WO2004052804A1 - 高強度低温焼成セラミック組成物及びその製造方法、並びにこれを用いた積層電子部品 - Google Patents

高強度低温焼成セラミック組成物及びその製造方法、並びにこれを用いた積層電子部品 Download PDF

Info

Publication number
WO2004052804A1
WO2004052804A1 PCT/JP2003/015664 JP0315664W WO2004052804A1 WO 2004052804 A1 WO2004052804 A1 WO 2004052804A1 JP 0315664 W JP0315664 W JP 0315664W WO 2004052804 A1 WO2004052804 A1 WO 2004052804A1
Authority
WO
WIPO (PCT)
Prior art keywords
sral
temperature
ceramic composition
low
hexagonal
Prior art date
Application number
PCT/JP2003/015664
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Fukuta
Hiroyuki Itoh
Osamu Yamada
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to EP03777345.4A priority Critical patent/EP1568668B1/en
Priority to US10/537,461 priority patent/US7285507B2/en
Publication of WO2004052804A1 publication Critical patent/WO2004052804A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer

Definitions

  • the present invention relates to a high-strength low-temperature sintering ceramic composition for a laminated circuit board, and particularly to a high-strength low-temperature sintering which has high mechanical strength and can be simultaneously sintered with an electrode made of a low melting point metal such as silver, gold, or copper.
  • the present invention relates to a ceramic composition, a method for producing the same, and a laminated electronic component using the ceramic composition, which is mainly used for a mobile phone or the like. Background art
  • the laminated circuit board had significantly poorer mechanical strength than the alumina substrate.
  • the flexural strength of an alumina substrate is about 400 MPa
  • the flexural strength of the above-mentioned laminated circuit board is about 150 MPa.
  • the bending strength of the laminated circuit board was 150 MPa or more, but as electronic components used in mobile phones, etc. became thinner, the laminated circuit boards used in them also increased. 1 mm, the mechanical strength of conventional ceramic laminated circuit boards was insufficient.
  • a laminated circuit board used for a mobile phone or the like is required to have high strength so that cracks and breakage do not occur, for example, due to deformation such as twisting or bending of the mounting board or impact when dropped.
  • an object of the present invention is to provide a high-strength, low-temperature fired ceramic composition that can be simultaneously fired with a low-melting-point metal and can form a circuit board that is less likely to crack or break.
  • Another object of the present invention is to provide a method for producing such a low temperature fired ceramic composition.
  • Still another object of the present invention is to provide a laminated electronic component having a dielectric layer made of such a low-temperature fired ceramic composition. Disclosure of the invention
  • the tissue of SrAl 2 Si 2 0 8 composition (a) has a slightly monoclinic SrAl 2 Si 2 O 8 in a temperature region of 950 ° C ⁇ 1050 ° C, mostly hexagonal SrAl a 2 Si 2 0 8 and unreacted A1 2 0 3 crystal ⁇ Pi SrSi0 3 crystal, (b) in the 1050 ° C ultra to 1100 ° C or less temperature region, the hexagonal SrAl 2 Si 2 O 8 is monoclinic crystal (b-axis) changes to SrAl 2 Si 2 0 8, ( c) not hexagonal SrAl 2 Si 2 O 8 in 1100 ° C greater, monoclinic SrAl 2 Si 2 0 8, A1 2 0 3 crystal ⁇ It
  • SrAl 2 Si 2 0 becomes a 8 of bending strength of the stoichiometric composition 300 MPa or more, Si'Al 2 Si 2 0 in the tissue If the eight crystals are monoclinic, it will drop to about 150 MPa. Hexagonal SrAl 2 Si 2 0 8 and monoclinic SrAl 2 Si 2 O 8 It is not clear why there is a significant difference in mechanical strength, but it is the main crystal phase
  • the high-strength low-temperature fired ceramic composition according to an embodiment of the present invention is characterized by having a hexagonal SrAl 2 Si 2 O 8 ⁇ Pi [alpha] 1 2 Omicron 3 crystals in the tissue.
  • Second high-strength low-temperature fired ceramic composition includes the Al 2 0 3 -SiO 2 hexagonal base made mainly of -SrO SrAl 2 Si 2 0 8, to the base A1 2 0 It is characterized in that three crystal grains are precipitated.
  • the base of the high strength low-temperature-sintered ceramic composition in (a) an amorphous phase consists force ⁇ (b) substantially SrAl 2 Si 2 0 8 crystal hexagonal SrAl2Si 2 0 8 therein is precipitated, at least a portion of is preferably hexagonal SrAl2Si 2 0 8.
  • the base may comprise a monoclinic Si'Al 2 Si 2 O 8.
  • the tissue SrAl 2 Si 2 0 8 has a crystal ⁇ Pi A1 2 0 3 crystal
  • the SrAl 2 Si 2 0 8 crystal hexagonal SrAl consists 2 Si 2 O 8 alone or hexagonal SrAl 2 Si 2 0 8 ⁇ Pi monoclinic SrAl 2 Si 2 0 8, in X-ray diffraction measurement using CirKa line
  • the hexagonal SrAl 2 Si 2 O 8 (101 ) surface 1 101 peak intensity of, when a monoclinic SrAl 2 Si 2 O 8 in (002) 1 peak intensity of plane 002, ⁇ / ( ⁇ + Ioo2 ) peak intensity ratio represented by x 100 5 % Or more.
  • the peak intensity ratio is preferably at least 10%, more preferably at least 50%.
  • High strength low-temperature fired ceramic compositions of the present invention includes a base consisting essentially of SrAl 2 Si 2 0 8 crystal, the structure having a A1 2 0 3 grains to the base, the SrAl2Si 2 O 8 crystal hexagonal SrAl 2 Si 2 0 8 alone or hexagonal Si'Al 2 Si 2 O 8 ⁇ Pi monoclinic SrAl 2 Si 2 O 8 or Rannahli, the SrAl 2 Si 2 0 8 wherein the crystalline hexagonal SrAl 2 the ratio of Si 2 0 8 is more than 60%, and preferably has a flexural strength of at least 400 MPa.
  • CoO terms Co and K and 0.1 to 5% by weight of (0 conversion) (CoO terms)
  • Cu of 0.01 to 5 wt% (CuO basis) 0.01 to 5 mass% (Mn0 2 And (c) unavoidable impurities and at least one element selected from the group consisting of Mn, 0.01-5 mass 0 / o Ag and 0.01-2 mass% (ZrO 2 conversion) Zr.
  • Preferred second composition of the high strength low-temperature-sintered ceramic composition of the present invention Si of (a) Al of 10 to 60 weight 0/0 ( ⁇ 1 2 ⁇ 3 equivalent), 25 to 60 wt% (SiO 2 conversion) , 7.5-50 mass. /.
  • the A1 2 0 3 average crystal grain size of the crystal grains is preferably not more than 1 ⁇ .
  • the method for producing the high-strength low-temperature fired ceramic composition comprises: a ceramic molding using aluminum oxide, silicon oxide and strontium oxide, or aluminum oxide, silicon oxide, strontium oxide and titanium oxide as main raw materials.
  • SrAl 2 Si 2 O 8 crystal formed in the ceramic tissue to set the temperature ⁇ Pi time such that the ratio of the hexagonal SrAl 2 Si 2 0 8 becomes 5% or more Features.
  • Baking temperature ⁇ Pi time is preferably the ratio of the hexagonal SrAl2Si 2 0 8 is by Uni setting of 10% or more, more preferably be set such that 50% or more, so that more than 60% Especially preferred to set! / ,.
  • the laminated electronic component according to the present invention is obtained by laminating a plurality of dielectric layers made of the high-strength low-temperature fired ceramic composition, wherein each of the dielectric layers has a conductor made of a low melting point metal. It is characterized in that a pattern is formed.
  • the low melting point metal is preferably silver, copper, gold or an alloy thereof.
  • the conductor pattern preferably forms an inductance element and / or a capacitance element. It is preferable that at least one selected from the group consisting of an inductance element, a capacitance element, a switching element, and a filter element is mounted on the multilayer electronic component.
  • FIG. 1 is a graph showing an X-ray diffraction pattern of a low-temperature fired ceramic composition (sample 8) according to one embodiment of the present invention.
  • FIG. 2 is a graph showing an X-ray diffraction pattern of a low-temperature fired ceramic composition (sample 12) according to another example of the present invention.
  • FIG. 3 is a graph showing an X-ray diffraction pattern of a low-temperature fired ceramic composition (sample 13) according to another example of the present invention.
  • FIG. 4 is a graph showing the X-ray diffraction pattern of the low-temperature fired ceramic composition (Sample 14) which is outside the scope of the present invention.
  • FIG. 5 is a transmission electron microscope (TEM) photograph of the low-temperature fired ceramic composition of one example of the present invention
  • FIG. 6 is a schematic diagram showing a structure corresponding to the TEM photograph of FIG. 5,
  • FIG. 7 is a graph showing the relationship between firing temperature and bending strength for various low-temperature fired ceramic compositions in Example 2.
  • FIG. 8 is a graph showing the relationship between the holding time at the firing temperature and the transverse rupture strength for various low-temperature fired ceramic compositions in Example 2.
  • FIG. 9 is an exploded perspective view showing the multilayer circuit board of Example 4,
  • FIG. 10 is a perspective view showing a laminated electronic component of Example 4.
  • FIG. 11 is a diagram showing an equivalent circuit of the multilayer electronic component of the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the main component of the high-strength low-temperature fired ceramic composition of the present invention is Al, Si and Sr, or Al, Si, and Sr, and, 1050 ° C or less, preferably calcined at a temperature below 1000 ° C, at least hexagonal SrAl 2 Si 2 08 ⁇ Pi A1 2 0 3 grains in the structure.
  • An internal electrode made of a low-melting-point metal (silver, copper, gold, or an alloy thereof) having high conductivity is formed on a dielectric layer made of such a low-temperature fired ceramic composition.
  • A1 is preferably 10 to 60 wt% in A1 2 0 3 in terms
  • Si is preferably a 25 to 60% by weight Si0 2 in terms
  • Sr is 7.5 to 50 mass at Si'O terms. / 0 is preferable. If the content of these metals is out of these ranges, the low-temperature fired ceramic composition becomes porous because low-temperature fired at a low temperature of 1000 ° C or less does not provide a sufficient fired density. No characteristics can be obtained.
  • Ti has the effect of increasing f as a function of the temperature coefficient of the resonant frequency of the low temperature fired ceramic composition.
  • Ti is preferably 0 to 20 mass% in the Ti0 2 terms.
  • the temperature coefficient of the resonance frequency of the low-temperature fired ceramic composition increases. If the temperature coefficient of the resonance frequency of the low-temperature fired ceramic composition is on the minus side of f force -40 ppm / ° C, f content can be easily adjusted to 0 ppm / ° C by increasing the Ti content. be able to.
