WO2004049547A1 - アクチュエータ - Google Patents

アクチュエータ Download PDF

Info

Publication number
WO2004049547A1
WO2004049547A1 PCT/JP2003/014987 JP0314987W WO2004049547A1 WO 2004049547 A1 WO2004049547 A1 WO 2004049547A1 JP 0314987 W JP0314987 W JP 0314987W WO 2004049547 A1 WO2004049547 A1 WO 2004049547A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
stator
pair
actuator
stators
Prior art date
Application number
PCT/JP2003/014987
Other languages
English (en)
French (fr)
Inventor
Yuya Hasegawa
Katsuhiro Hirata
Yoshio Mitsutake
Tomohiro Ota
Ryo Motohashi
Tomohiro Kunita
Hiroaki Shimizu
Hidekazu Yabuuchi
Takahiro Nishinaka
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to EP03774196A priority Critical patent/EP1566879A4/en
Priority to AU2003284670A priority patent/AU2003284670A1/en
Priority to CA002493603A priority patent/CA2493603C/en
Priority to US10/518,547 priority patent/US7218018B2/en
Publication of WO2004049547A1 publication Critical patent/WO2004049547A1/ja
Priority to US11/695,283 priority patent/US20070170877A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the present invention relates to an actuator that can move in two directions, an axial direction and a rotational direction.
  • actuators perform motion in one direction, such as a linear direction or a rotating direction.When moving in two directions, a linear direction and a rotating direction, the motion direction is converted mechanically. A book in which the mechanism is used. However, changing the direction of movement can cause noise when changing the direction of movement.
  • Japanese Patent Application Laid-Open No. 2000-78310 discloses that a mover (plunger) having a shaft (shaft) is provided inside a stator (yoke) with an air gap (gap).
  • the movement direction conversion mechanism is realized by making the air gap non-uniform for the axial displacement (stroke position) of the mover. The mover moves in the axial direction of the shaft without using
  • Japanese Patent Application Laid-Open No. 2002-1966989 discloses that a first movable element (plunger) having a shaft (shaft) is provided with a gap inside a stator (yoke) provided in a case. (Rear gap), which cancels the inertia force of the first mover in a re-oscillator in which the magnetic path is excited by a coil and the first mover moves in the axial direction of the shaft.
  • a second movable element (amplitude control weight) that operates is provided, and a spring member is provided between the case, the first movable element, and the second movable element, so that axial movement (stroke position) is prevented.
  • the reciprocating motion due to the axial resonance of the shaft and the motion in the rotational direction with the axial direction as the axis of rotation can be performed without using the motion direction changing mechanism.
  • a configuration capable of reducing vibration due to inertial force is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-7810310 ⁇ The configuration disclosed in Japanese Patent Publication No. 9 is a simple configuration that does not use a movement direction change mechanism that causes noise, and that the mover moves in two directions according to the axial displacement of the mover.
  • the relationship between the axial movement and the rotational movement of the mover is fixed by the shape of the air gap, the axial movement and the rotational movement of the mover are independent. It is not something that can be controlled by motion, and does not have a high degree of freedom in motion control.
  • the present invention provides an actuator in which a mover can move in two directions, an axial direction and a rotational direction, without using a movement direction conversion mechanism.
  • the purpose is to improve the degree of freedom.
  • an actuator of the present invention comprises a case, a stator member having a coil member and fixed in the case, and a mover member including a mover and supported by the case.
  • the mover has a shaft, and is supported by a case so as to be able to move in a rotation direction about the axis of the shaft and the axis of the shaft as a rotation axis.
  • the stator member includes a first stator member that applies an axial force to the mover member, and a second stator that applies a rotational force to the mover member.
  • a coil member that excites a first coil member that excites a first magnetic path that passes through the first stator member and a second magnetic path that passes through a second stator member. To the second It is intended to include coil member.
  • FIG. 1 is a partial cross-sectional perspective view of an actuator according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIGS. 4 (A) and 4 (B) are cross-sectional views taken along the line IVA-IVA and the line IVB_IVB in FIG. 3, respectively.
  • FIG. 5 is a characteristic diagram showing a relationship between axial displacement and thrust of the actuator of FIG.
  • FIG. 6 is a characteristic diagram showing the relationship between the rotation angle and torque of the actuator of FIG.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 3, showing an actuator according to a modification of the actuator of FIG.
  • FIGS. 8A and 8B are cross-sectional views taken along the lines VIIA-VIIA, ⁇ and VIIB-VIIB of FIG. 7, respectively.
  • FIG. 9 is a waveform chart showing the operation of the actuator of FIG.
  • FIG. 10 is a waveform chart showing another operation of the actuator of FIG.
  • FIG. 11 is a partial perspective view of an actuator according to the second embodiment of the present invention.
  • FIG. 12 is a plan view of the actuator of FIG.
  • FIG. 13 is a cross-sectional view corresponding to FIG. 2, showing an actuator according to a third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view corresponding to FIG. 2, illustrating an actuator according to a fourth embodiment of the present invention.
  • FIG. 15 is a characteristic diagram showing the relationship between axial displacement and thrust of the actuator of FIG.
  • FIGS. 16 (A) and 16 (B) are diagrams respectively showing two ways of winding the first coil around the first stator in the actuator according to the fifth embodiment of the present invention. is there.
  • FIG. 17 is a cross-sectional view corresponding to FIG. 2, illustrating an actuator according to a sixth embodiment of the present invention.
  • FIG. 18 is a partial cross-sectional perspective view of an actuator according to a seventh embodiment of the present invention.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX of FIG.
  • FIG. 20 is a cross-sectional view taken along line XX-XX of FIG.
  • FIG. 21 is a cross-sectional view corresponding to FIG. 20, showing an actuator according to a modification of the actuator of FIG.
  • FIG. 22 is a cross-sectional view corresponding to FIG. 19, illustrating an actuator according to an eighth embodiment of the present invention.
  • FIG. 23 shows an actuator according to a ninth embodiment of the present invention. It is a corresponding sectional view.
  • FIG. 24 is a cross-sectional view corresponding to FIG. 19, showing an actuator according to the tenth embodiment of the present invention.
  • FIG. 25 is a longitudinal sectional view of an actuator according to a first embodiment of the present invention.
  • FIG. 26 is a cross-sectional view showing the magnetic structure of the axial actuator used in the actuator of FIG.
  • FIG. 27 is a diagram illustrating the principle of operation of the axial actuator of FIG.
  • FIG. 28 is a cutaway perspective view showing the magnetic structure of the rotary actuator used in the actuator of FIG.
  • FIGS. 29 (A) and 29 (B) are diagrams showing the magnetization states of the upper magnetic pole and the lower magnetic pole of the stator of the rotary actuator of FIG. 28, respectively.
  • FIG. 30 is a voltage waveform diagram for operating the actuator of FIG.
  • FIG. 31 is a diagram showing a drive locus of a shaft used in the actuator of FIG.
  • FIG. 1 to 10 show an actuator according to a first embodiment of the present invention.
  • this actuator mainly comprises a case 1, a pair of first stators 2 each of which is wound with a first coil 3, and a second coil 5 each of which is wound. And a pair of second stators 4 and movers 6.
  • the mover 6 includes a shaft 6a and a horsepower generating unit 6b fixed to the shaft 6a.
  • the case 1 includes a housing 1a and a pair of bearings 1b, and houses the first stator 2, the second stator 4, and the mover 6.
  • the housing 1a is formed in a cylindrical shape with a bottom from a magnetic material made of metal.
  • each of the bearing portions lb is a so-called Bonolet bearing in which a metal ball whose surface is smoothly processed is placed in a hollow portion of a cylindrical tube having a concentric cross section.
  • the two bearing portions 1b are provided at the centers of both end surfaces of the housing portion 1a, respectively, such that the center axis of the housing portion 1a and the center axis of the bearing portion 1b coincide with each other. ing.
  • the two bearing portions lb are provided with a shaft 6 a of the mover 6, that is, the mover 6 has an axial direction (hereinafter referred to as “axial direction”) of the shaft 6 a, That is, the metal ball supports the shaft 6a so that the shaft 6a can move in a rotation direction (hereinafter, referred to as a "rotation direction”) about the rotation axis.
  • Each of the first stators 2 is made of a magnetic material and formed in a columnar shape with an E-shaped cross section, and has three magnetic pole portions arranged symmetrically in the axial direction, that is, magnetic pole portions 2a and 2 at both ends. b and a central magnetic pole 2c.
  • the two first stators 2 are fixed to the hollow portion of the housing 1 a of the case 1 so as to be arranged symmetrically with respect to the rotation axis.
  • the magnetic pole portions 2a to 2c of the first stator 2 have the same width and length.
  • a first coil 3 is wound around a central magnetic pole 2c, and a current flows through the first coil 3 so that the central magnetic pole 2c and the magnetic poles at both ends are wound.
  • Different magnetic poles occur at 2a and 2b.
  • N pole is generated at the center magnetic pole portion 2c
  • S poles are generated at the magnetic pole portions 2a and 2b at both ends. Since the magnetic pole portions 2a to 2c are positioned so as to face the mover 6, the first stator 2 forms an efficient magnetic circuit with little leakage magnetic flux.
  • the two first stators 2 are used to mainly apply an axial force to the mover 6.
  • the first coil 3 is wound around a magnetic pole portion 2c at the center of the first stator 2 via a resin coil (not shown).
  • the first coil 3 excites a first stator 2, a gap between the first stator 2 and the mover 6, and a magnetic path passing through the mover 6.
  • the excitation of the first coil 3 provided on one of the two first stators 2 and the excitation of the first coil 3 provided on the other first stator 2 have opposite phases.
  • the first coil 3 is connected. For example, as shown in FIG. 2, when the central magnetic pole 2c of one of the two first stators 2 is energized to the N pole, the magnetic pole of the central of the other first stator 2 is turned on.
  • the first coil 3 is connected and sold so that 2c is excited to the S pole.
  • Each of the second stators 4 is formed of a magnetic material and formed in a columnar shape having a C-shaped cross section, and has two magnetic pole portions 4a and 4b arranged symmetrically in the axial direction.
  • the two second stators 4 are fixed to the hollow portion of the casing 1a of the case 1 so as to be arranged symmetrically with respect to the rotation axis.
  • two An axial plane including the first stator 2 and a plane including the two second stators 4 are provided so as to be orthogonal to each other. Therefore, the distance between the first stator 2 and the second stator 4 is increased, so that the space in which the first coil 3 and the second coil 5 are provided can be increased.
  • the magnetic pole portions 4a and 4b of the second stator 4 have the same width and length. Then, as shown in FIG. 3, in each of the second stators 4, a second coil 5 is divided and wound into magnetic pole portions 4a and 4b, and the second coil 5 When a current flows through the magnetic poles, different magnetic poles are generated in the magnetic pole portions 4a and 4b, respectively. For example, as shown in FIG. 3, if an S pole is generated in the magnetic pole part 4a, an N pole is generated in the magnetic pole part 4b. Since the magnetic pole portions 4a and 4b are located so as to face the mover 6, the second stator 4 constitutes an efficient magnetic circuit with little leakage magnetic flux. 2nd
  • the stator 4 of 2 is used to mainly apply a force in the rotational direction to the mover 6.
  • the second coil 5 is divided and wound around each of the magnetic pole portions 4a and 4b of the second stator 4 via a coil bobbin (not shown) made of resin.
  • the second coil 5 excites a magnetic path passing through the second stator 4, the gap between the second stator 4 and the mover 6, and the mover 6.
  • the excitation of the second coil 5 provided on one of the two second stators 4 and the excitation of the second coil 5 provided on the other second coil 5 have opposite phases. So that the second coil 5 is connected.
  • FIG. 3 when one magnetic pole portion 4a of the two second stators 4 is excited to the S pole, the corresponding magnetic pole portion 4a of the other second stator 4
  • the second coil 5 is connected so that is excited to the N pole.
  • the mover 6 includes the shaft 6a and the driving force generating unit 6b as described above.
  • the shaft 6a is made of a metal cylinder and is supported by two bearing portions 1b so as to be able to move in the axial direction and the rotational direction.
  • the driving force generator 6b is magnetized in the direction of magnetization (direction from the S pole to the N pole).
  • the magnets are radially magnetized so that they are opposite to each other as shown in Figs. Formed by two cylindrical tubular magnets 6b1 and 6b2.
  • the magnets 6b1 and 6b2 are fixed to the shaft 6a such that the center axes of the magnets 6b1 and 6b2 coincide with the center axis of the shaft 6a.
  • the magnets 6b1 and 6b2 are provided symmetrically with respect to the rotation axis so that the magnetization direction is orthogonal to the axial direction. Therefore, the mass of magnets 6 b 1 and 6 b 2 Since it is symmetrically distributed, the inertial force due to the movement of the mover 6 in the rotational direction is canceled, and the vibration transmitted to the case 1 can be reduced.
  • the first stator 2 and the second stator 4 are respectively provided with magnetic pole portions 2 a to 2 c and magnetic pole portions 4 a and 4 located on both sides of the magnets 6 b 1 and 6 b 2 of the mover 6. Since a force is applied to the mover 6 in the axial direction and the rotation direction using b, the mover 6 can move by receiving a large force.
  • the driving force generating portion 6 b of the mover 6 has a cylindrical magnetic pole surface, whereas the magnetic pole portions of the first stator 2 and the second stator 4 have a flat surface facing the mover 6. It has a pole face.
  • each of the magnets 6b1 and 6b2 has the same thickness as the width of each recess of the first stator 2 having the E-shaped magnetic pole portions 2a to 2c as shown in FIG. are doing.
  • the magnets 6b1 and 6b2 are spaced apart in the axial direction such that the side surfaces of the magnets 6b1 and 6b2 face the respective recesses of the first stator 2. And is provided in shaft 6a.
  • the magnets 6b1 and 6b2 face the magnetic pole portions 4a and 4b of the second stator 4, respectively.
  • the magnetic pole portions 2 a to 2 c of the first stator 2 have, for example, the magnetic poles shown in FIG. 2, for example.
  • the magnet 6 b 1 receives an attractive force from the magnetic pole portion 2 a at the upper end of the first stator 2 and a repulsive force from the central magnetic pole portion 2 c.
  • the magnet 6 b 2 receives an attractive force from the central magnetic pole portion 2 c of the first stator 2 and a repulsive force from the lower magnetic pole portion 2 b.
  • the mover 6 receives an axial force (the force above the arrow A in FIG. 2) from the first stator 2.
  • the polarities of the magnetic poles generated in the magnetic pole portions 2a to 2c are reversed, so that the axial force is also received in the opposite direction.
  • the magnetic pole portions 4a and 4b of the second stator 4 have magnetic poles shown in, for example, FIGS. 4A and 4B, respectively.
  • the magnet 6 b 1 since the magnet 6 b 1 mainly receives the force from the second stator 4, it receives the force in the clockwise rotation direction indicated by the arrow B.
  • the magnet 6 b 2 also receives the force mainly from the second stator 4, so that it receives the force in the clockwise rotation direction indicated by the arrow B.
  • the mover 6 receives a force in the clockwise rotation direction by the second stator 4.
  • this actuator can independently control the axial movement and the rotational movement of the mover 6, the thrust characteristic with respect to the axial displacement (FIG. 5) and the torque with respect to the rotational angle in the rotational direction.
  • It has characteristics (Fig. 6). That is, in FIG. 5, the curve FZ 1 shows the thrust characteristics when no current flows through the first coil 3, and the curve FP 1 shows the thrust characteristic when a positive current flows through the first coil 3 The curve FM 1 shows the thrust characteristics when a negative current flows through the first coil 3.
  • a curve TZ 1 shows a torque characteristic when no current flows through the second coil 5
  • a curve TP 1 shows a torque when a positive current flows through the second coil 5.
  • the curve TM1 shows the torque characteristics when a negative current flows through the second coil 5.
  • the thrust characteristic is based on the axial reference position when the first stator 2 and the mover 6 are arranged as shown in FIG. 2, while the torque characteristic is based on the first stator 2 and the mover 6.
  • the time when the second stator 4 and the mover 6 are arranged as shown in FIGS. 4A and 4B is defined as the reference position in the rotation direction. Therefore, when an AC voltage is applied to the first coil 3 and the second coil 5, currents in the positive and negative directions flow through the first coil 3 and the second coil 5, respectively. Reciprocates in two directions, axial and rotational.
  • FIG. 7 showing an actuator according to a modification of the actuator shown in FIG. 1, in the same manner as the first stator 2, the second stator 4 is replaced with three magnetic poles, that is, magnetic poles 4 at both ends. It is formed in an E shape having a and 4b and a central magnetic pole portion 4c.
  • FIG. 8 (A) the positional relationship between the magnet 6 b 1 and the magnetic pole portion 4 a at the upper end of the second stator 4 is such that the magnet 6 b 1 makes a clockwise rotational motion indicated by an arrow B. Forces are generated.
