WO2004040741A1 - Stator einer permanentmagnetisch erregten elektrischen maschine - Google Patents

Stator einer permanentmagnetisch erregten elektrischen maschine Download PDF

Info

Publication number
WO2004040741A1
WO2004040741A1 PCT/DE2003/002239 DE0302239W WO2004040741A1 WO 2004040741 A1 WO2004040741 A1 WO 2004040741A1 DE 0302239 W DE0302239 W DE 0302239W WO 2004040741 A1 WO2004040741 A1 WO 2004040741A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
yoke
pole
permanent magnets
stator according
Prior art date
Application number
PCT/DE2003/002239
Other languages
English (en)
French (fr)
Inventor
Volker Bosch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004040741A1 publication Critical patent/WO2004040741A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets

Definitions

  • the invention is based on a stator for an electrical machine, in particular for a DC motor, according to the preamble of claim 1.
  • the stator according to the invention for an electrical machine, in particular for a DC motor, with the features of claim 1 has the advantage that magnetic material with a high electrical conductivity can be used for the permanent magnets of the excitation system, so that without Deterioration in the efficiency of the motor uses inexpensive permanent magnets and thus the manufacturing costs for the stator can be reduced.
  • the pole shoes which limit the air gap to the rotor or rotor and which are integral with the laminated yoke and the embedding of the permanent magnets in the laminated yoke at a distance from the air gap, the occurrence of eddy currents in the magnetic material is prevented, as is the case with the direct limitation of the air gap by the permanent magnets the uneven distribution of the air gap flux density caused by the anchor groove is prevented.
  • the radial thickness of the pole shoes can be adapted to the requirements of the magnetic circuit at any point, ie can be significantly reduced in the center of the pole shoe, which leads to a weight saving.
  • the yoke is subdivided into at least two adjacent yoke sections each having a pole shoe, and the yoke sections are connected to one another at their abutment points with the interposition of a permanent magnet.
  • This measure allows efficient production and simple embedding of the permanent magnets in the yoke during assembly, in particular when, according to a further embodiment of the invention, the two yoke sections are designed punk symmetrically to the stator axis, so that they are the same Punching tool can be manufactured.
  • connection between the yoke sections across the permanent magnets is established by means of Axial direction extending brackets made, which are preferably made of non-magnetic material, such as non-magnetic steel.
  • non-magnetic material such as non-magnetic steel.
  • the use of magnetically conductive material, for example magnetic steel, for the clips is possible if the resulting loss of magnetic flux can be compensated for by a correspondingly enlarged cross-sectional area of the permanent magnets.
  • the invention is based on one shown in the drawing
  • FIG. 1 shows a cross section of the stator and rotor of a direct current motor according to the prior art
  • Fig. 2 shows a cross section of the stator and rotor
  • stator poles 12 are formed by the permanent magnets 13 themselves, which are arranged in the form of shell-shaped ferrite magnets on the inside of the annular yoke 14 and immediately limit the air gap 15 to the rotor or rotor or armature 11.
  • the yoke 14 consists of a rolled sheet metal strip, the ends of which are caulked together.
  • the rotor, rotor or armature 11 enclosed by the stator 10 is grooved and carries an armature winding lying in the axial slots 16 with slot slot 19.
  • Axial grooves 16 are shown in Fig. 1, only two axial grooves 16 with an intermediate tooth 18.
  • the rotor, rotor or armature 11 is seated in a rotationally fixed manner on a shaft 17 which is rotatably mounted in a housing which does not show the stator 10 in FIG. 1.
  • the spatial distribution of the magnetic field generated in the air gap is not constant due to the groove of the armature, since a greater magnetic flux density is established via an armature tooth 18 than via a groove slot 19. If the armature rotates, then those arranged at the air gap "see" Permanent magnets 13 a changing magnetic field. If the magnetic material is electrically conductive, eddy currents are generated in the magnetic material due to these alternating components in the air gap field, which result in losses and greatly reduce the efficiency of the motor. These losses increase with the speed of the engine.
  • the DC motor according to the invention schematically outlined in FIG. 2 for an electric hand tool as an exemplary embodiment for a general electric machine is designed as a so-called internal rotor motor and has a stator 30 fixed in a motor housing (not shown) and a rotor enclosed by the stator 30 while leaving an air gap 35 or rotor 31, which is non-rotatably seated on a rotor shaft 37 rotatably mounted in the motor housing.
