WO2004054856A1 - ワイパ装置制御方法及びワイパ装置並びに減速機構付きモータ - Google Patents

ワイパ装置制御方法及びワイパ装置並びに減速機構付きモータ Download PDF

Info

Publication number
WO2004054856A1
WO2004054856A1 PCT/JP2003/015519 JP0315519W WO2004054856A1 WO 2004054856 A1 WO2004054856 A1 WO 2004054856A1 JP 0315519 W JP0315519 W JP 0315519W WO 2004054856 A1 WO2004054856 A1 WO 2004054856A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiper arm
wiper
reversing
wiper device
reference position
Prior art date
Application number
PCT/JP2003/015519
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Amagasa
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002363041A external-priority patent/JP4298991B2/ja
Priority claimed from JP2003341493A external-priority patent/JP4410524B2/ja
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to EP03777238.1A priority Critical patent/EP1577182B1/en
Priority to US10/537,803 priority patent/US7586275B2/en
Publication of WO2004054856A1 publication Critical patent/WO2004054856A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/38Control circuits or drive circuits associated with geared commutator motors of the worm-and-wheel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel

Definitions

  • the present invention relates to a method for controlling a dipper device, a dipper device, and a motor having a speed reduction mechanism.
  • the present invention relates to a motor used for a wiper device for a vehicle such as an automobile, and a control method thereof, and a control method for a wiper device for a vehicle such as an automobile. Related to control technology.
  • the drive source of the wiper device for vehicles such as automobiles includes batteries mounted on vehicles.
  • the electric motor which is operated by the power source is used.
  • Such an electric motor is provided with a reduction mechanism for reducing the number of rotations of the output shaft to a required number of rotations, and is one unit as an electric motor with a reduction mechanism.
  • One or two motor units are used in the wiper device, and the wiper arm is driven to move between the upper reversing position and the lower reversing position by using the motor unit as a driving source. If one motor unit is used, the driver's seat side and the passenger's seat side wiper arms are connected by a link and driven synchronously. If two motor units are used, attach a motor unit to each of the driver's seat and passenger's seat wiper arms, and drive both wiper arms synchronously while detecting rotation of the amateur shaft and output shaft.
  • Wiper arm position detection Is performed by adding and subtracting the number of pulses generated in conjunction with the rotation of the motor.
  • a multi-pole magnetized magnet is attached to the motor rotation shaft, and a sensor such as a Hall IC that outputs a pulse signal in response to a change in the magnetic pole accompanying the rotation is arranged facing the magnet.
  • the pulse count is reset at one point (home position), which is the reference for the rotational position of the motor unit output shaft, to prevent the occurrence of pulse deviation.
  • a magnet is also attached to the output shaft, and a sensor is arranged so that a reference signal is output when the magnetic pole approaches a predetermined position.
  • the motor control system includes a forward / reverse rotation circuit such as an H-bridge circuit using FETs, and a control means such as a CPU that controls the speed and rotation angle of the motor. The motor is controlled based on the position and speed of the wiper arm. Drive control is performed.
  • the wiper device is often operated by reciprocating the blade between the retracted position and the lower turning position by a manual operation or an automatic operation by the driver.
  • repeated forward and reverse rotations of the motor caused deviations in the pulse count indicating the wiper arm position, and the accumulation could result in unstable blade operation.
  • a sensor for detecting the rotational position of the output shaft is provided not only at the original position but also at the upside-down position or the storage position, and the wiper arm position is detected at various points to stabilize the blade operation. ing. If the machine restarts without the wiper arm stop position being recognized, or if the pulse count is shifted and accumulated Even in this case, a configuration is adopted in which the position of the wiper arm is grasped at an early stage to prevent overrun and unstable operation.
  • it is necessary to attach at least four expensive sensors to one motor unit and there has been a problem that the unit price increases and causes a cost increase.
  • An object of the present invention is to provide a control method and the like of a wiper device that can reliably detect the position of a wiper arm with a small number of sensors. Disclosure of the invention
  • a control method of a wiper device is a control method of a wiper device which detects a position of a wiper arm based on a time when the wiper arm is at a reference position, and causes the wiper arm to perform a reciprocating wiping operation between an upper inverted position and a lower inverted position.
  • the wiper arm is stopped between the upper reversing position and the lower reversing position during operation, the wiper arm is always started toward the reference position when restarting.
  • the wiper arm even when the wiper arm is abnormally stopped between the upper inverted position and the lower inverted position due to power interruption or the like, the wiper arm always passes through the reference position when restarting, so that the position of the wiper arm can be accurately grasped. can do.
  • a storage position of the wiper arm is provided below the lower reversing position, and when the wiper arm is stopped at a position other than the storage position during operation, the wiper arm is always at the reference position at restart. You may make it start toward.
  • a wiper device is a wiper device driven by an electric motor with a speed reduction mechanism having a motor main body having a rotation shaft, and a speed reduction mechanism for reducing the rotation of the rotation shaft and transmitting the rotation to an output shaft.
  • a wiper arm connected to the output shaft and performing a reciprocating wiping operation between an upper reversing position and a lower reversing position; and a wiper arm arranged to face a predetermined position of the output shaft when the wiper arm is at a reference position.
  • a first magnetic detection element, a second magnetic detection element disposed at a position separated from the first magnetic detection element by a predetermined angle, and first magnetic poles provided on the output shaft and having different polarities from each other along a circumferential direction.
  • a second magnetic pole wherein when the wiper arm is on the upper reversing position side with respect to the reference position, the first and second magnetic detection elements both face the second magnetic pole, and the wiper arm is At least one of the first and second magnetic detection elements has a sensor magnet opposed to the first magnetic pole when the first and second magnetic detection elements are on the lower inversion position side with respect to the reference position.
  • the wiper arm is determined whether the wiper arm is on the upper reversing position side or the lower reversing position side with respect to the reference position by determining the polarity of the first and second magnetic poles in the first and second magnetic detecting elements. can do.
  • the wiper arm can always be started in the reference position direction when restarting.
  • the first magnetic detection element when the wiper arm passes the reference position, the first magnetic detection element may face a boundary between the first magnetic pole and the second magnetic pole. Further, in the wiper device, when the wiper arm is at the lower reversing position, both the first and second magnetic detection elements may face the first magnetic pole. Further, in the wiper device, a storage position of the wiper arm is provided below the lower reversing position, and when the wiper arm is at the storage position, the first magnetic detection element faces the first magnetic pole, (2) The magnetic detecting element may face the second magnetic pole.
  • the wiper arm when the wiper arm is stopped between the upper reversing position and the lower reversing position during operation, the wiper arm may always start toward the reference position when restarting. Further, when the wiper arm stops at a position other than the storage position during operation, the wiper arm may always start toward the reference position when restarting. As a result, even when the wiper arm is abnormally stopped due to power cutoff or the like, the wiper arm always passes through the reference position when restarting, so that the position of the wiper arm can be accurately grasped by the two magnetic detection elements.
  • the wiper device further includes a sensor that detects a rotation angle of the rotation shaft, and starts detecting the rotation angle of the rotation shaft based on when the wiper arm is at the reference position. Even good.
  • an electric motor with a speed reduction mechanism of the present invention is an electric motor with a speed reduction mechanism having a motor body having a rotating shaft, and a speed reducing mechanism for reducing the rotation of the rotating shaft and transmitting the rotation to an output shaft.
  • a dynamic motor wherein a first magnetic detection element is disposed at a reference position where a predetermined portion of the output shaft faces when the output shaft is in a predetermined state; and a position separated by a predetermined angle from the first magnetic detection element.
  • a first magnetic pole and a second magnetic pole provided on the output shaft and having different polarities from each other along the circumferential direction, wherein the output shaft is located at one position with respect to the reference position.
  • the first and second magnetic detection elements are opposed to the second magnetic pole. At least one has a sensor magnet facing the first magnetic pole.
  • the present invention by determining the polarity of the first and second magnetic poles in the first and second magnetic detection elements, it is possible to determine in which rotational direction the output shaft is located with respect to the reference position. .
  • the motor is abnormally stopped due to power interruption or the like, it is possible to always start the motor so that the predetermined portion of the output shaft faces the reference position at the shortest angle when restarting.
  • Another wiper device control method of the present invention is a wiper device control method for performing a reciprocating wiping operation of a wiper arm between an upper reversing position and a lower reversing position, wherein the wiper device is disposed between the upper reversing position and the lower reversing position.
  • the wiper arm has a lower limit position that is set below the storage position and that mechanically regulates the operation of the wiper arm. If the wiper arm stops during operation, The wiper arm is always started toward the lower limit position.
  • the wiper arm by restarting toward the lower limit position, no matter where the wiper arm abnormally stops, the wiper arm must always pass the reference position or reach the lower limit position during one-way operation thereafter. it can. Therefore, by detecting the passage or arrival of the wiper arm at two points, the reference position and the lower limit position, the position of the wiper arm at the time of restart can be accurately grasped. Therefore, for example, in a control method in which a wiper arm is driven by a motor, the position of the wiper arm is detected based on a count value of a pulse signal output with the rotation of the motor, and the operation of the wiper arm is controlled, first, a reference position The passage is detected by a sensor.
  • the wiper arm at the time of restart is The position can be grasped by one sensor installed at the reference position.
  • Another wiper device control method of the present invention is a wiper device control method for reciprocating wiping operation of a wiper arm between an upper reversing position and a lower reversing position, wherein the wiper arm is moved between the upper reversing position and the lower reversing position.
  • a reference position that is set; a storage position that is set below the lower reversing position; a storage position that pauses the wiper arm when the wiper device is in a stop state; and a storage position that is set below the storage position. If the wiper arm stops between the upper reversing position and the reference position during operation, the wiper arm always faces the reference position when restarted. If the wiper arm is stopped between the reference position and the storage position during operation, the wiper arm is moved to the reference position or the lower limit position at restart. It is characterized in that it is started toward the device.
  • the wiper arm is restarted toward the reference position.
  • the wiper arm always passes the reference position during the subsequent one-way operation.
  • the wiper arm stops between the reference position and the storage position, the wiper arm is restarted toward the reference position or the lower limit position.
  • the wiper arm always passes through the reference position or reaches the lower limit position during the subsequent one-way operation.
  • the wiper arm position at restart can be set at the reference position by performing such operation control. Can be grasped by one sensor.
  • Another wiper device control method of the present invention is a wiper device control method for reciprocating wiping operation of a wiper arm between an upper reversal position and a lower reversal position, wherein the wiper arm is set below the lower reversal position, A storage position in which the wiper arm is paused when the wiper device is stopped; and a lower limit position that is set below the storage position and in which the operation of the wiper arm is mechanically restricted.
  • the wiper arm is operated to the lower limit position for each reciprocating operation.
  • the wiper arm when the wiper arm is reciprocated between the lower turning position and the retracted position, the wiper arm is operated to the lower limit position for each reciprocating operation.
  • the wiper arm is operated to the lower limit position for each reciprocating operation.
  • Another wiper device control method of the present invention is a wiper device control method for performing a reciprocating wiping operation of a wiper arm between an upper reversing position and a lower reversing position, wherein the wiper device is disposed between the upper reversing position and the lower reversing position.
  • a reference position that is set; a storage position that is set below the lower reversing position; a storage position that pauses the wiper arm when the wiper device is in a stop state; and a storage position that is set below the storage position.
  • the wiper arm When the wiper arm has a lower limit position where the operation is mechanically restricted, and the wiper arm is caused to reciprocate between the lower reversing position and the storage position, the wiper arm moves beyond the lower limit position to the reference position side. It is characterized in that, when actuated, the wiper arm is actuated to the lower limit position.
  • the wiper arm when the wiper arm is reciprocated between the lower reversing position and the storage position, when the wiper arm is moved to the reference position side beyond the lower limit position, the wiper arm is operated to the lower limit position.
  • the wiper arm should have reciprocated between the lower inverted position and the retracted position, if the wiper arm operates beyond the lower inverted position, the exact position of the wiper arm is determined. Likely not. Therefore, in that case, the wiper arm is operated to the lower limit position in the subsequent operation.
  • the wiper arm since the position of the wiper arm can be reliably grasped at the lower limit position, such operation control enables the position of the wiper arm to be grasped accurately and the displacement to be eliminated.
  • a wiper arm is reciprocatedly wiped between a top inversion position and a bottom inversion position by a motor, and the wiper arm is controlled by a count value of a pulse signal output with rotation of the motor.
  • a method of controlling a wiper device that detects a position and controls an operation thereof, comprising: a reference position that is set between the upper inversion position and the lower inversion position, and that resets a count value of the pulse signal to a reference value.
  • a storage position where the wiper arm is stopped when the wiper device is stopped, a storage position where the wiper arm is at rest, and a storage position where the wiper arm is set below the storage position and the operation of the wiper arm is mechanically restricted.
  • a lower limit position at which the count value of the pulse signal indicates a predetermined value, and the upper inversion position during operation of the wiper arm When the motor is stopped between the reference position and the reference position, the restarter always starts the hyper arm toward the reference position, resets the count value of the pulse signal to the reference value by passing the reference position, When the wiper arm is stopped between the reference position and the storage position during operation, the wiper arm is started toward the reference position or the lower limit position when restarting, and passes through the reference position or moves to the lower limit position. Resetting the force value of the pulse signal to the reference value or the predetermined value upon arrival of the pulse signal.
