WO2004051800A1 - チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置 - Google Patents

チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置 Download PDF

Info

Publication number
WO2004051800A1
WO2004051800A1 PCT/JP2003/015119 JP0315119W WO2004051800A1 WO 2004051800 A1 WO2004051800 A1 WO 2004051800A1 JP 0315119 W JP0315119 W JP 0315119W WO 2004051800 A1 WO2004051800 A1 WO 2004051800A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
antenna
area
base
chip antenna
Prior art date
Application number
PCT/JP2003/015119
Other languages
English (en)
French (fr)
Inventor
Yasumasa Harihara
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002347735A external-priority patent/JP2004186730A/ja
Priority claimed from JP2002347736A external-priority patent/JP2004186731A/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP03812310A priority Critical patent/EP1569296A1/en
Publication of WO2004051800A1 publication Critical patent/WO2004051800A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • Chip antenna Chip antenna unit, and wireless communication device using them
  • the present invention relates to a chip antenna used as a built-in antenna of a wireless communication device such as a mobile phone or a mobile terminal, and a chip antenna unit having the chip antenna mounted on a mounting board.
  • Mobile terminals such as mobile phones use small chip antennas for diversity reception that can be used in a plurality of frequency bands, for example, the 800 MHz band and the 1500 MHz band.
  • An example of such a small chip antenna is disclosed in, for example, Japanese Patent Application Laid-Open No. H11-31913. This publication discloses a technique that includes a conductor and a trap circuit inserted in an intermediate portion of the conductor, and obtains two resonances, that is, resonance in the entire chip antenna and resonance up to the trap circuit.
  • Japanese Patent Application Laid-Open No. 2002-111114 discloses a technique for obtaining two resonances by a chip antenna and a pattern antenna formed on a substrate.
  • an antenna is formed on a substrate using a conductor line pattern, so that the antenna portion becomes very large, and the size of the antenna becomes small. Contrary to the request for conversion.
  • the frequency characteristics of the antenna may slightly change due to the influence of the line pattern and the like.
  • the antenna itself since the frequency characteristics cannot be fine-tuned with the existing chip antenna, the antenna itself must be replaced. Then, it must be kept in a slightly different antenna 3 ⁇ 4 frequency characteristics provided nothing type. This would drastically reduce productivity.
  • an object of the present invention is to provide a chip antenna capable of obtaining resonance in a plurality of or wide frequency bands with a simple structure.
  • Another object of the present invention is to provide a chip antenna capable of setting a predetermined pattern antenna at an arbitrary resonance frequency without affecting the frequency characteristics of the other pattern antenna.
  • Still another object of the present invention is to provide a chip antenna that can easily adjust frequency characteristics.
  • a base made of a dielectric or magnetic material and having a laminated structure and a plurality of layers of a base are formed, and at least a part of the patterns mutually overlap in the laminating direction.
  • a chip antenna characterized by having a plurality of unpatterned pattern antennas and a feed terminal formed on the surface of the base and connected to the pattern antenna.
  • the predetermined pattern antenna can be set to an arbitrary resonance frequency without affecting the frequency characteristics of the other pattern antenna.
  • a mounting substrate a substrate mounted on the mounting substrate and made of a dielectric or magnetic material, a pattern antenna formed on the substrate, and a substrate formed on the surface of the substrate
  • a feed terminal connected to the pattern antenna, a fixed terminal formed on the surface of the base and connected to the pattern antenna, and a conductor formed on the mounting board and connected to the fixed terminal and fixing the base to the mounting board.
  • the chip antenna unit has a fixing portion.
  • the resonance frequency can be finely adjusted by adjusting the area of the fixed portion, so that the frequency characteristics can be easily adjusted.
  • a base formed of a dielectric or magnetic material, a first area formed on the base and having a rectangular shape, and a second area extending continuously from the first area.
  • a chip antenna comprising: a pattern antenna having the following area: and a power supply terminal formed on the surface of the base and connected to the pattern antenna.
  • FIG. 1 is a perspective view showing a chip antenna unit according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a chip antenna in the chip antenna unit of FIG.
  • FIG. 3 is a sectional view showing a chip antenna in the chip antenna unit of FIG. 1,
  • FIG. 4 is a graph showing the frequency characteristics of V S WR when the area of the fixed portion of the chip antenna unit of FIG.
  • FIG. 5 is an exploded perspective view showing a chip antenna in a chip antenna unit according to a second embodiment of the present invention
  • FIG. 6 is a plan view showing a pattern antenna of a first pattern formed on the chip antenna of FIG. 5,
  • FIG. 7 is a plan view showing a pattern antenna of a second pattern formed on the chip antenna of FIG. 5,
  • FIG. 8 is a sectional view showing the chip antenna of FIG. 5,
  • FIG. 9 is a graph showing frequency characteristics of V S WR of 1 to 11 GHz in the chip antenna unit according to the second embodiment of the present invention.
  • FIG. 10 is a conceptual diagram for explaining a pattern antenna of a second pattern in the chip antenna of FIG.
  • FIG. 11 is a graph showing the frequency characteristics of VSWR when the length of the predetermined location shown in FIG. 1 ok is changed in the pattern antenna of the second pattern in the chip antenna of FIG.
  • FIG. 1 is a perspective view showing a chip antenna unit according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a chip antenna in the chip antenna unit shown in FIG. 1
  • FIG. FIG. 4 is a cross-sectional view showing the antenna
  • FIG. 4 is a graph showing the frequency characteristics of the VSWR when the area of the fixed portion of the chip antenna unit of FIG.
  • the base 11 may be made of a magnetic material.
  • a pattern antenna is formed on a plurality of layers of the base 11, and as shown in FIG. 2, a pattern antenna A1 having a meandering first pattern is provided on the first pattern layer 10a, and a second pattern antenna is provided on the first pattern layer 10a.
  • a pattern antenna A2 having a meandering second pattern different from the first pattern is formed on the layer 10b.
  • the pattern antennas A 1 and A 2 have a meandering pattern.
  • a circular or rectangular pattern, or a three-dimensional helical force pattern having a plurality of layers, such as a meandering pattern is used.
  • various patterns can be used, for example, a shape of a plurality of layers for securing the reactance capacity.
  • a power supply terminal 12 is formed from the bottom surface of the base 11 to the upper surface through one side surface.
  • fixed terminals 16a and 16b are formed on two opposing side surfaces of the base 11 and adjacent adjacent surfaces.
  • the power supply terminal 12 formed on the surface of the base 11 in this manner is provided at one end of the two pattern antennas Al and A2, and the fixed terminal 16a is provided at the other end of the pattern antenna A1.
  • the fixed terminal 16b is connected to the other end of the pattern antenna A2.
  • the chip antenna 10 is mounted on a mounting board 13, and the chip antenna 10 and the mounting board 13 form a chip antenna unit.
  • the mounting substrate 13 includes a ground electrode 14, a power supply line 15 that supplies a signal from a signal source (not shown) to the power supply terminal 12 while matching the impedance of the circuit, for example, 5 ⁇ , and a fixed terminal 16.
  • a ′, 16 b and fixed portions 17 a, 17 b made of conductors for fixing the base 11 to the mounting board 13.
  • the fixed terminals 16a and 16b and the fixed portions 1a and 17b are each formed at two places, but may be formed at one place.
  • Pattern antennas Al, A2, power supply terminal 12, ground electrode 14, power supply line 15, fixed terminals 16a, 16b and fixed portions 17a, 17b are formed by patterning a metal conductor layer such as copper or silver. Have been. Specifically, it is formed by, for example, a method of pattern printing and baking a metal paste such as silver, a method of forming a metal pattern layer by plating, a method of patterning a thin metal film by etching, and the like.
  • the pattern antenna A1 having the first pattern and the pattern antenna A2 having the second pattern do not overlap in the stacking direction.
  • the first resonance frequency is obtained by the pattern antenna A1. Further, a second resonance frequency different from the first resonance frequency is obtained by the pattern antenna A2. Therefore, overlapping of the pattern antennas A1 and A2 in the stacking direction is avoided.
  • the resonance frequencies of the respective pattern antennas are independent of each other, so that the antenna design becomes easier.
  • the pattern antenna A1 and the pattern antenna A2 inevitably overlap in a portion connected to the power supply terminal 12 and in the vicinity of the portion. Therefore, in this specification, “not overlapping” means that portions excluding these portions do not overlap.
  • the pattern may partially overlap, but as the ratio of overlap in the stacking direction increases, the variation in the frequency characteristics of the other pattern antenna during the adjustment of the resonance frequency of the other pattern antenna increases. turn into. Therefore, it is desirable that the parts other than the inevitable parts described above do not overlap.
  • pattern antennas A 1 and A 2 that are not overlapped with each other are shown in the present embodiment, other pattern antennas can be formed. In this case, all the pattern antennas may not overlap, and some pattern antennas may overlap each other. That is, it is only necessary that at least some of the pattern antennas do not overlap each other in the stacking direction. Furthermore, it is sufficient that at least two pattern antennas are formed, that is, a plurality of pattern antennas are formed.
  • the frequency characteristics of the antenna may slightly change due to the influence of the feed line pattern and other electronic components.
  • this chip antenna 10 by changing the area of the fixed portions 17 a and 17 b when mounting the antenna, a part of the fixed portions 17 a and 17 b is scraped or expanded.
  • the frequency characteristics can be adjusted.
  • the resonance frequency of the chip antenna 10 when the area of the fixed parts 17a and 17b is large, the resonance frequency shifts to the lower frequency side, and conversely, when the area of the fixed parts 17a and 17b is small, The resonance frequency shifts to the higher frequency side. Therefore, if the resonance frequency of the chip antenna 10 is lower than a predetermined value in the mounted state, the fixed portions 17a and 17b are cut away and shifted to the higher frequency side. Conversely, when the resonance frequency of the chip antenna 10 is higher than a predetermined numerical value, the area of the fixed portions 17a and 17b is increased to shift to the lower frequency side.
  • the resonance frequency can be finely adjusted by adjusting the areas of the fixed portions 17a and 17b, so that the frequency characteristics can be easily adjusted. As a result, even if the frequency characteristics of the chip antenna 10 mounted on the mounting board 13 change, there is no need to replace the antenna itself.
  • a structure in which the patterns of a plurality of pattern antennas do not overlap in the stacking direction and a structure in which the area of the fixed portions 17a and 17b is adjusted to finely adjust the resonance frequency Although two structures are adopted, each can be massaged independently.
  • the pattern antenna is formed on the surface or inside of the base, or on any of the surface and inside. May be one or plural, and therefore, the substrate does not have to have a laminated structure.
  • the predetermined pattern antenna can be used without affecting the frequency characteristics of the other pattern antenna. Any resonance frequency can be set.
  • the resonance frequency can be finely adjusted by adjusting the area of the fixed portion, the frequency characteristics can be easily adjusted.
  • FIG. 5 is an exploded perspective view showing a chip antenna in a chip antenna unit according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a first pattern antenna formed on the chip antenna of FIG.
  • FIG. 7 is a plan view showing a pattern antenna of a second pattern formed on the chip antenna of FIG. 5
  • FIG. 8 is a chip antenna in a chip antenna according to a second embodiment of the present invention.
  • FIG. 9 is a graph showing frequency characteristics of VS WR of 1 to 11 GHz in the chip antenna unit according to the second embodiment of the present invention
  • FIG. 10 is a chip diagram of FIG.
  • FIG. 11 is a conceptual diagram for explaining a pattern antenna having a second pattern in the antenna.
  • FIG. 11 is a schematic view showing a predetermined pattern shown in FIG. Of a graph showing the frequency characteristics of V S WR when having different lengths.
  • a pattern antenna is formed on a plurality of layers of the base 11, and as shown in FIG. 5, the first pattern layer 10 a has a meandering first pattern.
  • Pattern antenna A 1 having a pattern antenna (see also FIG. 6)
  • a pattern antenna A 2 ′ having a second planar pattern different from the first pattern on the second pattern layer 10 b (see also FIG. 7) ), Each is formed.
  • the pattern antenna A1 has a meandering pattern, but may have various patterns such as a circular or rectangular shape, or a three-dimensional helical pattern having a plurality of layers. be able to. Referring to FIG.
  • the power supply terminal 12 is formed from the bottom surface of the base body 11 to the upper surface through one side surface, similarly to the first embodiment in which the power supply terminal is formed.
  • fixed terminals 16a and 16b are formed on two opposing side surfaces of the base 11 and adjacent adjacent surfaces. As shown in detail in FIG. 5, the feeding terminal 12 formed on the surface of the base 11 in this manner is located at one end of the two pattern antennas A1, ⁇ 2 ', and the fixed terminal 16a is located at the other end of the pattern antenna A1. At the end, the fixed terminal 16b is connected to the other end of the pattern antenna A2, respectively.
  • the chip antenna 10 is mounted on the mounting board 13, and the chip antenna 10 and the mounting board 13 constitute a chip antenna unit.
  • the mounting board 13 includes a ground electrode 14, a power supply line 15 for supplying a signal from a signal source (not shown) to the power supply terminal 12 while matching the impedance of the circuit, for example, 50 ⁇ , and a fixed terminal.
  • Fixing portions 17a and 17b which are connected to 16a and 16b and are made of conductors for fixing the base 11 to the mounting board 13 are provided.
  • the pattern antennas Al and A2 ', the power supply terminal 12, the ground electrode 14, the power supply line 15, the fixed terminals 16a and 16b, and the fixed portions 17a and 17b are made of copper, silver, or the like. Is formed by patterning the metal conductor layer of FIG. The specific patterning forming method is the same as that of the first embodiment.
  • the pattern antenna A 2 is composed of a first area S 1 having a rectangular shape and a second area S 2 extending continuously from the first area S 1.
  • a slit T is formed between the first area S1 and the second area S2. Note that the slit T may not be formed.
  • the rectangular shape forming the first area S1 may have, for example, rounded corners.
  • there may be a part other than the first area S1 and the second area S2 (for example, a part shown by a halftone dot in FIG. 10). In the case shown in FIG. 10, the second area S2 continuously extends from the first area S1 via a portion indicated by a halftone dot.
  • the length of the side of the first area S1 along the direction in which the second area S2 extends is L1
  • the length of the second area S2 is L2.
  • the obtained resonance waveform differs depending on the length relationship between L1 and L2.
  • the resonance waveform is a force S that varies depending on other factors such as the area and width of each area S l and S 2, the position of a feeding point, and the like. 2 is adjusted to obtain the desired resonance.
  • the resonance frequency in the first area S1 is lower than the resonance frequency in the second area S2.
  • the resonance frequency in the second area S2 is lower than the resonance frequency in the first area S1.
  • one pattern antenna that is, Only the pattern antenna A2 without using the antenna A1 can provide a multi-band wireless communication device that can be used in multiple frequency bands.
  • Fig. 11 (c) when the lengths of L1 and L2 are close to each other and slightly different, the resonance points of the two resonances are close to each other, resulting in a wide frequency range. Resonance is obtained in the band. Therefore, if such a pattern antenna A 2 ′ is used as a chip antenna, a wideband wireless communication device usable in a wide band can be obtained.
  • the waveform of the second resonance F2 shown in FIG. 9 is a case where L1 and L2 are close to each other, and the VSWR (Vo 1 tage / Standing Wafer) in the waveform of the second resonance F2 is shown.
  • the pattern antenna A 2 ′ is formed by the first area S 1 having a rectangular shape and the second area S 2 extending continuously from the first area S 1. Since it is configured, by adjusting the length L 1 of the side along the direction in which the second area S 2 extends in the first area S 1 and the length L 2 of the second area S 2, It is possible to obtain resonance in a plurality of or wide frequency bands with a simple structure.
  • the chip antenna 10 has two pattern antennas, that is, the pattern antenna A 1 and the pattern antenna A 2 ′, but if the frequency band obtained by the pattern antenna A 1 is not necessary, The pattern antenna A1 may not be provided.
  • the pattern antenna A 2 ′ can be formed on both the inside and the surface of the base 11. Further, when a pattern antenna of another shape is formed in addition to the pattern antenna A 2, various pattern shapes can be used. Further, instead of two pattern antennas as in the present embodiment, three or more pattern antennas can be formed.
  • the pattern antenna A 1 as the first pattern and the pattern antenna A 2 as the second pattern are mostly in the stacking direction. Do not overlap.
  • the structure in which the overlapping of the patterns of the plurality of pattern antennas in the stacking direction is eliminated is employed, so that the predetermined pattern antenna can be arbitrarily resonated without affecting the frequency characteristics of the other pattern antenna. An effect similar to that of the first embodiment in that the frequency can be set can be obtained.
  • the resonance frequency can be finely adjusted by adjusting the area of the fixed portion.
  • the present invention has been described with respect to the first and second embodiments.
  • the chip antenna and the chip antenna unit of the present invention can be used for various wireless communication such as a mobile phone, a mobile terminal, and a built-in antenna of a wireless LAN card. Can be used for equipment.

Abstract

積層構造の基体の複数層に形成され、少なくともパターンの一部が積層方向に対して相互に重なり合っていないパターンアンテナA1,A2'と、基体の表面に形成され、パターンアンテナA1,A2'に接続される給電端子12とを有する。パターンアンテナA1,A2'のパターン相互間の積層方向の重なり合いをなくしたので、他方のパターンアンテナの周波数特性に影響を与えることなく、一方のパターンアンテナを任意の共振周波数に設定し得る。パターンアンテナA2'は、矩形形状を有する第1のエリア及び第1のエリアから連続して延びる第2のエリアを備える。第1のエリアにおける第2のエリアの延びる方向に沿った辺の長さと第2のエリアの長さとを調整すれば所望の共振波形が得られる。

Description

明 細 書 チップアンテナ、 チップアンテナュニット及ぴこれらを用いた無線通信装置
技術分野
本発明は、 無線通信装置である携帯電話機や移動端末の内蔵アンテナ等として 用いられるチップアンテナ及ぴ該チップアンテナが実装基板に搭載されたチップ アンテナュュットに関する。 背景技術
携帯電話機などの移動端末では、 例えば 8 0 0 MH z帯域と 1 5 0 0 MH z帯 域という複数の周波数帯域で使用可能なダイバーシチ受信用の小型チップアンテ ナが用いられている。 かかる小型チップアンテナの一例は、 例えば、 特開平 1 1 - 3 1 9 1 3号公報に開示されている。 当該公報では、 導体と、 導体の中間部に 揷入されたトラップ回路を備え、 チップアンテナ全体での共振と、 トラップ回路 までの共振との 2つの共振を得る技術が開示されている。
また、 特開 2 0 0 2— 1 1 1 3 4 4号公報では、 チップアンテナと基板上に構 成されたパターンアンテナとで 2つの共振を得る技術が開示されている。
し力 しながら、 特開平 1 1— 3 1 9 1 3号公報に記載の技術によれば、 2つの 共振を得ることはできるが、 構造が複雑になるのみならず、 トラップ回路の抵抗 によりアンテナ効率が劣化する。
また、 特開 2 0 0 2— 1 1 1 3 4 4号公報に記載の技術によれば、 基板上に導 体線路パターンでアンテナを作製するので、 アンテナ部分は非常に大きくなって しまい、 小型化の要請に反する。
なお、 2つの共振のそれぞれの共振周波数帯域を近づけると広い周波数帯域に おいて共振が得られる、 いわゆるワイドバンドのチップアンテナとなるが、 前述 した公報記載の技術でこのようなチップアンテナを作製した場合でも、 同様の問 題が発生する。 · .
このような状況下、 簡易な構造で複数の又は広い周波数帯域において共振を得 ることのできるチップアンテナの開発が切望されている。 ところで、 アンテナ素子を積層構造にして複数のパターンアンテナを積層配置 すれば、 複数の共振を有するチップアンテナを簡易な構造で小型ィ匕することがで きる。
しかしながら、 一方のパターンアンテナの形状を変えて周波数特性を調整する と、 他方のパターンアンテナの周波数特性まで変わってしまう。 これでは、 任意 の共振周波数に設定することが困難になる。
一方、 チップアンテナを実装基板に搭載したときに、 線路のパターンなどの影 響を受けてアンテナの周波数特性が僅かながら変化することがある。
この場合、 既存のチップアンテナでは周波数特性を微調整することができない ためにアンテナ自体を取り替えなければならない。 そして、 周波数特性が僅かに 異なるアンテナ ¾を何種類も用意しておかなくてはならない。 これでは、 生産性が 甚だしく悪化してしまう。
そこで、 本発明の目的は、 簡易な構造で複数の又は広い周波数帯 において共 振を得ることのできるチップアンテナを提供することにある。
本発明の他の目的は、 他方のパターンアンテナ 周波数特性に影響を与えるこ となく所定のパターンァンテナを任意の共振周波数に設定することのできるチッ プアンテナを提供することにある。
本発明の更に他の目的は、 周波数特性を簡便に調整することのできるチップァ ンテナを提供することにある。 ·
発明の開示
本発明の一様相によれば、 誘電体又は磁性体で構成され、 積層構造を有する基 体と、 基体の複数層に形成され、 少なくともパターンの一部が積層方向に対して 相互に重なり合つていない複数のパターンアンテナと、 基体の表面に形成され、 パターンァンテナに接続される給電端子とを有することを特徴とするチップァン テナが得られる。
このようにパターン相互間が積層方向に対して重なり合っていないことにより 他方のパターンアンテナの周波数特性に影響を与えることなく、 所定のパターン アンテナを任意の共振周波数に設定することが可能になる。 また、 本発明の他の様相によれば、 実装基板と、 実装基板上に搭載され、 誘電 体又は磁性体で構成された基体と、 基体に形成されたパターンアンテナと、 基体 の表面に形成され、 パターンアンテナに接続される給電端子と、 基体の表面に形 成され、 パターンアンテナに接続される固定端子と、 実装基板に形成され、 固定 端子と接続されて基体を実装基板に固定する導体からなる固定部とを有すること を特徴とするチップアンテナュニットカ得られる。
これにより、 固定部の面積を調整することによって共振周波数の微調整ができ るので、 周波数特性を簡便に調整することが可能になる。
また、 本発明の更に他の様相によれば、 誘電体又は磁性体で構成された基体と、 基体に形成され、 矩形形状を有する第 1のエリア及び第 1のエリアから連続して 延びる第 2のエリアを備えたパターンアンテナと、 基体の表面に形成され、 パタ ーンアンテナに接続される給電端子と、 を有することを特徴とするチップアンテ ナが得られる。
これにより、 第 1のエリァにおける第 2のェリァの延びる方向に沿った辺の長 さと第 2のエリアの長さとを調整することにより、 簡易な構造で複数の又は広い 周波数帯域において共振を得ることが可能になる。 ' 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係るチップアンテナュニットを示す斜視図で あり、
図 2は、 図 1のチップアンテナュニットにおけるチップアンテナを示す分 斜視 図であり、
図 3は、 図 1のチップアンテナュ-ットにおけるチップアンテナを示す断面図で あり、
図 4は、 図 1のチップアンテナユニットの固定部の面積の広狭における V S WR の周波数特性を示すグラフであり、
図 5は、 本発明の第 2の実施形態に係るチップアンテナュニットにおけるチップ アンテナを示す分解斜視図であり、 図 6は、 図 5のチップアンテナに形成された第 1のパターンのパターンアンテナ を示す平面図であり、
図 7は、 図 5のチップアンテナに形成された第 2のパターンのパターンアンテナ を示す平面図であり、
図 8は、 図 5のチップアンテナを示す断面図であり、
図 9は、 本発明の第 2の実施形態に係るチップアンテナュニットにおける 1〜 1 1 GH zの V S WRの周波数特性を示すグラフであり、
図 1 0は、 図 5のチップアンテナにおける第 2のパターンのパターンアンテナを 説明するための概念図であり、
図 1 1は、 図 5のチップアンテナにおける第 2のパターンのパターンアンテナに おいて、 図 1 ok示した所定箇所の長さを異ならせたときの V S WRの周波数特 性を示すグラフである。
発明を実施するための最良の形態
以下、 本発明の実施の形態を、 図面を参照しつつ更に具体的に説明する。 ここ で、 添付図面において同一の部材には同一の符号を付しており、 また、 重複した 説明は省略されている。 尚、 発明の実施の形態は、 本発 _明が実施される特に有用 な形態としてのものであり、 本発明がその実施の形態に限定されるものではない まず、 図 1乃至図 4を参照して、 本発明の第 1の実施形態を説明する。
図 1は本発明の第 1の実施形舞に係るチップアンテナュニットを示す斜視図、 図 2は図 1のチップアンテナュニットにおけるチップアンテナを示す分解斜視図 、 図 3は、 図 2のチップアンテナを示す断面図、 図 4は、 図 1のチップアンテナ ュニットの固定部の面積の広狭における V SWRの周波数特性を示すグラフであ る。
図 1乃至図 3に示すように、 本実施の形態のチップアンテナ 1 0は、 例えば比 誘電率 ε r = 1 0程度の高周波用セラミック誘電体材料で形成された積層構造 からなる矩形形状の基体 1 1を有している。 なお、 基体 1 1は磁性体で構成する こともできる。 ' 基体 11の複数層にはパターンアンテナが形成されており、 図 2に示すように、 第 1のパターン層 10 aにはミアンダ状の第 1のパターンを有するパターンアン テナ A1が、 第 2のパターン層 10 bには第 1のパターンとは異なるミアンダ状 の第 2のパターンを有するパターンアンテナ A 2が、 それぞれ形成されている。 なお、 本実施の形態では、 パターンアンテナ A 1, A 2はミアンダ状のパターン となっているが、 例えば円形や矩形、 あるいは複数層にわたる三次元的なヘリ力 ル状のパターンなど、 ミアンダ状の場合もリアクタンス容量確保のための複数層 の形状にするなど、 種々のパターンとすることができる。
図 1に示すように、 基体 1 1の底面より 1つの側面を通って上面に至り、 給電 端子 12が形成されている。 また、 基体 1 1の対向する 2つの側面及ぴその周囲 の隣接面には、 固定端子 16 a, 16 bが形成されている。 図 2に詳しく示すよ うに、 このようにして基体 1 1の表面に形成された給電端子 12は 2つのパター ンアンテナ Al, A 2の一端に、 固定端子 16 aはパターンアンテナ A1の他端 に、 固定端子 16 bはパターンアンテナ A 2の他端に、 それぞれ接続されている。 図 1に示すように、 チップアンテナ 10は実装 板 13 搭載されており、 チ ップアンテナ 10と実装基板 13とによってチップアンテナュニットが構成され ている。 実装基板 13には、 接地電極 14と、 回路のインピーダンスである例え ば 5 ΟΩに整合して信号源 (図示せず) からの信号を給電端子 12に供給する 給電線路 15、 及ぴ固定端子 16 a', 16 bと接続されて基体 1 1を実装基板 1 3に固定する導体からなる固定部 17 a, 17 bとを備えている。
なお、 本実施の形態においては、 固定端子 16 a, 16 b及ぴ固定部 1 Ί a, 17 bはそれぞれ 2力所に形成されているが、 1力所ずつであってもよい。
パターンアンテナ Al, A2、 給電端子 12、 接地電極 14、 給電線路 15、 固定端子 16 a, 16 b及ぴ固定部 17 a, 17 bは、 銅や銀などの金属導体層 をパターユングして形成されている。 具体的には、 例えば銀等の金属ペーストを パターン印刷して焼き付ける方法、 金属パターン層をメツキで形成する方法、 薄 、金属膜をェツチングによりパターユングする方法などにより形成されている。 ここで、 図 2に示すように、 第 1のパターンを有するパターンアンテナ A 1と 第 2のパターンを有するパターンアンテナ A 2とは、 積層方向に対しては重なり 合っていない。
すなわち、 本実施の形態のチップアンテナ 1 0では、 パターンアンテナ A 1で 第 1の共振周波数が得られる。 また、 パターンアンテナ A 2で第 1の共振周波数 とは異なる第 2の共振周波数が得られる。 したがって、 パターンアンテナ A 1と パターンアンテナ A 2の積層方向に対する重なり合いが避けられている。
このようにすれば、 一方のパターンアンテナ (例えばパターンアンテナ A 1 ) の形状を変えて周波数特性を調整しても、 他方のパターンアンテナ (例えばパタ ーンアンテナ A 2 ) の周波数特性に対する影響が殆どなくなる。 したがって、 他 方のパターンアンテナ (例えばパターンアンテナ A 2 ) の周波数特性に影響を与 えることなく、 所定のパターンアンテナ (例えばパターンアンテナ A 1 ) を任意 の共振周波数に設定することが可能になる。
これにより、 それぞれのパターンアンテナの共振周波数が相互に独立している ので、 アンテナ設計も容易になる。 ,
ここで、 給電端子 1 2とつながる部分や当該部分の近傍は、 パターンアンテナ A 1とパターンアンテナ A 2とは構造上から不可避的に重なり合うことになる。 したがって、 本明細書において重なり合っていないとは、 これらの箇所を除いた 部分が重なり合つていないことをいう。
なお、 パターンの一部が重なり合つていてもよいが、 積層方向への重なり合い の割合が大きくなればなるほど、 一方のパターンアンテナの共振周波数調整時に おける他方のパターンアンテナの周波数特性の変動が大きくなってしまう。 した がって、 前述した不可避的部分を除いた以外の箇所は、 重なり合っていないのが 望ましい。
また、 本実施の形態では相互に重なり合つていない 2つのパターンアンテナ A 1 , A 2が示されているが、 さらに他のパターンアンテナを形成することもでき る。 この場合、 全てのパターンアンテナが重なり合わないようにしてもよく、 一 部のパターンアンテナは相互に重なり合つていてもよい。 つまり、 少なくとも一 部のパターンアンテナが積層方向に対して相互に重なり合っていなければよい。 さらに、 パターンアンテナは少なくとも 2つ形成されていれば、 つまり複数形 成されていればよい。
さて、 チップアンテナ 1 0を実装基板 1 3に搭載すると、 給電線路のパターン や他の電子部品などの影響を受けてアンテナの周波数特性が僅かながら変化する ことがある。
このような場合、 本チップアンテナ 1 0では、 アンテナ実装時に、 固定部 1 7 a , 1 7 bの面積を変化させることにより、 つまり固定部 1 7 a , 1 7 bの一部 を削ったり広げたりすることにより、 周波数特性が調整できるようになっている。 つまり、 図 4に示すように、 固定部 1 7 a, 1 7 bの面積が広いと共振周波数 が低域側に移行し、 逆に、 固定部 1 7 a , 1 7 bの面積が狭いと共振周波数は高 域側に移行する。 そこで、 実装状態においてチップアンテナ 1 0の共振周波数が 予定した数値よりも低い場合には、 固定部 1 7 a , 1 7 bを削ってこれを高域側 に移行させる。 逆に、 チップアンテナ 1 0の共振周波数が予定した数値よりも高 い場合には、 固定部 1 7 a , 1 7 bの面積を広げて低域側に移行させる。
このように、 固定部 1 7 a, 1 7 bの面積を調整するこ によって共振周波数 の微調整ができるので、 周波数特性を簡便に調整することが可能になる。 これに より、 実装基板 1 3に実装してチップアンテナ 1 0の周波数特性が変わってもァ ンテナ自体を取り替える必要がなくなる。
そして、 このようにアンテナ自体を取り替えなくてもよいことから、 チップァ ンテナ 1 0は所定の周波数特性を有する 1種類だけで足り、 周波数特性が僅かに 異なるチップアンテナを何種類も用意しておく必要がなくなる。
本実施の形態では、 複数のパターンアンテナのパターン相互間の積層方向の重 なり合いをなくした構造と、 固定部 1 7 a, 1 7 bの面積を調整して共振周波数 の微調整を行う構造の、 2つの構造が採用されているが、 それぞれ独立して揉用 することもできる。 そして、 固定部 1 7 a , 1 7 bの面積を調整する構造を揉用 した場合、 パターンアンテナは基体の表面あるいは内部、 又は表面及び内部の何 れにも形成されていても、 つまりパターンアンテナは 1つであっても複数であつ てもよく、 したがって基体は積層構造でなくてもよい。 以上の説明から明らかなように、 本実施形態によれば、 パターン相互間が積層 方向に対して重なり合っていないことにより、 他方のパターンアンテナの周波数 特性に影響を与えることなく、 所定のパターンアンテナを任意の共振周波数に設 定することが可能になる。
また、 固定部の面積を調整することによって共振周波数の微調整ができるので、 周波数特性を簡便に調整することが可能になる。
次に、 図 5乃至図 1 1を参照して、 本発明の第 2の実施形態を説明する。
図 5は、 本発明の第 2の実施形態に係るチ'ップアンテナュエツトにおけるチップ アンテナを示す分解斜視図、 図 6は、 図 5のチップアンテナに形成された第 1 のパターンのパターンアンテナを示す平面図、 図 7は、 図 5のチップアンテナに 形成された第 2のパターンのパターンアンテナを示す平面図、 図 8は、 本発明の 第 2の実施形態に係るチップァンテナュニットにおけるチップァンテナを示す断 面図、 図 9は、 本発明の第 2の実施形態に係るチップアンテナユエットにおける 1〜1 1 G H zの V S WRの周波数特性を示すグラフ、 図 1 0は、 図 5のチップ アンテナにおける第 2のパターンのパターンアンテナを説明するための概念図、 図 1 1は、 図 5のチップアンテナにおける第 2のパターンのパターンアンテナに おいて、 図 1 0に示した所定箇所の長さを異ならせたときの V S WRの周波数特 性を示すグラフである。
なお、 本実施形態のチップアンテナユニットの全体構成は、 図 1に示した第 1 の実施形態のチップアンテナユニットと同様であるので、 図示を省略する。
第 1の実施形態と同様に、 基体 1 1の複数層にはパターンアンテナが形成され ており、 図 5に示すように、 第 1のパターン層 1 0 aにはミアンダ状の第 1のパ ターンを有するパターンアンテナ A 1 (図 6も参照) 力 第 2のパターン層 1 0 bには第 1のパターンとは異なる面状の第 2のパターンを有するパターンアンテ ナ A 2 ' (図 7も参照) 、 それぞれ形成されている。 なお、 本実施の形態では、 パターンアンテナ A 1はミァンダ状のパターンとなっているが、 例えば円形ゃ矩 形、 あるいは複数層にわたる三次元的なヘリカル状のパターンなど、 種々のパタ ーンとすることができる。 図 1を参照して 本実施形態の場合も前逑した第 1の実施形態と同様に、 基体 1 1の底面より 1つの側面を通って上面に至り、 給電端子 12が形成されている。 また、 基体 1 1の対向する 2つの側面及びその周囲の隣接面には、 固定端子 16 a, 16 bが形成されている。 図 5に詳しく示すように、 このようにして基体 1 1の表面に形成された給電端子 12は 2つのパターンアンテナ A 1, Α2' の一 端に、 固定端子 16 aはパターンアンテナ A 1の他端に、 固定端子 16 bはパタ ーンアンテナ A 2, の他端に、 それぞれ接続されている。
また、 本実施形態においても、 図 1に示したように、 チップアンテナ 10は実 装基板 13に搭載されており、 チップアンテナ 10と実装基板 13とによってチ ップアンテナユニットが構成されているのは、 第 1の実施形態の場合と同様であ る。 また、 実装基板 13には、 接地電極 14と、 回路のインピーダンスである例 えば 50Ωに整合して信号源 (図示せず) からの信号を給電端子 12に供給す る給電線路 15、 及び固定端子 16 a, 16 bと接続されて基体 1 1を実装基板 13に固定する導体からなる固定部 17 a, 17 bとを備えている。
本実施の形態においても、 パターンアンテナ Al, A2' 、 給電端子 12、 接 地電極 14、 給電線路 15、 固定端子 16 a, 16 b及ぴ固定部 17 a, 1 7 b は、 銅や銀などの金属導体層をパターユングして形成されている。 具体的なパタ 一二ングの形成方法も第 1の実施形態の場合と同様である。
さて、 本実施の形態においても、'図 5に示すように、 第 1のパターンであるパ ターンアンテナ A1と第 2のパターンであるパターンアンテナ A2' とは積層方 向に対してその大部分が重なり合っていない。 そして、 パターンアンテナ A 1に より第 1の共振 F 1 (後述する図 9参照) が得られ、 パターンアンテナ A 2, で 第 2の共振 F 2が得られる (後述する図 9参照) 。
ここで、 パターンアンテナ A2' を形成する第 2のパターンについて図 10及 び図 1 1を用いて詳細に説明する。
パターンアンテナ A 2, は、 矩形形状を有する第 1のエリア S 1と、 この第 1 のエリア S 1から連続して延びる第 2のエリア S 2から構成されている.。 そして, 第 1のエリア S 1と第 2のエリア S 2との間にはスリツト Tが形成されている。 なお、 このスリット Tは形成されていなくてもよい。 ここで、 第 1のエリア S 1を形成する矩形形状とは、 例えば角が丸くなってい てもよい。 また、 第 1のエリア S 1及ぴ第 2のエリア S 2以外の部分 (例えば図 10における網点で示す部分) があってもよい。 なお、 図 10に示す場合には、 第 2のエリア S 2は網点で示す部分を介して第 1のエリア S 1から連続して延び ている。
ここで、 図 10において、 第 1のエリア S 1における第 2のエリア S 2の延ぴ る方向に沿った辺の長さを L 1、 第 2のエリア S 2の長さを L 2としたとき、 L 1と L 2との長さの関係によって得られる共振波形が異なってくる。 なお、 共振 波形は、 各ェ'リア S l, S 2の面積や幅、 給電点の位置など、 他の要素によって も異なってくる力 S、 本実施の形態においては、 前述した L 1, L 2を調整して所 望の共振を得ている。
つまり、 図 1 1 (a) に示すように、 L 2より L 1が長いときには第 1のエリ ァ S 1での共振周波数の方が第 2のエリア S 2での共振周波数よりも低くなる。 また、 図 1 1 (b) に示すように、 L 1より L 2が長いときには第 2のエリア S 2での共振周波数の方が第 1のエリア S 1での共振周波数よりも低くなる。
したがって、 L 1と L2との長さをこのように設定することにより 2つの共振 が得られ、 このようなパターンアンテナ A 2, をチップアンテナに用いることに より、 一つのパターンアンテナ (つまり、 パターンアンテナ A1を用いることな くパターンアンテナ A 2, のみ) で、 複数の周波数帯域で使用可能なマルチパン ドの無線通信装置が得られる。
また、 図 1 1 (c) に示すように、 L 1と L 2との長さが接近して両者が僅か に異なるときには、 2つの共振の各共振点が接近することから、 結果として広い 周波数帯域において共振が得られる。 したがって、 このようなパターンアンテナ A 2' をチップアンテナに用いれば、 広帯域で使用可能なワイドパンドの無線通 信装置が得られる。 なお、 図 9に示す第 2の共振 F 2の波形はこの L 1と L 2と が接近した長さの場合であり、 第 2の共振 F 2の波形における VSWR (Vo 1 t a g e/S t a n d i n g Wa v e Ra t i o〜電圧/定在波比) が 2以 下の帯域が第 1の共振 F 1の波形における V SWRが 2以下の帯域に比較して広 くなつている、 つまりワイドパンドになっているのが分かる。 このように、 本実施の形態によれば、 パターンアンテナ A 2 ' 力 矩形形状を 有する第 1のエリア S 1と、 この第 1のエリア S 1から連続して延びる第 2のェ リア S 2から構成されているので、 第 1のエリア S 1における第 2のエリア S 2 の延びる方向に沿った辺の長さ L 1と第 2のエリア S 2の長さ L 2とを調整する ことにより、 簡易な構造で複数の又は広い周波数帯域において共振を得ることが 可能になる。
以上の説明では、 チップアンテナ 1 0には 2つのパターンアンテナ、 つまりパ ターンアンテナ A 1及ぴパターンアンテナ A 2 ' が形成されているが、 パターン アンテナ A 1によって得られる周波数帯が必要なければ、 このパターンアンテナ A 1はなくてもよい。 この場合には、 パターンアンテナ A 2 ' は、 基体 1 1の内 部及ぴ表面の何れにも形成することができる。 さらに、 パターンアンテナ A 2, に加えて他の形状のパターンアンテナを形成する場合には、 様々なパターン形状 にすることもできる。 また、 本実施の形態のようにパターンアンテナは 2つでは なく、 3つ以上形成することもできる。
以上の説明から明らかなように、 本実施形態によれば、 第 1のエリアにおける 第 2のエリアの延びる方向に沿った辺の長さと第 2のエリアの長さとを調整する ことにより、 簡易な構造で複数の又は広い周波数帯域において共振を得ることが 可能になる。
また、 図 5に示したように、 本実施の形態においても、 第 1のパターンである パターンアンテナ A 1と第 2のパターンであるパターンアンテナ A 2, とは積層 方向に対してその大部分が重なり合っていない。 このように、 複数のパターンァ ンテナのパターン相互間の積層方向の重なり合いをなくした構造が採用されてい るので、 他方のパターンアンテナの周波数特性に影響を与えることなく、 所定の パターンアンテナを任意の共振周波数に設定し得るという第 1の実施形態と同様 の効果が得られる。
また、 第 1の実施形態と同様に、 固定部の面積を調整することによって共振周 波数の微調整ができるのは勿論である。 . . 以上、 本発明を第 1及び第 2の実施形態について説明したが、 本発明のチップ アンテナ及びチップアンテナユニットは、 例えば、 携帯電話機、 移動端末、 無線 L ANカードの内蔵ァンテナ等、 様々な無線通信装置に用いることができる。

Claims

請 求 の 範 囲
1 . 誘電体又は磁性体で構成され、 積層構造を有する基体と、 前記基体の複数 層に形成され、 少なくともパターンの一部が積層方向に対して相互に重なり合つ ていない複数のパターンアンテナと、
前記基体の表面に形成され、 前記パターンァンテナに接続される給電端子と、 を有することを特徴とするチップアンテナ。
2 . 実装基板と、
前記実装基板上に搭載され、 誘電体又は磁性体で構成された基体と、 前記基体に形成されたパターンアンテナと、
前記基体の表面に形成され、 前記パターンァンテナに接続される給電端子と、 前記基体の表面に形成され、 前記パターンァンテナに接続される固定端子と、 前記実装基板に形成され、 前記固定端子と接続されて前記基体を前記実装基板 に固定する導体からなる固定部とを有し、
前記固定部の面積で周波数特性を調整すること 特徴とするチップアンテナュ ニット。
3 . 実装基板と、
前記実装基板上に搭載され、 誘電体又は磁性体で構成されて積層構造を有する 基体と、 ·
前記基体の複数層に形成され、 少なくともパターンの一部が積層方向に対して 相互に重なり合つていない複数のパターンァンテナと、
前記基体の表面に形成され、 前記パターンァンテナに接続される給電端子と、 前記基体の表面に形成され、 前記パターンァンテナに接続される固定端子と、 前記実装基板に形成され、 前記固定端子と接続されて前記基体を前記実装基板 に固定する導体からなる固定部とを有し、
前記固定部の面積で周波数特性を調整することを特徴とするチップアンテナュ エツ卜。 - .
4 . 請求項 1に記载のチップアンテナ又は請求項 2又は 3の何れ力、一項に記載の チップアンテナユニットが用いられていることを特徴とする無線通信装置。
5 . 誘電体又は磁性体で構成された基体と、
前記基体に形成され、 矩形形状を有する第 1のェリァ及び前記第 1のェリァか ら連続して延びる'第 2のエリアを備えたパターンアンテナと、
前記基体の表面に形成され、 前記パターンアンテナに接続される給電端子と、 を有することを特徴とするチップアンテナ。
6 . 前記パターンァンテナの前記第 1のェリァと前記第 2のエリアとの間にはス リットが形成されていることを特徴とする請求項 5に記載のチップアンテナ。
7 . 前記パターンアンテナ以外の形状を有する他のパターンアンテナを有するこ とを特徴とする請求項 5又は 6の何れか一項に記載のチップアンテナ。
8 . 請求項 5乃至 7の何れか一項に記載のチップアンテナが用いられていること を特徴とする無線通信装置。
PCT/JP2003/015119 2002-11-29 2003-11-27 チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置 WO2004051800A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03812310A EP1569296A1 (en) 2002-11-29 2003-11-27 Chip antenna, chip antenna unit and radio communication device using them

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-347736 2002-11-29
JP2002-347735 2002-11-29
JP2002347735A JP2004186730A (ja) 2002-11-29 2002-11-29 チップアンテナ、チップアンテナユニットおよびそれを用いた無線通信装置
JP2002347736A JP2004186731A (ja) 2002-11-29 2002-11-29 チップアンテナおよびそれを用いた無線通信装置

Publications (1)

Publication Number Publication Date
WO2004051800A1 true WO2004051800A1 (ja) 2004-06-17

Family

ID=32473654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015119 WO2004051800A1 (ja) 2002-11-29 2003-11-27 チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置

Country Status (5)

Country Link
US (1) US7023385B2 (ja)
EP (1) EP1569296A1 (ja)
KR (1) KR20050085045A (ja)
TW (1) TWI247451B (ja)
WO (1) WO2004051800A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505008B2 (en) 2005-09-26 2009-03-17 Electronics And Telecommunications Research Institute Electrical loop antenna with unidirectional and uniform current radiation source

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546091B2 (en) * 2004-03-16 2009-06-09 Hitachi Metals, Ltd. High-frequency circuit and high-frequency device
WO2006086658A1 (en) * 2005-02-11 2006-08-17 Cornwell, James Antenna system
US7274334B2 (en) * 2005-03-24 2007-09-25 Tdk Corporation Stacked multi-resonator antenna
KR100691162B1 (ko) * 2005-05-16 2007-03-09 삼성전기주식회사 직교 헬리컬 안테나
JP4414940B2 (ja) * 2005-06-14 2010-02-17 ソニーケミカル&インフォメーションデバイス株式会社 アンテナ装置及びアンテナ装置の調整方法
JP4414942B2 (ja) * 2005-06-30 2010-02-17 ソニーケミカル&インフォメーションデバイス株式会社 アンテナ装置
JP2007027894A (ja) * 2005-07-12 2007-02-01 Omron Corp 広帯域アンテナおよび広帯域アンテナ搭載基板
EP1826874A1 (en) * 2006-02-27 2007-08-29 Alps Electric Co., Ltd. Antenna device having enhanced reception sensitivity in wide bands
EP3324485B1 (en) * 2006-04-18 2023-01-11 QUALCOMM Incorporated Mobile terminal with a tunable multi-resonace monopole antenna
KR100757319B1 (ko) * 2006-05-23 2007-09-11 (주)에이스안테나 듀얼 기판 본딩형 광대역 안테나
KR100811793B1 (ko) * 2006-10-02 2008-03-10 삼성전자주식회사 휴대 단말기의 안테나 장치
US7382325B1 (en) * 2006-11-14 2008-06-03 Auden Techno Corp. Micro stacked type chip antenna
KR20080002338U (ko) * 2006-12-28 2008-07-03 주식회사 이엠따블유안테나 다층형 내장형 안테나
US8031054B2 (en) * 2007-03-27 2011-10-04 Round Rock Research, Llc Multi-antenna element systems and related methods
KR100805279B1 (ko) * 2007-08-23 2008-02-20 주식회사 이노칩테크놀로지 적층형 칩 안테나
JP2009135773A (ja) * 2007-11-30 2009-06-18 Toshiba Corp アンテナ構造および電子機器
KR100954879B1 (ko) * 2007-12-04 2010-04-28 삼성전기주식회사 안테나 내장형 인쇄회로기판
US7768463B2 (en) * 2008-04-16 2010-08-03 Sony Ericsson Mobile Communications Ab Antenna assembly, printed wiring board and device
US7825860B2 (en) * 2008-04-16 2010-11-02 Sony Ericsson Mobile Communications Ab Antenna assembly
US20100074315A1 (en) * 2008-09-24 2010-03-25 Quellan, Inc. Noise sampling detectors
EP2333901A3 (en) * 2009-12-11 2011-07-13 Samsung Electronics Co., Ltd. Antenna device
JP2011135124A (ja) * 2009-12-22 2011-07-07 Mitsumi Electric Co Ltd チップアンテナ
US8907847B2 (en) 2012-05-02 2014-12-09 Hing S. Tong Directional antenna system for portable communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955618A (ja) * 1995-08-17 1997-02-25 Murata Mfg Co Ltd チップアンテナ
JPH1131913A (ja) * 1997-05-15 1999-02-02 Murata Mfg Co Ltd チップアンテナ及びそれを用いた移動体通信機
JP2001177330A (ja) * 1999-12-17 2001-06-29 Tdk Corp パッチアンテナ
JP2002100916A (ja) * 2000-09-22 2002-04-05 Taiyo Yuden Co Ltd 誘電体アンテナの調整方法及び誘電体アンテナ
JP2002100915A (ja) * 2000-09-22 2002-04-05 Taiyo Yuden Co Ltd 誘電体アンテナ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748149A (en) * 1995-10-04 1998-05-05 Murata Manufacturing Co., Ltd. Surface mounting antenna and antenna apparatus
JPH10247808A (ja) * 1997-03-05 1998-09-14 Murata Mfg Co Ltd チップアンテナ及びその周波数調整方法
JPH1155618A (ja) 1997-08-04 1999-02-26 Matsushita Electric Ind Co Ltd ホームネットワーク
JP3627632B2 (ja) * 2000-07-31 2005-03-09 株式会社村田製作所 チップアンテナ
JP2002111344A (ja) 2000-10-02 2002-04-12 Mitsubishi Electric Corp 携帯無線機
DE10049844A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturisierte Mikrowellenantenne
JP2002314330A (ja) * 2001-04-10 2002-10-25 Murata Mfg Co Ltd アンテナ装置
JP4044302B2 (ja) * 2001-06-20 2008-02-06 株式会社村田製作所 表面実装型アンテナおよびそれを用いた無線機
KR100533624B1 (ko) * 2002-04-16 2005-12-06 삼성전기주식회사 듀얼 피딩 포트를 갖는 멀티밴드 칩 안테나 및 이를사용하는 이동 통신 장치
US6778141B1 (en) * 2003-03-06 2004-08-17 D-Link Corporation Patch antenna with increased bandwidth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955618A (ja) * 1995-08-17 1997-02-25 Murata Mfg Co Ltd チップアンテナ
JPH1131913A (ja) * 1997-05-15 1999-02-02 Murata Mfg Co Ltd チップアンテナ及びそれを用いた移動体通信機
JP2001177330A (ja) * 1999-12-17 2001-06-29 Tdk Corp パッチアンテナ
JP2002100916A (ja) * 2000-09-22 2002-04-05 Taiyo Yuden Co Ltd 誘電体アンテナの調整方法及び誘電体アンテナ
JP2002100915A (ja) * 2000-09-22 2002-04-05 Taiyo Yuden Co Ltd 誘電体アンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505008B2 (en) 2005-09-26 2009-03-17 Electronics And Telecommunications Research Institute Electrical loop antenna with unidirectional and uniform current radiation source

Also Published As

Publication number Publication date
KR20050085045A (ko) 2005-08-29
US20040119647A1 (en) 2004-06-24
EP1569296A1 (en) 2005-08-31
TWI247451B (en) 2006-01-11
TW200409403A (en) 2004-06-01
US7023385B2 (en) 2006-04-04

Similar Documents

Publication Publication Date Title
WO2004051800A1 (ja) チップアンテナ、チップアンテナユニット及びこれらを用いた無線通信装置
JP4423809B2 (ja) 複共振アンテナ
JP4089680B2 (ja) アンテナ装置
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US7825863B2 (en) Compact antenna
US7162264B2 (en) Tunable parasitic resonators
JP3503556B2 (ja) 表面実装型アンテナおよびそのアンテナを装備した通信装置
KR100707242B1 (ko) 유전체 칩 안테나
WO2003028149A1 (fr) Dispositif d'antenne et equipement de communication utilisant ce dispositif
JP2000022421A (ja) チップアンテナ及びそれを搭載した無線機器
US7265726B2 (en) Multi-band antenna
JP3431816B2 (ja) アンテナ
JP2004088218A (ja) 平面アンテナ
KR20040067932A (ko) 전자장치 및 안테나 실장 인쇄회로기판
JP2005094360A (ja) アンテナ装置および無線通信装置
JP2009111999A (ja) マルチバンドアンテナ
JP3586915B2 (ja) 車両用アンテナ装置
JP4073789B2 (ja) 誘電体アンテナ及びそれを内蔵する移動体通信機
JP2001251128A (ja) 多周波アンテナ
JP4049185B2 (ja) 携帯無線機
JP2004186731A (ja) チップアンテナおよびそれを用いた無線通信装置
JP2002151930A (ja) アンテナ構造およびそれを備えた無線装置
JP4158704B2 (ja) アンテナ装置
JP2004096314A (ja) 誘電体アンテナ及びそれを内蔵する移動体通信機
JPH09232854A (ja) 移動無線機用小型平面アンテナ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FI FR GB NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003812310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A27872

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057008943

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057008943

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003812310

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003812310

Country of ref document: EP