  • the low-temperature fired ceramic composition further includes, as subcomponents, at least one selected from the group consisting of Bi, Na, K, and Co, and at least one selected from the group consisting of Cu, Mn, Ag, and Zr. It is preferable to include one kind. Unless otherwise specified, the amount of these metals added is the total of 100% of the main components. /. Is shown as an oxide conversion value. These metals are preferably added in the form of acid or carbonate.
  • Bi is 0.1 in terms of Bi 2 O 3: preferably in the L0 mass 0/0. If Bi is higher by 10% by mass, the Q value becomes smaller. The more preferable addition amount of Bi is 5% by mass or less. If the amount of Bi is less than 0.1% by mass, the effect of lowering the firing temperature is insufficient. A more preferable addition amount of Bi is 0.2% by mass or more.
  • Na is preferably 0.1 to 5% by mass in terms of Na 20 . 0.1 mass of Na. If it is less than / 0, the effect of lowering the firing temperature is insufficient. On the other hand, if Na exceeds 5% by mass, the resulting low-temperature fired ceramic composition will have too large a dielectric loss, and will not be practical.
  • K is preferably 0.1 to 5% by mass in terms of K 20 .
  • is less than 0.1% by mass, the effect of lowering the firing temperature is insufficient.
  • exceeds 5% by mass, the resulting low-temperature fired ceramic composition will have too large a dielectric loss, and will not be practical.
  • Na and K form feldspars such as NaAlSi 3 O 8 crystal and KAlSi 3 O 8 crystal together with A1 and Si, and improve the fQ of the low-temperature fired ceramic composition.
  • Co is preferably 0.1 to 5% by mass in terms of CoO.
  • Co is less than 0.1% by mass, the effect of lowering the firing temperature is insufficient, and it is difficult to obtain a dense low-temperature fired ceramic composition by firing at 900 ° C or lower.
  • Co exceeds 5% by mass, the crystallization temperature of the low-temperature fired ceramic composition exceeds 1000 ° C, and if it is lower than 1000 ° C, the dielectric loss becomes too large, and the practicality is lost.
  • Cu, Mn, Ag and Zr mainly have an effect of promoting crystallization of the dielectric ceramic composition in the firing step, and are added to achieve low-temperature firing.
  • Cu is preferably 0.01 to 5% by mass in terms of CuO.
  • Cu is 0.01 mass 0 /. If it is less than 0.5, the effect of the addition is small, and it is difficult to obtain a low-temperature fired ceramic composition having a high Q value by firing at 900 ° C or less. Further, if Cu is more than 5 mass 0/0, the low temperature sintering property is impaired.
  • Mn is preferably 0.01 to 5 mass 0/0 MnO 2 basis. When Mn is less than 0.01% by mass, the effect of the addition is small, and it is difficult to obtain a low-temperature fired ceramic composition having a high Q value by firing at 900 ° C or less. On the other hand, if Mn exceeds 5% by mass, the low-temperature firing property is impaired.
  • Ag is preferably set to 0.01 to 5% by mass. If Ag exceeds 5% by mass, the dielectric loss becomes too large, making it impractical.
  • the more preferable addition amount of Ag is 2% by mass or less.
  • Zr is preferably 0.01 to 2 % by mass in terms of ZrO 2 .
  • Zr is less than 0.01% by mass, the effect of improving the mechanical strength of the low-temperature fired ceramic composition is insufficient, and when it exceeds 2% by mass, the content decreases.
  • 0.3 mass is required in order to further expect the effect of improving the mechanical strength by adding ZrO 2 . /. More preferably, it is set to 1.5 mass%.
  • Inevitable impurities include, for example, Y, Fe, Ca, Ga, Cr and the like. The content of unavoidable impurities must be within a range that does not deteriorate the properties of the low-temperature fired ceramic composition.
  • the low-temperature fired ceramic composition comprises aluminum oxide, silicon oxide and strontium oxide (or aluminum oxide, or aluminum oxide) which are the main components consisting of Al, Si and Sr (or Al, Si, Sr and Ti).
  • the low-temperature fired ceramic composition preferably has a flexural strength of 300 MPa or more, and more preferably 400 MPa or more, so that the firing temperature and time are adjusted to satisfy this condition. I prefer to do that.
  • Peak of the hexagonal SrAl 2 Si 2 0 8 There is a correlation between the peak intensity ratio and the bending strength. Generally, the higher the peak strength ratio, the higher the bending strength. Therefore, it is preferable to adjust the firing temperature and the baking time so as to have a peak intensity ratio of 50% or more and a bending strength of 300 MPa or more. It is more preferable to adjust the sintering temperature and time so as to have.
  • the optimal firing temperature and time will generally depend on the composition of the low temperature fired ceramic composition. Therefore, in order to ensure that each low-temperature fired ceramic composition has a high peak strength ratio and high flexural strength, it is necessary to experimentally determine the optimum firing temperature and time according to the fiber composition. .
  • the firing temperature is preferably 1000 ° C or lower, more preferably 950 ° C or lower, and particularly preferably 900 ° C or lower.
  • the firing time is preferably about 2 to 4 hours.
  • the low-temperature fired ceramic composition of the present invention obtained by such a method further has a relative dielectric constant ⁇ of about 6 to 9 and a practical fQ of 3000 GHz (3 THz) or more (where f is the resonance frequency). It is preferred to have
  • the laminated electronic component of the present invention has a conductor pattern formed of a low-melting-point metal (silver, copper, gold or an alloy thereof) formed on each dielectric layer made of the low-temperature fired ceramic composition. It is obtained by laminating a plurality of dielectric layers.
  • the conductor pattern itself may be a known one, and constitutes, for example, an inductance * element and a z or capacitance element. At least one of an inductance element, a capacitance element, a switching element, and a filter element may be mounted on the multilayer electronic component.
  • the layer configuration itself of the laminated electronic component may be a known one.
  • Example 1 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
  • Example 1
  • A1 2 0 3 powder, SiO 2 powder, Si'C0 3 powder, TiO 2 powder, Bi 2 0 3 powder, CuO powder, Mn0 2 powder, a Na 2 CO 3 powder and K 2 CO 3 powder with pure water The mixture was mixed with a ball mill to obtain a slurry. After adding PVA to the slurry at a ratio of 1% by mass relative to the dry weight of the raw material powder, the slurry is dried with a spray drier to obtain a granular dry powder having an average particle size of about 0.1 mm. Powder was obtained.
  • the resulting slurry was dried by heating and then crushed with a raikai machine.
  • the obtained mixed powder was placed in ⁇ Lumina crucible and was calcined for 2 hours at 850 ° C, and the Ke I acid salt-based glass powder containing [alpha] 1 2 Omicron 3 crystals.
  • the calcined powder was wet-pulverized by the above-mentioned ball mill for 40 hours and then dried. A part of the obtained dried calcined powder was put into a ball mill together with pure water and pulverized to an average particle size of 1.0 ⁇ . Polyvinyl alcohol (PVA) was added to the slurry containing the obtained milled powder at a ratio of 1.5% by weight to 100% by weight of powdered ore powder, and then granulated and dried using a spray dryer to obtain an average particle size. Of about 0.1 mm was obtained.
  • PVA Polyvinyl alcohol
  • the granulated powder was pressed under a pressure of 200 MPa to obtain a columnar compact.
  • the molded body is heated in the air from room temperature to a temperature of 950 to 1200 ° C. at a rate of 200 ° C./hr, kept at the above temperature for 2 hours and fired, and then heated to a room temperature at a rate of 200 ° C./hr. Cool.
  • the relative permittivity ⁇ of the obtained fired body was determined at a resonance frequency of 8 to 15 GHz using a cylindrical resonator.
  • the crystal state of the sample was confirmed by X-ray diffraction using Cu-Ka line.
  • a 3-point bending test (JIS C2141) was performed on a 38 mm X 12 mm XI mm test piece prepared in the same manner as above, with the fulcrum distance set to 30 mm and the load speed set to 0.5 mm / min.
  • the bending strength (flexural strength) was determined from the maximum load at the time of failure. Table 1 shows the results. Table 1 also shows the data of alumina.
  • S SrSiO 3 crystal.
  • the tissue of the low-temperature fired ceramic composition obtained by the baking temperature of 950 ° C ⁇ 1050 ° C, SrAl 2 Si20 8 crystals, [alpha] 1 2 Omicron 3 there are crystal and SrSi0 3 crystals I do.
  • A1 2 0 3 crystal ⁇ Pi SrSiO 3 crystal is a crystal has failed to reach a SrAl 2 Si 2 O 8 crystal.
  • the SrAl 2 Si 2 O 8 crystals were almost entirely hexagonal. Temperature fired ceramic substantially hexagonal SrAl2Si 2 0 8, compositions exhibit flexural strength of at least 300 MPa, also 6.8 relative dielectric constant ⁇ and 14 of 8.0; 15 and fQ of THz excellent dielectric properties Indicated.
  • the tissue of the resulting low-temperature fired ceramic composition is Lord SrAl 2 Si 2 0 8 crystals do not precipitate A1 2 0 3 crystal and glass phases, flexural strength ⁇ Both dielectric properties were inferior.
  • A1 2 0 3 powder, Si0 2 powder, SrCO 3 powder, Ti0 2 powder, Bi 2 0 3 powder, CuO powder, Mn0 2 powder powder, dispersing the Na 2 C0 3 powder and K 2 C0 3 powder with pure water And a slurry was obtained.
  • PVA was added to this slurry at a rate of 1% by mass relative to the dry weight of the raw material powder, and then dried with a spray drier to obtain a granular dry powder having an average particle size of about 0.1 mm.
  • the granulate powder was calcined for 2 hours at a maximum temperature of 800 ° C in a continuous furnace to obtain a calcined powder consisting of A1 2 0 3 crystal and Ti0 2 binding Kei acid salt-based glass containing crystal.
  • the composition of the calcined powder in terms of oxide, of 49% by weight A1 2 0 3, 34 wt% of Si0 2, 8.2 wt% of SrO, 3 wt% of TiO 2, 2.5.
  • a cylindrical molded body was obtained in the same manner as in Example 1.