  • the rotor 31 which is produced by so-called punched packaging from a large number of punched-out sheet metal lamellae fixed to one another in the axial direction, is provided with a plurality of axial grooves 36, which are offset over the circumference by the same groove pitch, and are provided with groove slots 39 which are separated from one another by teeth 38.
  • a rotor, rotor or armature winding is usually located in the axial slots 36, which is not shown here for the sake of clarity.
  • the stator 30 has a yoke 34 with stator poles 32 arranged thereon for generating a magnetic field in the air gap 35.
  • the DC motor described as an exemplary embodiment is listed with two poles, so that there are a total of two stator poles 32 which are electrically offset from one another by 180 ° and spatially offset by 180 ° in the two-pole embodiment. to
  • Generation of the magnetic field is associated with a permanent magnet 33 for each stator pole 32.
  • the yoke 34 is laminated like the rotor 31 and is composed of a plurality of axially adjacent sheet metal laminations, the
  • Yoke lamellas are produced by punching and are assembled into a sheet stack by so-called punch packaging.
  • the yoke 34 is divided into two yoke sections 341, 342 which are arranged symmetrically with respect to the stator axis and which are connected to one another at their abutment points with the interposition of one permanent magnet 33 each.
  • Each yoke section 341 or 342 is equipped with a stator pole 32 which is formed by a pole shoe 40 which is integrally formed on the yoke.
  • Each pole piece 40 delimits the air gap 35 with a free, concave pole piece surface 401. Since the yoke sections 341, 342 are laminated, the integrally molded pole pieces 40 are also laminated and are also formed when the individual yoke plates are punched.
  • the permanent magnets 33 have a cuboid shape. At the abutment points of the two yoke sections 341, 342, flat abutment surfaces 341a, 341b, 342a, 342b are formed, which bear against mutually opposite cuboid surfaces, the parallel cuboid surfaces forming the contact surface facing in the direction of the
  • Each permanent magnet 33 consists of magnetic material that is electrically conductive eg made of sintered rare earth materials (NdFeB or SmCo), which are available at low production costs.
  • the two permanent magnets 33 are magnetized at right angles to their contact surfaces for the yoke sections 341, 342 and arranged so that, for example, a magnetic south pole is located on the pole piece 40 of the yoke section 341 and the pole piece 40 of the
  • Yoke section 342 forms a magnetic north pole.
  • the arrangement of the parallelepiped-shaped permanent magnets 33 is structurally such that of the two narrow cuboid surfaces, which extend transversely to the stator axis and the abutting surfaces 341 a, b and 342a, b, the lower cuboid surface 331, that of the pole shoe surface 401 of the respective pole shoe 40 closest, maintains the greatest possible distance from the pole shoe surface 401 and thus from the rotor 31. This is so that the magnetic field of the respective permanent magnet 33 closes as completely as possible via pole shoe 40 and rotor 31.
  • the two yoke sections 341, 342 are firmly connected to one another at their joints with permanent magnets 33 located therebetween by an axially extending clamp 41 spanning the permanent magnet 33.
  • the two brackets 41 are made of non-magnetic material, e.g. non-magnetic steel. In individual cases, the use of magnetic steel is also possible if there is the possibility of compensating for the resulting loss of magnetic flux through a correspondingly enlarged cross-sectional area of the permanent magnets 33.
  • the invention is not limited to the two-pole embodiment of the DC motor described.
  • 33 n yoke sections are joined to one another with the interposition of a permanent magnet, on which pole shoes 40 are formed in the same way and are electrically offset from one another by 180 °, spatially by 360 n.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Es wird ein Stator für eine elektrische Maschine, insbesondere einen Gleichstrommotor, angegeben, der ein mindestens zwei Statorpole (32) tragendes lamelliertes Joch (34) und mindestes zwei jeweils einem Statorpol (32) zugeordnete Permanentmagnete (33) zur Erzeugung eines magnetischen Feldes aufweist. Zur Realisierung von hochtourigen Maschinen mit genuteten Ankern (11) unter Verwendung von preiswerten, elektrisch leitfähigen Magnetmaterialien ohne Reduzierung des Wirkungsgrads ist jeder Statorpol (32) von einem einstückig an das Joch (34) angeformten Polschuh (40) gebildet und die mindestens zwei Permanentmagnete (33) im Joch (34) von der den Läufer (31) begrenzenden Polschuhfläche (401) entfernt eingebettet.