  • the wiper arm when the wiper arm stops between the upper turning position and the reference position, the wiper arm is started toward the reference position.
  • the wiper arm always passes the reference position during the subsequent one-way operation, and the count value of the pulse signal is reset to the reference value, so that the position of the wiper arm can be accurately grasped.
  • the dipper arm stops between the reference position and the storage position, it is restarted toward the reference position or the lower limit position.
  • the wiper arm always passes through the reference position or reaches the lower limit position during the one-way operation thereafter, and the count value of the pulse signal is reset to the reference value or the predetermined value, so that the position of the wiper arm can be accurately grasped.
  • Another wiper device control method of the present invention includes the steps of: causing a wiper arm to perform a reciprocating wiping operation between an upper reversing position and a lower reversing position by a motor; and controlling the wiper arm based on a force value of a pulse signal output as the motor rotates.
  • a method of controlling a wiper device that detects a position of a wiper arm and controls an operation thereof, wherein the reference value is set between the upper inversion position and the lower inversion position, and resets a count value of the pulse signal to a reference value.
  • the pulse signal has a lower limit position at which the count value of the pulse signal indicates a predetermined value.
  • the wiper arm when the wiper arm is reciprocated between the lower turning position and the retracted position, the wiper arm is operated to the lower limit position for each reciprocating operation.
  • Lower limit position It is known in advance that the count value of the pulse signal indicating the position of the wiper arm is a predetermined value, and by performing such operation control, the position of the wiper arm can be reliably ascertained for each reciprocating operation.
  • a wiper arm is reciprocatedly wiped between a top inversion position and a bottom inversion position by a motor, and the wiper arm is controlled by a count value of a pulse signal output with rotation of the motor.
  • a method of controlling a wiper device that detects a position and controls an operation thereof, comprising: a reference position that is set between the upper inversion position and the lower inversion position, and that resets a count value of the pulse signal to a reference value.
  • a storage position where the wiper device is stopped when the wiper device is stopped, a storage position where the wiper arm is stopped, and an operation position of the wiper arm that is mechanically restricted.
  • the hyper arm moves the lower inversion position and the storage position.
  • the force value of the pulse signal indicates a value when the wiper arm is closer to the reference position than the lower limit position
  • the wiper arm is operated to the lower limit position. And resetting the force value of the pulse signal to the predetermined value upon reaching the lower limit position.
  • the wiper arm when the wiper arm is reciprocated between the lower inversion position and the storage position, when the count value of the pulse signal exceeds the value indicating the lower limit position and indicates a value on the reference position side, Operate the wiper arm to the lower limit position.
  • the wiper arm should have reciprocated between the lower inversion position and the storage position, if the pulse count value exceeds the lower inversion position, the correct position of the wiper arm It is highly likely that has not been grasped. Therefore, in that case, the wiper arm is operated to the lower limit position in the subsequent operation.
  • the count value of the pulse signal indicating the position of the wiper arm is a predetermined value in advance, and by performing such operation control, the position of the wiper arm can be accurately grasped and the displacement can be eliminated.
  • FIG. 1 shows an electric motor with a speed reduction mechanism according to an embodiment of the present invention as a drive source.
  • FIG. 2 is an explanatory view schematically showing a wiper device.
  • FIG. 2 is a sectional view showing the structure of the electric motor of FIG.
  • FIG. 3 is a partially cutaway sectional view showing the engaged state of the worm gear shown in FIG.
  • FIG. 4 is an explanatory diagram showing a relationship between the hall IC and the sensor magnet.
  • FIG. 5 is a table showing combinations of magnetic poles detected by the Hall IC in each control point.
  • FIG. 6 is an explanatory diagram showing a configuration of a motor unit used in a wiper device to which the control method of the present invention is applied.
  • FIG. 7 is an explanatory diagram showing a state in the case frame viewed from above in FIG.
  • FIG. 8 is an explanatory diagram showing a state in which gears in the gearbox have been removed from the configuration of FIG.
  • FIG. 9 is an explanatory diagram showing the configuration of the second gear.
  • FIG. 10 is an explanatory diagram showing the relationship between the magnet and the Hall IC and the output signal (motor pulse) of the Hall IC.
  • FIG. 11 is an explanatory diagram showing an operating range of the blade.
  • FIG. 12 is an explanatory diagram showing the relationship between the Hall IC and the magnet.
  • FIG. 13 is a table showing combinations of magnetic poles detected by the Hall IC at each control point.
  • FIG. 14 is an explanatory diagram showing another example of setting the mechanical restriction position. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory view schematically showing a wiper device using an electric motor with a speed reduction mechanism as a drive source according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure of the electric motor in FIG.
  • FIG. 3 is a partially cutaway sectional view showing the engaged state of the worm gear shown in FIG.
  • the wiper device shown in FIG. 1 has a wiper arm 1a on the driver's seat side and a wiper arm 1b on the passenger's seat side which are swingably provided on the vehicle body.
  • the b is provided with a wiper blade 2a on the driver's seat side and a wiper blade 2b on the passenger's seat side.
  • the wiper blades 2a and 2b are in resilient contact with the windshield 3 by a spring member (not shown) or the like provided in the wiper arms la and lb.
  • the vehicle body is provided with two wiper shafts 4a and 4b, and the wiper arms l a and lb are attached to the wiper shafts 4a and 4b at their base ends.
  • the wiper blades 2a , 2b force S, between the lower inversion position A and the upper inversion position B, that is, the wiping range 5 shown by a dashed line in the figure, makes the wiping range 5 move, so that rain or snow attached to the windshield 3 is obtained. Etc. are wiped out.
  • the wiper blades 2 a and 2 b move to the storage position C located below the lower turning position A and are stored in the storage unit 6 when the wiper is stopped.
  • the storage unit 6 is provided inside a hood of a vehicle body (not shown). By storing the wiper blades 2a and 2b in the storage section 6, the visibility in front of the vehicle is improved.
  • the wiper blades 2a and 2b have an origin position (reference position) O set at about 15 ° above the lower inversion position A as a control reference position.
  • the wiper device is provided with two electric motors 7 a and 7 b with a deceleration mechanism (hereinafter abbreviated as motors 7 a and 7 b).
  • the motors 7 a and 7 b include a motor body 8 and a speed reduction mechanism 9.
  • the motor housing 10 of the motor body 8 is formed in a bottomed cylindrical shape.
  • the casing 11 of the reduction mechanism 9 has a cylindrical bearing 11 a having substantially the same dimensions as the motor housing 10, a gear chamber 11 b and a communication unit 11 c. These members are connected by a fastening member (not shown) in a state where the open end 10a of the motor housing 10 and the bearing portion 11a of the casing 11 are in contact with each other.
  • two permanent magnets 12 and 13 are provided with different magnetic poles facing each other to form a magnetic field inside the motor housing 10.
  • An armature 14 is provided inside the motor housing 10 in the magnetic field.
  • the rotating shaft 15 of the amateur 14 is rotatably supported by self-aligning bearings 16 and 17.
  • the bearings 16 and 17 are provided on the bottom 1 Ob of the motor housing 10 and the bearing 11a.
  • Amateur 14 has an amateur core 18 with multiple slots formed I have.
  • An amateur coil 19 is formed by winding a copper wire around each slot.
  • the commutator 20 is mounted on the left side of the amateur core 18 in the figure.
  • the commutator 20 includes a resin body 20 a fixed to the rotating shaft 15, and a plurality of commutator pieces 20 b radially arranged on the outer periphery of the body 20 a and insulated from each other. Each commutator piece 20 b is connected to an amateur coil 19.
  • a brush holder 21 is provided inside the bearing portion 11a.
  • the brush holder 21 has two brushes 22 and 23 attached thereto.
  • the brushes 22 and 23 are urged in the direction of the commutator piece 20b, and come into contact with the commutator piece 20b in that state.
  • the communication section 11c is provided with a power supply terminal 25 connected to the brushes 22 and 23 by wiring 24. By supplying a current to the power supply terminal 25 from a control unit (not shown), currents in opposite directions are supplied to the brushes 22 and 23, respectively.
  • the amateur coil 19 Since the amateur coil 19 is located in a magnetic field, when a rectified current flows through the commutator 20 to the amateur coil 19, a rotational force is generated in the amateur 14 based on Fleming's left-hand rule. Therefore, by controlling the current flowing through the amateur coil 19, the rotation angle, rotation direction, rotation speed, and the like of the rotating shaft 15 can be controlled.
  • the rotation shaft 15 protrudes inside the gear chamber 11b.
  • the tip 15 a of the rotating shaft 15 is located near the wall surface 26 of the gear chamber l ib on the opposite side to the motor body 8.
  • two worms 27 and 28 are formed on the outer peripheral surface located inside the gear chamber 11 b of the rotating shaft 15, respectively, with the screw directions formed in opposite directions. I have.
  • Inside the gear chamber 11b two worm wheels 29 and 30 are provided so as to mesh with the worms 27 and 28, thereby forming a worm gear 31.
  • the worm wheels 29 and 30 are provided with pinion gears 32 and 33 coaxially, respectively.
  • a drive gear 35 as a rotating body integrally formed with the output shaft 34 of the reduction mechanism 9 is engaged with the pinion gears 32 and 33. The rotation of the rotary shaft 15 is transmitted to the output shaft 34 after being reduced by the ⁇ gear 31, the pinion gears 32, 33, and the drive gear 35.
  • the output shafts 34 of the motors 7a and 7b are mechanically connected to the wiper shafts 4a and 4b, respectively.
  • the wiper shafts 4a and 4b rotate integrally with the output shaft 34. ing.
  • the worms 27 and 28 receive a thrust force acting in the axial direction of the rotating shaft 15 by the worm wheels 29 and 30.
  • the thrust forces act in opposite directions. Accordingly, the movement of the rotating shaft 15 in the thrust direction is suppressed, and there is no need to provide a thrust bearing or the like on the rotating shaft 15.
  • a two-stage reduction mechanism including the worm gear 31, the pinion gears 32, 33, and the drive gear 35 is used as the reduction mechanism 9.
  • the present invention is not limited to this, and only the worm gear is used. It may be of a step reduction type or a type using a planetary gear mechanism.
  • a printed circuit board 36 is attached to the upper surface 26 of the casing 11 1 in a direction perpendicular to the rotation axis 15.
  • the printed circuit board 36 is provided with a connection terminal 40 located at the communication section 11c. Power is supplied from a control unit (not shown) and a detection signal is transmitted from the connection terminal 40.
  • the holes IC 37a and 37b those that can determine the type of the magnetic pole as well as the magnetic pole change, that is, whether the detection target is the N pole or the S pole, are used.
  • a Hall IC is used as a relative position detection sensor.
  • the present invention is not limited to this, and other types of sensors such as an optical encoder using a photodiode or an infrared sensor may be used. May be used.
  • a Hall IC is a sensor that transmits a pulse signal by converting a change in magnetic field into a current, and a magnet is required as a detected member of the Hall IC.
  • a detected member of the Hall ICs 37a and 37b for detecting the absolute position a ring-shaped sensor magnet 41 is attached to the outer peripheral portion of the side surface of the drive gear 35 at the lower side in the figure.
  • the sensor magnet 41 is configured to rotate integrally with the drive gear 35, and is magnetized to two poles in the rotation direction.
  • a multi-pole magnetized magnet 42 (hereinafter abbreviated as a magnet 42) is provided at the tip 15a of the rotating shaft 15.
  • FIG. 4 is an explanatory diagram showing the relationship between the Hall ICs 37 a and 37 b and the sensor magnet 41.
  • the sensor magnet 41 has a magnetization angle of one pole (here, S pole) larger than that of the other pole (here, N pole).
  • the holes IC 38 and 39 are mounted on the surface of the printed circuit board 36 at positions facing the magnets 42 with a phase shifted by 90 ° with respect to the rotation direction of the magnets 42.
  • the Hall ICs 38 and 39 output pulses for six cycles for each rotation of the rotary shaft 15. This pulse is transmitted to a control unit (not shown) via the connection terminal 40, and the rotation angle of the rotary shaft 15 can be detected by counting this pulse.
  • the phases of the Hall ICs 38 and 39 are shifted by 90 °, the order of appearance of the pulses transmitted by the Hall ICs 38 and 39 differs depending on the rotation direction of the rotation axis 15.
  • the rotation direction of the rotating shaft 15 can be detected from the appearance order of the pulses. Further, the rotation speed of the rotating shaft 15 can be detected from the period of the pulse detected by the Hall ICs 38 and 39.
  • the operation of the motor will be described.
  • the wiper switch (not shown) is turned on, currents in opposite directions are supplied from the control unit to the brushes 22 and 23, respectively.
  • the current rectified by 20 flows through the amateur coil 19. Due to this current, a rotating force is generated in the amateur coil 19, and the rotating shaft 15 rotates. The rotation of the rotating shaft 15 is reduced by the worm gear 31, the pinion gears 32 and 33, and the driving gear 35 of the reduction mechanism 9 and transmitted to the output shaft 34. When the output shaft 34 rotates, the wiper arms 1a, 1b attached to the wiper shafts 4a, 4b operate accordingly.
  • the detection signal is “37a: S, 37b: N” as shown in FIG. 4 (a).
  • the Hall IC 37a also faces the N pole of the sensor magnet 41, and the Hall IC 37 As shown in Fig. 4 (b), the detection signals of a and 37b are "37a: N, 37b: NJ.
  • the Hall IC 37a moves from the N pole to the S pole of the sensor magnet 41.
  • the detection signals of the Hall ICs 37a and 37b are "37a: N ⁇ S,” as shown in FIG. 37 b: S ”.
  • the S pole of the sensor magnet 41 is opposed to the Hall ICs 37a and 37b, and the detection signals of the Hall ICs 37a and 37b are as shown in FIG. As shown in (d), "37a: S, 37b: S”.
  • the movement direction of the wiper arms l a and 1 b can be detected by capturing the change in the magnetic pole when passing through the origin.
  • the positions of four places can be recognized by the two holes IC 37a and 37b.
  • the S and N portions may have opposite polarities.
  • the wiper arm 1a, 1b must pass the home position O if it is operated with the wiper arm 1a, 1b facing the upper reversing position. I do. That is, by examining the combination of signals from the two hall ICs 37a and 37b, it is possible to determine on which side the wiper arms l a and l b are located with respect to the origin position ⁇ . Then, if the wiper arms l a and 1 b are activated toward the origin position O, the wiper arms 1 a and 1 b will eventually pass the origin position O, and the positions will be determined at that time.
  • normal pulse count control is performed. That is, the control unit starts counting the pulses of the Hall ICs 38 and 39 with the origin position O as a base point, and detects the rotation angle of the output shaft 34 based on the number of counted pulses. For example, when the wiper arms la and lb operate toward the upper reversing position B, the wiper arms la and lb are changed according to the order of appearance of the pulses transmitted by the Hall ICs 38 and 39 or the signal change of the Hall IC 37a at the origin position O. 1b is operating toward the upper turning position B, that is, the operating directions of the wiper arms 1a and 1b are detected. Then, the absolute positions of the wiper arms la and 1b are detected based on the rotation angle and the rotation direction of the output shaft 34.
  • the control unit recognizes that the wiper arms 1 a and 1 b are at the upper inversion position B. Accordingly, the direction of the current supplied to the brushes 22 and 23 is changed.
