WO2004047244A1 - Laser semi-conducteur infrarouge - Google Patents

Laser semi-conducteur infrarouge Download PDF

Info

Publication number
WO2004047244A1
WO2004047244A1 PCT/EP2003/010333 EP0310333W WO2004047244A1 WO 2004047244 A1 WO2004047244 A1 WO 2004047244A1 EP 0310333 W EP0310333 W EP 0310333W WO 2004047244 A1 WO2004047244 A1 WO 2004047244A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
infrared semiconductor
refractive index
index gradient
light mode
Prior art date
Application number
PCT/EP2003/010333
Other languages
German (de)
English (en)
Inventor
Armin Lambrecht
Original Assignee
Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. filed Critical Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
Publication of WO2004047244A1 publication Critical patent/WO2004047244A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1203Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers over only a part of the length of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3214Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities comprising materials from other groups of the periodic system than the materials of the active layer, e.g. ZnSe claddings and GaAs active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3422Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising type-II quantum wells or superlattices

Definitions

  • the invention relates to an infrared semiconductor laser.
  • lasers can, for example, emit laser light in the infrared range and are used here in particular for gas spectroscopy. They can also be used for optical free beam information transmission because of their high modulation bandwidths.
  • the active zone i.e. the area of the charge carrier recombination or the light amplification
  • the active zone is formed from a III-V material, such as GaAs / AIGaAs.
  • a certain tunability of the wavelength over an absorption line of a gas or substance molecule type to be detected is necessary.
  • This tuning is usually achieved by changing the temperature of the laser.
  • the tunability is determined, among other things, by the effective thermal refractive index gradient dn / dT. The greater this gradient, the greater the change in wavelength per temperature unit.
  • the thermal refractive index gradient dn / dT is in the range of 10 "4 / K for Ill-V materials, such as GaAs.
  • this value is approximately -10 "3 / K.
  • a semiconductor laser with the features of claim 1 a method for producing the semiconductor laser with the features of claim 13, a telecommunications system component with the features of claim 17, a telecommunications system with the features of claim 18, a spectroscopy system component with the features of claim 19, and a spectroscopy system with the features of claim 20.
  • the infrared semiconductor laser has an active zone made of an Ill-V material, which means that the sophisticated technology can be used for Ill-V materials and at the same time enables room temperature operation.
  • the laser has a light mode area which is characterized in that there is a significant intensity of the laser light modes in this area.
  • Mathematical functions that describe the intensity profile of laser modes indicate an intensity in a cross section of the laser to infinity.
  • the intensity far from the laser cavity is so low that it has no real relevance. Therefore, a reasonably defined area of a light mode is usually defined.
  • This range can be determined in a cross section of the semiconductor laser, for example, in that the intensity has dropped to a certain amount of the peak value of the intensity in the cross section, such as for example 1 / e times the peak intensity or approximately half the peak intensity. Any other reasonable, appropriate fraction of the peak intensity is suitable for specifying the light mode range.
  • a material is arranged in this light mode region, the thermal refractive index gradient dn / dT of which has a sign that the thermal refractive index gradient dn / dT of the Ill-V material from the active zone is opposite and / or has an amount which is at least twice as high.
  • the effective thermal refractive index gradient dn / dT of a laser characterizes its response in the wavelength to temperature changes. It is determined by the different thermal refractive index gradients of the different materials within the light mode range.
  • the material can advantageously comprise or be formed from a bleach alkogenide material.
  • Known materials such as PbSe, PbTe, Pb ⁇ can be advantageous.
  • x Sr x Se ⁇ -yTe y or corresponding sulfides or mixtures / alloys with corresponding sulfides can be used.