  • the molded body is heated in the air from room temperature to a temperature of 825 to 900 ° C. at a rate of 200 ° C./hr, kept at the above temperature for 2 hours and fired, and then heated to a room temperature at a rate of 200 ° C./hr. Cool.
  • the relative permittivity ⁇ of the obtained fired body was determined at a resonance frequency of 8 to L5 GHz using a cylindrical resonator.
  • a three-point bending test was performed on each test piece in the same manner as in Example 1, and the bending strength (flexural strength) was determined from the maximum load when the test piece broke.
  • Table 2 shows the results.
  • Table 2 also shows the data for alumina.
  • N (Na, K) SisA10 8 crystals.
  • Figures 1 to 4 show the low-temperature fired ceramic compositions fired at 850 ° CX 2 hr, 860 ° CX 2 hr, 875 ° CX 2 hr and 900 ° CX 2 hr, respectively (corresponding to samples 8, 12 to 14).
  • the X-ray diffraction intensity pattern by Cu- ⁇ -ray is shown.
  • indicates A1 2 0 3 crystals
  • denotes a six-cubic SrAl 2 Si 2 0 8
  • indicates a monoclinic SrAl 2 Si 2 0 8.
  • the peak intensity ratio represented by ⁇ ⁇ ⁇ ⁇ + ⁇ 2) ⁇ 100 (indicating the ratio of hexagonal SrAl 2 Si 2 O 8 in the structure) is 7.7%. This indicates that a bending strength of 300 MPa or more can be obtained.
  • the peak intensity ratio indicating a ratio of the hexagonal SrAl 2 Si 2 0 8 in the tissue is preferably 5% or more.
  • Sample 6-14, the SrSi0 3 crystal was confirmed in Example 1 was One or a observed in the tissue, containing Na ⁇ Pi Z or K considered sample 11, 13 ⁇ Pi 14 in sanidine and Time Kei Salt crystals (feldspar) were identified. Samples 11, 13 and 14 show excellent fQ, which may be due to feldspar.
  • hexagonal proportion of SrAl 2 Si 2 0 8 in tissues varies in accordance with the composition and sintering conditions of the low-temperature fired ceramic composition (baking temperature ⁇ Pi time), adjusting the composition and baked formation conditions This makes it possible to easily control the ratio of hexagonal SrAl 2 Si 2 O 8 in the structure.
  • FIG. 5 is a transmission electron microscope (TEM) photograph of the polished surface of sample 13 (875 ° C. for 2 hours), and FIG. 6 is a schematic diagram of the TEM photograph of FIG.
  • TEM transmission electron microscope
  • composition analysis revealed that the base of this organization was mainly composed of Al 2 O 3 , SiO 2 and SrO. Diffraction spots are observed in the selected area diffraction at this base. Although the grain boundaries are not clear, it is considered that they have crystallized. That is, the sample
  • LTCC composition 13 is found to have a A1 2 0 3, Si0 2 and oxide grains are precipitated structure crystallized base mainly composed of SrO. This result is consistent with X-ray diffraction pattern monoclinic SrAl 2 Si 2 0 8 ⁇ Pi hexagonal SrAl 2 Si 2 0 8 in FIG. 3 is present.
  • the average crystal grain size of the precipitated A1 2 0 3 crystals in the structure is not more than 1 Myuiotaita, tendency to growth proceeds of [alpha] 1 2 0 3 grains even firing temperature is changed in such seen cut Was.
  • FIG. 7 shows the relationship between the firing temperature and the bending strength when the firing time is 2 hours.
  • the flexural strength is the average of 10 samples.
  • the transverse rupture strength becomes 300 MPa or more when the firing temperature is about 830 ° C, and becomes 400 MPa or more at about 840 to 870 ° C, but the firing temperature rises. It can be seen that the temperature drops rapidly as the temperature rises, and becomes less than 300 MPa when the temperature exceeds approximately 880 ° C.
  • Figure 8 shows the relationship between holding time and bending strength when the firing temperature is 850 ° C.
  • the flexural strength is the average of 10 samples. It can be seen that in the low-temperature fired ceramic composition of Example 2, even if the firing temperature is appropriate at 850 ° C, the transverse rupture strength is rather lowered when the holding time is too long. From FIG. 8, it can be seen that in the case of Example 2, a firing time of about 2 to 4 hours at a firing temperature of 850 ° C. is preferable for obtaining a transverse rupture strength of 400 MPa or more.
  • the hexagonal crystal structure is set to 900 ° C or lower. Since SrAl 2 Si 2 08 there is a temperature region where precipitation, it is possible to obtain a low-temperature fired ceramic composition having a high strength by Rukoto optimize the calcination temperature depending on the composition.
  • Example 3
  • Example 2 In the same manner as in Example 1, A1 2 0 3 48.7% on a weight basis 34.5% of the SiO 2, 9.5 percent of SrO, 4% of the Ti0 2, 1 percent of Bi 2 0 3, 1% of the Na 2 0 , 0.5% K 20 , 0.3% CuO, and 0.5% MnO 2 were prepared.
  • the calcined powder was wet-pulverized with the same pole mill as in Example 1 for 40 hours and dried. Next, a part of the calcined powder was put into a pole mill together with pure water and pulverized to an average particle size of 1.0 ⁇ .
  • N (Na, K) Si3A10 8 crystals.
  • Bi by reducing the amount of ⁇ Pi Na, precipitation temperature comparison slightly SrAl 2 Si 2 0 8 crystals as in Example 2 was increased. And power, and, found that 875 ° C ⁇ 925 ° and precipitated hexagonal SrAl 2 Si 2 0 8 is at a temperature and C, and a range of precipitation temperature of the hexagonal SrAl 2 Si 2 0 8 extends Was.
  • the set formed of the low-temperature fired ceramic composition can control the deposition temperature and the scope of the hexagonal SrAl 2 Si 2 0 8.
  • silicate crystals containing Na and K were precipitated, and high bending strength, high resilience and dielectric properties were simultaneously obtained.
  • a diode switch switching the connection of an antenna-side circuit, a reception-side circuit, and a transmission-side circuit used in a high-frequency circuit section of a mobile phone is described below. It was prepared as follows.
  • Example 2 First, in the same manner as in Example 2, ⁇ 1 2 ⁇ 3 of 49% by weight, 34% of Si0 2, 8.2% of the SrO, 3 percent Ti0 2, 2.5% of the Bi 2 0 3, 2% of the Na A calcined powder consisting of 2 O, 0.5% of 0, 0.3% CuO, and 0.5% of MnO 2 was prepared.
  • This calcined powder was dispersed in a mixed solvent of ethanol and butanol, and pulverized with a Paul mill to an average particle size of 1.0 ⁇ m .
  • polybutyral as a binder and butyl phthalyl butyl glycolate as a plasticizer were dispersed at a ratio of 15% by mass and 7.5% by mass, respectively, with respect to 100% by mass of the calcined powder.
  • a slurry for sheet molding was used. After defoaming and partially evaporating the solvent under reduced pressure to reduce the viscosity of this slurry to about 10,000 MPa's, it is sheet-formed with a doctor blade and has a dry thickness of about 80 ⁇ . Was obtained.
  • This ceramic green sheet has a predetermined size for handling in the post-process. Cut into pieces.
  • the wiring patterns Ll-1, Ll-2, L2-1, L2'2, the duland electrode pattern GND, and the switching element, which constitute a transmission line (inductance element) with silver paste on the surface of a plurality of ceramic green sheets, are made of silver paste.
  • the electrode pattern for mounting was printed (see Fig. 9).
  • Via holes filled with silver paste are formed in the ceramic green sheet as means for connecting wiring patterns between the layers.
  • the ceramic green sheets on which the conductive patterns were printed were aligned, laminated with high precision, and then crimped.
  • the crimping conditions were a pressure of 14 MPa, a temperature of 85 ° C, and a holding time of 10 minutes.
  • the obtained laminate was cut into chip sizes, it was placed on a firing setter and debinding and firing were performed in a continuous furnace to obtain a 4.5 mm X 3.2 mm X 1.0 mm fired body.
  • the calcination was performed by holding at 875 ° C. for 2 hours in an air atmosphere.
  • the ceramic portion of the sintered body was crushed was measured X-ray diffraction, the hexagonal SrAl 2 Si 2 O 8 in tissue, monoclinic SrAl 2 Si 2 0 8, A1 2 0 3 crystal, TiO 2 crystals, It was confirmed that silicate crystals were obtained. Peak intensity ratio of SrAl 2 Si 2 0 8 hexagonal SrAl 2 Si 2 0 8 to the total crystal was 15.5%.
  • terminal electrodes GND, TX, RX, and VC1 were electrically connected to the electrode pattern for mounting the switching element.
  • Diodes Dl and D2 were mounted as switching elements on the mounting electrode pattern of the multilayer circuit board thus obtained, and a multilayer electronic component 1 shown in FIG. 10 was produced.
  • the multilayer electronic component 1 constitutes a broken line portion of the equivalent circuit shown in FIG.
  • the inductance element is configured by the electrode pattern, but a chip inductor, a coil, and the like may be mounted.
  • a capacitor element for blocking a DC component may be formed on a circuit board with an electrode pattern, or may be mounted on the circuit board as a chip capacitor.
  • a filter element such as a low-pass filter or a band-pass filter is connected to the diode switch.
  • the element may be configured with a SAW filter and mounted on a circuit board.
  • a filter element composed of an inductance element and a capacitance element may be formed in an electrode pattern on a circuit board, or may be mounted as a chip component on the circuit board.
  • the conductor pattern of the low-melting-point metal is formed on the dielectric layer made of the low-temperature-fired ceramic composition of the present invention. It can be seen that the formation of a multilayer electronic component with excellent electrical characteristics and mechanical strength can be obtained.
  • LTCC compositions of the present invention has a hexagonal SrAl 2 Si 2 0 8 in tissue, practical have dielectric properties, and firing possible at low temperatures below 1000 ° C with high strength It is. Therefore, simultaneous firing with low melting point electrode materials such as silver, gold, and copper is possible.
  • the high-strength low-temperature fired ceramic composition of the present invention not only has excellent dielectric properties such as dielectric constant and fQ, but also has improved mechanical strength as compared with conventional ones. Simultaneous firing with metal is possible, and cracks and breakage hardly occur. Therefore, the laminated electronic component using the high-strength low-temperature fired ceramic composition of the present invention has excellent electrical properties and mechanical strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