Description

STATOR EINER PERMANENTMAGNETISCH ERREGTEN ELEKTRISCHE
MACHINE
Die Erfindung geht aus von einem Stator für eine elektrische Maschine, insbesondere für einen Gleichstrommotor, nach dem Oberbegriff des Anspruchs 1.
Bei permanentmagnetische erregten Gleichstrommotoren werden, wenn sie für hohe Drehzahlen ausgelegt und wie üblich als Statorpole schalenförmige Permanentmagnete eingesetzt werden, ausschließlich Magnetmaterialien mit einem sehr hohen spezifischen elektrischen Widerstand verwendet, wie beispielsweise Ferrit oder kunststoffgebundene Seltene-Erden-Magnetwerkstoffe (NdFeB oder SmCo), um die durch Wirbelströme im Magnetmaterial hervorgerufenen Verluste zu reduzieren damit den Wirkungsgrad zu verbessern.
Vorteile der Erfindung
Der erfindungsgemäße Stator für eine elektrische Maschine, insbesondere für einen Gleichstrommotor, mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß für die Permanentmagnete des Erregersystems Magnetmaterial mit einer hohen elektrischen Leitfähigkeit verwendet werden kann, wodurch ohne Verschlechterung des Wirkungsgrads des Motors preiswerte Permanentmagnete eingesetzt und damit die Fertigungskosten für den Stator gesenkt werden können. Durch die Ausbildung der den Luftspalt zum Läufer oder Rotor begrenzenden, mit dem lamellierten Joch einstückigen Polschuhe und die Einbettung der Permanentmagnete in das lamellierten Joch mit Abstand vom Luftspalt wird das Auftreten von Wirbelströmen im Magnetmaterial, wie sie bei der unmittelbaren Begrenzung des Luftspalts durch die Permanetmagnete infoige der durch die Ankernutung hervorgerufenen, ungleichmäßigen Verteilung der Luftspaltflußdichte auftreten, verhindert. Durch die einstückige Ausbildung der Polschuhe mit dem Statorjoch und die Herstellung des Statorjochs einschließlich der ausgeformten Polschuhe aus gestanzten Blechen kann die radiale Dicke der Polschuhe an jeder Stelle an die Erfordernisse des magnetischen Kreises angepaßt werden, d. h. in der Mitte des Polschuhs deutlich verringert werden, was zu einer Gewichtsersparnis führt.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Stators möglich.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist das Joch in mindestens zwei jeweils einen Polschuh aufweisende, aneinanderstoßende Jochabschnitte unterteilt, und die Jochabschnitte sind an ihren Stoßstellen unter Zwischenlage je eines Permanentmagneten miteinander verbunden. Durch diese Maßnahme läßt sich eine rationelle Fertigung erzielen und eine einfache Einbettung der Permanentmagnete in das Joch bei der Montage erreichen, insbesondere dann, wenn gemäß einer weiteren Ausführungsform der Erfindung die beiden Jochabschnitte punk sym etrisch zur Statorachse ausgeführt sind, so daß sie mit dem gleichen Stanzwerkzeug hergestellt werden können.
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Verbindung zwischen den Jochabschnitten über die Permanentmagnete hinweg mittels in Achsrichtung sich erstreckenden Klammern hergestellt, die vorzugsweise aus nichtmagnetischem Material, beispielsweise amagnetischem Stahl, gefertigt sind. Die Verwendung von magnetisch leitfähigem Material, z.B. magnetischem Stahl, für die Klammern ist möglich, wenn der daraus resultierende Verlust an magnetischem Fluß durch eine entsprechend vergrößerte Querschnittsfläche der Permanentmagnete kompensiert werden kann.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten
Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Dabei zeigen in schematischer Darstellung:
Fig. 1 einen Querschnitt von Stator und Rotor eines Gleichstrommotors nach dem Stand der Technik,
Fig. 2 einen Querschnitt von Stator und Rotor eines
Gleichstrommotors nach der Erfindung.
Beschreibung des Ausführungsbeispiels
Bei einem in Fig. 1 im Querschnitt schematisch skizzierten, als Innenläufermotor konzipierten, bekannten Gleichstrommotor im Leistungsbereich von mehreren hundert Watt sind die Statorpole 12 von den Permanentmagneten 13 selbst gebildet, die in Form von schalenförmigen Ferritmagneten auf der Innenseite des kreisringförmigen Jochs 14 angeordnet sind und unmittelbar den Luftspalt 15 zum Rotor oder Läufer oder Anker 11 begrenzen. Das Joch 14 besteht aus einem gerollten Blechstreifen, dessen Enden miteinander verstemmt sind. Der vom Stator 10 umschlossene Rotor, Läufer oder Anker 11 ist genutet und trägt eine in den axialen Nuten 16 mit Nutschlitz 19 einliegende Ankerwicklung. Von den über den Umfang des Läufers 11 mit konstanter Nutteilung gegeneinander versetzten Axialnuten 16 sind in Fig. 1 nur zwei Axialnuten 16 mit einem dazwischenliegenden Zahn 18 dargestellt. Der Rotor, Läufer oder Anker 11 sitzt drehfest auf einer Welle 17, die in einem in Fig. 1 nicht dargestellten, den Stator 10 aufnehmenden Gehäuse drehend gelagert ist.
Bei einem solchen Gleichstrommotor ist die räumliche Verteilung des im Luftspalt erzeugten Magnetfelds aufgrund der Nutung des Ankers nicht konstant, da sich über einem Ankerzahn 18 eine größere magnetische Flußdichte einstellt als über einen Nutschlitz 19. Rotiert der Anker, so "sehen" die am Luftspalt angeordneten Permanentmagnete 13 ein sich änderndes Magnetfeld. Ist das Magnetmaterial elektrisch leitfähig, so werden aufgrund dieser Wechselanteile im Luftspaltfeld Wirbelströme im Magnetmaterial erzeugt, die Verluste zur Folge haben und den Wirkungsgrad des Motors stark reduzieren. Diese Verluste steigen mit der Drehzahl des Motors. Abhilfe schafft hier die Verwendung von Magnetmaterialien mit einer sehr hohen spezifischen elektrischen Widerstand, z.B. Ferrit oder kunststoffgebundene Seltene-Erden-Magnetwerkstoffe.
Der in Fig. 2 schematisch skizzierte erfindungsgemäße Gleichstrommotor für eine elektrische Handwerkzeugmaschine als Ausführungsbeispiel für eine allgemeine elektrische Maschine ist als sog. Innenläufermotor ausgeführt und weist einen in einem nicht dargestellten Motorgehäuse festgelegten Stator 30, sowie einen vom Stator 30 unter Belassung eines Luftspalts 35 umschlossenen Läufer oder Rotor 31 auf, der drehfest auf einer im Motorgehäuse drehend gelagerten Rotorwelle 37 sitzt. Der durch sog. Stanzpaketieren aus einer Vielzahl von in Achsrichtung aneinander festgelegten, ausgestanzten Blechlamellen hergestellte Rotor 31 ist mit einer Mehrzahl von über den Umfang um gleiche Nutteilung versetzten Axialnuten 36 mit Nutschlitzen 39 versehen, die durch Zähne 38 voneinander getrennt sind. In den Axialnuten 36 liegt üblicherweise eine Läufer-, Rotor- oder Ankerwicklung ein, die hier der Übersichtlichkeit halber nicht dargestellt ist. Der Stator 30 weist ein Joch 34 mit daran angeordneten Statorpolen 32 zur Erzeugung eines Magnetfelds im Luftspalt 35 auf. Der als Ausführungsbeispiel beschriebene Gleichstrommotor ist zweipolig aufgeführt, so daß insgesamt zwei Statorpole 32 vorhanden sind, die um 180° elektrisch - und bei der zweipoligen Ausführung damit auch um 180° räumlich - gegeneinander versetzt sind. Zur
Erzeugung des magnetischen Feldes ist jedem Statorpol 32 ein Permanentmagnet 33 zugeordnet.