  • FIG. 8 (A) the positional relationship between the magnet 6 b 1 and the magnetic pole portion 4 a at the upper end of the second stator 4 is such that the magnet 6 b 1 makes a clockwise rotational motion indicated by an arrow B. Forces are generated.
  • the positional relationship between the magnet 6 b 2 and the magnetic pole portion 4 b at the lower end of the second stator 4 is such that the magnet 6 b 2 performs a counterclockwise rotational motion indicated by an arrow C. Force is generated. Therefore, since the rotation direction of the magnet 6b1 and the rotation direction of the magnet 6b2 are opposite to each other, the rotation of the magnet 6b1 and the rotation of the magnet 6b2 cancel each other. Also, as shown in FIG. 7, since the pole faces of the magnets 6b1 and 6b2 and the pole sections 4a to 4c of the second stator 4 do not face each other, the mover 6 is The force received from stator 4 is also reduced. Therefore, by using the C-shaped second stator 4 of FIG. 1 instead of the E-shaped second stator 4 of FIG. 7, the force that the mover 6 receives from the second stator 4 in the rotational direction Can be increased.
  • the mover 6 is located at the reference position in the axial direction (FIG. 2) and the reference position in the rotation direction (FIG. 4 (A) and FIG. 4 (B)). Means that no current is flowing. At this time, the mover 6 is in a suspended state as shown by the curve F Z1 in FIG. 5 and the curve T Z1 in FIG. 6, and is stationary because it is not subjected to a force in either the axial direction or the rotating direction.
  • FIG. 9 when a rectangular wave AC voltage represented by a waveform VS and a waveform VR 1 is applied to the first coil 3 and the second coil 5, respectively, the first coil 3 and the second coil 5 are applied.
  • An alternating current flows through the first coil 3, the first coil 3 excites a magnetic path passing through the first stator 2, and the second coil 5 excites a magnetic path passing through the second stator 4.
  • the mover 6 receives an axial force shown in FIG. 5 and a rotational force shown in FIG.
  • the phase of the alternating current flowing through the first coil 3 and the second coil 5 changes depending on the movement of the mover 6 and the number of turns of the coil, but the alternating current flowing through the first coil 3 causes the mover 6 to move in the axial direction.
  • the mover 6 makes a counterclockwise rotation in the section RL and makes a clockwise rotation in the section RR with the phase shown in FIG. 9, for example, by the second coil 5. Accordingly, the mover 6 reciprocates in the rotational direction at the same cycle as the axial direction while reciprocating in the axial direction.
  • the axial movement and the rotational movement of the mover 6 can be controlled independently, so that, for example, as shown in FIG.
  • the mover 6 makes one reciprocating motion in the axial direction. Can make two reciprocating motions in the direction of rotation it can.
  • the first coil 3 excites the magnetic path passing through the first stator 2 to apply an axial force to the mover 6.
  • the second coil 5 excites the magnetic path passing through the second stator 4 to apply a rotational force to the mover 6, so that the axial movement and the rotational movement of the mover 6 are performed.
  • the first stator 2 and the second stator 4 are respectively provided with magnetic pole portions 2 a to 2 c and magnetic pole portions 4 a and 4 located on both sides of the magnets 6 b 1 and 6 b 2 of the mover 6. Since b is used to apply a force in the axial and rotational directions to the mover 6, the mover 6 can move by receiving a large force.
  • first stator 2 is formed in an E shape having magnetic pole portions 2a to 2c, while
  • the second stator 4 is formed in a C-shape having magnetic pole portions 4a and 4b, and the first stator 2 and the fourth stator 4 are arranged so as to be orthogonal to each other. Since the distance between 2 and the second stator 4 is increased, the space for the first coil 3 in the first stator 2 and the space for the second coil 5 in the second stator 4 are increased. be able to. Also, two when located opposite the magnet 6 b 1 and 6 b 2, the first magnetic pole portion 2 A through 2 c of the stator 2 in the axial direction of the first stator 2 mover 6 Therefore, the first stator 2 reduces the leakage magnetic flux, and the mover 6 can move efficiently by receiving a large force in the axial direction.
  • the second stator 4 when the second stator 4 is located opposite to the two magnets 6 b 1 and 6 b 2 of the mover 6, the magnetic pole portions 4 a and 4 b of the second stator 4 rotate in the rotation direction. Therefore, the second stator 4 reduces the leakage magnetic flux, and the mover 6 can move efficiently by receiving a large force in the rotating direction.
  • FIGS. 11 and 12 show an actuator according to a second embodiment of the present invention. Show.
  • This actuator is different from the actuator of the first embodiment in the shape and the relative position of the first stator 2 and the second stator 4, and has the same other configuration as the actuator of the first embodiment. is there.
  • the magnetic pole surfaces of the magnetic pole portions of the first stator 2 and the second stator 4 1 are opposed to the cylindrical magnetic pole surface of the driving force generating portion 6 b of the mover 6 via a fixed gap. It is formed in a circular curved surface. Then, the magnetic pole portion of the second stator 4 is provided at a portion between the E-shaped magnetic pole portions of the first stator 2. Therefore, as shown in FIG. 12, when viewed in the axial direction, both ends of the magnetic pole portions of the first stator 2 and the second stator 4 have an overlapping portion CP which is three-dimensionally overlapped. Therefore, a gap G is formed between the magnetic pole part of the first stator 2 and the magnetic pole part of the second stator 4, as shown in FIG.
  • the first stator 2 and the second stator 4 secure a space for increasing the area of each of the first stator 2 and the second stator 4 facing the mover 6, so that the first stator 2 and the second stator 4
  • the opposing area can be made large, and a large force can be applied to the mover 6.
  • the magnetic path WC that does not contribute to applying a force to the mover 6 indicated by the arrow in FIG. 12 (for example, when considering the axial direction, the first stator 2 1 ⁇ pole ⁇ air gap G ⁇ second stator 4 ⁇ air gap G ⁇ S pole of the first stator 2) to increase the magnetic resistance, reduce the magnetic flux flowing through the magnetic path WC, and It can give great power.
  • the width of the gap G is designed in consideration of the width of the above-mentioned fixed gap between the driving force generating portion 6 b of the mover 6 and the first stator 2 and the second stator 4. I do.
  • the magnetic pole portions of the first stator 2 and the second stator 4 secure a space for taking an area facing the mover 6, so that the mover 6
  • the opposing area can be made large. Accordingly, the magnetic resistance of the magnetic path between the first stator 2 and the second stator 4 increases, so that the magnetic flux that does not contribute to applying a force to the mover 6 can be reduced. Therefore, a large force can be applied to the mover 6 in the axial direction and the rotation direction.
  • FIG. 13 shows an actuator according to a third embodiment of the present invention.
  • the actuator of the first embodiment differs from the actuator of the first embodiment in that the shape of the mover 6 and the relative positions of the mover 6 and the first stator 2 are different, and the other configurations are the same as the actuator of the first embodiment. It is.
  • Each of the magnets 6 b 1 and 6 b 2 forming the driving force generating portion 6 b of the mover 6 is provided in the axial direction of the concave portion between the E-shaped magnetic pole portions 2 a to 2 c of the first stator 2.
  • the radial ends of the magnets 6 b 1 and 6 b 2 of the mover 6 rotate across both recesses of the first stator 2. For this reason, the axially opposed area of the magnetic pole portions of the magnets 6 b 1 and 6 b 2 of the mover 6 and the magnetic pole portions 2 a to 2 c of the first stator 2 can be made large, so that the mover 6 Can move under a large force in the axial direction.
  • FIG. 14 and FIG. 15 show an actuator according to a fourth embodiment of the present invention.
  • This actuator has the same configuration as the actuator of the first embodiment except that the magnets 6b1 and 6b2 of the mover 6 have different shapes from the actuator of the first embodiment.
  • the magnets 6b1 and 6b2 of the mover 6 are formed in a cylindrical shape of the same size, and the opposite end surfaces abut in the axial direction, while the opposite end surfaces abut.
  • the opposite end faces are provided so as to coincide with the axial end faces of the first stator 2.
  • Both end surfaces of the magnets 6 b 1 and 6 b 2 that are in contact with each other are arranged at the axial center of the magnetic pole portion 2 c at the center of the first stator 2.
  • a stable point is defined as a position where the opposite end surfaces of the magnets 6 b 1 and 6 b 2 and the opposite end surfaces coincide with the axial end surfaces of the first stator 2.
  • this actuator has a curve FZ 2 when no current flows through the first coil 3, a curve FP 2 when a positive current flows through the first coil 3, and a curve FZ 2.
  • the motor has the thrust characteristics shown by curve FM2.
  • the mover 6 when the mover 6 is displaced in the axial direction, This has a characteristic that a force for pulling back the mover 6 in the opposite direction is generated. Therefore, since the mover 6 operates as if it is connected to the return spring, a stable reciprocating operation can be performed.
  • both end surfaces of the mover 6 opposite to the contact end surfaces of the magnets 6 bl and 6 b 2 coincide with the axial end surfaces of the first stator 2.
  • the driving force generating portion 6b of the mover 6 includes the two magnets 6b1 and 6b2 that are in contact with each other, but may be formed as an integral part.
  • FIGS. 16 (A) and 16 (B) show two types of first coils 3 with respect to the first stator 2 in the actuator according to the fifth embodiment of the present invention. Indicates how to wind. This actuator is different from the actuator of the first embodiment in the way the first coil 3 is wound around the first stator 2, and the other configuration is the same as that of the first embodiment. .
  • the first coil 3 is wound around the magnetic pole portion 2c at the center of the first stator 2.
  • the first coil 3 is divided and wound into magnetic pole portions 2a and 2b at both ends of the first stator 2.
  • these first coils 3 are connected such that the central magnetic pole portion 2c and the magnetic pole portions 2a and 2b at both ends are excited to different magnetic poles.
  • the space in which the first coil 3 is wound can be reduced. Further, as shown in FIG. 16 (B), the first coil 3 can be divided and wound on each of the magnetic pole portions 2a to 2c of the first stator 2.
  • the first coil 3 is divided and wound around the magnetic pole portions 2a and 2b or the magnetic pole portions 2a to 2c at both ends of the first stator 2.
  • the first coil 3 is wound around one magnetic pole portion 2c, Since the influence of the thickness of the first coil 3 is reduced, the space where the first coil 3 is wound around the first stator 2 can be further reduced.
  • FIG. 17 shows an actuator according to a sixth embodiment of the present invention.
  • This actuator is different from the actuator of the fourth embodiment in that a pair of resonance springs 8 is provided, and the other configuration is the same as that of the fourth embodiment.
  • Each of the resonance springs 8 is formed of a coil spring, and is provided between the case 1 and the mover 6 in a radiused state. That is, one of the resonance springs 8 is provided between the magnet 6b1 and the corresponding bearing 1b, and both ends thereof are fixed to the bearing 1b corresponding to the magnet 6b1, respectively. The other resonance spring 8 is provided between the magnet 6b2 and the corresponding bearing 1b, and both ends thereof are fixed to the bearing 1b corresponding to the magnet 6b2, respectively.
  • the resonance spring 8 can act as a spring for both the axial movement of the mover 6 and the rotational movement of the mover 6. Therefore, the resonance spring 8 has not only the function of the axial resonance spring used for the resonance in the axial direction, but also the function of the rotation resonance spring used for the resonance in the rotation direction.
  • the mover 6 is connected to the first coil 3 at a frequency near the resonance frequency determined by the axial spring constant of the resonance spring 8 (spring constant as the axial resonance spring) and the mass of the mover 6.
  • the mover 6 is applied to the second coil 5 at a frequency near the resonance frequency determined by the spring constant in the rotation direction of the resonance spring 8 (spring constant as a rotational resonance spring) and the moment of inertia of the mover 6. Excitation by applying an AC voltage enables efficient reciprocation in the rotational direction due to the resonance phenomenon.
  • the reason why the frequency of the AC voltage applied to the first coil 3 and the second coil 5 is set near the resonance frequency is that the AC voltage is applied to the first coil 3 and the second coil 5. This is because the actual resonance frequency slightly deviates from the resonance frequency determined only by the motion system due to the influence of the electric circuit.
  • each of the resonance springs 8 has both functions of the axial resonance spring and the rotary resonance spring, the mass of the mover 6 and the axial resonance spring
  • the mover 6 can efficiently reciprocate in the axial direction with a large amplitude using the resonance phenomenon. it can.
  • the mover 6 is efficiently increased by using the resonance phenomenon. It can reciprocate in the direction of rotation with amplitude.
  • each of the resonance springs 8 functions not only as an axial resonance spring but also as a rotary resonance spring, the space in which the resonance spring 8 is provided can be reduced.
  • each of the resonance springs 8 has the function of both the force axis direction resonance spring and the rotation resonance spring has been described, but the sixth embodiment is not limited to this case, and the axial direction resonance spring And a rotational resonance spring may be separately provided.
  • a leaf spring and a spiral spring may be used as an axial resonance spring and a rotary resonance spring, respectively.
  • the space required for providing the resonance spring 8 can be reduced.
  • FIGS. 18 to 20 show an actuator according to a seventh embodiment of the present invention.
  • This actuator is different from the actuator of the first embodiment in that another mover 17 and a spring member 18 are provided and housed in a case 1. Others are the same as the actuator of the first embodiment. Configuration. Therefore, the actuator operates in substantially the same manner as the actuator of the first embodiment.
  • FIG. 21 showing an actuator according to a modification of the actuator of FIG. 18, in the second stator 4, three magnetic pole portions, as in the modification of the first embodiment (FIG. 7), That is, it is formed in an E-shape having magnetic pole portions 4a and 4b at both ends and a magnetic pole portion 4c at the center.
  • Another mover 17 is made of copper, tungsten, brass, or the like, and is formed of a cylindrical tube having an outer diameter smaller than the inner diameter of the housing 1a. It is provided at the center axis of the child 17. Another mover 17 is arranged so as to be axially aligned with the magnet 6 b 2 between the magnet 6 b 2 of the mover 6 and the corresponding bearing portion 1 b with the shaft 6 a passing through the through hole. It is housed in the housing 1a. Another mover 1 The movable member 7 is supported between the magnet 6b2 and the bearing portion 1b by using a spring member 18 described later so that the movable member 6 can move in the axial direction separately from the movable member 6. The mass of another mover 17 is set to be substantially the same as the mass of mover 6.
  • the spring member 18 is composed of three coil springs that bend in the axial direction, that is, a first spring 18a, a second spring 18b, and a third spring 18c.
  • the first spring 18a is provided between the magnet 6b1 and the bearing 1b corresponding to the magnet 6b1, and both ends thereof are fixed to the bearing 1b corresponding to the magnet 6b1, respectively.
  • the second spring 18 b is provided between the magnet 6 b 2 and another mover 17, and both ends thereof are fixed to the magnet 6 b 2 and another mover 17, respectively.
  • the third spring 18c is provided between another mover 17 and the corresponding bearing 1b, and both ends of the third spring 18c are connected to the bearing 1b corresponding to another mover 17 respectively. Fixed.
  • the spring 18 also acts as a spring in the direction of rotation.
  • a third spring 18c constitutes a spring resonance system that performs a resonance motion in the axial direction at a resonance frequency determined by the respective spring constants.
  • This spring resonance system has two resonance frequencies when case 1 can be approximated to a fixed state. At one resonance frequency (hereinafter referred to as “first mode resonance frequency”), the mover 6 and another mover 17 move in the same phase in the axial direction, and the other resonance frequency (hereinafter, referred to as “ Mover 6 and another mover 17 move in anti-phase in the axial direction.
  • the mover 6 and another mover 17 perform a resonance motion that operates in opposite phases in the axial direction. Therefore, the mover 6 can efficiently obtain a large amplitude in the axial direction due to the resonance motion in the axial direction.
  • the mass of the mover 6 and the mass of the other mover 17 are substantially the same, the inertial forces of the mover 6 and the other mover 17 cancel each other, so that the axial direction transmitted to the case 1 Vibration due to the inertial force of the motor can be reduced.
  • the spring member 18 Since the spring member 18 is a coil spring, it has a function of rotating in the direction of rotation by fixing both ends. Therefore, the case 1, the mover 6, the other mover 17 and the spring The member 18 includes the respective moment of inertia and the first spring 18 a of the spring member 18, A spring resonance system that performs a resonance motion in the rotation direction at a resonance frequency determined by a spring constant in the rotation direction of each of the second spring 18b and the third spring 18c can be configured. Therefore, by applying an AC voltage to the second coil 5 at a frequency near the resonance frequency, the mover 6 can efficiently obtain a large amplitude in the rotating direction due to the resonant motion in the rotating direction. it can.