組織中にSrAl2Si2O8結晶及びAl2O3結晶を有し、SrAl2Si2O8結晶は六方晶SrAl2Si2O8単独又は六方晶SrAl2Si2O8及び単斜晶SrAl2Si2O8からなり、Cu-Kα線によるX線回折測定において、六方晶SrAl2Si2O8の(101)面のピーク強度をI101、単斜晶SrAl2Si2O8の(002)面のピーク強度をI002としたとき、I101 / (I101 + I002) x 100で表わされるピーク強度比が5%以上である高強度低温焼成セラミック組成物。

Description

明細書
高強度低温焼成セラミック組成物及ぴその製造方法、
並びにこれを用いた積層電子部品 発明の分野
本発明は、 積層回路基板用の高強度低温焼成セラミック組成物に関し、 特に 機械的強度が高く、 銀、 金、 銅等の低融点金属からなる電極との同時焼成が可 能な高強度低温焼成セラミック組成物、 及びその製造方法、 並びにこれを用い た主に携帯電話等に使用する積層電子部品に関する。 背景技術
従来から IC等の半導体素子や各種電子部品を搭載し、内層回路を配したセラ ミック積層回路基板が知られている。 このような積層回路基板には、 これまで 放熱性、 電気的特性、 機械的強度等が総合的に優れたアルミナ基板が用いられ て来た。アルミナ基板は焼成温度が 1300〜: 1600°Cと高いため、電極材料には W, Mo等の高融点金属が使用されている。 し力 し、 これらの電極材料は電気抵抗率 が高く、携帯電話等の数百 MHzを超える高周波回路では信号の伝送損失の増大 を招く問題があった。
携帯電話等の移動体通信分野においては、 特に、 信号の伝送損失が小さいこ とが求められている。 このため、 W, Mo等の高融点金属の代わりに、 電気抵抗 率の小さい銀、 金、 銅等の電極材料が用いられるようになり、 またセラミック 積層回路基板には、 前記電極材料と同時焼成が可能なガラスセラミックスや、 低温焼成セラミック組成物が多く使用されるようになった (米国特許第 6121174号)。
し力 しながら、 前記積層回路基板は、 アルミナ基板に比べて機械的強度が著 しく劣っていた。 例えばアルミナ基板の抗折強度は 400 MPa程度であるが、 前 記積層回路基板の抗折強度は 150 MPa程度である。従来の携帯電話等では積層 回路基板の抗折強度が 150 MPa以上あれば実用的に十分であつたが、携帯電話 等に用いる電子部品の薄型化にともない、その中に用いられる積層回路基板も 1 mm以下にまで薄型化し、 従来のセラミック積層回路基板では機械的強度が不 十分となった。
このように携帯電話等に用いる積層回路基板には、 例えば、 実装基板のねじ れゃ曲がり等の変形や、 落下時の衝撃に対して、 クラックや破損が生じないよ うな高強度が求められる。 発明の目的
従って本発明の目的は、 低融点金属との同時焼成が可能であり、 クラックや 破損が生じにくい回路基板を形成し得る高強度の低温焼成セラミック組成物を 提供することである。
本発明のもう一つの目的は、 かかる低温焼成セラミック組成物を製造する方 法を提供することである。
本発明のさらにもう一つの目的は、 かかる低温焼成セラミック組成物からな る誘電体層を有する積層電子部品を提供することである。 発明の開示
低温焼成セラミック組成物からなる積層回路基板の機械的強度を向上させる ために、 低温焼成セラミック組成物を構成する結晶相の強度を調べた結果、 SrAl2Si2O8結晶 (ストロンチウム長石) の機械的強度がその結晶構造により著 しく異なることが分かった。
Al, Si及び Srの酸化物からなる SrAl2Si208の化学量論的組成物について、 焼成過程で析出する結晶系を X線回折法により詳細に調べた。 その結果、 SrAl2Si208組成物の組織は、 (a) 950°C〜1050°Cの温度領域では僅かに単斜晶 SrAl2Si2O8を有するが、 大部分は六方晶 SrAl2Si208と未反応の A1203結晶及ぴ SrSi03結晶であり、 (b) 1050°C超乃至 1100°C以下の温度領域では、 六方晶 SrAl2Si2O8が単斜晶 (b 軸) SrAl2Si208に変化し、 (c) 1100°C超では六方晶 SrAl2Si2O8はなく、 単斜晶 SrAl2Si208、 A1203結晶及ぴ SrSi03結晶からなるこ とが分かった。
組織中に六方晶 SrAl2Si208を有する場合、 SrAl2Si208の化学量論的組成物の 抗折強度は 300 MPa以上となるが、 組織中の Si'Al2Si208結晶が単斜晶である と、 150 MPa程度に低下してしまう。 六方晶 SrAl2Si208と単斜晶 SrAl2Si2O8 とで、 機械的強度に著しい差がある理由は明らかではないが、 主結晶相である
SrAl2Si208結晶が Α12Ο3結晶と同じ六方晶系として存在することにより、 両結 晶相の結び付きが強化され、 機械的強度が高まるためであると考えられる。 低 温焼成セラミック組成物を六方晶 SrAl2Si2O8と Α12Ο3結晶が混在する組織とす ることにより、 電子部品に用いるのに必要な比誘電率、 2 THzを超える実用的 な fQ等の誘電特性を確保しながら、 機械的強度を向上できることが分かった。 本発明はこのような知見に基づき完成したものである。
本発明の第一の実施形態による高強度低温焼成セラミック組成物は、 組織中 に六方晶 SrAl2Si2O8及ぴ Α12Ο3結晶を有することを特徴とする。
本発明の第二の実施形態による高強度低温焼成セラミック組成物は、 Al203-SiO2-SrO を主体とする基地に六方晶 SrAl2Si208を含み、 前記基地に A1203結晶粒が析出していることを特徴とする。
高強度低温焼成セラミック組成物の基地は、(a) アモルファス相で、 その中に 六方晶 SrAl2Si208が析出している力 \ (b) 実質的に SrAl2Si208結晶からなり、 その少なくとも一部が六方晶 SrAl2Si208であるのが好ましい。 前記基地は単斜 晶 Si'Al2Si2O8を含んでいても良い。
本発明の第三の実施形態による高強度低温焼成セラミック組成物は、 組織中 に SrAl2Si208結晶及ぴ A1203結晶を有し、 前記 SrAl2Si208結晶は六方晶 SrAl2Si2O8単独又は六方晶 SrAl2Si208及ぴ単斜晶 SrAl2Si208からなり、 CirKa 線による X線回折測定において、 六方晶 SrAl2Si2O8の (101) 面のピーク強度 を 1101、単斜晶 SrAl2Si2O8の (002)面のピーク強度を 1002としたとき、 Ιιοι / (Ιιοι + Ioo2) x 100で表わされるピーク強度比が 5%以上であることを特徴とする。 前記ピーク強度比は 10%以上であるのが好ましく、 50%以上であるのがより 好ましい。
本発明の高強度低温焼成セラミック組成物は、 実質的に SrAl2Si208結晶から なる基地と、 前記基地に A1203結晶粒とを有する組織を有し、 前記 SrAl2Si2O8 結晶は六方晶 SrAl2Si208単独又は六方晶 Si'Al2Si2O8及ぴ単斜晶 SrAl2Si2O8か らなり、 前記 SrAl2Si208結晶における前記六方晶 SrAl2Si208の割合は 60%以 上であり、 かつ 400 MPa以上の抗折強度を有するのが好ましい。 本発明の高強度低温焼成セラミック組成物の好ましい第一の組成は、(a) 10〜 60質量0 /0 (A1203換算) の A1, 25〜60質量% (Si02換算) の Si及ぴ 7.5〜50 質量% (SrO換算)の Srからなる主成分 100質量%と、 (b) 0.1-10質量% (Bi203 換算) の Bi, 0.1〜5質量0 /0 (Na20換算) の Na, 0.1〜5質量。 /。 ( 0換算) の K及び 0.1〜5質量% (CoO換算) の Coからなる群から選ばれた少なくとも 1 種と、 0.01〜5質量% (CuO換算) の Cu、 0.01〜5質量% (Mn02換算) の Mn、 0.01-5質量0 /oの Ag及び 0.01〜2質量% (Zr02換算) の Zrからなる群 から選ばれた少なくとも 1種とからなる副成分と、(c)不可避的不純物とを含有 する。
本発明の高強度低温焼成セラミツク組成物の好ましい第二の組成は、(a) 10〜 60質量0 /0 (Α12Ο3換算) の Al, 25〜60質量% (SiO2換算) の Si, 7·5〜50質 量。 /。 (SrO換算) の Sr及び 20質量%以下 (Ti02換算) の Tiからなる主成分 100質量%と、 (b) 0.1-10質量0 /0 (Bi203換算) の Bi, 0.1-5質量0 /0 (Na20換 算) の Na, 0.1〜5質量% (K2O換算) の Κ及び 0.1〜5質量% (CoO換算) の Coからなる群から選ばれた少なくとも 1種と、 0.01〜5質量% (CuO換算) の Cu、 0.01〜5質量% (Mn02換算) の Μη、 0.01〜5質量%の Ag及び 0.01〜2 質量% (Zr02換算) の Zrからなる群から選ばれた少なくとも 1種とからなる 副成分と、 (c) 不可避的不純物とを含有する。
前記 A1203結晶粒の平均結晶粒径は 1 μπι以下であるのが好ましい。
上記高強度低温焼成セラミック組成物を製造する方法は、 アルミニウム酸化 物, 珪素酸化物及ぴストロンチウム酸化物、 又はアルミニウム酸化物, 珪素酸 化物, ストロンチウム酸化物及びチタン酸化物を主原料とするセラミック成形 体を焼成する際、 セラミック組織中に形成される SrAl2Si2O8結晶のうち、 六方 晶 SrAl2Si208の比率が 5%以上となるように温度及ぴ時間を設定することを特 徴とする。焼成温度及ぴ時間は、六方晶 SrAl2Si208の比率が 10%以上となるよ うに設定するのが好ましく、 50%以上となるように設定するのがより好ましく、 60%以上となるように設定するのが特に好まし!/、。
本発明の積層電子部品は、 上記高強度低温焼成セラミック組成物からなる複 数の誘電体層を積層してなり、 前記誘電体層の各々に低融点金属からなる導体 パターンが形成されていることを特徴とする。 前記低融点金属は銀、 銅、 金又 はこれらの合金であるのが好ましい。
前記導体パターンはィンダクタンス素子及び/又はキャパシタンス素子を構 成しているのが好ましい。 前記積層電子部品にインダクタンス素子、 キャパシ タンス素子、 スイッチング素子及びフィルタ素子からなる群から選ばれた少な くとも 1つを実装するのが好ましい。 図面の簡単な説明
