WO2004051675A1 - Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung - Google Patents

Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung Download PDF

Info

Publication number
WO2004051675A1
WO2004051675A1 PCT/EP2003/010031 EP0310031W WO2004051675A1 WO 2004051675 A1 WO2004051675 A1 WO 2004051675A1 EP 0310031 W EP0310031 W EP 0310031W WO 2004051675 A1 WO2004051675 A1 WO 2004051675A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat cable
adhesive
adhesive layer
cable according
layer
Prior art date
Application number
PCT/EP2003/010031
Other languages
English (en)
French (fr)
Inventor
Denis Reibel
Thorsten Frank
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10315747A external-priority patent/DE10315747A1/de
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Priority to US10/537,082 priority Critical patent/US7408117B2/en
Priority to AU2003273849A priority patent/AU2003273849A1/en
Priority to EP03757812.7A priority patent/EP1568050B1/de
Priority to JP2004570672A priority patent/JP2006508517A/ja
Publication of WO2004051675A1 publication Critical patent/WO2004051675A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0838Parallel wires, sandwiched between two insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/485Other fibrous materials fabric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables

Definitions

  • the invention relates to a three-dimensional (3D) shaped flat cable, process for its production and its use.
  • a method for producing a cable set for vehicles in which the cables are glued to a carrier film and provided with plugs and are attached to a dimensionally stable carrier, at least some of the cables being made of non-insulated stranded conductors consist of one after the other and independently of one another on an insulating carrier film provided with an adhesive layer along a predetermined line and then either place an insulating protective film on the carrier film and glued to the carrier film by applying pressure or cover the carrier film and the applied stranded conductors with a protective lacquer layer and finally adapted to the contour of the place of use by trimming.
  • a disadvantage of this method is the labor-intensive laying of the conductor tracks and their fixing to the dimensionally stable support.
  • a cable harness and a method for its production which have power cables which are arranged in a first resin layer with depressions, the first resin layer being shaped such that it runs along a predetermined route of the power cables extends and a second resin layer which is fixedly connected to the first resin layer so that it covers at least the recess of the first resin layer and is applied by vacuum molding.
  • the invention has set itself the task of specifying three-dimensionally shaped flat cable and a method for manufacturing which avoids the disadvantages of the known solutions and which in the intermediate step allows the production of dimensionally stable flat cables which are only placed in their installation location in a second step.
  • a flat cable consisting of a laminate which consists of at least one interconnect between two insulation layers and at least one carrier layer which are connected to one another by means of an adhesive layer and which is applied to a positive mold and using heat and pressure is brought into shape and is fixed in its three-dimensional shape by cooling below the glass transition temperature T g of the adhesive layer or curing of the adhesive layer.
  • a 3D flat cable is Can also be stored as an intermediate part before installation.
  • the carrier layer can consist of metal or plastic foils or porous layers.
  • thermoplastic adhesive a thermoplastic adhesive film and / or an adhesive nonwoven with a
  • Adhesive layers of this type allow the flat cable to be firmly connected to the carrier layer and to form one
  • Crosslinking temperatures> 140 ° C can also be used if a
  • Cooling may be unnecessary when using reactive adhesives, but a corresponding one must
  • porous layer serving for covering can also be provided.
  • the porous layer advantageously consists of a nonwoven fabric or fabric made of polymeric fibers.
  • the flat cable according to the invention can be back-injected at least partially with a thermoplastic. This makes it possible to manufacture parts designed at the installation location.