  • the frequency of the AC voltage applied to the first coil 3 and the second coil 5 is set close to the resonance frequency in order to perform the resonance motion of the mover 6 in the axial direction and the rotation direction. This is because the actual resonance frequency is slightly less than the resonance frequency determined only by the motion system due to the effect of the electric circuit that applies the AC voltage to the first coil 3 and the second coil 5.
  • a spring resonance system is constituted by the first and second coils 8, and the first coil 3 excites a magnetic path passing through the first stator 2, thereby applying an axial force to the mover 6 to cause an axial resonance motion.
  • the second coil 5 excites the magnetic path passing through the second stator 4 to apply a force in the rotational direction to the mover 6 to perform a resonant motion in the rotational direction.
  • Axial and rotational movements can be controlled independently.
  • the mover 6 and another mover 17 can move in the axial direction in reverse, respectively, so that vibration due to the axial inertial force transmitted to the case 1 can be reduced. Can be.
  • first stator 2 and the second stator 4 respectively provide an axial force and a rotational force to the mover 6, while another mover 17 provides the first stator 2 And the second stator 4 does not receive the power directly, which facilitates the design of the spring resonance system.
  • the case where the mover 6 receives the axial force and the rotational force from the first stator 2 and the second stator 4 has been described, but is not limited to this case. Not something. Since the axial force and the rotational force are transmitted from the mover 6 to another mover 17 via the spring member 18, the magnetic structures of the mover 6 and another mover 17 are switched. Thus, another mover 17 may be configured to receive an axial force and a rotational force from the first stator 2 and the second stator 4.
  • FIG. 22 shows an actuator according to an eighth embodiment of the present invention.
  • This actuator is different from the actuator of the seventh embodiment in that the shape of the mover 6 and the relative positions of the mover 6 and the first stator 2 are different, and the other configuration is the same as that of the seventh embodiment. It is. More specifically, this actuator applies the shape of the mover 6 and the relative positions of the mover 6 and the first stator 2 of the actuator of the third embodiment shown in FIG. 13 to the actuator of the seventh embodiment. It is obtained by doing.
  • each of the magnets 6 b 1 and 6 b 2 forming the driving force generating portion 6 b of the mover 6 is the E-shaped magnetic pole of the first stator 2.
  • the first stator 2 rotates across both concave portions.
  • the axially opposed area of the magnetic pole portions of the magnets 6 b 1 and 6 b 2 of the mover 6 and the magnetic pole portions 2 a to 2 c of the first circumferential armature 2 can be made large, so that the mover 6 Can move under a large force in the axial direction.
  • FIG. 23 shows an actuator according to a ninth embodiment of the present invention.
  • This actuator is different from the actuator of the seventh embodiment in the shape of the magnets 6b1 and 6b2 of the mover 6, and the other configuration is the same as that of the actuator of the seventh embodiment. More specifically, this actuator can be obtained by applying the shapes of the magnets 6b1 and 6b2 of the mover 6 of the fourth embodiment shown in FIG. 14 to the actuator of the seventh embodiment. .
  • the magnets 6 b 1 and 6 b 2 of the mover 6 are formed in a cylindrical shape having the same size, and the opposite end surfaces abut against each other in the axial direction. Both end faces opposite to the two end faces that are in contact correspond to both end faces in the axial direction of the first stator 2. It is provided as follows. Both end surfaces of the magnets 6 b 1 and 6 b 2 that are in contact with each other are arranged at the axial center of the magnetic pole portion 2 c at the center of the first stator 2.
  • both end faces of the mover 6 opposite to the contact end faces of the magnets 6 b 1 and 6 b 2 coincide with the axial end faces of the first stator 2. Is a stable point, and as the axial displacement of the mover 6 increases, a large force is generated in a direction opposite to the displacement, so that the effect of the return spring can be obtained.
  • the driving force generating portion 6b of the mover 6 includes two magnets 6b1 and 6b2 that are in contact with each other, but one magnet whose magnetization directions are different at two places. It can be formed with
  • FIG. 24 shows an actuator according to the tenth embodiment of the present invention.
  • This actuator differs from the actuator of the ninth embodiment in that the mover 6 does not receive a force from the second stator 4 and another mover 17 receives a force from the second stator 4.
  • the other configuration is the same as that of the ninth embodiment.
  • Another mover 17, like mover 6, includes two magnets 17 a and 17 b abutting on each other, and a circular through hole with a diameter larger than the diameter of shaft 6 a is magnet 17 a
  • the magnets 17a and 17b are axially moved between the magnet 6b2 of the mover 6 and the corresponding bearing 1b while passing through the shaft 6a through the through-hole through the through ring.
  • the second spring 18 b of the spring member 18 and the third spring 18 c of the spring member 18 are arranged between the magnet 6 b 2 and the corresponding bearing 1 b so as to be arranged side by side. It is supported.
  • the total mass of the magnets 17 a and 17 b of another mover 17 is set to be approximately the same as the mass of the mover 6.
  • the second stator 4 has the same shape as the second stator 4 (FIG. 20) of the actuator of the seventh embodiment, and faces another mover 17.
  • the first stator 2 Since the magnetic flux contributing to the axial force and the magnetic flux contributing to the rotational force from the second stator 4 can be handled separately, the design of the spring resonance system is facilitated.
  • the first stator 2 applies an axial force to the mover 6 and the second stator 4 applies a rotational force to another mover 17. Since the magnetic path for generating the axial force and the magnetic path for generating the rotational force are separated from each other, the magnetic circuit can be easily designed.
  • the mass of the mover 6 and the mass of another mover 17 are set to the same level, but the present invention is not limited to this setting. For example, when the mass of the mover 6 and the mass of another mover 17 are adjusted so as to be imbalanced with each other, the effect of reducing the axial vibration and adjusting the amplitude of the reciprocating motion can be obtained. can get.
  • the magnets 6b1 and 6b2 of the driving force generating portion 6b of the mover 6 are symmetric with respect to the rotation axis, and
  • the configuration in which the pair of first stators 2 and the pair of second stators 4 arranged symmetrically with respect to the axis are respectively excited in opposite phases has been described, but the present invention is not limited to this configuration.
  • one first stator 2 and one second stator 4 may be provided, and only one magnetic pole of the magnets 6b1 and 6b2 may be used.
  • the configuration has been described in which the driving power generation unit 6b of the mover 6 has two magnets 6b1 and 6b2.
  • the force generating portion 6b may be formed by only one magnet.
  • the first stator 2 has one magnetic pole portion or two C-shaped magnetic pole portions
  • the second stator 4 has one magnetic pole portion.
  • FIGS. 25 to 31 show an actuator according to a first embodiment of the present invention.
  • this actuator comprises an axial actuator 21 for axial drive, a rotary actuator 22 for rotational drive, and a dynamic vibration absorber 23 for reducing axial vibration.
  • the axial actuator 21, the rotary actuator 22 and the dynamic vibration absorber 23 are mounted on a shaft 25 so as to be housed in a case 27.
  • the shaft 25 is also supported by a pair of bearings 26 provided at both ends of the case 27.
  • Three springs 24 are respectively provided between one of the bearings 26 and the axial actuator 21, between the rotary actuator 22 and the dynamic vibration absorber 23, and between the dynamic vibration absorber 23 and the other of the bearing 26. It is provided in.
  • FIG. 26 shows the magnetic structure of the axial actuator 21.
  • the notching portion indicates a magnet or a magnetic material
  • a blank cross section indicates a non-magnetic material.
  • the axial actuator 21 includes a stator 29 wound with a coil 31, and a mover 28 having a pair of magnets 30 and fixed to a shaft 25. Each of the magnets 30 is magnetized vertically in FIG.
  • FIG. 27 illustrates the principle of operation of the axial actuator 21.
  • a current is input to the coil 31
  • magnetic poles are generated in the stator 29 and the mover 28, and the mover 28 moves upward as indicated by an arrow.
  • the mover 28 can be driven to move in the opposite direction, that is, downward in FIG.
  • a sine wave or rectangular wave AC voltage is applied to the coil 31.
  • FIG. 28 shows the magnetic structure of the rotary actuator 22.
  • the rotating actuator 22 includes a stator 33 around which a coil 34 is wound, and four magnets as shown in FIG. 29A.
  • the stator 33 has four upper magnetic poles 35 and four lower magnetic poles 36.
  • FIGS. 29 (A) and 29 (B) show the stators 3 3 of the rotating actuator 22 respectively.
  • the magnetization states of the upper magnetic pole 35 and the lower magnetic pole 36 are shown.
  • an N pole and an S pole are generated in the upper magnetic pole 35 and the lower magnetic pole 36, respectively, while the inner and outer peripheral sides of the four magnets 37 are When magnetized to the S and N poles, respectively, clockwise torque is generated between the magnet 37 of the mover 32 and the upper magnetic pole 35 and the lower magnetic pole 36 of the stator 33. Turn clockwise as indicated by the arrow.
  • the mover 32 By reversing the magnetization direction based on the current input to the coil 34, the mover 32 can be driven to rotate in the opposite direction, that is, counterclockwise. Similar to the coil 31 of the axial actuator 21, a sinusoidal or rectangular wave AC voltage is applied to the coil 34 of the rotary actuator 22.
  • the frequency of the AC voltage applied to the coil 34 of the rotary actuator 22 is 1.5 times the frequency of the AC voltage applied to the coil 31 of the rotary actuator 21.
  • the shaft 25 can be driven by the axial actuator 21 and the rotary actuator 22 in two directions of the axial direction and the rotating direction as shown in FIG.
  • the leftmost column shows the ratio of the frequency ⁇ r of the AC voltage applied to the coil 34 of the rotary actuator 22 to the frequency f a of the AC voltage applied to the coil 31 of the axial actuator 21.
  • the horizontal axis and the vertical axis of the graphs a) to u) indicate the trajectory of the shaft 25 in the axial direction and the rotational direction, respectively.
  • the frequency ⁇ r of the broken / line sine wave AC voltage applied to the coil 34 of the rotary actuator 22 and the solid line sine wave AC voltage applied to the coil 31 of the axial actuator 21 are shown.
  • the ratio (ir / fa) of the frequency fa is 1.5: 1
  • the shaft 25 is driven along the locus of the graph d) in FIG.
  • Even if the phase difference between the two AC voltages is set to ( ⁇ , 2), the shaft 25 is driven along the locus of graph f) as in graph d).
  • the shaft 25 can be straight or complex as shown in graphs b), c;), g), h), n), o), s) and t) in FIG. It can be driven along the trajectory of a simple elliptical motion.
  • the ratio (fr / fa) of the frequency fr of the AC voltage applied to the coil 34 of the rotary actuator 22 to the frequency fa of the AC voltage applied to the coil 31 of the axial actuator 21 is defined as
  • an axial force is applied to the mover by exciting the magnetic path passing through the first stator with the first coil, and the magnetic path passing through the second stator is excited with the second coil. Since a force in the rotational direction is applied to the mover, the axial movement and the rotational movement of the mover can be controlled independently. As a result, it is possible to improve the degree of freedom of the operation control of the actuator that allows the mover to move in two directions, that is, the axial direction and the rotational direction, without using a moving direction changing mechanism.
  • the mass of the magnet of the mover is symmetrically distributed with respect to the rotation axis, the one-penetration force due to the movement of the mover in the rotation direction is canceled, and the vibration transmitted to the case can be reduced.
  • first stator and the second stator use the magnetic poles on both sides of the magnet of the mover to apply axial and rotational forces to the mover. can do.
  • the first stator and the second stator Since the distance between the first and second coils increases, it is possible to increase the space in which the first coil and the second coil are provided.
  • the two magnets of the mover have opposite magnetization directions, respectively, and have the first fixed position. Since the stator has three E-shaped magnetic poles, the two magnets of the mover are suitable for generating an axial force when positioned opposite the first stator, with a suitable magnetic pole arrangement. Therefore, while reducing the leakage flux, the mover can move efficiently by receiving a large force in the axial direction.
  • the second stator has two C-shaped magnetic pole portions, the two magnets of the mover rotate in the rotational direction when they are positioned opposite to the two magnetic pole portions of the second stator.
  • the arrangement of the magnetic poles is suitable for generating the force, so that the leakage flux can be reduced and the mover can move efficiently by receiving a large force in the rotating direction.
  • both ends of the magnetic pole portion of the first stator and both end portions of the magnetic pole portion of the second stator are three-dimensionally overlapped with each other. Since each of them secures a space for taking an area facing the mover, a large area can be taken to face the mover, and a large force can be applied to the mover.
  • the magnetic resistance of the magnetic path between the first stator and the second stator is large. Therefore, the magnetic flux that does not contribute to applying a force to the mover can be reduced.
  • the magnetic pole of the mover and the magnetic pole of the first stator are axially opposed to each other. Since a large area can be taken, the mover can move by receiving a large force in the axial direction.
  • two magnets of the mover are formed in the same size, and one end face of one of the two magnets abuts in the axial direction, and the other end face of the two magnets is first fixed. Since the two ends of the two magnets coincide with the axial end surfaces of the two stators, the position where the other end surfaces of the two magnets coincide with the axial end surfaces of the first stator becomes a stable point, and the axial displacement of the mover is large. As a large force is generated in the direction opposite to the displacement, the effect of the return spring can be obtained.
  • the first coil and the second coil are divided into three magnetic pole parts of the first stator and two magnetic pole parts of the second stator, respectively, so that the coil is divided.
  • the influence of the thickness of the wound coil is reduced as compared with the case where the coil is wound around a single magnetic pole portion, so that the space in which the coil is wound can be reduced.
  • the rotary resonance spring is further provided between the mover and the case, an AC voltage is applied to the second coil at a frequency near a resonance frequency determined by the one-percent moment of the mover and the spring constant of the rotary resonance spring.
  • the mover can efficiently reciprocate in the rotational direction with a large amplitude by using the resonance phenomenon.
  • one spring member functions as the axial resonance spring and the rotation resonance spring, the space in which the spring member is provided can be reduced.
  • the movable member is movable.
  • the axial movement and the rotational movement of the child can be controlled independently. Therefore, it is possible to improve the degree of freedom of operation control of the actuator that can move in two directions, the axial direction and the rotational direction.
  • the mover and another mover can move in the opposite directions in the axial direction, respectively, so that the vibration due to the inertial force in the axial direction can be reduced.
  • first stator and the second stator apply an axial force and a rotational force to one of the mover and another mover, respectively.
  • the other does not receive the force from the first stator and the second stator, which facilitates the design of the spring resonance system.
  • the first stator applies an axial force to one of the mover and the other mover
  • the second stator applies a rotational force to the other of the mover and the other stator. Since the magnetic path for generating the force in the axial direction and the magnetic path for generating the force in the rotational direction are separated, the magnetic circuit can be easily designed.
  • one of the mover receiving the force from the first stator and the second stator or another mover has a magnetization direction substantially orthogonal to the axial direction and a rotational axis.
  • the first and second stators each have a rotational axis. Since the first stator and the second stator apply an axial force and a rotational force to one of the mover and another mover, the spring is Resonant systems can move under large forces.
  • either one of the mover that receives an axial force from the first stator and another mover includes two magnets each having opposite magnetization directions, and the first stator Has three E-shaped magnetic poles, so that the two magnets have an arrangement of magnetic poles suitable for generating an axial force when positioned opposite the first stator.
  • the spring resonance system can move efficiently by receiving a large axial force.
  • either one of the mover that receives a rotational force from the second stator and another mover includes two magnets each having a reverse magnetization direction, and the second stator is Since it has two C-shaped magnetic pole parts, the arrangement of the magnetic pole parts suitable for generating a rotational force when the two magnets are located opposite the two magnetic pole parts of the second stator Therefore, while reducing the leakage magnetic flux, one of the mover and another mover can receive a large force in the rotational direction and move efficiently.
  • the spring resonance system can move by receiving a large force in the axial direction.

