WO2004052776A1 - Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff - Google Patents

Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff Download PDF

Info

Publication number
WO2004052776A1
WO2004052776A1 PCT/EP2003/014073 EP0314073W WO2004052776A1 WO 2004052776 A1 WO2004052776 A1 WO 2004052776A1 EP 0314073 W EP0314073 W EP 0314073W WO 2004052776 A1 WO2004052776 A1 WO 2004052776A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
contact tubes
contact
tubes
carried out
Prior art date
Application number
PCT/EP2003/014073
Other languages
English (en)
French (fr)
Inventor
Gerhard Olbert
Christian Walsdorff
Klaus Harth
Eckhard Ströfer
Martin Fiene
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to MXPA05005939A priority Critical patent/MXPA05005939A/es
Priority to DE50304309T priority patent/DE50304309D1/de
Priority to EP03789224A priority patent/EP1572582B1/de
Priority to JP2004558069A priority patent/JP4330536B2/ja
Priority to AU2003293840A priority patent/AU2003293840A1/en
Publication of WO2004052776A1 publication Critical patent/WO2004052776A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/0023Plates; Jackets; Cylinders with some catalyst tubes being empty, e.g. dummy tubes or flow-adjusting rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00238Adjusting the heat-exchange profile by adapting catalyst tubes or the distribution thereof, e.g. by using inserts in some of the tubes or adding external fins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the invention relates to a process for the production of chlorine by gas phase oxidation of hydrogen chloride in the presence of a fixed bed catalyst.
  • catalysts with the highest possible activity, which allow the reaction to proceed at a lower temperature.
  • Such catalysts are in particular catalysts based on ruthenium, for example the supported catalysts described in DE-A 197 48 299 with the active composition ruthenium oxide or ruthenium mixed oxide, the content of ruthenium oxide being 0.1 to 20% by weight and the average particle diameter of Ruthenium oxide is 1.0 to 10.0 nm.
  • ruthenium chloride catalysts which contain at least one of the compounds titanium oxide and zirconium oxide, ruthenium-carbonyl complexes, ruthenium salts of inorganic acids, ruthenium-nitrosyl complexes, ruthenium-amine complexes, ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes.
  • a known technical problem in gas phase oxidations in the present case the oxidation of hydrogen chloride to chlorine, is the formation of hot spots, that is to say of local overheating, which can lead to the destruction of the catalyst and catalyst tube material.
  • a similar result is to be achieved by deliberately diluting the catalyst bed with inert material.
  • the object of the invention was to avoid the corrosion problems on the contact tubes in the deflection area and to enable a method with a higher cross-sectional load and thus a higher reactor capacity.
  • the solution is based on a process for the production of chlorine by gas phase oxidation of hydrogen chloride with a gas stream containing molecular oxygen in the presence of a fixed bed catalyst.
  • the invention is characterized in that the process is carried out in a reactor with a bundle of contact tubes arranged parallel to one another and in the longitudinal direction of the reactor and fastened at their ends in tube plates, with a hood at each end of the reactor and with one or more , baffles arranged perpendicular to the longitudinal direction of the reactor in the space between the contact tubes, which alternately leave opposite passage openings on the inner wall of the reactor, the contact tubes being filled with the fixed bed catalyst, the hydrogen chloride and the molecular oxygen-containing gas stream from one end of the reactor through a hood the contact tubes are passed and the gaseous reaction mixture is drawn off from the opposite end of the reactor via the second hood and a liquid heat exchange medium is passed through the space around the contact tubes.
  • the method is carried out in a tube bundle reactor with deflection plates installed between the contact tubes.
  • the heat exchange medium flows in the region of the openings, ie in the baffles, largely in the longitudinal direction of the contact tubes.
  • the contact tubes located in these deflection areas are cooled less well, with the result that corrosion problems can occur.
  • the method according to the invention is carried out in a tube bundle reactor which is untubed in the area of the passage openings.
  • the heat transfer coefficient for all catalyst tubes over the reactor cross-section is similar; the scatter of the heat transfer coefficient on the heat exchanger side over the reactor cross-section is a maximum of ⁇ 20%.
  • the term passage opening denotes the area between the free end of a deflection plate and the inner wall of the reactor.
  • a molten salt in particular the eutectic molten salt of potassium nitrate and sodium nitrite, can be used particularly advantageously as the liquid heat exchange medium.
  • catalysts based on gold described in DE 102 44 996.1 containing 0.001 to 30% by weight of gold, 0 to 3% by weight of one or more alkaline earth metals, 0 to 3% by weight of one on a support or more alkali metals, 0 to 10% by weight of one or more rare earth metals and 0 to 10% by weight of one or more other metals selected from the group consisting of ruthenium; Palladium, platinum, osmium, iridium, silver, copper and rhenium, each based on the total weight of the catalyst.
  • the process according to the invention is also fundamentally not restricted with regard to the source of the starting material hydrogen chloride.
  • a hydrogen chloride stream can be used as the starting material, which is obtained as a by-product in a process for producing isocyanates, which is described in DE 102 35 476.6, the disclosure content of which is hereby fully incorporated into the present patent application.
  • the geometry of the reactor for the process according to the invention is basically not restricted. It is preferably cylindrical, but shapes with, for example, a square or rectangular cross section are also possible.
  • a bundle, that is to say a multiplicity of contact tubes, is arranged in parallel in the longitudinal direction of the reactor in the reactor.
  • the number of contact tubes is preferably in the range from 100 to 20,000, in particular from 5,000 to 15,000.
  • Each contact tube preferably has a wall thickness in the range from 1.5 to 5 mm, in particular from 2.0 to 3.0 mm, and an inner tube diameter in the range from 10 to 70 mm, preferably in the range from 15 to 30 mm.
  • the contact tubes preferably have a length in the range from 1 to 10 m, in particular from 1.5 to 8.0 m, particularly preferably from 2.0 to 7.0 m.
  • the contact tubes are preferably arranged in the reactor interior such that the division ratio, that is to say the ratio between the distance between the centers of immediately adjacent contact tubes and the outside diameter of the contact tubes, is in the range from 1.15 to 1.6, preferably in the range from 1.2 to 1.4 and that the contact tubes are arranged in a triangular division in the reactor.
  • the division ratio that is to say the ratio between the distance between the centers of immediately adjacent contact tubes and the outside diameter of the contact tubes
  • the contact tubes are preferably made of pure nickel or a nickel-based alloy.
  • all other components of the reactor which come into contact with the highly corrosive reaction gas mixture are preferably formed from pure nickel or a nickel-based alloy or plated with nickel or a nickel-based alloy.
  • Inconel 600 or Inconel 625 are preferably used as nickel-based alloys.
  • the alloys mentioned have the advantage of increased temperature resistance compared to pure nickel.
  • Inconel 600 contains around 80% nickel and around 15% chromium and iron.
  • Iconel 625 mainly contains nickel, 21% chromium, 9% molybdenum and a few% niobium.
  • the contact tubes are fastened at both ends in tube sheets in a liquid-tight manner, preferably welded.
  • the tube sheets are preferably made of carbon steel from the heat-resistant series, stainless steel, e.g. stainless steel with material numbers 1.4571 or 1.4541 or duplex steel (material number 1.4462) and are preferably on the side with which the reaction gas comes into contact with pure nickel or a nickel-based alloy plated.
  • the contact tubes are only welded to the tube sheets at the cladding.
  • the contact tubes can preferably also be rolled in the tube sheets.
  • any procedural possibility for applying the plating can be used, for example roll plating, explosive plating, cladding or strip plating.
  • the inside diameter of the reactor if it is a cylindrical apparatus, is 0.5 to 5 m, preferably 1.0 to 3.0 m.
  • Both ends of the reactor are bounded by hoods.
  • the reaction mixture is fed to the catalyst tubes through a hood, and the product stream is drawn off through the hood at the other end of the reactor.
  • Gas distributors are preferably arranged in the hoods to even out the gas flow, for example in the form of a plate, in particular a perforated plate.
  • a particularly effective gas distributor is designed in the form of a perforated truncated cone tapering in the direction of the gas flow, the perforations of which on the side surfaces have a larger opening ratio, of approximately 10 to 20%, compared to the perforations in the smaller base area projecting into the reactor interior about 2 to 10%.
  • hoods and gas distributors are components of the reactor which come into contact with the highly corrosive reaction gas mixture, the above applies with regard to the choice of material, that is to say the components are made from or plated with pure nickel or a nickel-based alloy.
  • one or more baffle plates are arranged perpendicular to the longitudinal direction of the reactor, which alternately leave open passage openings on the inner wall of the reactor.
  • the baffles deflect the inside of the reactor, in the space between the contact tubes. circulating heat exchange medium, such that the contact tubes are flowed across by the heat exchange medium, whereby the heat dissipation is improved.
  • the baffles In order to achieve this advantageous cross-flow of the contact tubes, the baffles must alternately leave openings for the heat exchange medium on the opposite sides of the inner wall of the reactor.
  • baffle plates is preferably approximately 6 to 15. They are preferably arranged equidistant from one another, but the bottom and top baffle plates are particularly preferably further away from the tube sheet than the distance between two successive baffle plates, preferably by about 1.5 times.
  • the shape of the released openings is arbitrary.
  • they are preferably in the form of a segment of a circle.
  • All deflection plates preferably leave the same passage openings free.
  • the area of each passage opening is preferably 5 to 30%, in particular 8 to 14%, of the reactor cross section.
  • the baffle plates are preferably arranged in a non-sealing manner around the contact tubes and allow a leakage flow of up to 30% by volume of the total flow of the heat exchange medium.
  • gaps in the range from 0.1 to 0.4 mm, preferably from 0.15 to 0.30 mm, are permitted between the contact tubes and deflection plates.