  • the conductors of the conductor track are exposed at least in partial areas of their surface to form contact fields before lamination.
  • a flat cable that is equipped with electronic components is particularly preferred.
  • functionally finished electronic built-in parts can be produced in a very rational manner.
  • the production of the 3D flat cable as intermediate parts takes place in such a way that the laminate consisting of flat cable, adhesive and nonwoven layers is applied to a positive molding tool, aligned and brought into shape by means of heat and / or radiation and / or pressure as well as by Cooling below the glass transition temperature T g of the adhesive layer or curing of the adhesive layer is fixed in its shape. For example, a negative pressure is applied to the back of the laminate.
  • the shape of the laminate parts fixed in shape is preferably reworked by punching, milling or cutting and installed in a separate step at their place of use or at least partially back-injected with a thermoplastic for better assembly in an injection molding process.
  • a metal foil is preferably used in the lamination process and / or in the mold.
  • nonwoven fabric for the above-mentioned process, those made of polyester or polyamide are preferably used which have a thickness of 0.1 to 2 mm, a tensile strength of 50 to 250 N / 50mm and an elongation of 30 to 50%.
  • the nonwoven used as a thermoplastic adhesive layer should have a softening temperature between 30 and 180 ° C, its basis weight should be between 10 and 70 g / m 2 and it should have a low melt index.
  • the material used is flexible flat cable (FFC), 1, 2 - 1, 4 mm thick, hot-melt adhesive nonwoven made of copolyamides with T m : 105 - 110 ° C, a basis weight of 30 g / m 2 and thermally bonded spunbonded polyethylene terephthalate with a basis weight of 250 g / m 2 used.
  • FFC flexible flat cable
  • hot-melt adhesive nonwoven made of copolyamides with T m : 105 - 110 ° C, a basis weight of 30 g / m 2 and thermally bonded spunbonded polyethylene terephthalate with a basis weight of 250 g / m 2 used.
  • FFC flexible flat cable
  • hot-melt adhesive nonwoven made of copolyamides with T m : 105 - 110 ° C
  • a basis weight of 30 g / m 2 thermally bonded spunbonded polyethylene terephthalate with a basis weight of 250 g / m 2 used
  • a flexible flat cable with 45 g / m 2 of a copolyamide with a melting point T m of 105 ° C. and a thermally bonded staple fiber nonwoven made of polyethylene terephthalate fibers with a basis weight of 100 g / m 2 is used using a 0.5 mm thick Laminated aluminum foil as a cooling element and fixed at 140 ° C / 45 s on a positive mold. After the tool has cooled, the laminate is removed from the mold as a dimensionally stable flat cable.
  • a flexible flat cable is made from ultraviolet light (UV) curing adhesive and a thermally bonded spunbonded nonwoven Laminated polyethylene terephthalate fibers with a basis weight of 150 g / m 2 .
  • UV ultraviolet light
  • the molding is carried out at room temperature under UV light irradiation on a positive mold. After curing, the laminate is removed from the mold as a dimensionally stable flat cable. The dimensionally stable flat cable is then partially back-injected with polypropylene in an injection molding process.
  • a flexible flat cable which is equipped with electronic components such as light-emitting diodes (LED), with 25 g / m 2 of a copolyamide with a melting point T m of 105 ° C and a thermally bonded spunbonded nonwoven made of polyethylene terephthalate fibers with a basis weight of 150 g / m 2 laminated together and fixed at 110 ° C / 120 s on a positive mold. After the tool has cooled, the laminate is removed from the mold as a dimensionally stable flat cable.
  • LED light-emitting diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein dreidimensional geformtes Flachkabel bestehend aus einem Laminat, welches mindestens aus einer zwischen zwei Isolationsschichten eingebundenen Leiterbahn und mindestens einer Trägerschicht besteht, die mittels einer Klebeschicht miteinander verbunden sind und das auf ein positives Formwerkzeug aufgebracht und unter Anwendung von Wärme und/oder Strahlung und/oder Druck in Form gebracht sowie durch Abkühlung unter die Glastemperatur Tg der Klebeschicht oder Aushärtung der Klebeschicht in seiner dreidimensionalen Formgestalt fixiert ist.