図 1は本発明の一実施例の低温焼成セラミック組成物 (試料 8) の X線回折 パターンを示すグラフであり、
図 2は本発明の他の実施例の低温焼成セラミック組成物 (試料 12) の X線回 折パターンを示すグラフであり、
図 3は本発明の他の実施例の低温焼成セラミック組成物 (試料 13) の X線回 折パターンを示すグラフであり、
図 4は本発明の範囲外である低温焼成セラミック組成物 (試料 14) の X線回 折パターンを示すグラフであり、
図 5 は本発明の一実施例の低温焼成セラミック組成物の透過型電子顕微鏡 (TEM) 写真であり、
図 6は図 5の TEM写真に対応する組織を示す模式図であり、
図 7は実施例 2における種々の低温焼成セラミック組成物について、 焼成温 度と抗折強度との関係を示すグラフであり、
図 8は実施例 2における種々の低温焼成セラミック組成物について、 焼成温 度での保持時間と抗折強度との関係を示すグラフであり、
図 9は実施例 4の積層回路基板を示す分解斜視図であり、
図 10は実施例 4の積層電子部品を示す斜視図であり、
図 11は実施例 4の積層電子部品の等価回路を示す図である。 発明を実施するための最良の形態
本発明の高強度低温焼成セラミック組成物の主成分は、 Al, Si及び Sr、 又は Al, Si, Sr及び であり、 1050°C以下、 好ましくは 1000°C以下の温度で焼成 し、 組織中に少なくとも六方晶 SrAl2Si208及ぴ A1203結晶粒を有する。 このよ うな低温焼成セラミック組成物からなる誘電体層上に高導電率を有する低融点 金属 (銀、 銅、 金又はこれらの合金) からなる内部電極を形成し、 積層後に焼 成することにより一体ィ匕すると、 機械的強度に優れ、 高い Q値により極めて損 失の小さい高周波電子部品を形成することができる。このため、誘電体共振器、 フィルタ、 積層インダクタ又は積層コンデンサ、 及びこれらを複合化した高周 波積層基板等に応用して、 機械的強度、 マイクロ波特性に優れ、 低損失な回路 デバイスが得られる。
A1は A1203換算で 10〜60質量%とするのが好ましく、 Siは Si02換算で 25 〜60質量%とするのが好ましく、 Srは Si'O換算で 7.5〜50質量。 /0とするのが 好ましい。 これらの金属の含有量がこれらの範囲外であると、 1000°C以下の低 温焼成では十分な焼成密度が得られないために、 低温焼成セラミック組成物は 多孔質となり、 吸湿等により良好な特性が得られない。
Ti は低温焼成セラミック組成物の共振周波数の温度係数て f を増加させる作 用を有する。 Tiは、 Ti02換算で 0〜20質量%とするのが好ましい。 Tiの含有量 が増加するとともに低温焼成セラミック組成物の共振周波数の温度係数は増大 する。 低温焼成セラミック組成物の共振周波数の温度係数て f 力 〜- 40 ppm/°C程度のマイナス側にある場合、 Tiの含有量を多くしてて fを 0 ppm/°Cに 容易に調整することができる。 し力 しながら、 Tiの添加量が Ti02換算で 20質 量%より多いと、 1000°C以下の低温焼成では十分な焼成密度が得られないため に、 低温焼成セラミック組成物が多孔質となり、 吸湿等により良好な特性が得 られない。
またこの低温焼成セラミック組成物に更に、 副成分として、 Bi、 Na、 K及び Coからなる群から選ばれた少なくとも 1種、 及び Cu、 Mn、 Ag及ぴ Zrからな る群から選ばれた少なくとも 1種を含有させるのが好ましい。 これらの金属の 添加量は、 特に断りがない限り、 主成分の合計 100質量。/。に対して、 酸化物換 算値で示す。 これらの金属は酸ィヒ物又は炭酸塩の状態で添加するのが好ましレ、。
Bi、 Na、 K及び Coは、 仮焼工程において A1203以外の成分がガラス化する 際、 得られるガラスの軟化点を低下させる作用を有するので、 より低温での焼 成を可能にし、 1000°C以下の焼成温度でも <¾値の高い誘電特性を有する低温焼 成セラミック組成物を得ることを可能にする。
Biは、 Bi2O3換算で 0.1〜: L0質量0 /0とするのが好ましい。 Biが 10質量%ょり 多いと、 Q値が小さくなる。 Biのより好ましい添加量は 5質量%以下である。 また Biの添加量が 0.1質量%より少な ヽと、 焼成温度の低下効果が不十分であ る。 Biのより好ましい添加量は 0.2質量%以上である。
Naは、 Na20換算で 0.1〜5質量%とするのが好ましい。 Naが 0.1質量。 /0未 満の場合、焼成温度の低下効果が不十分である。また Naが 5質量%を超えると、 得られる低温焼成セラミック組成物の誘電損失が大きくなり過ぎ、 実用性がな くなる。
Kは、 K20換算で 0.1〜5質量%とするのが好ましい。 Κが 0.1質量%未満の 場合、 焼成温度の低下効果が不十分である。 また Κが 5質量%を超えると、 得 られる低温焼成セラミック組成物の誘電損失が大きくなり過ぎ、 実用性がなく なる。
焼成温度が上がると、 Na及ぴ Kは、 A1及ぴ Siとともに NaAlSi3O8結晶、 KAlSi3O8結晶等の長石を形成し、 低温焼成セラミック組成物の fQを向上させ る。
Coは、 CoO換算で 0.1〜5質量%とするのが好ましい。 Coが 0.1質量%未満 の場合、焼成温度の低下効果が不十分であり、 900°C以下の焼成で緻密な低温焼 成セラミック組成物を得ることが困難である。 また Coが 5質量%を超えると、 低温焼成セラミック組成物の結晶化温度が 1000°C超となり、 1000°C以下で誘電 損失が大きくなり過ぎ、 実用性が無くなる。
Cu, Mn, Ag及ぴ Zrは、 主に焼成工程において誘電体セラミック組成物の結 晶化を促進する作用があり、 低温焼成を達成するために添加する。
Cuは、 CuO換算で 0.01〜5質量%とするのが好ましい。 Cuが 0.01質量0 /。 未満の場合、 その添加効果は小さく、 900°C以下での焼成で Q値の高い低温焼 成セラミック組成物を得ることが困難である。 また Cuが 5質量0 /0を超えると、 低温焼成性が損なわれる。 Mnは、 MnO2換算で 0.01〜5質量0 /0とするのが好ましい。 Mnが 0.01質量% 未満の場合、 その添加効果は小さく、 900°C以下での焼成で Q値の高い低温焼 成セラミック組成物を得ることが困難である。また Mnが 5質量%を超えると、 低温焼成性が損なわれる。
Agは、 0.01〜5質量%とするのが好ましい。 Agが 5質量%を超えると、誘電 損失が大きくなり過ぎ、 実用性がない。 Agのより好ましい添加量は 2質量%以 下である。
Zrは ZrO2換算で 0.01〜2質量%とするのが好ましい。 Zrが 0.01質量%未満 では、 低温焼成セラミック組成物の機械的強度の向上効果が不十分であり、 ま た 2質量%を超えると、 が低下する。 ZrO2添加による機械的強度の向上効果 をより期待するためには、 0.3質量。/。〜 1.5質量%とするのがより好ましい。 不可避的不純物としては、 例えば Y, Fe, Ca, Ga, Cr等が挙げられる。 不 可避的不純物の含有量は、 低温焼成セラミック組成物の特性を劣化させない範 囲内としなければならない。
上記低温焼成セラミック組成物は、 Al, Si及ぴ Sr (又は Al, Si, Sr及び Ti) からなる主成分を構成するアルミニウム酸化物, 珪素酸化物及ぴストロンチウ ム酸化物 (又はアルミニウム酸化物, 珪素酸化物, ストロンチウム酸化物及ぴ チタン酸化物) からなる主原料と、 Bi、 Na、 K及び Coからなる群から選ばれ た少なくとも 1種、 及ぴ Cu、 Mn、 Ag及ぴ Zrからなる群から選ばれた少なく とも 1種からなる副成分を構成する酸化物又は炭酸塩からなる副原料とを均一 に含有してなる成形体を焼成する際に、 セラミック組織中に形成される SrAl2Si2O8結晶のうち、 六方晶 SrAl2Si2O8の比率 (ピーク強度比) が 5%以上 となるように、温度及び時間を調整することにより製造する。六方晶 SrAl2Si208 のピーク強度比は好ましくは 10%以上であり、より好ましくは 50%以上であり、 特に 60%以上が好ましいので、 この条件を満たすように焼成温度及ぴ時間を調 整するのが好ましい。
低温焼成セラミック組成物はまた 300 MPa以上の抗折強度を有するのが好ま しく、 400 MPa以上の抗折強度を有するのがより好ましいので、 この条件を満 たすように焼成温度及び時間を調整するのが好ましレ、。 六方晶 SrAl2Si208のピ ーク強度比と抗折強度には相関関係があり、 一般にピーク強度比が高くなるに 従って抗折強度も高くなる。従って、 50%以上のピーク強度比及び 300 MPa以 上の抗折強度を有するように焼成温度及ぴ時間を調整するのが好ましく、 60% 以上のピーク強度比及び 400 MPa以上の抗折強度を有するように焼成温度及び 時間を調整するのがより好ましい。
最適な焼成温度及び時間は、 一般に低温焼成セラミック組成物の組成に応じ て異なる。 従って、 個々の低温焼成セラミック組成物に高いピーク強度比及ぴ 抗折強度を確実に付与するためには、 その糸且成に応じて最適な焼成温度及び時 間を実験的に求める必要がある。 一般に、 焼成温度は 1000°C以下が好ましく、 950°C以下がより好ましく、 900°C以下が特に好ましい。 また焼成時間は 2〜4 時間程度が好ましい。
このような方法により得られる本発明の低温焼成セラミック組成物は、 さら に 6〜9程度の比誘電率 ε、及ぴ実用的な 3000 GHz (3 THz) 以上の fQ (fは共 振周波数) を有するのが好ましい。
本発明の積層電子部品は、 上記低温焼成セラミック組成物からなる各誘電体 層に低融点金属 (銀、 銅、 金又はこれらの合金) からなる導体パターンを形成 し、 得られた導体パターンを有する誘電体層を複数積層することにより得られ る。 導体パターン自体は公知のもので良く、 例えばインダクタンス *子及び z 又はキャパシタンス素子を構成する。積層電子部品には、ィンダクタンス素子、 キャパシタンス素子、 スイッチング素子及びフィルタ素子の少なくとも 1つを 実装しても良レ、。 積層電子部品の層構成自体は公知のもので良レ、。