  • baffle plates liquid-tight with the exception of the areas of the passage openings towards the inner wall of the reactor, so that no additional leakage current occurs there.
  • Dummy tubes in particular solid material tubes, preferably with the same outer diameter as the contact tubes, or other connections are also suitable for the same purpose. Displacement.
  • the dummy tubes or other VerdrDeutschungskö er are preferably not welded into the tube sheets, but only stapled in the baffles.
  • the baffle plates can preferably be made from the same material as the tube sheets, i.e. from carbon steel of the heat-resistant series, stainless steel with material numbers 1.4571 or 1.4541 or from duplex steel (material number 1.4462), preferably in a thickness of 6 to 30 mm, preferably from 10 to 20 mm, be formed.
  • the catalyst tubes are filled with a solid catalyst.
  • the catalyst bed in the catalyst tubes preferably has a gap volume of 0.15 to 0.55, in particular of 0.20 to 0.45.
  • the area of the contact tubes facing the supply of the gaseous reaction mixture is particularly preferably filled with an inert material to a length of 5 to 20%, preferably to a length of 5 to 10%, of the total tube length of the contact tubes.
  • one or more compensators attached in a ring to the reactor jacket are advantageously provided in the reactor jacket.
  • the heat exchange medium is preferably fed into and out of the space between the contact tubes via connecting pieces or partial ring channels on the reactor jacket which have openings to the reactor interior, preferably with a circular or rectangular cross section and with an opening ratio in the range from 5 to 50%, preferably from 15 to 30%.
  • the heat exchange medium is preferably passed via a pump via an external cooler, the pump and cooler being arranged parallel to the longitudinal direction of the reactor on the reactor outer jacket.
  • a control valve over the external cooler.
  • the process is fundamentally not restricted with regard to the flow guidance for the reaction gas mixture as well as for the heat exchange medium, that is to say both can be passed through the reactor from top to bottom or from bottom to top. Any combination of the flow of reaction gas mixture and heat exchange medium is possible. It is preferred to design the reactor symmetrically with respect to a cross-sectional plane in the middle of the reactor. According to this preferred embodiment, an upright reactor thus has an identical lower and upper part. This is also understood to mean that all connections and the reactor claws which serve to support the reactor are designed symmetrically. Depending on the progress of the reaction, the catalyst is consumed differently as a result of the migration of the hot spot zone. Similarly, the contact tubes are subjected to different loads in different areas, with the greatest stress in the area of the hot spot zone.
  • the temperature profile in the course of the reaction can be dealt with particularly well by carrying out the process in a reactor which has two or more reaction zones. It is equally possible to carry out the process in two or more separate reactors instead of a single reactor with two or more reaction zones.
  • the contact tubes can preferably differ from one reactor to another in their inside diameter.
  • reactors in which reaction sections which are particularly at risk of hot spots run can be equipped with contact tubes with a smaller internal tube diameter in comparison to the other reactors. This ensures improved heat dissipation in these particularly vulnerable areas.
  • the separating plate is formed in a relatively large thickness, from approximately 15 to 60 mm, a fine gap between the contact tube and the separating plate, from approximately 0.1 to 0.25 mm, being permitted , This makes it possible in particular to simply replace the contact tubes if necessary.
  • the seal between the contact tubes and the separating plates can be improved by slightly rolling or hydraulically expanding the contact tubes.
  • the choice of material for the dividers is not critical.
  • the same material can be used as for the part of the tube sheets that supports the cladding, ie carbon steel of the heat-resistant series, stainless steel, for example stainless steel with the material numbers 1.4571 or 1.4541 or duplex steel (material number 1.4462).
  • Venting and drain holes are preferably provided for the heat exchange medium in the reactor jacket and / or in the tube sheets and / or in the separating plates, in particular at several, preferably at 2 to 4 points symmetrically distributed over the reactor cross section, the openings of which are directed outwards, preferably in the Open the outer wall of the reactor or the half-shells welded onto the tube sheets outside the reactor.
  • each reaction zone In the case of a reactor with two or more reaction zones, it is advantageous for each reaction zone to have at least one compensator to compensate for thermal stresses.
  • an intermediate feed of oxygen is advantageous, preferably via a perforated plate in the lower reactor hood, which ensures a more uniform distribution.
  • the perforated plate preferably has a degree of perforation of 0.5 to 5%. Since it is in direct contact with the highly corrosive reaction mixture, it is preferably made from nickel or a nickel-based alloy.
  • static mixers are preferably arranged between the individual reactors.
  • FIG. 1 shows a first preferred embodiment of a reactor for the inventive method in longitudinal section with cross-countercurrent flow of the reaction mixture and heat exchange medium, with
  • FIG. 2 shows a further preferred embodiment such as a reactor in longitudinal section, with cross-countercurrent flow of the reaction mixture and heat exchange medium, the reactor being unaffected in the area of the passage openings, with a cross-sectional illustration in FIG. 2A
  • FIG. 3 shows a further embodiment of a multi-zone reactor
  • FIG. 4 shows an embodiment with two reactors connected in series
  • FIG. 5 shows an embodiment with two compactly arranged reactors with static mixers between the reactors
  • FIG. 6 shows an embodiment with two reactors connected in series
  • FIG. 7 shows a further embodiment with two reactors
  • Figure 8 shows the representation of an embodiment of a reactor in longitudinal section
  • FIG. 9A shows an angled ventilation opening in the tube sheet
  • FIG. 9B a vent hole on the reactor jacket
  • Figure 10 shows a connection of the contact tubes with the cladding of the tube sheet
  • Figure 11 shows a connection between the contact tube and partition.
  • FIG. 1 shows a first embodiment of a reactor 1 for the process according to the invention in longitudinal section, with contact tubes 2 which are fastened in tube plates 3.
  • Both ends of the reactor are delimited by hoods 4.
  • the reaction mixture is fed to the contact tubes 2 through a hood, and the product stream is drawn off through the hood at the other end of the reactor 1.
  • Gas distributors are preferably arranged in the hoods to even out the gas flow, for example in the form of a plate 8, in particular a perforated plate.
  • Deflection plates 6 are arranged in the intermediate space between the contact tubes 2; six deflection plates 6 are shown by way of example in FIG. 1.
  • the baffles 6 alternately leave through openings 7 on the inside of the reactor free.
  • the reaction mixture is from top to bottom through the contact tubes and the heat exchange medium in cross-countercurrent, from bottom to top, through the space between the contact tubes 2.
  • FIG. 1A shows sheet metal strips 19 on the reactor inner jacket, to prevent a bypass flow.
  • the section in FIG. 1B clarifies the geometrical sizes of the center point distance (t) and outer diameter (d a ) of the contact tubes 2 required for calculating the division ratio.
  • FIG. IC shows the column 20 between contact tubes 2 and deflection plates 6.
  • Compensators 9 and claws 10 are provided on the outer reactor jacket.
  • the heat exchange medium is supplied or removed via connection piece 25 on the reactor jacket.
  • the further embodiment likewise shown in longitudinal section in FIG. 2, differs from the previous embodiment in particular in that the reactor interior in the area of the passage openings 7 for the heat exchange medium is not tubed.
  • FIG. 3 shows a multi-zone, for example three-zone, reactor, the individual reaction zones of which are separated from one another by separating plates 11.
  • FIG. 4 shows two reactors 1 arranged vertically one above the other, with a static mixer 13 in the connecting tube between the two reactors 1.
  • Perforated plates 12 are arranged in the lower hood of the upper reactor 1, in order to equalize the oxygen flow which is fed in between them.
  • FIG. 5 shows a further embodiment with two reactors 1 arranged compactly one above the other, the lower hood of the upper reactor 1 and the upper hood of the lower reactor 1 being dispensed with in order to save space.
  • an intermediate feed of oxygen O 2
  • a static mixer 13 is arranged in the area between the two reactors.
  • the embodiment in FIG. 6 shows two reactors 1 connected in series, with intermediate feeding of oxygen via a tube 15 perforated on its circumference, which opens into the connecting tube between the two reactors, and with static mixers 13 in the connecting tube between the two reactors.
  • the embodiment shown in FIG. 7 differs from the embodiment in FIG. 6 in that the reaction mixture flows through the first reactor from top to bottom and the second reactor from bottom to top.
  • FIG. 8 shows, by way of example, a reactor 1 in longitudinal section with a representation of the heat exchange medium circuit, via a pump 16, an external cooler 17 and a control valve 18.
  • FIG. 9A shows an angled vent hole 21 in the tube sheet 3, with a half-shell 22 over its vent hole 21.
  • FIG. 9B shows a further variant of a vent hole 21, here on the reactor jacket.
  • the section in FIG. 10 shows the connection of the contact tubes 2 with the cladding 23 of the tube sheet 3 in the form of a weld seam 24.
  • the section in FIG. 11 shows the narrowing of the gap 20 between a contact tube 2 and a separating plate 11 by rolling the contact tube onto the separating plate and an angled vent hole 21 in the separating plate 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Lasers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettkatalysators vorgeschlagen, das man in einem Reaktor (1) mit einem Bündel von parallel zueinander, in der Reaktorlängsrichtung angeordneten Kontaktrohren (2) durchführt, die an ihren Enden in Rohrböden (3) befestigt sind, mit je einer Haube (4) an beiden Enden des Reaktors (1), sowie mit einem oder mehreren, senkrecht zur Reaktorlängsrichtung im Zwischenraum (5) zwischen den Kontaktrohren (2) angeordneten Umlenkblechen (6), die alternierend einander gegenüberliegende Durchtrittsöffnungen (7) an der Innenwand des Reaktors (1) freilassen, wobei die Kontaktrohre (2) mit dem Festbettkatalysator befüllt sind, der Chlorwasserstoff sowie der molekularen Sauerstoff enthaltende Gasstrom von einem Reaktorende über eine Haube (4) durch die Kontaktrohre (2) geleitet und vom entgegengesetzten Reaktorende über die zweite Haube (4) abgezogen und durch den Zwischenraum (5) um die Kontaktrohre (2) ein flüssiges Wärmetauschmittel geleitet wird.

Description

Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
Die Erfindung betrifft ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Gegenwart eines Festbettkatalysators.
Das von Deacon 1868 entwickelte Nerfahren der katalytischen Chlorwasserstoffoxidation mit Sauerstoff in einer exothermen Gleichgewichtsreaktion steht am Anfang der technischen Chlorchemie. Durch die Chloralkalielektrolyse wurde das Deacon- Verfahren stark in den Hintergrund gedrängt, die nahezu gesamte Produktion von Chlor erfolgte durch Elektrolyse wässriger Kochsalzlösungen.
Die Attraktivität des Deacon- Verfahrens nimmt jedoch in jüngerer Zeit wieder zu, da der weltweite Chlorbedarf stärker als die Nachfrage nach Natronlauge wächst. Dieser Entwick- lung kommt das Verfahren zur Herstellung von Chlor durch Oxidation von Chlorwasserstoff entgegen, das von der Natronlaugeherstellung entkoppelt ist. Darüber hinaus fallt Chlorwasserstoff in großen Mengen beispielsweise bei Phosgenierungsreaktionen, etwa bei der Isocyanat-Herstellung, als Koppelprodukt an. Der bei der Isocyanat-Herstellung gebildete Chlorwasserstoff wird überwiegend in der Oxichlorierung von Ethylen zu 1,2- Dichlorethan eingesetzt, das zu Vinylchlorid und weiter zu PVC verarbeitet wird. Beispiele für weitere Verfahren, bei denen Chlorwasserstoff anfällt, sind die Vinylchlorid-Herstel- lung, die Polycarbonat-Herstellung oder das PVC-Recycling.
Die Oxidation von Chlorwasserstoff zu Chlor ist eine Gleichgewichtsreaktion. Die Lage des Gleichgewichts verschiebt sich mit zunehmender Temperatur zu Ungunsten des gewünschten Endproduktes. Es ist daher vorteilhaft, Katalysatoren mit möglichst hoher Aktivität einzusetzen, die die Reaktion bei niedrigerer Temperatur ablaufen lassen. Derartige Katalysatoren sind insbesondere Katalysatoren auf Basis von Ruthenium, beispielsweise die in DE-A 197 48 299 beschriebenen geträgerten Katalysatoren mit der Aktivmasse Ru- theniumoxid oder Rutheniummischoxid, wobei der Gehalt an Rutheniumoxid 0,1 bis 20 Gew.-% und der mittlere Teilchendurchmesser von Rutheniumoxid 1,0 bis 10,0 nm beträgt. Weitere geträgerte Katalysatoren auf Basis von Ruthenium sind aus DE-A 197 34 412 bekannt: Rutheniumchloridkatalysatoren, die mindestens eine der Verbindungen Titanoxid und Zirkoniumoxid enthalten, Ruthenium-Carbonyl-Komplexe, Rutheniumsalze anorganischer Säuren, Ruthenium-Nitrosyl-Komplexe, Ruthenium-Amin-Komplexe, Rutheniumkomplexe organischer Amine oder Ruthenium-Acetylacetonat-Komplexe.
Ein bekanntes technisches Problem bei Gasphasenoxidationen, vorliegend der Oxidation von Chlorwasserstoff zu Chlor, ist die Bildung von Hot-Spots, das heißt von lokalen Überhitzungen, die zur Zerstörung des Katalysator- und Kontaktrohrmaterials führen können. Um die Bildung von Hot-Spots zu reduzieren bzw. zu verhindern, wurde daher in WO 01/60743 vorgeschlagen, Katalysatorfüllungen einzusetzen, die in unterschiedlichen Bereichen der Kontaktrohre jeweils unterschiedliche Aktivität aufweisen, das heißt Katalysatoren mit an das Temperaturprofil der Reaktion angepasster Aktivität. Ein ähnliches Ergebnis soll durch gezielte Verdünnung der Katalysatorschüttung mit Inertmaterial erreicht werden.
Nachteilig an diesen Lösungen ist, dass zwei oder mehrere Katalysatorsysteme entwickelt und in den Kontaktrohren eingesetzt werden müssen bzw. dass durch Einsatz von Inertmaterial die Reaktorkapazität beeinträchtigt wird.
Demgegenüber war es Aufgabe der Erfindung, ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbett-Katalysators in großtechnischem Maßstab zur Verfügung zu stellen, das eine effektive Wärmeabführung gewährleistet und trotz des hochkorrosiven Reaktionsgemisches eine ausreichende Standzeit aufweist. Darüber hinaus soll die Hot-Spot-Problematik ohne bzw. mit einer geringeren Abstufung der Katalysatoraktivität bzw. ohne Verdünnung des Katalysators gemindert oder vermieden werden.
In einer Ausgestaltung war es Aufgabe der Erfindung, die Korrosionsprobleme an den Kontaktrohren im Umlenkbereich zu vermeiden und ein Verfahren mit höherer Quer- schnittsbelastung und somit höherer Reaktorkapazität zu ermöglichen.
Die Lösung geht aus von einem Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettkatalysators. Die Erfindung ist dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor mit einem Bündel von parallel zueinander, in Reaktorlängsrichtung angeordneten Kontaktrohren durchführt, die an ihren Enden in Rohrböden befestigt sind, mit je einer Haube an beiden Enden des Reaktors, sowie mit einem oder mehreren, senkrecht zur Reaktorlängs- richtung im Zwischenraum zwischen den Kontaktrohren angeordneten Umlenkblechen, die alternierend einander gegenüberliegende Durchtrittsoffnungen an der Innenwand des Reaktors freilassen, wobei die Kontaktrohre mit dem Festbettkatalysator befüllt sind, der Chlorwasserstoff sowie der molekularen Sauerstoff enthaltende Gasstrom von einem Reaktorende über eine Haube durch die Kontaktrohre geleitet und das gasförmige Reaktions- gemisch vom entgegengesetzten Reaktorende über die zweite Haube abgezogen und durch den Zwischenraum um die Kontaktrohre ein flüssiges Wärmetauschmittel geleitet wird.
Erfindungsgemäß wird das Verfahren in einem Rohrbündelreaktor durchgeführt, mit zwischen den Kontaktrohren eingebauten Umlenkblechen. Dadurch wird eine überwiegende Queranströmung der Kontaktrohre durch das Wärmetauschmittel und bei gleichem Wärmetauschmittelstrom eine Erhöhung der Strömungsgeschwindigkeit des Wärmetauschmittels bewirkt und somit eine bessere Abführung der Reaktionswärme über das zwischen den Kontaktrohren zirkulierende Wärmetauschmittel.
Im voUberohrten Reaktor mit Umlenkblechen, die Durchtrittsoffnungen an der Innenwand des Reaktors freilassen, strömt jedoch das Wärmetauschmittel im Bereich der Durchtrittsoffnungen, das heißt in den Umlenkbereichen, weitgehend in Längsrichtung der Kontaktrohre. Dadurch werden die Kontaktrohre, die sich in diesen Umlenkbereichen befinden, schlechter gekühlt, mit der Folge, dass Korrosionsprobleme auftreten können.
Daher wird in einer besonders vorteilhaften Ausgestaltung das erfindungsgemäße Verfahren in einem Rohrbündelreaktor durchgeführt, der im Bereich der Durchtrittsoffnungen unberohrt ist.
In dieser Ausgestaltung wird eine definierte, nahezu reine Queranströmung der Kontaktrohre durch das Wärmetauschmittel gewährleistet. In der Folge ist der Wärmeübergangskoeffizient für alle Kontaktrohre über den Reaktorquerschnitt ähnlich, die Streuung des wärmetauschmittelseitigen Wärmeübergangskoeffizienten über den Reaktorquerschnitt liegt bei maximal ± 20 %. Der Begriff Durchtrittsöffnung bezeichnet vorliegend den Bereich zwischen dem freien Ende eines Umlenkbleches und der Reaktorinnenwand.
Es wurde gefunden, dass durch die Freilassung des Reaktorinnenraums im Bereich der Durchtrittsoffnungen, das heißt, indem im Bereich der Durchtrittsoffnungen der Umlenkbleche keine Kontaktrohre angeordnet sind, die Kapazität eines Reaktors bei unverändertem Volumen des Innenraums und erhöhter Kühlmittelmenge um den Faktor 1,3 bis 2,0 gegenüber einem voUberohrten Reaktor erhöht werden kann, obwohl eine niedrigere Gesamtzahl von Kontaktrohren im Reaktor untergebracht ist.
Als flüssiges Wärmetauschmittel kann besonders vorteilhaft eine Salzschmelze, insbesondere die eutektische Salzschmelze von Kaliumnitrat und Natriumnitrit eingesetzt werden.