Description

Dreidimensional geformtes Flachkabel, Verfahren zu seiner Herstellung und seine Verwendung
Beschreibung
Die Erfindung betrifft ein dreidimensional (3D) geformtes Flachkabel, Verfahren zu seiner Herstellung und seine Verwendung.
Aus dem Dokument DE-A 196 49 972 ist ein Verfahren zur Herstellung eines Leitungssatzes für Fahrzeuge bekannt, bei dem die Leitungen mit einer Trägerfolie verklebt und mit Steckern versehen werden und an einem formstabilen Träger befestigt sind, wobei wenigstens einige der Leitungen aus nicht isolierten Litzenleitern bestehen, die nacheinander und unabhängig voneinander auf eine isolierende, mit einer Klebeschicht versehene Trägerfolie entlang einer vorgegebenen Linienführung aufgelegt und anschließend entweder auf die Trägerfolie eine isolierende Schutzfolie aufgelegt und mit der Trägerfolie durch Druckanwendung verklebt oder die Trägerfolie und die aufgelegten Litzenleiter mit einer Schutzlackschicht überzogen und abschließend durch Beschneiden an die Kontur des Einsatzortes angepaßt wird. Nachteilig an diesem Verfahren ist die arbeitsaufwendige Verlegung der Leiterbahnen und deren Fixierung an dem formstabilen Träger. Aus dem Dokument DE-A 196 28 850 ist ein Kabelbaum und ein Verfahren zu seiner Herstellung bekannt, der Stromkabel besitzt, die in einer ersten Harzschicht mit Vertiefungen angeordnet sind, wobei die erste Harzschicht so geformt ist, dass sie entlang einer vorbestimmten Verlegungsstrecke der Stromkabel verläuft und eine zweite Harzschicht, die fest mit der ersten Harzschicht verbunden ist, so dass sie zumindest die Vertiefung der ersten Harzschicht bedeckt und durch Vakuumformen angebracht ist.
Die bekannten Lösungen weisen den Nachteil auf, dass sie entweder in einem sehr arbeitsaufwendigen Prozess per Hand auf die Oberfläche des formstabilen Trägers aufgebracht werden müssen oder dass separate Teile hergestellt, die Leiter eingebracht und durch das zweite Harz in ihrer Lage fixiert werden müssen.
Die Erfindung hat sich die Aufgabe gestellt dreidimensional geformtes Flachkabel sowie ein Verfahren zur Herstellung anzugeben, die die Nachteile der bekannten Lösungen vermeidet und die im Zwischenschritt die Herstellung von formstabilen Flachkabeln gestattet, die erst in einem zweiten Schritt an ihrem Einbauort plaziert werden.
Erfindungsgemäß wird die Aufgabe durch ein Flachkabel gelöst, bestehend aus einem Laminat, welches mindestens aus einer zwischen zwei Isolationsschichten eingebundenen Leiterbahn und mindestens einer Trägerschicht besteht, die mittels einer Klebeschicht miteinander verbunden sind und das auf ein positives Formwerkzeug aufgebracht und unter Anwendung von Wärme und Druck in Form gebracht sowie durch Abkühlung unter die Glastemperatur Tg der Klebeschicht oder Aushärtung der Klebeschicht in seiner dreidimensionalen Formgestalt fixiert ist. Ein solches 3D-Flachkabel ist auch als Zwischenteil vor dem Einbau lagerfähig. Die Trägerschicht kann aus Metall- oder Kunststoff-Folien oder poröse Schichten bestehen.
Vorzugsweise wird als Klebeschicht ein thermoplastischer Kleber, eine thermoplastische Klebefolie und/oder ein Klebevliesstoff mit einem
Schmelzpunkt Tm <180°C und/oder ein latent Reaktivkleber mit einer
Vernetzungstemperatur <140°C eingesetzt. Klebeschichten dieser Art gestatten es, die Flachkabel- mit der Trägerschicht fest zu verbinden und zu einem
Zwischenformteil zu formen. Auch Vernetzungstemperaturen >140°C können angewendet werden, wenn durch Kühlung der Leiterbahnschicht eine
Schädigung ausgeschlossen werden kann. Beim Einsatz von Reaktivklebern kann eine Abkühlung entbehrlich sein, allerdings muß eine entsprechende
Verfestigung durch eine weitgehende Aushärtung durch Vernetzung eingetreten sein.
Zur besseren Handhabung kann weiterhin eine der Abdeckung dienende weitere poröse Schicht vorgesehen sein. Die poröse Schicht besteht vorteilhafter Weise aus einem Vliesstoff oder Gewebe aus polymeren Fasern.
Das erfindungsgemäße Flachkabel kann zumindest teilweise mit einem Thermoplast hinterspritzt sein. Damit ist die Herstellung an den Einbauort gestalteter Teile möglich.