  • a reverse current is supplied to the brushes 22, 23, the direction of the rotational force generated in the amateur coil 19 becomes reverse, and the motor reverses. Due to the reverse rotation of the motor, the wiper arms la and 1 b change their operation directions at the upper reversing position B and move toward the lower reversing position A.
  • the control unit recognizes that the wiper arms 1 a and 1 b are at the reverse inversion position A. As a result, the reproduction motor is rotated in the reverse direction, and the wipers la and 1 b operate toward the upper inversion position B. By repeating these operations, the wiper arms la and lb swing between the lower inversion position A and the upper inversion position B, and the wiping operation by the wiper blades 2a and 2b is performed.
  • the controller When the wiper switch (not shown) is set to the off position, and when it is detected that the wiper arms la and 1b have first turned to the lower inversion position A after turning off the wiper switch, the controller lowers the wiper arms la and lb. Operate from reversing position A toward storage unit 6. At this time, the counting of the pulses of the Hall ICs 38 and 39 is continued. When the predetermined number of pulses have been counted, the control unit recognizes that the wiper arms 1a and lb have reached the storage position C, and the brush 2 Stop the current supplied to 2, 23.
  • the wiper arms l a and 1 b are always operated in a direction to pass the home position O when returning from the abnormal stop position. Then, after the data is reset by passing the origin position O, the operation is performed so as to reach the upper or lower inversion position. For this reason, it is not possible to recognize the current position when restarting after an abnormal stop, and it is possible to prevent the occurrence of a situation such as contact with the overrun dies, thereby realizing a smooth restarting operation.
  • two Hall ICs 37a and 37b are sufficient for the number of sensors required, so that the number of sensors can be reduced and the product cost can be reduced.
  • FIG. 6 is an explanatory diagram showing a configuration of a motor cut used in a wiper device to which the control method of the present invention is applied.
  • the motor unit 101 in FIG. 6 is used as a drive source for a wiper device for a vehicle, and when the wiper blade (hereinafter, abbreviated as “blade”) reaches the upside-down reverse position, the rotation is switched between forward and reverse.
  • blade wiper blade
  • the motor unit 101 is composed of a motor 102 and a gearbox 103.
  • the rotation of the rotating shaft 104 of the motor 102 is reduced in the gearbox 103 and output to the output shaft 105.
  • the rotating shaft 104 is rotatably supported by a bottomed cylindrical yoke 106.
  • An armature core 107 having a coil wound thereon and a commutator 108 are mounted on the rotating shaft 104.
  • On the inside of the yoke 106 There are several permanent magnets 109 fixed.
  • the brush 110 for power supply is in sliding contact with the commutator 108.
  • the speed (rotation speed) of the motor 102 is controlled by the amount of current supplied to the brush 110.
  • FIG. 7 is an explanatory view showing the configuration inside the case frame 111 from above in FIG. 6, and FIG. 8 is an explanatory view showing a state where the gears in the gearbox 103 are removed from the configuration of FIG. .
  • the tip of the rotating shaft 104 protruding from the housing 106 is housed.
  • Worms 112 a and 112 b are formed at the tip of the rotating shaft 4.
  • Worm gears 113a and 113b rotatably supported by the case frame 111 are combined with the worms 111a and 112b.
  • the worm gears 113a and 113b are provided with small-diameter first gears 114a and 114b on the same axis.
  • a large-diameter second gear 115 is combined with the first gears 114a and 114b.
  • An output shaft 105 rotatably supported on the case frame 111 is attached to the second gear 111.
  • the driving force of the motor 2 is such that the worms 11a, 11b, the worm gear 11a, l13b, the first gear 11a, 11b, and the second gear 11 It is output to the output shaft 105 in a decelerated state.
  • the output shaft 105 is connected to a link mechanism (not shown) of a wiper device. When the motor 102 is operated, the link member is driven via the output shaft 105, and the wiper arm is operated differently from the other link members.
  • FIG. 9 is an explanatory diagram showing the configuration of the second gear 1 15. As shown by hatching in FIG. 9, the guide groove 1 2 3 is formed along the circumferential direction of the second gear 1 15, and the stoppers 1 2 1 and 1 2 2 are inside the guide groove 1 2 3 It is housed in. Both ends of the guide groove 123 are walls, and form rotation restricting portions 124, 125, respectively. When the second gear 115 rotates and the rotation restricting portion 124 contacts the stopper 122, the downward movement of the blade is mechanically restricted. Similarly, the rotation restricting part 1 25 The abutment mechanically limits the upward movement of the blade.
  • FIG. 10 is an explanatory diagram showing the relationship between the magnet 116 and the Hall IC 117 and the output signal (motor pulse) of the Hall IC 117.
  • two Hall ICs 117 (1 17 A, 1 17 B) are provided at a position 90 degrees apart from the center of the rotating shaft 104.
  • the magnet 116 is magnetized to six poles, and when the rotating shaft 104 rotates once, a pulse output for six periods is obtained from each hall IC 117.
  • the rotation direction of the rotating shaft 104 can be determined by detecting the appearance timing of the pulses from the halls ICI 17A and 117B, thereby determining the forward / return path of the wiper operation. Can be done.
  • the rotation speed of the rotary shaft 104 can be detected from either one of the pulse output periods. There is a correlation between the rotation speed of the rotating shaft 104 and the blade speed based on the reduction ratio and the link operation ratio, and the blade speed can be calculated from the rotating speed of the rotating shaft 104. .
  • a ring magnet 118 for detecting the absolute position of the blade (hereinafter abbreviated as magnet 118) is attached to the bottom surface of the second gear 111.
  • a printed circuit board 1 19 is attached to the case frame 1 1 1, and a hole I C 120 is provided on the printed circuit board 1 19 so as to face the magnet 1 18.
  • the second gear 1 15 has the crank arm attached thereto as described above, and rotates about 180 degrees during the wiping operation to reciprocate the blade.
  • the hole IC 120 faces the magnet 118 and the origin reset signal is output.
  • FIG. 11 is an explanatory diagram showing an operating range of the blade.
  • the blade In the figure between the upside down position AB, the reciprocating motion is performed within the wiping range where the touching is performed.
  • the motor 102 rotates in the normal direction, the motor 102 moves from the lower inversion position A to the upper inversion position B, and moves in the reverse direction from the upper inversion position B to the lower inversion position A.
  • the wiper When the wiper is at rest, the blade moves to the storage position C located below the lower turning position A and is stored in the storage unit.
  • the storage section is provided inside a hood of a vehicle body (not shown).
  • FIG. 12 is an explanatory diagram showing the relationship between the antenna IC 120 and the magnet 118. As shown in FIG. 12, the magnet 118 has a two-pole configuration. When the blade comes to the home position O, the polarity of the magnet 118 changes (for forward rotation: S ⁇ N, for reverse rotation: N ⁇ S), and the origin reset signal is output from the Hall IC 120.
  • the origin reset signal is used as a reference signal indicating the absolute position of the blade.
  • the motor pulse from Hall IC 117 is used as a relative position signal.
  • the motor pulse is output in proportion to the rotation angle of the rotating shaft 4, and the pulse count value (cumulative number) corresponds to the rotation angle amount. Therefore, if the pulse count value is reset to the reference value (zero) when the origin reset signal is obtained, and the motor pulse is counted thereafter, it is possible to know how much the blade has moved from the origin position O.
  • the blade has the lower limit, which is the mechanical operation limit, outside of the storage position C and the upper reversing position B, respectively, by the above-mentioned accessories / 1 2 1, 1 2 2 and the guide groove 1 2 3
  • Position X and upper limit position Y are provided.
  • the lower limit position X and the upper limit position Y are mechanical limit points, and are always located at a fixed distance (angle) in relation to the origin position O. That is, when the blade reaches the lower limit position X and the upper limit position Y, the pulse count value from the origin position O always becomes a certain value. Therefore, the lower limit position X and the upper limit position Y can be used as the reset position of the pulse count value in the same manner as the origin position O.
  • the lower limit position X is used as the pulse count value correction position in addition to the origin position O.
  • the blade is in storage position C
  • the S pole of the magnet 118 faces the Hall IC 120, and the detection signal is “S”.
  • the detection signal is in the “S” state as shown in FIG. 12 (b).
  • the Hall IC 120 approaches the boundary point between the magnetic poles of the magnet 118, and the detection signal of the Hall IC 120 is as shown in FIG. “S ⁇ N” as shown in (c).
  • the N pole of the magnet 118 faces the Hall IC 120, and the detection signal becomes “N”. Then, at the upper inversion position B, as shown in FIG. 12 (d), the Hall IC 120 faces the N pole of the magnet 118, and the detection signal of the Hall IC 120 becomes “N”. .
  • the detection signal of the Hall IC 120 is ⁇ Nj '' and the blade is moved to the origin position O.
  • the detection signal changes to “N ⁇ S”.
  • the detection signal of the hall IC 120 becomes “N”, and also becomes “N” at the lower inversion position A and the storage position C.
  • Table 13 summarizes these changes.
  • the movement direction of the blade can be detected by capturing the magnetic pole change when passing through the origin position O.
  • the magnetic poles of the magnets 118 may have S and N portions with opposite polarities.
  • the blade is first driven in the backward direction, that is, in the direction of the origin position O, in order to grasp the position of the blade anyway.
  • the blade is between B and ⁇ , drive the blade in the return direction, and then always pass the origin position O. That is, when the initial signal from the Hall IC 120 is “N”, if the motor 102 is reversed, the origin reset signal can always be obtained afterwards. By acquiring the origin reset signal, the exact position of the blade can be ascertained.
  • the lower limit position X can also be used as the pulse count value correction position. For this reason, in restarting from this area, the blade position can be reliably grasped after driving the blade in either the forward or reverse direction.
  • the blade when the motor 102 is rotated in the normal direction and the blade stopped during the period C is operated in the forward direction, the blade always passes the origin position O thereafter. Therefore, the exact position of the blade can be ascertained by acquiring the origin reset signal at that time.
  • the motor 102 when the motor 102 is reversed and the blade stopped between O and C is operated in the backward direction, the blade always reaches the lower limit position X thereafter.
  • the pulse count value at the lower limit position X is a predetermined value that has been grasped in advance, and by resetting the noise count value to this predetermined value, the position of the blade can be accurately grasped.
  • the pulse count value is appropriately set using the lower limit position X so that a pulse shift due to repetition of reciprocating operation does not occur. Can be corrected.
  • First, as a first method there is a method in which the blade is operated to the lower limit position X each time the operation is performed, and the pulse count value is reset each time using the count value of the lower limit position X. With this method, the pulse force point value is reset every time, so that the blade position can always be accurately grasped, but on the other hand, mechanical collisions are repeated, generating noise and vibration, and disadvantageous in terms of durability.
  • the pulse force point value is reset every time, so that the blade position can always be accurately grasped, but on the other hand, mechanical collisions are repeated, generating noise and vibration, and disadvantageous in terms of durability.
  • the pulse count value can be reset by the origin position O and the lower limit position X when returning from the abnormal stop position. Therefore, the current position cannot be recognized at the time of restart after an abnormal stop, and overrun does not occur at the upper inversion position B, and a smooth restart operation can be realized. Also, in the operation between the lower inversion position A and the storage position C, the pulse shift can be accurately corrected, and a smooth reciprocating operation can be performed.
  • the number of sensors required is only one of Hall ICs 120, and the number of sensors can be reduced, and the cost of products can be reduced.
  • the motor is applied to a wiper device of an automobile.
  • the present invention is not limited to this. It is possible.
  • driving the wiper arm of both each individual motor 7 a, 7 b, the present invention the wiper arm 1 a, 1 b of both by a single motor and a link mechanism It can also be applied to the actuated type.
  • a case has been described in which the present invention is applied to the parallel wiping type wiper device.
  • the present invention is also applicable to an opposite wiping type wiper device (opposite type).
  • the magnetic poles (N, S) of the ring-shaped sensor magnet 41 may be reversed.
  • the magnetic poles detected by the Hall ICs 37a and 37b are opposite to those shown in FIGS.
  • the setting of the mechanical limit position is not limited to the combination of the stoppers 121, 122 and the guide groove 123, for example.
  • a groove for accommodating this pin may be provided in the second gear 115, and the rotation angle of the second gear 115 may be limited by these engagements.
  • the link mechanism may be provided with a rotation restricting portion 126 for restricting the swing angle, thereby setting the mechanical restriction position.
  • the wiper arm when the wiper arm is at the reference position, the position of the wiper arm is detected, and the wiper arm is caused to perform the reciprocating wiping operation between the upper inverted position and the lower inverted position.
  • the wiper arm when the wiper arm is stopped between the upper reversing position and the lower reversing position during operation, the wiper arm is always started toward the reference position when restarting. Even if an abnormal stop occurs between the upper reversing position and the lower reversing position due to interruption, etc., it always passes the reference position when restarting, and the position of the wiper arm can be accurately grasped.
  • both the first and second magnetic detection elements face the second magnetic pole (for example, S pole), and the wiper arm is at the reference position.
  • the wiper arm is at the lower reversing position
  • at least one of the first and second magnetic detection elements has a sensor magnet facing the first magnetic pole (for example, N pole), so that the first and second magnetic detection elements have the first and second magnetic detection elements.
  • the wiper arm By determining the polarity of the second magnetic pole, it is possible to determine whether the wiper arm is on the upper inversion position side or the lower inversion position side with respect to the reference position. This allows the wiper arm to always start in the reference position direction when restarting, even if the wiper arm is abnormally stopped between the upper reversing position and the lower reversing position due to power interruption or the like.
  • the position can be accurately grasped. Therefore, the number of magnetic detection elements can be reduced, and the cost of the device can be reduced.
  • the reference position is set between the upper reversing position and the lower reversing position. And set it below the storage position.
  • the lower limit position where the operation of the wiper arm is mechanically restricted is set, and if the wiper arm stops during operation, the wiper arm is always started toward the lower limit position when restarting. Even if an abnormal stop occurs, the wiper arm can always pass through the reference position or reach the lower limit position during one-way operation thereafter.
  • the wiper arm position at the time of restart can be accurately grasped.
  • the position of the wiper arm is detected based on the count value of a pulse signal output with the rotation of the motor, and the operation of the wiper arm is controlled, first, detection of passage of a reference position is performed. Is performed by a sensor.
  • reaching the lower limit position is a mechanical operation restriction, and the count value of the pulse signal at that time indicates a predetermined value that can be grasped in advance. That is, in the above-described operation control, the wiper position at the time of restart can be grasped by one sensor installed at the reference position. Therefore, the number of sensors can be reduced to a necessary minimum, and the installation cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

出力軸34に取り付けられたセンサマグネット41は、ワイパアーム1a,1bが原点位置Oに対し上反転位置B側にあるときホールIC37a,37bが共にS極に対向し、ワイパアーム1a,1bが原点位置Oに対し下反転位置A側にあるときホールIC37a,37bの少なくとも一方がN極に対向する。ワイパアーム1a,1bが異常停止した場合、再始動時にワイパアーム1a,1bが原点位置Oに対し下反転位置A、上反転位置Bの何れの側にあるかを判断し、ワイパアーム1a,1bを常に原点位置Oに向かって始動させる。2個のホールIC37a,37bでワイパアームの位置を正確に把握し、原点位置Oに向かって再起動させ位置データをリセットした後、通常制御を行う。

Description

ヮィパ装置制御方法及びヮィパ装置並びに減速機構付きモータ 技術分野
本発明は、 自動車等の車両用ワイパ装置に使用されるモータ及びその制御方法、 並びに自動車等の車両用ワイパ装置の制御方法に関し、 特に、 正逆転駆動される モータを駆動源とするワイパ装置の制御技術に関する。
背景技術
自動車などの車両用ワイパ装置の駆動源には、 車両に搭載されたバッテリなど 書
の電源により作動する電動モータが用いられている。 このような電動モータは、 出力軸の回転数を所要の回転数に減速するための減速機構が取り付けられ、 減速 機構付き電動モータとして一つのュエツトとなっている。 ワイパ装置にはこの モータュニットが 1個又は 2個使用され、 それを駆動源としてワイパアームが上 反転位置と下反転位置との間で摇動運動する。 モータユニットを 1個使用する場 合には、 運転席側と助手席側のワイパアームをリンクにて結合し、 同期駆動させ る。 モータユニットを 2個使用する場合には、 運転席側、 助手席側の各ワイパ アームにモータュニットを取り付け、 アマチュア軸や出力軸の回転を検出しつつ 両ワイパアームを同期駆動させる。
一方、 ワイパーシステムの取り付けスペースは、 エンジンの大型化、 ブレーキ のマスターパワーの大型化により、 年々小さくなつて来ている。 このため、 近年 では、 モータを 1 8 0 ° 以内で正逆転させることにより、 リンクの作動面積を半 分以下に抑え、 ワイパを小さなスペースで駆動可能とした方式も実用化されてい る。 このモータ正逆転方式では、 払拭角度内の任意の場所で反転動作可能なこと から、 下反転位置を設定した上でさらにその下方に格納位置を設定できる。 そこ で、 高級車などでは、 この方式を採用しワイパ格納機能を盛り込んだものも多く 見受けられる。
ワイパシステムにおいてモータ正逆転を行うには、 任意の位置でモータ正逆転 を行わせるため、 ワイパァ一ム位置の検出が必要となる。 ワイパアーム位置検出 は、 モータの回転に連動して発生するパルス数の加減算によって行われる。 モー タ回転軸には多極着磁マグネットが取り付けられ、 その回転に伴う磁極変化を捉 えてパルス信号を出力するホール I C等のセンサがマグネットに対向して配置さ れる。 パルスのカウントは、 モータユニット出力軸の回転位置の基準となる 1点 (原点位置) でリセットされパルスずれの発生を防止している。 出力軸にもまた マグネットが取り付けられ、 所定の位置に磁極が差し掛かると基準信号が出力さ れるようにセンサが配置される。 ·
リセットからのパルス加減算により、 基準位置からのモータ回転角度が算出さ れ、 減速比やリンク比等を考慮すれば現在のワイパアーム位置が検出できる。 ま た、 モータ回転パルスの周期から、 ワイパアーム移動速度も検出できる。 モータ の制御系には、 F E Tを用いた Hブリッジ回路等の正逆転回路や、 モータの速度 や回転角度を制御する C P U等の制御手段が設けられ、 ワイパアームの位置や速 度に基づいてモータの駆動制御が行われる。
ところが、 このようなモータ正逆転によるワイパシステムでは、 払拭途中で電 源が遮断されるなどの異常事態が発生すると、 ワイパアーム位置を示すパルス力 ゥントなども消失し、 再起動時にワイパアーム位置を正確に認識できない可能性 がある。 このため、 再起動直後の第 1回目の動作において、 ブレードがオーバー ランしフロントガラス端部にてピラーに衝突したり、 モータュエツト内ゃリンク 機構等に設けた機械的なストツバに機構部品が当接したりする場合があった。 また、 降雪時などにおいては、 プレード上に雪が積もりブレードを格納位置か ら始動させにくい場合がある。 このとき、 運転者による手動動作又は自動動作に より、 プレードを格納位置と下反転位置との間で往復動させてワイパ装置を作動 させることもしばしば行われる。 しかしながら、 モータの正逆転を繰り返すと、 ワイパアーム位置を示すパルスカウントにズレが生じ、 その累積によりブレード 動作が不安定になるおそれがあった。
そこで、 前記ワイパシステムでは、 出力軸の回転位置を検出するセンサを、 原 点位置のみならず、 上下反転位置や格納位置にも設け、 ワイパアーム位置を随所 で検知し、 プレード動作の安定化を図っている。 ワイパアームの停止位置を認識 できない状態で再起動した場合や、 パルスカウントにズレが生じそれが累積した 場合でも、 ワイパアーム位置を早期に把握しオーバーランや不安定な動作を防止 する構成が採られている。 しかしながら、 かかる構成においては、 1個のモータ ュニットに高価なセンサを少なくとも 4個取り付ける必要があり、 ュニット価格 が増大しコストアツプの要因となるという問題があつた。
本発明の目的は、 少ないセンサ数でワイパアームの位置を確実に検出し得るヮ ィパ装置の制御方法等を提供することにある。 発明の開示
本発明のワイパ装置の制御方法は、 ワイパアームが基準位置にあるときを基点 としてその位置検出を行い、 前記ワイパアームを上反転位置と下反転位置との間 で往復払拭動作させるワイパ装置の制御方法であって、 前記ワイパアームが動作 中に前記上反転位置と下反転位置との間で停止した場合、 再始動時に前記ワイパ アームを常に前記基準位置に向かって始動させることを特徴とする。
本発明にあっては、 ワイパアームが電源遮断等により上反転位置と下反転位置 の間で異常停止した場合でも、 再始動時に必ず基準位置を通過させるようにした ので、 ワイパアームの位置を正確に把握することができる。
前記ワイパ装置において、 前記下反転位置よりも下方に前記ワイパアームの格 納位置を設け、 前記ワイパアームが動作中に前記格納位置以外の位置で停止した 場合、 再始動時に前記ワイパアームを常に前記基準位置に向かって始動させるよ うにしても良い。
本発明のワイパ装置は、 回転軸を有するモータ本体と、 前記回転軸の回転を減 速して出力軸に伝達する減速機構とを有する減速機構付き電動モータによって駆 動されるワイパ装置であって、 前記出力軸に接続され、 上反転位置と下反転位置 との間で往復払拭動作を行うワイパアームと、 前記ワイパアームが基準位置にあ るとき前記出力軸の所定位置と対向するように配置された第 1磁気検出素子と、 前記第 1磁気検出素子と所定角度離れた位置に配置された第 2磁気検出素子と、 前記出力軸に設けられ、 周方向に沿って互いに極性の異なる第 1磁極と第 2磁極 を有し、 前記ワイパアームが前記基準位置に対し上反転位置側にあるとき前記第 1及ぴ第 2磁気検出素子が共に前記第 2磁極に対向し、 前記ワイパアームが前記 基準位置に対し下反転位置側にあるとき前記第 1及び第 2磁気検出素子の少なく とも一方が前記第 1磁極に対向するセンサマグネットとを有することを特徴とす る。
本発明にあっては、 第 1及び第 2磁気検出素子における第 1及び第 2磁極の極 性判定により、 ワイパアームが基準位置に対し上反転位置側にあるか下反転位置 側にあるかを判断することができる。 これにより、 ワイパアームが電源遮断等に より上反転位置と下反転位置の間で異常停止した場合でも、 再始動時に必ずワイ パアームを基準位置方向に始動することができる。
前記ワイパ装置において、 前記ワイパアームが前記基準位置を通過するとき、 前記第 1磁気検出素子が前記第 1磁極と前記第 2磁極との境界に対向するように しても良い。 また、 前記ワイパ装置において、 前記ワイパアームが前記下反転位 置にあるとき、 前記第 1及び第 2磁気検出素子が共に前記第 1磁極に対向するよ うにしても良い。 さらに、 ワイパ装置において、 前記下反転位置よりも下方に前 記ワイパアームの格納位置を設け、 前記ワイパアームが前記格納位置にあるとき、 前記第 1磁気検出素子が前記第 1磁極に対向し、 前記第 2磁気検出素子が前記第 2磁極に対向するようにしても良い。
前記ワイパ装置において、 前記ワイパアームが動作中に前記上反転位置と下反 転位置との間で停止した場合、 前記ワイパアームは再始動時に常に前記基準位置 に向かって始動するようにしても良い。 また、 前記ワイパアームが動作中に前記 格納位置以外の位置で停止した場合、 前記ワイパアームは再始動時に常に前記基. 準位置に向かって始動するようにしても良い。 これにより、 ワイパアームが電源 遮断等により異常停止した場合でも、 ワイパアームが再始動時に必ず基準位置を 通過するので、 2個の磁気検出素子でワイパアームの位置を正確に把握すること が可能となる。
前記ワイパ装置において、 前記ワイパ装置は前記回転軸の回転角度を検出する センサをさらに有し、 前記ワイパアームが前記基準位置となった時を基点として 前記回転軸の回転角度の検出を開始するようにしても良レ、。
一方、 本発明の減速機構付き電動モータは、 回転軸を有するモータ本体と、 前 記回転軸の回転を減速して出力軸に伝達する減速機構とを有する減速機構付き電 動モータであって、 前記出力軸が所定状態にあるとき前記出力軸の所定部位が対 向する基準位置に配置された第 1磁気検出素子と、 前記第 1磁気検出素子と所定 角度離れた位置に配置された第 2磁気検出素子と、 前記出力軸に設けられ、 周方 向に沿って互いに極性の異なる第 1磁極と第 2磁極を有し、 前記出力軸が前記基 準位置に対し一方向側にあるとき前記第 1及び第 2磁気検出素子が共に前記第 2 磁極に対向し、 前記出力軸が前記基準位置に対し他方向側にあるとき前記第 1及 ぴ第 2磁気検出素子の少なくとも一方が前記第 1磁極に対向するセンサマグネッ トとを有することを特徴とする。
本発明にあっては、 第 1及び第 2磁気検出素子における第 1及び第 2磁極の極 性判定により、 出力軸が基準位置に対し何れの回転方向側にあるかを判断するこ とができる。 これにより、 モータが電源遮断等により異常停止した場合でも、 再 始動時に必ず出力軸の所定部位が最短角度で基準位置に対向するように始動する ことができる。
本発明の他のヮィパ装置制御方法は、 ヮィパアームを上反転位置と下反転位置 との間で往復払拭動作させるワイパ装置の制御方法であって、 前記上反転位置と 前記下反転位置との間に設定された基準位置と、 前記格納位置よりも下方に設定 され、 前記ワイパアームの動作が機械的に規制される下限位置とを有し、 前記ヮ ィパアームが動作中に停止した場合、 再始動時に前記ワイパアームを常に前記下 限位置に向かって始動させることを特徴とする。
本発明にあっては、 下限位置に向かっての再始動により、 ワイパアームがどの 位置にて異常停止しても、 その後の片道動作中にワイパアームを必ず基準位置を 通過又は下限位置に到達させることができる。 従って、 基準位置と下限位置の 2 力所におけるワイパアームの通過又は到達を検知すれば再始動時のワイパアーム 位置を正確に把握することが可能となる。 そこで、 例えば、 ワイパアームをモー タ駆動し、 このモータの回転に伴って出力されるパルス信号のカウント値によつ てワイパアームの位置を検出してその動作を制御する制御方式では、 まず、 基準 位置通過の検出はセンサにて行う。 これに対し、 下限位置の到達は機械的な動作 規制であり、 その時点におけるパルス信号の力ゥント値は予め把握可能な所定値 を示す。 すなわち、 前述のような動作制御においては、 再始動時のワイパアーム 位置を基準位置に設置されたセンサ 1個にて把握できる。
本発明の他のワイパ装置制御方法は、 ワイパアームを上反転位置と下反転位置 との間で往復払拭動作させるワイパ装置の制御方法であって、 前記上反転位置と 前記下反転位置との間に設定された基準位置と、 前記下反転位置よりも下方に設 定され、 前記ワイパ装置が停止状態のとき前記ワイパアームを休止させる格納位 置と、 前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に 規制される下限位置とを有し、 前記ワイパアームが動作中に前記上反転位置と前 記基準位置との間で停止した場合、 再始動時に前記ワイパアームを常に前記基準 位置に向かって始動させ、 前記ワイパアームが動作中に前記基準位置と前記格納 位置との間で停止した場合、 再始動時に前記ワイパアームを前記基準位置又は前 記下限位置に向かって始動させることを特徴とする。
本発明にあっては、 まず、 ワイパアームが上反転位置と基準位置との間で停止 したときには基準位置に向かって再始動させる。 これにより、 ワイパアームはそ の後の片道動作中に必ず基準位置を通過する。 また、 ワイパアームが基準位置と 格納位置との間で停止したときには基準位置又は下限位置に向かって再始動させ る。 これにより、 ワイパアームはその後の片道動作中に必ず基準位置を通過又は 下限位置に到達する。 前述のように、 基準位置と下限位置ではワイパアームの位 置を確実に把握.できるように構成可能であるため、 このような動作制御を行えば、 再始動時のワイパアーム位置を基準位置に設置されたセンサ 1個にて把握できる。 本発明の他のワイパ装置制御方法は、 ワイパアームを上反転位置と下反転位置 との間で往復払拭動作させるワイパ装置の制御方法であって、 前記下反転位置よ りも下方に設定され、 前記ワイパ装置が停止状態のとき前記ワイパアームを休止 させる格納位置と、 前記格納位置よりも下方に設定され、 前記ワイパアームの動 作が機械的に規制される下限位置とを有し、 前記ワイパアームを前記下反転位置 と前記格納位置との間で往復動作させる場合、 一往復動作毎に前記ワイパアーム を前記下限位置まで作動させることを特徴とするワイパ装置の制御方法。
本発明にあっては、 ワイパアームを下反転位置と格納位置との間で往復動作さ せる場合に、 一往復動作毎にワイパアームを下限位置まで作動させる。 前述のよ うに、 下限位置ではワイパアームの位置を確実に把握できるように構成可能であ るため、 このような動作制御を行えば、 一往復動作毎にワイパアームの位置を確 実に把握できる。
本発明の他のヮィパ装置制御方法は、 ヮィパアームを上反転位置と下反転位置 との間で往復払拭動作させるワイパ装置の制御方法であって、 前記上反転位置と 前記下反転位置との間に設定された基準位置と、 前記下反転位置よりも下方に設 定され、 前記ワイパ装置が停止状態のとき前記ワイパアームを休止させる格納位 置と、 前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に 規制される下限位置とを有し、 前記ワイパアームを前記下反転位置と前記格納位 置との間で往復動作させる場合、 前記ワイパアームが前記下限位置を超えて前記 基準位置側に作動したとき、 前記ワイパアームを前記下限位置まで作動させるこ とを特 ί敷とする。
本発明にあっては、 ワイパアームを下反転位置と格納位置との間で往復動作さ せる場合に、 ワイパアームが下限位置を超えて基準位置側に作動したとき、 ワイ パアームを下限位置まで作動させる。 本来、 ワイパアームは下反転位置と格納位 置との間を往復動しているはずであるにも関わらず、 ワイパアームが下反転位置 を超えて作動した場合には、 ワイパアームの正確な位置が把握されていない可能 性が高い。 従って、 その場合には、 その後の動作においてワイパアームをー且下 限位置まで作動させる。 前述のように、 下限位置ではワイパアームの位置を確実 に把握できるように構成可能であるため、 このような動作制御を行えば、 ワイパ アーム位置を正確に把握でき位置ズレの解消が図られる。
本発明の他のワイパ装置制御方法は、 モータによりワイパアームを上反転位置 と下反転位置との間で往復払拭動作させ、 前記モータの回転に伴って出力される パルス信号のカウント値によって前記ワイパアームの位置を検出してその動作を 制御するワイパ装置の制御方法であって、 前記上反転位置と前記下反転位置との 間に設定され、 前記パルス信号のカウント値を基準値にリセットする基準位置と 前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前記ヮ ィパアームを休止させる格納位置と、 前記格納位置よりも下方に設定され、 前記 ワイパアームの動作が機械的に規制されると共に、 前記パルス信号のカウント値 が所定値を示す下限位置とを有し、 前記ワイパアームが動作中に前記上反転位置 と前記基準位置との間で停止した場合、 再始動時に前記ヮィパアームを常に前記 基準位置に向かって始動させ、 前記基準位置の通過により前記パルス信号のカウ ント値を前記基準値にリセットし、 前記ワイパアームが動作中に前記基準位置と 前記格納位置との間で停止した場合、 再始動時に前記ワイパアームを前記基準位 置又は前記下限位置に向かって始動させ、 前記基準位置の通過又は前記下限位置 への到達により前記パルス信号の力ゥント値を前記基準値又は前記所定値にリセ ットすることを特徴とする。
本発明にあっては、 まず、 ワイパアームが上反転位置と基準位置との間で停止 したときにはワイパアームを基準位置に向かって始動させる。 これにより、 ワイ パアームはその後の片道動作中に必ず基準位置を通過し、 パルス信号のカウント 値が基準値にリセットされてワイパアームの位置が正確に把握される。 また、 ヮ ィパアームが基準位置と格納位置との間で停止したときには基準位置又は下限位 置に向かって再始動させる。 これにより、 ワイパアームはその後の片道動作中に 必ず基準位置を通過又は下限位置に到達し、 パルス信号のカウント値が基準値又 は所定値にリセットされてワイパアームの位置が正確に把握される。 · 本発明の他のワイパ装置制御方法は、 モータによりワイパアームを上反転位置 と下反転位置との間で往復払拭動作させ、 前記モータの回転に伴って出力される パルス信号の力ゥント値によって前記ワイパアームの位置を検出してその動作を 制御するワイパ装置の制御方法であって、 前記上反転位置と前記下反転位置との 間に設定され、 前記パルス信号のカウント値を基準値にリセットする基準位置と、 前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前記ヮ ィパアームを休止させる格納位置と、 前記格納位置よりも下方に設定され、 前記 ワイパアームの動作が機械的に規制されると共に、 前記パルス信号のカウント値 が所定値を示す下限位置とを有し、 前記ワイパアームを前記下反転位置と前記格 納位置との間で往復動作させる場合、 一往復動作毎に前記ワイパアームを前記下 限位置まで作動させ、 前記下限位置への到達により前記パルス信号の力ゥント値 を前記所定値にリセットすることを特徴とする。
本発明にあっては、 ワイパアームを下反転位置と格納位置との間で往復動作さ せる場合に、 一往復動作毎にワイパアームを下限位置まで作動させる。 下限位置 ではワイパアームの位置を示すパルス信号のカウント値は予め所定値であること が把握されており、 このような動作制御を行えば、 一往復動作毎にワイパアーム の位置を確実に把握できる。
本発明の他のワイパ装置制御方法は、 モータによりワイパアームを上反転位置 と下反転位置との間で往復払拭動作させ、 前記モータの回転に伴って出力される パルス信号のカウント値によって前記ワイパアームの位置を検出してその動作を 制御するワイパ装置の制御方法であって、 前記上反転位置と前記下反転位置との 間に設定され、 前記パルス信号のカウント値を基準値にリセットする基準位置と、 前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前記ヮ ィパアームを休止させる格納位置と、 前記格納位置よりも下方に設定され、 前記 ワイパアームの動作が機械的に規制されると共に、 前記パルス信号のカウント値 が所定値を示す下限位置とを有し、 前記ヮィパアームを前記下反転位置と前記格 納位置との間で往復動作させる場合、 前記パルス信号の力ゥント値が、 前記ワイ パアームが前記下限位置よりも前記基準位置側にある場合の値を示したとき、 前 記ワイパアームを前記下限位置まで作動させ、 前記下限位置への到達により前記 パルス信号の力ゥント値を前記所定値にリセットすることを特徴とする。
本発明にあっては、 ワイパアームを下反転位置と格納位置との間で往復動作さ せる場合に、 パルス信号のカウント値が下限位置を示す値を超え前記基準位置側 の値を示したとき、 ワイパアームを下限位置まで作動させる。 本来、 ワイパァー ムは下反転位置と格納位置との間を往復動しているはずであるにも関わらず、 パ ルスカウント値が下反転位置の値を超えた場合には、 ワイパアームの正確な位置 が把握されていない可能性が高い。 従って、 その場合には、 その後の動作におい てワイパアームをー且下限位置まで作動させる。 下限位置ではヮィパアームの位 置を示すパルス信号のカウント値は予め所定値であることが把握されており、 こ のような動作制御を行えば、 ワイパアーム位置を正確に把握でき位置ズレの解消 が図られる。 図面の簡単な説明
図 1は、 本発明の一実施の形態である減速機構付きの電動モータを駆動源とし W
たワイパ装置の概略を示す説明図である。
図 2は、 図 1の電動モータの構造を示す断面図である。
図 3は、 図 2に示すウォームギヤの嚙み合い状態を示す一部切欠断面図である。 図 4は、 ホール I Cとセンサマグネットとの関係を示す説明図である。
図 5は、 各制御ボイントにおいてホール I Cが検出する磁極の組み合わせを示 す表である。
図 6は、 本発明の制御方法が適用されるワイパ装置に使用されるモータュニッ トの構成を示す説明図である。
図 7は、 ケースフレーム内の構成を図 6において上方から見た状態を示す説明 図である。
図 8は、 図 7の構成からギアボックス内のギヤを取り去つた状態を示す説明図 である。
図 9は、 第 2ギアの構成を示す説明図である。
図 1 0は、 マグネットとホール I Cの関係及ぴホール I Cの出力信号 (モータ パルス) を示す説明図である。
図 1 1は、 ブレードの作動範囲を示す説明図である。
図 1 2は、 ホール I Cとマグネットの関係を示す説明図である。
図 1 3は、 各制御ポィントにおいてホール I Cが検出する磁極の組み合わせを 示す表である。
図 1 4は、 機械的制限位置の他の設定例を示す説明図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。
(実施例 1 )
図 1は本発明の実施例 1である減速機構付きの電動モータを駆動源としたワイ パ装置の概略を示す説明図、 図 2は図 1の電動モータの構造を示す断面図である。 図 3は、 図 2に示すウォームギヤの嚙み合い状態を示す一部切欠断面図である。 図 1に示すワイパ装置は、 車体に揺動自在に設けられた運転席側のワイパァー ム 1 aと助手席側のワイパアーム 1 bとを有している。 各ワイパアーム 1 a, 1 W 200
bには、 運転席側のワイパプレード 2 aと助手席側のヮィパプレード 2 bが取り 付けられている。 ワイパブレード 2 a, 2 bはワイパアーム l a , l b内に内装 された図示しないばね部材等によりフロントガラス 3に弾圧的に接触している。 車体には 2つのワイパ軸 4 a, 4 bが設けられており、 ワイパアーム l a , l b はその基端部でワイパ軸 4 a, 4 bにそれぞれ取り付けられている。
ワイパプレード 2 a, 2 b力 S、 下反転位置 Aと上反転位置 Bとの間、 つまり図 中一点鎖線で示す払拭範囲 5を摇動運動することにより、 フロントガラス 3に付 着した雨や雪などが払拭される。 ワイパブレード 2 a, 2 bは、 ワイパ休止時に は下反転位置 Aよりも下側に位置する格納位置 Cへ移動して格納部 6に格納され る。 格納部 6は図示しない車体のボンネッ トの内部に設けられている。 ワイパブ レード 2 a, 2 bを格納部 6に格納することにより、 車両の前方視界が向上する。 なお、 ワイパプレード 2 a , 2 bには、 制御上の基準位置として、 下反転位置 A よりも 1 5 ° ほど上方に原点位置 (基準位置) Oが設定されている。
ワイパアーム l a , 1 bを揺動運動させるため、 このワイパ装置には 2つの減 速機構付き電動モータ 7 a, 7 b (以下、 モータ 7 a, 7 bと略記する) が設け られている。 図 2に示すように、 モータ 7 a , 7 bは、 モータ本体 8と減速機構 9とで構成されている。 モータ本体 8のモータハウジング 1 0は、 底付き円筒状 に形成されている。 減速機構 9のケーシング 1 1は、 モータハウジング 1 0とほ ぼ同寸法の円筒状に形成された軸受部 1 1 aと歯車室 1 1 bおよび通信部 1 1 c とを有している。 これらの部材は、 モータハウジング 1 0の開口端 1 0 aとケー シング 1 1の軸受部 1 1 aとを接した状態で、 図示しない締結部材により連結さ れている。
モータハウジング 1 0の内周面には、 互いに異なる磁極を向かい合わせて配置 された 2つの永久磁石 1 2, 1 3が設けられており、 モータハウジング 1 0の内 部に磁界を形成している。 モータハウジング 1 0の内部には、 この磁界内に位置 してアマチュア 1 4が設けられている。 アマチュア 1 4の回転軸 1 5は、 自動調 心形の軸受 1 6 , 1 7に回転自在に支持されている。 軸受 1 6, 1 7は、 モータ ハウジング 1 0の底部 1 O bと軸受部 1 1 aに設けられている。
アマチュア 1 4は、 複数のスロットが形成されたアマチュアコア 1 8を有して いる。 スロットにはそれぞれ銅線が卷き付けられてアマチュアコイル 1 9が形成 されている。 アマチュアコア 1 8の図中左側にはコミュテータ 2 0が軸着されて いる。 コミュテータ 2 0は、 回転軸 1 5に固定された樹脂製の胴部 2 0 aと、 そ の外周に互いに絶縁されて放射状に配置された複数の整流子片 2 0 bを備えてい る。 各整流子片 2 0 bはアマチュアコイル 1 9に接続されている。
軸受部 1 1 aの内部にはブラシホルダ 2 1が設けられている。 ブラシホルダ 2 1には 2つのブラシ 2 2 , 2 3が取り付けられている。 ブラシ 2 2 , 2 3は整流 子片 2 0 b方向に向けて付勢されており、 その状態で整流子片 2 0 bと接触する。 通信部 1 1 cには、 配線 2 4によりブラシ 2 2 , 2 3と接続された電源端子 2 5 が設けられている。 電源端子 2 5に対し図示しない制御部から電流を供給するこ とにより、 ブラシ 2 2, 2 3にそれぞれ逆向きの電流が供給される。
アマチュアコイル 1 9は磁界中に位置しているため、 アマチュアコイル 1 9に コミュテータ 2 0を介して整流された電流を流すと、 フレミングの左手の法則に 基づきアマチュア 1 4に回転力が発生する。 従って、 アマチュアコイル 1 9に流 れる電流を制御することにより、 回転軸 1 5の回転角度や回転方向もしくは回転 速度などを制御できる。
歯車室 1 1 bの内部には回転軸 1 5が突出している。 回転軸 1 5の先端部 1 5 aは、 歯車室 l i bのモータ本体 8とは反対側に位置する壁面 2 6の近傍に位置 している。 図 3に示すように、 回転軸 1 5の歯車室 1 1 bの内部に位置する外周 面には、 それぞれねじ方向が逆向きに形成された 2つのウォーム 2 7, 2 8が形 成されている。 歯車室 1 1 bの内部には、 ウォーム 2 7, 2 8と嚙み合うように 2つのウォームホイル 2 9 , 3 0が設けられてウォームギヤ 3 1が構成されてい る。 ウォームホイル 2 9, 3 0にはそれぞれピニオンギヤ 3 2, 3 3が同軸に設 けられている。 ピユオンギヤ 3 2, 3 3には、 減速機構 9の出力軸 3 4と一体に 形成された回転体としての駆動歯車 3 5が嚙み合う。 回転軸 1 5の回転は、 ゥ オームギヤ 3 1と各ピニオンギヤ 3 2 , 3 3および駆動歯車 3 5とにより減速さ れて出力軸 3 4へ伝達される。
モータ 7 a , 7 bの出力軸 3 4は、 それぞれワイパ軸 4 a , 4 bに機械的に連 結されている。 ワイパ軸 4 a , 4 bは、 出力軸 3 4と一体に回転するようになつ ている。 回転軸 1 5が回転するとウォーム 2 7 , 2 8はウォームホイル 2 9 , 3 0により回転軸 1 5の軸方向に働くスラスト力を受ける。 このとき、 各ウォーム 2 7, 2 8はねじ方向が逆向きに形成されていることから、 このスラスト力は互 いに逆方向に働く。 これにより、 回転軸 1 5のスラスト方向の移動が抑制され、 回転軸 1 5にはスラスト軸受等を設ける必要がない。 なお、 本実施の形態では、 減速機構 9としてウォームギヤ 3 1とピニオンギヤ 3 2 , 3 3および駆動歯車 3 5とによる 2段減速機構を用いているが、 これに限らず、 ウォームギヤのみを用 いた 1段減速のものや、 遊星歯車機構などを用いたものでも良い。
ケーシング 1 1の Ιί面 2 6には、 回転軸 1 5に垂直にプリント基板 3 6が取り 付けられている。 プリント基板 3 6には、 通信部 1 1 cに位置する接続端子 4 0 が取り付けられている。 接続端子 4 0より、 図示しない制御部からの電源供給や 検出信号の伝達が行われる。
プリント基板 3 6上には、 第 1のセンサとして 2個の絶対位置検出用のホール I C 3 7 a , 3 7 bと、 第 2のセンサとして相対位置検出用のホール I C 3 8 , 3 9が取り付けられている。 この場合、 ホール I C 3 7 a, 3 7 bには、 磁極変 化と共に磁極の種類、 すなわち、 被検出対象が N極か S極かを判定可能なものが 使用される。 なお、 本実施の形態では、 相対位置検出用センサとしてホール I C を用いているが、 これに限らず、 フォトダイオードなどを用いた光学式のェン コーダや赤外線センサなど、 他の方式のセンサを用いても良い。
ホール I Cは磁界の変化を電流に変換することによりパルス信号を発信するセ ンサであり、 ホール I Cの被検出部材としては磁石が必要である。 絶対位置検出 用のホール I C 3 7 a , 3 7 bの被検出部材としては、 駆動歯車 3 5の側面の図 中下側の外周部にリング状のセンサマグネット 4 1が取り付けられている。 セン サマグネット 4 1は駆動歯車 3 5と一体に回転するようになっており、 回転方向 に向けて 2極に着磁されている。 また、 相対位置検出用のホール I C 3 8 , 3 9 の被検出部材としては、 回転軸 1 5の先端部 1 5 aに多極着磁マグネット 4 2 (以下、 マグネット 4 2と略記する) が取り付けられている。 マグネット 4 2は 回転軸 1 5と一体に回転するようになっており、 回転方向に向けて 6極に着磁さ れている。 図 4は、 ホール I C 37 a, 37 bとセンサマグネット 41との関係を示す説 明図である。 図 4に示すように、 センサマグネット 41は 1極 (ここでは S極) の着磁角度が他極 (ここでは N極) よりも大きくなつている。 駆動歯車 35が回 転すると、 それに伴ってホール I C 37 a, 37 bの前を通過する磁極が変化す る。 そして、 後述するように、 その変化の組み合わせによりワイパアーム 1 a, 1 bの位置が認識できるようになっている。
一方、 ホール I C 38, 39は、 プリント基板 36の面上にマグネット 42と 対向する位置に、 それぞれマグネット 42の回転方向に対して位相を 90°ずら して取り付けられている。 回転軸 15が回転すると、 ホール I C 38, 39は、 回転軸 1 5が 1回転するにつき 6周期分のパルスが出力される。 このパルスは、 接続端子 40を介して図示しない制御部に向けて発信され、 これをカウントする ことにより回転軸 1 5の回転角度が検出できる。 また、 ホール I C 38, 39の 位相が 90°ずれているため、 ホール I C 38, 39が発信するパルスの出現順 序は回転軸 1 5の回転方向により相違する。 従って、 このパルスの出現順序によ り、 回転軸 15の回転方向が検出できる。 さらに、 ホール I C 38, 39により 検出されるパルスの周期により回転軸 15の回転速度を検出することもできる。 次に、 当該モータの動作を説明する。 図示しないワイパスイッチをオンすると 制御部からブラシ 22, 23にそれぞれ逆向きの電流が供給され、 コミュテータ
20によって整流された電流がアマチュアコイル 1 9に流れる。 この電流により アマチュアコイル 1 9に回転力が発生して回転軸 1 5が回転する。 回転軸 15の 回転は、 減速機構 9のウォームギヤ 31とピニオンギヤ 32, 33および駆動歯 車 35とにより減速されて出力軸 34に伝達される。 出力軸 34が回転すると、 それに伴って、 ワイパ軸 4 a, 4 bに取り付けられたワイパアーム 1 a, l bが 作動する。
ここで、 ワイパアーム l a, 1 bが格納位置のときには、 ホール I C 37 a,
37 bには、 センサマグネット 41の S極と N極がそれぞれ対向する。 従って、 その検知信号は、 図 4 (a) に示すように 「37 a : S, 37 b : N」 となる。 出力軸 34が回転し、 ワイパアーム l a, 1 bが下反転位置に来ると、 ホール I C 37 aもセンサマグネット 41の N極が対向するようになり、 ホール I C 37 a , 37 bの検知信号は、 図 4 (b) に示すように 「37 a : N, 37 b : NJ となる。 さらに出力軸 34が回転し、 ワイパアーム l a, l bが原点位置に来る と、 ホール I C 37 aがセンサマグネット 41の N極から S極に移動する。 この とき、 ホール I C37 a, 37 bの検知信号は、 図 4 (c) に示すように 「37 a : N→S, 37 b : S」 となる。 そして、 ワイパアーム l a, 1 bが上反転位 置に来ると、 ホール I C 37 a, 37 bにセンサマグネット 41の S極が共に対 向し、 ホール I C 37 a, 37 bの検知信号は、 図 4 (d) に示すように 「37 a : S, 37 b : S」 となる。
一方、 上反転位置から下反転位置に向かうときには、 ワイパアーム l a, l b が原点位置に来ると、 ホール I C 37 aがセンサマグネット 41の S極から N極 に移動する。 このとき、 ホール I C 37 a, 37 bの検知信号は、 図 4 (c) に 示すように 「37 a : S→N, 37 b : S」 となる。 これらの推移をまとめたも のが図 5の表である。 図 5に示すように、 各制御ポイントにおいてホール I C 3 7 a, 37 bで検出される磁極の組み合わせが異なっており、 その組み合わせを 判定することにより、 現在のワイパアーム 1 a, 1 bの位置を概ね知ることがで きる。 また、 原点通過時の磁極変化を捉えることにより、 ワイパアーム l a, 1 bの移動方向も検出できる。 つまり、 ここでは 2個のホール I C 37 a, 37 b により 4力所の位置を認識できる。 なお、 センサマグネット 41の磁極は、 Sと Nの部位がそれぞれ逆の極性であっても良い。
そこで、 ワイパアーム 1 a, 1 bが上反転位置と下反転位置の間にあるとき電 源が切られた場合を考える。 このときワイパアーム 1 a, l bのパルスカウント は消滅し、 再起動時にはワイパアーム 1 a, 1 bの位置は不明な状態となる。 従 つて、 このままモータを駆動すると前述のようにワイパアーム 1 a, l bの正確 な位置は把握できず、 オーバーランの恐れもある。 これに対し、 当該モータでは ともかくワイパアーム 1 a, 1 bの位置を把握するため、 まずワイパアーム 1 a 1 bを原点位置 Oの方向へ駆動する。 この際、 ワイパアーム l a, l bが上反転 位置と原点位置 Oの間にあるときは、 ホール I C 3 7 a, 37 bからの信号は 「37 a : S, 37 b : S」 となる。 一方、 ホーノレ I C 37 a, 37 b力 らの信 号が 「37 a : S, 37 b : S」 以外の組み合わせのときには、 ワイパアーム 1 a, 1 bは原点位置 Oよりも下反転位置側にある。
従って、 ホール I C 37 a , 37 bの信号が 「37 a : S, 37 b : S」 のと きには、 ワイパアーム l a, 1 bを下反転位置側に向けて作動すれば必ず原点位 置 Oを通過する。 また、 ホール I C 37 a , 37 bの信号が 「37 a : S, 37 b : S」 以外のときには、 ワイパアーム 1 a, 1 bを上反転位置側に向けて作動 すれば必ず原点位置 Oを通過する。 すなわち、 2個のホール I C 37 a, 37 b からの信号の組み合わせを吟味することにより、 ワイパアーム l a, l bが原点 位置〇に対してどちら側に位置するのかが判定できる。 そして、 それに合わせて ワイパアーム l a, 1 bを原点位置 Oに向けて起動すれば、 やがてワイパアーム 1 a, 1 bは必ず原点位置 Oを通過し、 その時点でその位置が確定する。
ワイパアーム l a, 1 bの位置を原点位置通過によって確認した後は、 通常の パルスカウント制御を行う。 すなわち、 原点位置 Oを基点として、 制御部はホー ル I C 38, 39のパルスのカウントを開始し、 カウントされたパルス数により 出力軸 34の回転角度を検出する。 例えば、 ワイパアーム l a, l bが上反転位 置 Bに向けて作動する場合、 ホール I C 38, 39が発信するパルスの出現順序 あるいは、 原点位置 Oにおけるホール I C 37 aの信号変化により、 ワイパァー ム l a, 1 bが上反転位置 Bに向けて作動していること、 つまりワイパアーム 1 a, 1 bの作動方向が検出される。 そして、 出力軸 34の回転角度と回転方向と によりワイパアーム l a, 1 bの絶対位置が検出される。
ワイパアーム l a, 1 bが作動を続け、 予め定められた所定のパルス数がカウ ントされると、 制御部はワイパアーム 1 a, 1 bが上反転位置 Bであることを認 識する。 これに伴い、 ブラシ 22, 23に供給する電流の向きが変更される。 プ ラシ 22, 23に逆向きの電流が供給されると、 アマチュアコイル 19に生じる 回転力の方向が逆向きとなりモータが逆転する。 モータ逆転により、 ワイパァー ム l a, 1 bは上反転位置 Bにおいて作動方向を逆向きに変更し、 下反転位置 A に向けて作動する。
そして、 ワイパアーム l a, 1 bが原点位置〇を通過すると、 ホール I C 37 aの信号が S→Nとなり、 ホール I C 38, 39のパルスの力ゥントがリセット される。 その後、 下反転位置 Aへ向けてパルスカウントが行われ、 予め定められ た所定のパルス数がカウントされると、 制御部はワイパアーム 1 a , 1 bが下反 転位置 Aであることを認識する。 これに伴い再ぴモータが逆転され、 ワイパァー ム l a , 1 bは上反転位置 Bに向けて作動する。 これらの動作を繰り返すことに より、 ワイパアーム l a , l bが下反転位置 Aと上反転位置 Bとの間で揺動運動 し、 ワイパブレード 2 a , 2 bによる払拭動作が行われる。
また、 図示しないワイパスイッチをオフの位置とすると、 ワイパアーム l a , 1 bがワイパスィツチをオフしてから最初に下反転位置 Aとなったことが検出さ れると、 制御部はワイパアーム l a , l bを下反転位置 Aから格納部 6に向けて 作動させる。 このときもホール I C 3 8 , 3 9のパルスのカウントは続行され、 所定のパルス数がカウントされた時点で制御部はワイパアーム 1 a, l bが格納 位置 Cに達したことを認識し、 ブラシ 2 2, 2 3に供給する電流を停止させる。 このように当該モータでは、 電源、遮断等により異常停止が生じても、 異常停止 位置からの復帰の際に、 ワイパアーム l a, 1 bを必ず原点位置 Oを通過する方 向に作動させる。 そして、 原点位置 Oの通過によりデータのリセットを行った後、 上又は下反転位置に到達するように動作させる。 このため、 異常停止後の再起動 時に現在位置が認識できず、 オーバーランゃストツパとの当接などの事態が生じ るのを防止でき、 スムーズな再起動動作が実現できる。 しかも、 そのために要す るセンサ数はホール I C 3 7 a , 3 7 bの 2個で足り、 センサ数を削減し、 製品 コストの低減を図ることが可能となる。
(実施例 2 )
図 6は、 本発明の制御方法が適用されるワイパ装置に使用されるモータュ-ッ トの構成を示す説明図である。 図 6のモータユニット 1 0 1は自動車用ワイパ装 置の駆動源として使用され、 ワイパブレード (以下、 プレードと略記する) が上 下反転位置に達すると正逆回転が切り替えられる。
モータユニット 1 0 1は、 モータ 1 0 2とギアボックス 1 0 3とから構成され る。 モータ 1 0 2の回転軸 1 0 4の回転は、 ギアボックス 1 0 3内にて減速され て出力軸 1 0 5に出力される。 回転軸 1 0 4は、 有底筒状のヨーク 1 0 6に回動 自在に軸承されている。 回転軸 1 0 4には、 コイルが卷装されたァーマチュアコ ァ 1 0 7及ぴコンミテータ 1 0 8が取り付けられている。 ヨーク 1 0 6の内面に は複数の永久磁石 1 09が固定されている。 コンミテータ 1 08には、 給電用の ブラシ 1 1 0が摺接している。 モータ 1 0 2の速度 (回転数) は、 ブラシ 1 1 0 に対する供給電流量によつて制御される。
ヨーク 1 06の開口側端縁部には、 ギアボックス 1 03のケースフレーム 1 1 1が取り付けられている。 図 7はケースフレーム 1 1 1内の構成を図 6において 上方から見た状態を示す説明図、 図 8は図 7の構成からギアボックス 1 03内の ギヤを取り去った状態を示す説明図である。 ケースフレーム 1 1 1内には、 ョー ク 1 06から突出した回転軸 1 04の先端部が収容されている。 回転軸 4の先端 部にはウォーム 1 1 2 a, 1 1 2 bが形成されている。 ウォーム 1 1 2 a, 1 1 2 bには、 ケースフレーム 1 1 1に回動自在に支持されたウォーム歯車 1 1 3 a, 1 1 3 bが嚙合している。 ウォーム歯車 1 1 3 a, 1 1 3 bには、 その同軸上に 小径の第 1ギア 1 1 4 a, 1 1 4 bがー体的に設けられている。 第 1ギア 1 1 4 a, 1 1 4 bには、 大径の第 2ギア 1 1 5が嚙合している。 第 2ギア 1 1 5には、 ケースフレーム 1 1 1に回動自在に軸承される出力軸 1 0 5がー体に取り付けら れている。
モータ 2の駆動力は、 ウォーム 1 1 2 a, 1 1 2 b、 ウォーム歯車 1 1 3 a, l 1 3 b、 第 1ギア 1 1 4 a, 1 1 4 b及び第 2ギア 1 1 5を経て減速された状態 で出力軸 1 0 5に出力される。 出力軸 1 0 5には、 ワイパ装置のリンク機構 (図 示せず) 接続されている。 モータ 1 0 2が作動すると出力軸 1 0 5を介してリン ク部材が駆動され、 他のリンク部材と違動してワイパアームが作動する。
ケースフレーム 1 1 1の底面 1 1 1 aには、 第 2ギア 1 1 5の回転角度を規制 するためのストツパ 1 2 1, 1 2 2が突設されている。 第 2ギア 1 1 5には、 こ のストッパ 1 2 1, 1 2 2に対応してガイド溝 1 2 3が凹設されている。 図 9は、 第 2ギア 1 1 5の構成を示す説明図である。 図 9にハッチングにて示したように、 ガイド溝 1 2 3は第 2ギア 1 1 5の円周方向に沿って形成されており、 ストッパ 1 2 1, 1 2 2はガイド溝 1 2 3内に収容される。 ガイド溝 1 2 3の両端は壁と なっており、 それぞれ、 回転規制部 1 24, 1 2 5を形成している。 第 2ギア 1 1 5が回転し、 回転規制部 1 24がストッパ 1 2 1に当接するとブレードの下方 への移動が機械的に制限される。 同様に、 回転規制部 1 2 5がストツ/く 1 22に 当接するとブレードの上方への移動が機械的に制限される。
回転軸 1 0 4には、 多極着磁マグネット 1 1 6 (以下、 マグネット 1 1 6と略 記する) が取り付けられている。 これに対しケースフレーム 1 1 1内には、 マグ ネット 1 1 6の外周部と対向するように、 ホール I C 1 1 7が設けられている。 図 1 0は、 マグネット 1 1 6とホール I C 1 1 7の関係及ぴホール I C 1 1 7の 出力信号 (モータパルス) を示す説明図である。 図 1 0に示すように、 ホール I C 1 1 7は、 回転軸 1 0 4の中心に対して 9 0度の角度差を持った位置に 2個 ( 1 1 7 A, 1 1 7 B ) 設けられている。 モータ 1 0 2では、 マグネット 1 1 6 は 6極に着磁されており、 回転軸 1 0 4が 1回転すると各ホール I C 1 1 7から は 6周期分のパルス出力が得られる。
ホール I C 1 1 7 A, 1 1 7 Bからは、 図 1 0の右側に示すように、 その位相 が 1 4周期ずれたパルス信号が出力される。 従って、 ホール I C I 1 7 A, 1 1 7 Bからのパルスの出現タイミングを検出することにより、 回転軸 1 0 4の回 転方向が判別でき、 これによりワイパ動作の往路/復路の判別を行うことができ る。 また、 ホール I C 1 1 7 A, 1 1 7 Bでは、 その何れか一方のパルス出力の 周期から回転軸 1 0 4の回転速度を検出できる。 回転軸 1 0 4の回転数とブレー ドの速度との間には、 減速比及びリンク動作比に基づく相関関係が存在しており、 回転軸 1 0 4の回転数からプレードの速度も算出できる。
第 2ギア 1 1 5の底面には、 ブレードの絶対位置検出用のリングマグネット 1 1 8 (以下、 マグネット 1 1 8と略記する) が取り付けられている。 ケースフ レーム 1 1 1にはプリント基板 1 1 9が取り付けられ、 その上には、 マグネット 1 1 8と対向するようにホール I C 1 2 0が配設されている。 第 2ギア 1 1 5は、 前述のようにクランクアームが取り付けられ、 ブレードを往復動させるため払拭 動作時は約 1 8 0度回転する。 第 2ギア 1 1 5が回転しブレードが予め設定され た原点位置 Oに来ると、 ホール I C 1 2 0とマグネット 1 1 8が対向し原点リセ ット信号が出力される。
このようなモータユニット 1 0 1によって、 プレードは下反転位置 Aと上反転 位置 Bとの間を揺動運動し、 フロントガラスに付着した雨や雪などを払拭する。 図 1 1は、 ブレードの作動範囲を示す説明図である。 払拭動作中、 プレードは、 上下反転位置 A B間の図中 ツチングを施した払拭範囲内を往復運動する。 モー タ 1 0 2の正転時には、 下反転位置 Aから上反転位置 Bへ、 逆転時に上反転位置 Bから下反転位置 Aへ移動する。 ワイパ休止時には、 ブレードは下反転位置 Aよ りも下側に位置する格納位置 Cへ移動して格納部に格納される。 格納部は、 図示 しない車体のボンネット内部に設けられている。
払拭範囲の中央やや下反転位置 A寄りには、 ホール I C 1 2 0から原点リセッ ト信号が出力される原点位置 (基準位置) Oが設けられている。 図 1 2は、 ホ一 ノレ I C 1 2 0とマグネット 1 1 8の関係を示す説明図である。 図 1 2に示すよう に、 マグネット 1 1 8は 2極構成となっている。 ブレードが原点位置 Oに来ると マグネット 1 1 8の極性が変化し (正転時: S→N, 逆転時: N→S ) 、 ホール I C 1 2 0からは原点リセット信号が出力される。
原点リセット信号はブレードの絶対位置を示す基準信号として使用され、 それ が得られたときには、 プレードが図 1 1に示す原点位置 oを通過したと判断され る。 これに対し、 ホール I C 1 1 7からのモータパルスは相対位置信号として使 用される。 モータパルスは回転軸 4の回転角度に比例して出力され、 そのパルス カウント値 (累積数) は回転角度量に対応する。 従って、 原点リセット信号が得 られたときパルスカウント値を基準値 (ゼロ) リセットし、 その後のモータパル スをカウントすれば、 プレードが原点位置 Oからどれだけ移動したかを知ること ができる。
—方、 ブレードには、 前述のストツ/ 1 2 1 , 1 2 2とガイド溝 1 2 3によつ て、 格納位置 Cと上反転位置 Bの外側にそれぞれ、 機械的な動作限界である下限 位置 Xと上限位置 Yが設けられている。 この下限位置 Xと上限位置 Yは機械的な 限界点であり、 原点位置 Oとの関係では常に一定の距離 (角度) に位置する。 つ まり、 プレードが下限位置 Xや上限位置 Yに到達した時点では、 原点位置 Oから のパルスカウント値は常にある一定の値となる。 従って、 この下限位置 Xや上限 位置 Yを原点位置 Oと同様にパルスカウント値のリセット位置として使用するこ とも可能である。
そこで、 当該ワイパ装置制御方法では、 原点位置 Oに加えて下限位置 Xをパル スカウント値の更正位置として使用する。 ここではまず、 ブレードが格納位置 C にあるときには、 図 1 2 ( a ) に示すように、 ホール I C 1 2 0にはマグネット 1 1 8の S極が対向し、'その検知信号は 「S」 となる。 次に、 出力軸 1 0 5が回 転しプレードが下反転位置 Aに来た場合も、 図 1 2 ( b ) に示すように、 検知信 号は 「S」 の状態にある。 さらに出力軸 1 0 5が回転し、 プレードが原点位置 O に来ると、 ホール I C 1 2 0がマグネット 1 1 8の磁極の境界点に差し掛かり、 ホール I C 1 2 0の検知信号は、 図 1 2 ( c ) に示すように 「S→N」 となる。 さらに、 ブレードが原点位置 Oを超えると、 ホール I C 1 2 0にはマグネット 1 1 8の N極が対向し、 その検知信号は 「N」 となる。 そして、 上反転位置 Bでは、 図 1 2 ( d ) に示すように、 ホール I C 1 2 0はマグネット 1 1 8の N極と対向 し、 ホール I C 1 2 0の検知信号は 「N」 となる。
一方、 上反転位置 Bから下反転位置 Aに向かうときには、 ブレードが上反転位 置 Bから原点位置 Oの間はホール I C 1 2 0の検知信号は 「Nj であり、 ブレー ドが原点位置 Oに来ると検知信号が 「N→S」 となる。 そして、 ブレードが原点 位置 Oを超えるとホール I C 1 2 0の検知信号は 「N」 となり、 下反転位置 Aや 格納位置 Cにおいても 「N」 となる。 これらの推移をまとめたものが図 1 3の表 である。 図 1 3に示すように、 原点位置 Oを通過時の磁極変化を捉えることによ り、 ブレードの移動方向が検出できる。 なお、 マグネット 1 1 8の磁極は、 Sと Nの部位がそれぞれ逆の極性であつても良い。
ここで、 ブレードが原点位置 Oと上反転位置 Bの間にあるとき電源が切られた 場合を考える。 プレードが B—〇間にあるときはホール I C 1 2 0からの信号は 「NJ であり、 電源が再投入された際に信号が 「N」 の場合には、 このエリアに プレードが存在することになる。 そこで、 当該ワイパ装置では、 ともかくプレー ドの位置を把握するため、 まずブレードを復路方向、 すなわち、 原点位置 Oの方 向へ駆動する。 ブレードが B—〇の間にあるときは、 復路方向にブレードを駆動 すれば、 その後に必ず原点位置 Oを通過する。 すなわち、 ホール I C 1 2 0から の初期信号が 「N」 のときは、 モータ 1 0 2を逆転させれば、 その後.に必ず原点 リセット信号を得ることができる。 そして、 この原点リセット信号の取得により ブレードの正確な位置が把握される。
次に、 プレードが原点位置 Oよりも格納位置 Cにあるとき電源が切られた場合 を考える。 ブレードが〇一 C間にあるときはホール I C 1 2 0からの信号は 「S」 であり、 電源が再投入された際に信号が 「S」 の場合には、 このエリアに プレードが存在することになる。 前述のように、 当該ワイパ装置では、 下限位置 Xもまたパルスカウント値の更正位置として使用できるようになっている。 この ため、 このエリアからの再起動では、 正逆何れの方向にプレードを駆動してもそ の後にブレード位置を確実に把握することができる。
まず、 モータ 1 0 2を正転させ、 〇一C間にて停止したプレードを往路方向に 作動させた場合には、 ブレードはその後に必ず原点位置 Oを通過する。 従って、 その際の原点リセット信号の取得によりブレードの正確な位置が把握される。 こ れに対し、 モータ 1 0 2を逆転させ、 O— C間にて停止したブレードを復路方向 に作動させた場合には、 ブレードはその後に必ず下限位置 Xに到達する。 この際、 下限位置 Xにおけるパルスカウント値は予め把握されている所定値であり、 ノ ノレ スカウント値をこの所定値にリセットすることにより、 ブレードの位置が正確に 把握される。
—方、 当該ワイパ装置では、 ブレードが下反転位置 Aと格納位置 Cとの間にあ るときには、 往復動作の繰り返しによるパルスズレが発生しないように、 下限位 置 Xを使用して適宜パルスカウント値の更正を行うこともできる。 この場合、 パ ルスカウント値の更正には次の 2通りの方法がある。 まず第 1の方法としては、 動作のたびにプレードを下限位置 Xまで作動させ、 毎回、 下限位置 Xのカウント 値にてパルスカウント値をリセットする方式がある。 この方法では毎回パルス力 ゥント値がリセットされるため、 常にブレード位置を正確に把握できる反面、 機 械的衝突を繰り返すため音や振動が発生したり、 耐久性の面で不利となるなどの マイナス面もある。
第 2の方法としては、 大幅なパルスズレが生じたと思われる場合にパルスカウ ント値をリセットする方式がある。 当該ワイパ装置では、 格納位置 C側に向けて 角度ズレが生じた場合には、 ズレが大きくなるとやがてブレードは下限位置 に 至り、 自動的にパルスカウント値は更正される。 反対に、 下反転位置 A側に向け て角度ズレが生じた場合には、 ズレが大きくなるとやがてブレードは原点位置 O に至り、 そこで自動的にパルスカウント値は原点リセットされる。 し力 し、 原点 位置 Oでのリセットは、 下反転位置 Aを超えてプレードが動作するため制御上好 ましくない。
そこで、 下反転位置 A側の角度ズレの場合は、 パルスカウント値が下反転位置 Aを超え原点位置 O側の値を示した場合には、 その時点でパルスズレと判定し、 ブレードを下限位置 Xまで動作させる。 つまり、 プレードは下反転位置 Aと格納 位置 Cとの間で動作しているはずであるにも関わらず、 パルスカウント値が下反 転位置 Aを超えている場合は、 既にパルスズレが生じていると判断でき、 そのと きは、 下限位置 Xでのパルスリセットを行う。
このように、 当該ワイパ装置では、 電源遮断等により異常停止が生じても、 異 常停止位置からの復帰の際に、 原点位置 Oや下限位置 Xによりパルスカウント値 のリセットを行うことができる。 このため、 異常停止後の再起動時に現在位置が 認識できず、 上反転位置 Bでのオーバーランを生じることもなく、 スムーズな再 起動動作が実現できる。 また、 下反転位置 Aと格納位置 Cとの間の動作において も、 パルスズレを的確に更正することができ、 スムーズな往復動作が可能となる, しかも、 当該ワイパ装置では、 これらの動作のために要するセンサ数はホール I C 1 2 0の 1個で足り、 センサ数を削減し、 製品コス トの低減を図ることが可能 となる。
本発明は前記実施の形態に限定されるものではなく、 その要旨を逸脱しない範 囲で種々変更可能であることは言うまでもない。
例えば、 前述の実施の形態においては、 当該モータを自動車のワイパ装置に適 用した場合について説明したが、 これに限らず、 パワーウィンドなどの他の車両 電装品や、 家電製品等に用いることも可能である。 また、 本実施の形態では、 両 方のワイパアームを各々個別のモータ 7 a, 7 bで駆動しているが、 本発明は、 単一のモータとリンク機構により両方のワイパアーム 1 a, 1 bを作動させる形 式のものにも適用できる。 さらに、 前述の実施の形態では、 本発明を並行払拭型 ワイパ装置に適用した場合について説明したが、 本発明は対向払拭型ワイパ装置 (ォポジットタイプ) にも適用可能である。 なお、 リング状センサマグネット 4 1の磁極 (N, S ) は逆でも良く、 その場合にはホール I C 3 7 a , 3 7 bにて 検知される磁極は図 4, 5の逆となる。 また、 機械的制限位置の設定は前述のストツパ 1 2 1, 1 2 2とガイド溝 1 2 3の組み合わせには限定されず、 例えば、 ケースフレーム 1 1 1にピンを突設す ると共に、 第 2ギア 1 1 5にこのピンが収容される溝を設け、 これらの係合によ り第 2ギア 1 1 5の回転角度を制限しても良い。 また、 図 1 4に示すように、 リ ンク機構に揺動角度を規制する回転規制部 1 2 6を設け、 これによつて機械的制 限位置を設定しても良い。
このように、 本発明のワイパ装置の制御方法によれば、 ワイパアームが基準位 置にあるときを基点としてその位置検出を行い、 ワイパアームを上反転位置と下 反転位置との間で往復払拭動作させるワイパ装置の制御方法において、 ワイパ アームが動作中に上反転位置と下反転位置との間で停止した場合、 再始動時にヮ ィパアームを常に基準位置に向かって始動させるようにしたので、 ワイパアーム が電源遮断等により上反転位置と下反転位置の間で異常停止した場合でも、 再始 動時に必ず基準位置を通過し、 ワイパアームの位置を正確に把握することができ る。 従って、 再始動時にブレードがオーバーランしたり、 ストツバに機構部品が 当接したりするのを防止でき、 払拭フィーリングの向上を図ることができる。 また、 本発明のワイパ装置は、 ワイパアームが基準位置に対し上反転位置側に あるとき第 1及び第 2磁気検出素子が共に第 2磁極 (例えば S極) に対向し、 ヮ ィパアームが基準位置に対し下反転位置側にあるとき第 1及び第 2磁気検出素子 の少なくとも一方が第 1磁極 (例えば N極) に対向するセンサマグネットを設け たので、 第 1及び第 2磁気検出素子における第 1及び第 2磁極の極性判定により、 ワイパアームが基準位置に対し上反転位置側にあるか下反転位置側にあるかを判 断することができる。 これにより、 ワイパアームが電源遮断等により上反転位置 と下反転位置の間で異常停止した場合でも、 再始動時に必ずワイパアームを基準 位置方向に始動することができ、 2個の磁気検出素子によってワイパアームの位 置を正確に把握することが可能となる。 従って、 磁気検出素子の数を削減するこ とができ、 装置コストの低減を図ることが可能となる。
さらに、 本発明のワイパ装置制御方法によれば、 ワイパアームを上反転位置と 下反転位置との間で往復払拭動作させるワイパ装置の制御方法において、 上反転 位置と下反転位置との間に基準位置を設定すると共に、 格納位置よりも下方にヮ ィパアームの動作が機械的に規制される下限位置を設定し、 ワイパアームが動作 中に停止した場合、 再始動時にワイパアームを常に下限位置に向かって始動させ るようにしたので、 ワイパアームがどの位置にて異常停止しても、 その後の片道 動作中にワイパアームを必ず基準位置を通過又は下限位置に到達させることがで きる。 従って、 基準位置と下限位置の 2力所におけるワイパアームの通過又は到 達を検知すれば再始動時のワイパァ一ム位置を正確に把握することが可能となる。 その場合、 例えば、 ワイパアームをモータ駆動し、 このモータの回転に伴って 出力されるパルス信号のカウント値によってワイパアームの位置を検出してその 動作を制御する制御方式では、 まず、 基準位置通過の検出はセンサにて行う。 こ れに対し、 下限位置の到達は機械的な動作規制であり、 その時点におけるパルス 信号のカウント値は予め把握可能な所定値を示す。 すなわち、 前述のような動作 制御においては、 再始動時のワイパァーム位置を基準位置に設置されたセンサ 1 個にて把握できる。 従って、 センサの数を必要最小限に削減することができ、 装 置コストの低減を図ることが可能となる。