Für das erfindungsgemäße Verfahren können grundsätzlich alle bekannten Katalysatoren für die Oxidation von Chlorwasserstoff zu Chlor eingesetzt werden, beispielsweise die eingangs beschriebenen, aus DE-A 197 48 299 oder DE-A 197 34412 bekannten Katalysatoren auf Basis von Ruthenium. Besonders geeignet sind auch die in DE 102 44 996.1 beschriebenen Katalysatoren auf Basis von Gold, enthaltend auf einem Träger 0,001 bis 30 Gew.-% Gold, 0 bis 3 Gew.-% eines oder mehrerer Erdalkalimetalle, 0 bis 3 Gew.-% eines oder mehrerer Alkalimetalle, 0 bis 10 Gew.-% eines oder mehrerer Seltenerden- Metalle und 0 bis 10 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Ruthenium; Palladium, Platin, Osmium, Iridium, Silber, Kupfer und Rhenium, jeweils bezogen auf das Gesamtgewicht des Katalysators.
Das erfindungsgemäße Verfahren ist auch grundsätzlich nicht eingeschränkt bezüglich der Quelle für das Edukt Chlorwasserstoff. Beispielsweise kann als Edukt ein Chlorwasserstoffstrom eingesetzt werden, der in einem Verfahren zur Herstellung von Isocyanaten als Koppelprodukt anfällt, die in DE 102 35 476.6 beschrieben, deren Offenbarungsgehalt hiermit voll umfänglich in die vorliegende Patentanmeldung einbezogen wird.
Der Reaktor für das erfindungsgemäße Verfahren ist bezüglich seiner Geometrie grundsätzlich nicht eingeschränkt. Bevorzugt ist er zylinderförmig ausgebildet, möglich sind jedoch auch Formen mit beispielsweise quadratischem oder rechteckigem Querschnitt. Im Reaktor ist ein Bündel, das heißt eine Vielzahl von Kontaktrohren parallel zueinander in Reaktorlängsrichtung angeordnet. Die Anzahl der Kontaktrohre liegt bevorzugt im Bereich von 100 bis 20000, insbesondere von 5000 bis 15000.
Jedes Kontaktrohr weist bevorzugt eine Wandstärke im Bereich von 1,5 bis 5 mm, insbesondere von 2,0 bis 3,0 mm, und einen Rohrinnendurchmesser im Bereich von 10 bis 70 mm, bevorzugt im Bereich von 15 bis 30 mm auf.
Die Kontaktrohre weisen bevorzugt eine Länge im Bereich von 1 bis 10 m, insbesondere von 1,5 bis 8,0 m, besonders bevorzugt von 2,0 bis 7,0 m, auf.
Die Kontaktrohre sind bevorzugt derart im Reaktorinnenraum angeordnet, dass das Teilungsverhältnis, das heißt das Verhältnis zwischen dem Abstand der Mittelpunkte unmittelbar benachbarter Kontaktrohre und dem Außendurchmesser der Kontaktrohre im Be- reich von 1,15 bis 1,6, bevorzugt im Bereich von 1,2 bis 1,4 liegt und dass die Kontaktrohre in Dreiecksteilung im Reaktor angeordnet sind.
Die Kontaktrohre sind bevorzugt aus Reinnickel oder aus einer Nickelbasislegierung gebildet.
Ebenso sind auch alle weiteren Bauteile des Reaktors, die mit der hochkorrosiven Reakti- onsgasmischung in Berührung kommen, bevorzugt aus Reinnickel oder einer Nickelbasislegierung gebildet oder mit Nickel oder einer Nickelbasislegierung plattiert.
Bevorzugt werden als Nickelbasislegierungen Inconel 600 oder Inconel 625 eingesetzt. Die genannten Legierungen haben gegenüber Reinnickel den Vorteil einer erhöhten Temperaturfestigkeit. Inconel 600 enthält neben ca. 80 % Nickel noch rund 15 % Chrom sowie Eisen. Iconel 625 enthält überwiegend Nickel, 21 % Chrom, 9 % Molybdän sowie einige % Niob.
Die Kontaktrohre sind an beiden Enden in Rohrböden flüssigkeitsdicht befestigt, bevorzugt verschweißt. Die Rohrböden bestehen bevorzugt aus Kohlenstoff-Stahl der warmfesten Reihe, Edelstahl, zum Beispiel Edelstahl mit den Werkstoffnummern 1.4571 oder 1.4541 oder aus Duplexstahl (Werkstoffnummer 1.4462) und sind bevorzugt an der Seite, mit der das Reaktionsgas in Berührung kommt, mit Reinnickel oder einer Nickelbasislegierung plattiert. Die Kontaktrohre sind nur an der Plattierung mit den Rohrböden verschweißt. Bevorzugt können die Kontaktrohre zusätzlich in den Rohrböden angewalzt sein.
Grundsätzlich kann jede verfahrenstechnische Möglichkeit zum Aufbringen der Plattierung eingesetzt werden, beispielsweise Walzplattierung, Sprengplattierung, Auftragschweißung oder Streifenplattierung.
Der Innendurchmesser des Reaktors beträgt, sofern es sich um einen zylinderförmigen Ap- parat handelt, 0,5 bis 5 m, bevorzugt 1,0 bis 3,0 m.
Beide Reaktorenden sind nach außen durch Hauben begrenzt. Durch eine Haube erfolgt die Zuführung des Reaktionsgemisches zu den Kontaktrohren, durch die Haube am anderen Ende des Reaktors wird der Produktstrom abgezogen.
In den Hauben sind bevorzugt Gasverteiler zur Vergleichmäßigung des Gasstromes angeordnet, beispielsweise in Form einer Platte, insbesondere einer perforierten Platte.
Ein besonders effektiver Gasverteiler ist in Form eines perforierten, sich in Richtung des Gasstromes verjüngenden Kegelstumpfes ausgebildet, dessen Perforationen an den Seitenflächen ein größeres Öffnungsverhältnis, von ca. 10 bis 20 %, gegenüber den Perforationen in der in den Reaktorinnenraum hineinragenden, kleineren Grundfläche, von ca. 2 bis 10 %, aufweisen.
Da die Hauben und Gas Verteiler Bauteile des Reaktors sind, die mit dem hochkorrosiven Reaktionsgasgemisch in Berührung kommen, gilt das vorstehend bezüglich der Materialauswahl dargelegte, das heißt die Bauteile aus Reinnickel oder einer Nickelbasislegierung hergestellt oder damit plattiert sind.
Dies gilt insbesondere auch für Rohrleitungen, durch die das Reaktionsgasgemisch strömt oder statische Mischer, sowie für die Eindüsungsorgane, zum Beispiel das Einsteckrohr.
Im Zwischenraum zwischen den Kontaktrohren sind senkrecht zur Reaktorlängsrichtung ein oder mehrere Umlenkbleche angeordnet, die alternierend einander gegenüberliegende Durchtrittsoffnungen an der Reaktorinnenwand freilassen. Die Umlenkbleche bewirken eine Umlenkung des im Reaktorinnenraum, im Zwischenraum zwischen den Kontaktroh- ren zirkulierenden Wärmetauschmittels, dergestalt, dass die Kontaktrohre vom Wärme- tauschmittel quer angeströmt werden, wodurch die Wärmeabführung verbessert wird. Um diese vorteilhafte Queranströmung der Kontaktrohre zu erreichen, müssen die Umlenkbleche alternierend an die einander gegenüberliegenden Seiten der Reaktorinnenwand Durch- trittsöffnungen für das Wärmetauschmittel freilassen.
Die Anzahl der Umlenkbleche beträgt bevorzugt etwa 6 bis 15. Vorzugsweise sind sie ä- quidistant zu einander angeordnet, besonders bevorzugt ist jedoch die unterste und die o- berste Umlenkscheibe jeweils vom Rohrboden weiter entfernt als der Abstand zweier auf- einanderfolgende Umlenkscheiben zueinander, bevorzugt um etwa das 1,5-fache.
Die Form der freigelassenen Durchtrittsoffnungen ist grundsätzlich beliebig. Für den Fall eines zylindrischen Reaktors sind sie bevorzugt kreissegmentförmig.
Bevorzugt lassen alle Umlenkbleche jeweils gleiche Durchtrittsoffnungen frei.
Die Fläche jeder Durchtrittsöffnung beträgt bevorzugt 5 bis 30 %, insbesondere 8 bis 14 % des Reaktorquerschnitts.
Bevorzugt sind die Umlenkbleche nicht dichtend um die Kontaktrohre angeordnet, und lassen eine Leckageströmung von bis zu 30 Vol.-% des Gesamtstroms des Wärmetauschmittels zu. Hierzu sind zwischen den Kontaktrohren und Umlenkblechen Spalte im Bereich von 0,1 bis 0,4 mm, bevorzugt von 0,15 bis 0,30 mm zugelassen.
Es ist vorteilhaft, die Umlenkbleche mit Ausnahme der Bereiche der Durchtrittsoffnungen zur Reaktorinnenwand hin flüssigkeitsdicht zu gestalten, so dass dort kein zusätzlicher Leckagestrom auftritt.
