WO2004046526A1 - スロットル装置 - Google Patents

スロットル装置 Download PDF

Info

Publication number
WO2004046526A1
WO2004046526A1 PCT/JP2003/014694 JP0314694W WO2004046526A1 WO 2004046526 A1 WO2004046526 A1 WO 2004046526A1 JP 0314694 W JP0314694 W JP 0314694W WO 2004046526 A1 WO2004046526 A1 WO 2004046526A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle
return spring
gear
shaft
throttle shaft
Prior art date
Application number
PCT/JP2003/014694
Other languages
English (en)
French (fr)
Inventor
Maki Hanasato
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Priority to EP03774037A priority Critical patent/EP1577521A1/en
Priority to US10/535,828 priority patent/US7117848B2/en
Publication of WO2004046526A1 publication Critical patent/WO2004046526A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1065Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/109Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps having two or more flaps
    • F02D9/1095Rotating on a common axis, e.g. having a common shaft

Definitions

  • the present invention relates to a throttle device having a throttle pulp for opening and closing an intake passage of an engine, and more particularly to a throttle device including a return spring for returning a throttle valve to a predetermined rest position.
  • a conventional wire and electronically controlled throttle device is a two-cylinder V-type engine that has two surge tanks that collect the intake passages corresponding to each cylinder every three cylinders and the upstream side of each surge tank.
  • two throttle valves arranged in each intake passage on the upstream side are linked by a single throttle shaft, and are opened and closed by a wire or motor, and a return spring is used.
  • a return spring is used.
  • a throttle valve arranged in each of two intake passages formed in a throttle body is rotatably connected by a single throttle shaft. ⁇ Open / close by the motor located at the end, and return to the closed rest position by the return spring located at the other end of the throttle shaft. (For example, see Patent Document 2).
  • the required urging force of the return spring is set at the initial set value F o + f, considering the sliding resistance of the wire or the rotational resistance of the motor. ( ⁇ F max) is sufficient, but it reaches the maximum value F max from the characteristic proportional to the amount of deformation.
  • the present invention has been made in view of the above-mentioned problems of the related art, and an object thereof is to provide a return spring that returns a throttle valve arranged in an intake passage and performing an opening / closing operation to a rest position.
  • a smooth opening / closing operation and a return operation are secured while reducing the maximum biasing force of the return spring, and a throttle that facilitates operation, particularly reduces power consumption when the motor is opened / closed by a motor, and reduces the size of the device. It is to provide a device. Disclosure of the invention
  • a throttle device includes a throttle valve disposed in an intake passage of an engine, a throttle shaft for opening and closing the throttle valve, a driving unit for rotating the throttle shaft, and a rotation of the throttle shaft in conjunction with the rotation of the throttle shaft.
  • a return spring that deforms and returns the throttle valve to a predetermined rest position, wherein the return spring deforms in an angle range smaller than the rotation angle range of the throttle shaft.
  • the throttle valve rotates within the predetermined angle range (from the rest position to the maximum opening position).
  • the deformation force transmission mechanism is transformed into a return spring in an angle range smaller than the rotation angle range of the throttle shaft.
  • a tension type return spring a tension deformation corresponding to the angle X radius of rotation
  • a torsion type The return spring causes torsional deformation according to the torsion angle.
  • the maximum biasing force of the return spring is smaller than when the return spring is deformed in the same angle range as the rotation angle range of the throttle shaft, and the load applied to the driving means is reduced.
  • the return spring is a torsion type return spring that generates an urging force by torsional deformation.
  • the return spring includes a plurality of return springs that exert different urging forces, and the deformation force transmission mechanism has at least the largest urging force.
  • a configuration provided for a return spring exerting a force can be employed. According to this configuration, since a plurality of biasing forces can be applied to the throttle shaft at positions separated in the axial direction, the return operation is more reliably performed, and the maximum biasing force can be reduced. .
  • the driving unit includes a motor and a gear train transmitting the driving force of the motor to the throttle shaft.
  • the load applied to the motor is reduced by the deformation force transmission mechanism, so that the power consumption is reduced and the motor and the device are downsized.
  • the gear train includes a first gear fixed to the throttle shaft, and the deformation force transmission mechanism reduces the rotation speed of the first gear (that is, is lower than the rotation speed of the first gear). And a reduction gear that deforms the return spring.
  • the deforming force transmission mechanism is formed by the gear mechanism having the reduction gear, when the deformation force transmitting mechanism is combined with the first gear and arranged, a component located near the first gear is arranged. Arrange freely to avoid interference.
  • the first gear has a large gear to which the driving force of the motor is transmitted, and a small gear having a smaller diameter than the large gear, and the reduction gear has a larger diameter than the small gear and is directly connected to the small gear. It is possible to adopt a configuration that is formed so as to be integrated.
  • the entire device can be downsized.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of a throttle device according to the present invention.
  • FIG. 2 is a side view showing a driving means and a deformation force transmission mechanism of the device shown in FIG.
  • FIG. 3 is a graph illustrating the operation of a deformation force transmission mechanism in the device shown in FIG.
  • FIG. 4 is a schematic configuration diagram showing another embodiment of the throttle device according to the present invention.
  • FIG. 5 is a graph illustrating the operation of the deformation force transmission mechanism in the device shown in FIG.
  • FIG. 6 is a graph showing the operation of a return spring in a conventional throttle device.
  • FIG. 1 is a schematic configuration diagram
  • FIG. 2 is a side view of a driving means and a deformation force transmission mechanism. .
  • This device is a quadruple throttle device applied to an in-line four-cylinder engine mounted on a motorcycle, and defines an intake passage 11 as shown in Fig. 1. 3 014694
  • this device has other configurations such as a bearing 70 that rotatably supports the throttle shaft 30, a spacer 80 that connects the throttle bodies 10 to each other, and four throttle port bodies 10. And an angle detection sensor 100 for detecting the rotation angle of the throttle shaft 30.
  • the drive means 40 includes a DC motor 41 having a pinion 4 la, a large gear 4 2 a and a pinion gear coupled to the pinion 41 a.
  • Gear 4 2 integrally with 4 2 b, gear 4 2 (small gear 4 2 b), and gear 4 3 as the first gear fixed to the throttle shaft 30, gear
  • the gear 43 has a large diameter and a large diameter which is combined with the gear 42 (small gear 42 b) over a predetermined central angle (angle range).
  • the gear 43 a and the small gear 43 b having a smaller diameter than the large gear 43 a are formed integrally.
  • the deformation force transmitting mechanism 60 includes a rotating shaft 61 and a rotating shaft 61 that are rotatably supported by bearings 61a with respect to the throttle body 10.
  • the reduction gear 62 is formed of a reduction gear 62, which is supported so as to rotate integrally, and directly engages with the gear 43 (small gear 43b), a locking member 63, which rotates integrally with the reduction gear 62, and the like.
  • the reduction gear 62 is formed with a larger diameter than the small gear 43 b.
  • the deforming force transmitting mechanism 60 is formed by a gear mechanism including the reduction gear 62, in arranging the deforming force transmitting mechanism 60 in combination with the gear 43, They can be placed freely so as not to interfere with nearby parts. Also, by making the reduction gear 62 larger in diameter than the small gear 43 b, the amount of deformation of the return spring 50 deformed by the reduction gear 62 can be reduced, and the return spring 50 can be downsized. Therefore, the entire device can be downsized.
  • the return spring 50 is disposed around the rotation shaft 61, and one end 50a of the return spring 50 is hooked to the hook member 63.
  • the other end 50 b is hooked on the hook 10 a of the throttle body 10.
  • the return spring 50 exerts an urging force so as to rotate the reduction gear 62 counterclockwise in FIG. 2 by torsional deformation around the rotation shaft 61.
  • the throttle valve 20 is located at the closed-side rest position. ing.
  • the return spring 50 is attached in a state where it is deformed in advance in a torsional manner so as to generate a biasing force (initial setting force) Fo.
  • the deformation force transmitting mechanism 60 causes the return spring 50 to undergo torsional deformation in an angle range (0 m) smaller than the rotation angle range (0 max) of the throttle shaft 30.
  • the urging force F of the return spring 50 is reduced by ⁇ F, and the torque required to rotate the gear wheel 43 against the urging force of the return spring 50 is also Z 43 ZZ 62 Therefore, the load applied to the DC motor 41 is also reduced, the power consumption can be reduced, and the throttle operation is performed smoothly.
  • the reduction gear 62 according to the value of Z 62 ZZ 43 to the gear 43 Since the rotational force is transmitted by increasing the speed, the throttle shaft 30 (and the throttle valve 20) rotates quickly and returns to the rest position.
  • the initial setting force of the return spring 50 is set to F o, (> F o) and the maximum urging force is set to F max, (F max x ⁇ F max x ⁇ If Fms t), the return operation can be performed promptly as a whole, while further smoothing the slot notching operation and reducing power consumption.
  • the same effect can be obtained by reducing the spring constant and increasing the initial setting force (biasing force).
  • the throttle shaft 30 starts rotating in the negative direction against the increasing biasing force of the return spring 50, and the throttle valve 20 rotates from the rest position to the maximum opening position where the intake passage 11 is fully opened. I do.
  • the maximum urging force F max of the return spring 50 is reduced by AF compared to the conventional case, and the gear 43 is moved against the urging force of the return spring 50. Since a small torque is required for the rotation, the throttle operation until reaching this position is performed smoothly, and the power consumption of the DC motor 41 is reduced.
  • the rotation of the DC motor 41 is appropriately controlled in accordance with the control mode, and the throttle valve 20 is driven to open and close so as to have an optimal opening. Further, when the DC motor 41 stops, the rotational force is transmitted from the reduction gear 62 to the gear 43 by the urging force F of the return spring 50, so that the throttle shaft 30 rotates quickly. To return the throttle pulp 20 to the rest position.
  • FIG. 4 shows another embodiment of the throttle device according to the present invention, in which the divided throttle shafts 31 and 32 are employed in place of the throttle shaft 30 of the aforementioned embodiment.
  • the two are connected by a tuning lever 110 (111, 112), and the two return springs 50, 51 are rubbed. Therefore, the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • this device has two throttle valves 31 and 32 divided approximately at the center to open and close two throttle valves 20 at the same time. They are connected by 10 and are formed to rotate coaxially and cooperatively.
  • the return spring As the return spring, two return springs 50 and 51 that generate different urging forces are employed.
  • the return spring 50 generates a larger biasing force than the other return springs 51.
  • the return spring 50 is arranged at the position of the deformation force transmission mechanism 60, as in the above-described embodiment.
  • the other return spring 51 generates a relatively small biasing force enough to return the two right throttle valves 20, and the other return spring 51 is fixed to the throttle shaft 32. It is located near. That is, the return spring 51 generates torsional deformation in the same angle range as the rotation angle range of the throttle shafts 31 and 32.
  • the two return springs 50 and 51 that exert different urging forces are provided.
  • the return spring 51 with a small urging force is connected to the throttling shafts 31 and 32 apart from the driving means 40. By arranging it in the substantially middle region, the throttling of the throttle shafts 31 and 32 is prevented, and the return operation is performed more smoothly.
  • the gear 4 3 (throttle shaft 3 1, 3 2) force rotates by 0 max, which is the angle that positions the throttle valve 20 at the maximum opening.
  • the reduction gear 62 rotates by an angle of 0 m ( ⁇ x max), and the urging force F of the return spring 50 increases linearly as indicated by f1 to become the maximum urging force Fma X1.
  • the urging force F of the return spring 51 increases linearly as shown by f2 to reach the maximum urging force Fmax2.
  • the four throttle devices in which the four throttle valves 20 are integrally supported on the throttle shaft 30 (31, 32) are shown.
  • the present invention is not limited to this.
  • the configuration of the present invention may be applied to a throttle device having three or more throttle valves or a multiple throttle device having three, five or more throttle valves.
  • the return spring is a torsion type return spring.
  • the force when the deformation force transmission mechanism 60 is applied to the return spring 50 Force is not limited to this, but includes a tension type return spring, a pulley integrated with the reduction gear, and the like. In a configuration in which the return spring undergoes tensile deformation due to rotation of the reduction gear, a deformation force transmission mechanism 60 may be employed.
  • an intermediate gear is provided between the DC motor 41 (pinion 4 la) and the gear 43 (gear 43 a) as a driving means for rotating the throttle shaft 30.
  • the configuration in which the DC motor 41 is combined with the DC motor 41 (pinion 4 la) is used because the load applied to the DC motor 41 is reduced.
  • a configuration that directly couples to the gear 43 a) may be adopted.
  • the throttle device is provided with a return spring that deforms in conjunction with the rotation of the throttle shaft that supports the throttle valve and that returns the throttle pulp to a predetermined rest position.
  • the maximum biasing force of the return spring is limited to the rotation angle range of the throttle shaft by providing a deformation force transmission mechanism that causes the return spring to deform in the angle range smaller than the rotation angle range of the throttle shaft.
  • the load applied to the driving means is reduced.
  • the throttle operation becomes smooth, the power consumption is reduced particularly when a motor is used as the driving means, and the size of the entire apparatus is reduced.
  • the width of the device in the axial direction of the throttle shaft can be narrowed, and the overall size of the device can be reduced. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

本装置によれば、吸気通路に配置されるスロットルバルブ20、スロットルバルブ20を開閉自在に支持するスロットルシャフト30、スロットルシャフト30を回転駆動する駆動手段40、スロットルシャフト30の回動に連動して変形すると共にスロットルバルブ20を閉じ側の休止位置に復帰させる捩り式の復帰スプリング50とを備え、減速歯車62を含む変形力伝達機構60を設けて、スロットルシャフト30の回転角度範囲よりも小さい角度範囲で復帰スプリング50に捩り変形を生じさせる。これにより、最大付勢力が低減される。これにより、スロットルバルブを復帰スプリングにより休止位置に復帰させるスロットル装置において、復帰スプリングの最大付勢力を低減する。

Description

1 明細書 スロッ トル装置 技術分野
本発明は、 エンジンの吸気通路を開閉するスロットルパルプをもつス ロットル装置に関し、 特に、 スロットルバルブを所定の休止位置に復帰 させる復帰スプリングを含むスロッ トル装置に関する。 背景技術 .
四輪車に搭載のエンジンに適用される従来のス口ットル装置として は、 ワイヤ兼電子制御式のスロットル装置あるいは電子制御式のみによ るスロットル装置が知られている。
例えば、 従来のワイヤ兼電子制御式のスロッ トル装置は、 6気筒の V 型エンジンにおいて、 各気筒に対応する吸気通路を 3本毎に集合させる 2つのサージタンク及ぴ各々のサージタンクから上流側に伸びる吸気通 路を備える吸気系において、 上流側のそれぞれの吸気通路に配置される 2つのスロッ トルバルブを、 一本のスロッ トルシャフトで連動させて、 ワイヤ又はモータにより開閉駆動すると共に、 復帰スプリングをスロッ トルシャフ トの周りに配置して、 閉じ側の休止位置に復帰させるもので ある (例えば、 特許文献 1参照)。
また、 従来の電子制御式のスロットル装置は、 スロットルポデ一に形 成された二つの吸気通路にそれぞれ配置されるスロットルバルブを、 一 本のスロッ トルシャフトで回動自在に連結し、 スロッ トルシャフトのー 端側に配置したモータにより開閉駆動すると共に、 スロッ トルシャフト の他端側に配置した復帰スプリングにより閉じ側の休止位置に復帰させ るものである (例えば、 特許文献 2参照)。
【特許文献 1】
特開平 6— 2 0 7 5 3 5号公報
【特許文献 2】
特開平 8— 2 1 8 9 0 4号公報
ところで、 上記従来の装置においては、 ワイヤあるいはモータの駆動 力により、 スロッ トルシャフ トすなわちスロッ トルバルブを全開側に向 けて回転させると、 第 6図に示すように、 復帰スプリングの付勢力は、 回転角度 Θの増加に比例して、 初期設定値 (初期設定力) F oから最大 値 F m a Xまで増加する。
一方、 スロッ トルバルブを閉じ側の休止位置に復帰させるために、 要 求される復帰スプリングの付勢力としては、 ワイヤの摺動抵抗あるいは モータの回転抵抗等を考慮すると、 初期設定値 F o + ひ ( < F m a x ) だけあれば十分であるにも拘わらず、 変形量に比例する特性から、 最大 値 F m a Xまで達してしまう。
その結果、 ワイヤあるいはモータに加わる負荷が大きくなり、 ワイヤ により駆動する場合は操作性が悪化し、 又、 モータにより駆動する場合 は消費電力の増加あるいはモータの大型化、 さらには装置全体の大型化 を招くことになる。
本発明は、 上記従来技術の問題点に鑑みて成されたものであり、 その 目的とするところは、 吸気通路に配置され開閉動作を行なうスロッ トル バルブを休止位置に復帰させる復帰スプリングを備えた構成において、 復帰スプリングの最大付勢力を低減しつつ円滑な開閉動作及び復帰動作 が確保され、 操作の容易化、 特にモータで開閉駆動する場合の消費電力 の低減、装置の小型化等が図れるスロットル装置を提供することにある。 発明の開示
本発明のスロットル装置は、 エンジンの吸気通路に配置されるスロッ トルバルブと、 スロットルバルブを開閉させるべく 持するスロットル シャフトと、 スロットルシャフトを回転駆動する駆動手段と、 スロット ルシャフトの回動に連動して変形すると共にスロットルバルブを所定の 休止位置に復帰させる復帰スプリングとを備えたスロットル装置であつ て、 上記スロットルシャフトの回転角度範囲よりも小さい角度範囲にお いて、上記復帰スプリングに変形を生じさせる変形力伝達機構を設けた、 構成を採用している。
この構成によれば、 駆動手段が、 所定の角度範囲でスロットルシャフ トを回転させると、 スロットルバルブが所定の角度範囲 (休止位置から 最大開度位置まで) を回転する。 このとき、 変形力伝達機構は、 スロッ トルシャフトの回転角度範囲よりも小さい角度範囲で復帰スプリングに 変形 (例えば、 引っ張り式の復帰スプリングでは、 角度 X回転半径に応 じた引っ張り変形、 捩り式の復帰スプリングでは捩り角度に応じた捩り 変形) を生じさせる。
これにより、 復帰スプリングの最大付勢力は、 スロットルシャフトの 回転角度範囲と同一の角度範囲で変形させられる場合よりも小さくな り、 駆動手段に加わる負荷が低減される。
上記構成において、 復帰スプリングは、 捩り変形により付勢力を生じ る捩り式の復帰スプリングである、 構成を採用できる。
この構成によれば、単に回転軸等の周りに復帰スプリングを配置して、 捩り変形を生じさせるだけで付勢力が生じるため、 変形力伝達機構と併 せて構造が簡略化される。
上記構成において、 復帰スプリングは、 異なる付勢力を及ぼす複数の 復帰スプリングを含み、 変形力伝達機構は、 少なくとも最も大きい付勢 力を及ぼす復帰スプリングに対して設けられている、構成を採用できる。 この構成によれば、 軸線方向の離れた位置において、 スロッ トルシャ フトに対し複数の付勢力を作用させることができるため、 復帰動作がよ り確実になると同時に、 最大付勢力を低減することができる。
上記構成において、 駆動手段は、 モータ、 モータの駆動力をスロッ ト ルシャフトに伝達する歯車列を含む、 構成を採用できる。
この構成によれば、 変形力伝達機構により、 モータに加わる負荷が低 減されるため、 消費電力が低減され、 モータさらには装置が小型化され る。
上記構成において、 歯車列は、 スロッ トルシャフ トに固着された第 1 歯車を含み、 変形力伝達機構は、 第 1歯車の回転速度を減速させる (す なわち、 第 1歯車の回転速度よりも遅い回転速度を出力する) と共に復 帰スプリングを変形させる減速歯車を含む、 構成を採用できる。
この構成によれば、 変形力伝達機構が減速歯車をもつ歯車機構により 形成されるため、 変形力伝達機構を第 1歯車と嚙合させて配置するにあ たり、 第 1歯車の近傍に位置する部品と干渉しないように自由に配置で さる。
上記構成において、 第 1歯車は、 モータの駆動力が伝達される大歯車 と、 大歯車よりも小径の小歯車とを有し、 減速歯車は、 小歯車よりも大 径でかつ小歯車に直接嚙合するように形成されている、 構成を採用でき る。
この構成によれば、 減速歯車を小歯車よりも大径としたため、 復帰ス プリングの変形量を小さくできると共に復帰スプリングを小型化でき、 それ故に装置全体を小型化できる。
上記構成において、 スロッ トルシャフトは、 複数のスロッ トルバルブ を支持している、 構成を採用できる。 この構成によれば、 複数のスロッ トルバルブを支持するが故に、 復帰 スプリングの初期設定力及ぴバネ定数は一般に大きくなるが、 変形力伝 達機構により最大付勢力が小さくされるため、 駆動手段に加わる負荷が 低減され、 円滑な開閉動作が行なわれる。 図面の簡単な説明
第 1図は、 本発明に係るスロットル装置の一実施形態を示す概略構成 図である。
第 2図は、 第 1図に示す装置の駆動手段及び変形力伝達機構を示す側 面図である。
第 3図は、 第 1図に示す装置における変形力伝達機構の作用を説明す るグラフである。
第 4図は、 本発明に係るスロッ トル装置の他の実施形態を示す概略構 成図である。
第 5図は、 第 4図に示す装置における変形力伝達機構の作用を説明す るグラフである。
第 6図は、 従来のスロットル装置における復帰スプリングの作用を示 すグラフである。 発明を実施するための最良の形態 以下、本発明の実施の形態について、添付図面を参照しつつ説明する。 第 1図及び第 2図は、 本発明に係るスロットル装置の一実施形態を示 すものであり、 第 1図は概略構成図、 第 2図は駆動手段及び変形力伝達 機構の側面図である。
この装置は、 二輪車に搭載の直列 4気筒エンジンに対して適用される 4連スロッ トル装置であり、 第 1図に示すように、 吸気通路 1 1を画定 3 014694
6 する 4つのスロットルボデー 1 0、 吸気通路 1 1に配置された 4つのス ロッ トルパルプ 2 0、 4つのスロッ トルバルブ 2 0を同時に開閉させる ベく回動自在に支持するスロッ トルシャフト 3 0、 スロッ トルシャフ ト
3 0を回転駆動する駆動手段 4 0、 スロットルバルブ 2 0を所定の休止 位置に復帰させる捩り式の復帰スプリング 5 0、 復帰スプリング 4 0に 捩り変形力を伝達する変形力伝達機構 6 0等を備えている。
尚、 この装置は、 その他の構成として、 スロッ トルシャフト 3 0を回 動自在に支持する軸受 7 0、 スロットルボデー 1 0同士を接続するスぺ ーサ 8 0、 4つのス口ッ トルポデー 1 0を連結する連結フレーム 9 0、 スロッ トルシャフト 3 0の回転角度を検出する角度検出センサ 1 0 0等 を備えている。
駆動手段 4 0は、 第 1図及ぴ第 2図に示すように、 ピニオン 4 l aを もつ D Cモータ 4 1、 ピユオン 4 1 aに嚙合する大歯車 4 2 aと小歯車
4 2 bとを一体的にもつ歯車 4 2、 歯車 4 2 (小歯車 4 2 b ) に嚙合し スロッ トルシャフト 3 0に固着された第 1歯車としての歯車 4 3、 歯車
4 3の回転端 (角度位置) を規制する調整ネジ 4 4等により形成されて いる。
ここで、 歯車 4 3は、 第 1図及び第 2図に示すように、 それぞれ所定 の中心角 (角度範囲) に亘つて、 歯車 4 2 (小歯車 4 2 b ) と嚙合する 大径の大歯車 4 3 aと、 大歯車 4 3 aよりも小径の小歯車 4 3 bとを、 一体的に備えるように形成されている。
そして、 D Cモータ 4 1が回転すると、 その回転駆動力がピニオン 4 l aから歯車列 (歯車 4 2 , 歯車 4 3 ) を介してスロッ トルシャフ ト 3 0に伝達される。 すると、 スロッ トルシャフ ト 3 0は所定の回転角度範 囲を回動して、 スロッ トルバルブ 2 0は所定の休止位置から最大開度位 置までの範囲で開閉作動する。 7 変形力伝達機構 6 0は、 第 1図及び第 2図に示すように、 スロットル ボデー 1 0に対して軸受 6 1 aにより回動自在に支持された回転軸 6 1、 回転軸 6 1 と一体的に回転するように支持され歯車 4 3 (小歯車 4 3 b) に直接嚙合する減速歯車 6 2、 減速歯車 6 2と一体的に回転する 掛止部材 6 3等により形成されている。 ここで、 減速歯車 6 2は、 小歯 車 4 3 bよりも大径に形成されている。
すなわち、 歯車 4 3 bの歯数を Z 43、 減速歯車 6 2の歯数を Z 62 (Z 43< Z 62) とすると、歯車 4 3から減速歯車 6 2に回転力が伝達される 場合は、 歯車 4 3の回転速度 N43は、 減速歯車 6 2により減速されて、 回転軸 6 1及ぴ減速歯車 6 2は回転速度 N62 (=N43 X (Z 43/Z 62)) <N43で回転する。 したがって、 歯車 4 3が所定の角度 0 m a Xだけ回 転すると、 減速歯車 6 2は角度 0 m a Xよりも小さい角度 θ πι (= Θ m a x X (Z 43/Z 62)) だけ回転する。
一方、 減速歯車 6 2から歯車 4 3に回転力が伝達される場合は、 減速 歯車 6 2の回転速度 N62は、 歯車 4 3により増速されて、 スロットルシ ャフト 3 0は回転速度 N43 ( = N62 X (Z 62/Z 43)) >N 62で回転す る。
このように、 変形力伝達機構 6 0が、 減速歯車 6 2を含む歯車機構に より形成されているため、 変形力伝達機構 6 0を歯車 4 3と嚙合させて 配置するにあたり、 歯車 4 3の近傍に位置する部品と干渉しないように 自由に配置できる。 また、 減速歯車 6 2を小歯車 4 3 bよりも大径とし たことで、 減速歯車 6 2により変形される復帰スプリング 5 0の変形量 を小さくできると共に、 復帰スプリング 5 0を小型化でき、 それ故に装 置全体を小型化できる。
復帰スプリング 5 0は、 第 1図及び第 2図に示すように、 回転軸 6 1 の周りに配置され、 その一端部 5 0 aが掛止部材 6 3に掛止され、 その 他端部 5 0 bがスロッ トルボデー 1 0の掛止部 1 0 aに掛止されてい る。 そして、復帰スプリング 50は、 回転軸 6 1回りの捩り変形により、 減速歯車 62を第 2図中の反時計回りに回転させるように付勢力を及ぼ している。
ここで、 減速歯車 62が第 2図において反時計回りの回転端に位置す るとき、 すなわち、 歯車 43が時計回りの回転端に位置するとき、 スロ ットルバルブ 20は閉じ側の休止位置に位置している。 この状態におい て、復帰スプリング 50は、付勢力 (初期設定力) F oを生じるように、 予め捩り変形させた状態で取り付けられている。
そして、 歯車 43 (スロッ トルシャフ ト 30) 力 第 2図において反 時計回りに所定の角度 (0ma x) 回転すると、 減速歯車 62が時計回 りに角度 0 m (< Θ ma x) だけ回転して、 復帰スプリング 50に捩り 変形を生じさせる。
すなわち、 変形力伝達機構 60は、 スロッ トルシャフ ト 30の回転角 度範囲 (0 ma x) よりも小さい角度範囲 (0 m) において、 復帰スプ リング 50に捩り変形を生じさせるものである。
ここで、 変形力伝達機構 60の作用について、 第 3図に基づき説明す ると、 歯車 43 (スロットルシャフト 30) 及ぴ減速歯車 62が休止位 置 (回転角度 θ = 0) にあるとき、 復帰スプリング 50の付勢力 Fは F οである。
この状態から、 歯車 43 (スロッ トルシャフト 30) 1S スロッ トル バルブ 20を最大開度に位置付ける角度 0 m a xだけ回転すると、 減速 歯車 62は角度 0 m (< 0ma x) だけ回転して、 復帰スプリング 50 の付勢力 Fは、 f 1で示すように直線的に増加して最大付勢力 Fm a X に至る。
仮に、 復帰スプリング 50がスロットルシャフト 30と同一角度 Θ m a xだけ回転するとすれば、 付勢力 Fは第 3図中の点線で示すようにさ らに増加し、 Fms t (> Fm a x) に至る。 すなわち、 スロッ トルバ ルプ 20が最大開度に達した状態において、 変形力伝達機構 60の作用 により、 復帰スプリング 50の付勢力 Fは、 AF (=Fm s t -Fm a x) だけ低減させられることになる。
したがって、 最大開度位置にあるとき、 Δ Fだけ復帰スプリング 50 の付勢力 Fが低減され、 かつ、 復帰スプリング 50の付勢力に抗して歯 車 43を回転させるため要するトルクも Z 43ZZ 62の値に応じて小さ くなるため、 DCモータ 41に加わる負荷も小さくなり、 消費電力を低 減できると共に、 スロットル操作が円滑に行なわれることになる。 一方、 DCモータ 41による駆動を停止して、 復帰スプリング 50の 付勢力でスロッ トルバルブ 20を閉じ側の休止位置に復帰させる場合 は、 Z 62ZZ43の値に応じて減速歯車 62から歯車 43に増速されて回 転力が伝達されるため、 スロッ トルシャフ ト 30 (及びスロッ トルバル ブ 20) は迅速に回転して休止位置に復帰させられる。
尚、 上記のように、 最大付勢力が低減させられるため、 復帰スプリン グ 50の初期設定力を F o , (〉F o) にし、 最大付勢力を Fma x , (Fma x<Fma x ' <Fms t) とすれば、 スロットノレ操作のさら なる円滑化、 消費電力の低減等を達成しつつ、 全体として復帰動作を迅 速に行なわせることができる。 また、 バネ定数をより小さくして初期設 定カ (付勢力) をより大きくしても、 同様の効果が得られる。
次に、 上記スロットル装置の全体の動作について説明する。
制御ュニットから発せられる制御信号に基づいて、 DCモータ 41が 一方向に回転すると、 歯車列 (ピニオン 4 l a, 歯車 42, 大歯車 43 a) を介して、 回転駆動力がスロッ トルシャフト 30に伝達されると同 時に、 歯車 43 bの回転が減速されて減速歯車 62に伝達され、 減速歯 車 6 2は復帰スプリング 5 0に捩り変形を生じさせる。
そして、 増加する復帰スプリング 5 0の付勢力に抗して、 スロッ トル シャフト 3 0がー方向に回転し始め、 スロッ トルバルブ 2 0は休止位置 から吸気通路 1 1を全開する最大開度位置まで回転する。 この最大開度 位置においては、 前述のように、 復帰スプリング 5 0の最大付勢力 F m a xが従来に比べて A Fだけ低減され、 かつ、 復帰スプリング 5 0の付 勢力に抗して歯車 4 3を回転させるためのトルクも小さくて済むため、 この位置に達するまでのスロッ トル操作が円滑に行なわれ、 又、 D Cモ ータ 4 1の消費電力も低減される。
一方、 制御ユニットからの制御信号に基づいて、 D Cモータ 4 1が逆 向きに回転すると、 復帰スプリング 5 0の付勢力 Fが加わりつつ、 逆の 経路を迪つて、 スロッ トノレシャフト 3 0が逆方向に回転し、 スロッ トル バルブ 2 0は全開した最大開度位置から吸気通路 1 1を閉じる休止位置 まで回転する。
通常の運転時においては、 制御モードに応じて、 D Cモータ 4 1の回 動が適宜制御され、 スロットルバルブ 2 0は最適な開度となるように開 閉駆動される。 また、 D Cモータ 4 1が停止すると、 復帰スプリング 5 0の付勢力 Fにより、 減速歯車 6 2から歯車 4 3に増速されて回転力が 伝達されるため、 スロッ トルシャフト 3 0は素早く回転して、 スロッ ト ルパルプ 2 0を休止位置に復帰させる。
第 4図は、 本発明に係るスロッ トル装置の他の実施形態を示すもので あり、 前述の実施形態のスロットルシャフト 3 0に替えて二分されたス ロッ トルシャフト 3 1 , 3 2を採用し、 両者を同調レバー 1 1 0 ( 1 1 1, 1 1 2 ) により連結し、 二つの復帰スプリング 5 0 , 5 1を揉用し たものである。 したがって、 前述の実施形態と同一の構成については、 同一の符号を付してその説明を省略する。 この装置は、 第 4図に示すように、 それぞれ 2つのスロットルバルブ 2 0を同時に開閉させるベく、 略中央にて二分されたスロットルシャフ ト 3 1 , 3 2を有し、 両者は同調レバー 1 1 0により連結されて、 同軸 上で連動して回転するように形成されている。
復帰スプリングとしては、 異なる付勢力を生じる 2つの復帰スプリン グ 5 0, 5 1が採用されている。 復帰スプリング 5 0は、 他の復帰スプ リング 5 1よりも大きい付勢力を生じるものである。
復帰スプリング 5 0は、 前述の実施形態と同様に、 変形力伝達機構 6 0の位置に配置されている。 一方、 他の復帰スプリング 5 1は、 右側 2 つのスロットルバルブ 2 0を復帰させるに足りる比較的小さい付勢力を 生じるものであり、 スロットルシャフト 3 2に固着された一方の同調レ パー 1 1 2の近傍に配置されている。すなわち、復帰スプリング 5 1は、 スロッ トルシャフ ト 3 1 , 3 2の回転角度範囲と同一の角度範囲におい て捩り変形を生じるものである。
このように、 異なる付勢力を及ぼす 2つの復帰スプリング 5 0, 5 1 を設け、 特に、 付勢力の小さい復帰スプリング 5 1を、 駆動手段 4 0か ら離れたスロッ トルシャフト 3 1, 3 2の略中間領域に配置することに より、 スロッ トルシャフト 3 1 , 3 2の捩れが防止されると共に、 復帰 動作がより円滑に行なわれる。
ここで、 変形力伝達機構 6 0と二つの復帰スプリング 5 0, 5 1の作 用について、 第 5図に基づき説明すると、 歯車 4 3 (スロッ トルシャフ ト 3 1, 3 2 ) 及ぴ減速歯車 6 2が休止位置 (回転角度 0 = 0 ) にある とき、 復帰スプリング 5 0の付勢力 Fは F o 1であり、 復帰スプリング 5 1の付勢力 Fは F o 2である。
この状態から、 歯車 4 3 (スロッ トルシャフト 3 1 , 3 2 ) 力 スロ ットルバルブ 2 0を最大開度に位置付ける角度 0 m a xだけ回転する と、 減速歯車 62は角度 0 m (< Θ ma x) だけ回転して、 復帰スプリ ング 50の付勢力 Fは、 f 1で示すように直線的に増加して最大付勢力 Fm a X 1に至り、 復帰スプリング 5 1の付勢力 Fは、 f 2で示すよう に直線的に増加して最大付勢力 Fm a x 2に至る。
仮に、 復帰スプリング 50がスロッ トルシャフ ト 30と同一角度 0 m a xだけ回転するとすれば、 付勢力 Fは第 5図中の点線で示すようにさ らに増加し、 Fma x l ' (> F m a x 1) に至る。 すなわち、 スロッ トルバルブ 20が最大開度に達した状態において、 変形力伝達機構 60 の作用により、 復帰スプリング 50の付勢力 Fは、 (=Fm a X 1 ' -Fma x l) だけ低減させられる。 したがって、 復帰スプリング 5 0と復帰スプリング 51との合成による付勢力も、 全体として低減させ られる。
このように、 最大開度位置 (0ma X ) にあるときの最大付勢力 (F) は、 A F (=Fma X ' -Fma x) だけ低減され、 かつ、 復帰スプリ ング 50の付勢力に抗して歯車 43を回転させるためのトルクも小さく て済むため、この位置に達するまでのスロットル操作が円滑に行なわれ、 又、 DCモータ 41の消費電力も低減される。
尚、 この装置の全体の動作は、 復帰スプリング 5 1の付勢力が加わる 点を除いて、 前述の実施形態と同様であるため、 ここでの説明は省略す る。
上記実施形態においては、 4つのスロットルバルブ 20がスロットル シャフト 30 (3 1, 32) に一体的に支持された 4連のスロットル装 置を示したが、 これに限定されるものではなく、 単一のスロットルバル ブをもつスロットル装置、 あるいは、 3連、 5連以上の多連スロットル 装置において、 本発明の構成を採用してもよい。
また、 上記実施形態においては、 復帰スプリングとして、 捩り式の復 帰スプリング 5 0に対して変形力伝達機構 6 0を適用した場合を示した 力 これに限定されるものではなく、 引っ張り式の復帰スプリング、 減 速歯車に一体的に設けられたプーリ等を備え、 減速歯車の回転により復 帰スプリングが引っ張り変形を生じる構成において、 変形力伝達機構 6 0を採用してもよい。
さらに、 上記実施形態においては、 スロッ トルシャフト 3 0を回転駆 動する駆動手段として、 D Cモータ 4 1 (ピニオン 4 l a ) と歯車 4 3 (大歯車 4 3 a ) との間に、 中間の歯車 4 2を嚙合させた構成を採用し たが、 これに限定されるものではなく、 D Cモータ 4 1に加わる負荷が 低減されるため、 D Cモータ 4 1 (ピニオン 4 l a ) を歯車 4 3 (大歯 車 4 3 a ) に直接嚙合させる構成を採用してもよい。 産業上の利用可能性
以上述べたように、 本発明のスロッ トル装置によれば、 スロッ トルバ ルブを支持するスロットルシャフトの回動に連動して変形すると共にス 口ットルパルプを所定の休止位置に復帰させる復帰スプリングを備えた 構成において、 スロッ トルシャフ トの回転角度範囲よりも小さい角度範 囲において、 復帰スプリングに変形を生じさせる変形力伝達機構を設け たことにより、 復帰スプリングの最大付勢力は、 スロッ トルシャフ トの 回転角度範囲と同一の角度範囲で変形させられる場合よりも小さくな り、 駆動手段に加わる負荷が低減される。 これにより、 スロッ トル操作 が円滑になり、 駆動手段として特にモータを用いる場合は、 消費電力が 低減され、 又、 装置全体が小型化される。
さらに、.変形力伝達機構の減速歯車をスロットルシャフトとは別の回 転軸上に配置することにより、 スロッ トルシャフトの軸線方向における 装置の幅を狭くすることができ、 全体として装置を小型化できる。

Claims

請求の範囲
1 . エンジンの吸気通路に配置されるスロッ トルバルブと、 前記スロ ットルバルブを開閉させるベく支持するスロットルシャフトと、 前記ス ロットルシャフトを回転駆動する駆動手段と、 前記スロッ トルシャフト の回動に連動して変形すると共に前記スロットルバルブを所定の休止位 置に復帰させる復帰スプリングと、 を備えたスロッ トル装置であって、 前記スロッ トルシャフトの回転角度範囲よりも小さい角度範囲におい て、 前記復帰スプリングに変形を生じさせる変形力伝達機構を設けた、 ことを特徴とするスロッ トル装置。
2 . 前記復帰スプリングは、 捩り変形により付勢力を生じる捩り式の 復帰スプリングである、
ことを特徴とする請求の範囲 1記載のスロッ トル装置。
3 . 前記復帰スプリングは、 異なる付勢力を及ぼす複数の復帰スプリ ングを含み、
前記変形力伝達機構は、 少なくとも最も大きい付勢力を及ぼす復帰ス プリングに対して設けられている、
ことを特徴とする請求の範囲 1又は 2に記載のスロッ トル装置。
4 . 前記駆動手段は、 モータ、 前記モータの駆動力を前記スロッ トル シャフ トに伝達する歯車列を含む、
ことを特徴とする請求の範囲 1ないし 3いずれかに記載のスロットル装 置。
5 . 前記歯車列は、 前記スロッ トルシャフトに固着された第 1歯車を 含み、
前記変形力伝達機構は、 前記第 1歯軍の回転速度を減速させると共に 前記復帰スプリングを変形させる減速歯車を含む、 ことを特徴とする請求の範囲 4記載のス口ットル装置。
6 . 前記第 1歯車は、 前記モータの駆動力が伝達される大歯車と、 前 記大歯車よりも小径の小歯車と、 を有し、
前記減速歯車は、 前記小歯車よりも大径でかつ前記小歯車に直接嚙合 するように形成されている、
ことを特徴とする請求の範囲 5記載のスロットル装置 p
7 . 前記スロッ トルシャフ トは、 複数のスロッ トルパルプを支持して いる、
ことを特徴とする請求の範囲 1ないし 6いずれかに記載のス口ットル装 置。
PCT/JP2003/014694 2002-11-20 2003-11-19 スロットル装置 WO2004046526A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03774037A EP1577521A1 (en) 2002-11-20 2003-11-19 Throttle device
US10/535,828 US7117848B2 (en) 2002-11-20 2003-11-19 Throttle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-336813 2002-11-20
JP2002336813A JP2004169628A (ja) 2002-11-20 2002-11-20 スロットル装置

Publications (1)

Publication Number Publication Date
WO2004046526A1 true WO2004046526A1 (ja) 2004-06-03

Family

ID=32321818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014694 WO2004046526A1 (ja) 2002-11-20 2003-11-19 スロットル装置

Country Status (4)

Country Link
US (1) US7117848B2 (ja)
EP (1) EP1577521A1 (ja)
JP (1) JP2004169628A (ja)
WO (1) WO2004046526A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029193A1 (de) * 2005-06-22 2006-12-28 Mahle International Gmbh Klappenanordnung für eine Frischgasanlage
JP4799352B2 (ja) * 2006-09-29 2011-10-26 本田技研工業株式会社 車両用v型内燃機関の電子スロットル制御装置
JP4896941B2 (ja) * 2008-09-30 2012-03-14 本田技研工業株式会社 内燃機関のスロットル弁駆動装置
GB201002370D0 (en) * 2010-02-12 2010-03-31 Renishaw Ireland Ltd Percutaneous drug delivery apparatus
DE102012203232A1 (de) * 2012-03-01 2013-09-05 Mahle International Gmbh Brennkraftmaschine mit Frischgasverteiler
JP6003692B2 (ja) * 2013-02-05 2016-10-05 アイシン精機株式会社 吸気装置
JP6168947B2 (ja) * 2013-09-25 2017-07-26 本田技研工業株式会社 電動式スロットル弁を備えるエンジン
JP6830404B2 (ja) * 2017-05-26 2021-02-17 日本電産サンキョー株式会社 スイッチ機構およびギアードモータ、ならびにダンパ装置
JP6673994B2 (ja) * 2018-08-24 2020-04-01 本田技研工業株式会社 エンジン
CN109372639A (zh) * 2018-12-26 2019-02-22 潍柴动力股份有限公司 一种进气节流阀及发动机
US11149657B2 (en) * 2019-12-04 2021-10-19 Mikuni Corporation Throttle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785782A (en) * 1986-06-26 1988-11-22 Toyota Jidosha Kabushiki Kaisha Control apparatus of a throttle valve in an internal combustion engine
JPH06173695A (ja) * 1992-12-10 1994-06-21 Aisan Ind Co Ltd 内燃機関の吸気装置
JPH08218945A (ja) * 1995-02-10 1996-08-27 Sanshin Ind Co Ltd スプリング復帰式多連装型気化器
JP2528414Y2 (ja) * 1991-02-12 1997-03-12 株式会社ユニシアジェックス 内燃機関の2連式スロットルチャンバ
JP2982456B2 (ja) * 1991-12-27 1999-11-22 アイシン精機株式会社 スロットル制御装置
JP2000097054A (ja) * 1998-09-16 2000-04-04 Keihin Corp 2バレル型多連スロットルボデーの連結装置
US6276664B1 (en) * 1999-11-19 2001-08-21 Eaton Corporation Worm driving a servo actuator with spring return and rotary valve employing same
JP3240506B2 (ja) * 1997-01-23 2001-12-17 株式会社ユニシアジェックス 電制スロットル装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205002B2 (ja) * 1991-05-20 2001-09-04 株式会社日立製作所 スロットルアクチュエータ
JP3139190B2 (ja) 1993-01-13 2001-02-26 日産自動車株式会社 内燃機関の絞弁駆動装置
JPH08218904A (ja) 1995-02-16 1996-08-27 Keihin Seiki Mfg Co Ltd 内燃機関における吸気量制御装置
JP3750934B2 (ja) * 2002-02-25 2006-03-01 三菱電機株式会社 吸気絞弁装置
US7051707B2 (en) * 2003-03-07 2006-05-30 Denso Corporation Electronically controlled throttle control apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785782A (en) * 1986-06-26 1988-11-22 Toyota Jidosha Kabushiki Kaisha Control apparatus of a throttle valve in an internal combustion engine
JP2528414Y2 (ja) * 1991-02-12 1997-03-12 株式会社ユニシアジェックス 内燃機関の2連式スロットルチャンバ
JP2982456B2 (ja) * 1991-12-27 1999-11-22 アイシン精機株式会社 スロットル制御装置
JPH06173695A (ja) * 1992-12-10 1994-06-21 Aisan Ind Co Ltd 内燃機関の吸気装置
JPH08218945A (ja) * 1995-02-10 1996-08-27 Sanshin Ind Co Ltd スプリング復帰式多連装型気化器
JP3240506B2 (ja) * 1997-01-23 2001-12-17 株式会社ユニシアジェックス 電制スロットル装置
JP2000097054A (ja) * 1998-09-16 2000-04-04 Keihin Corp 2バレル型多連スロットルボデーの連結装置
US6276664B1 (en) * 1999-11-19 2001-08-21 Eaton Corporation Worm driving a servo actuator with spring return and rotary valve employing same

Also Published As

Publication number Publication date
EP1577521A1 (en) 2005-09-21
US7117848B2 (en) 2006-10-10
US20060011168A1 (en) 2006-01-19
JP2004169628A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
US5775292A (en) Load adjustment device
JPS63208632A (ja) スロツトル弁制御装置
WO2004046526A1 (ja) スロットル装置
CN100453781C (zh) 多节气门装置
JP4502916B2 (ja) 絞り弁制御装置
WO2016140249A1 (ja) 動力伝達装置
US7156074B2 (en) Throttle device
JP4331877B2 (ja) エンジンのスロットルバルブ開閉制御装置
JP5394468B2 (ja) 自動二輪車用エンジンのスロットルバルブ開閉制御装置
JP3750934B2 (ja) 吸気絞弁装置
JP3238270B2 (ja) スロットルバルブ装置
JP2004169627A (ja) エンジンの絞り弁制御装置
JP2012041935A5 (ja)
JP5237188B2 (ja) 自動二輪車用エンジンのスロットルバルブ開閉制御装置
JP4394962B2 (ja) 自動二輪車用エンジンのスロットルバルブ開閉制御装置
JP2009013811A (ja) 航空機用電子スロットル制御装置
JP2009174543A5 (ja)
JP2857527B2 (ja) スロットルバルブ制御装置
JPH10325341A (ja) 内燃機関用吸気絞り装置
JP5703351B2 (ja) 自動二輪車用エンジンのスロットルバルブ開閉制御装置
JPH01195932A (ja) アクチユエータ付スロツトル機構
JP2004092550A (ja) 車載内燃機関のスロットル制御装置
JP2551016B2 (ja) スロットル弁制御装置
JPH11343884A (ja) 定速走行装置
JP3286231B2 (ja) スロットルバルブ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2006011168

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535828

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003774037

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003774037

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535828

Country of ref document: US