本発明を以下の実施例によりさらに詳細に説明するが、 本発明はそれらに限 定されるものではない。 実施例 1
A1203粉末, SiO2粉末, Si'C03粉末, TiO2粉末, Bi203粉末, CuO粉末, Mn02粉末, Na2CO3粉末及び K2CO3粉末を純水と一緒にボールミルで混合し、 スラリーを 得た。 このスラリーに PVAを原料粉の乾燥重量に対して 1質量%の割合で添加 した後、 スプレードライヤーで乾燥し、 平均粒径が約 0.1 mmの顆粒状の乾燥 粉を得た。
SrAl2Si208の化学量論的組成 (A1203: 31.30質量0ん Si02: 36.89質量0/。、 Sr 0: 31.81質量0 /0)となるように、 純度 99.9%、 平均粒径 0.5 μιηの Α1203粉末、 純度 99.9%以上、 平均粒径 0.5 μιη以下の Si02粉末、 及び純度 99.9%、 平均粒 径 0.5 μπιの SrCO3粉末をポリエチレン製のボールミルポットに投入し、 酸ィ匕 ジルコニウム製のボールと純水を投入して、 20時間湿式混合を行った。 得られ たスラリーを加熱乾燥した後、 ライカイ機で解碎した。 得られた混合粉末をァ ルミナ製のるつぼに入れて、 850°Cで 2時間仮焼して、 Α12Ο3結晶を含有するケ ィ酸塩系ガラス粉末とした。
この仮焼粉を上記ボールミルで 40時間湿式粉砕した後、 乾燥した。 得られた 乾燥仮焼粉の一部を純水と一緒にボールミルに投入し、平均粒径 1.0 μιηに粉砕 した。 得られた粉碎粉を含有するスラリーに、 ポリビニルアルコール (PVA) を粉石争粉 100質量%に対して 1.5質量%の割合で添加した後、 スプレードライ ヤーで造粒 ·乾燥し、 平均粒径が約 0.1 mmの顆粒状の造粒粉を得た。
造粒粉を 200 MPaの圧力で加圧成形し、 円柱状成形体を得た。 この成形体を 大気中で室温から 950〜1200°Cの温度まで 200°C/hrの速度で加熱し、前記温度 に 2時間保持して焼成した後、 室温まで 200°C/hrの速度で冷却した。 得られた 焼成体の比誘電率 εを円柱共振器により 8〜15 GHzの共振周波数で求めた。 試 料の結晶状態は、 Cu-K a線による X線回折により確認した。
上記と同様に作製した 38 mmX 12 mm X I mmの試験片に対して、 支点間距 離を 30 mmとし、荷重速度を 0.5 mm/minとして、 3点曲げ試験(JIS C2141) を行い、試験片が破壊したときの最大荷重から曲げ強さ (抗折強度) を求めた。 結果を表 1に示す。 またアルミナのデータも表 1に併せて示す。
組織中の六方晶 SrAl2Si208と単斜晶 SrAl2Si208との比率として、両者の面回 折強度の比率を求めた。 面回折強度の比率は、 Cu-Κ α線による X線回折におい て 22.9° 付近に現れる六方晶 Si'Al2Si208の(101)面のピーク強度 Ii01と、 27.7° 付近に現れる単斜晶 SrAl2Si208の(002)面のピーク強度 1002と力、ら、 Iioi I (1101 + Ioo2) X 100の式により求められるピーク強度比により表される。結果を表 1に 示す。 表 1
Figure imgf000013_0001
*は本発明の範囲外の試料を示す。
Ιιοι I (Ιιοι + Ιοο2> χ 100。
HS: 六方晶 SrAl2Si2O8,
MS: 単斜晶 SrAl2Si208,
A: AI2O3結晶,
S: SrSiO3結晶。 表 1 から明らかなように、 950°C〜1050°Cの焼成温度で得られる低温焼成セ ラミック組成物の組織中には、 SrAl2Si208結晶、 Α12Ο3結晶及び SrSi03結晶が 存在する。 A1203結晶及ぴ SrSiO3結晶は SrAl2Si2O8結晶に至らなかつた結晶で ある。
SrAl2Si2O8結晶はほぼ全体的に六方晶であつた。 ほぼ六方晶 SrAl2Si208から なる低温焼成セラミック,組成物は、 300 MPa以上の抗折強度を示し、 また 6.8 〜8.0の比誘電率 ε及び 14〜; 15 THzの fQと優れた誘電特性を示した。
焼成温度が 900°C以下の場合、得られた低温焼成セラミック組成物の組織には SrAl2Si208結晶が析出せず A1203結晶とガラス相が主であり、 抗折強度及ぴ誘 電特性がともに劣っていた。
1100°C以上の焼成温度で得られた低温焼成セラミック組成物の X線回折パタ ーンから、組織中の SrAl2Si208がほぼ全て単斜晶 SrAl2Si208であることを確認 した。 これ力 ら、焼成温度が 1100°C以上になると、 六方晶 SrAl2Si208が単斜晶 SrAl2Si208に変化することが分かる。 この低温焼成セラミック組成物は高い誘 電特性 (fQ) を示したが、 抗折強度はたかだか 170 MPa程度であり、 積層電子 部品に用いるには不十分であつた。
このように、 SrAl2Si208結晶の六方晶から単斜晶への変化を制御すれば、 優 れた誘電特性を有しながら、 従来の低温焼成セラミック組成物より高い機械的 強度を有する低温焼成セラミック組成物が得られることが分かる。 実施例 2
A1203粉末, Si02粉末, SrCO3粉末, Ti02粉末, Bi203粉末, CuO粉末, Mn02粉 末, Na2C03粉末及び K2C03粉末を純水と一緒にボールミルで混合し、スラリー を得た。 このスラリーに PVAを原料粉の乾燥重量に対して 1質量%の割合で添 加した後、 スプレードライヤーで乾燥し、 平均粒径が約 0.1 mmの顆粒状の乾 燥粉を得た。
顆粒粉を連続炉中で最高温度 800°Cで 2時間仮焼し、 A1203結晶及び Ti02結 晶を含有するケィ酸塩系ガラスからなる仮焼粉を得た。 仮焼粉の組成は、 酸化 物換算で、 49質量%の A1203、 34質量%の Si02、 8.2質量%の SrO、 3質量% の TiO2、 2.5.質量0 /0の Bi203、 2質量0 /0の Na20、 0.5質量0 /0の K2O、 0.3質量0 /0 の CuO、 及ぴ 0.5質量0 /0の MnO2であつた。
この仮焼粉から、 実施例 1 と同様にして円柱状成形体を得た。 この成形体を 大気中で室温から 825〜900°Cの温度まで 200°C/hrの速度で加熱し、 前記温度 に 2時間保持して焼成した後、 室温まで 200°C/hrの速度で冷却した。
得られた焼成体の比誘電率 εを円柱共振器により 8〜: L5 GHzの共振周波数で 求めた。 また実施例 1と同様に各試験片に 3点曲げ試験を行い、 試験片が破壌 したときの最大荷重から曲げ強さ (抗折強度) を求めた。 結果を表 2に示す。 またアルミナのデータも表 2に併せて示す。 表 2
Figure imgf000015_0001
注 (1) *は本発明の範囲外の試料を示す。
(2) Ιιοι I (Ιιοι + Ioo2) x 100。
(3) HS: 六方晶 SrAl2Si208
MS: 単斜晶 SrAl2Si208
A: AI2O3結晶,
N: (Na, K)SisA108結晶。 図 1〜4はそれぞれ 850°C X 2 hr、 860°C X 2 hr、 875°C X 2 hr及ぴ 900°C X 2 hr (試料 8、 12〜: 14に対応) で焼成した低温焼成セラミック組成物の Cu-Κα線に よる X線回折強度パターンを示す。 図 1〜4中、 〇は A1203結晶を示し、 ▲は六 方晶 SrAl2Si208を示し、 △は単斜晶 SrAl2Si208を示す。 850°C X 2 hrの焼成条 件では Α12Ο3結晶、 Ti02結晶及び SiO2結晶とともに六方晶 SrAl2Si208が析出 した。 焼成温度が上がるにつれ、 単斜晶 SrAl2Si208が析出し、 その回折ピーク 強度が増大した。
表 2は、六方晶 SrAl2Si208の(101)面のピーク強度を 1101、単斜晶 SrAl2Si2O8 の (002) 面のピーク強度を loosとしたとき、 Ιιοιバ Ιιοι + Ιοο2) χ 100で表わされ るピーク強度比 (組織中の六方晶 SrAl2Si2O8の割合を示す) が 7.7%以上あれ ば、 300 MPa以上の抗折強度が得られることを示す。 一般に、 組織中の六方晶 SrAl2Si208の割合を示すピーク強度比は 5%以上であるのが好ましい。なお試料 6及び 7でも 250 MPaを超える抗折強度が得られたが、 これは、 ガラス相に遍 在する A1203結晶がフイラ一として機能して、 強度が向上したものと考えられ る。 し力 し、 試料 6及び 7のいずれも緻密化せず、 実用に供し得ないものであ つた 0
900°C X 2 hr の焼成条件で得られた低温焼成セラミック組成物の回折パター ンを示す図 4には、 31° 付近の単斜晶 SrAl2Si208を示す回折ピークの右肩部に 回折ピークが認められるが、 この回折ピークは他の回折パターンを勘案すると 単斜晶 SrAl2Si208の (041) 面の回折ピークと考えられる。 従って、 この低温 焼成セラミック組成物の組織中には実質的に六方晶' SrAl2Si208は存在しないこ とが分かる。
試料 6〜 14では、実施例 1で確認された SrSi03結晶は組織中に認められなか つたが、試料 11, 13及ぴ 14ではサニディン及びアルバイトと考えられる Na及 ぴ Z又は Kを含有するケィ酸塩結晶 (長石) が確認された。試料 11, 13及ぴ 14 は優れた fQを示すが、 これには長石が寄与していると考えられる。
このように組織中の六方晶 SrAl2Si208の割合は、 低温焼成セラミック組成物 の組成及び焼成条件 (焼成温度及ぴ時間) に応じて変化するので、 組成及び焼 成条件を調整することにより組織中の六方晶 SrAl2Si2O8の割合を容易に制御す ることができる。
図 5は試料 13 (875°C X 2 hr) の研磨面の透過型電子顕微鏡 (TEM) 写真で あり、 図 6は図 5の TEM写真の模式図である。 なお図 5に示す視野中にはケ ィ酸塩結晶は見られないが、 X線回折により組織中に析出していることが認め られた。 ¾系酸化物も存在するが、 これはボールミルの酸化ジルコニァ製のボ ールから混入したものと考えられる。
この組織の基地は、 組成分析により Al2O3, Si02及び SrOを主体とすること が分かった。 この基地の制限視野回折に回折斑が認められるので、 TEM写真で は結晶粒界が判然としないが、 結晶化していると考えられる。 すなわち、 試料