Besonders vorteilhaft können in diesen Bereichen, in denen sich keine Durchtrittsöffnun- gen befinden, am Reaktorinnenmantel zwischen den Umlenkblechen vertikale Blechstreifen für eine zusätzliche Bypassverhinderung zwischen den Kontaktrohren und dem Reaktorinnenmantel vorgesehen sein.
Für denselben Einsatzzweck eignen sich auch Dummy-Rohre, insbesondere Vollmaterial- röhre, bevorzugt mit gleichem Außendurchmesser wie die Kontaktrohre, oder andere Ver- Verdrängerkörper. Die Dummy-Rohre oder andere Verdrängungskö er sind bevorzugt nicht in den Rohrböden eingeschweißt, sondern nur in den Umlenkblechen geheftet.
Die Umlenkbleche können bevorzugt aus dem gleichen Material wie die Rohrböden, das heißt aus Kohlenstoffstahl der warmfesten Reihe, Edelstahl mit den Werkstoffnummern 1.4571 oder 1.4541 oder aus Duplexstahl (Werkstoffnummer 1.4462), bevorzugt in einer Dicke von 6 bis 30 mm, bevorzugt von 10 bis 20 mm, gebildet sein.
Die Kontaktrohre sind mit einem Feststoffkatalysator gefüllt. Die Katalysatorschüttung in den Kontaktrohren weist bevorzugt ein Lückenvolumen von 0,15 bis 0,55, insbesondere von 0,20 bis 0,45, auf.
Besonders bevorzugt ist der der Zuführung des gasförmigen Reaktionsgemisches zugewandte Bereich der Kontaktrohre auf eine Länge von 5 bis 20 %, bevorzugt auf eine Länge von 5 bis 10 %, der Gesamtrohrlänge der Kontaktrohre mit einem Inertmaterial befüllt.
Zum Ausgleich von thermischen Ausdehnungen sind im Reaktormantel vorteilhaft ein oder mehrere ringförmig am Reaktormantel angebrachte Kompensatoren vorgesehen.
Die Zu- und Abführung des Wärmetauschmittels in bzw. aus dem Zwischenraum zwischen den Kontaktrohren erfolgt bevorzugt über Stutzen oder Teilringkanäle am Reaktormantel, die Öffnungen zum Reaktorinnenraum aufweisen, bevorzugt mit kreisförmigem oder rechteckigem Querschnitt und mit einem Öffnungsverhältnis im Bereich von 5 bis 50 %, bevorzugt von 15 bis 30 %.
Bevorzugt wird das Wärmetauschmittel über eine Pumpe über einen außenliegenden Kühler geleitet, wobei Pumpe und Kühler parallel zur Reaktorlängsrichtung am Reaktoraußenmantel angeordnet sind. Bevorzugt wird lediglich ein Teilstrom von 15 % des gesamten Wärmetauschmittelstromes über ein Regelventil über den außenliegenden Kühler geleitet.
Das Verfahren ist grundsätzlich nicht eingeschränkt bezüglich der Strömungsführung für das Reaktionsgasgemisch wie auch für das Wärmetauschmittel, das heißt beide können jeweils von oben nach unten oder von unten nach oben durch den Reaktor geführt werden. Jede Kombination der Strömungsführung von Reaktionsgasgemisch und Wärmetauschmit- tel ist möglich. Es ist bevorzugt, den Reaktor in Bezug auf eine Querschnittsebene in der Reaktormitte symmetrisch auszubilden. Gemäß dieser bevorzugten Ausführungsform weist somit ein aufrechtstehender Reaktor jeweils einen identischen unteren und oberen Teil auf. Darunter wird auch verstanden, dass alle Anschlüsse sowie die Reaktorpratzen, die der Reaktorab- Stützung dienen, symmetrisch ausgebildet sind. Der Katalysator wird, je nach Reaktions- fortschritt, als Folge der Wanderung der Hot-Spot-Zone unterschiedlich verbraucht. Analog werden die Kontaktrohre in unterschiedlichen Bereichen verschieden beansprucht, mit stärkster Beanspruchung im Bereich der Hot-Spot-Zone. In dieser Hot-Spot-Zone kommt es zuerst zum Abtrag der Innenwand der Kontaktrohre und zur Gefahr, dass die Kontakt- röhre undicht werden. Dieser Gefahr kann durch die oben beschriebene symmetrische Aus- führungsform vorgebeugt werden, bei der es möglich ist, den Reaktor rechtzeitig vor dem Erreichen eines bestimmten kritischen Abtrages zu drehen wobei dann der Hot-Spot- Bereich auf einen zuvor weniger beanspruchten Teil der Kontaktrohre trifft. Dadurch lässt sich die Betriebszeit des Reaktors beträchtlich steigern, häufig verdoppeln.
Auf das Temperaturprofil im Reaktionsverlauf kann besonders gut eingegangen werden, indem man das Verfahren in einem Reaktor durchführt, der zwei oder mehrere Reaktionszonen aufweist. Es ist gleichermaßen möglich, anstelle eines einzigen Reaktors mit zwei oder mehreren Reaktionszonen das Verfahren in zwei oder mehreren getrennten Reaktoren durchzuführen.
Wird das Verfahren in zwei oder mehreren getrennten Reaktoren durchgeführt, so können sich die Kontaktrohre bevorzugt von einem Reaktor zum anderen in ihrem Innendurchmesser unterscheiden. Es können insbesondere Reaktoren, in denen besonders Hot-Spot ge- fährdete Reaktionsteilabschnitte verlaufen, mit Kontaktrohren mit geringerem Rohrinnen- durchmesser ausgestattet werden im Vergleich zu den übrigen Reaktoren. Dadurch wird eine verbesserte Wärmeabführung in diesen besonders gefährdeten Bereichen gewährleistet.
Zusätzlich oder alternativ ist es auch möglich, im Hot-Spot gefährdeten Reaktionsteilabschnitt zwei oder mehrere Reaktoren parallel zueinander anzuordnen, mit anschließender Zusammenführung des Reaktionsgemisches über einen Reaktor.
Im Falle der Ausgestaltung eines Reaktors mit mehreren Zonen, bevorzugt mit 2 bis 8, besonders bevorzugt mit 2 bis 6 Reaktionszonen, werden diese durch Trennbleche weitgehend flüssigkeitsdicht voneinander getrennt. Unter weitgehend wird vorliegend verstanden, dass eine vollständige Trennung nicht zwingend erforderlich ist, sondern dass fertigungstechnische Toleranzen erlaubt sind.
So wird eine weitgehende Trennung schon dadurch erreicht, dass das Trennblech in relativ großer Dicke, von etwa 15 bis 60 mm, ausgebildet ist, wobei ein feiner Spalt zwischen dem Kontaktrohr und dem Trennblech, von etwa 0,1 bis 0,25 mm erlaubt ist. Dadurch ist es insbesondere auch möglich, die Kontaktrohre bei Bedarf einfach auszutauschen.
In einer bevorzugten Ausgestaltung kann die Abdichtung zwischen den Kontaktrohren und den Trennblechen verbessert werden, indem die Kontaktrohre leicht angewalzt oder hydraulisch aufgeweitet werden.
Da die Trennbleche mit dem korrosiven Reaktionsgemisch nicht in Kontakt treten, ist die Materialwahl für die Trennbleche nicht kritisch. Hierfür kann beispielsweise dasselbe Ma- terial wie für den die Plattierung tragenden Teil der Rohrböden, das heißt Kohlenstoff- Stahl der warmfesten Reihe, Edelstahl, zum Beispiel Edelstahl mit den Werkstoffnummern 1.4571 oder 1.4541 oder Duplexstahl (Werkstoffnummer 1.4462), verwendet werden.
Bevorzugt sind für das Wärmetauschmittel im Reaktormantel und/oder in den Rohrböden und/oder in den Trennblechen Entlüftungs- und Ablaufbohrungen vorgesehen, insbesondere an mehreren, bevorzugt an 2 bis 4 symmetrisch über den Reaktorquerschnitt verteilten Stellen, deren Öffnungen nach außen, bevorzugt in auf der Reaktoraußenwand oder auf den Rohrböden außerhalb des Reaktors aufgeschweißten Halbschalen münden.
Im Falle eines Reaktors mit zwei oder mehreren Reaktionszonen ist es vorteilhaft, dass jede Reaktionszone mindestens einen Kompensator zum Ausgleich von thermischen Spannungen aufweist.
In der Verfahrensvariante mit mehreren Reaktoren ist eine Zwischeneinspeisung von Sau- erstoff vorteilhaft, vorzugsweise über ein Lochblech in der unteren Reaktorhaube, das für eine gleichmäßigere Verteilung sorgt. Das Lochblech weist bevorzugt einen Perforationsgrad von 0,5 bis 5 % auf. Da es in unmittelbarem Kontakt mit dem hochkorrosiven Reaktionsgemisch steht, wird es bevorzugt aus Nickel oder einer Nickelbasislegierung hergestellt. Im Falle einer Ausführungsform mit zwei oder mehreren, unmittelbar übereinander angeordneten Reaktoren, das heißt in einer besonders platzsparenden Konstruktionsvariante, unter Verzicht auf die untere Haube des jeweils höher angeordneten und die obere Haube des jeweils darunter angeordneten Reaktors ist es möglich, die Zwischeneinspeisung von Sauerstoff zwischen zwei, unmittelbar übereinander angeordneten Reaktoren, über eine außen aufgeschweißte Halbschale, über gleichmäßig am Reaktorumfang verteilte Bohrungen, vorzunehmen.
Bevorzugt sind zwischen den einzelnen Reaktoren, nach der Zwischeneinspeisung von Sauerstoff, statische Mischer angeordnet.
Bezüglich der Materialauswahl für die statischen Mischer gilt das eingangs allgemein für Bauteile, die mit dem Reaktionsgasgemisch in Berührung kommen, Ausgeführte, das heißt dass Reinnickel oder Nickelbasislegierungen bevorzugt sind.
Im Verfahren mit mehreren Reaktoren ist es möglich, eine Zwischeneinspeisung von Sauerstoff über ein perforiertes, bevorzugt gekrümmtes Einsteckrohr vorzunehmen, das in das Verbindungsrohr zwischen zwei Reaktoren mündet.
Die Erfindung wird im Folgenden anhand einer Zeichnung näher erläutert.
Es zeigen im Einzelnen:
Figur 1 eine erste bevorzugte Ausführungsform eines Reaktors für das erfindungs- gemäße Verfahren im Längsschnitt mit Kreuzgegenstromführung von Reaktionsgemisch und Wärmetauschmittel, mit
- Querschnittsdarstellung in Fig. 1A,
- vergrößerter Darstellung der Rohrteilung in Fig. 1B und
- vergrößerter Darstellung der Anordnung von Kontaktrohren und Um- lenkblechen in Fig. IC,
Figur 2 eine weitere bevorzugte Ausführungsform wie eines Reaktors im Längsschnitt, mit Kreuzgegenstromführung von Reaktionsgemisch und Wärmetauschmittel, wobei der Reaktor im Bereich der Durchtrittsoffnungen unbe- röhrt ist, mit Querschnittsdarstellung in Fig. 2A, Figur 3 eine weitere Ausführungsform eines mehrzonig ausgebildeten Reaktors,
Figur 4 eine Ausführungsform mit zwei hintereinander geschalteten Reaktoren,
Figur 5 eine Ausführungsform mit zwei kompakt angeordneten Reaktoren mit statischen Mischern zwischen den Reaktoren,
Figur 6 eine Ausführungsform mit zwei hintereinander geschalteten Reaktoren,
Figur 7 eine weitere Ausführungsform mit zwei Reaktoren,
Figur 8 die Darstellung einer Ausführungsform eines Reaktors im Längsschnitt mit
Darstellung des Wärmetauschmittelkreises,
Figur 9A eine gewinkelte Entlüftungsbobrung im Rohrboden,
Figur 9B eine Entlüftungsbohrung am Reaktormantel,
Figur 10 eine Verbindung der Kontaktrohre mit der Plattierung des Rohrbodens und
Figur 11 eine Verbindung zwischen Kontaktrohr und Trennblech.
Figur 1 zeigt eine erste Ausführungsform eines Reaktors 1 für das erfindungsgemäße Verfahren im Längsschnitt, mit Kontaktrohren 2, die in Rohrböden 3 befestigt sind.
Beide Reaktorenden sind nach außen durch Hauben 4 begrenzt. Durch eine Haube erfolgt die Zuführung des Reaktionsgemisches zu den Kontaktrohren 2, durch die Haube am anderen Ende des Reaktors 1 wird der Produktstrom abgezogen. In den Hauben sind bevorzugt Gasverteiler zur Vergleichmäßigung des Gasstromes angeordnet, beispielsweise in Form einer Platte 8, insbesondere einer perforierten Platte.
Im Zwischenraum zwischen den Kontaktrohren 2 sind Umlenkbleche 6 angeordnet, in Fig. 1 sind beispielhaft sechs Umlenkbleche 6 dargestellt. Die Umlenkbleche 6 lassen alternierend einander gegenüberliegende Durchtrittsoffnungen 7 an der Reaktorinnenwand frei. In der beispielhaften Darstellung in Fig. 1 wird das Reaktionsgemisch von oben nach unten durch die Kontaktrohre und das Wärmetauschmittel im Kreuzgegenstrom, von unten nach oben, durch den Zwischenraum zwischen den Kontaktrohren 2 geleitet.
Die Querschnittsdarstellung in Fig. 1 A zeigt Blechstreifen 19 am Reaktorinnenmantel, zur Verhinderung einer Bypassströmung.
Der Ausschnitt in Fig. 1B verdeutlicht die zur Berechnung des Teilungsverhältnisses erforderlichen geometrischen Größen Mittelpunktsabstand (t) und Außendurchmesser (da) der Kontaktrohre 2.
Der Ausschnitt in Fig. IC zeigt die Spalte 20 zwischen Kontaktrohren 2 und Umlenkblechen 6.
Am Reaktoraußenmantel sind Kompensatoren 9 sowie Pratzen 10 vorgesehen. Das Wär- metauschmittel wird über Stutzen 25 am Reaktormantel zu- bzw. abgeführt.
Die in Fig. 2 gleichfalls im Längsschnitt dargestellte weitere Ausführungsform unterscheidet sich von der vorhergehenden insbesondere dadurch, dass der Reaktorinnenraum im Bereich der Durchtrittsoffnungen 7 für das Wärmetauschmittel unberohrt ist.
Die in Fig. 3 im Längsschnitt dargestellte Ausführungsform zeigt einen mehrzonigen, beispielhaft dreizonigen, Reaktor, dessen einzelne Reaktionszonen durch Trennbleche 11 voneinander getrennt sind.
Die Ausführungsform in Fig. 4 zeigt zwei, vertikal übereinander angeordnete Reaktoren 1, mit einem statischen Mischer 13 im Verbindungsrohr zwischen den beiden Reaktoren 1. In der unteren Haube des oberen Reaktors 1 sind Lochbleche 12 angeordnet, zwecks Vergleichmäßigung des unterhalb desselben zwischeneingespeisten Sauerstoffstromes.
Fig. 5 zeigt eine weitere Ausführungsform mit beispielhaft zwei kompakt übereinander angeordneten Reaktoren 1, wobei aus Gründen der Raumersparnis auf die untere Haube des oberen Reaktors 1 sowie auf die obere Haube des unteren Reaktors 1 verzichtet wurde. Im Bereich zwischen den beiden Reaktoren ist eine Zwischeneinspeisung von Sauerstoff (O2) über eine am Reaktorumfang aufgeschweißte Halbschale 14 vorgesehen ist. Nach der Zwischeneinspeisung von Sauerstoff ist ein statischer Mischer 13 angeordnet. Die Ausführungsform in Fig. 6 zeigt zwei hintereinander geschaltete Reaktoren 1, mit Zwischeneinspeisung von Sauerstoff über ein an seinem Umfang perforiertes Rohr 15, das in das Verbindungsrohr zwischen den beiden Reaktoren mündet, sowie mit statischen Mischern 13 im Verbindungsrohr zwischen den beiden Reaktoren.
Die in Fig. 7 dargestellte Ausführungsform unterscheidet sich von der Ausführungsform in Fig. 6 dadurch, dass der erste Reaktor vom Reaktionsgemisch von oben nach unten und der zweite Reaktor von unten nach oben durchströmt wird.
Fig. 8 zeigt beispielhaft einen Reaktor 1 im Längsschnitt mit Darstellung des Wärme- tauschmittelkreises, über eine Pumpe 16, einen außenliegenden Kühler 17 und ein Regelventil 18.
Der Ausschnitt in Fig. 9A zeigt eine gewinkelte Entlüftungsbohrung 21 im Rohrboden 3, mit Halbschale 22 über deren Entlüftungsbohrung 21.
Der Ausschnitt in Fig. 9B zeigt eine weitere Variante einer Entlüftungsbohrung 21, hier am Reaktormantel.
Der Ausschnitt in Fig. 10 zeigt die Verbindung der Kontaktrohre 2 mit der Plattierung 23 des Rohrbodens 3 in Form einer Schweißnaht 24.
Der Ausschnitt in Fig. 11 zeigt die Verengung des Spaltes 20 zwischen einem Kontakt- rohr 2 und einem Trennblech 11 durch Anwalzung des Kontaktrohrs an das Trennblech sowie eine gewinkelte Entlüftungsbohrung 21 im Trennblech 11.
Bezugszeichenliste
Reaktor
Kontaktrohre
Rohrböden
Hauben
Zwischenraum zu Kontakrohren
Umlenkbleche
Durchtrittsoffnungen
Prallplatte
Kompensatoren
Pratzen
Trennbleche
Lochbleche statische Mischer
Halbschale über Reaktorumfang für O2-Einspeisung perforiertes Rohr
Pumpe
Kühler
Regelventil
Blechstreifen zur Abdichtung ("sealing strips")
Spalte zwischen Kontaktrohren (2) und Umlenkblechen (6) bzw. Trennblechen (11)
Entlüftungsbohrung
Halbschale über Entlüftungsbohrung (21)
Plattierung auf Rohrboden (3)
Schweißnaht der Kontaktrohre (2) mit Plattierung (23)
Stutzen oder Teilringkanäle
Sauerstoff-Zwischeneinspeisung