Vorteilhafter Weise sind die Leiter der Leiterbahn vor der Laminierung zumindest in Teilbereichen ihrer Oberfläche zur Bildung von Kontaktfeldern freigelegt. Besonders bevorzugt ist ein Flachkabel, das mit elektronischen Bauelementen bestückt ist. Dadurch können in sehr rationeller Weise funktionstechnisch fertige elektronische Einbauteile hergestellt werden.
Die Herstellung der 3D-Flachkabel als Zwischenteile erfolgt in der Weise, dass das aus Flachkabel-, Klebe- und Vliesstoffschichten bestehende Laminat auf ein positives Formwerkzeug aufgebracht, ausgerichtet und unter Anwendung von Wärme und/oder Strahlung und/oder Druck in Form gebracht sowie durch Abkühlung unter die Glastemperatur Tg der Klebeschicht oder Aushärtung der Klebeschicht in seiner Formgestalt fixiert wird. Als Druck wird beispielsweise ein Unterdruck an der Rückseite des Laminats angelegt.
Vorzugsweise werden die in ihrer Formgestalt fixierten Laminatteile durch Stanzen, Fräsen oder Schneiden nachbearbeitet und in einem separaten Schritt an ihrem Einsatzort eingebaut oder zur besseren Montage zumindest teilweise in einem Spritzgußverfahren mit einem Thermoplast hinterspritzt.
Zur Temperaturvergleichmäßigung wird vorzugsweise eine Metallfolie beim Laminierungsprozeß und/oder im Formwerkzeug eingesetzt.
Als Vliesstoff für das genannte Verfahren werden vorzugsweise solche aus Polyester oder Polyamid eingesetzt, die eine Dicke von 0,1 bis 2 mm, eine Reißfestigkeit von 50 bis 250 N/50mm und eine Dehnung von 30 bis 50% besitzen. Das als thermoplastische Klebeschicht eingesetzte Klebevlies sollte eine Erweichungstemperatur zwischen 30 und 180°C besitzen, sein Flächengewicht sollte zwischen 10 und 70 g/m2 liegen und es sollte einen niedrigen Schmelzindex aufweisen.
Die Erfindung wird nachfolgend an Hand der Beispiele dargestellt. Beispiel 1
Als Material werden flexible Flachkabel (FFC), 1 ,2 - 1 ,4 mm dick, Schmelzklebevliessstoff aus Copolyamiden mit Tm: 105 - 110 °C, einem Flächengewicht von 30 g/m2 und thermisch gebundenes Polyethylenterephthalat-Spinnvlies mit einem Flächengewicht von 250 g/m2 eingesetzt. Auf die Rückseite eines FFC wird mit Hilfe einer Bügelpresse ein Vliesstoff mit einem Schmelzkleber bei 140 °C laminiert. Das Vlies dient hierbei als Trägerschicht, der Schmelzkleber verbessert die Formbarkeit. Dieses Laminat wird auf einem positiven Formwerkzeug fixiert und bei 140 °C / 30 s in Form gebracht. Nach dem Abkühlen des Werkzeugs wird das Laminat als formstabiles Flachkabel der Form entnommen.
Beispiel 2
Analog Beispiel 1 wird ein flexibles Flachkabel mit 45 g/m2 eines Copolyamids mit einem Schmelzpunkt Tm von 105°C und einem thermisch gebundenen Stapelfaservliesstoff aus Polyethylenterephthalat-Fasern mit einem Flächengewicht von 100 g/m2 unter Verwendung einer 0,5 mm dicken Aluminiumfolie als Kühlungselement zusammenlaminiert und bei 140 °C / 45 s auf einem positiven Formwerkzeug fixiert. Nach dem Abkühlen des Werkzeugs wird das Laminat als formstabiles Flachkabel der Form entnommen.
Beispiel 3
Analog Beispiel 1 wird ein flexibles Flachkabel mit Ultraviolett-Licht (UV) härtendem Kleber und einem thermisch gebundenen Spinnviiesstoff aus Polyethylenterephthalat-Fasern mit einem Flächengewicht von 150 g/m2 zusammenlaminiert. Die Formung erfolgt bei Raumtemperatur unter UV-Licht Bestrahlung auf einem positiven Formwerkzeug. Nach dem Aushärten wird das Laminat als formstabiles Flachkabel der Form entnommen. Das formstabile Flachkabel wird anschließend mit Polypropylen in einem Spritzgußverfahren teilweise hinterspritzt.
Beispiel 4
Analog Beispiel 1 wird ein flexibles Flachkabel, das mit elektronischen Bauelementen wie Lichtemissionsdioden (LED) bestückt ist, mit 25 g/m2 eines Copolyamids mit einem Schmelzpunkt Tm von 105°C und einem thermisch gebundenen Spinnviiesstoff aus Polyethylenterephthalat-Fasern mit einem Flächengewicht von 150 g/m2 zusammenlaminiert und bei 110 °C / 120 s auf einem positiven Formwerkzeug fixiert. Nach dem Abkühlen des Werkzeugs wird das Laminat als formstabiles Flachkabel der Form entnommen.
Weitere Beispiele sind in der nachfolgenden Tabelle dargestellt.
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000008_0002

Claims

Patentansprüche
1. Dreidimensional geformtes Flachkabel bestehend aus einem Laminat, welches mindestens aus einer zwischen zwei Isolationsschichten eingebundenen Leiterbahn und mindestens einer Trägerschicht besteht, die mittels einer Klebeschicht miteinander verbunden sind und das auf ein positives Formwerkzeug aufgebracht und unter Anwendung von Wärme, Strahlung und/oder Druck in Form gebracht sowie durch Abkühlung unter die Glastemperatur Tg der Klebeschicht oder Aushärtung der Klebeschicht in seiner dreidimensionalen Formgestalt fixiert ist.
2. Flachkabel nach Anspruch 1 , dadurch gekennzeichnet, dass die Trägerschicht aus einer Metall- oder Kunststoff-Folie besteht.
3. Flachkabel nach Anspruch 1 , dadurch gekennzeichnet, dass die Trägerschicht aus einer porösen Schicht besteht.
4. Flachkabel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Klebeschicht aus einem thermoplastischen Kleber, einer Klebefolie und/oder einem Klebevliesstoff mit einem Schmelzpunkt Tm < 180°C und/oder einem latent Reaktivkleber einer Vernetzungstemperatur < 140°C besteht.
5. Flachkabel nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass eine weitere, der Abdeckung dienende poröse Schicht vorgesehen ist.
6. Flachkabel nach Anspruch 5, dadurch gekennzeichnet, dass die poröse Schicht aus einem Vliesstoff oder einem Gewebe aus polymeren Fasern besteht.
5 7. Flachkabel einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Flachkabel zumindest teilweise mit einem Thermoplast hinterspritzt ist.
8. Flachkabel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Leiter der Leiterbahn vor der Laminierung zumindest in 0 Teilbereichen ihrer Oberfläche zur Bildung von Kontaktfeldern freigelegt sind.
9. Flachkabel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Flachkabel mit elektronischen Bauelementen bestückt ist.
15 10. Verfahren zur Herstellung eines formstabilen Flachkabels nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das aus Flachkabel-, Klebe- und Trägerschichten bestehende Laminat oder alle Komponente für das Laminat separat auf ein positives Formwerkzeug aufgebracht, bei Raumtemperatur ausgerichtet und unter Anwendung von Wärme, Strahlung
20 und/oder Druck in Form gebracht sowie durch Abkühlung unter die Glastemperatur Tg der Klebeschicht oder Aushärtung der Klebeschicht in seiner Formgestalt fixiert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass zur 25 Temperaturvergleichmäßigung eine Metallfolie beim Laminierungsprozeß und oder im Formwerkzeug eingesetzt wird.
12. Verfahren nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass die in ihrer Formgestalt fixierten Laminatteile in einem separaten Schritt eingebaut oder in einem Spritzgußverfahren mit einem Thermoplast hinterspritzt werden.
PCT/EP2003/010031 2002-12-02 2003-09-10 Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung WO2004051675A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/537,082 US7408117B2 (en) 2002-12-02 2003-09-10 Three-dimensional moulded planar cable, method for production and use thereof
AU2003273849A AU2003273849A1 (en) 2002-12-02 2003-09-10 Three-dimensional moulded planar cable, method for production and use thereof
EP03757812.7A EP1568050B1 (de) 2002-12-02 2003-09-10 Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung
JP2004570672A JP2006508517A (ja) 2002-12-02 2003-09-10 三次元形状に形成されたフラットケーブル、その製造方法およびその使用方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10256372 2002-12-02
DE10256372.1 2002-12-02
DE10315747.6 2003-04-04
DE10315747A DE10315747A1 (de) 2002-12-02 2003-04-04 Dreidimensional geformtes Flachkabel, Verfahren zu seiner Herstellung und seine Verwendung

Publications (1)

Publication Number Publication Date
WO2004051675A1 true WO2004051675A1 (de) 2004-06-17

Family

ID=32471490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010031 WO2004051675A1 (de) 2002-12-02 2003-09-10 Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung

Country Status (8)

Country Link
US (1) US7408117B2 (de)
EP (1) EP1568050B1 (de)
JP (1) JP2006508517A (de)
KR (1) KR100779336B1 (de)
AU (1) AU2003273849A1 (de)
RU (1) RU2305336C2 (de)
TW (1) TWI225261B (de)
WO (1) WO2004051675A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203571B3 (de) * 2012-03-07 2013-04-11 Lisa Dräxlmaier GmbH Verfahren zum plastischen Umformen wenigstens einer elektrisch leitenden Schicht eines Flachleiters zu einer mehrdimensionalen Kontur sowie Vorrichtungen für dieses Verfahren

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459454A (en) * 2008-04-22 2009-10-28 Tyco Electronics Power Cable
KR100990407B1 (ko) 2008-08-08 2010-10-29 브로콜리 주식회사 평면 균일 전송 선로 제조 방법
JP5644716B2 (ja) * 2011-08-17 2014-12-24 日立金属株式会社 接着フィルム及びフラットケーブル
CN105979716A (zh) * 2016-05-20 2016-09-28 泉州三宝电子有限公司 一种柔性电路板及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616717A (en) * 1978-11-09 1986-10-14 Tel Tec Inc. Flexible wire cable and process of making same
EP0590694A1 (de) * 1988-12-27 1994-04-06 Yazaki Corporation Verfahren zur Herstellung eines flachen Kabelbaumes

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836415A (en) * 1972-11-03 1974-09-17 Ford Motor Co Method of fabricating a precontoured unitized electrical wiring harness
US4381420A (en) * 1979-12-26 1983-04-26 Western Electric Company, Inc. Multi-conductor flat cable
US4781601A (en) * 1987-07-06 1988-11-01 Motorola, Inc. Header for an electronic circuit
US4924037A (en) * 1988-12-20 1990-05-08 W. L. Gore & Associates, Inc. Electrical cable
US5028473A (en) * 1989-10-02 1991-07-02 Hughes Aircraft Company Three dimensional microcircuit structure and process for fabricating the same from ceramic tape
US5142105A (en) * 1989-12-05 1992-08-25 Cooper Industries, Inc. Electrical cable and method for manufacturing the same
TW198118B (de) * 1991-09-27 1993-01-11 Minnesota Mining & Mfg
US5276759A (en) * 1992-01-09 1994-01-04 Raychem Corporation Flat cable
US5268531A (en) * 1992-03-06 1993-12-07 Raychem Corporation Flat cable
US5327513A (en) * 1992-05-28 1994-07-05 Raychem Corporation Flat cable
US5246061A (en) * 1992-07-29 1993-09-21 Grumman Aerospace Corporation Thermal storage by heavy water phase change
US5554825A (en) * 1994-11-14 1996-09-10 The Whitaker Corporation Flexible cable with a shield and a ground conductor
US5659153A (en) 1995-03-03 1997-08-19 International Business Machines Corporation Thermoformed three dimensional wiring module
JP3565951B2 (ja) * 1995-07-20 2004-09-15 矢崎総業株式会社 ワイヤーハーネスおよびその製造方法
DE19649972C2 (de) 1996-11-22 2002-11-07 Siemens Ag Verfahren zur Herstellung eines Leitungssatzes für Kraftfahrzeuge
JPH11111065A (ja) * 1997-09-30 1999-04-23 Yazaki Corp 回路体及びその製造方法
DE10081175B4 (de) * 1999-03-26 2010-06-02 Mitsubishi Plastics, Inc. Verfahren zur Herstellung einer dreidimensionalen Leiterplatte
US6392155B1 (en) * 1999-05-07 2002-05-21 Hitachi Cable, Ltd. Flat cable and process for producing the same
DE10103761A1 (de) * 2001-01-27 2002-09-05 Kostal Leopold Gmbh & Co Kg Flexibles Flachbandkabel
JP2002313148A (ja) * 2001-04-06 2002-10-25 Hitachi Cable Ltd フラットケーブル
US6717057B1 (en) * 2001-08-09 2004-04-06 Flexcon Company, Inc. Conductive composite formed of a thermoset material
US6948240B2 (en) * 2001-10-05 2005-09-27 Benq Corporation Method for shaping an object
US7332677B2 (en) * 2004-12-17 2008-02-19 General Electric Company Multiconductor cable assemblies and methods of making multiconductor cable assemblies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616717A (en) * 1978-11-09 1986-10-14 Tel Tec Inc. Flexible wire cable and process of making same
EP0590694A1 (de) * 1988-12-27 1994-04-06 Yazaki Corporation Verfahren zur Herstellung eines flachen Kabelbaumes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203571B3 (de) * 2012-03-07 2013-04-11 Lisa Dräxlmaier GmbH Verfahren zum plastischen Umformen wenigstens einer elektrisch leitenden Schicht eines Flachleiters zu einer mehrdimensionalen Kontur sowie Vorrichtungen für dieses Verfahren
DE102012203571C5 (de) * 2012-03-07 2016-07-28 Lisa Dräxlmaier GmbH Verfahren zum plastischen Umformen mehrerer elektrisch leitender Schichten eines Flachleiters zu einer mehrdimensionalen Kontur sowie Vorrichtungen für dieses Verfahren

Also Published As

Publication number Publication date
EP1568050B1 (de) 2013-11-06
KR100779336B1 (ko) 2007-11-23
RU2305336C2 (ru) 2007-08-27
TW200410265A (en) 2004-06-16
TWI225261B (en) 2004-12-11
US20060131060A1 (en) 2006-06-22
JP2006508517A (ja) 2006-03-09
EP1568050A1 (de) 2005-08-31
KR20050084105A (ko) 2005-08-26
RU2005120772A (ru) 2006-01-20
US7408117B2 (en) 2008-08-05
AU2003273849A1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
WO2005081267A1 (de) Dreidimensional geformtes flachkabel
DE102022101935A1 (de) Verfahren zur Herstellung eines photovoltaischen Panels, wie z.B. eines in die Fahrzeugkarosserie integrierten PV-Panels, unter Verwendung eines wärmehärtenden Polymers
EP2321107B1 (de) Kunststoffhaut mit elektrolumineszenten Elementen
DE19934732A1 (de) Verfahren zum Laminieren eines flexiblen Schaltkreises auf ein Substrat
DE102016208371A1 (de) Herstellungsverfahren für fahrzeug-trittbrett
DE102008049890A1 (de) Photovoltaische Anordnung und Verfahren zur Herstellung der photovoltaischen Anordnung
DE102008045757A1 (de) Kunststoffhaut mit Leiterbahnen
DE19706839C2 (de) Mehrlagiger Verbundkörper
DE112012006247T5 (de) Kabelstrang und Herstellungsverfahren für einen Kabelstrang
DE102015007885A1 (de) Verfahren zum Herstellen eines Verbundbauteils für ein Fahrzeug, insbesondere einen Kraftwagen, sowie Verbundbauteil für ein Fahrzeug
EP1568050A1 (de) Dreidimensional geformtes flachkabel, verfahren zu seiner herstellung und seine verwendung
DE102006061388B3 (de) Verfahren zur Herstellung einer Kunststoffhaut mit Folienschaltung
DE112018005396T5 (de) Kabelstrang
DE10315747A1 (de) Dreidimensional geformtes Flachkabel, Verfahren zu seiner Herstellung und seine Verwendung
DE10358295B4 (de) Leichtbau-Verbundmaterial sowie Verfahren zu dessen Herstellung
DE102016106124B4 (de) Verfahren zur Herstellung eines Formteils, Verwendung des Formteils als Verbundwerkstoff-Halbzeug und Fahrzeugteil enthaltend das Formteil
DE102004027079B4 (de) Elektrisch beheizbares Formschaumelement, insbesondere Sitzelement einer Fahrzeuginnenausstattung und Verfahren zu dessen Herstellung
DE102023105209A1 (de) Verfahren zur Herstellung eines PV-Paneels, wie z.B. eines PV-integrierten Karosseriepaneels mit einer hinteren Trägerstruktur, die unter Verwendung einer Thermoformtechnik hergestellt wird
DE102004063061A1 (de) Modul, insbesondere für ein Fahrzeug, Verfahren zur Herstellung des Moduls und Verwendung des Moduls
DE202004020549U1 (de) Dreidimensional geformtes Flachkabel
EP0148379A1 (de) Mehrlagenschaltungen aus Thermoplast-Kupfer-Verbund
DE102011013372A1 (de) Verfahren zur Herstellung eines Bauteils
EP1117565B1 (de) Verfahren zum fixieren von flachleitungen auf einem formträgerteil, zugehöriges formpresswerkzeug und formträgerteil
DE202019005293U1 (de) Verkleidungsbauteil
DE102016202045B4 (de) Verfahren zur Herstellung eines Bauteils und Bauteil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CN CO CR CU CZ DK DM DZ EC EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL RO RU SC SD SG SK SL TJ TM TN TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003757812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057009964

Country of ref document: KR

Ref document number: 2004570672

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2005120772

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057009964

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003757812

Country of ref document: EP