Abstract

 ケースと、コイル部材を有すると共にケース内に固定される固定子部材と、可動子を含むと共にケースに支持される可動子部材とを備え、また、可動子は、シャフトを有すると共に、シャフトの軸方向とシャフトの軸方向を回転軸心とする回転方向に運動し得るようにケースに支持され、更に、コイル部材に電流を流すことにより、可動子が軸方向と回転方向に運動するアクチュエータにおいて、固定子部材は、可動子部材に軸方向の力を与える第1の固定子部材と、可動子部材に回転方向の力を与える第2の固定子部材とを備え、また、コイル部材は、第1の固定子部材を通る第1磁路を励磁する第1のコイル部材と第2の固定子部材を通る第2磁路を励磁する第2のコイル部材を含んで、アクチュエータの動作制御の自由度を向上すると共に、軸方向の慣性力による振動を低減する。

Description

ァクチユエータ 技術分野
本発明は、 軸方向と回転方向の 2方向に運動することが可能なァクチユエータ に関する。
背景技術 明
ァクチユエータは、 直線方向や回転方向など 1方向の運動を行うものが多く、 直線方向と回転方向との 2方向に運動す細 1るようにするときには、 運動方向を機械 的に変換する運動方向変換機構が用いられる書。 しカゝしながら、 運動方向変^ «構 は、 運動方向を変換する際に騒音の原因となる。
特開 2 0 0 2— 7 8 3 1 0号公報は、 シャフト (軸) を有する可動子 (プラン ジャー) が空隙 (ギャップ) を有して固定子 (ヨーク) の内方に設けられ、 コィ ルにより磁路を励磁して可動子がシャフトの軸方向に運動するリニアァクチユエ ータにおいて、 可動子の軸方向の変位 (ストローク位置) に対して空隙を不均一 にすることにより、 運動方向変換機構を用いずに、 可動子がシャフトの軸方向
(直線方向) と軸方向を回転軸心とする回転方向の運動を行う構成を開示してい る。
また、 特開 2 0 0 2— 1 9 9 6 8 9号公報は、 シャフト(軸)を有する第 1の可 動子(プランジャー) がケースに設けられる固定子(ヨーク) の内方に空隙 (ギヤ ップ)を有して設けられ、 コイルにより磁路を励磁して第 1の可動子がシャフト の軸方向に運動するリユアオシレータにおいて、 第 1の可動子の慣性力を打ち消 す動作をする第 2の可動子 (振幅制御錘) を設けると共に、 ケースと第 1の可動 子と第 2の可動子との間にばね部材を設け、 軸方向の変位 (ストローク位置)に対 して空隙を不均一にすることにより、 運動方向変 «構を用いずにシャフトの軸 方向の共振による往復運動と軸方向を回転軸心とする回転方向の運動とを行うと 共に、 軸方向の慣性力による振動を低減することのできる構成を開示している。 し力 しながら、 特開 2 0 0 2— 7 8 3 1 0号公報ゃ特開 2 0 0 2 - 1 9 9 6 8 9号公報に開示された構成は、 騒音の原因となる運動方向変 «構を用いずに、 簡単な構成で、 可動子の軸方向の変位に応じて可動子が 2方向の運動を行うこと ができるので有用であるが、 空隙の形状により可動子の軸方向の運動と回転方向 の運動との関係が固定されてしまうので、 可動子の軸方向の運動と回転方向の運 動を独立して制御できるものではなく、 動作制御の自由度が高いものではなかつ た。
発明の開示
本発明は、 従来技術の上記問題点を解決するために、 運動方向変換機構を用い ずに、 可動子が軸方向と回転方向の 2方向に運動することが可能なァクチュエー タにおいて、 動作制御の自由度を向上することを目的とする。
上記目的を達成するために、 本発明のァクチユエータは、 ケースと、 コィノレ部 材を有すると共にケース内に固定される固定子部材と、 可動子を含むと共にケー スに支持される可動子部材とを備え、 また、 可動子は、 シャフトを有すると共に、 シャフトの軸方向とシャフトの軸方向を回転軸心とする回転方向に運動し得るよ うにケースに支持され、 更に、 コイル部材に電流を流すことにより、 可動子が軸 方向と回転方向に運動するァクチユエータにおいて、 固定子部材は、 可動子部材 に軸方向の力を与える第 1の固定子部材と、 可動子部材に回転方向の力を与える 第 2の固定子部材とを備え、 また、 コイル部材は、 第 1の固定子部材を通る第 1 磁路を励磁する第 1のコィル部材と第 2の固定子部材を通る第 2磁路を励磁する 第 2のコイル部材を含むものである。
図面の簡単な説明
図 1は、 本発明の第 1の実施形態にかかるァクチユエータの部分断面斜視図で ある。
図 2は、 図 1の I I一 I I線における断面図である。
図 3は、 図 1の I I I一 I I I線における断面図である。
図 4 (A) と図 4 (B ) は、 夫々、 図 3の I VA— I VA線と I V B _ I V B 線における断面図である。
図 5は、 図 1のァクチユエ一タの軸方向変位と推力の関係を示す特性図である。 図 6は、 図 1のァクチユエータの回転角度とトルクの関係を示す特性図である。 図 7は、 図 1のァクチユエータの変形例にかかるァクチユエータを示す、 図 3 に対応する断面図である。
図 8 (A) と図 8 (B) は、 夫々、 図 7の VI I IA— V I I IA,锒と VI I I B-V I I I B線における断面図である。
図 9は、 図 1のァクチユエータの動作を示す波形図である。
図 10は、 図 1のァクチユエータの別の動作を示す波形図である。
図 1 1は、 本宪明の第 2の実施形態にかかるァクチユエータの部分斜視図であ る。
図 12は、 図 11のァクチユエータの平面図である。
図 13は、 本発明の第 3の実施形態にかかるァクチユエータを示す、 図 2に対 応する断面図である。
図 14は、 本発明の第 4の実施形態にかかるァクチユエータを示す、 図 2に対 応する断面図である。
図 15は、 図 14のァクチユエ一タの軸方向変位と推力の関係を示す特性図で ある。
図 16 (A) と図 16 (B) は、 夫々、 本発明の第 5の実施形態にかかるァク チユエータにおける第 1の固定子に対する第 1のコイルの 2通りの卷き方を示す 図である。
図 17は、 本発明の第 6の実施形態にかかるァクチユエータを示す、 図 2に対 応する断面図である。
図 18は、 本発明の第 7の実施形態にかかるァクチユエータの部分断面斜視図 である。
図 19は、 図 18の X I X-X I X線における断面図である。
図 20は、 図 18の XX— XX線における断面図である。
図 21は、 図 18のァクチユエータの変形例にかかるァクチユエータを示す、 図 20に対応する断面図である。
図 22は、 本発明の第 8の実施形態にかかるァクチユエータを示す、 図 19に 対応する断面図である。
図 23は、 本発明の第 9の実施形態にかかるァクチユエータを示す、 図 19に 対応する断面図である。
図 2 4は、 本亮明の第 1 0の実施形態にかかるァクチユエータを示す、 図 1 9 に対応する断面図である。
図 2 5は、 本発明の第 1 1の実施形態にかかるァクチユエ一タの縦断面図であ る。
図 2 6は、 図 2 5のァクチユエータに用いられる軸方向ァクチユエータの磁気 構造を示す断面図である。
図 2 7は、 図 2 6の軸方向ァクチユエータ動作原理を説明する図である。
図 2 8は、 図 2 5のァクチユエータに用いられる回転ァクチユエータの磁気構 造を示す破断斜視図である。
図 2 9 (A) と図 2 9 ( B ) は、 夫々、 図 2 8の回転ァクチユエータの固定子 の上部磁極と下部磁極の磁化状態を示す図である。
図 3 0は、 図 2 5のァクチユエータを動作させるための電圧波形図である。 図 3 1は、 図 2 5のァクチユエータに用いられるシャフトの駆動軌跡を示す図 である。
発明を実施するための最良の形態
以下に、 本発明の各実施形態について図面を参照して説明する。
(第 1の実施形態)
図 1乃至図 1 0は、 本発明の第 1の実施形態にかかるァクチユエータを示す。 図 1に示すように、 このァクチユエータは、 主に、 ケース 1と、 各々に第 1のコ ィル 3を巻いた 1対の第 1の固定子 2と、 各々に第 2のコイル 5を卷いた 1対の 第 2の固定子 4と、 可動子 6とにより構成されている。 可動子 6は、 シャフト 6 aと、 シャフト 6 aに固着された馬区動力発生部 6 bとを含む。
ケース 1は、 筐体部 1 aと 1対の軸受け部 1 bを含むと共に、 第 1の固定子 2、 第 2の固定子 4と可動子 6を収納する。 筐体部 1 aは、 金属製の磁性材料により 有底円筒形状に形成される。 一方、 軸受け部 l bの各々は、 断面が同心の円筒管 の中空部に表面を滑らかに加工された金属球を入れたいわゆるボーノレベアリング である。 2個の軸受け部 1 bは、 筐体部 1 aの中心軸心と軸受け部 1 bの中心軸 心が一致するように、 筐体部 1 aの両側の端面の中心に、 夫々、 設けられている。 更に、 2個の軸受け部 l bは、 可動子 6のシャフト 6 a、 即ち、 可動子 6がシャ フト 6 aの軸方向 (以下、 「軸方向」 と呼ぶ) と、 軸方向を中心軸心、 即ち、 回 転軸心とする回転方向 (以下、 「回転方向」 と呼ぶ) とに運動を行えるように、 金属球によりシャフト 6 aを支持する。
第 1の固定子 2の各々は、 磁性材料で断面が E字形の柱状に形成されたもので あり、 軸方向に対称に並ぶ 3個の磁極部、 即ち、 両端の磁極部 2 a及ぴ 2 bと中 央の磁極部 2 cを有する。 2個の第 1の固定子 2は、 回転軸心に対して対称に配 置されるように、 ケース 1の筐体部 1 aの中空部に固定されている。 第 1の固定 子 2の磁極部 2 a〜2 cは同じ幅と長さを有している。 第 1の固定子 2において、 中央の磁極部 2 cに第 1のコイル 3が巻かれており、 第 1のコイル 3に電流を流 すことにより、 中央の磁極部 2 cと両端の磁極部 2 a及ぴ 2 bに異なる磁極が生 じる。 例えば、 図 2に示すように、 中央の磁極部 2 cに N極が生じれば、 両端の 磁極部 2 a及び 2 bには S極が生じる。 磁極部 2 a〜2 cが可動子 6に対向する ように位置するので、 第 1の固定子 2は、 漏れ磁束が少なく、 効率のよい磁気回 路を構成する。 2個の第 1の固定子 2は、 可動子 6に主に軸方向の力を与えるた めに用いられる。
第 1のコィノレ 3は、 第 1の固定子 2の中央の磁極部 2 cに樹脂製のコィルポビ ン (図示せず) を介して巻かれる。 第 1のコイル 3は、 第 1の固定子 2と、 第 1 の固定子 2と可動子 6の間の空隙と、 可動子 6とを通る磁路を励磁するものであ る。 また、 2個の第 1の固定子 2の一方に設けられている第 1のコイル 3の励磁 と他方の第 1の固定子 2に設けられている第 1のコイル 3の励磁が逆位相となる ように、 第 1のコイル 3が接続される。 例えば、 図 2に示すように、 2個の第 1 の固定子 2の一方の中央の磁極部 2 cが N極に励磁されている時に、 他方の第 1 の固定子 2の中央の磁極部 2 cが S極に励磁されるように、 第 1のコイル 3が接 ,f売される。
第 2の固定子 4の各々は、 磁性材料で断面が C字形の柱状に形成されたもので あり、 軸方向に対称に並ぶ 2個の磁極部 4 aと 4 bを有する。 2個の第 2の固定 子 4は、 回転軸心に対して対称に配置されるように、 ケース 1の筐体部 1 aの中 空部に固定されている。 そして、 図 4 (A) 及ぴ図 4 ( B ) に示すように、 2個 の第 1の固定子 2を含む軸方向の平面と、 2個の第 2の固定子 4を含む平面とは 互いに直交するように設けられている。 したがって、 第 1の固定子 2と第 2の固 定子 4との間隔が大きくなるので、 第 1のコイル 3と第 2のコイル 5を設ける空 間を大きくすることができる。 そして、 第 2の固定子 4の磁極部 4 aと 4 bは同 じ幅と長さを有している。 そして、 図 3に示すように、 第 2の固定子 4の各々に おいて、 第 2のコイル 5が磁極部 4 aと 4 bに分割して卷かれており、 第 2のコ ィル 5に電流を流すことにより、 磁極部 4 aと 4 bに、 夫々、 異なる磁極が生じ る。 例えば、 図 3に示すように、 磁極部 4 aに S極が生じれば、 磁極部 4 bには N極が生じる。 磁極部 4 aと 4 bが可動子 6に対向するように位置するので、 第 2の固定子 4は、 漏れ磁束が少なく、 効率のよい磁気回路を構成する。 2個の第
2の固定子 4は、 可動子 6に主に回転方向の力を与えるために用いられる。 第 2のコイル 5は、 第 2の固定子 4の磁極部 4 aと 4 bの各々に樹脂製のコィ ルポビン (図示せず) を介して分割して卷かれる。 第 2のコイル 5は、 第 2の固 定子 4と、 第 2の固定子 4と可動子 6の空隙と、 可動子 6とを通る磁路を励磁す るものである。 また、 2個の第 2の固定子 4の一方に設けられている第 2のコィ ノレ 5の励磁と他方の第 2のコイル 5に設けられている第 2のコイル 5の励磁が逆 位相となるように、 第 2のコイル 5が接続される。 例えば、 図 3に示すように、 2個の第 2の固定子 4の一方の磁極部 4 aが S極に励磁されている時に、 他方の 第 2の固定子 4の対応する磁極部 4 aが N極に励磁されるように、 第 2のコイル 5が接続される。
可動子 6は、 上述したように、 シャフト 6 aと駆動力発生部 6 bを含む。 シャ フト 6 aは、 金属製の円筒からなり、 軸方向と回転方向に運動できるように 2個 の軸受け部 1 bにより支持されている。 駆動力発生部 6 bは、 着磁方向 (S極か ら N極に向かう方向) 力 図 4 (A) と図 4 ( B ) に示すように互いに逆方向に なるように半径方向に着磁される 2個の円筒管状の磁石 6 b 1と 6 b 2により形 成される。 磁石 6 b 1と 6 b 2は、 磁石 6 b 1と 6 b 2の中心軸心がシャフト 6 aの中心軸心と一致するように、 シャフト 6 aに固着される。 このことにより、 磁石 6 b 1と 6 b 2は、 回転軸心に対して対称に、 着磁方向が軸方向に対して直 交するように設けられる。 したがって、 磁石 6 b 1と 6 b 2の質量は回転軸心に 対して対称に分布するので、 可動子 6の回転方向の運動による慣性力は打ち消さ れ、 ケース 1に伝わる振動を低減することができる。
また、 第 1の固定子 2と第 2の固定子 4は、 夫々、 可動子 6の磁石 6 b 1と 6 b 2の両側に位置する磁極部 2 a〜2 cと磁極部 4 a及び 4 bを用いて、 可動子 6に軸方向と回転方向の力を与えるので、 可動子 6は大きな力を受けて運動する ことができる。 ここで、 可動子 6の駆動力発生部 6 bが円筒状磁極面を有するの に対し、 第 1の固定子 2と第 2の固定子 4の磁極部は、 可動子 6に面する平面の 磁極面を有する。 そして、 磁石 6 b 1と 6 b 2の各々は、 図 2に示すように、 E 字形の磁極部 2 a〜2 cを有する第 1の固定子 2の各凹部の幅と同じ厚さを有し ている。 図 2に示すように、 磁石 6 b 1と 6 b 2の各々の側面が第 1の固定子 2 の各凹部に対向するように、 磁石 6 b 1と 6 b 2が軸方向に間隔をあけてシャフ ト 6 aに設けられてレ、る。 このとき、 図 3に示すように、 磁石 6 b 1と 6 b 2は、 夫々、 第 2の固定子 4の磁極部 4 aと 4 bに対向している。 図 4 (A) と図 4 ( B ) に示すように、 可動子 6の駆動力発生部 6 bの円形磁極面と第 1の固定子 2と第 2の固定子 4の磁極部の平らな磁極面との間に空隙が形成されるように、 磁石 6 b 1と 6 b 2の直径が設定される。
上記のような構成にして、 第 1のコイル 3に電流を流すことにより、 第 1の固 定子 2の磁極部 2 a〜 2 cには、 夫々、 例えば図 2に示す磁極が生じる。 そうす ると、 磁石 6 b 1が第 1の固定子 2の上端の磁極部 2 aからは吸引力が与えられ、 中央の磁極部 2 cからは反発力が与えられる。 一方、 磁石 6 b 2は、 第 1の固定 子 2の中央の磁極部 2 cから吸引力が与えられ、 下端の磁極部 2 bからは反発力 が与えられる。 したがって、 可動子 6は、 第 1の固定子 2から軸方向の力 (図 2 の場合は矢印 Aの上方の力) を受ける。 また、 第 1のコイル 3にこれとは逆方向 の電流を流すと、 磁極部 2 a〜 2 cに生じる磁極の極性が逆になるので、 軸方向 の力も逆方向に受けることになる。
また、 第 2のコイル 5に電流を流すことにより、 第 2の固定子 4の磁極部 4 a と 4 bには、 夫々、 例えば図 4 (A) と図 4 (B ) に示す磁極が生じる。 この時、 図 4 (A) において、 磁石 6 b 1は、 主に第 2の固定子 4から力を受けるので、 矢印 Bで示す右回りの回転方向の力を受ける。 また、 図 4 ( B ) において、 磁石 6 b 2も、 主に第 2の固定子 4から力を受けるので、 矢印 Bで示す右回りの回転 方向の力を受ける。 したがって、 図 4 (A) と図 4 (B) において、 可動子 6は、 第 2の固定子 4により右回りの回転方向の力を受ける。 また、 第 2のコイル 5に これとは逆方向の電流を流すと、 第 2の固定子 4の磁極部 4 aと 4 bに生じる磁 極の極性が逆になるので、 左回りの回転方向の力が可動子 6に印加される。
したがって、 このァクチユエータは、 可動子 6の軸方向の運動と回転方向の運 動を独立して制御することができ、 軸方向の変位に対する推力特性 (図 5 ) と回 転方向の回転角度に対するトルク特性 (図 6 ) を有している。 すなわち、 図 5に おいて、 曲線 F Z 1は、 第 1のコイル 3に電流が流れていないときの推力特性を 示し、 曲線 F P 1は、 第 1のコイル 3にプラス方向の電流が流れたときの推力特 性を示し、 また、 曲線 FM 1は、 第 1のコイル 3にマイナス方向の電流が流れた ときの推力特性を示す。 一方、 図 6において、 曲線 T Z 1は、 第 2のコイル 5に 電流が流れていないときのトルク特性を示し、 曲線 T P 1は、 第 2のコイル 5に プラス方向の電流が流れたときのトルク特性を示し、 また、 曲線 TM 1は、 第 2 のコイル 5にマイナス方向の電流が流れたときのトルク特性を示す。
ここで、 推力特性は、 第 1の固定子 2と可動子 6が図 2に示すように配置され ているときを軸方向の基準位置としている一方、 トルク特性は、 第 1の固定子 2 と第 2の固定子 4と可動子 6が図 4 (A) と図 4 (B ) に示すように配置されて いるときを回転方向の基準位置としている。 したがって、 第 1のコイル 3と第 2 のコイル 5に交流電圧を印加することにより、 第 1のコイル 3と第 2のコイル 5 の各々にプラス方向とマイナス方向の電流が流れるので、 可動子 6は、 軸方向と 回転方向の 2方向に往復運動を行う。
ところで、 図 1のァクチユエータの変形例にかかるァクチユエータを示す図 7 では、 第 2の固定子 4を、 第 1の固定子 2と同様にして、 3個の磁極部、 即ち、 両端の磁極部 4 a及ぴ 4 bと中央の磁極部 4 cを有する E字形に形成している。 この時、 図 8 (A) において、 磁石 6 b 1と第 2の固定子 4の上端の磁極部 4 a との位置関係は、 磁石 6 b 1が矢印 Bで示す右回りの回転運動を行う力が発生す るようになる。 また、 図 8 (B ) において、 磁石 6 b 2と第 2の固定子 4の下端 の磁極部 4 bとの位置関係は、 磁石 6 b 2が矢印 Cで示す左回りの回転運動を行 う力が発生するようになる。 よって、 磁石 6 b 1の回転方向と磁石 6 b 2の回転 方向は互いに逆になるので、 磁石 6 b 1の回転運動と磁石 6 b 2の回転運動は互 いに打ち消し合う。 また、 図 7に示すように、 磁石 6 b 1と 6 b 2の磁極面と第 2の固定子 4の磁極部 4 a〜4 cの磁極面は対向しないので、 可動子 6が第 2の 固定子 4から受ける力も小さくなる。 したがって、 図 7の E字形の第 2の固定子 4の代りに図 1の C字形の第 2の固定子 4を用いることにより、 可動子 6が第 2 の固定子 4から回転方向に受ける力を大きくすることができる。
次に、 本発明の第 1の実施形態にかかるァクチユエータの動作について説明す る。 可動子 6は、 前述した軸方向の基準位置 (図 2 ) と回転方向の基準位置 (図 4 (A)及び図 4 (B ) ) にあり、 第 1のコイル 3と第 2のコイル 5には電流が 流れていないものとする。 このとき、 可動子 6は、 図 5の曲線 F Z 1と図 6の曲 線 T Z 1に示すようにつりあった状態にあり、 軸方向にも回転方向にも力を受け ないので静止している。
ここで、 図 9に示すように、 第 1のコイル 3と第 2のコイル 5に夫々波形 V S と波形 V R 1で表される矩形波の交流電圧を印加すると、 第 1のコイル 3と第 2 のコイル 5に交流が流れ、 第 1のコイル 3は、 第 1の固定子 2を通る磁路を励磁 し、 第 2のコイル 5は、 第 2の固定子 4を通る磁路を励磁する。 すると、 可動子 6は、 図 5に示す軸方向の力と図 6に示す回転方向の力を受ける。 第 1のコイル 3と第 2のコイル 5に流れる交流の位相は、 可動子 6の運動やコィルの巻数など によって変化するが、 第 1のコイル 3に流れる交流により、 可動子 6は、 軸方向 に例えば図 9の曲線 D Sのように運動する。 一方、 可動子 6は、 第 2のコィノレ 5 により、 例えば図 9に示した位相で、 区間 R Lでは左回りの回転運動を行い、 区 間 R Rでは右回りの回転運動を行う。 したがって、 可動子 6は、 軸方向に往復運 動をしながら軸方向と同じ周期で回転方向の往復運動を行う。
また、 上述したように、 このァクチユエータでは、 可動子 6の軸方向の運動と 回転方向の運動を独立して制御できるので、 例えば図 1 0に示すように、 波形 V R 2で表される第 2のコイル 5に印加する交流電圧の周波数を波形 V Sで表され る第 1のコイル 3に印加する交流電圧の周波数の 2倍にすると、 可動子 6は、 軸 方向に 1往復の運動をする間に回転方向に 2往復の運動を行うようにすることが できる。
このように、 本発明の第 1の実施形態にかかるァクチユエータにおいては、 第 1のコイル 3で第 1の固定子 2を通る磁路を励磁することにより可動子 6に軸方 向の.力を与え、 第 2のコイル 5で第 2の固定子 4を通る磁路を励磁することによ り可動子 6に回転方向の力を与えるので、 可動子 6の軸方向の運動と回転方向の 運動を独立して制御することができる。 このことにより、 運動方向変換機構を用 いずに、 可動子 6が軸方向と回転方向の 2方向に運動することが可能なァクチュ エータの動作制御の自由度を向上することができる。
そして、 可動子 6の磁石 6 b 1と 6 b 2の質量は回転軸心に対して対称に分布 するので、 可動子 6の回転方向の運動による慣性力は打ち消され、 ケース 1に伝 わる振動を低減することができる。 また、 第 1の固定子 2と第 2の固定子 4は、 夫々、 可動子 6の磁石 6 b 1と 6 b 2の両側に位置する磁極部 2 a〜 2 cと磁極 部 4 a及び 4 bを用いて、 可動子 6に軸方向と回転方向の力を与えるので、 可動 子 6は大きな力を受けて運動することができる。
更に、 第 1の固定子 2を磁極部 2 a〜2 cを有する E字形で形成する一方、 第
2の固定子 4を磁極部 4 aと 4 bを有する C字形で形成すると共に、 第 1の固定 子 2と第 4の固定子 4を直交するように配置することにより、 第 1の固定子 2と 第 2の固定子 4の間隔が大きくなるので、 第 1のコイスレ 3を第 1の固定子 2に設 ける空間と第 2のコイル 5を第 2の固定子 4に設ける空間を大きくすることがで きる。 また、 第 1の固定子2が可動子62個の磁石6 b 1と 6 b 2に対向して 位置するときに、 第 1の固定子 2の磁極部 2 a〜2 cが軸方向の力を生じるのに 適した配置となるので、 第 1の固定子 2は漏れ磁束を少なくすると共に、 可動子 6は軸方向に大きな力を受けて効率よく運動することができる。 また、 第 2の固 定子 4が可動子 6の 2個の磁石 6 b 1と 6 b 2に対向して位置するときに、 第 2 の固定子 4の磁極部 4 aと 4 bが回転方向の力を生じるのに適した配置となるの で、 第 2の固定子 4は漏れ磁束を少なくすると共に、 可動子 6は回転方向に大き な力を受けて効率よく運動することができる。
(第 2の実施形態)
次に、 図 1 1と図 1 2は、 本発明の第 2の実施形態にかかるァクチユエータを 示す。 このァクチユエータは、 第 1の実施形態のァクチユエータと、 第 1の固定 子 2と第 2の固定子 4の形状と相対位置が異なっており、 その他は第 1の実施形 態のァクチユエータと同じ構成である。
このァクチユエータでは、 第 1の固定子 2と第 2の固定子 4の磁極部の磁極面 1 可動子 6の駆動力発生部 6 bの円筒状磁極面と一定の空隙を介して対向する ように、 円形曲面に形成されている。 そして、 第 2の固定子 4の磁極部が、 第 1 の固定子 2の E字形の磁極部の間の囬部に設けられている。 よって、 図 1 2に示 すように、 軸方向に見る時、 第 1の固定子 2と第 2の固定子 4の磁極部の両端部 力 立体的に重なり合う重なり部 C Pを形成している。 したがって、 図 1 1に示 すように、 空隙 Gが、 第 1の固定子 2の磁極部と第 2の固定子 4の磁極部の間に 形成される。
このような構成にすることにより、 第 1の固定子 2と第 2の固定子 4は、 その 夫々が可動子 6と対向する面積を大きくするための空間を確保するので、 可動子 6との対向面積を大きく取ることができ、 可動子 6に大きな力を与えることがで きる。 また、 空隙 Gを設けたことにより、 図 1 2中の矢印で示された可動子 6に 力を与えるために寄与しない磁路 WC (例えば、 軸方向について考えたときには、 第 1の固定子 2の 1^極→空隙 G→第 2の固定子 4→空隙 G→第 1の固定子 2の S 極) の磁気抵抗を大きくして、 磁路 WCに流れる磁束を減少させ、 可動子 6に大 きな力を与えることができる。 ここで、 空隙 Gの幅は、 可動子 6の駆動力発生部 6 bと第 1の固定子 2及び第 2の固定子 4との間の上記の一定の空隙の幅などを 考慮して設計する。
このように、 第 2の実施形態においては、 第 1の固定子 2と第 2の固定子 4の 磁極部が可動子 6との対向面積を取るための空間を確保するので、 可動子 6との 対向面積を大きく取ることができる。 よって、 第 1の固定子 2と第 2の固定子 4 の間の磁路の磁気抵抗が大きくなるので、 可動子 6に力を与えるために寄与しな い磁束を低減することができる。 したがって、 可動子 6に軸方向と回転方向に大 きな力を与えることができる。
(第 3の実施形態)
次に、 図 1 3は、 本発明の第 3の実施形態にかかるァクチユエータを示す。 こ のァクチユエータは、 第 1の実施形態のァクチユエータと、 可動子 6の形状と可 動子 6及び第 1の固定子 2の相対位置が異なっており、 その他は第 1の実施形態 のァクチユエータと同じ構成である。
可動子 6の駆動力発生部 6 bを形成する磁石 6 b 1と 6 b 2の各々は、 第 1の 固定子 2の E字形の磁極部 2 a〜2 cの間の凹部の軸方向の幅よりも小さい厚さ を有する円筒状の磁石であり、 その直径は対になった第 1の固定子 2の対応する 磁極部間の距離よりも大きく形成され、 第 1の固定子 2の磁極部 2 a ~ 2 cの間 の凹部に突入するように設けられている。 そのため、 可動子 6の軸方向の運動は、 第 1の固定子 2の前記の凹部内に制限される。 また、 可動子 6の磁石 6 b 1と 6 b 2の半径方向の端部が第 1の固定子 2の両凹部を横切って回転する。 このため、 可動子 6の磁石 6 b 1と 6 b 2の磁極部と第 1の固定子 2の磁極部 2 a〜 2 cの 軸方向の対向面積を大きく取ることができるので、 可動子 6は軸方向に大きな力 を受けて運動することができる。
(第 4の実施形態)
次に、 図 1 4と図 1 5は、 本発明の第 4の実施形態にかかるァクチユエータを 示す。 このァクチユエータは、 第 1の実施形態のァクチユエータと、 可動子 6の 磁石 6 b 1及ぴ 6 b 2の形状が異なつており、 その他は第 1の実施形態のァクチ ユエータと同じ構成である。
図 1 4に示すように、 可動子 6の磁石 6 b 1と 6 b 2は、 同じ大きさの円筒状 に形成されており、 対向する両端面が軸方向に当接する一方、 当接する両端面と 反対側の両端面は第 1の固定子 2の軸方向の両端面と一致するように設けられて いる。 磁石 6 b 1と 6 b 2の当接する両端面は、 第 1の固定子 2の中央の磁極部 2 cの軸方向の中央に配置されている。
このような構成にすることにより、 磁石 6 b 1と 6 b 2の当接する両端面と反 対側の両端面が第 1の固定子 2の軸方向の両端面と一致する位置が安定点となる。 図 1 5において、 このァクチユエータは、 第 1のコイル 3に電流が流れていない ときには曲線 F Z 2、 第 1のコィノレ 3にプラス方向の電流が流れたときには曲線 F P 2、 また、 第 1のコイル 3にマイナス方向の電流が流れたときには曲線 FM 2で示される推力特性を有する。 つまり、 可動子 6に軸方向の変位が生じると、 可動子 6を逆方向へ引き戻す力が生じる特性となる。 したがって、 可動子 6は、 戻しばねに連結されたように動作するので、 安定した往復動作を行うことができ る。
このように第 4の実施形態においては、 可動子 6の磁石 6 b lと 6 b 2の当接 する両端面と反対側の両端面が第 1の固定子 2の軸方向の両端面と一致する位置 が安定点となり、 可動子 6の軸方向の変位が大きくなるにつれ、 大きな力が変位 とは逆方向に生じるようになるので、 戻しばねの効果を得ることができる。
なお、 第 4の実施形態では、 可動子 6の駆動力発生部 6 bは、 当接する 2個の 磁石 6 b 1と 6 b 2を含むが、 一体部品で形成してもよい。
(第 5の実施形態)
次に、 図 1 6 (A) と図 1 6 (B ) は、 本発明の第 5の実施形態にかかるァク チユエ一タにおける第 1の固定子 2に対する第 1のコイル 3の 2通りの巻き方を 示す。 このァクチユエータは、 第 1の実施形態のァクチユエータと、 第 1のコィ ノレ 3の第 1の固定子 2への巻き方が異なっており、 その他は第 1の実施形態のァ クチユエータと同じ構成である。
第 1の実施形態のァクチユエータでは、 図 2に示すように、 第 1のコィ /レ 3は、 第 1の固定子 2の中央の磁極部 2 cに卷かれていた。 しかしながら、 このァクチ ユエータでは、 図 1 6 (A)に示すように、 第 1のコィノレ 3は、 第 1の固定子 2 の両端の磁極部 2 aと 2 bに分割して巻かれている。 このとき、 これらの第 1の コイル 3は、 中央の磁極部 2 cと両端の磁極部 2 a及ぴ 2 bが異なつた磁極に励 磁されるよう接続されている。 このように第 1のコイル 3を磁極部 2 aと 2 bに 分割して巻くことにより、 第 1のコイル 3を 1個の磁極部 2 cに卷いた第 1の実 施形態と比較して、 巻かれた第 1のコイル 3による厚みの影響が少なくなるので、 第 1のコイル 3を卷く空間を低減することができる。 また、 図 1 6 ( B ) に示す ように、 第 1のコィノレ 3を、 第 1の固定子 2の磁極部 2 a〜2 cの夫々に分割し て巻くこともできる。
このように、 第 5の実施形態においては、 第 1のコイル 3を第 1の固定子 2の 両端の磁極部 2 aと 2 bまたは磁極部 2 a〜 2 cに分割して卷くことにより、 第 ェのコイル 3を 1個の磁極部 2 cに巻いた第 1の実施形態と比較して、 卷かれた 第 1のコイル 3による厚みの影響が少なくなるので、 第 1の固定子 2に第 1のコ ィノレ 3を卷く空間を更に低減することができる。
(第 6の実施形態)
次に、.図 1 7は、 本発明の第 6の実施形態にかかるァクチユエータを示す。 こ のァクチユエータは、 第 4の実施形態のァクチユエータと、 1対の共振ばね 8を 設けた点で異なっており、 その他は第 4の実施形態のァクチユエータと同じ構成 である。
共振ばね 8の各々は、 コイルばねで形成され、 橈んだ状態でケース 1と可動子 6の間に設けられている。 即ち、 一方の共振ばね 8は、 磁石 6 b 1と対応する軸 受け部 1 bの間に設けられ、 その両端が、 夫々、 磁石 6 b 1と対応する軸受け部 1 bに固定されている。 他方の共振ばね 8は、 磁石 6 b 2と対応する軸受け部 1 bの間に設けられ、 その両端が、 夫々、 磁石 6 b 2と対応する軸受け部 1 bに固 定されている。 このようにすることにより、 共振ばね 8は、 可動子 6の軸方向の 運動に対しても、 可動子 6の回転方向の運動に対しても、 ばねとして働くことが できる。 よって、 共振ばね 8は、 軸方向の共振に用いる軸方向共振ばねの機能だ けでなく、 回転方向の共振に用いる回転共振ばねの機能も有する。
したがって、 可動子 6は、 共振ばね 8の軸方向のばね定数 (軸方向共振ばねと してのばね定数) と可動子 6の質量によって定まる共振周波数の近傍の周波数で 第 1のコイル 3に交流電圧を与えて励磁することにより、 共振現象により効率よ く軸方向の往復運動を行う。 また、 可動子 6は、 共振ばね 8の回転方向のばね定 数 (回転共振ばねとしてのばね定数) と可動子 6の慣性モーメントによって定ま る共振周波数の近傍の周波数で第 2のコイル 5に交流電圧を与えて励磁すること により、 共振現象により効率よく回転方向の往復運動を行う。 ここで、 第 1のコ ィル 3と第 2のコイル 5に印加する交流電圧の周波数を共振周波数の近傍とした のは、 第 1のコイル 3と第 2のコイル 5に交流電圧を印加する電気回路の影響に より、 実際の共振周波数が、 運動系のみで決まる共振周波数から多少ずれるから である。
このように、 第 6の実施形態においては、 共振ばね 8の各々が、 軸方向共振ば ねと回転共振ばねの両方の機能を有するので、 可動子 6の質量と軸方向共振ばね のばね定数により定まる共振周波数の近傍の周波数で第 1のコイル 3に交流電圧 を印加することにより、 可動子 6は共振現象を用いて効率よく大きい振幅で軸方 向の往復運動をすることができる。 また、 可動子 6の慣性モーメントと回転共振 ばねのばね定数により定まる共振周波数の近傍の周波数で第 2のコイル 5に交流 電圧を印加することにより、 可動子 6は共振現象を用いて効率よく大きい振幅で 回転方向の往復運動をすることができる。 また、 共振ばね 8の各々が軸方向共振 ばねとしてだけでなく回転共振ばねとしても働くので、 共振ばね 8を設ける空間 を減少させることができる。
なお、 ここでは、 共振ばね 8の各々力 軸方向共振ばねと回転共振ばねの両方 の機能を有する場合を説明したが、 第 6の実施形態はこの場合に限るものではな く、 軸方向共振ばねと回転共振ばねを別々に設けてもよい。 この目的のために、 例えば、 板ばねと渦卷きばねを、 夫々、 軸方向共振ばねと回転共振ばねとして用 いてもよい。 また、 軸方向共振ばねとしてのコィルばねと回転共振ばねとしての コィルばねの一方を他方の空間に入れて組み合わせることにより、 共振ばね 8を 設けるのに必要な空間を低減することができる。
(第 7の実施形態)
次に、 図 1 8乃至図 2 0は、 本発明の第 7の実施形態にかかるァクチユエータ を示す。 このァクチユエータは、 第 1の実施形態のァクチユエータと、 別の可動 子 1 7とばね部材 1 8を設けて、 ケース 1に収納した点で異なっており、 その他 は第 1の実施形態のァクチユエータと同じ構成である。 したがって、 このァクチ ユエータは、 第 1の実施形態のァクチユエータと大略同様に動作する。 また、 図 1 8のァクチユエータの変形例にかかるァクチユエータを示す図 2 1では、 第 2 の固定子 4を、 第 1の実施形態の変形例 (図 7 ) と同様に、 3個の磁極部、 即ち、 両端の磁極部 4 a及ぴ 4 bと中央の磁極部 4 cを有する E字形に形成している。 別の可動子 1 7は、 銅、 タングステン、 黄銅等で筐体部 1 aの内径より小さい 外径の円筒管で形成され、 シャフト 6 aの直径より大きい直径の円形貫通孔が、 別の可動子 1 7の中心軸心に設けられている。 別の可動子 1 7は、 貫通孔にシャ フト 6 aを揷通した状態で可動子 6の磁石 6 b 2と対応する軸受け部 1 bの間で 磁石 6 b 2と軸方向に並ぶように筐体部 1 a内に収納されている。 別の可動子 1 7は、 可動子 6とは別に軸方向に運動を行えるように、 後述のばね部材 1 8を用 いて磁石 6 b 2と軸受け部 1 bの間に支持されている。 別の可動子 1 7の質量は、 可動子 6の質量と同程度に設定されている。
ばね部材 1 8は、 軸方向に撓む 3個のコイルばね、 即ち、 第 1のばね 1 8 a、 第 2のばね 1 8 bと第 3のばね 1 8 cにより構成されている。 第 1のばね 1 8 a は、 磁石 6 b 1と対応する軸受け部 1 bの間に設けられ、 その両端が、 夫々、 磁 石 6 b 1と対応する軸受け部 1 bに固定されている。 また、 第 2のばね 1 8 bは、 磁石 6 b 2と別の可動子 1 7の間に設けられ、 その両端が、 夫々、 磁石 6 b 2と 別の可動子 1 7に固定されている。 更に、 第 3のばね 1 8 cは、 別の可動子 1 7 と対応する軸受け部 1 bの間に設けられ、 その両端が、 夫々、 別の可動子 1 7と 対応する軸受け部 1 bに固定されている。 その結果、 ばね 1 8は、 回転方向にも ばねとして働く。
また、 ケース 1と、 可動子 6と、 別の可動子 1 7と、 ばね部材 1 8とは、 夫々 の質量とばね部材 1 8の第 1のばね 1 8 a、 第 2のばね 1 8 bと第 3のばね 1 8 cの夫々のばね定数により決まる共振周波数で軸方向の共振運動を行うばね共振 系を構成する。 このばね共振系は、 ケース 1を固定した状態に近似できる時には 2個の共振周波数を持つ。 一方の共振周波数 (以下、 「 1次モード共振周波数」 と呼ぶ) では、 可動子 6と別の可動子 1 7とが軸方向に同位相で運動し、 また、 他方の共振周波数 (以下、 「2次モード共振周波数」 と呼ぶ) では、 可動子 6と 別の可動子 1 7とが軸方向に逆位相で運動する。 よって、 第 1のコイル 3に 2次 モード共振周波数の近傍の周波数の交流電圧を印加すると、 可動子 6と別の可動 子 1 7は軸方向に逆位相で動作する共振運動を行う。 したがって、 可動子 6は、 軸方向の共振運動により、 大きな軸方向の振幅を効率よく得ることができる。 ま た、 可動子 6の質量と別の可動子 1 7の質量を同程度としているので、 可動子 6 と別の可動子 1 7の夫々の慣性力が打ち消し合うから、 ケース 1に伝わる軸方向 の慣性力による振動を低減することができる。
—方、 ばね部材 1 8は、 コィルばねであるので両端を固定することにより、 回 転方向のばねの機能を有するから、 ケース 1と、 可動子 6と、 別の可動子 1 7と、 ばね部材 1 8とは、 夫々の慣性モーメントとばね部材 1 8の第 1のばね 1 8 a、 第 2のばね 1 8 bと第 3のばね 1 8 cの夫々の回転方向のばね定数により決まる 共振周波数で回転方向の共振運動を行うばね共振系を構成することができる。 し たがつて、 この共振周波数の近傍の周波数で交流電圧を第 2のコイル 5に印加す ることにより、 可動子 6は、 回転方向の共振運動により大きな回転方向の振幅を 効率よく得ることができる。
第 7の実施形態において、 可動子 6の軸方向と回転方向の共振運動を行うため に、 第 1のコイル 3と第 2のコイル 5に印加する交流電圧の周波数を共振周波数 の近傍としたのは、 第 1のコイル 3と第 2のコイル 5に交流電圧を印加する電気 回路の影響により、 実際の共振周波数が、 運動系のみで決まる共振周波数から多 少ずれるからである。
このように、 本発明の第 7の実施形態にかかるァクチユエータにおいては、 可 動子 6と、 別の可動子 1 7と、 ケース 1と、 これらの部材の間で軸方向に撓むば ね部材 1 8とによりばね共振系を構成し、 第 1のコイル 3で第 1の固定子 2を通 る磁路を励磁することにより、 可動子 6に軸方向の力を与えて軸方向の共振運動 を行う一方、 第 2のコイル 5で第 2の固定子 4を通る磁路を励磁することにより、 可動子 6に回転方向の力を与えて回転方向の共振運動を行うので、 可動子 6の軸 方向の運動と回転方向の運動を独立して制御することができる。 また、 軸方向の 共振運動において、 可動子 6と別の可動子 1 7が、 夫々、 軸方向で逆に運動する ことができるので、 ケース 1に伝わる軸方向の慣性力による振動を低減すること ができる。 このことにより、 運動方向変 «構を用いずに、 可動子 6が軸方向と 回転方向の 2方向に運動することが可能なァクチユエータの動作制御の自由度を 向上することができる。
また、 第 1の固定子 2と第 2の固定子 4は、 夫々、 軸方向の力と回転方向の力 を可動子 6に与えるが、 別の可動子 1 7は、 第 1の固定子 2と第 2の固定子 4か らカを直接に受けないので、 ばね共振系の設計が容易となる。