Claims

, 請 求 の 範 囲 . ワイパアームが基準位置にあるときを基点としてその位置検出を行い、 前記 ワイパアームを上反転位置と下反転位置との間で往復払拭動作させるワイパ装 置の制御方法であって、
前記ワイパアームが動作中に前記上反転位置と下反転位置との間で停止した 場合、 再始動時に前記ワイパアームを常に前記基準位置に向かって始動させる ことを特徴とするワイパ装置の制御方法。
. 請求項 1記載のワイパ装置において、 前記ワイパアームは前記下反転位置よ りも下方に格納位置を有し、 前記ワイパアームが動作中に前記格納位置以外の 位置で停止した場合、 再始動時に前記ワイパアームを常に前記基準位置に向か つて始動させることを特徴とするワイパ装置の制御方法。
. 回転軸を有するモータ本体と、 前記回転軸の回転を減速して出力軸に伝達す る減速機構とを有する減速機構付き電動モータによつて駆動されるワイパ装置 であって、
前記出力軸に接続され、 上反転位置と下反転位置との間で往復払拭動作を行 うワイパアームと、
前記ワイパアームが基準位置にあるとき前記出力軸の所定位置と対向するよ うに配置された第 1磁気検出素子と、 前記第 1磁気検出素子と所定角度離れた 位置に配置された第 2磁気検出素子と、
前記出力軸に設けられ、 周方向に沿つて互!/、に極性の異なる第 1磁極と第 2 磁極を有し、 前記ワイパアームが前記基準位置に対し上反転位置側にあるとき 前記第 1及び第 2磁気検出素子が共に前記第 2磁極に対向し、 前記ワイパァー ムが前記基準位置に対し下反転位置側にあるとき前記第 1及び第 2磁気検出素 子の少なくとも一方が前記第 1磁極に対向するセンサマグネットとを有するこ とを特徴とするワイパ装置。
. 請求項 3記載のワイパ装置において、 前記ワイパアームが前記基準位置を通 過するとき、 前記第 1磁気検出素子が前記第 1磁極と前記第 2磁極との境界に 対向することを特徴とするワイパ装置。
5 . 請求項 3または 4記載のワイパ装置において、 前記ワイパアームが前記下反 転位置にあるとき、 前記第 1及び第 2磁気検出素子が共に前記第 1磁極に対向 することを特徴とするワイパ装置。
6 . 請求項 3〜 5の何れか 1項に記載のワイパ装置において、 前記ワイパアーム は前記下反転位置よりも下方に格納位置を有し、 前記ワイパアームが前記格納 位置にあるとき、 前記第 1磁気検出素子が前記第 1磁極に対向し、 前記第 2磁 気検出素子が前記第 2磁極に対向することを特徴とするワイパ装置。
7 . 請求項 3〜 6の何れか 1項に記載のワイパ装置において、 前記ワイパアーム が動作中に前記上反転位置と下反転位置との間で停止した場合、 前記ワイパ アームは再始動時に常に前記基準位置に向かって始動することを特徴とするヮ ィパ装置。
8 . .請求項 6記載のワイパ装置において、 前記ワイパアームが動作中に前記格納 位置以外の位置で停止した場合、 前記ワイパアームは再始動時に常に前記基準 位置に向かつて始動することを特徴とするワイパ装置。
9 . 請求項 3〜 8の何れか 1項に記載のワイパ装置において、 前記ワイパ装置は 前記回転軸の回転角度を検出するセンサをさらに有し、 前記ワイパアームが前 記基準位置となった時を基点として前記回転軸の回転角度の検出を開始するこ とを特^ ¾とするワイパ装置。
10. 回転軸を有するモータ本体と、 前記回転軸の回転を減速して出力軸に伝達す る減速機構とを有する減速機構付き電動モータであって、
前記出力軸が所定状態にあるとき前記出力軸の所定部位が対向する基準位置 に配置された第 1磁気検出素子と、 前記第 1磁気検出素子と所定角度離れた位 置に配置された第 2磁気検出素子と、
前記出力軸に設けられ、 周方向に沿って互いに極性の異なる第 1磁極と第 2 磁極を有し、 前記出力軸が前記基準位置に対し一方向側にあるとき前記第 1及 ぴ第 2磁気検出素子が共に前記第 2磁極に対向し、 前記出力軸が前記基準位置 に対し他方向側にあるとき前記第 1及ぴ第 2磁気検出素子の少なくとも一方が 前記第 1磁極に対向するセンサマグネットとを有することを特徴とする減速機 構付き電動モータ。
11. ワイパアームを上反転位置と下反転位置との間で往復払拭動作させるワイパ 装置の制御方法であって、
前記上反転位置と前記下反転位置との間に設定された基準位置と、
前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制される下限位置とを有し、
前記ワイパアームが動作中に停止した場合、 再始動時に前記ワイパアームを 常に前記下限位置に向かって始動させることを特徴とするワイパ装置制御方法。
12. ワイパアームを上反転位置と下反転位置との間で往復払拭動作させるワイパ 装置の制御方法であって、
前記上反転位置と前記下反転位置との間に設定された基準位置と、
前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前 記ワイパアームを休止させる格納位置と、
前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制される下限位置とを有し、
前記ワイパアームが動作中に前記上反転位置と前記基準位置との間で停止し た場合、 再始動時に前記ワイパアームを常に前記基準位置に向かって始動させ、 前記ワイパアームが動作中に前記基準位置と前記格納位置との間で停止した 場合、 再始動時に前記ワイパアームを前記基準位置又は前記下限位置に向かつ て始動させることを特徴とするワイパ装置制御方法。
13. ワイパアームを上反転位置と下反転位置との間で往復払拭動作させるワイパ 装置の制御方法であって、
前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前 記ワイパアームを休止させる格納位置と、
前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制される下限位置とを有し、
前記ヮィパアームを前記下反転位置と前記格納位置との間で往復動作させる 場合、 一往復動作毎に前記ワイパアームを前記下限位置まで作動させることを 特徴とするワイパ装置制御方法。
14. ワイパアームを上反転位置と下反転位置との間で往復払拭動作させるワイパ 装置の制御方法であって、
前記上反転位置と前記下反転位置との間に設定された基準位置と、
前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前 記ワイパアームを休止させる格納位置と、
前記格鈉位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制される下限位置とを有し、
前記ワイパアームを前記下反転位置と前記格納位置との間で往復動作させる 場合、 前記ワイパアームが前記下限位置を超えて前記基準位置側に作動したと き、 前記ワイパアームを前記下限位置まで作動させることを特徴とするワイパ 装置制御方法。
15. モータによりワイパアームを上反転位置と下反転位置との間で往復払拭動作 させ、 前記モータの回転に伴って出力されるパルス信号のカウント値によって 前記ワイパアームの位置を検出してその動作を制御するワイパ装置の制御方法 であって、
前記上反転位置と前記下反転位置との間に設定され、 前記パルス信号の力ゥ ント値を基準値にリセットする基準位置と、
前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前 記ワイパアームを休止させる格納位置と、
前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制されると共に、 前記パルス信号のカウント値が所定値を示す下限位置とを有 し、
前記ヮィパアームが動作中に前記上反転位置と前記基準位置との間で停止し た場合、 再始動時に前記ワイパアームを常に前記基準位置に向かって始動させ、 前記基準位置の通過により前記パルス信号のカウント値を前記基準値にリセッ トし、
前記ワイパアームが動作中に前記基準位置と前記格納位置との間で停止した 場合、 再始動時に前記ワイパアームを前記基準位置又は前記下限位置に向かつ て始動させ、 前記基準位置の通過又は前記下限位置への到達により前記パルス 信号のカウント値を前記基準値又は前記所定値にリセットすることを特徴とす るワイパ装置制御方法。
16. モータによりワイパアームを上反転位置と下反転位置との間で往復払拭動作 させ、 前記モータの回転に伴って出力されるパルス信号のカウント値によって 前記ワイパアームの位置を検出してその動作を制御するワイパ装置の制御方法 であって、
前記上反転位置と前記下反転位置との間に設定され、 前記パルス信号の力ゥ ント値を基準値にリセットする基準位置と、
前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前 記ワイパアームを休止させる格納位置と、
前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制されると共に、 前記パルス信号のカウント値が所定値を示す下限位置とを有 し、
前記ヮィパアームを前記下反転位置と前記格納位置との間で往復動作させる 場合、 一往復動作毎に前記ワイパアームを前記下限位置まで作動させ、 前記下 限位置への到達により前記パルス信号のカウント値を前記所定値にリセットす ることを特徴とするワイパ装置制御方法。
17. モータによりワイパアームを上反転位置と下反転位置との間で往復払拭動作 させ、 前記モータの回転に伴って出力されるパルス信号のカウント値によって 前記ワイパアームの位置を検出してその動作を制御するワイパ装置の制御方法 であって、
前記上反転位置と前記下反転位置との間に設定され、 前記パルス信号の力ゥ ント値を基準値にリセットする基準位置と、
前記下反転位置よりも下方に設定され、 前記ワイパ装置が停止状態のとき前 記ワイパアームを休止させる格納位置と、
前記格納位置よりも下方に設定され、 前記ワイパアームの動作が機械的に規 制されると共に、 前記パルス信号のカウント値が所定値を示す下限位置とを有 し、
前記ワイパアームを前記下反転位置と前記格納位置との間で往復動作させる 場合、 前記パルス信号のカウント値が、 前記ワイパアームが前記下限位置より も前記基準位置側にある場合の値を示したとき、 前記ワイパアームを前記下限 位置まで作動させ、 前記下限位置への到達により前記パルス信号の力ゥント値 を前記所定値にリセットすることを特徴とするワイパ装置制御方法。
PCT/JP2003/015519 2002-12-13 2003-12-04 ワイパ装置制御方法及びワイパ装置並びに減速機構付きモータ WO2004054856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03777238.1A EP1577182B1 (en) 2002-12-13 2003-12-04 Wiper device
US10/537,803 US7586275B2 (en) 2002-12-13 2003-12-04 Wiper device control method, wiper device and motor with speed reduction mechanism

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-363041 2002-12-13
JP2002363041A JP4298991B2 (ja) 2002-12-13 2002-12-13 ワイパ装置の制御方法及びワイパ装置並びに減速機構付きモータ
JP2003341493A JP4410524B2 (ja) 2003-09-30 2003-09-30 ワイパ装置制御方法
JP2003-341493 2003-09-30

Publications (1)

Publication Number Publication Date
WO2004054856A1 true WO2004054856A1 (ja) 2004-07-01

Family

ID=32599258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015519 WO2004054856A1 (ja) 2002-12-13 2003-12-04 ワイパ装置制御方法及びワイパ装置並びに減速機構付きモータ

Country Status (3)

Country Link
US (1) US7586275B2 (ja)
EP (1) EP1577182B1 (ja)
WO (1) WO2004054856A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1663740A2 (en) * 2003-09-15 2006-06-07 Magna Closures Inc. Reversing-motor windshield wiper system
WO2007052503A1 (ja) * 2005-10-31 2007-05-10 Mitsuba Corporation ワイパ制御方法及びワイパ制御システム
CN103401492A (zh) * 2013-08-09 2013-11-20 张岳峰 电子式无触点单向旋转智能雨刮器电机控制电路工作原理
CN107021068A (zh) * 2015-10-19 2017-08-08 罗伯特·博世有限公司 刮水装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503310B2 (en) * 2005-03-21 2009-03-17 Continental Automotive Canada, Inc. Packaging arrangement for an increment position sensor
DE102006045928A1 (de) * 2006-09-28 2008-04-03 Robert Bosch Gmbh Anschlusssystem mit außenliegender Leitungsführung an Wischermotorgehäusen
DE102006060621A1 (de) * 2006-12-21 2008-06-26 Robert Bosch Gmbh Elektrische Antriebsvorrichtung mit einer elektronischen Steuerungseinheit
DE102008024356A1 (de) * 2008-05-20 2009-11-26 Valeo Systèmes d'Essuyage Elektromotorischer Hilfsantrieb, insbesondere Wischermotor
JP5186465B2 (ja) * 2008-12-09 2013-04-17 アスモ株式会社 ワイパ装置及びワイパ制御方法
DE102010002793A1 (de) * 2010-03-11 2011-09-15 Robert Bosch Gmbh Antriebseinrichtung mit einem elektrischen Antriebsmotor und einem Getriebe
FR2959711B1 (fr) * 2010-05-06 2012-07-20 Ece Circuit et procede de commande pour moteur electrique, notamment d'entrainement d'essuie-glace
JP5840048B2 (ja) * 2012-03-26 2016-01-06 アスモ株式会社 ワイパ装置
CN103359064B (zh) * 2012-03-26 2016-08-31 阿斯莫株式会社 刮水器装置
MX357242B (es) * 2012-04-16 2018-07-02 Mitsuba Corp Motor sin escobillas y aparato limpiaparabrisas.
JP5996486B2 (ja) * 2012-08-06 2016-09-21 アスモ株式会社 車両用ワイパ装置
KR101490952B1 (ko) * 2013-12-23 2015-02-09 현대자동차 주식회사 회전체의 위치를 파악하는 장치 및 이를 이용한 와이퍼 작동 장치
KR102441844B1 (ko) * 2015-02-04 2022-09-08 삼성전자주식회사 회전체를 제어하기 위한 방법 및 그 전자 장치
JP6411916B2 (ja) * 2015-02-26 2018-10-24 ラピスセミコンダクタ株式会社 半導体装置、ワイパシステム、及び移動体制御方法
KR101559117B1 (ko) * 2015-05-21 2015-10-08 디와이오토 주식회사 차량용 와이퍼 모터 장치
JP6696190B2 (ja) * 2016-02-01 2020-05-20 株式会社デンソー ワイパ制御装置
FR3055279A1 (fr) * 2016-08-24 2018-03-02 Valeo Systemes D'essuyage Dispositif de motorisation d’essuie-glace et systeme d’essuyage
DE102019126430A1 (de) 2019-10-01 2021-04-01 Infineon Technologies Ag Erfassung eines Drehwinkels
US11613233B2 (en) * 2021-01-25 2023-03-28 Rosemount Aerospace Inc. Windshield wiper system with an internal trigger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118360A (ja) * 1998-10-09 2000-04-25 Jidosha Denki Kogyo Co Ltd ワイパモータの回転位置検出装置
JP2002002454A (ja) * 2000-06-15 2002-01-09 Niles Parts Co Ltd ワイパー制御装置
US6384557B1 (en) * 1998-09-08 2002-05-07 Robert Bosch Gmbh Windshield wiper drive device
JP2002262515A (ja) * 2001-03-02 2002-09-13 Mitsuba Corp 減速機構付き電動モータ
JP2002264777A (ja) * 2001-03-14 2002-09-18 Mitsuba Corp 対向払拭型ワイパ装置の制御方法
JP2002264773A (ja) * 2001-03-07 2002-09-18 Mitsuba Corp 対向払拭型ワイパ装置の制御方法
JP2003054371A (ja) * 2001-08-15 2003-02-26 Jidosha Denki Kogyo Co Ltd ワイパ制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005256B2 (ja) * 1999-03-05 2007-11-07 アスモ株式会社 ワイパ制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384557B1 (en) * 1998-09-08 2002-05-07 Robert Bosch Gmbh Windshield wiper drive device
JP2000118360A (ja) * 1998-10-09 2000-04-25 Jidosha Denki Kogyo Co Ltd ワイパモータの回転位置検出装置
JP2002002454A (ja) * 2000-06-15 2002-01-09 Niles Parts Co Ltd ワイパー制御装置
JP2002262515A (ja) * 2001-03-02 2002-09-13 Mitsuba Corp 減速機構付き電動モータ
JP2002264773A (ja) * 2001-03-07 2002-09-18 Mitsuba Corp 対向払拭型ワイパ装置の制御方法
JP2002264777A (ja) * 2001-03-14 2002-09-18 Mitsuba Corp 対向払拭型ワイパ装置の制御方法
JP2003054371A (ja) * 2001-08-15 2003-02-26 Jidosha Denki Kogyo Co Ltd ワイパ制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1663740A2 (en) * 2003-09-15 2006-06-07 Magna Closures Inc. Reversing-motor windshield wiper system
EP1663740A4 (en) * 2003-09-15 2010-04-14 Magna Closures Inc INVERSION MOTOR WIPER SYSTEM
WO2007052503A1 (ja) * 2005-10-31 2007-05-10 Mitsuba Corporation ワイパ制御方法及びワイパ制御システム
EP1944209A1 (en) * 2005-10-31 2008-07-16 Mitsuba Corporation Wiper control method and wiper control system
EP1944209A4 (en) * 2005-10-31 2010-03-31 Mitsuba Corp ICE WIPER CONTROL METHOD AND ICE WIPER CONTROL SYSTEM
US8005590B2 (en) 2005-10-31 2011-08-23 Mitsuba Corporation Wiper control method and wiper control system
CN103401492A (zh) * 2013-08-09 2013-11-20 张岳峰 电子式无触点单向旋转智能雨刮器电机控制电路工作原理
CN107021068A (zh) * 2015-10-19 2017-08-08 罗伯特·博世有限公司 刮水装置
CN107021068B (zh) * 2015-10-19 2021-06-15 罗伯特·博世有限公司 刮水装置

Also Published As

Publication number Publication date
US20060113942A1 (en) 2006-06-01
EP1577182B1 (en) 2013-06-05
US7586275B2 (en) 2009-09-08
EP1577182A4 (en) 2010-03-10
EP1577182A1 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
WO2004054856A1 (ja) ワイパ装置制御方法及びワイパ装置並びに減速機構付きモータ
JP5129477B2 (ja) ワイパモータ
JPWO2005097569A1 (ja) ワイパ装置制御方法
JP4191509B2 (ja) モータ制御方法及びモータ制御装置
JP6349120B2 (ja) ワイパシステム制御方法及びワイパシステム制御装置
US8005590B2 (en) Wiper control method and wiper control system
JP4981420B2 (ja) 減速機構付き電動モータ
JP5634328B2 (ja) モータ制御装置及びモータ制御方法
JP4298991B2 (ja) ワイパ装置の制御方法及びワイパ装置並びに減速機構付きモータ
JP4410524B2 (ja) ワイパ装置制御方法
US6734644B2 (en) Control method for wiper apparatus
JP2013223317A (ja) ブラシレスワイパモータ
JP2002262515A (ja) 減速機構付き電動モータ
JP4615885B2 (ja) モータ制御方法及びモータ制御装置
JP4130578B2 (ja) ワイパ装置制御方法
JP2011057174A (ja) ワイパ制御装置
JP2004254455A (ja) 減速機構付き電動モータ
US20120325265A1 (en) Wiper control device and wiper control method
JP2002264773A (ja) 対向払拭型ワイパ装置の制御方法
JP2021175633A (ja) 車両用ワイパ装置
JP2020131885A (ja) ワイパ装置並びにワイパ制御装置及びワイパ制御方法
JP6286293B2 (ja) ワイパ装置
JP2004007931A (ja) 減速機構付き電動モータ
JP5690245B2 (ja) ワイパ制御装置
CN116940778A (zh) 换挡装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006113942

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10537803

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003777238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003777238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10537803

Country of ref document: US