13の低温焼成セラミック組成物は、 A1203, Si02及び SrOを主体とする結晶化 した基地に酸化物結晶粒が析出した構造を有することが分かる。 この結果は、 図 3の単斜晶 SrAl2Si208及ぴ六方晶 SrAl2Si208が存在する X線回折パターン と一致する。
試料 8 (850°C X 2 hr)及ぴ試料 12 (860°C x 2 hr)の TEM写真にぉレ、ても、 酸 化物結晶が析出した基地には SrAl2Si2O8結晶の粒界が確認できなかった。 図 1 及ぴ 2の X線回折パターンにはハローなパターンがあるので、試料 8及び 12は A1203, Si02及ぴ SrOを主体とするアモルファス基地に SrAl2Si2O8結晶が析出 した構造を有すると考えられる。
複数の TEM写真から、 組織中に析出した A1203結晶の平均結晶粒径が 1 μιη 以下であり、 焼成温度が変わっても Α1203結晶粒の成長が進む傾向は見られな かった。
図 7は、 焼成時間が 2時間の場合の焼成温度と抗折強度との関係を示す。 抗 折強度は 10個の試料の平均値である。実施例 2の低温焼成セラミック組成物で は、 抗折強度は焼成温度が約 830°Cになると 300 MPa以上になり、 約 840〜 870°Cで 400 MPa以上になるが、 焼成温度が上昇するに連れて急速に低下し、 約 880°Cを超えると 300 MPa未満となることが分かる。
図 8は、 焼成温度が 850°Cの場合の保持時間と抗折強度との関係を示す。 抗 折強度は 10個の試料の平均値である。実施例 2の低温焼成セラミック組成物で は、焼成温度が 850°Cと適切であっても、保持時間が長くなり過ぎると抗折強度 はかえつて低下することが分かる。 図 8力 ら、 実施例 2の場合、 850°Cの焼成温 度で約 2〜4時間の焼成時間が 400 MPa以上の抗折強度を得るのに好ましいこ とが分かる。
以上から、 (a) A1203結晶や他の酸化物結晶が析出した基地中の SrAl2Si208結 晶の存在が抗折強度に著しい影響を及ぼすこと、及び (b) SrAl2Si208結晶の中で も六方晶 SrAl2Si208が抗折強度の向上に大きく寄与することが分かった。
このように、 Al, Si及び Si'の酸化物を主成分とし、 低温焼結性を向上させる 副成分を含有する低温焼成セラミ ック組成物では、 900°C以下に六方晶 SrAl2Si208が析出する温度領域があるので、 組成に応じて焼成温度を最適化す ることにより高強度の低温焼成セラミック組成物を得ることができる。 実施例 3
実施例 1と同様にして、 質量基準で 48.7%の A1203, 34.5%の SiO2, 9.5%の SrO, 4%の Ti02, 1%の Bi203, 1%の Na20, 0.5%の K20, 0.3%の CuO,及ぴ 0.5%の Mn02からなる仮焼粉を作製した。 この仮焼粉を実施例 1と同じポール ミルで 40時間湿式粉砕し、 乾燥した。 次に、 仮焼粉の一部を純水と一緒にポー ルミルに投入し、 1.0 μιηの平均粒径に粉碎した。 得られた粉碎粉のスラリーに PVAを粉砕粉の乾燥重量に対して 1.5質量%の割合で添加した後、 スプレード ライヤ一で造粒 ·乾燥し、 平均粒径が約 0.1 mmの顆粒状の造粒粉を得た。 得られた造粒粉を 200 MPaの圧力で加圧成形し、 円柱状成形体とした。 この 成形体を大気中で室温から 825〜950°Cの温度まで 200°C/hrの速度で加熱し、 前記温度に 2時間保持して焼成した後、 室温まで 200°C/hrの速度で冷却した。 得られた焼成体に対して、 実施例 1 と同様に誘電特性及ぴ抗折強度を測定す るとともに、 X線回折測定を行った。 結果を表 3に示す。 またアルミナのデー タも表 3に併せて示す。 表 3
Figure imgf000018_0001
*は本発明の範囲外の試料を示す, (2) I101バ Ι10ι + 1隱) x 100。
(3) HS: 六方晶 SrAl2Si2O8
MS: 単斜晶 SrAl2Si2O8,
A: AI2O3結晶,
N: (Na, K)Si3A108結晶。 本実施例では、 Bi及ぴ Naの添加量を減らすことで、 実施例 2の場合と比較 し若干 SrAl2Si208結晶の析出温度が上昇した。 し力、し、 875°C〜925°Cの温度 で六方晶 SrAl2Si208が析出しており、かつ六方晶 SrAl2Si208の析出温度の範囲 が広がっていることが分かった。 このように、 低温焼成セラミック組成物の組 成により、 六方晶 SrAl2Si208の析出温度及びその範囲を制御できる。 また試料 No. 19では Na及ぴ Kを含有するケィ酸塩結晶が析出しており、 高い抗折強度 と高レ、誘電特性が同時に得られた。 実施例 4
本発明の高強度低温焼成セラミック組成物を用いた積層電子部品の一例とし て、 携帯電話の高周波回路部に用いるダイオードスィッチ (アンテナ側回路、 受信側回路及び送信側回路の接続を切り替える) を以下の通り作製した。
まず、 実施例 2と同様にして、 質量基準で 49%の Α12Ο3, 34%の Si02, 8.2% の SrO, 3%の Ti02, 2.5%の Bi203, 2%の Na2O, 0.5%の 0, 0.3%の CuO,及 ぴ 0.5%の Mn02からなる仮焼粉を作製した。
この仮焼粉をエタノール及ぴプタノールの混合溶媒に分散させて、 ポールミ ルで平均粒径 1.0 μΐϊίまで粉砕した。 得られたスラリ一に、 パインダ一としてポ リビュルプチラール及び可塑剤としてプチルフタリルプチルグリコレートを、 仮焼粉 100質量%に対してそれぞれ 15質量%及び 7.5質量%の割合で分散させ、 シート成形用のスラリーとした。 減圧下で脱泡及び溶媒の部分的な蒸発を行つ てこのスラリーの粘度を約 10000 MPa 'sにした後、 ドクターブレードでシ一ト 成形し、約 80 μπιの乾燥厚さを有する長尺のセラミックグリーンシートを得た。 後工程のハンドリングのため、 このセラミックグリーンシートを所定の大きさ に裁断した。
複数枚のセラミックグリーンシートの表面に銀ペーストで伝送線路 (ィンダ クタンス素子) を構成する配線パターン Ll-1, Ll-2, L2-1, L2'2、 ダランド電極 パターン GND、及ぴスィツチング素子を実装するための電極パターンを印刷し た (図 9参照)。
セラミックグリーンシートには、 各層間の配線パターンの接続手段として銀 ペーストを充填したビアホールが形成されている。 導電パターンを印刷した各 セラミックグリーンシートを位置合わせし、 高精度に積層した後圧着した。 圧 着条件は、 14 MPaの圧力、 85°Cの温度、 及ぴ 10分の保持時間であった。
得られた積層体をチップサイズに切断した後、 焼成セッターに載置し、 連続 炉で脱パインダー及ぴ焼成を行い、 4.5 mm X 3.2 mm X 1.0 mmの焼成体を得た。 焼成は大気雰囲気中 875°Cで 2時間保持することにより行つた。
焼成体のセラミック部分を粉砕して X線回折の測定をしたところ、 組織中に 六方晶 SrAl2Si2O8、 単斜晶 SrAl2Si208、 A1203結晶、 TiO2結晶、 及ぴケィ酸塩 系結晶が確認された。 SrAl2Si208結晶全体に対する六方晶 SrAl2Si208のピーク 強度比は 15.5%であった。
焼成体から内部の配線パターンが露出している側面部分に、 Agを主成分とす る外部電極用ペーストを塗布して 800°Cで焼き付けた後、 銀表面にニッケル及 ぴスズを電解めつきし、端子電極 GND, TX, RX, VC1, VC2とした。 これらの端 子電極のうち端子電極 GND, TX, RX, VC1はスィッチング素子を実装するため の電極パターンと電気的に接続させた。
このようにして得られた積層回路基板の実装電極パターンに、 スィツチング 素子としてダイォード Dl, D2を実装し、 図 10に示す積層電子部品 1を作製し た。 積層電子部品 1は図 11に示す等価回路の破線部を構成する。
本実施例では、 インダクタンス素子を電極パターンで構成したが、 チップィ ンダクタやコイル等を実装しても良い。 また直流成分を遮断するコンデンサ素 子を、 電極パターンで回路基板に構成したり、 チップコンデンサとして回路基 板上に実装したりしても良い。 ダイオードスィッチにローパスフィルタやバン ドパスフィルタ等のフィルタ素子が接続されることが多レ、が、 上記フィルタ素 子を SAWフィルタで構成し、 これを回路基板に実装しても良い。 またインダク タンス素子及びキャパシタンス素子からなるフィルタ素子を、 回路基板上に電 極パターンで形成したり、 チップ部品として回路基板上に実装しても良い。 端子電極 VC1, VC2に直流電源を接続し、 ダイォード Dl, D2を ON, OFFさ せて、端子電極 ANT-RX間、及び端子電極 ΑΝΤ·ΤΧ間に高周波信号を通過させ たところ、 信号の伝送損失 (挿入損失) が少なく、 積層電子部品 1は優れた電 気的特性を有することが確認された。
積層回路基板の端子電極を試験用プリント基板にはんだ付けし、 プリント基 板を撓ませたり捻じったりして、 端子の剥離や積層回路基板のクラック発生に 対する抵抗力を評価したところ、 従来のものと比べて著しく向上していること が分かった。
本実施例から、本発明の低温焼成セラミック組成物と Ag等の低融点金属は同 時焼成が可能であるので、 本発明の低温焼成セラミック組成物からなる誘電体 層に低融点金属の導体パターンを形成すれば、 電気的特性及び機械的強度に優 れた積層電子部品が得られることが分かる。 産業上の利用可能性
本発明の低温焼成セラミック組成物は、 組織中に六方晶 SrAl2Si208を有する ので、 高強度で実用的な誘電特性を有し、 かつ 1000°C以下の低温での焼成が可 能である。 そのため、 銀、 金、 銅等の低融点電極材料との同時焼成が可能であ る。 また本発明の高強度低温焼成セラミック組成物は、 誘電率、 fQ等の誘電特 性に優れているのみならず、 従来より向上した機械的強度を有するので、 積層 回路基板とするときに低融点金属との同時焼成が可能であり、 またクラックや 破損が生じにくい。 そのため、 本発明の高強度低温焼成セラミック組成物を用 いた積層電子部品は、 優れた電気的特性及び機械的強度を有する。

Claims

請求の範囲
1. 組織中に六方晶 SrAl2Si208及び A1203結晶を有することを特徴とする 高強度低温焼成セラミック組成物。
2. Al2O3-SiO2-SrOを主体とする基地に六方晶 SrAl2Si208を含み、 前記基 地に Α12Ο3結晶粒を有することを特徴とする高強度低温焼成セラミック組成物。
3. 請求項 2に記載の高強度低温焼成セラミック組成物において、前記基地 がアモルファス相であり、 前記アモルファス相に六方晶 SrAl2Si208が析出して いることを特徴とする高強度低温焼成セラミック組成物。
4. 請求項 2に記載の高強度低温焼成セラミック組成物にぉレ、て、前記基地 が実質的に SrAl2Si208結晶からなり、 その少なくとも一部が六方晶 SrAl2Si2O8 であることを特徴とする高強度低温焼成セラミック組成物。
5. 請求項 2〜4のいずれかに記載の高強度低温焼成セラミック組成物にお いて、 前記基地が単斜晶 SrAl2Si208を含有することを特徴とする高強度低温焼 成セラミック組成物。
6 . 組織中に SrAl2Si208結晶及び Α12Ο3結晶を有し、 前記 SrAl2Si208結晶 は六方晶 SrAl2Si208単独又は六方晶 SrAl2Si2O8及ぴ単斜晶 SrAl2Si208からな り、 Cu-Κα線による X線回折測定において、 六方晶 SrAl2Si208の (101) 面の ピーク強度を Ιιοι、 単斜晶 SrAl2Si208の (002) 面のピーク強度を 1002としたと き、 Ιιοι I (Ιιοι + Ioo2) x 100で表わされるピーク強度比が 5%以上であることを 特徴とする高強度低温焼成セラミック組成物。
7. 請求項 6に記載の高強度低温焼成セラミック組成物において、前記ピー ク強度比が 50%以上であることを特徴とする高強度低温焼成セラミック組成物。
8. 請求項 6又は 7に記載の高強度低温焼成セラミック組成物において、実 質的に SrAl2Si208結晶からなる基地を有するとともに、 前記基地に A1203結晶 粒を有する組織を有し、前記 SrAl2Si208結晶は六方晶 SrAl2Si208単独又は六方 晶 SrAl2Si2O8及ぴ単斜晶 SrAl2Si2O8からなり、 前記 SrAl2Si208結晶における 前記六方晶 SrAl2Si208の割合は 60%以上であり、 かつ 400 MPa以上の抗折強 度を有することを特徴とする高強度低温焼成セラミック組成物。
9. 請求項 1〜8のいずれかに記載の高強度低温焼成セラミック組成物にお いて、前記 A1203結晶粒の平均結晶粒径が 1 μ m以下であることを特徴とする高 強度低温焼成セラミック組成物。
10. 請求項 1〜9のいずれかに記載の高強度低温焼成セラミック組成物にお いて、 ( ) 10〜60質量% (Α12Ο3換算) の A1, 25〜60質量。/。 (Si02換算) の Si 及び 7.5〜50質量% (SrO換算) の Srからなる主成分 100質量%と、 (b) 0.1 〜: L0質量0 /0 (Bi203換算) の Bi, 0.1〜5質量0 /0 (Na20換算) の Na, 0.1〜5質 量% (K20換算) の Κ及ぴ 0.1〜5質量% (CoO換算) の Coからなる群から選 ばれた少なくとも 1種と、 0.01〜5質量% (CuO換算) の Cu、 0.01〜5質量% (Mn02換算) の Mn、 0.01〜5質量%の Ag及ぴ 0.01〜2質量% (Zr02換算) の Zrからなる群から選ばれた少なくとも 1種とからなる副成分と、 (c)不可避 的不純物とを含有することを特徴とする高強度低温焼成セラミック組成物。
11. 請求項 1〜9のいずれかに記載の高強度低温焼成セラミック組成物にお いて、 (a) 10〜60質量% (A1203換算) の A1, 25〜60質量0/。 (Si02換算) の Si, 7.5〜50質量% (SrO換算) の Sr及ぴ 20質量%以下 (Ti02換算) の iか らなる主成分 100質量。 /0と、 (b) 0.1-10質量% (Bi203換算) の Bi, 0.1-5質 量% (Na20換算) の Na, 0.1-5質量。/。 (K20換算) の Κ及び 0.1〜5質量% (CoO換算) の Coからなる群から選ばれた少なくとも 1種と、 0.01〜5質量% (CuO換算) の Cu、 0.01〜5質量0 /0 (Mn02換算) の Mn、 0.01-5質量%の Ag及び 0.01〜2質量% (Zr02換算) の ¾·からなる群から選ばれた少なくとも 1種とからなる副成分と、 (c) 不可避的不純物とを含有することを特徴とする高 強度低温焼成セラミック組成物。
12. 請求項 1〜9のいずれかに記載の高強度低温焼成セラミック組成物にお いて、 10〜60質量% (A1203換算) の A1, 25〜60質量0/。 (Si02換算) の Si, 7.5〜50質量% (SrO換算) の Sr、 及ぴ不可避的不純物とを含有することを特 徴とする高強度低温焼成セラミック組成物。
13. アルミニウム酸化物, 珪素酸化物及ぴストロンチウム酸化物、 又はアル ミニゥム酸化物, 珪素酸化物, ストロンチウム酸化物及ぴチタン酸化物を主原 料とするセラミック成形体を焼成することにより請求項 1〜: 12のいずれかに記 載の高強度低温焼成セラミック組成物を製造する方法であって、 セラミック組 織中に形成される SrAl2Si208結晶のうち、 六方晶 SrAl2Si2〇8の比率が 5%以上 となる温度及び時間で焼成することを特徴とする方法。
14. 請求項 1〜: 12 のいずれかに記載の高強度低温焼成セラミック組成物か らなる複数の誘電体層を積層してなり、 前記誘電体層の各々に低融点金属から なる導体パターンが形成されていることを特徴とする積層電子部品。
15. 請求項 14に記載の積層電子部品において、 前記低融点金属が銀、 銅、 金又はこれらの合金であることを特徴とする積層電子部品
16. 請求項 14又は 15に記載の積層電子部品において、前記導体パターンが インダクタンス素子及びノ又はキャパシタンス素子を構成していることを特徴 とする積層電子部品。
17. 請求項 14〜16のいずれかに記載の積層電子部品において、 前記積層電 子部品にインダクタンス素子、 キャパシタンス素子、 スイッチング素子及ぴフ ィルタ素子からなる群から選ばれた少なくとも 1つを実装してなることを特徴 とする積層電子部品。
PCT/JP2003/015664 2002-12-06 2003-12-08 高強度低温焼成セラミック組成物及びその製造方法、並びにこれを用いた積層電子部品 WO2004052804A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03777345.4A EP1568668B1 (en) 2002-12-06 2003-12-08 Ceramic composition being fired at low temperature and having high strength and method for preparing the same, and laminated electronic parts using the same
US10/537,461 US7285507B2 (en) 2002-12-06 2003-12-08 Ceramic composition being fired at low temperature and having high strength and method for preparing the same, and laminated electronic parts using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-354955 2002-12-06
JP2002354955 2002-12-06

Publications (1)

Publication Number Publication Date
WO2004052804A1 true WO2004052804A1 (ja) 2004-06-24

Family

ID=32500772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015664 WO2004052804A1 (ja) 2002-12-06 2003-12-08 高強度低温焼成セラミック組成物及びその製造方法、並びにこれを用いた積層電子部品

Country Status (4)

Country Link
US (1) US7285507B2 (ja)
EP (1) EP1568668B1 (ja)
CN (1) CN100475738C (ja)
WO (1) WO2004052804A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124047B2 (en) * 2006-12-22 2012-02-28 Ngk Insulators, Ltd. Method for manufacturing (Li, Na, K)(Nb, Ta)O3 type piezoelectric material
US7867932B2 (en) * 2007-08-28 2011-01-11 Corning Incorporated Refractory glass ceramics
US8247337B2 (en) * 2007-11-28 2012-08-21 Kyocera Corporation Alumina sintered article
CN102365249B (zh) 2009-03-26 2014-06-04 日立金属株式会社 介电陶瓷组合物、多层介电基板、电子部件和介电陶瓷组合物的制备方法
CN101656335B (zh) * 2009-09-22 2013-01-30 南京国博电子有限公司 非对称式的超大功率射频开关模块及其制备方法
US9050456B2 (en) * 2011-07-21 2015-06-09 Biotronik Se & Co. Kg Unipolar multipurpose electrode line and stimulation and defibrillation assembly
FR2983473A1 (fr) * 2011-12-01 2013-06-07 Centre Nat Rech Scient Verres, vitroceramiques et ceramiques d'aluminates transparents
KR101931108B1 (ko) * 2014-07-09 2018-12-20 페로 코포레이션 미드-k ltcc 조성물 및 디바이스
US10696596B2 (en) 2015-12-28 2020-06-30 Hitachi Metals, Ltd. Method for producing dielectric ceramic, and dielectric ceramic
JP6728859B2 (ja) * 2016-03-25 2020-07-22 日立金属株式会社 セラミック基板およびその製造方法
CN116924774A (zh) * 2022-04-02 2023-10-24 中国科学院上海硅酸盐研究所 一种高强度低介复合微波介质陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199541A (ja) * 1993-01-05 1994-07-19 Matsushita Electric Ind Co Ltd ガラスセラミックス組成物
JP2000272960A (ja) * 1999-01-20 2000-10-03 Hitachi Metals Ltd マイクロ波用誘電体磁器組成物およびその製造方法ならびにマイクロ波用誘電体磁器組成物を用いたマイクロ波用電子部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297569B2 (ja) * 1995-10-30 2002-07-02 京セラ株式会社 低温焼成磁器組成物
JP3761289B2 (ja) * 1996-09-26 2006-03-29 日本特殊陶業株式会社 誘電体材料及びその製造方法並びにそれを用いた回路基板及び多層回路基板
US6201307B1 (en) * 1998-06-23 2001-03-13 Kyocera Corporation Ceramics for wiring boards and method of producing the same
JP4748435B2 (ja) * 2001-08-21 2011-08-17 日本電気硝子株式会社 積層ガラスセラミック材料及び積層ガラスセラミック焼結体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199541A (ja) * 1993-01-05 1994-07-19 Matsushita Electric Ind Co Ltd ガラスセラミックス組成物
JP2000272960A (ja) * 1999-01-20 2000-10-03 Hitachi Metals Ltd マイクロ波用誘電体磁器組成物およびその製造方法ならびにマイクロ波用誘電体磁器組成物を用いたマイクロ波用電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1568668A4 *

Also Published As

Publication number Publication date
EP1568668A1 (en) 2005-08-31
CN1720205A (zh) 2006-01-11
CN100475738C (zh) 2009-04-08
US20060100087A1 (en) 2006-05-11
EP1568668A4 (en) 2008-12-10
EP1568668B1 (en) 2013-04-24
US7285507B2 (en) 2007-10-23

Similar Documents

Publication Publication Date Title
KR100744621B1 (ko) 절연체 세라믹 조성물, 절연성 세라믹 소결체 및 적층형세라믹 전자부품
JP5343853B2 (ja) ガラスセラミック組成物、ガラスセラミック焼結体および積層型セラミック電子部品
JP5076907B2 (ja) フォルステライト粉末の製造方法、フォルステライト粉末、フォルステライト焼結体、絶縁体セラミック組成物、および積層セラミック電子部品
JP5056528B2 (ja) 絶縁体セラミック組成物およびそれを用いた絶縁体セラミック
KR100814674B1 (ko) 유전체 자기 조성물 및 그 제조방법
JP5013239B2 (ja) 高強度低温焼成セラミック組成物並びにこれを用いた積層電子部品
JP2002029834A (ja) 絶縁体磁器、セラミック多層基板、セラミック電子部品及び積層セラミック電子部品
WO2004052804A1 (ja) 高強度低温焼成セラミック組成物及びその製造方法、並びにこれを用いた積層電子部品
JP4482939B2 (ja) 誘電体磁器組成物、誘電体磁器およびこれを用いた積層セラミック部品
US8652982B2 (en) Ceramic sintered body and method for producing ceramic sintered body
JP4688016B2 (ja) 高強度低温焼成セラミック組成物及びこれを用いた積層電子部品
JP2007084353A (ja) セラミック焼結助剤組成物、セラミック焼結助剤、低温焼成セラミック組成物、低温焼成セラミック、およびセラミック電子部品
KR100373943B1 (ko) 자성 유전체 세라믹 복합재료 및 그 제조방법과 사용법 및 다기능성 소자
WO2005073146A1 (ja) セラミック基板用組成物、セラミック基板、セラミック基板の製造方法およびガラス組成物
US7205254B2 (en) Dielectric ceramic composition and multilayer ceramic part
EP1509931B1 (en) Dielectric composition on the basis of barium titanate
KR100981072B1 (ko) 세라믹스 자기의 제조 방법, 세라믹스 자기 및 전자부품
JP4629525B2 (ja) 積層セラミック部品及びその製造方法
US6346161B1 (en) Laminated electronic part, method for the production thereof, and dielectric ceramic composition
JP4704836B2 (ja) 低温焼成磁器組成物及びその製造方法並びにこれを用いた電子部品
JP2005217170A (ja) 複合積層セラミック電子部品
JP3706489B2 (ja) 誘電体磁器およびその製法
JP5288296B2 (ja) 高強度低温焼成セラミックと高強度低温焼成セラミック基板の製造方法
JPH11100262A (ja) 誘電体磁器組成物および積層体
KR100373694B1 (ko) 유전체 세라믹 조성물

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006100087

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038A50633

Country of ref document: CN

Ref document number: 10537461

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003777345

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003777345

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10537461

Country of ref document: US