電池集合体の 1 例の模式図である。 符号の説明
1 半導体電極
2 対極
1 a、 2 a 基板 1 b、 2 b 電気伝導層
3 電解質層
4 a、 4 b 光反射防止層
5 a s 5 b 封止具
6 a、 6 b、 6 c、 6 d……光電気化学太陽電池
7 a、 7 b、 7 c ワイヤ
8 支持部材 発明を実施するための最良の形態
この発明でいう光電気化学太陽電池とは、 半導体電極と、 対極と、 電 解質層と、 それらを収容する一部又は全体が透明なセル容器を含んでな る太陽電池を意味する。 この発明は、 光電気化学太陽電池の形状、 構造 について特に制限を設けるものではないけれども、 その主要な用途が太 陽電池モジュール、 太陽電池ァレイなどの太陽電池集合体であることに 鑑み、 全体として嵩高くならない、 通常、 パネル状に形成されたものが 用いられる。 好ま しい光電気化学太陽電池と しては、 全体として薄く構 成でき、 しかも、 光電変換効率が高い点で、 同じ出願人による特願 2 0 0 2 — 1 3 1 5 2 1 号明細書 (発明の名称「光增感組成物」) ゃ特願 2 0 0 2 - 2 9 6 8 5 7号明細書 (発明の名称「半導体電極」) に開示された ものが挙げられる。
図 1 はこの発明による光電気化学太陽電池の 1 例を示す模式図であり、 図 1 において、 1 は半導体電極であリ、 斯かる半導体電極 1 は、 例えば、 基板 1 aの一側へ透明な電気伝導性材料を層状に付着させて電気伝導層 1 b と し、 さらに、 その電気伝導層 1 bへ密着させて、 化合物半導体を 層状に付着させることによって半導体層 1 c を形成した後、 その半導体 層 1 cへ有機色素化合物を主体とする光増感剤を担持させることによつ て得ることができる。
基板 1 aは、 全可視領域において実質的に透明な、 例えば、 アルミ ノ 珪酸塩ガラス、 アルミ ノ硼珪酸ガラス、 石英ガラス、 ソーダ石灰ガラス、 バリ ウム珪酸ガラス、 バリ ウム硼珪酸ガラス、 硼珪酸ガラスなどのガラ スか、 あるいは、 ァラミ ド、 ポリ アク リ レー 卜、 ポリ ア リ レー 卜、 ポリ イ ミ ド、 ポリ ウ レタン、 ポリ エーテルケ ト ン、 ポリ エーテルスルホン、 ポ リ エステル、 ポ リ エチ レン、 ポ リ エチ レンテ レフタ レー ト、 ポ リ 才 レ フィ ン、 ポリ 力一ボネー 卜、 ポリスルホン、 ポリ塩化ビニル、 ポリ プロ ピレン、 ポ リ メ チルァク リ レー 卜、 エポキシ樹脂、 フエ ノール系樹脂、 弗素系樹脂、 メラ ミン系樹脂などのプラスチック、 さらには、 アルミナ、 シリ コン、 石英、 炭化珪素などのセラミ ックをはじめとする基板材料を 板状、 シー ト状、 フィ ルム状又はネッ ト状に形成したものが用いられ、 必要に応じて、 これらの基板材料は積層して用いられる。 好ま しい基板 材料と しては、 例えば、 アルミ ノ珪酸塩ガラス、 アルミ ノ硼珪酸ガラス、 石英ガラス、 硼珪酸ガラス、 バ リ ウム硼珪酸ガラスなどの、 アルカ リ含 量、 熱膨張係数がともに小さ く、 表面が平滑で傷がなく、 研磨し易いフ ォ 卜 マスク用ガラスや、 隣接する電気伝導膜との親和性に優れ、 水分を 透過し難い、 例えば、 ァラ ミ ド系、 エポキシ系、 フ エ ノール系、 ポリ ア リ レー 卜系、 ポリ イ ミ ド系、 ポリエステル系、 芳香族ポリ エーテル系、 ポリオレフイ ン系、 メラミン系及び弗素系のプラスチックが挙げられ、 シリ コンなどのセラミ ック材料は透明な基板材料と組み合わせて用いら れる。 ソーダ石灰ガラスなどのアル力 リ含量が大きいガラスを用いる場 合には、 例えば、 表面へシ リ カなどによる膜を形成する予処理を してお くのが望ま しい。
電気電導層 1 b は、 電気的に低抵抗率であって、 しかも、 全可視領域 に亙って光透過率が大きい金属若しく は電気伝導性材料の 1 又は複数を、 例えば、 真空蒸着、 スパッタ リ ング、 化学蒸着 ( C V D )、 原子層ェピタ クシ一 ( A L E )、 塗布、 浸漬などの方法によ り、 基板 1 aの一側へ厚さ 1 0 n m以上、 好ま しく は、 5 0 n m以上の層状に付着させることによ つて形成される。 電気伝導層 1 bにおける金属及び電気伝導性材料と し ては、 例えば、 金、 白金、 アルミニウム、 ニッケルなどの金属、 酸化亜 鉛、 酸化錫、 酸化イ ンジウム、 弗素若しくはアンチモンを微量混入させ た酸化錫 (以下、 「N E S A」 と略記する。)、 錫を微量混入させた酸化ィ ンジゥム (以下、 「 I T O」 と略記する。) などの金属酸化物、 さらには、 ァニリ ン、 チ才フェ ン、 ピロールなどを反復単位とする電気伝導性オリ ゴマー及び電気伝導性ポリ マーなどが挙げられ、 このうち、 N E S Aを 薄膜状に塗布したものが好ま しい。
半導体層 1 cは、 通常、 平均粒子径 5乃至 5 0 0 n mの多孔質構造を 有する半導体のナノ粒子を含んでなる水性懸濁液を調製し、 これを、 塗 布などの方法により、 電気伝導層 1 b に対して 0 . 1 乃至 1 0 0 μ m、 好ま しく は、 1 乃至 5 0 mの厚さに付着させた後、 焼結することによ つて形成することができる。 半導体層 1 c を構成する半導体の具体例と しては、 斯界において汎用される化合物半導体一般、 とりわけ、 酸化セ リ ウム、 酸化チタン、 酸化ジルコニウム、 酸化バナジウム、 酸化ニオブ、 酸化タングステン、 酸化鉄、 酸化ニッ ケル、 酸化イ ンジウム、 酸化錫、 酸化ビスマスなどの金属酸化物、 チタン酸ス ト ロ ンチウム、 チタン酸バ リ ウム、 ニオブ酸カ リ ウム、 タ ンタル酸ナ ト リ ウムなどの複合金属酸化 物、 沃化錫、 沃化銅、 臭化銅などの金属ハロゲン化合物、 硫化亜鉛、 硫 化チタン、 硫化イ ンジウム、 硫化ビスマス、 硫化カ ド ミ ウム、 硫化ジル コニゥ厶、 硫化タ ンタル、 硫化銀、 硫化銅、 硫化錫、 硫化タングステン、 硫化モ リ ブデンなどの金属硫化物、 セ レン化カ ド ミ ウム、 セ レン化ジル コニゥム、 セ レン化亜鉛、 セ レン化チタン、 セ レン化イ ンジウム、 セ レ ン化タングステン、 セレン化モリブデン、 セレンィ匕ビスマス、 テルル化 カ ド ミウム、 テルル化タングステン、 テルル化モリ ブデン、 テルル化亜 鉛、 テルル化ビスマスなどのカルコゲニ ド化合物が挙げられ、 必要に応 じて、 これらは組み合わせて用いられる。 特に、 同じ出願人による特開 2 0 0 1 - 3 5 7 8 9 9号公報に記載された、 粒度分布において複数の ピークを有する半導体粒子群からなる化合物半導体は、 この発明による 半導体電極において極めて有用である。 なお、 これらの半導体は単なる 例示であって、 この発明で用いる半導体」ま決してこれらに限定されては ならず、 発明の目的を逸脱しない範囲で、 p型半導体及び n型半導体の うちから適宜のものを選択すればよい。 また、 半導体のナノ粒子を含ん でなる懸濁液を調製するに当たって、 半導体層における多孔質構造の表 面積を増大させる目的で、 例えば、 分子量 5, 0 0 0乃至 5 0 0, 0 0 0ダル ト ンのポリ エチレングリ コールなどの水溶性合成高分子物質や、 プルラン、 エルシナンなどの水溶性天然高分子物質を半導体に対して 5 乃至 5 0質量%、 好ま しく は、 1 0乃至 3 0質量%添加するのが望ま し い。
斯く して得られる半導体電極 1 を光増感するには、 例えば、 吸光能を 有する 1 又は複数の有機色素化合物を濃度 0 . 0 1 m Mから飽和濃度、 好ま しく は、 0 . 1 乃至 0 . 5 m Mになるように適宜溶剤に溶解し、 そ の溶液に半導体電極 1 を浸漬するか、 あるいは、 その溶液を半導体電極 1 における半導体層 1 cへ塗布した状態で、 周囲温度か周囲温度を上回 る温度で 1 分間以上、 好ま しく は、 1 乃至 2 4時間静置した後、 溶剤を 蒸散させ、 半導体電極 1 を して有機色素化合物を担持せしめる。
光增感剤の主体となる有機色素化合物の種類については、 それが負に 荷電し得る原子団を有し、 正又は負に荷電し得る原子団同士の相互作用 などによって、 半導体電極 1 における半導体層 1 cへ担持させ得るもの であって、 かつ、 半導体層 1 c を実質的に光増感し得るものであるかぎ り、 特に制限がない。 個々の有機色素化合物と しては、 斯界において光 增感剤と して用いられる、 例えば、 ァク リ ジン系、 ァザァヌ レン系、 ァ ゾ系、 アン 卜 ラキノ ン系、 イ ンジゴ系、 イ ンダンス レン系、 才キサジン 系、 キサンテン系、 クマ リ ン系、 ジォキサジン系、 チアジン系、 チ才ィ ンジゴ系、 テ ト ラポルフィ ラジン系、 卜 リ フ エニルメ タン系、 ト リ フ エ ノ チアジン系、 ナフ ト キノ ン系、 フタ ロシアニン系、 ベンゾキノ ン系、 ベンゾピラン系、 ベンゾフラ ノ ン系、 ポ,リ メ チン系、 ポルフィ リ ン系、 ローダミン系の有機色素化合物が挙げられ、 必要に応じて、 これらは組 み合わせて用いられる。 好ま しい有機色素化合物と じては、 例えば、 力 ルポキシ基、 スルホ基、 フ; i: ノール性ヒ ドロキシ基などの負に荷電し得 る原子団を有するクマリ ン系の有機色素化合物や、 ォキソノール色素、 シァニン色素、 スチ リ ル色素、 メ ロシアニン色素、 ロダニン色素をはじ めとするポリ メチン系の有機色素化合物が挙げられ、 とりわけ、 同じ出 願人による特願 2 0 0 2 — 1 3 1 5 2 1 号明細書 (発明の名称 「光増感 組成物」)に開示されたクマ リ ン系及びポリ メチン系の有機色素化合物が 特に好ま しい。
溶剤と しては、 蒸散し易く、 有機色素化合物が実質的に溶解するもの であるかぎり、 特に制限がない。 個々の溶剤と しては、 例えば、 メタノ ール、 エタ ノール、 2 , 2 , 2 — 卜 リ フリレオ口エタ ノール、 1 一プロパ ノール、 2 —プロパノール、 1 —ブタ ノ一ル、 2 —ブ夕 ノール、 イ ソブ チルアルコール、 イ ソペンチルアルコール、 シク ロへキサノールなどの アルコール類、 ベンゼン、 ト ルエン、 キシ レンなどの炭化水素類、 ァセ 卜 二 卜 リ ル、 プロ ピオ二 ト リ ル、 スク シノ ニ ト リ ルなどの二 卜 リ ル類、 ジェチルエーテル、 ジイ ソプロ ピルエーテル、 テ ト ラ ヒ ド ロ フラ ン、 テ 卜 ラ ヒ ド ロ ピラン、 1 , 4 一ジ才キサンなどのエーテル類などが挙げら れ、 必要に応じて、 これらは組み合わせて用いられる。 これらの溶剤の うち、 有機色素化合物が溶解し易く、 しかも、 蒸散させ易い点で、 メタ ノール、 エタノールなどのアルコ一ル類、 ァセ 卜二 卜 リルなどの二 ト リ ル類及びこれらの混液が好ま しい。
図 1 における 2は対極であり、 通常、 半導体電極 1 におけると同様の 基板 2 aの一側へ、 例えば、 真空蒸着、 化学蒸着、 スパッタ リ ング、 原 子層ェピタクシー、 塗布、 浸漬などの汎用の方法により、 鉄、 ルテニゥ ム、 コバル ト、 ロジウム、 ニッケル、 白金、 銅、 銀、 金、 亜鉛、 アルミ 二ゥム、 錫などの金属か、 あるいは、 炭素若しく は半導体電極 1 におけ ると同様の半導体を厚さ 0 . 1 n m以上、 好ましく は、 1 0 n m以上、 より好ま しく は、 1 0 0 n m以上の層状に付着せしめて電気伝導層 2 b を形成することによって得ることができる。
この発明の光電気化学太陽電池は、 斯く して得られた半導体電極 1 と 対極 2 とをセル容器中の電解質層へそれぞれ浸漬せしめることによって 得ることができる。 図 1 における 3はその電解質層であり、 通常、 有機 溶剤又はィオン性液体を主体に構成され、 これに沃素と、 必要に応じて、 例えば、 沃化イ ミダゾリ ウム誘導体、 沃化リ チウム、 沃化カ リ ウム、 沃 化テ トラアルキルアンモニゥム塩などの沃素化合物とが沃素系酸化還元 電解質と して添加される。 添加する沃素系酸化還元電解質の量は、 波長 5 5 0 n mにおける電解質層の光透過率が、 沃素系酸化還元電解質を添 加しない対照の 8 5 %以上、 好ま しく は、 9 0乃至 9 9 %になるように 設定される。 波長 5 5 0 n mにおける電解質層の光透過率が 8 5 %を下 回ると、 セル容器を透かして見える半導体電極の色がくすみ、 色鮮やか な表示が得られ難くなり、 また、 半導体電極を構成する半導体や光增感 剤の種類によっては、 光透過率が 9 9 %を超えると、 光電変換効率が実 用上の支障を招来するレベルにまで低下することがあるので、 通常、 上 記の範囲で加減するのが望ま しい。
電解質層 3を構成するための有機溶剤と しては、 取扱い易く、 安定で あって、沃素系酸化還元電解質を実質的に溶解させるものであるかぎリ、 特に制限がない。 斯かる溶剤の具体例と しては、 例えば、 ァセ トニ ト リ ル、 メ トキシァセ トニ 卜 リル、 プロピオ二 卜 リル、 メ 卜キシプロ ピオ二 卜 リル、 スクシノニ 卜 リルなどの二 卜 リル類、 炭酸エチレン、 炭酸プロ ピレンなどのエステル類、 N, N —ジメチルホルムアミ ド、 N , N —ジ メチルァセ 卜アミ ド、 へキサメチル瞵酸,卜 リ アミ ドなどのアミ ド類、 テ 卜ラ ヒ ド ロフラン、 テ 卜ラヒ ドロ ピラン、 1 , 4 一ジ才キサン、 ジシク 口へキシル一 1 8 —クラウン一 6などのエーテル類、 ピリ ジンなどのァ ミン類、 ニ ト ロメタンなどのニ ト ロ化合物、 ジメチルスルホキシ ドなど の含硫化合物が挙げられ、 必要に応じて、 これらは組み合わせて用いら れる。
電解質層 3を構成するためのィォン性液体と しては、 斯界において汎 用される、 例えば、 イ ミダゾリ ウム塩、 才キサゾリ ゥム塩、 スルホニゥ ム塩、 チアゾリ ゥム塩、 卜 リ アゾリ ゥム塩、 ビラゾリ ウム塩、 ピリ ジ二 ゥム塩、 ピリ ダジゥム塩、 ピリ ミジゥム塩、 ホスホニゥム塩などが挙げ られる。 ィ才ン性液体における対ィオンと しては、 例えば、 塩素イオン、 臭素イオン、 沃素イオン、 沃素三量体 ( I 3 — )、 硫酸イオン、 硝酸ィ才 ン、 四硼素酸イオン、 六弗アンチモン酸イオン、 六弗燒酸イオンなどの 無機陽イオン、 チ才シアン酸イオン、 卜 リ ス ( ト リ フルォロメタンスル ホン) カーバイ ドイオン、 ト リ フル才ロ酢酸イオン、 ト リ フルォロメタ ンスルホン酸イオン、 ビス ( ト リ フル才ロメタンスルホニル) イ ミ ドィ オンなどの有機陰イオンが挙げられ、 このうち、 沃素イオン及び沃素三 量体イオンが好ま しい。
特に好ま しいィ才ン性液体は、 一般式 1 で表されるイ ミダゾリ ゥム塩 を主体とするものであって、 一般式 1 において、 R 1及び R 2は互いに同 じか異なる脂肪族炭化水素基を表す。 R 1及び R 2における脂肪族炭化水 素基と しては、 炭素数 1 乃至 2 0の、 例えば、 メチル基、 ェチル基、 プ 口ピル基、 イ ソプロピル基、 1 —プロぺニル基、 2 —プロぺニル基、 ブ チル基、 イ ソプチル基、 s e c一ブチル基、 t e r t —ブチル基、 3 — ブテニル基、 1 , 3—ブタジェニル基、 ペンチル基、 イ ソペンチル基、 ネオペンチル基、 t e r t —ペンチル基、 1 —メチルペンチル基、 2 — メチルペンチル基、 へキシル基、 イ ソへ,キシル基、 5 —メチルへキシル 基、 ヘプチル基、 才クチル基、 ノニル基、 デシル基、 ドデシル基、 才ク 夕デシル基などが挙げられ、 このうち、 炭素数 1 乃至 1 0のメチル基、 ェチル基、 プロピル基、 イ ソプロピル基、 イ ソプロぺニル基、 1 —プロ ぺニル基、 2—プロぺニル基、 ブチル基、 イ ソプチル基、 s e c —プチ ル基、 t e r t —ブチル基、 3 —ブテニル基、 1 , 3 —ブタジェニル基、 ペンチル基、 イ ソペンチル基、 ネオペンチル基、 t e r t 一ペンチル基、 2—ペンテニル基、 へキシル基、 イ ソへキシル基、 5 —メチルへキシル 基、 ヘプチル基; 才クチル基などが好ま しい。 なお、 一般式 1 における X一は、 上述したごとき対イオンである。
般式 1
Figure imgf000012_0001
この発明による光電気化学太陽電池においては、 必要に応じて、 半導 体電極 1 と対極 2 との物理的接触を防ぐためにスぺーサーを設けること を妨げない。 スぺーサ一の材質と しては、 例えば、 ポリ エステル、 ポリ カーボネ一 卜、 ポリ スルホン、 ポリ メチルポリ アク リ レー ト、 ポリ プロ ピレン、 ポリエチレンなどのプラスチックや、 石英、 ガラス、 ソーダ石 灰ガラス、 アルミ ノ珪酸塩ガラス、 アルミ ノ硼珪酸ガラス、 硼珪酸ガラ ス、 バリ ウム珪酸ガラス、 バリ ウム硼珪酸ガラスなどのガラス、 石英、 陶器などのセラミ ックをはじめとする非電気伝導性材料が挙げられ、 こ れを単用するか適宜組み合わせて厚さ 1 m以上、 好ま しく は、 1 0乃 至 5 0 mの膜状、 フィルム状又はシ一 卜状に形成する。 なお、 光電気 化学太陽電池において、 半導体電極 1 、 対極 2などを収容するセル容器 がそれらの物理的接触を妨げる構造を有している場合には、 スぺーサー を省略することができる。
さらに、 この発明による光電気化学太陽電池においては、 必要に応じ て、 例えば、 図 1 に見られるがごと く、 大気と基板 1 a、 2 a との屈折 率の違いによる基板 1 a、2 aの表面における光反射を防止する目的で、 例えば、 弗化マグネシウムや氷晶石を主体とする光反射防止層 4 a、 4 bや、 使用環境における劣化を最小限に抑えるべく、 光電気化学太陽電 池の一部又は全体を、 例えば、 封止ガラスや金属キャップなどの封止具 5 a s 5 b により封止するか、 あるいは、 防湿塗料を塗布したり、 紫外 線硬化樹脂、 熱硬化樹脂などによる保護膜で覆うのが望ま しい。
この発明の光電気化学太陽電池の使用方法について説明すると、 この 発明の光電気化学太陽電池は、 通常、 複数の電池ュニッ 卜を組み合わせ てなる、 例えば、 太陽電池モジュール、 太陽電池ア レイなどの太陽電池 集合体と して用いられる。 斯かる太陽電池集合体は、 この発明による複 数の光電気化学太陽電池を互いに直列又は並列に接続しながら、 複数の 光電気化学太陽電池が、 全体と して、 個々の光電気化学太陽電池におけ る半導体電極の色の違いによって所望の絵、 模様、 図形、 文字、 記号な どを表示するように配設することによって得ることができる。
図 2は、 この発明による太陽電池集合体の 1 例を示す模式図である。 図 2に示す太陽電池集合体において、 6 a、 6 b、 6 c、 6 d はこの発 明の光電気化学太陽電池であり、 ワイヤ 7 a、 7 b、 7 c によ り互いに 直列に接続した状態で、 それぞれ、 例えば、 強化ガラス、 強化プラスチ ッ クなどの物理的に強靭な非電気伝導性材料による支持部材 8の一側へ 光電気化学太陽電池 6 a、 6 b、 6 c、 6 d における対極側を対向させ て配設されている。 個々の光電気化学太陽電池における半導体電極の色 の違いにより絵模様、 文字などを表示するには、 例えば、 光電気化学太 陽電池 6 a、 6 b、 6 c s 6 dの平面形;!犬を正方形、 長方形、 菱形、 台 形、 三角形、 円形などに形成する一方、 表示しょうとする絵模様、 文字 などに応じて、 半導体電極が、 例えば、 紫色、 青色、 緑色、 黄色、 赤色、 黒色に見えるものを適宜選択し、 光電気化学太陽電池 6 a、 6 b、 6 c、 6 dなどが、 全体と して、 半導体電極の色の違いによつて所望の絵、 模 様、 図形、 文字、 記号、 あるいは、 それらの組合わせを表示するように 縦横に配設する。 光電気化学太陽電池 6 a、 6 b、 6 c、 6 dの大きさ と しては、. 表示しょうとする絵模様、 文字などの内容、 種類、 大きさ、 精度などを勘案しながら、 例えば、 光電気化学太陽電池の形状が方形で ある場合、 その 1 辺の長さを 1 m m乃至 1 m程度にする。
図 2に示すがごとき太陽電池集合体は、 この発明による複数の光電気 化学太陽電池を縦列及びノ又は横列に配設し、 それらの電極端同士をヮ ィャ 7 a、 7 b、 7 cなどにより互いに直列又は並列に適宜接続した状 態で、 必要に応じて、 エチレンビニルアセテー ト シー ト、 弗化ビニルシ 一卜などによる防湿シー トで覆い、減圧下で加熱してラ ミネ一 卜 した後、 汎用のアルミニウム枠などへ取り付け、 太陽電池モジュールとすること もできる。 この場合、 各太陽電池モジュールを構成する光電気化学太陽 電池における半導体電極の色はモジュール内で同じであっても異なって いてもよい。 半導体電極の色がモジュール内で同じである場合には、 複 数のモジュールを縦列及び Z又は横列に配設してなる、 例えば、 太陽電 池アレイの形態にある太陽電池集合体が、 全体と して、 所望の絵模様、 文字などを表示することとなるのは言うまでもない。 光電気化学太陽電 池同士を直列に接続するか並列に接続するかにもよるけれども、 太陽電 池集合体の安定動作という点で、 同様の開放電圧や短絡電流を有するも の同士を組み合わせるのが望ま しい。太陽電池集合体の出力が、 例えば、 1 k Wを超える場合、 保守などの観点から、 集合体を複数のブロックに 分離し、 各ブロックごとに遮断器や逆流,防止ダイ才ー ドを介挿するのが 望ま しい。
既述のとおり、 この発明による光電気化学太陽電池とその集合体は、 発電機能を具備する表示手段と して、 絵模様、 文字などによる表示を必 要とする多種多様の場面において有利に用いることができる。 例えば、 事業所などにおいては、 この発明による太陽電池集合体を社屋の外壁や 窓ガラスに取り付けて、 社名や社標、 キャ ッチフ レーズなどを表示する ことができ、 発生した電力は事業所で消費する電力の一部に充てること ができる。 車輛や船舶などにおいては、 太陽電池集合体を側壁、 天井壁、 窓などへ取り付けることによって、 所属や船名、 船籍などを表示するこ とができ、 発生した電力は、 例えば、 指示器や表示灯などへ充てること ができる。 電気 · 機械器具などにおいては、 キヤ ビネッ 卜などへ取り付 けることによって、 イラス トや器具の型式などを表示することができ、 発生した電力は、 例えば、 メモリー用のバッ クアップ電源と して利用す ることができる。 この発明の太陽電池集合体を、 従来公知の太陽電池に おけると同様に、 例えば、 架台などへ取り付けて屋外で用いる場合、 太 陽電池集合体が、 例えば、 エコロジ一に関連する標語などを表示するよ うにしてもよい。
以下、 この発明の実施の形態につき、 実施例に基づいて説明する。 実施例 1 : 半導体電極
常法により、表面をシリ カ処理したソーダ石灰ガラス製の基板 1 a (厚 さ 1 . 8 m m、 長さ 1 c m、 幅 1 c m ) の一側へ N E S Aを蒸着して厚 さ 1 0 0 n mの電気伝導層 1 bを形成した。 引き続き、 平均粒子径 2 3 n mのチタンのナノ粒子と平均粒子径 1 2 n mの酸化チタンのナノ粒子 とを質量比 4 : 1 の割合で混合し、 2 0質量%のポリ エチレングリ コ一 ル水溶液に懸濁させ、 電気伝導層 〗 bへ厚さ 0 . 1 n mの厚さになるよ うに塗布し、 乾燥させた後、 4 5 0 °Cで, 3 0分間焼結して半導体電極を ί /こ ο
別途、 化学式 1 で表されるポリ メチン系の有機色素化合物 (吸収極大 波長 5 7 0 n m ) か、 化学式 2で表されるポリ メチン系の有機色素化合 物 (吸収極大波長 5 8 6 n m ) か、 あるいは、 化学式 2で表されるポリ メチン系の有機色素化合物と化学式 3で表されるクマ l ン系の有機色素 化合物 (吸収極大波長 4 2 1 n m ) との混合物 (モル比 1 : 4 ) を、 そ れぞれ、 有機色素化合物の濃度が全体と して 2 X 1 0— 4 Mになるように メ タ ノールへ溶解させた後、 得られたそれぞれの溶液へ上記で得られた 半導体電極を 1 0時間浸漬した。 その後、 半導体電極を取り出し、 室温 下で放置してメ タ ノールを蒸散させることによって、 光増感された 3種 類の半導体電極を得た。
化学式 1 :
Figure imgf000016_0001
化学式 2
Figure imgf000017_0001
CH2COOH
化学式 3
Figure imgf000017_0002
実施例 2 : 光電気化学太陽電池
実施例 1 の方法により得た 3種類の半導体電極のいずれかと、 実施例 1 の半導体電極におけると同様のガラス製基板の一側へ、 常法により、 I T O電極及び白金をこの順序で蒸着して厚さ 1 0 0 n mの電気伝導層 を有する対極を形成し、 さらに、 半導体電極及び対極における電気伝導 層を有しない側へ弗化マグネシゥムによる反射防止層を設け、 一部開口 部を除いて封止具へ固定した後、 一般式 1 で表されるイオン性液体と し ての N —メチルー N '—プチルイ ミダゾリ ゥムアイ才ダイ ドと、 沃素系酸 化還元電解質と しての沃素との混合物 (沃素単独の濃度が 1 . 8 7質 量%) を半導体電極と対極との間隙へ注入して電解質層 (波長 5 5 0 n mにおける光透過率が 9 0 % ) と した。 その後、 開口部を封止具によ り 封止し、 光増感剤と しての有機色素化合物を半導体電極へ担持せしめた 光電気化学太陽電池を得た。
新く して得られた光電気化学太陽電池と、別途、沃素濃度を 1 6質量% まで高めることによって、 波長 5 5 0 n mにおける電解質層の光透過率 を 8 0 %にした以外は上記と同様にして作製した光電気化学太陽電池に つき、 セル容器の一部を構成する半導体電極側の基板を透かして見える 半導体電極の色を肉眼観察した。 その結果、 後者の光電気化学太陽電池 においては、 半導体電極がくすんで見えたのに対して、 波長 5 5 0 n m における電解質層の光透過率が 9 0 %である前者の光電気化学太陽電池 においては、 半導体電極がセル容器を透かして色鮮やかに見えた。 この 事実は、 半導体電極がセル容器を透かして色鮮やかに見えるようにする ためには、 電解質層における光透過率を 8 0 %を超えるレベル、 詳細に は、 8 5 %以上、 好ましくは、 9 0 %以上にすることが肝要であること を物言吾っている。
実施例 3 : 光電気化学太陽電池の光電変換特性
実施例 2の方法によリ得た、 波長 5 5 0 n mにおける電解質層の光透 過率が 9 0 %である 3種類の光電気化学太陽電池にっき、 光源として、 キセノンランプとバン ドパスフィルターとを組み合わせた汎用のソーラ —シミ ュ レータ一 (エアマス 1 . 5、 照度 9 6, 5 0 0 I u x、 輻射ェ ネルギー密度 9 7 m WZ c m 2 ) を用い、 常法にしたがって光電変換特 性を調べた。 結果を表 1 に示す。
表 1
光増感剤 開放電圧 短絡電流 光電変換効率 色
(V) (mA/ cm2) (%)
化学式 1 0. 57 4. 8 1. 9 青 化学式 2 0. 61 6. 2 2. 7 赤 化学式 2+化学式 3 0. 59 6. 8 2. 7 緑 表 1 の結果に見られるとおり、 試験に供した光電気化学太陽電池は、 いずれも、 可視領域において良好な光電変換特性を発揮し、 しかも、 開 放電圧及び短絡電流がよ く揃い、 セル容器を透かして見える半導体電極 も色鮮やかであった。
実施例 4 : 太陽電池集合体
実施例 2の方法によリ作製した光電気化学太陽電池を用いて太陽電池 集合体を作製した。
すなわち、 実施例 2の方法により作製した、 波長 5 5 0 n mにおける 電解質層の光透過率が 9 0 %である 3種類の光電気化学太陽電池を合計 7 7個とリ、 電極導出端同士を互いに直列接続しながら、 半導体電極の 色が、 全体と して、 アルフ ァ べッ 卜による文字列 「 H B」 を表すように、 汎用のエチレンビニルアセテー トシ一 卜を介挿した状態で、 強化ガラス 製の支持部材 8の一側へ縦横に配設した( 1 列当り 1 1 個で 7列)。配色 と しては、 文字 「 H」 及び 「巳」 が、 それぞれ、 緑色及び青色に、 文字 歹 IJ 「 H B」 の背景が赤色に見えるようにした。 その後、 太陽電池集合体 における支持部材 8側の面とは反対側の面に対して、 エチレンビニルァ セテー トシー ト と弗化ビニルシー ト とをこの順序で載置した後、 常法に したがって、 減圧下で加熱することによって集合体全体をラミネ一卜 し た。
晴天の日を選んで、 本例の太陽電池集合体を屋外へ持ち出し、 光電変 換特性を調べたところ、 所期の起電力が安定して得られた。 し力、も、 「 H B」 の文字列は色鮮やかで、 離れた位置からも明確に視認することがで きた。 光電変換特性にも優れた本例の太陽電池集合体は、 発電機能を具 備する表示手段と して、 屋内外において有利に用いることができる。 実施例 5 : 光電気化学太陽電池 沃素 4 5 m M、 沃化リ チウム 3 0 m M、 ジメチルへキシルイ ミダゾリ ゥ厶アイオダイ ド 3 3 0 m M及び 4— t e r t —プチルビリ ジン 1 0 0 m Mを含有するァセ 卜二 卜 リル溶液によリ構成される電解質層 (波長 5 5 0 n mにおける光透過率が 9 5 % ) を用いた以外は、 実施例 2におけ ると同様にして 3種類の光電気化学太陽電池を作製した。
本例の光電気化学太陽電池は、 いずれも、 良好な光電変換特性を発揮 し、 しかも、 セル容器の一部を構成する半導体電極側の基板を透かして、 半導体電極が色鮮やかな青色、 緑色又は赤色に見えた。
実施例 6 : 太陽電池集合体
実施例 5の方法によリ作製した 3種類の光電気化学太陽電池を用いた 以外は実施例 3におけると同様にして太陽電池集合体を作製した。
晴天の日を選んで、 本例の太陽電池集合体を屋外へ持ち出し、 光電変 換特性を調べたところ、 所期の起電力が安定して得られた。 しかも、「 H B」 の文字列は、 いずれも、 色鮮やかで、 離れた位置からも明確に視認 することができた。 光電変換特性にも優れた本例の太陽電池集合体は、 発電機能を具備する表示手段と して、 屋内外において有利に用いること ができる。 産業上の利用の可能性
以上説明したとおり、 この発明による光電気化学太陽電池及び太陽電 池集合体は、 発電機能を具備する表示手段と して、 例えば、 事業所、 車 輛、 船舶、 電気 · 機械器具など、 絵模様、 文字などによる表示を必要と する多種多様の場面において有利に用いることができる。
斯く も顕著な効果を奏するこの発明は、 斯界に貢献すること誠に多大 な、 意義のある発明であると言える。

Claims

請 求 の 範 囲
1 . 沃素系酸化還元電解質を用いる光電気化学太陽電池において、 波 長 5 5 0 n mにおける電解質層の光透過率が 8 5 %以上である光電気化 学太陽電池。
2 . 請求の範囲第 1 項に記載の光電気化学太陽電池を複数配設してな リ、 その複数の光電気化学太陽電池にお る半導体電極の色の違いによ つて所望の絵模様、 文字などを表示する太陽電池集合体。
PCT/JP2003/015732 2002-12-16 2003-12-09 光電気化学太陽電池 WO2004055934A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004560614A JPWO2004055934A1 (ja) 2002-12-16 2003-12-09 光電気化学太陽電池
FI20041076A FI20041076A (fi) 2002-12-16 2004-08-12 Valosähkökemiallinen aurinkokenno
SE0402007A SE0402007L (sv) 2002-12-16 2004-08-12 Fotoelektrokemisk solcell
NO20045363A NO20045363L (no) 2002-12-16 2004-12-08 Fotoelektrokjemisk solcelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-363360 2002-12-16
JP2002363360 2002-12-16

Publications (1)

Publication Number Publication Date
WO2004055934A1 true WO2004055934A1 (ja) 2004-07-01

Family

ID=32588203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015732 WO2004055934A1 (ja) 2002-12-16 2003-12-09 光電気化学太陽電池

Country Status (5)

Country Link
JP (1) JPWO2004055934A1 (ja)
FI (1) FI20041076A (ja)
NO (1) NO20045363L (ja)
SE (1) SE0402007L (ja)
WO (1) WO2004055934A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD2730C2 (ro) * 2003-08-05 2005-12-31 Институт Прикладной Физики Академии Наук Молдовы Celulă solară fotoelectrochimică
JP2006282983A (ja) * 2005-03-09 2006-10-19 Fuji Photo Film Co Ltd 色素組成物、および染色方法
WO2012057006A1 (ja) * 2010-10-29 2012-05-03 株式会社フジクラ 色素増感太陽電池モジュール
JP2014022180A (ja) * 2012-07-18 2014-02-03 Fujikura Ltd 色素増感太陽電池およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176565A (ja) * 1999-12-10 2001-06-29 Nokia Mobile Phones Ltd 色素増感型太陽電池
US6310282B1 (en) * 1999-03-19 2001-10-30 Kabushiki Kaisha Toshiba Photovoltaic conversion element and a dye-sensitizing photovoltaic cell
JP2002075472A (ja) * 2000-08-25 2002-03-15 Sharp Corp カラー太陽電池およびその作製方法
JP2002324591A (ja) * 2001-02-21 2002-11-08 Showa Denko Kk 色素増感型太陽電池用光活性電極及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415448B2 (ja) * 2000-03-29 2010-02-17 パナソニック電工株式会社 光電変換素子
JP2002298935A (ja) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd 電解質、及び光電気化学電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310282B1 (en) * 1999-03-19 2001-10-30 Kabushiki Kaisha Toshiba Photovoltaic conversion element and a dye-sensitizing photovoltaic cell
JP2001176565A (ja) * 1999-12-10 2001-06-29 Nokia Mobile Phones Ltd 色素増感型太陽電池
JP2002075472A (ja) * 2000-08-25 2002-03-15 Sharp Corp カラー太陽電池およびその作製方法
JP2002324591A (ja) * 2001-02-21 2002-11-08 Showa Denko Kk 色素増感型太陽電池用光活性電極及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD2730C2 (ro) * 2003-08-05 2005-12-31 Институт Прикладной Физики Академии Наук Молдовы Celulă solară fotoelectrochimică
JP2006282983A (ja) * 2005-03-09 2006-10-19 Fuji Photo Film Co Ltd 色素組成物、および染色方法
JP4669754B2 (ja) * 2005-03-09 2011-04-13 富士フイルム株式会社 色素組成物、および染色方法
WO2012057006A1 (ja) * 2010-10-29 2012-05-03 株式会社フジクラ 色素増感太陽電池モジュール
JP5487321B2 (ja) * 2010-10-29 2014-05-07 株式会社フジクラ 色素増感太陽電池モジュール
US10325729B2 (en) 2010-10-29 2019-06-18 Fujikura Ltd. Dye-sensitized solar cell module
JP2014022180A (ja) * 2012-07-18 2014-02-03 Fujikura Ltd 色素増感太陽電池およびその製造方法

Also Published As

Publication number Publication date
SE0402007D0 (sv) 2004-08-12
NO20045363L (no) 2004-12-08
FI20041076A (fi) 2004-09-06
SE0402007L (sv) 2004-10-07
JPWO2004055934A1 (ja) 2006-04-20

Similar Documents

Publication Publication Date Title
Bati et al. Next-generation applications for integrated perovskite solar cells
Pulli et al. Transparent photovoltaic technologies: Current trends towards upscaling
Fu et al. Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long‐term outdoor stability
US7118936B2 (en) Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
Destouesse et al. Slot-die processing and encapsulation of non-fullerene based ITO-free organic solar cells and modules
JP2001148491A (ja) 光電変換素子
WO2012124655A1 (ja) 2酸化ケイ素ソーラーセル
CN110571335A (zh) 钙钛矿光伏组件、制备方法和用途
US7932465B2 (en) Photoelectric electrodes capable of absorbing light energy, fabrication methods, and applications thereof
Mali et al. Stability of unstable perovskites: recent strategies for making stable perovskite solar cells
Wang et al. Configuration-centered photovoltaic applications of metal halide perovskites
Teixeira et al. Selection of the ultimate perovskite solar cell materials and fabrication processes towards its industrialization: A review
KR101172361B1 (ko) 염료감응 태양전지용 광전극의 제조방법
CN116367686B (zh) 钙钛矿光伏电池、钙钛矿光伏电池组件和用电装置
WO2004055934A1 (ja) 光電気化学太陽電池
KR101166515B1 (ko) 염료감응 태양전지용 광전극, 상기 광전극의 제조 방법 및 상기 광전극을 포함하는 염료감응 태양전지
JP2002314108A (ja) 太陽電池
KR101192981B1 (ko) 금속 플렉시블 염료감응 태양전지 및 그 제조방법
KR101177716B1 (ko) 이중 코팅 금속 기판을 이용한 금속 플렉시블 염료감응 태양전지 및 그 제조방법
JP2013122875A (ja) 光電変換素子およびその製造方法ならびに光電変換素子用対極ならびに電子機器ならびに建築物
CN102201288A (zh) 太阳能电池
EP1471585B1 (en) Dye sensitized solar cells
JP2004134200A (ja) 半導体電極
Husain et al. Organic ligands/dyes as photon-downshifting materials for clean energy
CN103903865A (zh) 一种染料敏化太阳能电池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CH FI JP NO SE

WWE Wipo information: entry into national phase

Ref document number: 20041076

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 2004560614

Country of ref document: JP