Claims

Patentansprüche
1. Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettkatalysators, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) mit einem Bündel von parallel zueinander, in der Reaktorlängsrichtung angeordneten Kontaktrohren (2) durchfuhrt, die an ihren Enden in Rohrböden (3) befestigt sind, mit je einer Haube (4) an beiden Enden des Reaktors (1), sowie mit einem oder mehreren, senkrecht zur Reaktorlängsrichtung im Zwischenraum (5) zwischen den Kontaktrohren (2) angeordneten Umlenkblechen (6), die alternierend einander gegenüberliegende Durchtrittsoffnungen (7) an der Innenwand des Reaktors (1) freilassen, wobei die Kontaktrohre (2) mit dem Festbettkatalysator befüllt sind, der Chlorwasserstoff sowie der molekularen Sauerstoff enthaltende Gasstrom von einem Reaktorende über eine Haube (4) durch die Kontaktrohre (2) geleitet und das gasförmige Reaktionsgemisch vom entgegengesetzten Reaktorende über die zweite Haube (4) abgezogen und durch den Zwischenraum (5) um die Kontaktrohre (2) ein flüssiges Wärmetauschmittel geleitet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, der im Bereich der Durchtrittsoffnungen (7) unbe- rohrt ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, der zylinderförmig ist, mit bevorzugt kreisseg- mentförmig ausgebildeten Umlenkblechen (6).
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchfuhrt, worin alle Umlenkbleche (6) jeweils gleichgroße Durchtrittsoffnungen (7) freilassen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man das
Verfahren in einem Reaktor (1) durchführt, worin die Fläche jeder Durchtrittsöff- nung (7) jeweils 5 bis 30 %, bevorzugt 8 bis 14 %, des Reaktorquerschnitts beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor mit 100 bis 20.000, bevorzugt mit 5000 bis 15000 Kontaktrohren (2) durchführt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, worin jedes Kontaktrohr (2) eine Länge im Bereich von 1 bis 10 m, bevorzugt von 1,5 bis 8,0 m, besonders bevorzugt im Bereich von 2,0 bis 7,0 m, aufweist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, worin jedes Kontaktrohr (2) eine Wandstärke im Bereich von 1,5 bis 5,0 mm, besonders von 2,0 bis 3,0 mm und einen Rohrinnendurchmesser im Bereich von 10 bis 70 mm, bevorzugt im Bereich von 15 bis 30 mm, aufweist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man das
Verfahren in einem Reaktor (1) durchführt, dessen Kontaktrohre (2) derart im Innenraum des Reaktor (1) angeordnet sind, dass das Teilungsverhältnis, das heißt das Verhältnis zwischen dem Abstand der Mittelpunkte unmittelbar benachbarte Kontaktrohre (2) und dem Außendurchmesser der Kontaktrohre (2) im Bereich von
1,15 bis 1,6, bevorzugt im Bereich von 1,2 bis 1,4 liegt, wobei eine Dreiecksteilung der Kontaktrohre bevorzugt ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt worin zwischen den Kontaktrohren (2) und den Umlenkblechen (6) Spalte (8) von 0,1 bis 0,4 mm, bevorzugt von 0,15 bis 0,30 mm, vorhanden sind.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Umlenkbleche (6) an der Reaktorinnenwand mit Ausnahme der Bereiche der
Durchtrittsoffnungen (7) flüssigkeitsdicht befestigt sind.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, dessen Umlenkbleche (6) eine Di- cke im Bereich von 6 bis 30 mm, bevorzugt von 10 bis 20 mm, aufweisen.
13. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, der am Innenmantel in den Bereichen zwischen den Umlenkblechen (6), nicht jedoch in den Bereichen der Durchtrittsoffnungen (7) in Reaktorlängsrichtung angeordnete Blechstreifen aufweist.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, der einen oder mehrere Kompensa- toren (9) im Reaktormantel aufweist.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1), mit für die Zu- und Abführung des Wärmetauschmittels am Reaktormantel vorgesehenen Stutzen oder Teilringkanälen (25), die Öffnungen zum Reaktorinnenraum bevorzugt mit kreisförmigem oder rechteckigem Querschnitt und einem Öffnungsverhältnis im Bereich von 5 bis 50 %, aufweisen.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) durchführt, der in Bezug auf eine Querschnittsebene in der Reaktormitte symmetrisch aufgebaut ist.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man das gasförmige Reaktionsgemisch und das flüssige Wärmetauschmittel im Kreuzgegenstrom oder im Kreuzgleichstrom durch den Reaktor (1) leitet.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der der Zuführung des gasförmigen Reaktionsgemisches zugewandte Bereich der Kontaktrohre (2) auf eine Länge von 5 bis 20 %, bevorzugt auf eine Länge von 5 bis 10 % der Gesamtlänge der Kontaktrohre (2) mit einem Inertmaterial befüllt ist.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass alle Bauteile des Reaktors (1), mit denen das Reaktionsgas in Berührung kommt, aus Reinnickel oder einer Nickelbasislegierung hergestellt oder mit Reinnickel oder einer Nickelbasislegierung plattiert sind.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Kontaktrohre (2) aus
Reinnickel oder einer Nickelbasislegierung hergestellt und die Rohrböden (3) mit Reinnickel oder einer Nickelbasislegierung plattiert sind und dass die Kontaktrohre (2) lediglich an der Plattierung mit den Rohrböden verschweißt sind.
21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der
Reaktor (1) zwei oder mehrere Reaktionszonen aufweist, die mittels Trennblechen (11) weitgehend flüssigkeitsdicht getrennt sind, insbesondere durch Anwal- zung der Kontaktrohre (2) an die Trennbleche (11).
22. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass man das Verfahren in zwei oder mehreren Reaktoren (1) durchführt.
23. Verfahren nach Anspruch 20 oder 22, dadurch gekennzeichnet, dass zwischen den Reaktoren (1) statische Mischer (13) angeordnet sind.
24. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass Entlüftungsbohrungen für das Wärmetauschmittel im Reaktormantel und/oder in den Rohrböden (3) und/oder in den Trennblechen (11) vorgesehen sind.
25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass das
Wärmetauschmittel über eine Pumpe (16) über einen außenliegenden Kühler (17) geleitet wird, wobei Pumpe (16) und Kühler (17) parallel zur Reaktorlängsrichtung am Reaktoraußenmantel angeordnet sind, bevorzugt dass lediglich ein Teilstrom von maximal 15 % des gesamten Wärmetauschmittelstromes über ein Regel ventil
(18) über den außenliegenden Kühler (17) geleitet wird.
PCT/EP2003/014073 2002-12-12 2003-12-11 Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff WO2004052776A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MXPA05005939A MXPA05005939A (es) 2002-12-12 2003-12-11 Metodo para la produccion de color por medio de oxidacion de cloruro de hidrogeno en fase gaseosa.
DE50304309T DE50304309D1 (de) 2002-12-12 2003-12-11 Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
EP03789224A EP1572582B1 (de) 2002-12-12 2003-12-11 Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
JP2004558069A JP4330536B2 (ja) 2002-12-12 2003-12-11 塩化水素の気相酸化により塩素を製造する方法
AU2003293840A AU2003293840A1 (en) 2002-12-12 2003-12-11 Method for the production of chlorine by means of gas phase oxidation of hydrogen chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10258153.3 2002-12-12
DE10258153A DE10258153A1 (de) 2002-12-12 2002-12-12 Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff

Publications (1)

Publication Number Publication Date
WO2004052776A1 true WO2004052776A1 (de) 2004-06-24

Family

ID=32336256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/014073 WO2004052776A1 (de) 2002-12-12 2003-12-11 Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff

Country Status (12)

Country Link
US (1) US20040115118A1 (de)
EP (1) EP1572582B1 (de)
JP (1) JP4330536B2 (de)
KR (1) KR100999027B1 (de)
CN (1) CN1321056C (de)
AT (1) ATE333438T1 (de)
AU (1) AU2003293840A1 (de)
DE (2) DE10258153A1 (de)
ES (1) ES2268471T3 (de)
MX (1) MXPA05005939A (de)
PT (1) PT1572582E (de)
WO (1) WO2004052776A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192430A (ja) * 2005-01-14 2006-07-27 Man Dwe Gmbh 発熱性または吸熱性の気体反応を行う多管式反応器
WO2008098878A1 (de) * 2007-02-12 2008-08-21 Basf Se Verfahren zur leckageüberwachung in einem rohrbündelreaktor
DE102007033107A1 (de) 2007-07-13 2009-01-15 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation
WO2009116977A2 (en) * 2007-12-18 2009-09-24 Dow Technology Investments Llc Tube reactor
DE102008050975A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Mehrstufiges Verfahren zur Herstellung von Chlor
DE102008050978A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Urankatalysator und Verfahren zu dessen Herstellung sowie dessen Verwendung
WO2010081644A1 (de) * 2009-01-16 2010-07-22 Bayer Technology Services Gmbh Verfahren und vorrichtung zur herstellung von chlor
DE102009013905A1 (de) 2009-03-19 2010-09-23 Bayer Technology Services Gmbh Urankatalysator auf Träger besonderer Porengrößenverteilung und Verfahren zu dessen Herstellung, sowie dessen Verwendung
DE102010014643A1 (de) 2010-04-12 2011-10-13 Man Diesel & Turbo Se Rohrbündelreaktor
WO2017060361A1 (de) * 2015-10-06 2017-04-13 Hydrogenious Technologies Gmbh Reaktor-vorrichtung zum dehydrieren eines trägermediums
EP3862317A1 (de) * 2020-02-06 2021-08-11 Basf Se Verfahren und reaktor zur herstellung von phosgen

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205035B2 (ja) * 2004-09-27 2009-01-07 住友化学株式会社 接触気相反応用多管式反応装置
US7371361B2 (en) * 2004-11-03 2008-05-13 Kellogg Brown & Root Llc Maximum reaction rate converter system for exothermic reactions
US20100296998A1 (en) * 2005-06-22 2010-11-25 Sumitomo Chemical Company, Limited Reactor for producing chlorine and process for producing chlorine
JP2006212629A (ja) * 2006-02-21 2006-08-17 Sumitomo Chemical Co Ltd 多管式固定床反応装置
DE102007020140A1 (de) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
JP5171031B2 (ja) * 2006-07-19 2013-03-27 株式会社日本触媒 接触気相酸化用反応器およびそれを用いたアクリル酸の製造方法
US20100260660A1 (en) * 2007-07-13 2010-10-14 Bayer Technology Services Gmbh Method for producing chlorine by multi step adiabatic gas phase oxidation
EP2237869B1 (de) * 2008-01-25 2011-08-31 Basf Se Reaktor zur durchführung von hochdruckreaktionen, verfahren zur inbetriebnahme sowie verfahren zur durchführung einer reaktion
EP2414283B1 (de) * 2009-03-30 2013-12-11 Basf Se Verfahren zur herstellung von chlor
EA020397B1 (ru) * 2009-05-08 2014-10-30 Саутерн Рисерч Инститьют Система и способ уменьшения выбросов ртути
JP5636601B2 (ja) * 2010-03-11 2014-12-10 住友化学株式会社 固定床反応器による塩素の製造方法
CN102284260B (zh) * 2011-06-15 2013-06-12 北京工业大学 一种气体旋转脉动分布的气固相反应装置
CN104591090B (zh) 2014-12-22 2016-09-07 上海方纶新材料科技有限公司 一种氯化氢催化氧化制备氯气的方法
CN105671461B (zh) * 2016-04-05 2018-05-15 广州齐达材料科技有限公司 一种非晶材料及其制备方法和用途
CN106732304A (zh) * 2016-12-14 2017-05-31 衡阳市南东有色金属有限公司 改良型仲钨酸铵分解槽
RU2642440C1 (ru) * 2017-08-30 2018-01-25 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Кожухотрубные теплообменники в процессах дегидрирования углеводородов C3-C5 (варианты)
CN109876739B (zh) * 2019-03-22 2021-06-08 河海大学 一种固定床反应器
CN118203925A (zh) * 2022-12-15 2024-06-18 阿特拉斯·科普柯空气动力股份有限公司 空气或气体处理系统
CN117963838A (zh) * 2024-04-02 2024-05-03 烟台哈尔滨工程大学研究院 利用船舶发动机废气余热的管式氨分解制氢反应器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1192666A (en) * 1967-06-21 1970-05-20 Sir Soc Italiana Resine Spa Process for the Catalytic Preparation of Chlorine from Hydrochloric Acid
WO2000054877A2 (de) * 1999-03-16 2000-09-21 Basf Aktiengesellschaft Rohrbündelreaktor, insbesondere für katalytische gasphasenreaktionen
EP1251100A1 (de) * 2000-01-19 2002-10-23 Sumitomo Chemical Company Limited Verfahren zur herstellung von chlor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793928A (fr) * 1972-01-13 1973-05-02 Deggendorfer Werft Eisenbau Appareil pour la mise en oeuvre de processus chimiques exothermiques et endothermiques
US3807963A (en) * 1972-03-09 1974-04-30 J Smith Reaction apparatus
AU529228B2 (en) * 1977-07-13 1983-06-02 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalytic vapour phase oxidation
US4590293A (en) * 1982-01-18 1986-05-20 Ashland Oil, Inc. Process and apparatus for further processing of pressurized exothermic reactions
JP2778878B2 (ja) * 1991-09-12 1998-07-23 株式会社日本触媒 エチレンオキシドの製造方法
US5362454A (en) * 1993-06-28 1994-11-08 The M. W. Kellogg Company High temperature heat exchanger
US5908607A (en) * 1996-08-08 1999-06-01 Sumitomo Chemical Co., Ltd. Process for producing chlorine
DE19748299A1 (de) * 1996-10-31 1998-05-07 Sumitomo Chemical Co Verfahren zur Herstellung von Chlor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1192666A (en) * 1967-06-21 1970-05-20 Sir Soc Italiana Resine Spa Process for the Catalytic Preparation of Chlorine from Hydrochloric Acid
WO2000054877A2 (de) * 1999-03-16 2000-09-21 Basf Aktiengesellschaft Rohrbündelreaktor, insbesondere für katalytische gasphasenreaktionen
EP1251100A1 (de) * 2000-01-19 2002-10-23 Sumitomo Chemical Company Limited Verfahren zur herstellung von chlor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192430A (ja) * 2005-01-14 2006-07-27 Man Dwe Gmbh 発熱性または吸熱性の気体反応を行う多管式反応器
WO2008098878A1 (de) * 2007-02-12 2008-08-21 Basf Se Verfahren zur leckageüberwachung in einem rohrbündelreaktor
DE102007033107A1 (de) 2007-07-13 2009-01-15 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation
WO2009116977A2 (en) * 2007-12-18 2009-09-24 Dow Technology Investments Llc Tube reactor
WO2009116977A3 (en) * 2007-12-18 2009-11-12 Dow Technology Investments Llc Tube reactor
DE102008050975A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Mehrstufiges Verfahren zur Herstellung von Chlor
DE102008050978A1 (de) 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Urankatalysator und Verfahren zu dessen Herstellung sowie dessen Verwendung
WO2010081644A1 (de) * 2009-01-16 2010-07-22 Bayer Technology Services Gmbh Verfahren und vorrichtung zur herstellung von chlor
DE102009013905A1 (de) 2009-03-19 2010-09-23 Bayer Technology Services Gmbh Urankatalysator auf Träger besonderer Porengrößenverteilung und Verfahren zu dessen Herstellung, sowie dessen Verwendung
WO2010105751A1 (de) 2009-03-19 2010-09-23 Bayer Technology Services Gmbh Urankatalysator auf träger besonderer porengrössenverteilung und verfahren zu dessen herstellung, sowie dessen verwendung
DE102010014643A1 (de) 2010-04-12 2011-10-13 Man Diesel & Turbo Se Rohrbündelreaktor
WO2017060361A1 (de) * 2015-10-06 2017-04-13 Hydrogenious Technologies Gmbh Reaktor-vorrichtung zum dehydrieren eines trägermediums
US10350566B2 (en) 2015-10-06 2019-07-16 Hydrogenious Technologies Gmbh Reactor apparatus for dehydrogenating a carrier medium
EP3862317A1 (de) * 2020-02-06 2021-08-11 Basf Se Verfahren und reaktor zur herstellung von phosgen
WO2021156092A1 (de) * 2020-02-06 2021-08-12 Basf Se Verfahren und reaktor zur herstellung von phosgen

Also Published As

Publication number Publication date
US20040115118A1 (en) 2004-06-17
EP1572582B1 (de) 2006-07-19
EP1572582A1 (de) 2005-09-14
CN1726163A (zh) 2006-01-25
JP4330536B2 (ja) 2009-09-16
JP2006509705A (ja) 2006-03-23
KR100999027B1 (ko) 2010-12-09
ATE333438T1 (de) 2006-08-15
DE10258153A1 (de) 2004-06-24
ES2268471T3 (es) 2007-03-16
MXPA05005939A (es) 2006-03-08
CN1321056C (zh) 2007-06-13
AU2003293840A1 (en) 2004-06-30
PT1572582E (pt) 2006-11-30
KR20050089822A (ko) 2005-09-08
DE50304309D1 (de) 2006-08-31

Similar Documents

Publication Publication Date Title
EP1572582B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
EP1581457B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
EP1485195B1 (de) Verfahren zur herstellung von phosgen
EP1831147B1 (de) Verfahren zur herstellung von phthalsäureanhydrid
EP1169119B1 (de) Rohrbündelreaktor, insbesondere für katalytische gasphasenreaktionen
EP2379216B1 (de) Reaktor und verfahren zur herstellung von phosgen
EP2379217B1 (de) Reaktor und verfahren zur herstellung von phosgen
DE10361519A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
EP2069283B1 (de) Verfahren zur herstellung von aromatischen aminen in einem wirbelschichtreaktor
DE60224586T2 (de) Reaktor für die katalytische oxidation mit verbessertem wärmeaustauschsystem
EP1232004A1 (de) Verfahren zur katalytischen gasphasenoxidation zu (meth)acrolein und/oder (meth)acrylsäure
EP1651344B1 (de) Reaktor für partialoxidationen mit thermoblechplattenmodulen
WO2005063375A1 (de) Verfahren zur herstellung von formaldehyd
WO2021156092A1 (de) Verfahren und reaktor zur herstellung von phosgen
WO2020233921A1 (de) Verfahren und reaktor zur herstellung von phosgen
WO2007104436A1 (de) Verfahren und vorrichtung zur herstellung von chlor durch gasphasenoxidation in einem gekühlten wandreaktor
EP1663478B1 (de) Verfahren zur herstellung von (meth)acrolein und/oder (meth)acryls ure durch heterogen katalysierte partialoxidation von c3- und/oder c4-vorläuferverbindungen in einem reaktor mit thermoblechplattenmodulen
WO2009039947A1 (de) Verfahren zur herstellung von aromatischen aminen
WO2001087477A1 (de) Längsstromreaktor mit einem kontaktrohrbündel
DE2312572A1 (de) Katalytischer reaktor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/005939

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004558069

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057010736

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A59799

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003789224

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057010736

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003789224

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003789224

Country of ref document: EP