更に、 第 7の実施形態においては、 可動子 6が、 第 1の固定子 2と第 2の固定 子 4から軸方向の力と回転方向の力を受ける場合を説明したが、 この場合に限る ものではない。 軸方向の力と回転方向の力が可動子 6からばね部材 1 8を介して 別の可動子 1 7に伝わるので、 可動子 6と別の可動子 1 7の磁気構造を入れ替え て、 別の可動子 1 7が、 第 1の固定子 2と第 2の固定子 4から軸方向の力と回転 方向の力を受けるように構成してもよい。
(第 8の実施形態)
次に、 図 2 2は、 本発明の第 8の実施形態にかかるァクチユエータ示す。 この ァクチユエータは、 第 7の実施形態のァクチユエータと、 可動子 6の形状と可動 子 6及ぴ第 1の固定子 2の相対位置が異なっており、 その他は第 7の実施形態の ァクチユエータと同じ構成である。 より詳しくは、 このァクチユエータは、 図 1 3に示す第 3の実施形態のァクチユエータの可動子 6の形状と可動子 6及び第 1 の固定子 2の相対位置を第 7の実施形態のァクチユエータに適用することにより 得られる。
したがつて、 第 3の実施形態と同様に、 可動子 6の駆動力発生部 6 bを形成す る磁石 6 b 1と 6 b 2の各々は、 第 1の固定子 2の E字形の磁極部 2 a〜2 cの 間の凹部の軸方向の幅よりも小さい厚さを有する円筒状の磁石であり、 その直径 は対になった第 1の固定子 2の対応する磁極部間の距離よりも大きく形成され、 第 1の固定子 2の磁極部 2 a〜2 cの間の凹部に突入するように設けられている ので、 可動子 6の磁石 6 b 1と 6 b 2の半径方向の端部が第 1の固定子 2の両凹 部を横切って回転する。 このため、 可動子 6の磁石 6 b 1と 6 b 2の磁極部と第 1の周定子 2の磁極部 2 a〜 2 cの軸方向の対向面積を大きく取ることができる ので、 可動子 6は軸方向に大きな力を受けて運動することができる。
(第 9の実施形態)
次に、 図 2 3は、 本発明の第 9の実施形態にかかるァクチユエータを示す。 こ のァクチユエータは、 第 7の実施形態のァクチユエータと、 可動子 6の磁石 6 b 1及び 6 b 2の形状が異なっており、 その他は第 7の実施形態のァクチユエータ と同じ構成である。 より詳しくは、 このァクチユエータは、 図 1 4に示す第 4の 実施形態の可動子 6の磁石 6 b 1及ぴ 6 b 2の形状を第 7の実施形態のァクチュ エータに適用することにより得られる。
したがって、 第 4の実施形態と同様に、 可動子 6の磁石 6 b 1と 6 b 2は、 同 じ大きさの円筒状に形成されており、 対向する両端面が軸方向に当接する一方、 当接する両端面と反対側の両端面は第 1の固定子 2の軸方向の両端面と一致する ように設けられている。 磁石 6 b 1と 6 b 2の当接する両端面は、 第 1の固定子 2の中央の磁極部 2 cの軸方向の中央に配置されている。
このような構成にすることにより、 磁石 6 b 1と 6 b 2の当接する両端面と反 対側の両端面が第 1の固定子 2の軸方向の両端面と一致する位置が安定点となり、 可動子 6は、 第 4の実施形態と同様に戻しばねに連結されたように動作するので、 ばね部材 1 8としてばね定数の低いばねを使用することができる。
このように第 9の実施形態においては、 可動子 6の磁石 6 b 1と 6 b 2の当接 する両端面と反対側の両端面が第 1の固定子 2の軸方向の両端面と一致する位置 が安定点となり、 可動子 6の軸方向の変位が大きくなるにつれ、 大きな力が変位 とは逆方向に生じるようになるので、 戻しばねの効果を得ることができる。
なお、 第 9の実施形態では、 可動子 6の駆動力発生部 6 bは、 当接する 2個の 磁石 6 b 1と 6 b 2を含むが、 着磁方向が 2個所で異なる 1個の磁石で形成して あよい。
(第 1 0の実施形態)
図 2 4は、 本発明の第 1 0の実施形態にかかるァクチユエータを示す。 このァ クチユエータは、 第 9の実施形態のァクチユエータと、 可動子 6が第 2の固定子 4から力を受けず、 別の可動子 1 7が第 2の固定子 4から力を受ける点で異なつ ており、 その他は第 9の実施形態と同じ構成である。
別の可動子 1 7は、 可動子 6と同様に、 互いに当接する 2個の磁石 1 7 aと 1 7 bを含み、 シャフト 6 aの直径より大きい直径の円形貫通孔が、 磁石 1 7 aと
1 7 bの各々の中心軸心に設けられている。 磁石 1 7 aと 1 7 bは、 貫通孔にべ 了リングを介してシャフト 6 aを揷通した状態で可動子 6の磁石 6 b 2と対応す る軸受け部 1 bの間で軸方向に並ぶように筐体部 1 a内に収納されて、 磁石 6 b 2と対応する軸受け部 1 bの間にばね部材 1 8の第 2のばね 1 8 bと第 3のばね 1 8 cを用いて支持されている。 別の可動子 1 7の磁石 1 7 aと 1 7 bの合計質 量は、 可動子 6の質量と同程度に設定されている。 また、 第 2の固定子 4は、 第 7の実施形態のァクチユエータの第2の固定子 4 (図 2 0 ) と同じ形状を有する と共に、 別の可動子 1 7に対向している。
このように構成することにより、 第 1 0の実施形態では、 第 1の固定子 2から の軸方向の力に寄与する磁束と、 第 2の固定子 4からの回転方向の力に寄与する 磁束とを別々に取扱うことができるので、 ばね共振系の設計が容易になる。
また、 第 1 0の実施形態において、 第 1の固定子 2から可動子 6に軸方向の力 を与え、 第 2の固定子 4から別の可動子 1 7に回転方向の力を与えることにより、 軸方向の力を発生するための磁路と回転方向の力を発生する磁路が互いに分離さ れるので、 磁気回路を容易に設計することができる。
更に、 第 1 0の実施形態において、 可動子 6に軸方向の力を与え、 別の可動子 1 7に回転方向の力を与える構成を説明したが、 この構成を、 可動子 6に回転方 向の力を与え、 別の可動子 1 7に軸方向の力を与える逆の構成と置換してもよい。 一方、 第 7の実施形態と第 1 0の実施形態において、 可動子 6の質量と別の可 動子 1 7の質量を同程度に設定したが、 この設定に限るものではない。 例えば、 可動子 6の質量と別の可動子 1 7の質量を互いに不均衡になるように調整する時、 軸方向の振動を低減すると共に、 往復運動の振幅を調整することができるという 効果が得られる。
また、 第 1の実施形態のァクチユエータと同様に、 図 1 1と図 1 2に示す第 2 の実施形態のァクチユエ一タの第 1の固定子 2と第 2の固定子 4の形状と相対位 置や、 図 1 6 (A) と図 1 6 (B) に示す第 5の実施形態のァクチユエ一タの第 1のコイル 3の第 1の固定子 2への巻き方を第 7の実施形態のァクチユエータに 適用し得ることは言うまでもな 、。
更に、 上記の第 1の実施形態乃至第 1 0の実施形態において、 可動子 6の駆動 力発生部 6 bの磁石 6 b 1と 6 b 2は、 回転軸心に対して対称であり、 回転軸心 に対して対称に配置した 1対の第 1の固定子 2と 1対の第 2の固定子 4を、 夫々、 逆位相で励磁する構成を説明したが、 この構成に限るものではなく、 1個の第 1 の固定子 2と 1個の第 2の固定子 4を設けて、 磁石 6 b 1と 6 b 2の片側の磁極 のみを使用してもよい。
その上、 上記の第 1の実施形態乃至第 1 0の実施形態において、 可動子 6の駆 動力発生部 6 bが 2個の磁石 6 b 1と 6 b 2を有する構成を説明したが、 駆動力 発生部 6 bを 1個の磁石だけで形成してもよレ、。 この場合、 例えば、 第 1の固定 子 2が、 1個の磁極部または C字形の 2個の磁極部を有し、 第 2の固定子 4が 1 個の磁極部を有する時、 可動子 6を軸方向と回転方向に運動し得る。
(第 1 1の実施形態)
図 2 5乃至図 3 1は、 本発明の第 1 1の実施形態にかかるァクチユエ一タを示 す。 図 2 5に示すように、 このァクチユエータは、 軸方向駆動用の軸方向ァクチ ユエータ 2 1と、 回転方向駆動用の回転ァクチユエータ 2 2と、 軸方向の振動を 低減するための動吸振器 2 3とを含む。 軸方向ァクチユエータ 2 1、 回転ァクチ ユエータ 2 2と動吸振器 2 3は、 ケース 2 7に収納されるように、 シャフト 2 5 に装着される。 シャフト 2 5は、 また、 ケース 2 7の両端部に設けられた 1対の ベアリング 2 6によって支持される。 3個のばね 2 4が、 夫々、 ベアリング 2 6 の一方と軸方向ァクチユエータ 2 1の間、 回転ァクチユエータ 2 2と動吸振器 2 3の間と動吸振器 2 3とべァリング 2 6の他方の間に設けられている。
図 2 6は、 軸方向ァクチユエータ 2 1の磁気構造を示す。 図 2 6において、 ノヽ ツチング部は磁石もしくは磁性体を指し、 空白断面は非磁性体を指す。 シャフト
2 5は、 図 2 6で磁性体として表されているけれども、 必ずしも磁性体である必 要はない。 軸方向ァクチユエータ 2 1は、 コイル 3 1を巻いた固定子 2 9と、 1 対の磁石 3 0を有すると共にシャフト 2 5に固着された可動子 2 8とを含む。 磁 石 3 0の各々は、 図 2 6の上下方向に着磁されている。
図 2 7は、 軸方向ァクチユエータ 2 1の動作原理を示す。 図 2 7に示すように、 コイル 3 1に電流を入力することにより、 固定子 2 9と可動子 2 8に磁極が生じ て、 可動子 2 8が矢印で示すように上方に移動する。 コイル 3 1に入力する電流 に基づく着磁方向を反対にすることにより、 可動子 2 8を逆方向、 即ち、 図 2 7 で下方に移動するように駆動することができる。 コイル 3 1には正弦波や矩形波 の交流電圧が印加される。
図 2 8は、 回転ァクチユエータ 2 2の磁気構造を示す。 回転ァクチユエータ 2 2は、 コイル 3 4を卷いた固定子 3 3と、 図 2 9 (A) に示すように 4個の磁石
3 7を外周に配設していると共にシャフト 2 5に固着された可動子 3 2とを含む。 図 2 9 (A) と図 2 9 (B ) に示すように、 固定子 3 3は、 4個の上部磁極 3 5 と 4個の下部磁極 3 6を有する。
図 2 9 (A) と図 2 9 ( B ) は、 夫々、 回転ァクチユエータ 2 2の固定子 3 3 の上部磁極 35と下部磁極 36の磁化状態を示す。 ある方向に流れる電流をコィ ル 34に入力することにより、 N極と S極が、 夫々、 上部磁極 35と下部磁極 3 6に発生する一方、 4個の磁石 37の内周側と外周側が、 夫々、 S極と N極に着 磁される時、 可動子 32の磁石 37と固定子 33の上部磁極 35及び下部磁極 3 6の間に右回りのトルクが生成される結果、 可動子 32が矢印で示すように右回 りに回転する。 コイル 34に入力する電流に基づく着磁方向を反対にすることに より、 可動子 32を逆方向、 即ち、 左回りに回転するように駆動することができ る。 軸方向ァクチユエータ 21のコイル 31と同様に、 回転ァクチユエータ 22 のコィノレ 34にも正弦波や矩形波の交流電圧が印加される。
このァクチユエータにおいて、 回転ァクチユエータ 22のコイル 34に印加す る交流電圧の周波数を回転ァクチユエータ 21のコイル 31に印加する交流電圧 の周波数の 1. 5倍としている。
第 1 1の実施形態のァクチユエータの上記構成において、 シャフト 25を、 軸 方向ァクチユエータ 21と回転ァクチユエータ 22により、 図 31に示すように 軸方向と回転方向の 2方向に駆動することができる。 図 31において、 左端の列 は回転ァクチユエータ 22のコイル 34に印加される交流電圧の周波数 ί rと軸 方向ァクチユエータ 21のコイル 31に印加される交流電圧の周波数 f aの比
(f r/f a) を表し、 グラフ a) 〜u) の横軸と縦軸は、 夫々、 軸方向と回転 方向におけるシャフト 25の軌跡を指す。 例えば、 図 30に示すように回転ァク チユエータ 22のコイル 34に印加される破/線の正弦波交流電圧の周波数 ί rと 軸方向ァクチユエータ 21のコイル 31に印加される実線の正弦波交流電圧の周 波数 f aの比 (i r/f a) を 1. 5 : 1とする時、 シャフト 25は、 図 31の グラフ d) の軌跡に沿って駆動される。 両交流電圧の位相差を (π,2) に設定 しても、 シャフト 25は、 グラフ d) と同様にグラフ f) の軌跡に沿って駆動さ れる。
また、 nが整数を示すとして、 上記比 (f rZi a) を、 式 (f r/f a) = (2 n+ 1) Z 2で表して、 整数 nを 1、 2と 3に設定すると共に、 位相差を 0 と に設定することにより、 図 31のグラフ d) 、 f ) 、 j ) 、 1) 、 p) と )に示すように、 シャフト 25をより広範囲の軌跡に沿って駆動するこ とができる。
更に、 mが整数を示すとして、 上記比 (f r/f a) を、 式 (ί rZf a) = mで表して、 整数 mを 1〜4に設定すると共に、 位相差を 0、 (πΖ4) と (π /2) に設定することにより、 図 31のグラフ b) 、 c;) 、 g) 、 h) 、 n) 、 o) 、 s) と t) に示すように、 シャフト 25を直線または複雑な楕円運動の軌 跡に沿って駆動することができる。
このように、 この実施形態においては、 回転ァクチユエータ 22のコイル 34 に印加される交流電圧の周波数 f rと軸方向ァクチユエータ 21のコイル 31に 印加される交流電圧の周波数 f aの比 (f r/f a) を上記の両式で設定するこ とにより、 シャフト 25を各種の複雑な軌跡に沿って駆動することができる。 以下に、 本発明で得られる効果を列記する。
最初に、 本発明の第 1乃至第 6の実施形態で得られる効果を記载する。
まず、 第 1のコイルで第 1の固定子を通る磁路を励磁することにより可動子に 軸方向の力を与え、 第 2のコイルで第 2の固定子を通る磁路を励磁することによ り可動子に回転方向の力を与えるので、 可動子の軸方向の運動と回転方向の運動 を独立して制御することができる。 このことにより、 運動方向変 «構を用いず に、 可動子が軸方向と回転方向の 2方向に運動することが可能なァクチユエータ の動作制御の自由度を向上することができる。
また、 可動子の磁石の質量は回転軸心に対して対称に分布するので、 可動子の 回転方向の運動による 1貫性力は打ち消され、 ケースに伝わる振動を低減すること ができる。
また、 第 1の固定子と第 2の固定子は、 可動子の磁石の両側の磁極を用いて可 動子に軸方向と回転方向の力を与えるので、 可動子は大きな力を受けて運動する ことができる。
また、 1対の第 1の固定子を含む軸方向の平面と、 1対の第 2の固定子を含む 軸方向の平面が略直交するので、 第 1の固定子と第 2の固定子との間隔が夫々大 きくなるから、 第 1のコイルと第 2のコイルを設ける空間を大きくすることがで さる。
また、 可動子の 2個の磁石が、 夫々、 逆の着磁方向を有すると共に、 第 1の固 定子が E字形の 3個の磁極部を有するので、 可動子の 2個の磁石は第 1の固定子 に対向して位置するときに軸方向の力を生じるのに適した磁極部の配置となるか ら、 漏れ磁束を少なくすると共に、 可動子は軸方向に大きな力を受けて効率よく 運動することができる。
また、 第 2の固定子が C字形の 2個の磁極部を有するので、 可動子の 2個の磁 石は第 2の固定子の 2個の磁極部に対向して位置するときに回転方向の力を生じ るのに適した磁極部の配置になるので、 漏れ磁束を少なくすると共に、 可動子は 回転方向に大きな力を受けて効率よく運動することができる。
また、 軸方向に見る時に、 第 1の固定子の磁極部の両端部と第 2の固定子の磁 極部の両端部が立体的に重なり合うので、 第 1の固定子と第 2の固定子は、 その 夫々が可動子との対向面積を取るための空間を確保するので、 可動子との対向面 積を大きく取ることができ、 可動子に大きな力を与えることができる。
また、 第 1の固定子の磁極部と第 2の固定子の磁極部の間に空隙を形成したの で、 第 1の固定子と第 2の固定子の間の磁路の磁気抵抗が大きくなるから、 可動 子に力を与えるために寄与しなレ、磁束を低減することができる。
また、 可動子の磁石の端部が第 1の固定子の磁極部の間の凹部を横切って回転 するので、 可動子の磁石の磁極部と第 1の固定子の磁極部の軸方向の対向面積を 大きく取ることができるから、 可動子は軸方向に大きな力を受けて運動すること ができる。
また、 可動子の 2個の磁石が同じ大きさに形成され、 更に、 2個の磁石の一方 の両端面が軸方向に当接すると共に、 2個の磁石の他方の両端面が第 1の固定子 の軸方向の両端面と一致するので、 2個の磁石の他方の両端面が第 1の固定子の 軸方向の端面と一致する位置が安定点となり、 可動子の軸方向の変位が大きくな るにつれ、 大きな力が変位とは逆方向に生じるようになるから、 戻しばねの効果 を得ることができる。
また、 第 1のコイルと第 2のコイルが、 夫々、 第 1の固定子の 3個の磁極部と 第 2の固定子の 2個の磁極部に分割して卷かれるので、 コイルを分割することに より、 1個の磁極部に巻いた場合と比較して、 巻かれたコイルによる厚みの影響 が少なくなるから、 コィルを巻く空間を低減することができる。 3 014987
25 また、 軸方向共振ばねを可動子とケースの間に設けたので、 可動子の質量と軸 方向共振ばねのばね定数により定まる共振周波数の近傍の周波数で第 1のコイル に交流電圧を印加することにより、 可動子は共振現象を用いて効率よく大きい振 幅で軸方向の往復運動をすることができる。
また、 回転共振ばねを可動子とケースの間に更に設けたので、 可動子の 1貫性モ ーメントと回転共振ばねのばね定数により定まる共振周波数の近傍の周波数で第 2のコイルに交流電圧を印加することにより、 可動子は共振現象を用いて効率よ く大きい振幅で回転方向の往復運動をすることができる。
更に、 1個のばね部材が軸方向共振ばねと回転共振ばねがとして働くので、 ば ね部材を設ける空間を減少させることができる。
次に、 本発明の第 7乃至第 1 0の実施形態で得られる効果を記載する。
まず、 可動子と、 別の可動子と、 ケースと、 これらの夫々の間に設けられて、 軸方向に撓む 3個のばねを含むばね部材とによりばね共振系を構成するので、 可 動子の軸方向の運動と回転方向の運動を独立して制御することができる。 よって、 軸方向と回転方向の 2方向に運動することが可能なァクチユエータの動作制御の 自由度を向上することができる。 また、 軸方向の共振動作において、 可動子と別 の可動子が、 夫々、 軸方向に逆方向の運動を行うようにできるので、 軸方向の慣 性力による振動を低減することができる。
また、 第 1の固定子と第 2の固定子が、 可動子と別の可動子のいずれか一方に、 夫々、 軸方向の力と回転方向の力を与えるので、 可動子と別の可動子の他方は第 1の固定子と第 2の固定子から力を受けないから、 ばね共振系の設計が容易にな る。
また、 第 1の固定子が可動子と別の可動子の一方に軸方向の力を与え、 また、 第 2の固定子が可動子と別の固定子の他方に回転方向の力を与えるので、 軸方向 に力を発生するための磁路と回転方向に力を発生するための磁路が分離されるか ら、 磁気回路を容易に設計することができる。
また、 第 1の固定子と第 2の固定子から力を受ける可動子と別の可動子のいず れか一方が、 着磁方向が軸方向に対して略直交すると共に回転軸心に対して対称 に配置した磁石を含むと共に、 第 1の固定子と第 2の固定子が、 夫々、 回転軸心 に対して対称に設けられているので、 第 1の固定子と第 2の固定子は、 可動子と 別の可動子のいずれか一方に軸方向の力と回転方向の力を与えるから、 ばね共振 系は大きな力を受けて運動することができる。
また、 第 1の固定子から軸方向の力を受ける可動子と別の可動子のいずれか一 方が、 逆の着磁方向を夫々が有する 2個の磁石を含むと共に、 第 1の固定子が E 字形の 3個の磁極部を有するので、 2個の磁石は第 1の固定子に対向して位置す るときに軸方向の力を生じるのに適した磁極部の配置となるから、 漏れ磁束を少 なくすると共に、 ばね共振系は軸方向に大きな力を受けて効率よく運動すること ができる。
また、 第 2の固定子から回転方向の力を受ける可動子と別の可動子のいずれか 一方が、 逆の着磁方向を夫々が有する 2個の磁石を含むと共に、 第2の固定子が C字形の 2個の磁極部を有するので、 2個の磁石は第 2の固定子の 2個の磁極部 に対向して位置するときに回転方向の力を生じるのに適した磁極部の配置になる から、 漏れ磁束を少なくすると共に、 可動子と別の可動子のいずれか一方は回転 方向に大きな力を受けて効率よく運動することができる。
更に、 磁石の端部が第 1の固定子の磁極部の間の凹部を横切って回転するので、 磁石の磁極部と第 1の固定子の磁極部の軸方向の対向面積を大きく取ることがで きるから、 ばね共振系は軸方向に大きな力を受けて運動することができる。

Claims

請 求 の 範 囲
1 . ケースと、 コイル部材を有すると共にケース内に固定される固定子部材と、 可動子を含むと共にケースに支持される可動子部材とを備え、 また、 可動子は、 シャフトを有すると共に、 シャフトの軸方向とシャフトの軸方向を回転軸心とす る回転方向に運動し得るようにケースに支持され、 更に、 コイル部材に電流を流 すことにより、 可動子が軸方向と回転方向に運動するァクチユエータにおいて、 固定子部材は、 可動子部材に軸方向の力を与える第 1の固定子部材と、 可動子 部材に回転方向の力を与える第 2の固定子部材とを備え、 また、 コイル部材は、 第 1の固定子部材を通る第 1磁路を励磁する第 1のコイル部材と第 2の固定子部 材を通る第 2磁路を励磁する第 2のコイル部材を含むァクチユエータ。
2 . 第 1の固定子部材と第 2の固定子部材が、 夫々、 可動子に軸方向の力と回転 方向の力を与える一方、 可動子が、 着磁方向が軸方向に対して略直交するように 設けた磁石部材を含む請求項 1記載のァクチユエータ。
3. 可動子の磁石部材を回転軸心に対して対称に配置した請求項 2記載のァクチ ユエータ。
4. 第 1の固定子部材が、 回転軸心に対して対称に設けられた 1対の第 1の固定 子を含む一方、 第 2の固定子部材が、 回転軸心に対して対称に設けられた 1対の 第 2の固定子を含み、 また、 第 1のコイル部材が、 1対の第 1の固定子に、 夫々、 設けられた 1対の第 1のコイルを含む一方、 第 2のコイル部材が、 1対の第 2の 固定子に、 夫々、 設けられた 1対の第 2のコイルを含み、 更に、 1対の第 1のコ ィルは、 夫々、 1対の第 1の固定子を逆位相で励磁する一方、 1対の第 2のコィ ルは、 夫々、 1対の第 2の固定子を逆位相で励磁する請求項 2記載のァクチユエ ータ。
5 . 1対の第 1の固定子を含む軸方向の平面と、 1対の第 2の固定子を含む軸方 向の平面とが略直交するように、 第 1の固定子と第 2の固定子を配置した請求項 4記載のァクチユエータ。
6 . 可動子の磁石部材が、 逆の着磁方向を夫々が有する 2個の磁石を含み、 また、 第 1の固定子の各々を、 軸方向に並ぶ 3個の磁極部を有する略 E字形の磁性体で 形成した請求項 4記載のァクチユエータ。
7 . 第 2の固定子の各々を、 軸方向に並ぶ 2個の磁極部を有する略 C字形の磁性 体で形成した請求項 6記載のァクチユエータ。
8 . 軸方向に見る時に、 第 1の固定子の磁極部の両端部と第 2の固定子の磁極部 の両端部が立体的に重なり合う請求項 7記載のァクチユエータ。
9 . 第 1の固定子の磁極部と第 2の固定子の磁極部の間に空隙を形成した請求項 8記載のァクチユエータ。
1 0 . 可動子の各々の磁石の端部が、 第 1の固定子の磁極部の間の 2個の凹部の 各々を横切つて回転する請求項 7記載のァクチユエータ。
1 1 . 可動子の 2個の磁石が同じ大きさに形成され、 また、 2個の磁石の対向す る両端面が軸方向に当接すると共に、 2個の磁石の反対側の両端面が、 夫々、 第 1の固定子の軸方向の両端面と一致するように、 2個の磁石を設けた請求項 7記 載のァクチュ土ータ。
1 2 . 可動子に軸方向の共振運動をさせる軸方向共振ばねを可動子とケースの間 に更に備える請求項 1記載のァクチユエータ。
1 3 . 可動子に回転方向の共振運動をさせる回転共振ばねを可動子とケースの間 に更に備える請求項 1記載のァクチユエータ。
1 4 . 可動子と同軸に配置されていると共に軸方向に運動を行い得る別の可動子 を可動子部材が、 更に、 含むと共に、 ケースと可動子の間に設けられて、 軸方向 に撓む第 1のばね、 可動子と別の可動子の間に設けられて、 軸方向に撓む第 2の ばね、 及び別の可動子とケースの間に設けられて、 軸方向に撓む第 3のばねを含 むばね部材を更に備える請求項 1に記載のァクチユエータ。
1 5 . 第 1の固定子部材と第 2の固定子部材が、 可動子と別の可動子のいずれか 一方に、 夫々、 軸方向の力と回転方向の力を与える請求項 1 4記載のァクチユエ タ。
1 6 . 第 1の固定子部材が可動子と別の可動子の一方に軸方向の力を与え, また、 第 2の固定子部材が可動子と別の可動子の他方に回転方向の力を与える請求項 1 4記載のァクチユエータ。
1 7 . 可動子と別の可動子の上記いずれか一方が、 着磁方向が軸方向に対して略 直交すると共に回転軸心に対して対称に配置した磁石部材を含み、 また、 第 1の 固定子部材が、 回転軸心に対して対称に設けられた 1対の第 1の固定子を含む一 方、 第 2の固定子部材が、 回転軸心に対して対称に設けられた 1対の第 2の固定 子を含み、 更に、 第 1のコイル部材が、 1対の第 1の固定子に、 夫々、 設けられ た 1対の第 1のコイルを含む一方、 第 2のコイル部材が、 1対の第 2の固定子に、 夫々、 設けられた 1対の第 2のコイルを含み、 且つ、 1対の第 1のコイルは、 夫々、 1対の第 1の固定子を逆位相で励磁する一方、 1対の第 2のコイルは、 夫々、 1対の第 2の固定子を逆位相で励磁する請求項 1 5記載のァクチユエータ。
1 8 . 可動子と別の可動子の各々が、 着磁方向が軸方向に対して略直交すると共 に回転軸心に対して対称に配置した磁石部材を含み、 また、 第 1の固定子部材が、 回転軸心に対して対称に設けられた 1対の第 1の固定子を含む一方、 第 2の固定 子部材が、 回転軸心に対して対称に設けられた 1対の第 2の固定子を含み、 更に、 第 1のコイル部材が、 1対の第 1の固定子に、 夫々、 設けられた 1対の第 1のコ ィルを含む一方、 第 2のコイル部材が、 1対の第 2の固定子に、 夫々、 設けられ た 1対の第 2のコイルを含み、 且つ、 1対の第 1のコイルは、 夫々、 1対の第 1 の固定子を逆位相で励磁する一方、 1対の第 2のコイルは、 夫々、 1対の第 2の 固定子を逆位相で励磁する請求項 1 6記載のァクチユエータ。
1 9 . 第 1の固定子部材から軸方向の力を受ける、 可動子と別の可動子の上記い ずれか一方の磁石部材が、 逆の着磁方向を夫々が有する 2個の磁石を含み、 また、 第 1の固定子の各々を、 軸方向に並ぶ 3個の磁極部を有する略 E字形の磁性体で 形成した請求項 1 7記載のァクチユエータ。
2 0 . 第 1の固定子部材から軸方向の力を受ける、 可動子と別の可動子の上記一 方の磁石部材が、 逆の着磁方向を夫々が有する 2個の磁石を含み、 また、 第 1の 固定子の各々を、 軸方向に並ぶ 3個の磁極部を有する略 E字形の磁性体で形成し た請求項 1 8記載のァクチユエータ。
2 1 . 第 2の固定子部材から回転方向の力を受ける、 可動子と別の可動子の上記 いずれか一方の磁石部材が、 逆の着磁方向を夫々が有する 2個の磁石を含み、 ま た、 第 2の固定子の各々を、 軸方向に並ぶ 2個の磁極部を有する略 C字形の磁性 体で形成した請求項 1 9記載のァクチユエータ。
2 2 . 第 2の固定子部材から回転方向の力を受ける、 可動子と別の可動子の上記 他方の磁石部材が、 逆の着磁方向を夫々が有する 2個の磁石を含み、 また、 第 2 の固定子の各々を、 軸方向に並ぶ 2個の磁極部を有する略 C字形の磁性体で形成 した請求項 2 0記載のァクチユエータ。
2 3 . 各々の磁石の端部が、 第 1の固定子の磁極部の間の 2個の凹部の各々を横 切って回転する請求項 1 9記載のァクチユエータ。
PCT/JP2003/014987 2002-11-26 2003-11-25 アクチュエータ WO2004049547A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03774196A EP1566879A4 (en) 2002-11-26 2003-11-25 ACTUATOR
AU2003284670A AU2003284670A1 (en) 2002-11-26 2003-11-25 Actuator
CA002493603A CA2493603C (en) 2002-11-26 2003-11-25 Actuator capable of moving in axial and rotational directions
US10/518,547 US7218018B2 (en) 2002-11-26 2003-11-25 Actuator
US11/695,283 US20070170877A1 (en) 2002-11-26 2007-04-02 Actuator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-342760 2002-11-26
JP2002342761 2002-11-26
JP2002-342761 2002-11-26
JP2002342760 2002-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/695,283 Continuation US20070170877A1 (en) 2002-11-26 2007-04-02 Actuator

Publications (1)

Publication Number Publication Date
WO2004049547A1 true WO2004049547A1 (ja) 2004-06-10

Family

ID=32396269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014987 WO2004049547A1 (ja) 2002-11-26 2003-11-25 アクチュエータ

Country Status (5)

Country Link
US (2) US7218018B2 (ja)
EP (1) EP1566879A4 (ja)
AU (1) AU2003284670A1 (ja)
CA (1) CA2493603C (ja)
WO (1) WO2004049547A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062445A1 (de) * 2003-11-27 2005-07-07 Braun Gmbh Elektromotor für ein elektrisches kleingerät
GB2423641A (en) * 2005-02-23 2006-08-30 Noside Ltd Rotary and linear electromagnetic reciprocating machine
WO2007020599A2 (en) * 2005-08-16 2007-02-22 Koninklijke Philips Electronics, N.V. Resonant actuator for a personal care appliance having a programmable actuation capability

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566879A4 (en) * 2002-11-26 2008-07-09 Matsushita Electric Works Ltd ACTUATOR
US8795028B2 (en) * 2004-10-04 2014-08-05 The Gleason Works Magnetic spindle for machine tool
EP1932462A4 (en) * 2005-10-05 2013-02-27 Olympus Medical Systems Corp CAPSULE-TYPE MEDICAL DEVICE, ITS GUIDE SYSTEM AND GUIDING METHOD, AND INSERTION DEVICE IN THE BODY OF A PATIENT
US20070236577A1 (en) * 2006-03-30 2007-10-11 Chau-Yaun Ke Systems and methods for providing image stabilization
US7939983B2 (en) * 2006-09-14 2011-05-10 Norimasa Okamoto Generator having first and second windings with same-direction electromotive forces
DE102006052457B4 (de) 2006-11-07 2015-07-30 Siemens Aktiengesellschaft Dreh-Hub-Motor und Bestückkopf
JP5006381B2 (ja) * 2007-02-26 2012-08-22 オリンパスメディカルシステムズ株式会社 磁気アクチュエータ、磁気アクチュエータの動作方法、およびこれを用いたカプセル型内視鏡
US7898120B2 (en) * 2007-05-31 2011-03-01 The Boeing Company Linear-rotary actuators and actuator systems
US8823188B2 (en) * 2008-04-22 2014-09-02 Orange Portable mechatronical device for generating electric power
CN102202600B (zh) * 2008-10-31 2014-09-03 三美电机株式会社 驱动器以及使用该驱动器的电动牙刷
JP5176891B2 (ja) * 2008-11-14 2013-04-03 ミツミ電機株式会社 アクチュエータ及びこれを用いた電動歯ブラシ
CN102365811B (zh) * 2009-03-27 2013-12-11 皇家飞利浦电子股份有限公司 用于线性和旋转运动的马达
ES2549982T3 (es) * 2009-06-12 2015-11-03 Braun Gmbh Motor eléctrico para un aparato eléctrico pequeño
KR100964538B1 (ko) * 2009-09-25 2010-06-21 김홍중 선형 전동기
US8418302B1 (en) * 2010-06-23 2013-04-16 Chi Ming Suen Tooth brush motor
FR2984633B1 (fr) * 2011-12-16 2015-11-06 F Q N K Actionneur electromagnetique
ES2693620T3 (es) * 2012-07-13 2018-12-13 Braun Gmbh Motor lineal y dispositivo eléctrico con motor lineal
US10715021B2 (en) * 2012-07-20 2020-07-14 Kyushu Institute Of Technology Mobile capsule device and control method thereof
DE102012107014A1 (de) * 2012-08-01 2014-02-06 Eto Magnetic Gmbh Aktuatorvorrichtung
JP5842789B2 (ja) * 2012-11-01 2016-01-13 ミツミ電機株式会社 アクチュエータ及び電動理美容器具
EP3389801A4 (en) * 2015-12-14 2019-07-10 Indian Industries, Inc. BASKETBALL TOR WITH VIBRATION DAMPING
CN106369209B (zh) * 2016-09-06 2019-05-03 中国矿业大学 一种矿井瓦斯抽采管道智能阀门装置
CN106451990A (zh) * 2016-11-02 2017-02-22 深圳市兆业电子科技有限公司 一种永磁直线电机及直线振动器
JP7169992B2 (ja) * 2017-05-09 2022-11-11 コーニンクレッカ フィリップス エヌ ヴェ パーソナルケア装置のための振動キャンセル
US10222863B1 (en) * 2017-09-05 2019-03-05 Apple Inc. Linear haptic actuator including field members and biasing members and related methods
JP7188851B2 (ja) * 2018-08-29 2022-12-13 ミネベアミツミ株式会社 振動アクチュエータ、及びこれを備える携帯型電子機器
DE102018217513A1 (de) * 2018-10-12 2020-04-16 Festo Se & Co. Kg Linearreluktanzmotor
CN109253344A (zh) * 2018-11-29 2019-01-22 湖北科技学院 一种管道爬行机器人上的驱动机构
DE202019105129U1 (de) * 2019-09-17 2020-12-23 nui lab GmbH Elektromagnetischer Aktuator
WO2021092404A1 (en) * 2019-11-06 2021-05-14 Positive Energy, a Gravity and Motion Company, Inc. Methods and apparatus for kinetic energy harvesting
US11437886B2 (en) 2019-11-06 2022-09-06 Positive Energy, a Gravity and Motion Company, Inc. Methods and apparatus for kinetic energy harvesting
US11573636B2 (en) 2020-06-29 2023-02-07 Apple Inc. Haptic actuator including permanent magnet having a non-vertical, magnetic polarization transition zone and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394295A (en) 1965-10-04 1968-07-23 Itt Rotating and reciprocating electric motor
DE3538017A1 (de) 1985-10-25 1987-04-30 Triumph Adler Ag Elektrischer antrieb
JP2000004575A (ja) 1998-04-13 2000-01-07 Hitachi Metals Ltd リニア駆動アクチュエ―タ
US20010043016A1 (en) 2000-05-20 2001-11-22 Chun Jang Sung Linear motor
JP2002078310A (ja) 2000-08-28 2002-03-15 Matsushita Electric Works Ltd リニアアクチュエータ
JP2002199689A (ja) 2000-09-29 2002-07-12 Matsushita Electric Works Ltd リニアオシレータ

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US199689A (en) * 1878-01-29 Improvement in sulky-plows
US130221A (en) * 1872-08-06 Improvement in railway switches
US275484A (en) * 1883-04-10 William haas
US214765A (en) * 1879-04-29 Improvement in machines for cleaning coffee
US4575A (en) * 1846-06-16 Machinery for cu i
US78310A (en) * 1868-05-26 Improvement in permutation-looks
US43016A (en) * 1864-06-07 Improved method of suspending steam-boilers
US128859A (en) * 1872-07-09 Improvement in stove-dampers
US40052A (en) * 1863-09-22 Improvement in corn-shellers
US195884A (en) * 1877-10-09 Improvement in cotton-batting-folding machines
US47670A (en) * 1865-05-09 Air-tight coal-stove
US3453510A (en) * 1964-04-30 1969-07-01 Robertshaw Controls Co Linear and rotary direct current stepping motors and control system
US3538017A (en) * 1966-10-26 1970-11-03 Sir Soc Italiana Resine Spa Processing spent catalysts
US3851196A (en) * 1971-09-08 1974-11-26 Xynetics Inc Plural axis linear motor structure
JPS51125814A (en) * 1975-04-24 1976-11-02 Citizen Watch Co Ltd Printer-driving composite pulse motor
FR2348595A1 (fr) * 1976-04-15 1977-11-10 Anvar Moteur hybride tournant-lineaire
US4607197A (en) * 1978-04-17 1986-08-19 Imc Magnetics Corporation Linear and rotary actuator
US4281263A (en) * 1978-05-23 1981-07-28 Gradient Hybrid stator and a two-axis induction electric motor constructed therewith
US4234831A (en) * 1978-07-18 1980-11-18 Josef Kemmer Compound rotary and/or linear motor
JPS60128859A (ja) * 1983-12-15 1985-07-09 Yokogawa Hokushin Electric Corp 駆動装置
JPS61214765A (ja) * 1985-03-18 1986-09-24 Hisashi Tamura 回転軸が往復運動する電動機
JPS6240052A (ja) * 1985-08-14 1987-02-21 Tokyo R & D:Kk 回転及び軸直線運動両用型の電動機
US5093596A (en) * 1990-10-24 1992-03-03 Ibm Corporation Combined linear-rotary direct drive step motor
JP3600654B2 (ja) * 1995-03-28 2004-12-15 オリエンタルモーター株式会社 リニア・ロータリ複合型ステッピングモータ
US5952744A (en) * 1996-03-28 1999-09-14 Anoiad Corporation Rotary-linear actuator
US6429611B1 (en) * 2000-01-28 2002-08-06 Hui Li Rotary and linear motor
US6873067B2 (en) * 2000-09-29 2005-03-29 Matsushita Electric Works, Ltd. Linear oscillator
US6611074B2 (en) * 2001-04-12 2003-08-26 Ballado Investments Inc. Array of electromagnetic motors for moving a tool-carrying sleeve
US6798087B1 (en) * 2002-01-08 2004-09-28 Anorad Corporation Rotary-linear actuator system, method of manufacturing and method of using a rotary-linear actuator
JP4206735B2 (ja) 2002-11-26 2009-01-14 パナソニック電工株式会社 電動ハブラシ
EP1566879A4 (en) * 2002-11-26 2008-07-09 Matsushita Electric Works Ltd ACTUATOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394295A (en) 1965-10-04 1968-07-23 Itt Rotating and reciprocating electric motor
DE3538017A1 (de) 1985-10-25 1987-04-30 Triumph Adler Ag Elektrischer antrieb
JP2000004575A (ja) 1998-04-13 2000-01-07 Hitachi Metals Ltd リニア駆動アクチュエ―タ
US20010043016A1 (en) 2000-05-20 2001-11-22 Chun Jang Sung Linear motor
JP2002078310A (ja) 2000-08-28 2002-03-15 Matsushita Electric Works Ltd リニアアクチュエータ
JP2002199689A (ja) 2000-09-29 2002-07-12 Matsushita Electric Works Ltd リニアオシレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1566879A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062445A1 (de) * 2003-11-27 2005-07-07 Braun Gmbh Elektromotor für ein elektrisches kleingerät
US7554225B2 (en) 2003-11-27 2009-06-30 Braun Gmbh Electric motor with a coil arrangement for providing oscillatory linear and rotational movement
GB2423641A (en) * 2005-02-23 2006-08-30 Noside Ltd Rotary and linear electromagnetic reciprocating machine
WO2007020599A2 (en) * 2005-08-16 2007-02-22 Koninklijke Philips Electronics, N.V. Resonant actuator for a personal care appliance having a programmable actuation capability
WO2007020599A3 (en) * 2005-08-16 2007-06-07 Koninkl Philips Electronics Nv Resonant actuator for a personal care appliance having a programmable actuation capability
US7876003B2 (en) 2005-08-16 2011-01-25 Koninklijke Philips Electronics N.V. Resonant actuator for a personal care appliance having a programmable actuation capability
US8264105B2 (en) 2005-08-16 2012-09-11 Koninklijke Philips Electronics N.V. Resonant actuator for a personal care appliance having a programmable actuation capability

Also Published As

Publication number Publication date
US20050200207A1 (en) 2005-09-15
AU2003284670A1 (en) 2004-06-18
US7218018B2 (en) 2007-05-15
CA2493603C (en) 2009-10-06
EP1566879A4 (en) 2008-07-09
CA2493603A1 (en) 2004-06-10
EP1566879A1 (en) 2005-08-24
US20070170877A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
WO2004049547A1 (ja) アクチュエータ
JP4039359B2 (ja) アクチュエータ
US7400069B2 (en) Generator having reciprocating and rotating permanent motor magnets
US10603149B2 (en) Drive system for personal-care appliance and method of operation thereof
US7554225B2 (en) Electric motor with a coil arrangement for providing oscillatory linear and rotational movement
JP4155101B2 (ja) 振動型リニアアクチュエータ及びそれを用いた電動歯ブラシ
JP4890245B2 (ja) 振動変位を発生させるための電気モータを有する小型電気器具
JP4432840B2 (ja) 振動型アクチュエータ
US20060255664A1 (en) Drive unit generating an oscillatory motion for small electrical appliances
US8994235B2 (en) Electric motor for a small electric device
JP5842789B2 (ja) アクチュエータ及び電動理美容器具
WO2003056688A1 (fr) Generateur
JP3412511B2 (ja) リニアアクチュエータ
WO1999023744A1 (en) Electromechanical transducer
JPH0528066B2 (ja)
JP2010035315A (ja) アクチュエータ
JP6659951B2 (ja) アクチュエータ及び電動理美容器具
CN100536293C (zh) 执行元件
JP6627318B2 (ja) アクチュエータ及び電動理美容器具
RU2440660C2 (ru) Возбудитель механических колебаний
JP5237784B2 (ja) アクチュエータ
JP3987808B2 (ja) アクチュエータ及びこれを用いた電動歯ブラシ
JP6070807B2 (ja) アクチュエータ及び電動理美容器具
JP6424554B2 (ja) 転動直進変換装置
JP2007120751A (ja) アクチュエータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10518547

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003774196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2493603

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038A07116

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003774196

Country of ref document: EP