WO2004043849A2 - Procede de realisation d'un composant comportant un micro-joint et composant realise par ce procede - Google Patents

Procede de realisation d'un composant comportant un micro-joint et composant realise par ce procede Download PDF

Info

Publication number
WO2004043849A2
WO2004043849A2 PCT/FR2003/003288 FR0303288W WO2004043849A2 WO 2004043849 A2 WO2004043849 A2 WO 2004043849A2 FR 0303288 W FR0303288 W FR 0303288W WO 2004043849 A2 WO2004043849 A2 WO 2004043849A2
Authority
WO
WIPO (PCT)
Prior art keywords
micro
substrate
transfer substrate
structured
joint
Prior art date
Application number
PCT/FR2003/003288
Other languages
English (en)
Other versions
WO2004043849A3 (fr
Inventor
Olivier Constantin
Frédérique Mittler
Philippe Combette
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2004550736A priority Critical patent/JP2006505418A/ja
Priority to EP03767900A priority patent/EP1558518A2/fr
Priority to US10/533,296 priority patent/US20060048885A1/en
Publication of WO2004043849A2 publication Critical patent/WO2004043849A2/fr
Publication of WO2004043849A3 publication Critical patent/WO2004043849A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/526Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive by printing or by transfer from the surfaces of elements carrying the adhesive, e.g. using brushes, pads, rollers, stencils or silk screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00357Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/008Aspects related to assembling from individually processed components, not covered by groups B81C3/001 - B81C3/002
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0191Transfer of a layer from a carrier wafer to a device wafer

Definitions

  • the invention relates to a method for producing a component, comprising a micro-structured substrate and a complementary element assembled by means of an assembly joint. It also relates to a component made by this method.
  • micro-structured components in particular micro-fluidic devices (bio-chips, "lab-on-chip”, etc.) or micro-mechanical devices (MEMS, OEMS, etc.), generally involves micro-structuring. at the surface or in volume of at least one substrate where free spaces are created which allow the circulation or the storage of fluids.
  • the cavities and channels thus created are open on at least one side and therefore need to be connected or assembled to another structure (open or closed hood, capillaries, other microfluidic substrate ).
  • micro-structured components require assembly joints and possibly microstructured seals.
  • manipulation and positioning of micro-structured joints is very difficult.
  • these techniques require high temperatures or chemical preparations which limit the possibility of functionalizing the components to be assembled (for example by biological grafting) and are limiting in the choice of materials.
  • thermal welding also limits the choice of materials.
  • pre-bonded adhesive films has the disadvantage of the presence of glue in contact with fluids to handle and poses problems of biological compatibility.
  • the object of the invention is to remedy these drawbacks and, more particularly, to propose a process for manufacturing micro-structured components, minimizing the problems of biological compatibility, while reducing the complexity and the manufacturing cost. According to the invention, this object is achieved by the fact that the method comprises the manufacture of the assembly joint by:
  • the transfer substrate is flexible and the withdrawal of the transfer substrate is carried out by pulling it at one end.
  • the method comprises a step of chemical activation of the complementary element and / or, after the third step, a step of chemical activation of the assembly joint disposed on the micro-structured substrate.
  • the invention also relates to a component, made by the above method, and comprising a complementary element assembled to the micro-structured substrate by the assembly joint, the element being a cover, another micro-structured substrate, a capillary or a matrix of capillaries integral with each other.
  • Figures 1 to 6 show different stages of a particular embodiment of a method according to the invention.
  • FIG. 7 represents a particular embodiment of the invention with support zones on the micro-structured substrate.
  • FIG. 8 represents a particular embodiment of a component according to the invention, in which the complementary element is a capillary.
  • Figure 9 shows an embodiment variation of a transfer substrate.
  • a thin layer of polymer 2 is deposited on a transfer substrate 1.
  • a deposition technique typically used is spinning.
  • the polymer of the thin layer 2 and the material of the transfer substrate 1 must have a chemical affinity for the second and third steps described below.
  • the materials of the transfer substrate 1 and the polymer thin film 2 are both polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • An advantageous property of a transfer substrate 1 in PDMS is its flexibility.
  • an additional intermediate step of crosslinking for example by heating, can be added just after the deposit.
  • the second step (FIG. 3) consists of contacting the thin polymer layer 2 carried by the transfer substrate 1 with the micro-structured substrate.
  • the chemical affinity between the thin polymer layer 2 and the microstructured substrate 3 must be stronger than the chemical affinity between the thin polymer layer 2 and the transfer substrate 1.
  • the adaptation of the affinity between the thin polymer layer 2 and the micro-structured substrate 3 can be carried out, before the second step, by additional intermediate steps of chemical activation. As shown in FIG. 2, the chemical activation steps can be applied to the polymer layer 2 and / or the micro-structured substrate 3.
  • a chemical activation means used is an oxygen plasma.
  • FIG. 2 a simultaneous plasma oxidation of the thin polymer layer 2 and the micro-structured substrate 3 is shown.
  • the toughness of the thin polymer layer 2 decreases after plasma oxidation, facilitating the third step of the method described below.
  • the thin layer of polymer can be irreversibly bonded to the micro-structured substrate by suitably adapting the chemical affinity by chemical activation steps prior to the second step (Fig. 2).
  • the transfer substrate 1 is removed. Only the zones of the thin polymer layer 2 in contact with the micro-structured substrate 3 during the second step remain on the micro-structured substrate 3. In fact, the chemical affinity between the micro-structured substrate 3 and the thin layer of polymer 2 being stronger than the chemical affinity between the thin polymer layer and the transfer substrate 1, the thin polymer layer 2 tears, a part 4 remaining attached to the micro-structured substrate 3, the rest 6 leaving with the transfer substrate 1. The areas of the thin layer of polymer 2 which were not in contact with the micro-structured substrate 3 during the second step thus remain as residues 6 on the transfer substrate 1. The assembly joint 4 is thus formed by the zones of the layer remaining polymer on the micro-structured substrate 3.
  • the second step requires no alignment, the micro-structured substrate 3 itself defining the contact areas with the layer 2.
  • the toughness of the thin polymer layer 2 must be very low. The tenacity can be reduced in particular by plasma oxidation preceding the second step (FIG. 2).
  • the method described above allows the formation of an assembly joint 4 conforming to the micro-structured substrate 3 to be connected or assembled, without leaving a dead space and without adding material above cavities 5 formed in the substrate. micro-structured 3.
  • the surface of the joint 4 in contact with the materials (fluids, liquids, etc. ..) contained in the cavities 5 is minimized, which allows to minimize the possible interaction between the material of the assembly joint 4 and the materials contained in the cavities 5.
  • the biological compatibility of the component is thus optimized.
  • This method allows simultaneous formation of a multitude of assembly micro-joints, each of which can be very small ( ⁇ 20 ⁇ m), on micro-structured substrates of large area (treatment of a complete wafer), the micro-substrate structured delimiting itself the joint assembly.
  • the process is fast, inexpensive and requires no alignment for joint formation.
  • performing the third step is facilitated by the use of a flexible transfer substrate that can be removed by one end (Figure 4). This avoids the use of excessive force that can damage the component.
  • a complementary element 7 can be fixed on the micro-structured substrate 3 by means of the joint 4, possibly reversibly, by keeping the complementary element 7 by a device (not shown) providing contact intimate with the joint assembly 4. It is also possible to fix the complementary element 7 irreversibly on the micro-structured substrate 3 by adding one or more steps of chemical activation of the joint 4 and / or the complementary element 7, for example by plasma oxidation (FIG. 5).
  • the micro-structured substrate 3 comprises a support zone 8 serving to support the transfer substrate 1 during the second step in the case where zones intended to define the joint joint 4 are relatively distant from each other.
  • the bearing zones 8 thus prevent the polymer thin film 2 from sticking to lower surfaces 9 of the micro-structured substrate 3 between two zones defining the jointing joint, while ensuring the parallelism between the transfer substrate and the the micro-structured substrate during the second step.
  • the complementary element 7 is a cover 7 closing the cavities 5 of the microstructured substrate 3.
  • complementary element is constituted by a capillary 10 or a matrix of capillaries integral with each other.
  • the complementary element 7 is another micro-structured substrate.
  • the transfer substrate is a micro-structured substrate 11, making it possible to avoid the contact of the thin polymer layer 2 on certain zones 12 of the surface of the micro-structured substrate. 3.
  • the formation of such a microstructured transfer substrate 11 can be made by molding for example.
  • a micro-structured transfer substrate 11 requires alignment with the micro-structured substrate 3 during the second process step, making the process more complicated.
  • the material of the joining joint will be selected from thermo-hard resins, elastomers or elastomeric thermoplastics meeting the following criteria:
  • PDMS polydimethylsiloxane
  • rank Sylgard ® 184 Dow Corning ® is particularly suitable, thanks to its optical qualities and biological compatibility.
  • Dow Corning ® Sylgard ® 184 Grade PDMS can be activated with low energy oxygen plasma
  • the material of the transfer substrate is preferably chosen so as to form covalent bonds (free methacryl groups, for example, which bind to the methacryl groups of the PDMS of the thin layer) with the material of the jointing joint and for its flexibility. For this reason, a preferred choice is a PDMS transfer substrate, freshly made to avoid storage-related dusting problems, since PDMS is very dust-hungry.
  • the thin layer of PDMS is preferentially heat-cured to save time (4 hours at 60 °).
  • the use of a spinner makes it possible to choose the thickness of the joint (typically between a few micrometers and 50 ⁇ m).
  • the material of the micro-structured substrate to be assembled or connected, or at least of the surfaces dedicated to the formation of the joint, must be able to be activated to form covalent bonds with said jointing joint. Similarly, covalent bonds can be made between said seal and the complementary element. Under these conditions, the assembled final component can be fluid tight.
  • the micro-structured substrate In the manufacture of enzymatic digestion reactors on silicon, the micro-structured substrate consists of channels several millimeters long and 1 mm wide, in which are milled 5 ⁇ m or 10 ⁇ m diameter column matrices (several millions of columns). This makes it possible to increase the surface / volume ratio of said reactors, the enzymatic digestion reaction taking place between wall-grafted enzymes and proteins carried in these reactors.
  • the present invention has notably allowed the formation of an assembly joint on very small patterns (square columns of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Le procédé de réalisation d'un composant comportant un micro-joint comporte une première étape de dépôt d'une couche de polymère (2) destinée à constituer un joint d'assemblage (4) sur un substrat de transfert (1), une seconde étape de mise en contact de la couche de polymère avec un substrat micro-structuré (3) et une troisième étape de retrait du substrat de transfert. Grâce à la différence de l'affinité chimique entre la couche de polymère (2) et le substrat de transfert (1) d'une part et l'affinité chimique entre la couche de polymère (2) et le substrat micro-structuré d'autre part, les zones (4) de la couche de polymère, qui sont en contact avec le substrat micro-structuré (3) pendant la seconde étape, restent sur le substrat micro-structuré après la troisième étape. Ces zones constituent le joint d'assemblage.

Description

Procédé de réalisation d'un composant comportant un micro-joint et composant réalisé par ce procédé
Domaine technique de l'invention
L'invention concerne un procédé de réalisation d'un composant, comportant un substrat micro-structuré et un élément complémentaire assemblés au moyen d'un joint d'assemblage. Elle concerne également un composant réalisé par ce procédé.
État de la technique
La réalisation de composants micro-structurés, notamment les dispositifs micro- fluidiques (bio-puces, « lab-on-chip », etc..) ou micro-mécaniques (MEMS, OEMS, etc.), implique généralement la micro-structuration en surface ou en volume d'au moins un substrat où sont créés des espaces libres qui permettent la circulation ou le stockage de fluides. Les cavités et canaux ainsi créés sont ouverts sur au moins un côté et nécessitent donc d'être connectés ou assemblés à une autre structure ( capot ouvert ou fermé, capillaires, autre substrat micro-fluidique...).
L'assemblage de composants micro-structurés nécessite des joints d'assemblage et des joints d'etancheité éventuellement micro-structurés. Or, la manipulation et le positionnement de joints micro-structurés est très difficile. Il existe des techniques utilisant en particulier le Polydiméthylsiloxane comme joint d'assemblage, avec des méthodes complexes pour définir la surface du joint. Il existe d'autres techniques d'assemblage de substrats dont les surfaces d'assemblage peuvent être localement très petites, mais ces techniques nécessitent des températures élevées ou des préparations chimiques limitant la possibilité de fonctionnaliser les composants à assembler (par exemple par greffage biologique) et sont limitatives dans le choix des matériaux. Dans le domaine de l'assemblage des polymères, la soudure thermique limite elle aussi le choix des matériaux. L'utilisation de films adhésifs pré-encollés présente l'inconvénient de présence de colle au contact de fluides à manipuler et pose des problèmes de compatibilité biologique.
Les techniques d'encollage plus classiques (distribution de colle par seringue, tampographie, rouleaux encolleurs, sérigraphie), outre les problèmes liés à la polymérisation de colles liquides en présence d'espèces biologiques, s'avèrent inadaptées à l'assemblage de micro-structures présentant des surfaces d'assemblage très petites (<20μm).
Ainsi, les techniques d'assemblage connues posent des problèmes de compatibilité biologique et/ou sont complexes, ce qui limite les possibilités d'application. De plus, certaines techniques ne permettent pas un assemblage réversible de deux composants.
Objet de l'invention
L'invention a pour but de remédier à ces inconvénients et, plus particulièrement, de proposer un procédé de fabrication de composants micro-structurés, minimisant les problèmes de compatibilité biologique, tout en réduisant la complexité et le coût de fabrication. Selon l'invention, ce but est atteint par le fait que le procédé comporte la fabrication du joint d'assemblage par :
- une première étape, de dépôt sur un substrat de transfert d'une couche mince d'un polymère, le substrat de transfert et la couche mince de polymère ayant une affinité chimique prédéterminée,
- une seconde étape, de mise en contact du substrat micro-structuré et de la couche mince de polymère, le substrat micro-structuré et la couche mince de polymère ayant une affinité chimique plus forte que l'affinité chimique entre le substrat de transfert et la couche mince de polymère, - une troisième étape, de retrait du substrat de transfert, de manière à ce que le joint d'assemblage soit formé par les zones de la couche mince de polymère venant en contact avec le substrat micro-structuré au cours de la seconde étape.
Selon un mode de réalisation préférentiel, le substrat de transfert est flexible et le retrait du substrat de transfert est effectué en le tirant par une extrémité.
Selon un développement de l'invention, le procédé comporte une étape d'activation chimique de l'élément complémentaire et/ou, après la troisième étape, une étape d'activation chimique du joint d'assemblage disposé sur le substrat micro-structuré. Ainsi, un assemblage irréversible du substrat micro- structuré et de l'élément complémentaire peut être réalisé.
L'invention a également pour objet un composant, réalisé par le procédé ci- dessus, et comportant un élément complémentaire assemblé au substrat micro- structuré par le joint d'assemblage, l'élément étant un capot, un autre substrat micro-structuré, un capillaire ou une matrice de capillaires solidaires entre eux. Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
Les figures 1 à 6 représentent différentes étapes d'un mode particulier de réalisation d'un procédé selon l'invention.
La figure 7 représente un mode particulier de réalisation de l'invention avec des zones d'appui sur le substrat micro-structuré.
La figure 8 représente un mode particulier de réalisation d'un composant selon l'invention, dans lequel l'élément complémentaire est un capillaire. La figure 9 représente une variation de réalisation d'un substrat de transfert.
Description de modes particuliers de réalisation.
Dans une première étape du procédé représenté aux figures 1 à 6, une couche mince de polymère 2 est déposée sur un substrat de transfert 1. Une technique de dépôt typiquement utilisée est l'étalement à la tournette. Le polymère de la couche mince 2 et le matériau du substrat de transfert 1 doivent avoir une affinité chimique permettant les seconde et troisième étapes décrites ci- dessous. Dans un mode de réalisation préféré, les matériaux du substrat de transfert 1 et de la couche mince de polymère 2 sont tous deux du Polydiméthylsiloxane (PDMS). Une propriété avantageuse d'un substrat de transfert 1 en PDMS est sa flexibilité. Selon le polymère utilisé pour la couche mince 2 et la technique de dépôt, une étape supplémentaire intermédiaire de réticulation, par exemple par échauffement, peut être rajoutée juste après le dépôt.
La seconde étape (figure 3) consiste à mettre en contact la couche mince de polymère 2, portée par le substrat de transfert 1 , avec le substrat micro-structuré
3. L'affinité chimique entre la couche mince de polymère 2 et le substrat micro- structuré 3 doit être plus forte que l'affinité chimique entre la couche mince de polymère 2 et le substrat de transfert 1. L'adaptation de l'affinité chimique entre la couche mince de polymère 2 et le substrat micro-structuré 3 peut être effectuée, avant la seconde étape, par des étapes supplémentaires intermédiaires d'activation chimique. Comme représenté à la figure 2, les étapes d'activation chimique peuvent s'appliquer à la couche de polymère 2 et/ou au substrat micro-structuré 3. Un moyen d'activation chimique utilisé est un plasma d'oxygène. A la figure 2, une oxydation plasma simultanée de la couche mince de polymère 2 et du substrat micro-structuré 3 est représentée. De plus, la ténacité de la couche mince de polymère 2 diminue après l'oxydation plasma, facilitant la troisième étape du procédé décrite ci-dessous. La couche mince de polymère peut être irréversiblement collée au substrat micro-structuré en adaptant de manière appropriée l'affinité chimique par des étapes d'activation chimique avant la seconde étape (figure 2).
Dans une troisième étape, le substrat de transfert 1 est retiré. Seules les zones de la couche mince de polymère 2 en contact avec le substrat micro-structuré 3 pendant la seconde étape restent sur le substrat micro-structuré 3. En effet, l'affinité chimique entre le substrat micro-structuré 3 et la couche mince de polymère 2 étant plus forte que l'affinité chimique entre la couche mince de polymère et le substrat de transfert 1 , la couche mince de polymère 2 se déchire, une partie 4 restant fixée au substrat micro-structuré 3, le reste 6 partant avec le substrat de transfert 1. Les zones de la couche mince de polymère 2 qui n'étaient pas en contact avec le substrat micro-structuré 3 lors de la seconde étape restent ainsi en tant que résidus 6 sur le substrat de transfert 1. Le joint d'assemblage 4 est ainsi formé par les zones de la couche mince de polymère 2 restant sur le substrat micro-structuré 3. Dans le cas d'un substrat de transfert 1 plan, la seconde étape ne nécessite aucun alignement, le substrat micro-structuré 3 définissant lui-même les zones de contact avec la couche mince de polymère 2. Pour que la couche mince de polymère se déchire au bord des motifs usinés dans le substrat micro-structuré 3, la ténacité de la couche mince de polymère 2 doit être très faible. La ténacité peut être diminuée notamment par une oxydation plasma précédant la seconde étape (figure 2).
Le procédé décrit ci-dessus permet la formation d'un joint d'assemblage 4 conforme au substrat micro-structuré 3 à connecter ou à assembler, sans laisser de volume mort et sans apport de matière au-dessus de cavités 5 formées dans le substrat micro-structuré 3. La surface du joint d'assemblage 4 en contact avec les matériaux (fluides, liquides, etc..) contenus dans les cavités 5 est donc minimisée, ce qui permet d'atténuer au maximum une éventuelle interaction entre le matériau du joint d'assemblage 4 et les matériaux contenus dans les cavités 5. La compatibilité biologique du composant est ainsi optimisée.
Ce procédé permet une formation simultanée d'une multitude de micro-joints d'assemblage, chacun pouvant être très petit (<20μm), sur des substrats micro- structurés de grande surface (traitement d'une plaquette complète), le substrat micro-structuré délimitant lui-même le joint d'assemblage. Le procédé est rapide, peu coûteux et ne nécessite aucun alignement pour la formation des joints.
Dans un mode de réalisation préférentiel, la réalisation de la troisième étape est facilitée par l'utilisation d'un substrat de transfert flexible qui peut être retiré par une extrémité (figure 4). Ceci permet d'éviter l'utilisation d'une force trop importante pouvant endommager le composant.
Après la troisième étape, un élément complémentaire 7 peut être fixé sur le substrat micro-structuré 3 au moyen du joint d'assemblage 4, éventuellement de manière réversible, en maintenant l'élément complémentaire 7 par un dispositif (non représenté) assurant un contact intime avec le joint d'assemblage 4. Il est aussi possible de fixer l'élément complémentaire 7 de manière irréversible sur le substrat micro-structuré 3 en rajoutant une ou plusieurs étapes d'activation chimique du joint d'assemblage 4 et/ou de l'élément complémentaire 7, par exemple par oxydation plasma (figure 5). Un composant ainsi obtenu, comportant un substrat micro-structuré 3 et un élément complémentaire 7 assemblés au moyen d'un joint d'assemblage 4, est représenté à la figure 6.
Dans un mode de réalisation particulier, représenté à la figure 7, le substrat micro-structuré 3 comporte une zone d'appui 8 servant d'appui au substrat de transfert 1 au cours de la seconde étape dans le cas où des zones destinées à définir le joint d'assemblage 4 se trouvent relativement distantes l'une de l'autre. Les zones d'appui 8 empêchent ainsi un collage de la couche mince de polymère 2 sur des surfaces inférieures 9 du substrat micro-structuré 3 comprises entre deux zones définissant le joint d'assemblage, tout en assurant le parallélisme entre le substrat de transfert et le substrat micro-structuré pendant la seconde étape.
Dans la variante de réalisation représentée à la figure 6, l'élément complémentaire 7 est un capot 7 fermant les cavités 5 du substrat micro- structuré 3. Selon un autre mode particulier de réalisation de l'invention, représenté à la figure 8, l'élément complémentaire est constitué par un capillaire 10 ou une matrice de capillaires solidaires entre eux. Dans un autre mode de réalisation, l'élément complémentaire 7 est un autre substrat micro-structuré.
Dans un mode de réalisation particulier, représenté à la figure 9, le substrat de transfert est un substrat micro-structuré 11 , permettant d'éviter le contact de la couche mince de polymère 2 sur certaines zones 12 de la surface du substrat micro-structuré 3. La formation d'un tel substrat de transfert micro-stucturé 11 peut être effectué par moulage par exemple. Cependant, contrairement à un substrat de transfert plan, un substrat de transfert micro-structuré 11 nécessite un alignement avec le substrat micro-structuré 3 lors de la seconde étape du procédé, rendant le procédé plus compliqué.
Le matériau du joint d'assemblage sera choisi parmi les résines thermo-dures, les élastomères ou les thermoplastiques élastomères répondant aux critères suivants :
- être suffisamment souple une fois le joint formé pour assurer sa fonction d'etancheité et d'assemblage, permettant par exemple de compenser des défauts de rugosité ou de planéité du substrat micro-structuré (comportement visco-élastique), - former, éventuellement après un traitement adéquat, des liaisons covalentes avec le substrat micro-structuré et le substrat de transfert,
- être peu tenace, éventuellement après un traitement adéquat, pour se déchirer facilement lors du transfert. Les familles de polymères précitées voient leur ténacité diminuer sur une profondeur généralement de 100μm à 150μm après une oxydation plasma. La gamme d'épaisseur du joint décrit étant inférieure, il sera oxydé et donc fragilisé sur toute son épaisseur, favorisant ainsi l'opération de transfert,
- préférentiellement, être disponible sous forme liquide pour pouvoir être étalé à la tournette. Le Polydiméthylsiloxane (PDMS), et plus particulièrement le grade 184 Sylgard® de Dow Corning®, est particulièrement adapté, notamment grâce à ses qualités optiques et de compatibilité biologique. Le PDMS du grade 184 Sylgard® de Dow Corning® peut être activé par un plasma d'oxygène à faible énergie
(création de sites SiOH et OH ; hydroxylation) lui permettant d'être irréversiblement collé au silicium, au verre, à une large gamme de plastiques, à lui-même, etc.. Il est disponible sous forme non réticulée, livré avec un agent durcissant, et donc suffisamment liquide pour être étalé à la tournette. L'hydroxylation de surface pourrait éventuellement être faite en plongeant le polymère choisi dans de l'eau bouillante. Cette voie s'avère cependant moins simple à mettre en œuvre.
Le matériau du substrat de transfert est préférentiellement choisi pour pouvoir former des liaisons covalentes (groupes méthacryl libres par exemple, qui se lient aux groupes méthacryl du PDMS de la couche mince) avec le matériau du joint d'assemblage et pour sa souplesse. Pour cette raison, un choix préférentiel est un substrat de transfert en PDMS, fraîchement fabriqué pour éviter tout problème d'empoussièrement lié au stockage, le PDMS étant très avide de poussière.
La couche mince de PDMS est préférentiellemnt réticulée à chaud pour gagner du temps (4 heures à 60°). L'utilisation d'une tournette permet de choisir l'épaisseur du joint d'assemblage (typiquement entre quelques micromètres et 50μm).
Le matériau du substrat micro-structuré à assembler ou à connecter, ou du moins des surfaces dédiées à la formation du joint d'assemblage, doit pouvoir être activé pour former des liaisons covalentes avec ledit joint d'assemblage. De manière analogue, des liaisons covalentes peuvent être réalisées entre ledit joint et l'élément complémentaire. Dans ces conditions, le composant final assemblé peut être étanche aux fluides.
Dans la fabrication de réacteurs de digestion enzymatique sur silicium, le substrat micro-structuré se compose de canaux longs de plusieurs millimètres et larges de 1 mm, dans lequel sont micro-usinées des matrices de colonnes de 5 μm ou 10 μm de diamètre (plusieurs millions de colonnes). Ceci permet d'augmenter le rapport surface/volume desdits réacteurs, la réaction de digestion enzymatique ayant lieu entre des enzymes greffées aux parois et des protéines véhiculées dans ces réacteurs.
La présente invention, telle que décrite ci-dessus, a notamment permis la formation d'un joint d'assemblage sur des motifs très petits (colonnes carrées de
5 μm de côté et colonnes hexagonales de 10 μm de diamètre), et sur des composants de surface relativement grande (4x2cm2), sans volume mort au- dessus des colonnes, et en minimisant la surface de PDMS en regard des fluides (problèmes d'adsorption des protéines sur le PDMS).

Claims

Revendications
1. Procédé de réalisation d'un composant, comportant un substrat micro- structuré (3) et un élément complémentaire (7, 10) assemblés au moyen d'un joint d'assemblage (4), procédé caractérisé en ce qu'il comporte la fabrication du joint d'assemblage par :
- une première étape, de dépôt sur un substrat de transfert (1 , 11) d'une couche mince d'un polymère (2), le substrat de transfert et la couche mince de polymère ayant une affinité chimique prédéterminée,
- une seconde étape, de mise en contact du substrat micro-structuré (3) et de la couche mince de polymère (2), le substrat micro-structuré et la couche mince de polymère ayant une affinité chimique plus forte que l'affinité chimique entre le substrat de transfert (1 , 11) et la couche mince de polymère, - une troisième étape, de retrait du substrat de transfert (1 , 11), de manière à ce que le joint d'assemblage (4) soit formé par les zones de la couche mince de polymère (2) venant en contact avec le substrat micro-structuré (3) au cours de la seconde étape.
2. Procédé de réalisation selon la revendication 1 , caractérisé en ce qu'il comporte une étape de réticulation de la couche mince de polymère (2) entre les première et seconde étapes.
3. Procédé de réalisation selon l'une des revendications 1 et 2, caractérisé en ce qu'il comporte une étape d'activation chimique de la couche mince de polymère (2) déposée sur le substrat de transfert (1 , 11) entre les première et seconde étapes.
4. Procédé de réalisation selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte une étape d'activation chimique du substrat micro-structuré (3) entre les première et seconde étapes.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le substrat de transfert (1 , 11 ) est flexible et le retrait du substrat de transfert est effectué en le tirant par une extrémité.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le substrat de transfert (1 , 11 ) est en Polydiméthylsiloxane (PDMS).
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte, après la troisième étape, une étape d'activation chimique du joint d'assemblage (4) disposé sur le substrat micro-structuré (3).
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte une étape d'activation chimique de l'élément complémentaire (7, 10).
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le substrat micro-structuré (3) comporte au moins une zone d'appui (8) servant d'appui au substrat de transfert (1 , 11) au cours de la seconde étape.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le substrat de transfert (1) est plan.
11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le substrat de transfert est micro-structuré (11).
12. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que le matériau polymère de la couche mince de polymère (2) est choisi parmi les résines thermo-dures, les élastomères et les thermoplastiques élastomères.
13. Procédé selon la revendication 12, caractérisé en ce que le matériau polymère de la couche mince de polymère (2) est du Polydiméthylsiloxane (PDMS).
14.Composant, réalisé par le procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'élément complémentaire est un capot (7).
15.Composant, réalisé par le procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'élément complémentaire (7) est un autre substrat micro-structuré.
16.Composant, réalisé par le procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'élément complémentaire est un capillaire (10) ou une matrice de capillaires solidaires entre eux.
PCT/FR2003/003288 2002-11-08 2003-11-04 Procede de realisation d'un composant comportant un micro-joint et composant realise par ce procede WO2004043849A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004550736A JP2006505418A (ja) 2002-11-08 2003-11-04 微小接合部付きコンポーネントの製造方法及び該製造方法により製造されたコンポーネント
EP03767900A EP1558518A2 (fr) 2002-11-08 2003-11-04 Procede de realisation d'un composant comportant un micro-joint et composant realise par ce procede
US10/533,296 US20060048885A1 (en) 2002-11-08 2003-11-04 Method for reproduction of a compnent with a micro-joint and component produced by said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/13998 2002-11-08
FR0213998A FR2846906B1 (fr) 2002-11-08 2002-11-08 Procede de realisation d'un composant comportant un micro-joint et composant realise par ce procede

Publications (2)

Publication Number Publication Date
WO2004043849A2 true WO2004043849A2 (fr) 2004-05-27
WO2004043849A3 WO2004043849A3 (fr) 2004-07-08

Family

ID=32116466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003288 WO2004043849A2 (fr) 2002-11-08 2003-11-04 Procede de realisation d'un composant comportant un micro-joint et composant realise par ce procede

Country Status (5)

Country Link
US (1) US20060048885A1 (fr)
EP (1) EP1558518A2 (fr)
JP (1) JP2006505418A (fr)
FR (1) FR2846906B1 (fr)
WO (1) WO2004043849A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262213A (ja) * 1985-09-13 1987-03-18 Canon Electronics Inc エンコ−ダ装置
EP1652579A1 (fr) * 2004-10-28 2006-05-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Systèmes fluidiques comprenant un capillaire et procédé pour leur fabrication.
CN103542956A (zh) * 2013-09-29 2014-01-29 柳州市宏亿科技有限公司 一种Zigbee的温度传感器制作方法
JP2017034261A (ja) * 2004-06-04 2017-02-09 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 印刷可能半導体素子を製造して組み立てるための方法及びデバイス
US10204864B2 (en) 2004-06-04 2019-02-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061025A2 (fr) * 2004-12-09 2006-06-15 Inverness Medical Switzerland Gmbh Dispositif microfluidique et son procede de production
US7473616B2 (en) * 2004-12-23 2009-01-06 Miradia, Inc. Method and system for wafer bonding of structured substrates for electro-mechanical devices
WO2006074665A2 (fr) * 2005-01-12 2006-07-20 Inverness Medical Switzerland Gmbh Procede permettant de produire un dispositif microfluidique et dispositifs microfluidiques correspondants
TWI306490B (en) * 2006-02-27 2009-02-21 Nat Applied Res Laboratoires Apparatus for driving microfluid driving the method thereof
EP2101917A1 (fr) 2007-01-10 2009-09-23 Scandinavian Micro Biodevices A/S Dispositif et systèmes microfluidiques et méthode d'exécution d'un essai
KR20090117758A (ko) * 2007-03-02 2009-11-12 코니카 미놀타 옵토 인코포레이티드 마이크로칩의 제조 방법
US9195004B2 (en) * 2008-01-04 2015-11-24 Massachusetts Institute Of Technology Method and apparatus for forming structures of polymer nanobeads
US8232136B2 (en) * 2008-08-07 2012-07-31 Massachusetts Institute Of Technology Method and apparatus for simultaneous lateral and vertical patterning of molecular organic films
WO2010028390A2 (fr) * 2008-09-08 2010-03-11 Massachusetts Institute Of Technology Procédé et appareil permettant une action laser super-rayonnante dans des microcavités semi-conductrices organiques ayant une épaisseur d'une demi-longueur d'onde
US8739390B2 (en) * 2008-12-16 2014-06-03 Massachusetts Institute Of Technology Method for microcontact printing of MEMS
US8963262B2 (en) 2009-08-07 2015-02-24 Massachusettes Institute Of Technology Method and apparatus for forming MEMS device
KR101942967B1 (ko) * 2012-12-12 2019-01-28 삼성전자주식회사 실록산계 단량체를 이용한 접합 기판 구조체 및 그 제조방법
US9105800B2 (en) * 2013-12-09 2015-08-11 Raytheon Company Method of forming deposited patterns on a surface
US10986435B2 (en) 2017-04-18 2021-04-20 Massachusetts Institute Of Technology Electrostatic acoustic transducer utilized in a hearing aid or audio processing system
ES2775649B2 (es) * 2018-07-24 2020-12-01 Consejo Superior Investigacion Procedimiento de transferencia de motivos micro- y/o nano- estructurados a superficies arbitrarias
FR3103805A1 (fr) * 2019-12-02 2021-06-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de depot localise d’un materiau sur un element
CN111250185B (zh) * 2020-02-21 2022-11-04 京东方科技集团股份有限公司 微流控芯片的制备方法及制备装置
CN114308161B (zh) * 2021-12-31 2023-07-25 上海中航光电子有限公司 微流控芯片及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029400A1 (fr) * 1993-06-15 1994-12-22 Pharmacia Biotech Ab Procede de production de structures a microcanaux/microcavites
WO2003055790A1 (fr) * 2001-12-31 2003-07-10 Gyros Ab Dispositif microfluidique et son procede de fabrication

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456570A (en) * 1982-07-26 1984-06-26 Ethyl Corporation Treatment of perforated film
US5147397A (en) * 1990-07-03 1992-09-15 Allergan, Inc. Intraocular lens and method for making same
JP3612945B2 (ja) * 1997-07-08 2005-01-26 富士ゼロックス株式会社 微小構造体の製造方法
JP2002212529A (ja) * 2000-06-28 2002-07-31 Sumitomo Chem Co Ltd 接着シート
JP2002144300A (ja) * 2000-07-27 2002-05-21 Toshiba Tec Corp パイプジョイント及びその作製方法並びにそれを用いた流体デバイス
AU1290402A (en) * 2000-11-02 2002-05-15 Biacore Ab Valve integrally associated with microfluidic liquid transport assembly
DE10056908A1 (de) * 2000-11-16 2002-05-23 Merck Patent Gmbh Verfahren zum Verbinden von Kunststoffteilen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029400A1 (fr) * 1993-06-15 1994-12-22 Pharmacia Biotech Ab Procede de production de structures a microcanaux/microcavites
WO2003055790A1 (fr) * 2001-12-31 2003-07-10 Gyros Ab Dispositif microfluidique et son procede de fabrication

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BECKER H, G[RTNER C: "Polymer microfabrication methods for microfluidic analytical applications" ELECTROPHORESIS, vol. 21, no. 1, 1 janvier 2000 (2000-01-01), pages 12-26, XP002278131 *
H. DREUTH, C. HEIDEN: "A method for local application of thin organic adhesive films on micropatterned structures" MATERIALS SCIENCE AND ENGINEERING: C, vol. 5, no. 3-4, 1 février 1998 (1998-02-01), pages 227-231, XP002278129 *
J. COOPER MC DONALD, D.C. DUFFY, J. R. ANDERSON, D.T. CHIU, H. WU, O. J. A. SCHUELLER, G. M. WHITESIDES: "Fabrication of microfluidic systems in poly(dimethylsiloxane)" ELECTROPHORESIS, vol. 21, no. 1, 1 janvier 2000 (2000-01-01), pages 27-40, XP002278130 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262213A (ja) * 1985-09-13 1987-03-18 Canon Electronics Inc エンコ−ダ装置
JP2017034261A (ja) * 2004-06-04 2017-02-09 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 印刷可能半導体素子を製造して組み立てるための方法及びデバイス
US9761444B2 (en) 2004-06-04 2017-09-12 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9768086B2 (en) 2004-06-04 2017-09-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US10204864B2 (en) 2004-06-04 2019-02-12 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US10374072B2 (en) 2004-06-04 2019-08-06 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US11088268B2 (en) 2004-06-04 2021-08-10 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US11456258B2 (en) 2004-06-04 2022-09-27 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
EP1652579A1 (fr) * 2004-10-28 2006-05-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Systèmes fluidiques comprenant un capillaire et procédé pour leur fabrication.
CN103542956A (zh) * 2013-09-29 2014-01-29 柳州市宏亿科技有限公司 一种Zigbee的温度传感器制作方法

Also Published As

Publication number Publication date
JP2006505418A (ja) 2006-02-16
US20060048885A1 (en) 2006-03-09
EP1558518A2 (fr) 2005-08-03
FR2846906A1 (fr) 2004-05-14
WO2004043849A3 (fr) 2004-07-08
FR2846906B1 (fr) 2005-08-05

Similar Documents

Publication Publication Date Title
WO2004043849A2 (fr) Procede de realisation d&#39;un composant comportant un micro-joint et composant realise par ce procede
EP0950257B1 (fr) Procede de fabrication d&#39;un film mince sur un support
EP1299905B1 (fr) Procede de decoupage d&#39;un bloc de materiau et de formation d&#39;un film mince
WO2007060314A1 (fr) Procede de fabrication d’un dispositif electronique flexible du type ecran comportant une pluralite de composants en couches minces
FR2797347A1 (fr) Procede de transfert d&#39;une couche mince comportant une etape de surfragililisation
WO2005019094A1 (fr) Structure empilée, et procédé pour la fabriquer
EP1900020A1 (fr) Procede d&#39;assemblage de substrats par depot d&#39;une couche mince de collage d&#39;oxyde ou de nitrure
EP2842155B1 (fr) Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif
EP1493181A2 (fr) Procede de transfert d&#39;elements de substrat a substrat
FR2946658A1 (fr) Dispositif microfluidique comportant deux couches hydrophobes assemblees l&#39;une a l&#39;autre et procede d&#39;assemblage
FR2961515A1 (fr) Procede de realisation d&#39;une couche mince de silicium monocristallin sur une couche de polymere
CA2799160A1 (fr) Procede de fabrication d&#39;une puce microfluidique, puce et plaque associees
FR3109016A1 (fr) Structure demontable et procede de transfert d’une couche mettant en œuvre ladite structure demontable
WO2002071475A1 (fr) Procede de fabrication de couches minces sur un support specifique et une application
EP3295473B1 (fr) Procede de collage direct de substrats avec amincissement des bords d&#39;au moins un des deux substrats
WO2023135181A1 (fr) Procédé de fabrication d&#39;un substrat donneur pour le transfert d&#39;une couche piézoélectrique et procédé de transfert d&#39;une couche piézoélectrique sur un substrat support
EP4088309B1 (fr) Procede d&#39;assemblage de deux substrats semi-conducteurs
FR2939151A1 (fr) Lingots formes d&#39;au moins deux lingots elementaires, un procede de fabrication et une plaquette qui en est issue
FR2863405A1 (fr) Collage moleculaire de composants microelectroniques sur un film polymere
WO2023135179A1 (fr) Procédé de fabrication d&#39;un substrat donneur pour le transfert d&#39;une couche piézoélectrique et procédé de transfert d&#39;une couche piézoélectrique sur un substrat support
FR3084204A1 (fr) Procede d&#39;integration de structures dans un support et dispositif associe
FR3135728A1 (fr) Procede de collage temporaire
FR2894067A1 (fr) Procede de collage par adhesion moleculaire
EP1476755A1 (fr) Materiau composite pour microsysteme d&#39;analyse biologique ou biochimique
WO2020188168A1 (fr) Procede de transfert d&#39;une couche utile sur un substrat support

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003767900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006048885

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533296

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004550736

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003767900

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10533296

Country of ref document: US