Das Joch 34 ist ebenso wie der Rotor 31 lamelliert und ist aus einer Vielzahl von axial aneinanderliegenden Blechlamellen zusammengesetzt, wobei die
Jochlamellen durch Stanzen hergestellt und durch sog. Stanzpaketieren zu einem Blechpaket zusammengefügt sind. Das Joch 34 ist in zwei punktsymmetrisch zur Statorachse angeordnete Jochabschnitte 341 , 342 unterteilt, die an ihren Stoßstellen unter Zwischenlage je eines Permanentmagneten 33 miteinander verbunden sind. Jeder Jochabschnitt 341 bzw. 342 ist mit einem Statorpol 32 ausgestattet, der von einem einstückig an das Joch angeformten Polschuh 40 gebildet ist. Jeder Polschuh 40 begrenzt mit einer freien, konkaven Polschuhfläche 401 den Luftspalt 35. Da die Jochabschnitte 341 , 342 lameliiert sind, sind die einstückig ausgeformten Polschuhe 40 ebenfalls lamelliert und werden beim Stanzen der einzelnen Jochlamellen gleich mit ausgeformt.
Die Permanentmagnete 33 weisen Quaderform auf. An den Stoßstellen der beiden Jochabschnitte 341 , 342 sind ebene Stoßflächen 341a, 341b, 342a, 342b ausgebildet, die an voneinander abgekehrten Quaderflächen anliegen, wobei die die Anlagefläche bildende, parallelen Quaderflächen sich in Richtung der
Statorachse erstrecken. Die Stoßflächen 341a, 341b bzw. die Stoßflächen 342a, 342b sind in den Jochabschnitten 341 bzw. 342 so plaziert, daß die eine Stoßfläche 341a bzw. 342a im Endbereich des Polschuhs 40 auf dessen vom Luftspalt 35 abgekehrten Rückseite und die andere Stoßfläche 341 b bzw. 342b an dem vom Polschuh 40 angewandten Ende des Jochabschnitts 341 bzw. 342 liegt. Jeder Permanentmagnet 33 besteht aus Magnetmaterial, das elektrisch leitend ist z.B. aus gesinterten Seltene-Erd-Werkstoffen (NdFeB oder SmCo), die zu geringen Gestehungskosten erhältlich sind. Die beiden Permanentmagnete 33 sind rechtwinklig zu ihren Anlageflächen für die Jochabschnitte 341 , 342 magnetisiert und so angeordnet, daß beispielsweise sich am Polschuh 40 des Jochabschnitts 341 ein magnetischer Südpol und am Polschuh 40 des
Jochabschnitts 342 ein magnetischer Nordpol ausbildet. Die Anordnung der quaderförmigen Permanentmagnete 33 ist dabei konstruktiv so getroffen, daß von den beiden schmalen Quaderflächen, die sich quer zu der Statorachse und den Stoßflächen 341 a,b und 342a, b erstrecken, die untere Quaderfläche 331 , die der Polschuhfläche 401 des jeweiligen Polschuhs 40 am nächsten liegt, einen möglichst großen Abstand von der Polschuhfläche 401 und damit vom Rotor 31 einhält. Dies deshalb, damit sich das Magnetfeld des jeweiligen Permanentmagneten 33 möglichst vollständig über Polschuh 40 und Rotor 31 schließt. Die beiden Jochabschnitte 341 , 342 sind an ihren Stoßstellen mit dazwischenliegenden Permanentmagneten 33 durch jeweils eine axial sich erstreckende, den Permanentmagneten 33 überspannende Klammer 41 miteinander fest verbunden. Die beiden Klammern 41 sind aus nichtmagnetischem Material, z.B. amagnetischem Stahl, hergestellt. In Einzelfällen ist auch die Verwendung von magnetischem Stahl möglich, wenn die Möglichkeit besteht, den dadurch entstehenden Verlust an magnetischem Fluß durch eine entsprechend vergrößerte Querschnittsfläche der Permanentmagnete 33 zu kompensieren.
Die Erfindung ist nicht auf die zweipolige Ausführung des beschriebenen Gleichstrommotors beschränkt. Bei einer n-poligen Ausführung des Motors sind unter Zwischenlage jeweils eines Permanentmagneten 33 n Jochabschnitte aneinandergefügt, an denen in gleicher weise Polschuhe 40 ausgebildet sind, die um 180° elektrisch gegeneinander versetzt sind, räumlich also um 360 n.

Claims

Ansprüche
1. Stator für eine elektrische Maschine, insbesondere für einen
Gleichstrommotor, mit einem mindestens zwei Statorpoie (32) tragenden, lamellierten Joch (34) und mindestens zwei Permanentmagneten (33) zur Erzeugung eines magnetischen Feldes zwischen den Statorpolen (32), von denen jeweils einer einem Statorpol (32) zugeordnet ist, dadurch gekennzeichnet, daß jeder Statorpol (32) von einem einstückig an das Joch
(34) angeformten Polschuh (40) gebildet ist, der mit einer freien, konkaven Polschuhfläche (401) einen Luftspalt (35) zu einem Rotor (31) hin begrenzt, und daß die mindestens zwei Permanentmagnete (33) im Joch (34) eingebettet sind.
2. Stator nach Anspruch 1 , dadurch gekennzeichnet, daß das Joch (34) in mindestens zwei jeweils einen Polschuh (40) aufweisende, aneinanderstoßende Jochabschnitte (341 , 342) unterteilt ist und daß die Jochabschnitte (341 , 342) an ihren Stoßstellen unter Zwischenlage je eines Permanentmagneten (33) fest miteinander verbunden sind.
3. Stator nach Anspruch 2, dadurch gekennzeichnet, daß die Jochabschnitte (341 , 342) punktsymmetrisch zur Statorachse ausgebildet sind.
4. Stator nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die
Permanentmagnete (33) Quaderform und die Jochabschnitte (341 , 342) ebene Stoßflächen (341a, 341 b, 342a, 342b) aufweisen, die an voneinander abgekehrten, zur Statorachse parallelen Quaderfiächen anliegen.
5. Stator nach Anspruch 4, dadurch gekennzeichnet, daß eine der ebenen Stoßflächen (341a bzw. 342a) eines jeden Jochabschnitts (341, 342) im Endbereich des Polschuhs (40) auf dessen von der konkaven Polschuhfläche (401) abgekehrten Rückseite und die andere der ebenen Stoßflächen (341 b bzw. 342b) an dem davon abgewandten Ende des Jochabschnitts (341, 342) ausgebildet ist.
6. Stator nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Permanentmagnete (33) quer zu den ebenen Stoßflächen (341a, 341 b, 342a, 342b) der Jochabschnitte (341 , 342) magnetisiert sind.
7. Stator nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, daß die Verbindung der beiden Jochabschnitte (341, 342) durch in Achsrichtung sich erstreckende Klammern (41) vorgenommen ist, von denen sich jeweils eine Klammer (41) über jeweils einen Permanentmagneten (33) hinweg erstreckt.
8. Stator nach Anspruch 7, dadurch gekennzeichnet, daß die Klammern (41) aus magnetisch nicht oder schlecht leitendem Material bestehen.
9. Stator nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, daß die radiale Dicke der Polschuhe (40) zur Polschuhmitte hin reduziert und in Polschuhmitte minimal ist.
10. Stator nach einem der Ansprüche 4 - 9, dadurch gekennzeichnet, daß die Permanentmagnete (33) so angeordnet sind, daß von den sich quer zu den
Stoßflächen (341a, 341 b, 342a, 342b) erstreckenden Quaderflächen eines jeden Permanentmagneten (33) die der Polschuhfläche (401) des gleichen Polschuhs(40) naheliegende Quaderfläche (331) einen größtmöglichen Abstand von der Polschuhfläche (401) aufweist.
PCT/DE2003/002239 2002-10-18 2003-07-04 Stator einer permanentmagnetisch erregten elektrischen maschine WO2004040741A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10248673.5 2002-10-18
DE2002148673 DE10248673A1 (de) 2002-10-18 2002-10-18 Stator für eine elektrische Maschine

Publications (1)

Publication Number Publication Date
WO2004040741A1 true WO2004040741A1 (de) 2004-05-13

Family

ID=32049427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002239 WO2004040741A1 (de) 2002-10-18 2003-07-04 Stator einer permanentmagnetisch erregten elektrischen maschine

Country Status (2)

Country Link
DE (1) DE10248673A1 (de)
WO (1) WO2004040741A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016826A1 (de) 2012-08-24 2014-05-15 Elke Schultheis Internetbasiertes Zahlungssystem und geeignetes Verfahren hierfür

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294322A (en) * 1940-04-06 1942-08-25 Gen Ind Co Magnetic circuits
US3110873A (en) * 1960-07-26 1963-11-12 Gen Electric Unitary clamping and support arrangement for coil and core assembly
US3182215A (en) * 1961-02-06 1965-05-04 Gen Motors Corp Dynamoelectric machine with permanent magnet field assembly
DE1237209B (de) * 1965-06-12 1967-03-23 Siemens Ag Zweipolige permanenterregte elektrische Aussenpolmaschine
DE3007759A1 (de) * 1979-03-23 1980-09-25 Ducati Elettrotecnica Spa Elektrischer generator mit keramischen dauermagneten sowie verfahren zu seiner herstellung
WO2003055035A2 (de) * 2001-12-21 2003-07-03 BSH Bosch und Siemens Hausgeräte GmbH Elektromotor und verfahren zu dessen herstellung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294322A (en) * 1940-04-06 1942-08-25 Gen Ind Co Magnetic circuits
US3110873A (en) * 1960-07-26 1963-11-12 Gen Electric Unitary clamping and support arrangement for coil and core assembly
US3182215A (en) * 1961-02-06 1965-05-04 Gen Motors Corp Dynamoelectric machine with permanent magnet field assembly
DE1237209B (de) * 1965-06-12 1967-03-23 Siemens Ag Zweipolige permanenterregte elektrische Aussenpolmaschine
DE3007759A1 (de) * 1979-03-23 1980-09-25 Ducati Elettrotecnica Spa Elektrischer generator mit keramischen dauermagneten sowie verfahren zu seiner herstellung
WO2003055035A2 (de) * 2001-12-21 2003-07-03 BSH Bosch und Siemens Hausgeräte GmbH Elektromotor und verfahren zu dessen herstellung

Also Published As

Publication number Publication date
DE10248673A1 (de) 2004-04-29

Similar Documents

Publication Publication Date Title
EP1570564B1 (de) Elektrische maschine, insbesondere bürstenloser synchronmotor
DE112013000314B4 (de) Drehende Elektromaschine mit Hybriderregung
DE102004017157B4 (de) Verfahren zur Herstellung einer Rotoranordnung und Rotoranordnung für eine elektrische Maschine
WO2013135258A2 (de) Elektrische maschine
DE112010003859T5 (de) Drehmotor vom Lundell-Typ
DE102015111480A1 (de) Rotor und elektrische Maschine
DE112006002546B4 (de) Elektromotor mit asymmetrischen Polen
DE112016006772T5 (de) Elektromotor und Klimaanlage
EP1695429B1 (de) Elektrische maschine
DE102011088370A1 (de) Elektrischer Motor mit eingebetteten Permanentmagneten
DE102013009115A1 (de) Rotor für eine permanenterregte elektrische Maschine sowie dessen Verwendung
DE112016005510T5 (de) Rotierende elektrische Maschine mit Axialspalt und Verfahren zu deren Herstellung
EP1959546A1 (de) Statorbaueinheit
DE102016225105A1 (de) Elektrischer Antriebsmotor sowie diesen enthaltendes Haushaltsgerät bzw. Motorbaukasten
DE60109110T2 (de) Läufer eines Drehfeld- Wechselstromgenerators
DE10141870B4 (de) Hybriderregter Läufer für eine Elektromaschine
WO2010063546A1 (de) Hybriderregte elektrische maschine mit polumschaltbarem rotor
WO2012101083A2 (de) Permanenterregte synchronmaschine mit einem rotor
DE102021211050A1 (de) Elektromotor mit verschiedenen aufeinandergestapelten rotorsegmenten und verfahren zum ausgestalten desselben
EP2319164B1 (de) Rotor für eine elektrische maschine mit reduziertem rastmoment
DE102010044046A1 (de) Reluktanzmotor
WO2011151138A2 (de) Elektrische maschine mit reduzierter geräuschentwicklung
EP2384532A1 (de) Gleichstrommotor
WO2004040741A1 (de) Stator einer permanentmagnetisch erregten elektrischen maschine
EP1233497B1 (de) Permanentmagneterregte Gleichstrommaschine, insbesondere Gleichstrommotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP