WO2004051824A1 - Elektrische maschine, insbesondere bürstenloser synchronmotor - Google Patents

Elektrische maschine, insbesondere bürstenloser synchronmotor Download PDF

Info

Publication number
WO2004051824A1
WO2004051824A1 PCT/DE2003/001714 DE0301714W WO2004051824A1 WO 2004051824 A1 WO2004051824 A1 WO 2004051824A1 DE 0301714 W DE0301714 W DE 0301714W WO 2004051824 A1 WO2004051824 A1 WO 2004051824A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
rotor
machine according
permanent magnets
rotor core
Prior art date
Application number
PCT/DE2003/001714
Other languages
English (en)
French (fr)
Inventor
Susanne Evans
Steven-Andrew Evans
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP03737910A priority Critical patent/EP1570564B1/de
Priority to JP2004555976A priority patent/JP2006509483A/ja
Priority to US10/499,093 priority patent/US7233090B2/en
Priority to DE50312936T priority patent/DE50312936D1/de
Publication of WO2004051824A1 publication Critical patent/WO2004051824A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the invention is based on an electrical machine, in particular a brushless synchronous motor, according to the preamble of claim 1.
  • the "buried" permanent magnets are mostly rectangular and can easily be cut from a large block of the permanent magnet material, which saves costs compared to a shell segment magnet.
  • Such a known brushless synchronous motor with "internally buried” permanent magnets, also called an IPM motor, tends, even when optimized, to have a significantly higher cogging torque and a higher torque ripple than a comparable motor with shell-shaped permanent magnet segments on the rotor surface.
  • the electrical machine according to the invention in particular the brushless synchronous motor according to the invention, with the features of claim 1 has the advantage of a significantly reduced cogging torque and a significantly lower torque ripple compared to the known IPM motor.
  • the manufacturing costs are significantly lower and. are on the same level as for the well-known IPM motor.
  • the course of the induced voltage or EMF becomes different from that of the known IPM motors with an approximately trapezoidal shape Voltage curve - sinusoidal, so that the distortion factor of the EMF is smaller, so that the torque ripple is smaller when using sinusoidal supply current.
  • the peak value of the EMF increases, and with it the average torque output by the motor if no pre-commutation is used.
  • the magnetic anisotropy of the pole pieces reduces the iron losses in the pole pieces and also the transverse armature field. For high phase currents, there is a reduced limb compared to the known IPM motors (this is the ratio of the transverse inductance L q to the longitudinal inductance L). which should ideally be 1, which also reduces the torque ripple.
  • the permanent magnets are rectangular and have a direction of magnetization running parallel to the normal on the larger magnetic surfaces.
  • the preferred direction of the greater magnetic conductivity or relative permeability of the pole shoes is oriented such that it points in the direction of magnetization of the permanent magnets.
  • a plurality of spaced-apart flow barriers are worked into the pole shoes, which run parallel to the radial salient pole axis.
  • the flow barriers are preferably formed by cutouts in the pole pieces, alternatively but can also be realized by inclusions made of magnetically non-conductive material.
  • the formation of the flow barriers as recesses has the advantage that the mass of the pole shoes is reduced, the reduction being about 34%, for example for a six-pole or four-pole version of the rotor.
  • the reduced mass leads to a reduction in the moment of inertia, which in turn improves the dynamic properties of the electrical machine.
  • the reduced centrifugal force allows a higher speed with the same radial land width.
  • the pole shoes are made of 2D anisotropic SMC (Soft Magnetic Composite) powder iron material to achieve the magnetic anisotropy.
  • the magnetic property of this material in the preferred direction is approximately four to five times better than perpendicular to the preferred direction, for example the relative permeability in the preferred direction is approximately 800 and the relative permeability perpendicular to the preferred direction is approximately 200.
  • FIG. 1 shows a cross section of a six-pole brushless synchronous motor, shown schematically, 2 is an enlarged view of section II in Fig. 1 with the river course shown,
  • FIG. 3 different diagrams of the properties to 9 of the engine to illustrate the
  • FIG. 10 shows a section of a cross section of a brushless synchronous motor according to a further exemplary embodiment, shown schematically.
  • the brushless synchronous motor shown schematically in cross section in FIG. 1 as an exemplary embodiment of a general electrical machine is designed as an internal rotor motor and has a rotor 12 equipped with permanent magnets 11 and a stator 14 concentrically surrounding the rotor 12 to form a working air gap 13.
  • the stator 14 consists of a yoke ring 15 and a plurality of stator teeth 16 which project radially inward from the yoke ring 15 and are arranged equidistantly in the circumferential direction.
  • An annular coil 17 is wound on each stator tooth 16, only the annular coils 17 of a phase or a phase of the stator winding being shown in FIG. 1.
  • FIG. 1 In the embodiment of FIG.
  • the stator winding is three-phase or three-stranded, each with three ring coils 17 connected in series or in parallel. Accordingly, the number of stator teeth 16 is nine.
  • the rotor 12 of the six-pole synchronous motor for example, has six salient poles 18, each with an enclosed permanent magnet 11 and a pole piece 19 that extends radially outward toward the air gap 13.
  • the rotor 12 has a polygonal, prism-shaped rotor core 20, which is a hexagonal prism in the exemplary embodiment of the six-pole synchronous motor.
  • a central, cylindrical opening 26 serves to push the rotor core 20 onto a rotor shaft.
  • each prism side of the hexagonal rotor core 20 there is in each case a permanent magnet 11 designed as a flat cuboid with its large magnetic surface 111 (FIG. 2), so that the normal points in the radial direction on the magnetic surface.
  • the magnetic surface 112 of the same size facing away from this magnetic surface 111 is covered by the pole shoes 19.
  • the pole shoes 19 of all salient poles 18, as seen in the circumferential direction, abut one another in one piece and are here integrally connected to the rotor core 20 by means of narrow radial webs 21, the radial webs 21 projecting from the edges of the hexagonal prism.
  • the rotor core 20 with pole pieces 19 and radial webs 21 is composed of a large number of one-piece, profiled sheet-metal fins lying one against the other.
  • the permanent magnets 11 received in the salient poles 18 are magnetized in such a way that their direction of magnetization runs parallel to the normal on the large magnetic surfaces 111, 112, the magnetization direction being rotated through 180 ° in the case of successive permanent magnets 11 in the circumferential direction, so that in adjacent salient poles 18 Magnetization direction is opposite.
  • the pole shoes 19 arranged upstream of the permanent magnets 11 towards the air gap 13 are magnetically anisotropic, and they have a preferred direction of greater magnetic conductivity or permeability that runs parallel to the radial salient pole axis, i.e. with the direction of magnetization Permanent magnets 11 matches.
  • This anisotropy of the salient poles 18 forces the magnetic flux in the salient poles 18 in a parallel direction, as can be seen from the course of the flux lines shown in FIG. 2.
  • the magnetic anisotropy is achieved by a plurality of flow barriers 22 which are incorporated into the pole shoes 19 at a distance from one another in such a way that they run parallel to the radial salient pole axis.
  • the flow barriers 22 for the magnetic flux are realized by recesses 23 which, together with the sheet metal cut of the laminations for the rotor 12, are punched out in a comb-like manner with comb openings facing the sheet metal core, which are in contact with the magnetic surface 112 when the permanent magnets 11 are then inserted.
  • the number of recesses 23 per pole shoe 19 is selected depending on the width of the salient poles 18, that is to say the width of the permanent magnets 11 and pole shoes 19, as seen in the circumferential direction, and the thickness of the laminations.
  • the number of cutouts 23 is preferably as large as possible (approximately ten to twenty in the case of small motors), the number of cutouts 23 increasing on the circumference as the number of poles of the synchronous motor increases.
  • the flow barriers can alternatively also be formed by inclusions made of magnetically non-conductive material, the inclusions again being arranged at a parallel distance from one another in the pole shoes 19.
  • FIGS. 3 to 9 illustrate the advantageous electromagnetic properties of the novel, previously described synchronous motor according to FIGS. 1 and 2 in comparison to a known, identically designed IPM motor without flow barriers.
  • the curves marked with "1" in the diagrams identify the synchronous motor with flow barriers according to FIGS. 1 and 2, the curves marked with "2" belong to the known, conventional IPM motor without flow barriers in the pole pieces.
  • the various electromagnetic properties of the synchronous motors according to the diagrams in FIGS. 3-5 and FIGS. 7 and 8 are each shown as a function of the magnet width b, as defined in FIG. 2.
  • the magnet width b is given in electrical angular degrees.
  • the results shown refer to motors without tapered rotors or stators.
  • the diagram in FIG. 3 shows the cogging torque curve as a function of the magnet width b.
  • the optimal angle of the magnet width b of the synchronous motor with flux barriers is approximately 128 ° electrical, at which a peak-to-peak value of the cogging torque of only 0.05Nm is generated, compared to an optimal value of 0.57Nm for the known IPM motor electrical at an optimal angle of the magnet width of 120 °.
  • the anisotropic salient poles 18 with the multiple, parallel flow barriers 22 thus make one 91% reduction in the minimum peak-peak value of the past moment achieved. It should be noted that this value of 0.05 Nm obtained is also better than the minimum value which is generated by a comparable motor with shell magnets on the surface of the rotor 12.
  • the diagram in FIG. 4 shows the distortion factor of the induced voltage curve depending on the magnet width b.
  • a distortion factor of the voltage curve of 1% is generated, in comparison with the optimal value of 2.2% for the conventional IPM motor without anisotropy at an optimal angle of the magnet width of 127 ° electrical.
  • This factor of 1.0% is identical to the minimum value that is generated by a comparable motor with shell segments on the surface of the rotor.
  • FIG. 5 shows the peak values of the fundamental oscillation of the course of the induced voltage (electromotive force - EMF) over the magnet width b.
  • the peak of the fundamental vibration value of the synchronous motor with flux barriers is on average 1.2% higher than with the known IPM motor for all magnet widths.
  • the maximum increase in the peak of the fundamental vibration is 8.5% higher than with the known IPM motor with a magnet width of 120 ° electrical.
  • Fig. 6 shows the course of the induced voltage (EMF) of a string of the synchronous motor with flow barriers in comparison to the known IPM motor without flow barriers, namely for an identical magnet width of 140 ° electrical. Due to the harmonic distortion generated by the synchronous motor with flow barriers of only 1.0% compared to 3.9% of the known IPM-Moror (see FIG. 4), the course of the EMF is significantly more sinusoidal than with the well-known IPM motor, where a more trapezoidal course can be observed.
  • EMF induced voltage
  • Fig. 7 shows the torque ripple of both motors to be compared with different magnet widths b.
  • the optimal value of the synchronous motor with flow barriers is approximately 133 ° electrical, whereby a peak-peak value of the torque ripple of only 0.34 mm is achieved, compared with an optimal value of 0.48 nm for the known IPM motor for one optimum angle of the magnet width of 120 "electrical.
  • a 29% reduction in the peak peak value of the torque ripple is achieved. It should be noted that this ripple of 0.34 Nm is also better is the minimum value that is achieved on a comparable motor with shell segments on the surface of the rotor 12.
  • Diagram 9 shows the limb L q / L d of the two motors as a function of the RMS value of the phase current.
  • the motor should have a limb of 1.0% across the entire phase current spectrum. This condition is used by motors with cup magnets met on the surface of the rotor. If the transverse axis inductance L q is larger than the longitudinal axis inductance L d , this can lead to an increase in the torque ripple.
  • the longitudinal axis flow path becomes saturated as the phase current increases, as a result of which the longitudinal axis inductance L d decreases.
  • the cross-axis flow path is not saturated and therefore the cross-axis inductance L q remains approximately constant with an increase in the phase current. Because of this behavior, the leginess of the known IPM motor increases with the phase current (cf. curve 2 in FIG. 9).
  • the maximum leg length of the known IPM motor is 1.45 effective at 40A phase current.
  • the longitudinal axis and the transverse axis flow path become saturated when the phase current is increased.
  • the cross-axis inductance drop is lower than the longitudinal-axis inductance drop.
  • the leg angle of 1.0 is not reached, the leg angle is greatly reduced compared to the known IPM motor and in this example is only 1.15 effective from 15A phase current.
  • the pole shoes 19 are made of 2D anisotropic SMC (soft magnetic composite) powder iron material in order to achieve the magnetic anisotropy in the salient poles 18.
  • This material has a preferred direction of magnetization or magnetic permeability, as indicated by arrow 24 in FIG. 10.
  • the magnetic properties of the Materials in this magnetic preferred direction are much better, currently about four to five times, than the magnetic properties of this material perpendicular to the preferred direction.
  • the relative permeability of the material in the preferred direction (arrow 24) is approximately 800, while the maximum relative permeability transverse to the preferred direction (perpendicular to arrow 24) is approximately 200.
  • This core-oriented SMC powder iron material also achieves a parallel flow in the pole shoes 19 as in the case of the formation of flow barriers, which leads to the advantageous properties of the motor described.
  • the magnetization direction 27 of the permanent magnet 11 is symbolized by arrow 27 in FIG. 10.
  • the magnetization direction 27 is inverse in the two adjacent permanent magnets 11.
  • the rotor core 20 is designed as a polygonal prism and, as shown, is a hexagonal prism with a six-pole design of the synchronous motor.
  • the parallelepiped-shaped permanent magnets 11 each rest on a surface of the hexagonal prism and are covered on their side facing away from them by a pole piece 19.
  • the pole pieces 19 are enclosed by a concentric protective tube 25 made of magnetically non-magnetically or magnetically poorly conductive material, which protects the SMC material of the pole pieces 19 and the rotor 12 as a whole.
  • the rotor core 20 is made of solid steel or is in turn composed of a plurality of sheet metal fins lying against one another, each of which has a hexagonal profile with a punched-out, central, circular opening 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Brushless Motors (AREA)

Abstract

Es wird eine elektrische Maschine, insbesondere ein bürstenloser Sy~chronmotor, angegeben, der einen Stator (14) und einen Rotor (12) mit über den Umfang verteilt angeordneten Schenkelpolen (18) aufweist, die jeweils einen eingeschlossenen Permanentmagneten (11) und einen sich daran radial nach aussen fortsetzenden, einen Luftspalt (13) zwischen Stator (14) und Rotor (12) begrenzenden Polschuh (19) besitzen. Zur Erzielung eines kleinen Rastmoments und einer geringen Drehmomentenwelligkeit, sind die Polschuhe (19) magnetisch anisotrop mit parallel zur radialen Schenkel_polachse verlaufender Vorzugsrichtung der grösseren magnetischen Leitfähigkeit ausgebildet.

Description

Elektrische Maschine, insbesondere burstenloser Synchronmotor
Stand der Technik
Die Erfindung geht aus von einer elektrischen Maschine, insbesondere einem burstenlosen Synchronmotor,- nach dem Oberbegriff des Anspruchs 1.
Bei herkömmlichen, permanentmagneterregten, burstenlosen Synchronmotoren, die als Innenlaufermotoren konzipiert sind, sind die das Erregerfeld im Arbeitsluftspalt zwischen Rotor und Stator erzeugenden Permanentmagnete als Schalensegmente auf der Oberflache des Rotors fixiert. Ein solcher Synchronmotor weist, wenn er optimiert ist, ein niedriges Rastπioment und eine geringe Drehmomenuenwelligkeit auf was sehr gunstig für bestimmte Anwendungen des Motors ist, vvo ein sehr glattes Drehmoment gefordert wird. Der Nachteil dieses Motors ist der hohe Gestehungspreis, der insbesondere m der Herstellung der schalenformigen Permanentmagnete begründet ist, die zur Erzeugung der Schalenform geschliffen werden müssen . Um die Herstellungskosten zu reduzieren, sind daher bürstenlose Synchronmotoren entwickelt worden, bei denen die Permanentmagnete in den Rotor eingebettet, darin "vergraben" sind (EP 1 028 047 A2 ) . Die "vergrabenen" Permanentmagnete sind meist rechteckförmig und lassen sich einfach aus einem großen Block des Permanentmagnetmaterials schneiden, was gegenüber einem Schalensegmentmagneten eine Kosteneinsparung mit sich bringt. Ein solcher bekannter bürstenloser Synchronmotor mit "innen vergrabenen" Permanentmagneten, auch IPM-Motor genannt, neigt selbst bei Optimierung zu einem wesentlich höheren Rastmoment und einer höheren Drehmomentenwelligkeit als ein vergleichbarer Motor mit schalenförmigen PermanentmagnetSegmenten auf der Rotoroberfläche .
Vorteile der Erfindung
Die er indungsgemäße elektrische Maschine, insbesondere der erfindungsgemäße bürstenlose Synchronmotor, mit den Merkmalen des Anspruchs 1 hat gegenüber dem bekannten IPM-Motor den Vorteil eines wesentlich reduzierten Rastmoments und einer wesentlich geringeren Drehmomentenwelligkeit. Gegenüber dem bekannten, bürstenlosen Synchronmotor mit schalenförmigen Permanentmagnetsegmenten auf der Oberfläche des Rotors sind die Herstellungskosten wesentlich niedriger und. liegen auf dem gleichen Niveau wie für den bekannten IPM-Motor.
Durch die erfindungsgemäße magnetische Anisotropie der Polschuhe, also der den "vergrabenen" Permanentmagneten hin zum Arbeitsluftspalt vorgelagerten Bereiche des Rotors , wird der Verlauf der induzierten Spannung oder EMK - anders als bei den bekannten IPM-Motoren mit etwa trapezförmigen Spannungsverlauf - sinusförmig, so daß der Klirrfaktor der EMK kleiner ist, damit bei Verwendung von sinusförmigem Speisestrom die Drehmomentenwelligkeit kleiner ist. Der Spitzenwert der EMK steigt und damit auch das vom Motor abgegebene mittlere Drehmoment, wenn keine Vorkommutierung verwendet wird. Weiterhin werden durch die magnetische Anisotropie der Polschuhe die Eisenverluste in den Polschuhen und auch das Ankerquerfeld reduziert. Für hohe Strangströme ergibt sich eine gegenüber den bekannten IPM-Motoren verringerte Schenkeligkeit (das ist das Verhältnis der Querinduktivität Lq zur Längsinduktivität L ) . die idealerweise 1 sein soll, was ebenfalls die Drehmomentenwelligkeit reduziert .
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen elektrischen Maschine möglich.
Gemäß einer bevorzugten Ausführungsform der Erfindung sind die Permanentmagnete rechteckförmig ausgebildet und weisen eine zur Normalen auf den größeren Magnetflächen parallel verlaufende Magnetisierungsrichtung auf. Die Vor∑ugsrichtung der größeren magnetischen Leitfähigkeit oder relativen Permeabilität der Polschuhe ist so ausgerichtet, daß sie in die Magnetisierungsrichtung der Permanentmagnete weist .
Gemäß einer vorteilhaften Ausführungsform der Erfindung sind zur Erzielung der magnetischen Anisotropie in die Polschuhe eine Mehrzahl von voneinander beabstandeten Flußbarrieren eingearbeitet, die parallel zur radialen Schenkelpolachse verlaufen. Vorzugsweise werden die Flußbarrieren von Aussparungen in den Polschuhen gebildet, können alternativ aber auch durch Einschlüsse aus magnetisch nichtleitfähigem Material realisiert werden. Die Ausbildung der Flußbarrieren als Aussparungen hat den Vorteil, daß die Masse der Polschuhe reduziert wird, wobei die Reduzierung z.B. für eine sechspolige oder vierpolige Ausführung des Rotors ca. 34% beträgt. Die reduzierte Masse führt zu einer Verringerung des Trägheitsmoments, was wiederum die dynamischen Eigenschaften der elektrischen Maschine verbessert. Die verringerte Fliehkraft erlaubt bei gleicher Radialstegbreite eine höhere Drehzahl .
Gemäß einer alternativen Ausführungsform der Erfindung sind zur Erzielung der magnetischen Anisotropie die Polschuhe aus 2D-anisotroρem SMC (Soft Magnetic Composite)- Pulvereisenmaterial hergestellt. Die magnetische Eigenschaft dieses Materials ist in der Vorzugsrichtung ungefähr vier- bis fünfmal besser als senkrecht zur Vorzugsrichtung, wobei beispielsweise die relative Permeabilität in Vorzugsrichtung ca. 800 und die relative Permeabilität senkrecht zur Vorzugsrichtung ca. 200 beträgt.
Zeichnung
Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 einen Querschnitt eines sechspoligen bürstenlosen Synchronmotors, schematisiert dargestellt, Fig. 2 eine vergrößerte Darstellung des Ausschnitts II in Fig. 1 mit eingezeichnetem Flußverlauf,
Fig. 3 verschiedene Diagramme der Eigenschaften bis 9 des Motors zur Verdeutlichung der
Vorteile gegenüber dem bekannten IPM- Motor,
Fig. 10 ausschnittweise einen Querschnitt eines bürstenlosen Synchronmotors gemäß einem weiteren Ausführungsbeispiel, schematisiert dargestellt.
Beschreibung der Ausführungsbeispiele
Der in Fig. 1 im Querschnitt schematisiert dargestellte bürstenlose Synchronmotor als Ausführungsbeispiel für eine allgemeine elektrische Maschine ist als Innenläufermotor ausgeführt und weist einen mit Permanentmagneten 11 bestückten Rotor 12 und einen den Rotor 12 unter Ausbildung eines Arbeitsluftspalts 13 konzentrisch umschließenden Stator 14 auf. Der Stator 14 besteht aus einem Rückschlußring 15 und einer Vielzahl von Statorzähnen 16, die vom Rückschlußring 15 radial nach innen vorstehen und in Umfangsrichtung äquidistant angeordnet sind. Auf jedem Statorzahn 16 ist eine Ringspule 17 aufgewickelt, wobei in Fig. 1 nur die Ringspulen 17 einer Phase oder eines Strangs der Statorwicklung dargestellt ist. Im Ausführungsbeispiel der Fig. 1 ist die Statorwicklung dreiphasig oder dreisträngig mit jeweils drei in Reihe oder parallel geschalteten Ringspulen 17 ausgeführt . Entsprechend beträgt die Anzahl der Statorzähne 16 neun. Der Rotor 12 des beispielhaft sechspolig ausgeführten Synchronmotors weist sechs Schenkelpole 18 mit jeweils einem eingeschlossenen Permanentmagneten 11 und einem sich daran radial nach außen zum Luftspalt 13 hin fortsetzenden Polschuh 19 auf. Der Rotor 12 hat einen polygonalen, prismenförmigen Rotorkern 20, der im Ausführungsbeispiel des sechspoligen Synchronmotors ein Sechskantprisma ist. Eine zentrale, zylinderförmige Öffnung 26 dient zum Aufschieben des Rotorkerns 20 auf eine Rotorwelle. An jeder Prismenseite des hexagonalen Rotorkerns 20 liegt jeweils ein als flacher Quader ausgeführter Permanentmagnet 11 mit seiner großen Magnetfläche 111 an (Fig. 2), so daß die Normale auf der Magnetfläche in Radialrichtung weist. Die von dieser Magnetfläche 111 abgekehrte gleich große Magnetfläche 112 wird von den Polschuhen 19 überdeckt. Die Polschuhe 19 aller Schenkelpole 18 stoßen in Umfangsrichtung gesehen einstückig aneinander und sind hier mittels schmaler Radialstege 21 an dem Rotorkern 20 einstückig angebunden, wobei die Radialstege 21 von den Kanten des hexagonalen Prismas abstehen. Der Rotorkern 20 mit Polschuhen 19 und Radialstegen 21 ist aus einer Vielzahl von einstückigen, aneinanderliegenden, profilierten Blechlamellen zusammengesetzt. Die in den Schenkelpolen 18 aufgenommenen Permanentmagnete 11 sind so magnetisiert, daß ihre Magnetisierungsrichtung parallel zur Normalen auf den großen Magnetflächen 111, 112 verläuft, wobei bei in Umfangsrichtung gesehen aufeinanderfolgenden Permanentmagneten 11 die Magnetisierungsrichtung um 180° gedreht ist, so daß in benachbarten Schenkelpolen 18 die Magnetisierungsrichtung entgegengesetzt ist.
Um einen sinusförmigen Verlauf der induzierten Spannung zu erzielen, die mit einem sinusförmigen Strangstrom zusammen einen Drehmomentenverlauf mit einer sehr geringen Drehmomentenwelligkeit ergibt, sind die den Permanentmagneten 11 zum Luftspalt 13 hin vorgeordneten Polschuhe 19 magnetisch anisotrop ausgebildet, wobei sie eine Vorzugsrichtung der größeren magnetischen Leitfähigkeit oder Permeabilität aufweisen, die parallel zu der radialen Schenkelpolachse verläuft, also mit der Magnetisierungsrichtung der Permanentmagnete 11 übereinstimmt. Durch diese Anisotropie der Schenkelpole 18 wird der Magnetfluß in den Schenkelpolen 18 in eine parallele Richtung gezwungen, wie dies aus dem in Fig. 2 eingezeichneten Verlauf der Flußlinien zu erkennen ist .
Bei dem in Fig. 1 und 2 dargestellten Ausführungsbeispiel des Synchronmotors ist die magnetische Anisotropie durch eine Mehrzahl von Flußbarrieren 22 erzielt, die in Abstand voneinander in die Polschuhe 19 so eingearbeitet sind, daß sie parallel zur radialen Schenkelpolachse verlaufen. Die Flußbarrieren 22 für den magnetischen Fluß sind dabei durch Aussparungen 23 realisiert, die zusammen mit dem Blechschnitt der Blechlamellen für den Rotor 12 kammartig mit zu dem Blechkern weisenden Kammöffnungen, die bei dann eingesetzten Permanentmagneten 11 an deren Magnetfläche 112 anliegen, ausgestanzt werden. Die Anzahl der Aussparungen 23 pro Polschuh 19 ist abhängig von der Breite der Schenkelpole 18, also der in Umfangsrichtung gesehenen Breite der Permanentmagnete 11 und Polschuhe 19, und der Dicke der Blechlamellen gewählt. Vorzugsweise ist die Zahl der Aussparungen 23 so groß wie möglich (bei kleinen Motoren ca. zehn bis zwanzig) , wobei die Zahl der Aussparungen 23 am Umfang mit wachsender Polzahl des Synchronmotors zunimmt. Wie hier nicht dargestellt ist, können die Flußbarrieren alternativ auch von Einschlüssen aus magnetisch nichtleitendem Material gebildet werden, wobei die Einschlüsse wiederum im Parallelabstand voneinander in den Polschuhen 19 angeordnet werden.
In den Diagrammen der Fig. 3 bis 9 werden die vorteilhaften elektromagnetischen Eigenschaften des neuartigen, vorstehend beschriebenen Synchronmotors gemäß Fig. 1 und 2 im Vergleich zu einem bekannten, gleich ausgelegten IPM-Motor ohne Flußbarrieren verdeutlicht. Die mit "1" gekennzeichneten Kurven in den Diagrammen kennzeichnen den Synchronmotor mit Flußbarrieren gemäß Fig. 1 und 2, die mit "2" gekennzeichneten Kurven sind dem bekannten, herkömmlichen IPM-Motor ohne Flußbarrieren in den Polschuhen zugehörig. Die verschiedenen elektromagnetischen Eigenschaften der Synchronmotoren gemäß den Diagrammen in Fig. 3 - 5 und Fig. 7 und 8 sind jeweils in Abhängigkeit von der Magnetbreite b dargestellt, wie sie in Fig. 2 definiert ist. Die Magnetbreite b ist in elektrischen Winkelgraden angegeben. Die dargestellten Ergebnisse beziehen sich auf Motoren ohne geschrägte Rotoren oder Statoren.
Das Diagramm in Fig. 3 zeigt den Rastmomentverlauf in Abhängigkeit von der Magnetbreite b. Der optimale Winkel der Magnetbreite b des Synchronmotors mit Flußbarrieren beträgt ungefähr 128° elektrisch, bei dem ein Spitzen-Spitzen-Wert des Rastmoments von nur 0,05Nm erzeugt wird, im Vergleich zu einem optimalen Wert von 0,57Nm für den bekannten IPM-Motor bei einem optimalen Winkel der Magnetbreite von 120° elektrisch. Durch die anisotropen Schenkelpolen 18 mit den mehrfachen, parallelen Flußbarrieren 22 wird damit eine 91%ige Reduktion des Minimal-Spitzen-Spitzen-Werts des Pastmoments erzielt. Angemerkt sei, daß dieser erzielte Wert von 0,05Nm auch besser ist als der Minimalwert, der von einem vergleichbaren Motor mit Schalenmagneten auf der Oberfläche des Rotors 12 erzeugt wird.
Das Diagramm in Fig. 4 zeigt den Klirrfaktor des induzierten Spannungsverlaufs abhängig von der Magnetbreite b. Bei 140° Magnetbreite wird ein Klirrfaktor des Spannungsverlaufs von 1% erzeugt, im Vergleich mit dem optimalen Wert von 2,2% für den herkömmlichen IPM-Motor ohne Anisotropie bei einem optimalen Winkel der Magnetbreite von 127° elektrisch. Dieser Faktor von 1,0% ist identisch dem Minimalwert, der von einem vergleichbaren Motor mit Schalensegmenten auf der Oberfläche des Rotors erzeugt wird.
Fig. 5 zeigt die Spitzenwerte der Grundschwingung des Verlaufs der induzierten Spannung (elektromotorische Kraft - EMK) über die Magnetbreite b. Die Spitze des Grundschwingungswerts des Synchronmotors mit Flußbarrieren ist durchschnittlich um 1,2% höher als bei dem bekannten IPM- Motor bei allen Magnetbreiten. Die maximale Erhöhung der Spitze der Grundschwingung ist 8,5% höher als beim bekannten IPM-Motor bei einer Magnetbreite von 120° elektrisch.
Fig. 6 zeigt den Verlauf der induzierten Spannung (EMK) eines Strangs des Synchronmotors mit Flußbarrieren im Vergleich zu dem bekannten IPM-Motor ohne Flußbarrieren, und zwar für eine gleiche Magnetbreite von 140° elektrisch. Aufgrund des von dem Synchronmotor mit Flußbarrieren erzeugten Klirrfaktors von nur 1,0% im Vergleich zu 3,9% des bekannten IPM-Morors (vgl. Fig. 4) ist der Verlauf der EMK deutlich sinusförmiger als beim bekannten IPM-Motor, wo ein mehr trapezförmiger Verlauf zu beobachten ist.
Fig. 7 zeigt die Drehmomentenwelligkeit beider zu vergleichender Motoren bei verschiedenen Magnetbreiten b. Der optimale Wert des Synchronmotors mit Flußbarrieren beträgt ungefähr 133° elektrisch, wobei ein Spitzen-Spit∑en-Wert der Drehmomentenwelligkeit von nur 0,34Mm erreicht wird, im Vergleich mit einem optimalen Wert von 0,48Nm für den bekannten IPM-Motor bei einem optimalen Winkel der Magnetbreite von 120 "elektrisch. Bei dem erfindungsgemäßen Synchronmotor wird durch die Anwendung der anisotropen Schenkelpolgeometrie mit mehrfachen, parallelen Flußbarrieren eine 29%ige Reduktion des Spitzen-Spitzenwerts der Drehmomentenwelligkeit erreicht. Angemerkt sei, daß diese Welligkeit von 0,34Nm ebenfalls besser ist als der minimale Wert, der bei einem vergleichbaren Motor mit Schalensegmenten auf der Oberfläche des Rotors 12 erreicht wird.
Fig. 8 zeigt das mittlere Drehmoment in Abhängigkeit von der Magnetbreite b. Das mittlere Drehmoment des Synchronmotors mit Flußbarrieren ist bei allen Magnetbreiten durchschnittlich 3,1% höher als beim bekannten IPM-Motor. Die maximale Erhöhung des mittleren Drehmoments beträgt 4,8%. Dabei wurde keine Vorkommutierung verwendet.
Diagramm 9 zeigt die Schenkeligkeit Lq/Ld der beiden Motoren in Abhängigkeit von dem Effektivwert des Strangstroms. Für eine Anwendung des Synchronmotors, bei der eine sehr niedrige Drehmomentenwelligkeit gefordert wird, sollte der Motor über das ganze Strangstromspektrum eine Schenkeligkeit von 1,0% haben. Diese Bedingung wird von Motoren mit Schalenmagneten auf der Oberfläche des Rotors erfüllt. Ist die Querachsen- Induktivität Lq größer als die Längsachsen-Induktivität Ld, so kann dies zu einer Erhöhung der Drehmomentenwelligkeit führen.
Bei dem bekannten IPM-Motor ohne Flußbarrieren wird bei einer Erhöhung des Strangstroms der Längsachsen-Flußpfad gesättigt, wodurch die Längsachsen-Induktivität Ld sinkt. Der Querachsen-Flußpfad wird jedoch nicht gesättigt und deshalb bleibt die Querachsen-Induktivität Lq bei einer Erhöhung des Strangstroms annähernd konstant. Aufgrund dieses Verhaltens steigt die Schenkeligkeit des bekannten IPM-Motors mit dem Strangstrom an (vgl. Kurve 2 in Fig. 9). In diesem Beispiel beträgt die maximale Schenkeligkeit des bekannten IPM-Motors 1,45 bei 40A Strangstrom effektiv. Beim erfindungsgemäßen Synchronmotor mit Flußbarrieren wird bei einer Erhöhung des Strangstroms der Längsachsen- und der Querachsen-Flußpfad gesättigt. Der Querachsen-Induktivitätsabfall ist jedoch niedriger als der Längsachsen-Induktivitätsabfall . Die Schenkeligkeit von 1,0 wird zwar nicht erreicht, doch wird gegenüber dem bekannten IPM-Motor die Schenkeligkeit stark verringert und beträgt in diesem Beispiel nur noch 1,15 ab 15A Strangstrom effektiv.
Bei dem in Fig. 10 ausschnittweise im Querschnitt dargestellten, modifizierten Synchronmotor sind zur Erzielung der magnetischen Anisotropie in den Schenkelpolen 18 die Polschuhe 19 aus 2D-anisotropem SMC (Soft Magnetic Composite ) -Pulvereisenmaterial hergestellt. Dieses Material hat eine Vorzugsrichtung der Magnetisierung bzw. der magnetischen Permeabilität, wie sie in Fig. 10 durch den Pfeil 24 angedeutet ist. Die magnetischen Eigenschaften des Materials in dieser magnetischen Vorzugsrichtung sind wesentlich besser, z.Z. ungefähr vier bis fünfmal, als die magnetischen Eigenschaften dieses Materials senkrecht zur Vorzugsrichtung. Beispielsweise beträgt die relative Permeabilität des Materials in Vorzugsrichtung (Pfeil 24) ungefähr 800, während die maximale, relative Permeabilität quer zur Vorzugsrichtung (senkrecht zu Pfeil 24) ca. 200 ist. Auch durch dieses kernorientierte SMC-Pulvereisenmaterial wird ein paralleler Flußverlauf in den Polschuhen 19 wie bei der A.usbildung von Flußbarrieren erzielt, was zu den beschriebenen vorteilhaften Eigenschaften des Motors führt. Die Magnetisierungsrichtung 27 des Permanentmagneten 11 ist in Fig. 10 durch Pfeil 27 symbolisiert. In den beiden benachbarten Permanentmagneten 11 ist die Magnetisierungsrichtung 27 invers.
Auch bei dem Rotor gemäß Fig. 10 ist der Rotorkern 20 als polygonales Prisma ausgeführt und ist bei einer - wie dargestellt - sechspoligen Auslegung des Synchronmotors ein Sechskantprisma. Die ebenfalls quaderförmigen Permanentmagnete 11 liegen an jeweils einer Fläche des Sechskantprismas an und werden auf ihrer davon abgekehrten Seite von einem Polschuh 19 überdeckt. Die Polschuhe 19 sind von einem konzentrischen Schutzrohr 25 aus magnetisch nicht oder magnetisch schlecht leitendem Material umschlossen, das das SMC-Material der Polschuhe 19 und den Rotor 12 insgesamt schützt. Der Rotorkern 20 besteht aus massivem Stahl oder ist wiederum aus einer Vielzahl von aneinanderliegenden Blechlamellen zusammengesetzt, die jeweils ein Sechskantprofil mit ausgestanzter, zentraler, kreisförmiger Öffnung 26 aufweisen.

Claims

Ansprüche
1. Elektrische Maschine, insbesondere bürstenloser Synchronmotor, mit einem Stator (14) und einem Rotor (12) mit über den Umfang verteilt angeordneten Schenkelpolen
(18), die jeweils einen eingeschlossenen Permanentmagneten (11) und einen sich daran radial nach außen fortsetzenden, einen Luftspalt (13) zwischen Stator (14) und Rotor (12) begrenzenden Polschuh (19) aufweisen, dadurch gekennzeichnet, daß die Polschuhe
(19) magnetisch anisotrop mit parallel zur radialen Schenkelpolachse verlaufender Vorzugsrichtung der größeren magnetischen Leitfähigkeit ausgebildet sind.
2. Maschine nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzielung der magnetischen Anisotropie in die
Polschuhe (19) eine Mehrzahl von voneinander beabstandeten Flußbarrieren (22) eingearbeitet sind, die parallel zur radialen Schenkelpolachse verlaufen.
3. Maschine nach Anspruch 2, dadurch gekennzeichnet, daß die Flußbarrieren (22) von Einschlüssen aus magnetisch nicht leitendem Material gebildet sind.
4. Maschine nach Anspruch 2, dadurch gekennzeichnet, daß die Flußbarrieren (22) von Aussparungen (23) in den
Polschuhen (19) gebildet sind.
5. Maschine nach Anspruch 4, dadurch gekennzeichnet, daß der Rotor (12) eine polygonalen, prismenförmigen Rotorkern (20) aufweist, an dem die Permanentmagnete
(11) anliegen, daß die Polschuhe (19) die Permanentmagnete (11) auf deren vom Rotorkern (20) abgekehrten Seite überdecken, in Umfangsrichtung einstückig aneinanderstoßen und an den Stoßstellen mittels schmaler Radialstege (21) an dem Rotorkern (20) einstückig angebunden sind, daß der Rotorkern (20) mit Polschuhen (19) und Radialstegen (21) aus einer Vielzahl von einstückigen, aneinanderliegenden Blechlamellen zusammengesetzt ist und daß die Aussparungen (23) kammartig mit zu Einschuböffnungen für die Permanentmagnete (11) weisenden Kammöffnungen in den Blechlamellen ausgestanzt sind.
6. Maschine nach Anspruch 5, dadurch gekennzeichnet, daß die Anzahl der Aussparungen (23) pro Polschuh (19) abhängig von der Schenkelpolbreite und der Dicke der Blechlamellen gewählt ist.
7. Maschine nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzielung der magnetischen Anisotropie die Polschuhe (19) aus 2D-anisotropem SMC-Pulvereisenmaterial hergestellt sind.
8. Maschine nach Anspruch 7, dadurch gekennzeichnet, daß der Rotor (12) einen polygonalen, prismenförmigen Rotorkern (20) aufweist, an dem die Permanentmagnete (11) anliegen, und daß die Polschuhe (19) die Permanentmagnete (11) auf deren vom Rotorkern (20) abgekehrten Seite überdecken.
9. Maschine nach Anspruch 8, dadurch gekennzeichnet, daß die Polschuhe (19) von einem zur Rotorachse konzentrischen Schutzrohr (25) aus magnetisch nicht oder nur schlecht leitendem Material umschlossen sind
10. Maschine nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, daß die Permanentmagnete (11) quaderförmig ausgebildet sind und eine zur Normalen auf den größten Magnetflächen (111, 112) parallel verlaufende Magnetisierungsrichtung aufweisen und daß die Vor∑ugsrichtung der größeren magnetischen Leitfähigkeit der Polschuhe (19) mit der Magnetisierungsrichtung (27) der Permanentmagnete (11) zusammenfällt .
PCT/DE2003/001714 2002-12-04 2003-05-26 Elektrische maschine, insbesondere bürstenloser synchronmotor WO2004051824A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03737910A EP1570564B1 (de) 2002-12-04 2003-05-26 Elektrische maschine, insbesondere bürstenloser synchronmotor
JP2004555976A JP2006509483A (ja) 2002-12-04 2003-05-26 電気機械、とりわけブラシレス同期電動機
US10/499,093 US7233090B2 (en) 2002-12-04 2003-05-26 Electric machine, in particular brushless synchronous motor
DE50312936T DE50312936D1 (de) 2002-12-04 2003-05-26 Elektrische maschine, insbesondere bürstenloser synchronmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10256523A DE10256523A1 (de) 2002-12-04 2002-12-04 Elektrische Maschine, insbesondere bürstenloser Synchronmotor
DE10256523.6 2002-12-04

Publications (1)

Publication Number Publication Date
WO2004051824A1 true WO2004051824A1 (de) 2004-06-17

Family

ID=32335937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001714 WO2004051824A1 (de) 2002-12-04 2003-05-26 Elektrische maschine, insbesondere bürstenloser synchronmotor

Country Status (5)

Country Link
US (1) US7233090B2 (de)
EP (1) EP1570564B1 (de)
JP (1) JP2006509483A (de)
DE (2) DE10256523A1 (de)
WO (1) WO2004051824A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1670119A1 (de) * 2004-12-08 2006-06-14 Samsung Electronics Co., Ltd. Motor mit optimierter Magnetflussverteilung
EP1710891A1 (de) * 2005-04-04 2006-10-11 LG Electronics Inc. Motor
US20070001533A1 (en) * 2005-06-30 2007-01-04 Jansen Patrick L System and method for protecting magnetic elements from demagnetization
US7282827B2 (en) * 2003-09-19 2007-10-16 Kabushiki Kaisha Toshiba Permanent magnet motor
WO2008098445A1 (fr) * 2007-02-15 2008-08-21 Hobat Resources (H.K.) Company Limited Moteur sans balai d'entraînement différent de 360 degrés
DE102009049600A1 (de) * 2009-10-16 2011-04-21 Minebea Co., Ltd. Elektrische Maschine
US8084910B2 (en) * 2004-12-23 2011-12-27 Abb Oy Rotor structure for a permanent-magnet machine

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668721B2 (ja) * 2004-11-30 2011-04-13 日立オートモティブシステムズ株式会社 永久磁石式回転電機
EP1746707A1 (de) * 2005-07-20 2007-01-24 Siemens Aktiengesellschaft Permanentmagneterregte bürstenlose Synchronmaschine mit eingebetteten Magneten und mit trapezförmig verlaufender elektromagnetischer Kraft
US20070075602A1 (en) * 2005-09-30 2007-04-05 Yoshiki Nakano DC motor and manufacturing method for the same
JP2007104738A (ja) * 2005-09-30 2007-04-19 Ebara Corp ブラシレス同期電動機及びその駆動制御装置
JP2008075476A (ja) * 2006-09-19 2008-04-03 Kawamoto Pump Mfg Co Ltd 立形給水ポンプ
KR101076956B1 (ko) * 2007-02-21 2011-10-26 미쓰비시덴키 가부시키가이샤 영구자석 동기 전동기 및 밀폐형 압축기
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
US7923881B2 (en) * 2007-05-04 2011-04-12 A.O. Smith Corporation Interior permanent magnet motor and rotor
EP2304863B1 (de) * 2008-07-30 2018-06-27 Regal Beloit America, Inc. Motor mit inneren permanentmagneten mit rotor mit ungleichen polen
CN201204529Y (zh) * 2008-08-28 2009-03-04 无锡东元电机有限公司 永磁同步电机
US8336323B2 (en) * 2008-10-03 2012-12-25 Johnson Controls Technology Company Variable speed drive with pulse-width modulated speed control
JP5359452B2 (ja) * 2009-03-26 2013-12-04 トヨタ自動車株式会社 ブラシレスモータ
DE102009029472A1 (de) 2009-09-15 2011-03-24 Robert Bosch Gmbh Permanentmagneterregte elektrische Maschine mit reduziertem Lastmoment
EP2299566A1 (de) * 2009-09-17 2011-03-23 PM-Generators GmbH Wind- oder Wasserenergieanlage
JP5674791B2 (ja) * 2009-09-18 2015-02-25 ブルサ エレクトロニック アーゲー 埋め込まれた磁石を有する永久磁石励磁型同期機
JP5414900B2 (ja) * 2010-08-27 2014-02-12 三菱電機株式会社 永久磁石埋込型モータの回転子及び圧縮機及び冷凍空調装置
JP2013115899A (ja) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp 永久磁石式電動機の回転子及びその製造方法並びに永久磁石式電動機
DE112012005674T5 (de) * 2012-05-28 2014-10-09 Aida Engineering, Ltd. Drehende elektrische Maschine mit kombiniertem Drehmoment
EP2966755B1 (de) * 2013-03-08 2020-04-22 Mitsubishi Electric Corporation Wechselstrommotor mit mehreren wicklungen und mehreren phasen sowie stromlenkvorrichtung
CN105247764B (zh) * 2013-06-12 2018-05-22 三菱电机株式会社 永久磁铁埋入型电动机以及压缩机
JP6080967B2 (ja) * 2013-09-25 2017-02-15 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
WO2016031477A1 (ja) * 2014-08-25 2016-03-03 三菱電機株式会社 電動機及び圧縮機及び冷凍サイクル装置
DE102014218542A1 (de) * 2014-09-16 2016-03-17 Schaeffler Technologies AG & Co. KG Geblechter Stator für Axialmagnetlager
EP2999090B1 (de) * 2014-09-19 2017-08-30 Siemens Aktiengesellschaft Permanenterregter Läufer mit geführtem Magnetfeld
CN106797148B (zh) * 2014-10-07 2019-03-05 三菱电机株式会社 永久磁铁嵌入式电动机、压缩机以及制冷空调机
US20190181705A1 (en) * 2016-03-31 2019-06-13 Aisin Aw Co., Ltd. Rotor and method for designing rotor
US10749391B2 (en) * 2017-03-06 2020-08-18 Ford Global Technologies, Llc Electric machine rotor
US10355537B2 (en) 2017-03-27 2019-07-16 Ford Global Technologies, Llc Method for adjusting magnetic permeability of electrical steel
US10541576B2 (en) 2017-06-12 2020-01-21 Borgwarner, Inc. Electric machine with non-symmetrical magnet slots
US10385951B2 (en) 2017-10-04 2019-08-20 Schaeffler Technologies AG & Co. KG Electric axle assembly
JP7051568B2 (ja) * 2018-05-08 2022-04-11 株式会社マキタ 電動作業機
JP7053392B2 (ja) * 2018-07-13 2022-04-12 オークマ株式会社 同期電動機の回転子
US10797546B2 (en) 2019-01-08 2020-10-06 Borgwarner Inc. Interior permanent magnet electric machine with flux distributing voids
US11949291B2 (en) * 2019-02-22 2024-04-02 Mitsubishi Electric Corporation Motor having rotor with different core regions, compressor, and air conditioner having the motor
WO2021171476A1 (ja) * 2020-02-27 2021-09-02 三菱電機株式会社 電動機、ファン、及び空気調和機
GB2602985B (en) 2021-01-22 2023-01-18 Yasa Ltd Axial flux machine shoe optimisation
IT202100023435A1 (it) * 2021-09-10 2023-03-10 Hpe S R L Rotore a magneti permanenti per una macchina elettrica rotante

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538472A1 (de) * 1990-07-12 1993-04-28 Seiko Epson Corporation Läufer eines bürstenlosen motors und herstellung desselben
JPH06189481A (ja) * 1992-11-06 1994-07-08 Aichi Emerson Electric Co Ltd 回転子
JPH09131009A (ja) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp 永久磁石回転子
US5672926A (en) * 1995-02-21 1997-09-30 Siemens Aktiengesellschaft Hybrid-energized electric machine
EP0926801A2 (de) * 1997-12-26 1999-06-30 Isuzu Ceramics Research Institute Co., Ltd. Motor/Generator mit Dauermagneten
DE19851883A1 (de) * 1998-11-10 2000-05-18 Siemens Ag Permanenterregte Synchronmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1937827C3 (de) * 1969-07-25 1979-02-22 Robert Bosch Gmbh, 7000 Stuttgart Zündanlage für Brennkraftmaschinen
JPS5859368U (ja) * 1981-10-15 1983-04-21 住友特殊金属株式会社 直流モ−タ用磁気回路
FR2548843B1 (fr) * 1983-07-07 1986-11-07 Labinal Perfectionnement aux machines tournantes a aimants au rotor
US5191256A (en) * 1989-12-15 1993-03-02 American Motion Systems Interior magnet rotary machine
WO1992007407A1 (fr) * 1990-10-12 1992-04-30 Seiko Epson Corporation Rotor de moteur sans balais et fabrication dudit rotor
EP0558746B1 (de) * 1990-11-20 1996-11-06 Seiko Epson Corporation Läufer eines bürstenlosen motors
EP0729216A3 (de) * 1995-02-21 1998-03-11 Siemens Aktiengesellschaft Hybriderregte Synchronmaschine
SE9501129D0 (sv) * 1995-03-28 1995-03-28 Hoeganaes Ab Soft magnetic anisotropic composite materials
JP3308828B2 (ja) * 1996-10-18 2002-07-29 株式会社日立製作所 永久磁石回転電機及びそれを用いた電動車両
MY114070A (en) * 1997-07-22 2002-07-31 Matsushita Electric Ind Co Ltd A motor using a rotor including an interior permanent magnet
GB9903308D0 (en) 1999-02-13 1999-04-07 Trw Lucas Varity Electric Improvements relating to electrical power assisted steering assemblies
KR100373288B1 (ko) * 1999-02-22 2003-02-25 가부시끼가이샤 도시바 영구자석 및 자기저항식 회전 기계
JP2001218402A (ja) * 2000-02-04 2001-08-10 Isuzu Motors Ltd 回転電機
US6717314B2 (en) * 2002-08-28 2004-04-06 Emerson Electric Co. Interior permanent magnet motor for use in washing machines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538472A1 (de) * 1990-07-12 1993-04-28 Seiko Epson Corporation Läufer eines bürstenlosen motors und herstellung desselben
JPH06189481A (ja) * 1992-11-06 1994-07-08 Aichi Emerson Electric Co Ltd 回転子
US5672926A (en) * 1995-02-21 1997-09-30 Siemens Aktiengesellschaft Hybrid-energized electric machine
JPH09131009A (ja) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp 永久磁石回転子
EP0926801A2 (de) * 1997-12-26 1999-06-30 Isuzu Ceramics Research Institute Co., Ltd. Motor/Generator mit Dauermagneten
DE19851883A1 (de) * 1998-11-10 2000-05-18 Siemens Ag Permanenterregte Synchronmaschine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 540 (E - 1616) 14 October 1994 (1994-10-14) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 09 30 September 1997 (1997-09-30) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282827B2 (en) * 2003-09-19 2007-10-16 Kabushiki Kaisha Toshiba Permanent magnet motor
EP1670119A1 (de) * 2004-12-08 2006-06-14 Samsung Electronics Co., Ltd. Motor mit optimierter Magnetflussverteilung
US8084910B2 (en) * 2004-12-23 2011-12-27 Abb Oy Rotor structure for a permanent-magnet machine
EP1829188A4 (de) * 2004-12-23 2016-04-06 Abb Technology Ag Rotorstruktur für eine permanentmagnet-maschine
EP1710891A1 (de) * 2005-04-04 2006-10-11 LG Electronics Inc. Motor
US7474028B2 (en) 2005-04-04 2009-01-06 Lg Electronics Inc. Motor
US20070001533A1 (en) * 2005-06-30 2007-01-04 Jansen Patrick L System and method for protecting magnetic elements from demagnetization
WO2008098445A1 (fr) * 2007-02-15 2008-08-21 Hobat Resources (H.K.) Company Limited Moteur sans balai d'entraînement différent de 360 degrés
DE102009049600A1 (de) * 2009-10-16 2011-04-21 Minebea Co., Ltd. Elektrische Maschine

Also Published As

Publication number Publication date
EP1570564B1 (de) 2010-07-28
US7233090B2 (en) 2007-06-19
JP2006509483A (ja) 2006-03-16
DE10256523A1 (de) 2004-06-24
EP1570564A1 (de) 2005-09-07
DE50312936D1 (de) 2010-09-09
US20050035677A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1570564B1 (de) Elektrische maschine, insbesondere bürstenloser synchronmotor
DE69735741T2 (de) Motor
DE3700774C2 (de) Kollektorlose Gleichstrommaschine
EP2639936B1 (de) Elektrische Maschine mit permanent erregtem Läufer und zugehöriger permanent erregter Läufer
DE102015111480A1 (de) Rotor und elektrische Maschine
EP3545610B1 (de) Synchron-maschine mit magnetischer drehfelduntersetzung und flusskonzentration
EP1746707A1 (de) Permanentmagneterregte bürstenlose Synchronmaschine mit eingebetteten Magneten und mit trapezförmig verlaufender elektromagnetischer Kraft
DE10339232B4 (de) Permanentmagnet-Synchronmotor
DE4139843C1 (en) Dynamoelectric machine, esp. for car - has salient pole laminated rotor with permanent magnets between poles plus extra slip ring-fed excitation winding
WO2012101083A2 (de) Permanenterregte synchronmaschine mit einem rotor
DE102019214623A1 (de) Synchronmaschine, elektrische Antriebseinrichtung umfassend eine Synchronmaschine, sowie Ansteuerverfahren für eine Synchronmaschine
DE102014006288A1 (de) Rotor für einen Reluktanzmotor, insbesondere einen Synchron-Reluktanzmotor, Verfahren zur Herstellung eines solchen Rotors sowie Reluktanzmotor mit einem solchen Rotor
WO2013149768A2 (de) Bürstenlose elektrische maschine mit vergrabenen dauermagneten
EP1976102A2 (de) Elektrische Homopolarmaschine
DE102010044046A1 (de) Reluktanzmotor
DE102018200077A1 (de) Rotor für einen bürstenlosen Gleichstrommotor, insbesondere für einen Innenläufer-Elektromotor, und Elektromotor mit einem solchen Rotor
WO2011151138A2 (de) Elektrische maschine mit reduzierter geräuschentwicklung
DE3723099C2 (de) Dauermagneterregte Dynamomaschine mit genutetem Blechpaket
EP3525321A1 (de) Permanenterregte synchronmaschine mit reduziertem pendeldrehmoment
WO2014086514A2 (de) Radnabenmaschine, einspurfahrzeug
DE102014212870A1 (de) Dynamoelektrische Maschine mit mechanischer Feldschwächung
DE102012218980A1 (de) Läuferanordnung für eine permanentmagneterregte elektrische Maschine
DE4213372A1 (de) Elektrische Maschine, insbesondere Elektromotor
WO2015039716A1 (de) Elektrische maschine
DE69215350T2 (de) Maschine mit vielfachen magnetischen Kreisen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003737910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10499093

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004555976

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003737910

Country of ref document: EP