  • the semiconductor laser advantageously comprises a ridge waveguide, which essentially determines the light mode region and the material is arranged in or on this ridge waveguide. This results in a good overlap of the light mode with the material, so that the effective thermal refractive index gradient dn / dT of the semiconductor laser can be controlled well.
  • the infrared laser advantageously also has a DFB structure (“distributed feedback”), so that a very narrow-band emission spectrum is achieved.
  • the different segments can include, for example, a separate, passive DBR ("Distributed Bragg Reflector") segment that is used for laser cavity formation.
  • the segments can also comprise active and / or passive, for example also switchable, absorbers.
  • a segment can also be a specially shaped segment, for example Include waveguide part that has modified dimensions compared to the laser, but is advantageous for shaping the beam profile.
  • a heating element which can be powered by electricity or light, for example, is also advantageous.
  • an active zone is formed from an Ill-V material and a waveguide with a light mode region is formed. Furthermore, a material is arranged in the light mode region with which the effective thermal refractive index gradient dn / dT of the infrared semiconductor laser can be controlled.
  • FIG. 1 is a three-dimensional schematic view of a first embodiment of the invention
  • FIG. 3 shows a schematic sectional view of a third embodiment of the invention
  • FIG. 5 shows a schematic three-dimensional view of different process stages, as can occur when an embodiment of the method is carried out.
  • the laser has an active zone 2 made of an Ill-V material and a light mode region 3 which is arranged in the rib waveguide structure 5.
  • the infrared semiconductor laser further comprises a substrate 7, on the underside of which a lower contact 10 is arranged and on the upper side of which a lower cladding layer 9 (cladding) is arranged.
  • the upper cladding layer 6 (cladding) is arranged above the active layer 2 in the region of the ribbed waveguide structure 5.
  • An insulating layer 11 is arranged on the top of the infrared semiconductor laser and extends both in the area above the substrate 7 and as far as the rib waveguide structure 5. On the top side of the ribbed waveguide structure 5, in some cases no insulating layer 11 is provided, but a contact strip 8, which can be made of gold, for example.
  • the material 4 with the second thermal refractive index gradient dn / dT can be arranged anywhere in the illustrated light mode region 3, i. H. it can be in the substrate 7, in the lower cladding layer 9, in the active layer 2, in the upper cladding layer 6, in the ribbed waveguide structure 5, in the insulation layer 11, in the contact strip 8, or on the insulation layer 11 or the contact strip 8 as well be arranged between the respective elements.
  • FIG. 2 shows a sectional view in which the material 4 is arranged within the fin waveguide structure 5 with a second thermal refractive index gradient dn / dT.
  • an upper cladding layer 6 is provided above the active zone 2, which consists of Ill-V material.
  • material 4 is provided, with which the effective thermal refractive index gradient dn / dT can be controlled. This can be done both by the arrangement of the layer of material 4 within the rib waveguide structure 5, by the thickness of the layer of material 4, and by the material composition of the material 4.
  • the material 4 is located away from the active zone 2 so as not to have any adverse effects on the charge recombination, but it is so close to the active zone, i.e. in the area of light mode, provided that its temperature change has an influence on the emitted wavelength.
  • a further layer 13 is provided above the layer of material 4, which can consist of Ill-V material as well as the material with the second thermal refractive index gradient dn / dT. It is also possible to provide a further material here, that of the Ill-V material used and the material 4 is different in order to obtain a further possibility of setting the effective thermal refractive index gradient dn / dT of the infrared semiconductor laser.
  • the ribbed waveguide structure 5 can also be produced completely from the material 4.
  • the material 4 with the second thermal refractive index gradient dn / dT is arranged on the outside of the insulation layer 11. This area is still in the light mode area 3, so that the light of the laser modes is still influenced by the material 4, which is arranged on the outside on the insulation layer 11.
  • the effective thermal refractive index dn / dT can also be set with material 4 arranged on the outside on the insulation layer 11.
  • FIG. 3 also schematically shows a DFB structure 12 which is arranged in the ribbed waveguide structure 5.
  • a DFB structure can also be provided in the structure from FIG. 1 or FIG. 2.
  • it can be realized by the material 4 itself, for example by modulating the thickness of the material 4.
  • the top or the bottom or both sides of the material 4 can be periodically structured or also periodically structured along the laser cavity in order to be available as a DFB grating.
  • the active zone 2 does not have to be arranged below the ribbed waveguide structure 5, as shown in FIGS. 1 and 2, but can also be arranged within the ribbed waveguide structure 5. This is advantageous for lateral confinement of the charge carriers.
  • the active zone 2 in FIGS. 1 to 3 can comprise a quantum cascade structure.
  • the emitted light wavelength is preferably in the mid-infrared range, ie in particular in a wavelength range between 3 ⁇ m and 20 ⁇ m.
  • Material 4 is preferably an IV-VI material, and more preferably a bleaching alkogenide.
  • 4 schematically shows a spectroscopy system or a telecommunication system. Both systems have a transmitter or light source 15 and a receiver 18.
  • the transmitter or the light source 15 comprises an infrared semiconductor laser and emits laser light in the direction 16.
  • a space 17 is arranged between the light source 15 and the receiver (detector) 18, in which a trace gas or fluid to be detected may be present.
  • Methods for manufacturing the infrared semiconductor laser can include all known layer deposition and structuring methods. Examples include vapor deposition, sputtering, molecular beam epitaxy (MBE), MOCVD or related processes, as well as conventional lithographic (optical, electron beam) processes and other structuring processes.
  • MBE molecular beam epitaxy
  • MOCVD molecular beam epitaxy
  • the material 4 can be arranged during, before or after the formation of a waveguide 5.
  • a method for producing the infrared semiconductor laser as shown in FIGS. 5a and 5b is particularly advantageous.
  • a layer 20 of material 4 is produced on a substrate 19 (for example BaF 2 ) using one of the customary layer deposition methods (for example MBE).
  • a structuring 21 of the layer 20 from the material 4 can also be carried out, this being done for example with lithography or embossing with a suitable stamp (for example made of silicon).
  • the layer 20 can then be lifted off the substrate 19 or the substrate 19 can also be dissolved (in the case of BaF 2, for example, in an aqueous solution of HN0 3 ).
  • the layer 20 produced in this way is arranged on a stamp 23 using an adhesive 22.
  • a wax or other adhesive can also be used. Adhesion can also be imparted by a liquid with sufficient capillary action.
  • the layer 20 is arranged on the layer stack which has been completed by then. Here, a transfer of the layer 20 from the material 4 is carried out. Subsequently, the layer 20 can be overgrown with other materials if the infrared semiconductor laser had not yet been completed at the time of the layer transfer.
  • the layer 20 can also be applied as a DFB structure 12 'to a prepared layer stack.
  • a laser as shown in FIG. 3, but which does not yet have the material 4 is produced and its properties are tested or examined. Only when the functioning of the laser has been determined or the effective thermal refractive index gradient dn / dT has been determined is the arrangement of the material 4 on or next to the ribbed waveguide structure 5 carried out.
  • the amount of material 4 or its composition can be controlled in a very targeted manner, so that a desired effective thermal refractive index gradient dn / dT of the infrared semiconductor laser is set. This is particularly effective if the effective thermal refractive index gradient dn / dT was determined before the material was deposited.
  • the method of determining the effective thermal refractive index gradient dn / dT of the laser and the material application can also be iterated in order, for example, to come as close as possible to a value for the effective dn / dT of zero.
  • the shape of the light mode region can be influenced by the arrangement of the material 4 with the relatively high refractive index, in particular if the material 4 has a comparatively high refractive index. It is also possible here for some light to be coupled out of the laser cavity into the material 4, the material 4 then still being in the light mode range of the laser.

Abstract

L'invention concerne un laser (1) semi-conducteur infrarouge comprenant au moins une zone active (2) en matière III-IV présentant un gradient d'indice de réfraction thermique dn/dt et une partie en mode lumière (3). Ledit laser (1) semi-conducteur infrarouge est caractérisé en ce qu'une matière présentant un second gradient d'indice de réfraction thermique dn/dt est disposée dans la partie en mode lumière (3), son signe étant opposé à celui du premier gradient d'indice de réfraction thermique et/ou sa magnitude étant au moins deux fois plus élevée. L'invention concerne, de plus, un procédé de production d'un laser (1) semi-conducteur infrarouge comprenant les étapes suivantes : formation d'au moins une zone active (2) en matière III-IV présentant un premier gradient d'indice de réfraction thermique dn/dt et formation d'un guide d'onde (5) comprenant une partie en mode lumière (3). Le procédé est caractérisé en ce qu'une matière (4) présentant un second gradient d'indice de réfraction thermique dn/dt est disposée dans la partie en mode lumière (3), son signe étant opposé à celui du premier gradient d'indice de réfraction thermique et/ou sa magnitude étant au moins deux fois plus élevée. L'invention concerne également un composant pour un système de télécommunications et de spectroscopie comprenant le laser (1) semi-conducteur ainsi obtenu, ainsi qu'un système de télécommunications et de spectroscopie comprenant ledit composant.
PCT/EP2003/010333 2002-11-20 2003-09-17 Laser semi-conducteur infrarouge WO2004047244A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10254190.6 2002-11-20
DE10254190A DE10254190B4 (de) 2002-11-20 2002-11-20 Infrarothalbleiterlaser

Publications (1)

Publication Number Publication Date
WO2004047244A1 true WO2004047244A1 (fr) 2004-06-03

Family

ID=32318583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010333 WO2004047244A1 (fr) 2002-11-20 2003-09-17 Laser semi-conducteur infrarouge

Country Status (2)

Country Link
DE (1) DE10254190B4 (fr)
WO (1) WO2004047244A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059808A2 (fr) * 2002-12-20 2004-07-15 Cree, Inc. Procede de fabrication de dispositifs a semiconducteurs comprenant des structures mesa et de multiples couches de passivation et dispositifs associes
JP2015228494A (ja) * 2014-05-05 2015-12-17 ナノプラス ナノシステムズ アンド テクノロジーズ ゲーエムベーハーnanoplus Nanosystems and Technologies GmbH 半導体レーザ、および帰還素子を含む半導体レーザの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043991A (en) * 1989-12-28 1991-08-27 General Dynamics Corp. Electronics Division Device for compensating for thermal instabilities of laser diodes
JP2000223787A (ja) * 1999-01-29 2000-08-11 Canon Inc 半導体レーザー
JP2000223784A (ja) * 1999-01-29 2000-08-11 Canon Inc 波長安定化半導体レーザー
US6320888B1 (en) * 1997-09-19 2001-11-20 Nippon Telegraph & Telephone Corporation Frequency stabilized laser and method for preparing thereof
US6501776B1 (en) * 1999-01-29 2002-12-31 Canon Kabushiki Kaisha Temperature-insensitive semiconductor laser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119388A (en) * 1989-02-24 1992-06-02 Laser Photonics, Inc. Low tuning rate PbTe/PbEuSeTe buried quantum well tunable diode lasers and arrays
US5509025A (en) * 1994-04-04 1996-04-16 At&T Corp. Unipolar semiconductor laser
JP3166836B2 (ja) * 1997-11-18 2001-05-14 日本電気株式会社 半導体レーザ
JP2000223785A (ja) * 1999-01-29 2000-08-11 Canon Inc 波長安定化半導体レーザー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043991A (en) * 1989-12-28 1991-08-27 General Dynamics Corp. Electronics Division Device for compensating for thermal instabilities of laser diodes
US6320888B1 (en) * 1997-09-19 2001-11-20 Nippon Telegraph & Telephone Corporation Frequency stabilized laser and method for preparing thereof
JP2000223787A (ja) * 1999-01-29 2000-08-11 Canon Inc 半導体レーザー
JP2000223784A (ja) * 1999-01-29 2000-08-11 Canon Inc 波長安定化半導体レーザー
US6501776B1 (en) * 1999-01-29 2002-12-31 Canon Kabushiki Kaisha Temperature-insensitive semiconductor laser

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 11 3 January 2001 (2001-01-03) *
SHI Z ET AL: "MIDINFRARED LEAD SALT MULTI-QUANTUM-WELL DIODE LASERS WITH 282 K OPERTION", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 66, no. 19, 8 May 1995 (1995-05-08), pages 2537 - 2539, XP000507772, ISSN: 0003-6951 *
SPANGER B ET AL: "NEAR-ROOM-TEMPERATURE OPERATION OF PB1-XSE INFRARED DIODE LASERS USING MOLECULAR BEAM EPITAXY GROWTH TECHNIQUES", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 53, no. 26, 26 December 1988 (1988-12-26), pages 2582 - 2583, XP000080679, ISSN: 0003-6951 *
XU J ET AL: "LEAD CHALCOGENIDE MID-INFRARED DIODE LASERS FABRICATED BY ION-IMPLANTATION", IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE INC. NEW YORK, US, vol. 10, no. 2, 1 February 1998 (1998-02-01), pages 206 - 208, XP000733807, ISSN: 1041-1135 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059808A2 (fr) * 2002-12-20 2004-07-15 Cree, Inc. Procede de fabrication de dispositifs a semiconducteurs comprenant des structures mesa et de multiples couches de passivation et dispositifs associes
WO2004059808A3 (fr) * 2002-12-20 2004-12-09 Cree Inc Procede de fabrication de dispositifs a semiconducteurs comprenant des structures mesa et de multiples couches de passivation et dispositifs associes
US7160747B2 (en) 2002-12-20 2007-01-09 Cree, Inc. Methods of forming semiconductor devices having self aligned semiconductor mesas and contact layers
US7329569B2 (en) 2002-12-20 2008-02-12 Cree, Inc. Methods of forming semiconductor devices including mesa structures and multiple passivation layers
JP2015228494A (ja) * 2014-05-05 2015-12-17 ナノプラス ナノシステムズ アンド テクノロジーズ ゲーエムベーハーnanoplus Nanosystems and Technologies GmbH 半導体レーザ、および帰還素子を含む半導体レーザの製造方法

Also Published As

Publication number Publication date
DE10254190B4 (de) 2005-12-22
DE10254190A1 (de) 2004-06-17

Similar Documents

Publication Publication Date Title
DE60310068T2 (de) Verfahren und vorrichtung zur abstimmbaren wellenlängenwandlung mittels eines bragg-gitters und laser in einem halbleitersubstrat
DE19545164B4 (de) Optische Halbleitervorrichtung mit vergrabenem Wellenleiter und Herstellungsverfahren dafür
DE2538471A1 (de) Optisches bauelement mit doppelheterostruktur
DE2643503C3 (de) Verfahren zur Herstellung eines Injektionslasers
EP0418705A2 (fr) Laser à semi-conducteur interférométrique
EP1399994B1 (fr) Emetteur de photons et dispositif de transmission de donnees
DE3146795A1 (de) "superlumineszente, lichtemittierende diode (sld) mit wirksamer ankopplung an optische wellenleiter"
DE4429772A1 (de) Verfahren zum Herstellen einer integrierten Modulator-Halbleiterlaservorrichtung
DE3300132A1 (de) Verfahren zum herstellen optischer wellenleiter in halbleitern
DE10302134B4 (de) Halbleiterlaser mit Modulationsdotierung
DE60204168T2 (de) Phasenverschobene oberflächenemittierende dfb laserstrukturen mit verstärkenden oder absorbierenden gittern
DE10201126A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE60107581T2 (de) Vielfachsegmentierter integrierter laser und herstellungsverfahren
DE102011103952B4 (de) Kantenemittierender Halbleiterlaser
DE3704424A1 (de) Halbleiter-laser
DE3406838C2 (fr)
DE10254190B4 (de) Infrarothalbleiterlaser
EP0578012A1 (fr) Laser à diode pour la modulation à haute la fréquence
DE602004002440T2 (de) Optische Halbleitervorrichtung auf Indiumphosphidsubstrat für Operation bei hohen Wellenlängen
DE2205728A1 (de) Optisches bauelement und verfahren zur herstellung eines solchen bauelementes
DE60204848T2 (de) Anbringung eines optischen bauelements an einem kühlkörper
EP0598855B1 (fr) Laser a semiconducteur a commande optique
DE10201124A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE60002997T2 (de) Optisches system mit mehreren funktionellen sektoren verbunden durch dämpfungskopplung und herstellungsverfahren
EP3694005B1 (fr) Dispositif et procédé de génération d'une émission de photons individuelles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase