WO2004042859A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2004042859A1
WO2004042859A1 PCT/JP2003/014153 JP0314153W WO2004042859A1 WO 2004042859 A1 WO2004042859 A1 WO 2004042859A1 JP 0314153 W JP0314153 W JP 0314153W WO 2004042859 A1 WO2004042859 A1 WO 2004042859A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
aqueous electrolyte
secondary battery
Prior art date
Application number
PCT/JP2003/014153
Other languages
English (en)
French (fr)
Inventor
Nao Shimura
Koshin Tanaka
Masahiro Sekino
Asako Satoh
Shusuke Inada
Akira Yajima
Masayuki Oguchi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2004042859A1 publication Critical patent/WO2004042859A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is directed to a non-aqueous electrolyte secondary battery ⁇
  • mobile body ii is machine, Ming notebook computer ⁇ palm top computer, integrated video power camera, portable CD (
  • Batteries that are widely used as power supplies for these electronic devices include primary batteries such as Al-Remigan batteries, secondary batteries such as nickel-cadmium batteries, and lead-acid batteries.
  • primary batteries such as Al-Remigan batteries
  • secondary batteries such as nickel-cadmium batteries
  • lead-acid batteries lead-acid batteries.
  • non-aqueous electrolyte primary batteries that use lithium composite oxide for the positive electrode and a carbonaceous material that can occlude and release V-thion are used for the negative electrode are smaller, lighter, have higher cell voltages, and have higher energy densities. It is drawing attention that it can be obtained.
  • Japanese Patent Laid-Open Publication No. 2001-166 7761 discloses that the basic composition is L i
  • Me O 2 (where Me is one or more selected from Ni and Co forces), and the crystal structure is a layered rock salt structure, which can be obtained from X-ray diffraction analysis using c UKa line ( The relationship of ⁇ ⁇ 04) ⁇ ⁇ (003) between the (104) half-width of the diffraction peak on the plane] 3 (104) and the (half-width of the diffraction peak on the ( 03 ) plane ) 3 ⁇ 003 ) Lithium transition metal complex oxides that hold are described.
  • This publication states that if the value of I (003) ⁇ I (104) exceeds 4, the primary particles are in a strongly oriented state. It states that lithium secondary batteries with low power characteristics are not absorbed and desorbed smoothly at the positive electrode, and thus have low power characteristics.
  • Japanese Patent Application Laid-Open No. 11-145509 discloses that S 2 is measured by X-ray diffraction using Li CoO 2 as an active material and using Cu ⁇ ⁇ as a radiation source.
  • a non-aqueous electrolyte secondary battery including a positive electrode plate having an intensity ratio (I 003 / I 104) to the intensity (1 104) of 2 or more and less than 5 is described.
  • a battery having an intensity ratio (I 003 / I 104) of 5 or more has a strong orientation of the (03) plane of the electrode plate itself, which hinders diffusion of ions and is inferior in rate discharge performance. This is described.
  • the present invention has a high state of charge
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which swelling when stored under a fox ring is suppressed.
  • a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
  • the iij positive electrode active material has a particle diameter (D 10) at a volume cumulative frequency of 10% (D 10) of 4.5 ⁇ m or less, a peak intensity ratio satisfying the following formula (A), and lithium and cobalt.
  • a lithium composite oxide powder whose molar ratio satisfies the following formula (B);
  • a non-aqueous electrolyte secondary battery wherein the non-aqueous electrolyte contains a snorretone compound having at least one double bond in the ring. (I 003 / I 104) ⁇ 5 (A)
  • I is the peak intensity (cps) of the ( 03 ) plane in the powder X-ray diffraction of the lithium composite oxide powder
  • IJ04 is the peak intensity of the ( 104 ) plane in the powder X-ray diffraction.
  • X Li is the number of moles of lithium in the lithium composite oxide powder, and is X c .
  • a non-aqueous electrolyte secondary battery including a positive electrode including positive electrode active material particles, a negative electrode, and a non-aqueous electrolyte,
  • the positive electrode active material particles contain more than 50% by weight of lithium cobalt-containing composite oxide particles having a peak intensity ratio satisfying the following formula (C),
  • the particle diameter (D 10) of the positive electrode active material particles having a volume cumulative frequency of 10% is 4.5 / im or less, and the molar ratio of lithium to cobalt in the positive electrode active material particles is represented by the following formula (D).
  • a non-aqueous electrolyte secondary battery in which the non-aqueous electrolyte contains a sulfonate compound having at least one double bond in a ring.
  • I is the peak intensity (cps) of the (03) plane in the powder X-ray diffraction of the lithium cobalt-containing composite oxide particles.
  • I 04 is Ri peak intensity (cps) der of (1 0 4) plane in the powder X-ray diffraction,
  • Y L i is the positive electrode active material particles In the number of moles of Li Chiumu in,
  • Y C o is the positive active moles der this Honoré Bok in material particles
  • FIG. 1 is a perspective view showing a thin non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • Fig. 2 is a partial cross-sectional view of the thin non-aqueous electrolyte secondary battery of Fig. 1 taken along line ⁇ - ⁇ .
  • FIG. 3 is a partially cutaway perspective view showing a rectangular non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 4 is a partial sectional view showing a cylindrical non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 5 is a characteristic diagram showing 1 HNMR spectrum of PRS contained in the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery of Example 1.
  • a first nonaqueous electrolyte secondary battery according to the present invention is a nonaqueous electrolyte-secondary battery comprising: a positive electrode containing a positive electrode active material; a negative electrode; and a nonaqueous electrolyte.
  • the positive electrode active material has a particle size (D 10) at a volume cumulative frequency of 10% (D 10) of 4.5 mJ3 ⁇ 4F, a peak intensity ratio that satisfies the following formula (A), and a ratio of lithium and covanolate.
  • Monole! Containing a lithium composite oxide powder satisfying the following formula (B),
  • the non-aqueous electrolyte contains a snorethone compound having at least one double bond in the ring. (I 003 / I 104)> 5 (A)
  • I i 04 is in the powder X-ray diffraction (1 0 4) planes of It is the peak intensity (cps)
  • X Li is the number of moles of lithium in the lithium composite oxide powder
  • X Co is the monolet number of covanolate in the lithium composite oxide powder.
  • the above-mentioned lithium composite oxide powder has high crystallinity, and a structural phase transition from hexagonal to monoclinic occurs even when the positive electrode potential reaches a high potential (around 4.2 V) due to charging. It is difficult to charge and discharge very efficiently.
  • Those that maintain a highly symmetrical hexagonal state at a high positive electrode potential are more active than those that have undergone a monoclinic phase transition due to an increase in the positive electrode potential. Oxides in such a highly active state can quickly react with the sluton compound in the non-aqueous electrolyte in a high-temperature environment.
  • the positive electrode containing the above-mentioned lithium composite oxide powder can form a protective film of a stainless steel compound on the surface thereof quickly when stored in a charged state in a high-temperature environment. It is possible to suppress the oxidative decomposition reaction of the water electrolyte. As a result, the amount of gas generated when the secondary battery is stored in a high temperature environment in a charged state can be reduced, so that the battery can be prevented from swelling.
  • Positive electrode includes a current collector and a positive electrode layer supported on one or both surfaces of the current collector and containing the positive electrode active material, a binder, and a conductive agent.
  • the reason for setting the molar ratio (XLi / XCo) of lithium (XLi) and cobalt (XCo) in the lithium composite oxide to 1.02 or more will be described.
  • the lithium composite oxide is synthesized, for example, by mixing compounds (for example, oxides and hydroxides) of the respective constituent elements and then firing the mixture in air or an oxygen atmosphere.
  • the molar ratio ( XLl / XCo) is less than 1.02, since the grain growth rate during firing is low, and the crystallinity and crystal orientation are low, the positive electrode potential due to charging is low. When a high potential is reached, a structural phase transition reaction is likely to occur.
  • the upper limit of the mole ratio ( XLi / XCo) is preferably set to 1.1 for the following reason.
  • Molar ratio (X Li ZX Co) is 1 - when one good Ri have large potential forces Li melted during the positive active substances firing does not proceed completely L i are still present is increased. If this residual alkali content is large, it causes gelling of the binder and causes trouble during coating. A more preferable upper limit of the molar ratio (XLiZXCo) is 1.08.
  • the V-composite oxide may contain elements other than lithium and cobalt.
  • Such elements include, for example, N i, M n, A l, S n, F e, C u, C r, Z n, M g, S i, P, F, C1, B etc. can be mentioned.
  • the kind of additive element may be one kind or two or more kinds.
  • the lithium composite oxide accounts for 50% or more of the positive electrode active material.
  • a more preferred range for ( 1 003 I 104) is 7 or more.
  • those having a peak intensity ratio greater than 50,000 and those having no peak derived from the (104) plane may have a crystal structure that does not occlude lithium. For this reason, it is desirable to set the upper limit of the peak intensity ratio to 500.
  • the lithium composite oxide powder containing ( XLi / XCo ) power S i .02 or more has few secondary agglomerated particles and is substantially composed of single particles. Therefore, if the D 10 force is larger than S 4.5 ⁇ , the reaction area of the positive electrode with the non-aqueous electrolyte decreases, and the rate of formation of the protective film on the positive electrode surface decreases. The amount of gas generated when stored in a high temperature environment in a charged state may increase. In addition, since the bulk density of the lithium composite oxide powder is smaller, the energy density D 10 of the positive electrode may decrease.
  • D 10 is 0.
  • Those with a particle size of less than 1 ⁇ m have a high ratio of particles with low crystallinity and orientation due to insufficient grain growth during firing.
  • the lower limit of D 10 is 0.1 ⁇ m (more preferred) because the amount of gas generated during storage may be large.
  • Examples of the conductive agent include, for example, acetylene black, carbon black, and graphite.
  • IfBifo adhesive has a function of holding the active material on the current collector and connecting the active materials to each other.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and poly (tenoresanolefonethylene).
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM polyethylene-gen heavy A body
  • SBR styrene-gen rubber
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder is as follows: positive electrode active material: 80 to 95% by weight; conductive agent: 3 to 20% by weight;
  • it is in the range of 7% by weight.
  • a conductive substrate having a porous structure may be used as the current collector.
  • a conductive substrate having a haha hole may be used.
  • the conductive substrate may be, for example, aluminum or aluminum. It can be formed from stainless steel or nickel.
  • a conductive agent and a binder are suspended in a suitable solvent in a positive electrode active material, and a suspension of the positive electrode is dried on a current collector and dried. It is manufactured by making it into a thin plate shape.
  • the negative electrode includes a current collector and a negative electrode layer supported on one or both surfaces of the current collector.
  • the negative electrode layer contains a carbonaceous material that occludes and releases lithium ions and a binder.
  • the carbonaceous material examples include a graphite material such as graphite, coke, carbon fiber, spherical carbon, pyrolysis gaseous carbonaceous material, and a resin fired body; or a carbonaceous material; a thermosetting resin.
  • a graphite material such as graphite, coke, carbon fiber, spherical carbon, pyrolysis gaseous carbonaceous material, and a resin fired body
  • a carbonaceous material a thermosetting resin.
  • Isotropic pitch mesophase pitch-based carbon, mesophase pitch-based carbon fiber, mesophase spheres, etc.
  • mesophase pitch-based carbon fiber has a capacity / charge / discharge cycle
  • a graphitic material having graphite crystals in which the plane distance d of the (002) plane is 0.334 nm or less.
  • a nonaqueous electrolyte secondary battery provided with a negative electrode containing such a graphitic material as a carbonaceous material can greatly improve the battery capacity and large-current discharge characteristics. More preferably, the plane distance d002 is 0.337 nm or less.
  • binder for example, polytetrafluoroethylene
  • PTFE polyolefin pyridine
  • EPDM ethylene-propylene-copolymer
  • SBR styrene-butadiene rubber
  • it is in the range of ⁇ 98% by weight and the binder 220% by weight.
  • a conductive substrate having a porous structure or a non-porous conductive substrate can be used as the self-assembled mi-body.
  • the conductive substrate is, for example, copper, It can be formed from a dress or nickel.
  • the negative electrode is prepared, for example, by kneading a carbonaceous substance that occludes and releases V-chimone and a binder in the presence of a solvent, applying the obtained suspension to a current collector, and drying the resultant. It is produced by pressing once or 2 to 5 times in multiple steps at the desired pressure. An electrode was manufactured using the positive electrode and the negative electrode as described above.
  • This electrode group can be formed, for example, by (i) spirally winding the positive electrode and the negative electrode with a separator interposed therebetween, or (ii) flattening the positive electrode and the negative electrode with a separator interposed therebetween. (Iii) the positive electrode and the negative electrode are spirally wound with a separator interposed therebetween, and then radially compressed, or (iv) the positive electrode and the negative electrode are interposed with a separator between them. It is manufactured by bending at least once or (V) laminating a positive electrode and a negative electrode with a separator interposed between them.
  • the electrode group may not be pressed, but may be pressed to increase the integration strength of the positive electrode, the negative electrode, and the separator. It is also possible to apply heating during pressing.
  • the electrode group has high integration strength of the positive electrode, negative electrode, and separator.
  • an adhesive polymer can be contained.
  • the polymer having the IS-adhesive property include, for example, polyacrylonitrile (PAN), polyacrylate (PMMA), polyvinylidene polyfluoride (PVdF) ) ⁇ Polychlorinated butyl (PVC) or polyethylenoxy F (PEO).
  • a microporous membrane woven fabric, a nonwoven fabric, a laminate of these materials or a different material can be used.
  • the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.
  • a material for forming the senor one or more types selected from the above-mentioned types can be used.
  • the thickness of the radiator is preferably 3 O / i ra or less, and more preferably 25 ⁇ m or less.
  • the lower limit of the thickness is preferably set to 5 ⁇ m, and the more preferable lower limit is 8 / m.
  • the separator has a heat shrinkage rate of 1 hour at 120 ° C.
  • the heat shrinkage is preferably 15% or less, more preferably than the force s.
  • the separator has a porosity in the range of 30 to 60%.
  • a more preferred range of porosity is between 35 and 50%.
  • Air permeability means the time (seconds) required for 100 cm 3 of air to pass through the separator. More preferably, the upper limit of the air permeability is 500 seconds Z 100 cm 3 . The lower limit of the air permeability is preferably set to 50 seconds / 100 cm 3 , and the more preferable lower limit is 80 seconds // 100 cm 3 .
  • the width of the separator be wider than the width of the positive electrode and the negative electrode. With such a configuration, it is possible to prevent the positive electrode and the negative electrode from directly contacting each other without passing through the separator.
  • non-aqueous electrolyte those having a substantially liquid or gel-like form can be used.
  • the non-aqueous solvent includes a slutone compound having at least one double bond in a ring.
  • the sluton compound having at least one double bond in the ring may be a sluton compound A represented by the following general formula 1 or a sluton compound A: Sulfon compound B in which at least one H of sulfon compound A is substituted with a hydrocarbon group can be used.
  • the sulfon compound A or the sulfon compound B may be used alone, or both the sulfon compound A and the sulfon compound B may be used.
  • C m 11 is a linear hydrocarbon group
  • m and ⁇ are integers of 2 or more that satisfy 2 m> n.
  • a lithium permeable protective film can be formed on the positive electrode surface.
  • PRS 1J4-butyl-norethone
  • BTS 1J4-butyl-norethone
  • the ratio of the snorethone compound be 10% by volume or less. This is because, when the ratio of the sulfur compound exceeds 10% by volume, the above protective coating becomes extremely thick, the lithium ion permeability decreases, and the discharge capacity at a temperature lower than room temperature decreases. Because. Further, in order to keep the discharge capacity high even at a low temperature of, for example, 120 ° C., it is desirable that the ratio of the sluton compound to be contained is 4 ° / 0 volume or less. In addition, in order to sufficiently secure the formation amount of the protective film, it is desirable that the ratio of the sluton compound be at least 0.01% by volume. Furthermore, the ratio of the sluton compound is 0.1 volume. /. If above, for example, 65 ° C The protective function of the protective coating can be fully demonstrated even at higher temperatures such as
  • non-aqueous solvent further contains ethylenic carbonate (EC).
  • EC ethylenic carbonate
  • the content be in the range of 25 to 50% by volume, a nonaqueous electrolyte having a high conductivity ⁇ and having a suitable viscosity can be obtained.
  • a more preferred EC content is 25% by volume or less.
  • non-aqueous solvents can be used in addition to the sulfuric acid compound and E C.
  • Other solvents include, for example, a chain force component ⁇ for example, methyl / reticemeca'—phone (ME).
  • E P 2-methinorefrane (2 Me-F), franc (F), thiophene (TIOP), power lever (C AT)
  • Examples of the electrolyte dissolved in the non-aqueous solvent include lithium perchlorate (LiC1OA), lithium hexafluoride, and the like.
  • LiC1OA lithium perchlorate
  • Li PF 6 four full Tsui ⁇ Ho c acid Li Ji U beam
  • Li i A s F 6 six full Tsu arsenic Lithium
  • Furuoro meth sulfo phosphate Li Ji U beam Li i CF 3 SO 3
  • bis Application Benefits off Ruo Russia main Chirusuruho - Louis Mi drill Ji U beam [(. CF 3 SO ⁇ ) L i N 2], L i N (C 2 F 5 Lithium salts such as SO 2 ) 2 can be mentioned.
  • the type of electrolyte used can be one, two or more.
  • the amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.5 to 2.5 mol ZL. A more preferred range is 1 to 2.5 mono / L.
  • the liquid non-aqueous electrolyte contains trioctyl phosphate
  • a surfactant such as (TOP) may be contained.
  • the amount of the surfactant added is preferably 3% or less, and more preferably in the range of 1 to 1%.
  • the amount of the liquid non-aqueous electrolyte is 0.2 to 0.6 g per unit cell capacity of 1 O O mAh.
  • a more preferred range for the mass of the liquid non-aqueous electrolyte is from 0.25 to 0.55 g ZlOOmAh.
  • a container for storing the above-described electrode group and the non-aqueous electrolyte will be described.
  • the shape of the container can be, for example, a cylindrical shape with a bottom, a rectangular tube with a bottom, a bag shape, a cup shape, or the like.
  • This container can be formed from, for example, a metal plate, a metal film, a film including a resin layer, or the like.
  • the metal plate and the metal film are, for example, iron, stainless steel, ⁇
  • the thickness of the metal plate and film should be less than 0.4 mm, the preferred range is 0.3 mm or less, and the most preferred range is 0 • 25 mm or less.
  • the thickness is
  • the thickness is less than 0.05 m, sufficient strength may not be obtained.Therefore, the lower limit of the thickness of the metal plate and metal film is 0-
  • the resin layer contained in the m-finolene includes, for example, a resin layer that can be formed from polyolefin (for example, polypropylene polypropylene), poly->, etc.
  • polyolefin for example, polypropylene polypropylene
  • the metal layer has a role of blocking moisture and a shape of the container.
  • the metal layer that is responsible for holding is made of, for example, aluminum, stainless steel, iron-copper, and iron oxide.Although the metal layer is lightweight, it has a high moisture-blocking function.
  • the preferred metal layer is
  • Thermoplastic tree Fat can be distributed to one kind of metal, but it is also acceptable to form it by integrating two or more kinds of metal layers. Of the two ⁇ layers, the protective layer in contact with the outside is the metal
  • the outer protective layer which serves to prevent damage to the layer, is formed of one type of resin layer or two or more types of resin layers, while the inner protective layer is formed of a non-aqueous electrolyte. Plays a role in preventing rot.
  • This internal protective layer is formed of one type of resin layer or two or more types of resin layers, and is used for sealing the opening to the surface of the internal protective layer with a heat seal. Thermoplastic tree Fat can be distributed
  • the thickness of the finolem including the resin layer is preferably set to 0.3 mm or less, more preferably 0.25 mm or less, and still more preferably 0.15 mm or less. , The most preferred range is
  • the thickness of the finolem is 0.0. 5 mm is preferred
  • the m 2 non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery including a positive electrode including positive electrode active material particles, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode active material particles contain more than 50% by weight of lithium vanolate-containing composite oxide particles having a peak intensity ratio satisfying the following formula (C),
  • the particle diameter (D 10) of the positive electrode active material particles having a volume cumulative frequency of 10% is 4.5 m or less, and the molar ratio of lithium to cobalt in the positive electrode active material particles is expressed by the following formula (D). Satisfy
  • the non-aqueous electrolyte contains a sulfonate compound having at least one double bond in a ring.
  • I 003 is the re Chiumuko Baltic containing composite oxide particles in the powder X-ray diffraction (0 0 3) surface of the peak intensity (cps)
  • I 04 is the powder in the X-ray diffraction (1 0 4) plane
  • Y Li is the number of moles of lithium in the positive electrode active material particles
  • Y c is the peak intensity (cps). Is in the positive electrode active material particles. This is the number of monoles of the konoreto.
  • the second nonaqueous electrolyte secondary battery according to the present invention can have the same configuration as that described in the first nonaqueous electrolyte secondary battery except for the positive electrode.
  • the positive electrode will be described.
  • the positive electrode includes a current collector, and a positive electrode layer supported on one or both surfaces of the current collector and containing the positive electrode active material particles, a binder, and a conductive agent.
  • the molar ratio of Co in elements other than Li and O in the positive electrode active material is 0.9 or more and 1 or less
  • the molar ratio ( YLi / YCo ) is set to 1.02 to
  • the ratio in the range of 1.1 the reactivity of the lithium-cobalt-containing composite oxide particles with the sluton compound is further improved, and the charge and high-temperature storage characteristics are further improved. can do.
  • a more preferable upper limit value of the mole ratio (YLiZYCo) is 1.08.
  • the particle size distribution of the positive electrode active material particles largely reflects the particle size distribution of the lithium cobalt-containing composite oxide particles contained in the positive electrode active material particles in an amount of more than 50% by weight. Peak intensity ratio
  • the abundance ratio of single particles tends to be high. Therefore, when the particle size (D 10) of the positive electrode active material particles having a volume cumulative frequency of 10% becomes larger than 4.5 // m, the reaction area of the positive electrode with the nonaqueous electrolyte decreases. The formation rate of the protective film on the positive electrode surface may be reduced, and the amount of gas generated during storage in a charged state in a high-temperature environment may increase. Further, since the bulk density of the lithium cobalt-containing composite oxide particles is reduced, the energy density of the positive electrode may be reduced.
  • D 10 is more preferably 3 m or less. Further, when D 10 is less than 0.1 ⁇ m, the ratio of particles having low crystallinity and low crystal orientation increases, so the amount of gas generated when stored in a charged state in a high-temperature environment is increased. May be increased. Therefore, it is desirable that the lower limit of D 10 is set to 0.5 ⁇ (more preferably, 0.5 ⁇ ⁇ ).
  • the content of the lithium cobalt-containing composite oxide particles in the positive electrode active material particles should be 60% by weight or more. It is more preferable that the content be 70% by weight or more.
  • the lithium-cobalt-containing composite oxide particles may contain an element other than lithium and cobalt.
  • Such elements include, for example, Ni, Mn, A1, Sn, Fe, Cu, Cr, Zn, Mg, S i, P, F, C 1, B and the like can be mentioned.
  • the type of the added calorie element may be one type or two or more types. Above all, a composition represented by the following formula (E) is preferable ⁇
  • the lithium cobalt-containing composite oxide particles described above it is not necessary that all particles have the same composition. If the peak strength is greater than the specific strength S5, the composition may be reduced. May be composed of two or more different types of particles o
  • the positive electrode active material particles may be formed from the above-described lithium / norrelate-containing composite oxide particles, but may also contain particles other than the lithium cobalt-containing composite oxide particles. good.
  • Ru can and this include the peak intensity ratio (I 0 0 3 ZI 1 04 ) is 2 or more and less than 5 der Ru Li Ji U beam containing composite oxide particles.
  • the proportion of the particles in the positive electrode active material particles should be in the range of 0
  • -It is preferable to surround it.
  • a more preferred range is from 0.5 to
  • lithium-containing composite oxide examples include a lithium manganese composite oxide, a lithium-nickel composite oxide, and a lithium core oxide.
  • At least one kind of element different from the constituent elements can be added.
  • V-containing complex oxide having a composition represented by the following formula (F) is preferable.
  • m2 is one or more elements selected from the group force consisting of Mn, B, A1 and Sn.
  • the molar ratio X, y ⁇ z and w are respectively 0.95 ⁇ X ⁇ 1 • 0 5, 0.7 ⁇ y
  • the lower limit of the molar ratio w is preferably set to 0.001.
  • the peak strength ratio is 2 or more.
  • it may be composed of two or more kinds of particles having different compositions.
  • the BU conductive agent and the pre-binder can be the same as those described for the first nonaqueous electrolyte secondary battery described above, respectively.
  • the positive electrode is manufactured by, for example, suspending a conductive agent and a binder in an appropriate solvent in a positive electrode active material, and then collecting and drying the suspension to form a thin plate. You.
  • the peak click intensity ratio (I 003 ⁇ 1 1 04) Ca 5 yo Ri size les, Li Ji um co bar Le preparative containing complex acid 'dispersoids include many Ri good 5 0 by weight 0/0, D 1 0 is 4 mu m or less, a force one Monore J:.. spoon
  • a thin, square, or cylindrical non-aqueous electrolyte secondary battery which is an example of the first and second non-aqueous electrolyte secondary batteries according to the present invention, will be described in detail with reference to FIGS.
  • FIG. 1 is a perspective view showing a thin non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte primary battery according to the present invention.
  • FIG. 2 is a cross-sectional view of the thin non-aqueous electrolyte secondary battery shown in FIG.
  • FIG. 3 is a partially cutaway perspective view showing a rectangular non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 4 is a non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 3 is a partial cross-sectional view showing a cylindrical nonaqueous electrolyte secondary battery as an example of the present invention.
  • the electrode group 2 is accommodated in a rectangular cup-shaped container body 1 ⁇ .
  • the electrode group 2 has a structure in which a laminate including the positive electrode 3, the negative electrode 4, and the separator 5 disposed between the positive electrode 3 and the negative electrode 4 is wound into a flat shape.
  • the non-aqueous electrolyte is held in electrode group 2.
  • a part of the edge of the main body 1 is wide and functions as a cover plate 6.
  • This laminated film includes an outer protective layer 7 and a thermoplastic resin. And a metal layer 9 disposed between the outer protective layer 7 and the inner protective layer 8.
  • a lid 6 is fixed to the container body 1 by a heat seal using the thermoplastic resin of the inner protective layer 8, whereby the electrode group 2 is sealed in the container.
  • the positive electrode 3 is connected to the positive electrode tab 10, and the negative electrode 4 is connected to the negative electrode tab 11.
  • the negative electrode 4 is drawn out of the container and serves as a positive electrode terminal and a negative electrode terminal.
  • Electrode group 13 is accommodated in a bottomed rectangular cylindrical container 12 made of metal such as aluminum.
  • Electrode group 1 3, the positive electrode 1 4, is a layer in the order of Serra 0 regulator 1 5 and the negative electrode 1 6 force S this, spacers having an opening in the near with the center in which are wound in ⁇ flat shape 17 is arranged above the electrode group 13.
  • the non-aqueous electrolyte is held in the electrode group 13. Explosion-proof mechanism 1
  • a positive electrode tab (not shown) has a positive electrode terminal 2
  • the bottomed cylindrical container 21 made of stainless steel has an insulator 22 disposed at the bottom.
  • Electrode group 23 is contained in container 21 Has been delivered.
  • the electrode group 23 includes: a positive electrode 24; A belt-like material in which the separator 25, the negative electrode 26, and the separator 25 are stacked is spirally wound so that the separator 25 is located outside.
  • the container 21 contains a non-aqueous electrolyte.
  • the insulating paper 27 having an opening at the center is disposed above the electrode group 23 in the container 21.
  • the insulating sealing plate 28 is disposed in the upper opening of the container 21 and the vicinity of the upper opening is caulked inward to fix the sealing plate 28 to the container 21. ing.
  • the positive electrode terminal 29 is fitted in the center of the insulating sealing plate 28.
  • One end of the positive electrode lead 30 is connected to the positive electrode 24, and the other end is connected to the positive electrode terminal 29.
  • the negative electrode 26 is connected to the container 21 serving as a negative electrode terminal via a negative electrode lead (not shown).
  • Lithium composite oxide particles having a particle diameter D 10 and a peak intensity ratio (I 003 I 104) having values shown in Table 1 below were prepared.
  • the volume cumulative frequency 1 0% particle diameter D 1 0 and the peak intensity ratio (I 0 0 3 / I 1 04) was measured in the manner described below.
  • the particle size of the material particles and the volume occupied by the particles in each particle size section are measured.
  • the particle size when the volume of the particle size section is accumulated to 10% of the total is defined as the volume cumulative frequency of 10% particle size.
  • the light receiving slit width was 0.15 mm, and a monochromator was used.
  • the measurement was carried out under the conditions of a scanning speed of 2 / min, a scanning step of 0.01 °, and a scanning axis of 2 ⁇ / ⁇ .
  • the measured value of the diffraction pattern expressed on the 20 axis was subtracted from the measured value.
  • a slurry was prepared by mixing the solution with a solution of lolidon (NMP).
  • the slurry was applied to both sides of a current collector made of aluminum foil having a thickness of 15 ⁇ m, dried, and pressed to apply the slurry to both sides of the current collector.
  • a positive electrode having a supported structure was produced. The thickness of the positive electrode layer was 60 m per side.
  • the plane distance d 002 of the (002) plane of the carbonaceous material was determined from the powder X-ray diffraction spectrum by the half-width midpoint method. At this time, scattering correction such as Lorentz scattering was not performed.
  • Lithium hexafluoride (LiPF6) was added to the obtained nonaqueous solvent at a concentration of 1 monoliter.
  • the positive electrode current collector made of a strip of aluminum foil (100 ⁇ m thick) is ultrasonically welded to the positive electrode current collector, and the negative electrode current collector is welded. After negatively welding a negative electrode lead made of strip-shaped 2 V Kel foil (thickness: 100 ⁇ m) to the positive electrode and the negative electrode between the
  • the electrode group was housed in a square aluminum can with a wall thickness of 0.25 mm. Next, moisture contained in the electrode group and the metal can was removed by subjecting the electrode group in the metal can to vacuum drying at 80 ° C for 12 hours.
  • Examples 2 to 8 Except for changing the composition of the non-aqueous electrolyte as shown in Table 2 below, a prismatic non-aqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 described above. Assembled.
  • B L is ⁇ -petratone
  • PC is propylene force component
  • BTS indicates 1,4-butylene noretone.
  • Table 1 below shows the Moire ratio of L i and C ⁇ (X L i / 7 X Co), the peak intensity ratio (I 003 I 104), and the cumulative volume frequency of 10% particle size D 10.
  • a prismatic nonaqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 above, except for the changes as shown. I was
  • a prismatic nonaqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 except that the composition of the nonaqueous electrolyte was changed as shown in Table 4 below.
  • C is methinolate carbonate
  • PRS 1,3-propene sultone
  • DEC is getyl carponate
  • GBL is ⁇ -butyrolataton
  • PC propylene carbonate
  • PS Indicates the provision note.
  • t 0 is the thickness of the battery container immediately before storage
  • t ⁇ is the thickness after storage for 120 hours. Indicates the thickness of the battery container.
  • Example 1 33 EC, 66% MEC 1.0M-LiPF 6 PRS- 1 volume 0/0 1.12
  • Example 2 33 EC, 33% MEC, 33 DEC 1.0M-LiPF 6 PRS- 1 0 / o 1. 12
  • Example 3 49.5% EC, 49.5% GBL 1.5M-LiBF PRS-1 Volume 0 / o 0.96
  • Example 4 49.5% EC, 49.5% PC 1.0M-LiPF 6 PRS-1 1 volume 0 / o 0.95
  • Example 5 33 EC, 66% MEC 1.0 M-LiPF 6 BTS-1 1 volume 0 / o 1.5 1
  • Example 7 49.5 EC, 49.5 GBL 1.5M-LiBF 4 BTS-1 volume 0 / o 1.23
  • Example 8 49.5% EC, 49.5% PC l.OM-LiPFg BTS- 1 congregation 0/0 1.3 1
  • Example 9 33% EC, 66% MEC 1.0M-LiPF 6 PRS-1 1% 1.55
  • Example 10 33 EC, 66% MEC l.OM-LiPFg PRS-1 per volume 0 / o 0.96
  • Example 11 33 EC, 66% MEC 1.0 M-LiPF 6 PRS-1 1 volume 0 / o 1.00
  • Example 12 33 also EC, 66% MEC 1.0M-LiPF 6 PRS-1 ⁇ 0 / o 0.95
  • EXAMPLE 13 33 EC, 66% MEC l.OM -LiPFg PRS-1 congregation 0/0 1.82
  • the peak intensity ratio (I 003 ⁇ I 104 ) is larger than the force S 5, and the molar ratio is less than 4.5 ⁇ ⁇ .
  • X LiZ X co The lithium composite oxide powder having a power of not less than 0 2 and a sulfonate compound having at least one double bond in the ring thereof, It can be understood that the swelling of the secondary battery when stored in a charged state under an environment of 80 ° C is smaller than the secondary batteries of Comparative Examples 1 to 8.
  • the molar ratio of the secondary batteries of Comparative Examples 1 to 4 to which no sulfur compound was added and the secondary battery of Comparative Example 5 using PS having no double bond as an additive ( XLl / X Co) is less than 1.02 and the peak intensity ratio (I 003 / I 104) is 5 or less, and the secondary batteries of Comparative Examples 6 and 7 and D 10 exceeds 4.5 im.
  • the battery swelling when stored in a charged state under an environment of 80 ° C was as large as 4% or more.
  • the peak intensity ratio (I 003 ZI 104) is 30 L i! 04 C o O 2 particles (first active material particles) 7 0 by weight 0/0, at D 1 0 force S 1. 8 mu m, the peak intensity ratio (I 003 ZI 104) mosquito 5 0 1 ⁇ 1 1 05 0 0 97 3 1 1 0 03 0 2 particles by the and this mixing (second active material particles) and 3 0% Ri to obtain a positive electrode active substance particles.
  • the molar ratio is shown in Table 5 below.
  • Example 1 5 to 1 first cathode active material as well as compositions ⁇ peak intensity ratio of the second cathode active material (1 003 Bruno zeta I 1 04) and D 1 0, the first positive electrode active material
  • the charge / discharge rate was 1 C
  • the charge end voltage was 4.2 V
  • the discharge end voltage was 3 V.
  • Example 14 provided with a positive electrode containing a positive electrode active material
  • the batteries of Nos. 1 to 15 have better thickness change rates and cycle maintenance rates than those of Example 1.
  • the peak intensity ratio is (I
  • a positive electrode containing a 003/1 1 04) is 5 yo Ri size Rere Lithium cobalt-containing complex oxide and the peak intensity ratio (I 003/1 1 04) force S is less than 5 Li Chiumu containing organic composite oxide
  • the rechargeable batteries of Examples 16 to 18 provided were able to increase the capacity retention rate during the 500th cycle compared to Example 1.
  • the electrode group After releasing the circuit for 5 hours or more and allowing the potential to settle down sufficiently, it is decomposed in a box with an Ar concentration of 99.9% or more and a dew point of 150 ° C or less. Then, the electrode group was taken out. ⁇ Place the electrode group in a centrifuge tube, add dimethyls / reoxide (DMSO) -d6, seal it, remove it from the box, and remove it. Separated. Then, in the glove box, the said electrolyte DMSO from said spun down tube - were taken mixed solution of d 6. About 0.5 ml of the mixed solvent was put into a 5 ⁇ NMR sample tube, and NMR measurement was performed.
  • DMSO dimethyls / reoxide
  • the apparatus used for the NMR measurement was JNM-LA400 WB manufactured by JEOL Ltd., the observation nucleus was 1 H, the observation frequency was 400 MHz, and dimethyl sulfoxide (DMSO) ⁇ d6 The residual proton signal slightly contained in 6 was used as an internal standard (2.5 ppm).
  • the measurement temperature is
  • an observation frequency was 1 0 0 MH z, dimethyl Chirusuruhoki Shi de (DMSO) - d 6 (. 3 9 5 ppm) this and was conducted to 13 CNMR measurement and internal standard substance by filtration, corresponding to EC The peak corresponding to 66 ppm, corresponding to PRS; ⁇ 74 ppm, 124 ppm, and 140 ppm were observed. It was confirmed that PRS was contained in the non-aqueous solvent in the secondary battery of No. 1.
  • the present invention is not limited to the above-described embodiment, but is similarly applicable to other types of combinations of a positive electrode, a negative electrode, a separator, and a container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本発明によれば、正極活物質粒子を含む正極と、負極と、非水電解質とを具備した非水電解質二次電池であって、前記正極活物質粒子は、ピーク強度比が下記(1)式を満足するリチウムコバルト含有複合酸化物粒子を50重量%より多く含み、前記正極活物質粒子の体積累積頻度10%の粒径(D10)が4.5μm以下で、前記正極活物質粒子のリチウムとコバルトのモル比が下記(2)式を満たし、前記非水電解質は、環内に少なくとも一つの二重結合を有するスルトン化合物を含む非水電解質二次電池が提供される。     (I003/I104)>5   (1)     1.02≦(YLi/YCo)≦2 (2)

Description

非水電解質二次電池
技術分野
本発明は、 非水電解質二次電池に する ものである ο
背景技術
¾ι年、 移動体 ii is機、 明ノー トプック型パソ ンヽ パーム ト ップ型パ ソ コ ン、 一体型ビデオ力メ ラ 、 ポ タブル C D ( Μ
D ) プレーヤー、 コ一ド レス電話等の電子機 の小形化、 軽 書
量化を図る上で、 これらの電子機器の電源と してヽ 特に小型 で大容量の電池が求め られている。
これら電子機器の電源と して普及している電池と しては、 アル力 リ マ ンガン電池のよ う な一次電池やヽ 二クケルカ ドミ ゥム電池、 鉛蓄電池等の二次電池が挙げられる ο その中でも、 正極に リ チウム複合酸化物を用い、 負極に V チゥムィオンを 吸蔵 · 放出でき る炭素質材料を用いた非水電解質一次電池が、 小型かつ軽量で、 単電池電圧が高く ヽ 高ェネルギ 密度を得 られる こ と カゝら注目 されている。
特開 2 0 0 1 — 1 6 7 7 6 1 号公報にはヽ 基本組成を L i
M e O 2 (M e は N i 、 C o 力 ら選ばれる 1 種以上 ) と し、 結晶構造が層状岩塩構造をな し、 c U K a線によ る X線回折 分析か ら得 られる ( 1 0 4 ) 面 の回折 ピー ク の半値幅 ]3 (104)と ( 0 0 3 ) 面の回折ピー ク の半値幅 ] 3 ί003)と の間に β Π04)^ β (003)の関係が成立する リ チウム遷移金属複合酸 化物が記載されている。 こ の公報には、 I (003)Ζ I (104)の 値が 4 を超える場合は、 1 次粒子が強く 配向 した状態と なつ てお り 、 正極における L i の吸蔵 ■ 脱離がス ムーズに行われ ず、 パワー特性の低い リ チウムニ次電池になる と記載されて いる。
また、 特開平 1 1 一 1 5 4 5 0 9 号公報には、 L i C o O 2 を活物質と し、 C u Κ α を線源とする X線回折によって測 定される 2 S = 1 8 . 5 ± 0 . 5度の ( 0 0 3 ) 面の回折ピ ーク強度 ( 1 003) と 、 2 Θ - 4 4 . 5 士 1 . 0度の ( 1 0 4 ) 面の回折ピーク 強度 ( 1 104) と の強度比 ( I 003 / I 104) が 2 以上 5未満である正極板を備える非水電解質二次 電池が記載されている。 こ の公報には、 強度比 ( I 003 / I 104) が 5 以上の電池は、 極板自身の ( 0 0 3 ) 面の配向が 強く なるため、 ィォンの拡散を妨げ 、 率放電性に劣る こ と が記載されて ヽる。
発明の開示
本発明は 、 充電状態で高 、)曰
狐環 ¾下に保管された際の膨れが 抑制された非水電解質二次電池を提供する こ と を 目的 とする。
本発明に係る第 1 の態様によれば 、 正極活物質を含む正極 と、 負極と 、 非水電解質と を 備 した非水電解質二次電池で あって、
iij記正極活物質は 、 体積累 頻度 1 0 % の粒径 ( D 1 0 ) が 4 . 5 μ m以下でヽ ピ一ク強度比が下記 ( A ) 式を満た し、 かつ リ チウム と コ ノ ル トのモル比が下記 ( B ) 式を満足する リ チウム複合酸化物粉末を含み、
前記非水電解質はヽ 環内に少な < と も一 つの二重結合を有 するスノレ ト ン化合物を含む非水電解質二次電池が提供される。 ( I 003/ I 104) 〉 5 ( A )
( XLiZ X Co) ≥ 1 . 0 2 ( B )
但し、 I は前記リ チウム複合酸化物粉末の粉末 X線回 折における ( 0 0 3 ) 面のピーク強度 ( c p s ) で、 I J 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク強度 ( c p s ) であ り 、 X Li は前記リ チウム複合酸化物粉末中の リ チウム のモル数で、 X c。 は前記リ チウム複合酸化物粉末中 の コ バノレ ト のモノレ数である。
また、 本発明に係る第 2 の態様によれば、 正極活物質粒子 を含む正極と、 負極と、 非水電解質と を具備した非水電解質 二次電池であって、
前記正極活物質粒子は、 ピーク強度比が下記 ( C ) 式を満 足する リ チウムコバル ト含有複合酸化物粒子を 5 0重量%ょ り 多く含み、
前記正極活物質粒子の体積累積頻度 1 0 %の粒径 ( D 1 0 ) が 4 . 5 /i m以下で、 前記正極活物質粒子の リ チウム と コ バル ト のモル比が下記 ( D ) 式を満た し、
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む非水電解質二次電池が提供される。
( I 003/ I 104) > 5 ( C )
1 . 0 2 ≤ ( Y Li/ Y ) ≤ 2 ( D ) 但し、 I は前記リ チウムコ バル ト含有複合酸化物粒子 の粉末 X線回折における ( 0 0 3 ) 面の ピーク 強度 ( c p s ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク 強度 ( c p s ) であ り 、 Y Li は前記正極活物質粒子 中の リ チゥム のモル数で、 Y C o は前記正極活物質粒子中の コノ ノレ 卜 のモル数であ
図面の簡単な説明
図 1 は 、 本発明に係わる非水電解質二次電池の一例である 薄型非水電解質二次電池を示す斜視図。
図 2 は 、 図 1 の薄型非水電解質二次電池を Π — Π線に つ て切断した部分断面図
図 3 は 、 本発明に係る非水電解質二次電池の一例である角 形非水電解質二次電池を示す部分切欠斜視図
図 4 は 、 本発明に係る非水電解質二次電池の一例である円 筒形非水電解質二次電池を示す部分断面図
図 5 は 、 実施例 1 の非水電解質二次電池の非水電解質に含 まれる P R S についての 1 H N M R スぺク 卜ルを示す特性図 発明を実施するための最良の形態
本発明に係る第 1 , 第 2 の非水電解質二次電池について 明する。
本発明に係る第 1 の非水電解質二次電池は 、 正極活物質を 含む正極と、 負極と、 非水電解質と を具備 した非水電解質 ― 次電池であって、
冃 u記正極活物質は、 体積累積頻度 1 0 %の粒径 (D 1 0 ) が 4 . 5 m J¾ Fで、 ピーク強度比が下記 ( A ) 式を満た し かつ リ チゥム と コバノレ トのモノレ!:匕が下記 ( B ) 式を満足する リ チウム複合酸化物粉末を含み、
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスノレ ト ン化合物 含む。 ( I 003/ I 104) > 5 ( A)
( XLi/ X Co) 1 . 0 2 ( B )
但し、 I 003 は前記リ チウム複合酸化物粉末の粉末 X線回 折における ( 0 0 3 ) 面のピーク強度 ( c p s ) で、 I i 04 は前記粉末 X線回折における ( 1 0 4 ) 面のピーク強度 ( c p s ) であ り 、 X Li は前記 リ チウム複合酸化物粉末中の リ チウム の モル数で、 X Co は前記 リ チウム複合酸化物粉末中 の コ バノレ ト のモノレ数である。
前述した リ チウム複合酸化物粉末は、 結晶性が高く 、 充電 によ り 正極電位が高電位 ( 4 . 2 V付近) に到達しても六方 晶から単斜晶への構造相転移が起こ り 難いため、 非常に効率 よ く 充放電でき る とい う特徴を持つ。 また、 高い正極電位で 対称性の高い六方晶の状態を維持している ものは、 正極電位 の上昇によ り 単斜晶に相転移を生じたものに比べて活性な状 態にある。 このよ う な活性の高い状態にある酸化物は、 高温 環境下にある と非水電解質中のス ル ト ン化合物と速やかに反 応ずる こ とができる。 従って、 前述した リ チウム複合酸化物 粉末を含む正極は、 充電状態で高温環境下に保管された際、 表面にス ル ト ン化合物による保護被膜を速やかに形成するこ とができ るため、 非水電解質の酸化分解反応を抑える こ とが 可能である。 その結果、 二次電池が充電状態で高温環境下に 保管された際のガス発生量を少な く する こ と ができるため、 電池の膨れを抑える こ とが可能になる。
以下、 正極、 負極及び非水電解質について説明する。
1 ) 正極 この正極は、 集電体と、 集電体の片面も しく は両面に担持 され、 前記正極活物質と結着剤と導電剤と を含有する正極層 と を含む。
リ チウム複合酸化物における リ チウム ( X Li) と コ バル ト ( X Co) のモ ル比 ( X Li/ X Co) を 1 . 0 2 以上にする理 由を説明する。 リ チウム複合酸化物は、 例えば、 各構成元素 の化合物 (例えば、 酸化物、 水酸化物) を混合した後、 空気 中または酸素雰囲気下において焼成する こ と によ り 合成され る。 モル比 ( X Ll/ X Co) が 1 · 0 2未満であ る の も のは、 焼成時の粒成長速度が遅く 、 結晶性と結晶の配向性が低いた め、 充電によ り 正極電位が高電位に達した時に構造相転移反 応が起こ り やすい。 このため、 ス ル ト ン化合物との反応性が 劣る可能性があ り 、 充電状態で高温環境下に保管 した際のガ ス発生量が多く なる恐れがあ る 。 また、 モ ル比 ( X Li / X Co) の上限値は、 以下に説明する理由によ り 1 . 1 にする こ と が望ま しい。
モ ル比 ( X LiZ X Co) が 1 - 1 よ り 大き い と 、 正極活物 質焼成時にアル力 リ 溶融が完全に進行せず L i が残存してい る可能性が高く なる。 この残存アルカ リ 分が多いと 、 バイ ン ダ一のゲル化を引き起こ し、 塗工時の ト ラブルの原因 と なる。 モ ル比 ( X LiZ X Co) の上限値の さ ら に好ま しい値は、 1 . 0 8 である。
V チウム複合酸化物は、 リ チウム と コバル ト以外の元素を 含んでいても良い。 かかる元素と しては、 例えば、 N i 、 M n、 A l 、 S n、 F e 、 C u、 C r 、 Z n 、 M g 、 S i 、 P、 F、 C 1 、 B等を挙げる こ と ができ る。 添加元素の種類は、 1 種類でも、 2種類以上でも良い。
前記リ チ ウム複合酸化物は正極活物質の 5 0 %以上を 占め ている こ と が望ま しい。
粉末 X線回折におけ る ( 0 0 3 ) 面のピーク強度 I 003
( 1 0 4 ) 面の ピーク 強度 I 104 と の比 ( I 003ダ I 104) を 前記範囲に限定する理由 を説明する。 ピーク 強度比 ( I 003 / I 104) が 5 未満であ る も のは、 結晶性 と結晶の配向性が 低いため、 高電位での構造相転移反応が起こ り やすく 、 スル ト ン化合物 と の反応性に劣 り 、 充電状態で高温環境下に保管 した際のガス発生量が多 く な る恐れが あ る。 ピーク 強度比
( 1 003 I 104) のよ り 好ま しい範囲は、 7 以上である。 ま た、 ピーク 強度比が 5 0 0 よ り 大きレヽもの と 、 ( 1 0 4 ) 面 に由来する ピーク が検出されないものは、 リ チウムを吸蔵 し ない結晶構造を有している可能性がある こ と から、 ピーク強 度比の上限は 5 0 0 にする こ と が望ま しい。
リ チ ウ ム複合酸化物の体積累積頻度 1 0 %の粒径 ( D 1 0 ) を前記範囲に規定する理由 を説明する。 ピーク 強度比
( 1 003/ 1 104) カ 5 よ り 大き く 、 かつ L i と C o をモル比
( X Li/ X Co) 力 S i . 0 2 以上で含有する リ チ ウ ム複合酸 化物粉末は、 二次凝集した粒子が少な く 、 実質的に単粒子か ら構成さ れている。 よ って、 D 1 0 力 S 4 . 5 μ πιよ り 大き く なる と 、 正極の非水電解質と の反応面積が少な く なる ため、 正極表面への保護被膜の形成速度が遅く な り 、 充電状態で高 温環境下に保管 した際のガス発生量が多く なる恐れがある。 またヽ チゥム複合酸化物粉末のかさ密度が小さ < なるため、 正極のェネルギ一密度が低下する可能性がある D 1 0 は、
3 m以下にする こ とがよ り 望ま しい。 また 、 D 1 0 が 0 .
1 β m未満のものは、 焼成時の粒成長が不十分なために結曰曰 性と 晶の配向性が低い粒子の比率が高い とからヽ 充電状 態で高 ί皿曰環 ¾¾ Fに保管 した際のガス発生量が多 < なる恐れが ある よつて、 D 1 0 の下限値は、 0 . 1 β m (よ り 好ま し
< は 0 - 5 μ m ) にする こ とが望ま しい。
刖記導電剤と してはヽ 例えばアセチ レンブラ クク カーボ ンブラ ク 、 黒鉛等を挙げる こ とができ る
刖 Bし ifo着剤は 、 活物質を集電体に保持させ かつ活物質同 士をつな ぐ機能を有する 。 前記結着剤と しては 、 例えばポリ テ 卜 ラ フルォ口 ェチ レ ン ( P T F E ) 、 ポ V フ ク化ビニ リ デ ン ( P V d F ) 、 ポ リ ェ —テノレサノレフ ォ ンヽ ェチ レン一プロ ピレ ン ―ジェ ン 重 A体 ( E P D M ) 、 スチレ ン一プタ ジェ ンゴム ( S B R ) 等を用いる こ と ができ る
記正極活物質、 導電剤および結着剤の配合割合はヽ 正極 活物質 8 0 〜 9 5重量 % 、 導電剤 3 〜 2 0重 %ヽ 着剤 2
7重量 %の範囲にする こ と が好ま しい。
記集電体と してはヽ 多孔質構造の導電性基板かヽ あるレヽ はハハ孔の導電性基板を用いる こ と ができ る れら導電性基 板はヽ 例えば、 アルミ 二ゥム、 ス テ ン レス ヽ または二 ッケノレ から形成するこ とができ 。
前記正極は、 例えば 正極活物質に導電剤 よび結着剤を 適当な溶媒に懸濁し、 の懸濁物を集電体に 布ヽ 乾燥 して 薄板状にする こ と によ り 作製される。
2 ) 負極
前記負極は、 集電体と、 集電体の片面も しく は両面に担持 される負極層と を含む。
前記負極層は、 リ チウムイオンを吸蔵 · 放出する炭素質物 及び結着剤を含む。
前記炭素質物と しては、 例えば、 黒鉛、 コ ーク ス 、 炭素繊 維、 球状炭素、 熱分解気相炭素質物、 樹脂焼成体などの黒鉛 質材料も しく は炭素質材料 ; 熱硬化性樹脂、 等方性ピッチ、 メ ソ フ ェーズピ ッ チ系炭素、 メ ソフ ェ ーズ ピ ッ チ系炭素繊維、 メ ソフェーズ小球体な ど (特に、 メ ソフェーズピッチ系炭素 繊維が容量ゃ充放電サイ クル特性が高く な り 好ま しい) に 5 0 0 〜 3 0 0 0 °Cで熱処理を施すこ と によ り 得られる黒鉛質 材料または炭素質材料 ; 等を挙げる こ とができ る。 中でも、 ( 0 0 2 ) 面の面間隔 d が 0 . 3 4 n m以下である黒鉛 結晶を有する黒鉛質材料を用いるのが好ま しい。 こ の よ う な 黒鉛質材料を炭素質物と して含む負極を備えた非水電解質二 次電池は、 電池容量および大電流放電特性を大幅に向上する こ と ができ る。 前記面間隔 d 002 は、 0 . 3 3 7 n m以下 であるこ とが更に好ま しい。
前記結着剤と して は、 例えばポ リ テ ト ラ フルォロ エチ レン
( P T F E ) 、 ポ リ フ ツイ匕 ビ - リ デン ( P V d F ) 、 ェチ レ ン一プロ ピ レ ン一ジェ ン共重合体 ( E P D M) 、 ス チ レ ン一 ブタ ジエンゴ ム ( S B R ) 、 カ ノレポ キ シ メ チノレセノレ ロ ー ス
( C M C ) 等を用いる こ と ができ る。 刖記炭奉質物及び前記結着剤の配合割合はヽ 炭素質物 9 0
〜 9 8重 %、 結着剤 2 2 0重量%の範囲である こ と が好 ま しい。
m s己集 mi体と しては、 多孔質構造の導電性基板力、、 あるい は無孔の導電性基板を用いる とができ れら導電性基 板は、 例 ば、、 銅、 ス テ ン レス 、 または二 ッケルから形成す る こ とがでさ る。
刖記負極は、 例えば、 V チゥムィ ォンを吸蔵 • 放出する炭 素質物と 着剤と を溶媒の存在下で混練し、 得られた懸濁物 を集電体に塗布 し、 乾燥した後 、 所望の圧力で 1 回プ レスも しく は 2 〜 5 回多段階プレスする こ と によ り 作製される。 以上説明 したよ う な正極と負極を用い ¾極针が作製され 。
こ の電極群は、 例えば 、 ( i ) 正極及び負極をその間にセ パ レータ を介在させて渦巻き状に捲回するか、 (ii ) 正極及 び負極をその間にセパレータ を介在させて偏平形状に捲回す るか、 (i i i ) 正極及び負極をその間にセパ レータ を介在させ て渦巻き状に捲回 した後、 径方向に圧縮するか、 (iv) 正極 及び負極をその間にセパ レータ を介在させて 1 回以上折 り 曲 げるか、 あるいは (V ) 正極と負極と をその間にセパ レー タ を介在させなが ら積層する方法によ り 作製される。
電極群には、 プ レスを施さな く ても良いが、 正極、 負極及 ぴセパ レータの一体化強度を高めるためにプ レスを施 しても 良い。 また、 プ レス時に加熱を施すこ と も可能である。
電極群には、 正極、 負極及びセパ レータ の一体化強度を高 める ために、 接着性高分子を含有させる こ と ができ る。 前 IS 接着性を有する高分子 と しては 、 例えば、 ポ リ アク V ロ ニ ト リ ル ( P A N ) 、 ポ リ アク リ レー ト ( P M M A ) 、 ポ リ フ ッ 化ビユ リ デン ( P V d F ) ヽ ポ リ 塩化ビュル ( P V C ) 、 ま たはポ リ エチ レ ンォキサイ F ( P E O ) 等を挙げる と がで き る。
こ の電極群に使用するセノヽ。 レータ と しては、 微多孔性の膜 織布、 不織布、 これ らの う り |njー材または異種材の積層物等 を用いる こ と ができ る。 セパレータ を形成する材料と しては ポ リ エチ レン、 ポ リ プロ ピレン 、 エチレン一プロ ピレン共重 合ポ リ マー、 エチ レン一プテン共重合ポ リ マー等を挙げる こ と ができ る。 セノ レータの形成材料と しては、 前述 した種類 の中から選ばれる 1 種類または 2種類以上を用いる こ と がで さ る。
前記セ ノヽ。 レータ の厚さ は 、 3 O /i ra以下にする こ と が好ま しく 、 さ ら に好ま しい範囲は 2 5 μ m以下である。 また、 厚 さ の下限値は 5 μ mにする こ と が好ま しく 、 さ ら に好ま しい 下限値は 8 / mである。
前記セパ レータ は、 1 2 0 °C 、 1 時間での熱収縮率を 2
0 %以下である こ と が好ま しい 。 前記熱収縮率は、 1 5 %以 下にする こ と 力 s よ り 好ま しい。
前記セパ レータ は、 多孔度が 3 0 〜 6 0 %の範囲である こ と が好ま しい。 多孔度のよ り 好ま しい範囲は、 3 5 〜 5 0 % である。
前記セ ノ レータ は、 空気透過率が 6 0 0 秒 Z l 0 0 c m 3 以下である こ と が好ま しい。 空気透過率は、 1 0 0 c m 3 の 空気がセパ レータを透過するのに要した時間 (秒) を意味す る。 空気透過率の上限値は 5 0 0 秒 Z 1 0 0 c m 3 にする こ とがよ り 好ま しい。 また、 空気透過率の下限値は 5 0秒/ 1 0 0 c m 3 にする こ と が好ま し く 、 さ ら に好ま しい下限 値は 8 0秒/ / 1 0 0 c m 3 である。
セパ レータの幅は、 正極と負極の幅に比べて広く する こ と が望ま しい。 このよ う な構成にする こ と によ り、 正極と負極 がセパ レータを介さずに直接接触する のを防ぐこ とができ る。
3 ) 非水電解質
非水電解質には、 実質的に液状またはゲル状の形態を有す る ものを使用する こ とができ る。
液状非水電解質およびゲル状非水電解質に含まれる非水溶 媒および電解質について説明する 。
非水溶媒は、 環内に少なく と も一つの二重結合を有するス ル ト ン化合物を含む。
こ こ で、 環内に少な く と も 1 つの二重結合を有するス ル ト ン化合物と しては、 下記の化 1 に示す一般式で表わされるス ル ト ン化合物 Aか、 も しく はスル ト ン化合物 Aの少な く と も 1 つの Hが炭化水素基で置換されたスル ト ン化合物 B を用い る こ とができ る。 なお、 本願では、 スル ト ン化合物 Aまたは スル ト ン化合物 B を単独で用いても、 スル ト ン化合物 A と ス ル ト ン化合物 B の双方を使用 しても良い。
(化 1 )
Figure imgf000015_0001
化 1 において 、 C m 11 は直鎖状の炭化水素基で 、 m と π は、 2 m > n を満たす 2以上の整数でめ o
環内に少な < と も ―つの二重結合を有するス ル 卜 ン化合物
、 ih極と の反応によ り 一重結合が開いて重合反応が起こる ため、 正極表面に リ チゥムィォン透過性の保護被膜を形成す る こ とがでさ る 。 ス ル h ン化合物の中でも好ま しいのは、 ス ル ト ン化合物 A の う ち m = 3 、 n = 4 である化合物 、 即ち 1
3 —プ π ぺ ンス ル ト ン ( P R S ) 、 ま 7こ ίま、 m = 4 、 n = 6 である化合物ヽ 即ち 1 4 —ブチレンス ノレ ト ン ( B T S ) で ある。 ス ノレ 卜 ン化合物と しては、 1 , 3 —プロべンス ノレ ト ン
( P R S ) あるいは 1 J 4 ーブチ レ ンス ノレ ト ン ( B T S ) を 単独で用いてもヽ ~れら P R S と B T S を併用 しても良い。
ス ノレ ト ン化合物の比率は 、 1 0体積 %以下にする こ とが望 ま しい。 これは、 ス ル ト ン化合物の比率が 1 0 %体積を超え る と、 上記の保護被膜が極めて厚く なつて リ チウムイオン透 過性が低下し、 常温よ り も低い温度における放電容量が低下 するからである。 更に、 例えば一 2 0 °C等の低い温度でも放 電容量を高 く 保っためには、 ス ル ト ン化合物が含まれる割合 は 4 °/0体積以下である こ と が望ま しい。 また、 保護被膜の形 成量を十分に確保するためには、 ス ル ト ン化合物の比率を最 低でも 0 . 0 1 体積%確保する こ とが望ま しい。 更に、 ス ル ト ン化合物の比率が 0 . 1 体積。/。以上あれば、 例えば 6 5 °C 等の更に高い温度でも保護被膜に よ る保護機能を充分に示す こ と ができ る
非水溶媒には、 さ ら にェチレンカーボネ一 ト ( E C ) が含 まれている こ と が望ま しい 。 非水溶媒中の E Cの含有量は、
2 5 - 体積 %〜 5 0 体積 %の範囲内にする こ と が望ま しい ゝ れに よ り 、 導電率が高 <、 かつ適度な粘性を有する非水電解 質が得られる 。 さ ら に好ま しい E C含有量は、 2 5 体積 %〜
4 5 体積 %の範囲内である
非水溶媒には、 スル ト ン化合物 と E C と併せて 、 他の を使用する こ と がでさ る。 他の溶媒と しては、 例えば、 鎖状 力一ポネ一 ト {例えば、 メ チ /レエチメレカ ' —ホネ 卜 ( M E
C ) ヽ ジェチノレカーポネー ト ( D E C ) 、 ジメ チル力一ボネ 一 ト ( D M C ) な ど) 、 ビ二 レ ンカーボネ一 ト ( V C ) 、 ビ ュルェチ レ ンカーボ不一 ト ( V E C ) 、 フ ェニノレェチ レ ン力 一ボネ一 ト ( h E C ) 、 プロ ピ レ ンカ ーホネ 1 ~ 卜 ( P C矮) 、 y 一プチ 口 ラ ク ト ン ( G B L ) 、 γ —バ レ ロ ラ ク ト ン ( V
L ) ヽ プ口 ピオン酸メ チル (M P ) 、 プ口 ピオン酸ェチノレ
( E P ) 、 2 — メ チノレフ ラ ン ( 2 M e — F ) 、 フ ラ ン ( F ) 、 チォフェ ン ( T I O P ) 、 力テ コ一ノレカーボネ一 卜 ( c A T
C ) 、 ェチ レンサノレフ ァイ ト ( E S ) 、 1 2 —ク ラ ゥ ン一 4
( c r o w n ) 、 テ ト ラエチレング リ コ一ノレジメ チルェ一テ ル ( E t h e r 等を挙げる こ と ができ る 。 他の溶媒の種類 は、 1 種類も し く は 2 種類以上にする こ と ができ る
記非水溶媒に溶解される電解質と しては、 例 ば、 過塩 素酸 V チ ウ ム ( L i C 1 O A ) 、 六フ ッ化 リ ン酸 リ チ ゥ ム ( L i P F 6 ) 、 四 フ ツイ匕ホ ウ酸 リ チ ウ ム ( L i B F 4 ) 、 六フ ッ化砒素 リ チウム ( L i A s F 6 ) 、 ト リ フルォロ メ タ スルホ ン酸 リ チ ウ ム ( L i C F 3 S O 3 ) 、 ビス ト リ フ ルォ ロ メ チルスルホ -ルイ ミ ド リ チ ウ ム [ L i N ( C F 3 S Oゥ. ) 2 ] 、 L i N ( C 2F 5 S O 2) 2 な どの リ チウム塩 を挙げる こ とができ る。 使用する電解質の種類は、 1 種類ま たは 2種類以上にする こ と ができ る。
前記電解質の前記非水溶媒に対する溶解量は、 0 . 5〜 2 . 5 モル Z L とする こ とが望ま しい。 さ らに好ま しい範囲は、 1〜 2 . 5 モノレ/ Lである。
前記液状非水電解質には、 ト リ オク チルフ ォ ス フ エ一 ト
( T O P ) の よ う な界面活性剤を含有させても良い。 界面活 性剤の添加量は、 3 %以下が好ま し く 、 さ ら には ◦ . 1 〜 1 %の範囲内にする こ とが好ま しい。
前記液状非水電解質の量は、 電池単位容量 1 O O m A h 当 た り 0 . 2〜 0 . 6 g にする こ と が好ま しい。 液状非水電解 質量のよ り 好ま しい範囲は、 0 . 2 5〜 0 . 5 5 g Z l O O m A hである。
以上説明 した電極群及び非水電解質が収納される容器につ いて説明する。
容器の形状は、 例えば、 有底円筒形、 有底矩形筒型、 袋状、 カ ップ状等にする こ と ができ る。
こ の容器は、 例えば、 金属板、 金属フ ィ ルム、 樹脂層を含 むフ ィ ルム等から形成する こ と ができ る。
前記金属板及び前記金属フ ィ ルムは、 例えば、 鉄、 ス テ ン レ ·>·
ス 、 ァル 、 - ^クムから形成する とがでさ
刖記金属板及び金属フ ィ ルム の厚さは 0 . 4 m m以下に する こ と が し < 、 よ り 好ま しい範囲は 0 . 3 m m以下で、 最も好ま しい範囲は 0 • 2 5 m m以下である よ ノこ 、 厚さが
0 . 0 5 mよ り薄いと 十分な強度を得られない恐れがめ る こ とから 、 金属板及び金属フィルムの厚さの下限値は 0 -
0 o m mにする こ とが好ま しい。
m記フィノレムに含まれる樹脂層は 例 ば 、 ポ リ ォレ フィ ン (例えばヽ ポ V ェチレ ン ポリ プ ピレ ン ) 、 ポリ ァ -> 、 等から形成する こ と がでさ る 脂層を含むフィノレムの中で
.、
ち 、 金属層 と、 記金属層の両面に配置された保護層 と が一 体化されたラ ミ ネ一 ト フィルムを用いる とが望ま しい 記金属層は 、 水分を遮断する役割と容器の形状保持を担う 刖記金属層は、 例えば ァル ゥム 、 ス テ ン レス 、 鉄 銅、 ッケノレ等を挙げる こ とがでさ る 中でも 軽量で 、 水分を 遮断する機能が高いァル 二ゥムが好ま しい 刖記金属層は、
1 種類の金属から形成しても良いが 、 2種類以上の金属層を 一体化させたも の ら形成して も良レ、 記 2 つの ί 層の う ち、 外部と接する保護層は 記金属層の損傷を防止する役 割をなす こ の外部保護層は 、 1 種類の榭脂層、 も しく は 2 種類以上の樹脂層から形成される 一方 内部保護層は 、 記金属層が非水電解質によ り 腐 ^¾されるのを防止する役割を 担う。 こ の内部保護層は 、 1 種類の榭脂層 あ しく は 2種類 以上の樹脂層から形成される た かかる内部保護層の表 面に、 容 口をヒ 一 トシ ルによ り 封止するための熱可塑性樹 脂を配する こ と ができ
樹脂層を含むフィノレムの厚さ は、 0 . 3 m m以下にする こ とが望ま しく 、 よ り 好ま しい範囲は 0 . 2 5 m m以下で、 更 に好ま しい範囲は 0 . 1 5 m m以下で、 最も好ま しい範囲は
0 . 1 2 m m以下であ また 、 厚さ力 s 0 . 0 5 m mよ り薄 いと、 変形や破損し易 く なる こ と力 ら、 フ イ ノレムの厚さの下 限値は 0 . 0 5 m mにする こ とが好ま しい
本発明に係る m 2 の非水電解質二次電池は、 正極活物質粒 子を含む正極と 、 負極と、 非水電解質と を具備した非水電解 質二次電池であつて、
記正極活物質粒子は、 ピ一ク強度比が下記 ( C ) 式を満 足する リ チウム バノレ ト含有複合酸化物粒子を 5 0重量%よ り 多く 含み、
前記正極活物質粒子の体積累積頻度 1 0 %の粒径 ( D 1 0 ) が 4 . 5 m以下で、 前記正極活物質粒子の リ チウムと コ バル ト のモル比が下記 ( D ) 式を満た し、
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む。
( I 003/ I 104) > 5 ( C )
1 . 0 2 ≤ ( YLi/ Y Co) ≤ 2 ( D )
但し、 I 003 は前記リ チウムコ バル ト含有複合酸化物粒子 の粉末 X線回折における ( 0 0 3 ) 面の ピーク 強度 ( c p s ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク 強度 ( c p s ) であ り 、 Y Li は前記正極活物質粒子 中の リ チウムのモル数で、 Y c。 は前記正極活物質粒子中の コ ノ ノレ ト のモノレ数である。
本発明に係る第 2 の非水電解質二次電池においては、 正極 以外は前述した第 1 の非水電解質二次電池で説明 したの と 同 様な構成にする こ と ができ る。 以下、 正極について説明する。
この正極は、 集電体と 、 集電体の片面も しく は両面に担持 され、 前記正極活物質粒子と結着剤と導電剤と を含有する正 極層 と を含む。
正極活物質粒子における リ チウム と コバル ト のモル比 ( Y Li/ Y Co) を前記範囲に規定する理由 を説明する。 モ ル比 ( Y Li/ Y Co) 力 S 1 . 0 2未満であるか、 あるいは 2 よ り 大きいと、 ピーク強度比 ( I 003/ I 104) が 5 を超える リ チ ゥムコ バル ト含有複合酸化物粒子の リ チウムコ バル ト比 ( X
Li/ x Co) が適正値か ら外れる ため、 充電高温貯蔵時の電 池膨れを抑えられない。
特に、 正極活物質中の L i と O以外の元素中に占める C o のモル比が 0 . 9 以上 1 以下である場合には、 モル比 ( Y Li / Y Co) を 1 . 0 2 〜 1 . 1 の範囲にする こ と によ って、 リ チウムコバル ト含有複合酸化物粒子のス ル ト ン化合物と の 反応性をよ り 高く し、 充電高温貯蔵特性をよ り優れたも の と する こ と ができ る。 こ の場合、 モ ル比 ( Y LiZ Y Co ) の上 限値のさ らに好ま しい値は、 1 . 0 8 である。
正極活物質粒子の粒度分布には、 正極活物質粒子中に 5 0 重量%よ り 多く 含まれている リ チウムコ バル ト含有複合酸化 物粒子の粒度分布が大き く 反映されている。 ピーク強度比が
5 よ り 大きレ、 リ チウム コバル ト含有複合酸化物粒子において は、 正極活物質のモル比 ( Y Ll/ Y Co) が 1 . 0 2 〜 2 の 範囲である時、 単粒子の存在比率が高い傾向がある。 従って、 正極活物質粒子の体積累積頻度 1 0 %の粒径 (D 1 0 ) が 4 . 5 // mよ り 大き く なる と、 正極の非水電解質との反応面積が 少な く なるため、 正極表面への保護被膜の形成速度が遅く な り 、 充電状態で高温環境下に保管 した際のガス発生量が多く なる恐れがある。 また、 リ チウムコ バル ト含有複合酸化物粒 子のかさ密度が小さ く なるため、 正極のエネルギー密度が低 下する可能性がある。 D 1 0 は、 3 m以下にする こ と がよ り 望ま しい。 また、 D 1 0 を 0 . 1 μ m未満にする と、 結晶 性と結晶の配向性が低い粒子の比率が高く なる こ とから、 充 電状態で高温環境下に保管した際のガス発生量が多く なる恐 れがある。 よって、 D 1 0 の下限値は、 0 . Ι μ πι (よ り好 ま し く は 0 . 5 ^ ηι) にする こ とが望ま しい。
正極活物質粒子中の リ チウム コ バル ト含有複合酸化物粒子 の含有量が多い方が、 正極活物質粒子の結晶性と結晶の配向 性が高く な り 、 正極のス ル ト ン化合物と の反応性を向上する こ と ができ る。 従って、 充電状態で高温環境下に保管した際 のガス発生量を十分に少なく するためには、 正極活物質粒子 中の リ チウムコバル ト含有複合酸化物粒子の含有量を 6 0重 量%以上にする こ とがよ り 好ま しく 、 7 0重量%以上にする こ と 力 Sさ らに好ま しい。
前記リ チウム コバル ト含有複合酸化物粒子は、 リ チウム と コ バル ト以外の元素を含んでいても良い。 かかる元素と して は、 例えば、 N i 、 M n、 A 1 、 S n、 F e 、 C u、 C r 、 Z n、 M g、 S i 、 P、 F、 C 1 、 B等を挙げる こ と ができ る。 添カロ元素の種類はヽ 1 種類でも、 2種類以上であ 良い。 中でも、 下記 ( E ) 式で表わされる組成が好ま しい ο
し i a C o b M l c 〇 2 ( E ) 但し、 前記 M 1 は、 N i 、 M n、 B、 A 1 及び S n よ り な る群力 ら選択される 1 種類以上の元素であ り 、 前記モル比 a b、 c は、 それぞれ、 0 . 9 5 ≤ a ≤ 1 . 0 5、 0 9 5 ≤ b ≤ 1 . 0 5、 0 ≤ c < 0 . 0 5、 0 . 9 5 ≤ b + c ≤ 1 .
0 5 を示す 。 モル比 a , c の さ ら に好ま しい範囲は、 そ れぞれ、 0 . 9 7 ≤ a < 1 . 0 3、 0 . 9 7 ≤ b ≤ 1 . 0 3
0 . 0 0 1 ≤ c ≤ 0 . 0 3 であ
刖述 した リ チウム コバル ト含有複合酸化物粒子にねいては 全ての粒子が同 じ組成を有 していな く ても 良 く 、 ピ一ク 強度 比力 S 5 よ り 大き ければ 、 組成の異なる 2種類以上の粒子から 構成されていて も良い o
また、 前記正極活物質粒子は 、 前述 した リ チウ ム / ノレ 卜 含有複合酸化物粒子から形成されていても良いが、 ジ チウム コバル ト含有複合酸化物粒子以外の他の粒子を含んでいても 良い。
他の粒子 と し て は、 例え ば、 ピー ク 強度比 ( I 0 0 3 Z I 1 04 ) が 2 以上 5 未満であ る リ チ ウ ム含有複合酸化物粒子を 挙げる こ と ができ る。 この リ チウム含有複合酸化物粒子を正 極に添加する こ と によ って、 充放電サイ ク ルで膨張収縮が繰 り 返される こ と よ る正極表面か らの保護被膜の剥離を抑制 する こ と ができ 、 正極表面に形成される保護被膜の安定性を 高 く する と ができ るため、 優れた充電高温貯蔵特性を持ち つつ、 二次電池の充放電サイ クル寿命を向上する こ と ができ る。 なお 晶が配向性を持たず、 完全に等方的である場合 には、 ピ一ク強度比 ( I 003 / 1 1 04 ) は計算上 2 と なる ため、 ピーク強度比は 2 以上ヽ 5 未満にする こ と が好ま しい。 ピ一 ク 強度比の さ ら に好ま しい範囲は、 2 り 大き く 、 4 . 9 5 以下である
充放電サィ クル寿命 と充電高温貯蔵特性の双方に優れる二 次電池を実現するためには、 ピーク 強度比 ( I 003 / 1 1 04 ) が 2 以上 5 未満である チウム含有複 1=1酸化物粒子の正極活 物質粒子中の割合を 0 • 1 重量%以上ヽ 5 0重量%未満の範
- 囲にする と が好ま しい 。 さ ら に好ま しい範囲は、 0 . 5 〜
4 8 重量 %でめる。
リ チウム含有複合酸化物 と しては、 例えば、 リ チウムマン ガン複合酸化物、 リ チクム - ッケル複合酸化物 、 リ チウム コ
Λノレ ト複 π 酸化物、 リ チゥ ムニ ッ ケル / ノレ 卜複合酸化物な
>- どを挙げる と ができ る 。 各複合酸化物には、 構成元素 と異 なる種類の元素を少な < と も 1 種類添加する こ と ができ 、 添 加元素と しては、 例えば 、 N i , M n A 1 , S n , F e ,
C u , C r Z 11, M , S i , Ρ, F , C 1 , B な どを挙 げる こ と ができ る。 中でも、 下記 ( F ) 式で表わされる組成 を有する V チゥ ム含有複合酸化物が好ま しい。
L i X N i y C o zM 2w O 2 ( F )
但 し、 m記 M 2 は、 M n、 B、 A 1 及び S n よ り なる群力、 ら選択される 1 種類以上の元素であ り ヽ 記モル比 X 、 yヽ z 、 wはヽ それぞれ、 0 . 9 5 ≤ X ≤ 1 • 0 5 、 0 . 7 ≤ y
≤ 0 . 9 5 、 0 . 0 5 ≤ z < 0 . 3 、 0 < w ≤ 0 . 1 、 0 .
9 5 ≤ y + z + w ≤ 1 . 0 5 を示す。 モル比 X , y , z のさ らに好ま しい範囲は、 0 . 9 7 ≤ X ≤ 1 • 0 3 、 0 . 7 5 ≤ y ≤ 0 . 9 、 0 . 1 ≤ z ≤ 0 • 2 5である 。 モル比 wの よ り 好ま しい拿 a囲は 0 ≤ 0 • 0 7 で、 さ らに好ま しい範囲は
0 ≤ w ≤ 0 . 0 5 で、 最も好ま しい範囲は 0 ≤ w ≤ 0 . 0 3 である。 元素 M 2 の添加効果を十分に得るためにヽ モル比 w の下限値は 0 . 0 0 1 にする と が好ま しい。
こ の リ チゥム含有複合酸化物粒子においては、 全ての粒子 が同 じ組成を有していなく ても良く 、 ピ一ク強度比が 2以上
5未満であれば、 組成の異なる 2種類以上の粒子から構成さ れていて 良い。
一、-
BU記導電剤、 前 し結着剤ヽ m記集電体には、 それぞれ、 刖 述した第 1 の非水電解質二次 池において説明 したの と 同様 なものを挙げる こ とができ る
刖記正極は、 例えば 、 正極活物質に導電剤および結着剤を 適当な溶媒に懸濁し、 この懸濁物を集電体 ¾ ¾ 、 乾燥して 薄板状にする こ と によ り 作製される。
以上説明 した本発明に係る第 2 の非水 ¾解質二次電池に使 用される正極活物質は 、 ピ ク強度比 ( I 003 ^ 1 1 04 ) カ 5 よ り 大き レ、 リ チ ウム コ バ ル ト含有複合酸' 物粒子を 5 0 重 量0 /0よ り 多く 含み 、 D 1 0 が 4 . μ m.以下で、 力 つモノレ J:匕
( Y L i / Y C o ) カ 1 . 0 2 〜 2 の範囲である ため、 高温環 境下において非水電解質中のス ル ト ン化合物と速やかに反応 する こ と ができ る。 従って、 充電状態で高温環境下に保管さ れた際、 正極表面にスル ト ン化合物による保護被膜を速やか 形成する こ と ができ るため、 非水電解質の酸化分解反応を 抑える こ と が可能である。 その結果 一次電池が充 状態で I 下に保管された際のガス発生 を少なく する こ と力 s でき るため、 電池の膨れを抑える こ と が可能になる
本発明に係る第 1 、 第 2 の非水電解質二次電池の一例であ る薄型、 角形、 円筒形非水電解質二次電池を図 1 図 4 を参 照 して詳細に説明する。
図 1 は 、 本発明に係わる非水電解質一次電池の一例である 薄型非水電解質二次電池を示す斜視図 図 2 は図 1 の薄型非 水電解質二次電池を短辺方向に沿つて切断した部分断面図で、 図 3 は本発明に係る非水電解質二次電池の一例である角形非 水電解質二次電池を示す部分切欠斜視図 、 図 4 は本発明に係 る非水電解質二次電池の一例である円筒形非水電解質二次電 池を示す部分断面図である。
まず、 薄型非水電解質二次電池につレ、て説明する
図 1 に示すよ う に 、 矩形のカ ップ状をなす容器本体 1 內に は、 電極群 2 が収納されている。 電極群 2 は、 正極 3 と、 負 極 4 と、 正極 3 と負極 4 の間に配置されるセ ノ レータ 5 を含 む積層物が偏平形状に捲回された構 ϋ口を有する。 非水電解質 は、 電極群 2 に保持されている。 容 ロ
本体 1 の縁の一部は幅 広になつてお り 、 蓋板 6 と して機能する 。 容器本体 1 と蓋板
6 は、 それぞれ、 ラ ミネー ト フィルムから構成される 。 この ラ ミ ネー ト フ ィ ルムは、 外部保護層 7 と、 熱可塑性樹脂を含 有する内部保護層 8 と、 外部保護層 7 と内部保護層 8 の間に 配置される金属層 9 と を含む。 容器本体 1 には盖体 6 が内部 保護層 8 の熱可塑性樹脂を用いてヒ ー トシールによって固定 され、 それによ り容器内に電極群 2 が密封される。 正極 3 に は正極タブ 1 0 が接続され、 負極 4 には負極タブ 1 1 が接続 され、 それぞれ容器の外部に引き出されて、 正極端子及び負 極端子の役割を果たす
次いで 、 角形非水電解質二次電池について説明する
図 3 に示すよ う に、 例えばアルミ ニ ウムのよ う な金属製の 有底矩形筒状容器 1 2 内には、 電極群 1 3 が収納されて ヽる。 電極群 1 3 は、 正極 1 4、 セハ0 レータ 1 5 及び負極 1 6 力 Sこ の順序で 層 れ、 Μβ平状に捲回されたものである 中央付 近に開口部を有するスぺーサ 1 7 は、 電極群 1 3 の上方に配 置されている。
非水電解質は、 電極群 1 3 に保持されている。 防爆機構 1
8 a を備え、 力 つ中央付近に円形孔が開口 されている封口板
1 8 b は 、 容器 1 2 の開口部に レーザ溶接されている 。 負極 端子 1 9 は、 封口板 1 8 b の円形孔にハーメ チッ ク シ一ノレを 介 して配置されている 。 負極 1 6 力 ら引き出された負極タブ
2 0 は、 負極端子 1 9 の下端に溶接されている。 一方 、 正極 タブ (図示しない) は 、 正極端子を兼ねる 2 に
れている
次レヽで 、 円筒形非水電解質二次電池について説明する。
ス テ ン レスカゝらなる有底円筒状の容器 2 1 は、 底部に絶縁 体 2 2 が配置されている。 電極群 2 3 は、 前記容器 2 1 に収 納されている。 前記電極群 2 3 は、 正極 2 4 、 セノ、。 レータ 2 5 、 負極 2 6及びセパ レータ 2 5 を積層 した帯状物を前記セ パ レータ 2 5 が外側に位置する よ う に渦巻き状に捲回 した構 造になっている。
前記容器 2 1 内には、 非水電解質が収容されている。 中央 部が開口 された絶縁紙 2 7 は、 前記容器 2 1 内の前記電極群 2 3 の上方に配置されてい る。 絶縁封口板 2 8 は、 前記容器 2 1 の上部開口部に配置され、 かつ前記上部開口部付近を内 側にかしめ加工する こ と によ り 前記封口板 2 8 は前記容器 2 1 に固定されている。 正極端子 2 9 は、 前記絶縁封口板 2 8 の中央に嵌合されている。 正極リ ー ド 3 0 の一端は、 前記正 極 2 4 に、 他端は前記正極端子 2 9 にそれぞれ接続されてい る。 前記負極 2 6 は、 図示しない負極リ ー ドを介して負極端 子である前記容器 2 1 に接続されている。
以下、 本発明の実施例を前述した図面を参照 して詳細に説 明する。
(実施例 1 )
ぐ正極の作製 >
下記表 1 に示す組成を有し、 かつ体積累積頻度 1 0 。/。粒径 D 1 0 と ピーク強度比 ( I 003 I 1 04 ) が下記表 1 に示す値 である リ チウム複合酸化物粒子を用意した。 なお、 体積累積 頻度 1 0 %粒径 D 1 0 と ピーク強度比 ( I 0 0 3 / I 1 04 ) は、 下記に説明する方法で測定した。
< D 1 0 の測定〉
すなわち、 レーザー回折 . 散乱法によ り リ チウム複合酸化 物粒子の粒径と各粒度区間での粒子の占有体積を測定する。 粒度区間の体積を累積して全体の 1 0 %と なつた時の粒径を 体積累積頻度 1 0 %粒径と した。
く ピーク強度比の測定〉
X線回折測定は、 理学電気 (株) 製の R I N T 2 0 0 0 を 用いた。 X線線源に C u — Κ α 1 (波長 1 . 5 4 0 5 A ) を 用いて以下の機器条件で行った。 管電圧は 4 0 k V 電流は
4 0 m A、 発散ス リ ッ ト は 0 . 5 ° 、 散乱ス V ッ 卜 は 0 ,
5 ° 、 受光ス リ ッ ト幅は 0 . 1 5 m mであった さ らに、 モ ノ ク ロ メ ーターを使用 した。 測定は、 走査速度が 2 /分、 走査ス テ ッ プが 0 . 0 1 ° で、 走査軸が 2 Θ / Θ の条件で行 つた。 2 Θ = 4 5 . 2 ° ± 0 . 1 ° の ピーク を ( 1 0 4 ) 面 の ピーク と し、 2 Θ = 1 8 . 8 ° ± 0 . 1 ° の ピ一ク を ( 0
0 3 ) 面のピーク と した。 また、 ピーク強度 ( C P s ) は、
2 0 軸で表記した回折模様の測定値か ノ 、ソク グラ クン ドを 引いたもの と した。
上記リ チウム複合酸化物粉末 9 0重量%に、 ァセチレ ンブ ラ ッ ク 5重量% と、 ポリ フ ッ化ビ- リ デン ( P V d F ) 5重 量0 /0 の Ν—メ チルー 2 — ピ ロ リ ドン ( N M P ) 溶液と をカ卩ぇ て混合し、 ス ラ リ ーを調製した。 前記ス ラ リ ーを厚さが 1 5 μ mのアルミ ニウム箔からなる集電体の両面に塗 した後、 乾燥し、 プレスする こ と によ り 、 正極層力 集電体の両面に担 持された構造の正極を作製した。 なお 、 正極層の さは、 片 面当 り 6 0 mであった。
ぐ負極の作製 > fcti
灰素質材料と して 3 0 0 0 °Cで熱処理したメ ソフエ ■―"ズピ ッチ系炭素繊維 (粉末 X線回折に よ り 求め られる ( 0 0 2 ) 面の面間隔 ( d 002 ) 力 S 0 . 3 3 6 n m ) の粉末を 9 5 重 量0 /0 と 、 ポ リ フ ッ化ビニ リ デン ( P V d F ) 5 重量0 /0のジメ チルフ ォルムア ミ ド ( D M F ) 溶液と を混合 し、 ス ラ 1リ 一を 調製 した 。 前記ス ラ リ ーを厚さ 力 S 1 2 / mの銅箔からなる集 電体の両面に塗布 し、 乾燥し 、 プレスする こ と に よ り 、 負極 層が集電体に担持された構造の負極を作製 した。 なお 、 負極 層の厚さ は、 片面当 り 5 5 μ mであった。
な ヽ 炭素質物の ( 0 0 2 ) 面の面間隔 d 002 は、 粉末 X 線回折スぺク トルか ら半値幅中点法に よ り それぞれ求めた。 この際、 ロ ー レ ンツ散乱等の散乱捕正は、 行わなかつた
<セノ、° レータ 〉
厚さ が 2 5 μ mの微多孔性ポ リ エチ レン膜から なるセノ レ 一タ を用 J¾ /し
<非水電解液の調製 >
ェチ レ ンカーボネー ト ( E C ) 、 メ チノレエチノレカーポネー 卜 ( M E C ) および 1 , 3 —プロペンスル ト ン ( P R S ) を 体積比率 ( E C : M E C : P R S ) 力 S 3 3 : 6 6 : 1 になる よ う に混合 して非水溶媒を調製 した。 得られた非水溶媒に六 フ ッ化 リ ン酸 リ チウ ム ( L i P F 6 ) をその濃度が 1 モノレ
/ L にな る よ う に溶解させて 、 液状非水電解質を調製した。
<電極群の作製 >
目 U記正極の集電体に帯状アル ミ ニ ウ ム箔 (厚 さ 1 0 0 μ m ) か ら なる正極リ ー ドを超音波溶接 し、 前記負極の集電体 に帯状二 Vケル箔 (厚さ 1 0 0 β m ) カゝらなる負極リ ー ドを 超音波溶接 した後、 前記正極及ぴ前記負極をその間に前記セ
/ レータ を介して渦巻き状に捲回 した後、 偏平状に成形し、 電極群を作 3¾し 'こ o
肉厚が 0 . 2 5 m mのァルミ 二ゥム製の角形缶に、 電極群 を収納した 。 次いで、 金属缶内の電極群に 8 0 °Cで真空乾燥 を 1 2 時間施すこ と によ り 電極群及び金属缶に含まれる水分 を除去した
引き続さ 、 金属缶内の電極群に液状非水電解質を電池容量
1 A h 当た り の量が 4 • 8 g と なる よ う に注入し 、 注液孔を 溶接によ り 封止する こ と によ り 、 前述した図 3 に示す構造を 有し、 厚さ が 4 . 8 m m 幅が 3 0 m m N 5カ 4 8 m mの 角形非水電解質二次電池を組み XL
(実施例 2〜 8 ) 非水電解質の組成を下記表 2 に示すよ う に変更する こ と以 外は、 前述 した実施例 1 で説明 したの と 同様にして角形非水 電解質二次電池を組み立てた。
なお、 表 2 において 、 D E Cはジェチノレ力一ボネー ト、 G
B L は γ プチ ύ ラ タ ト ン 、 P Cはプロ ピレ ン力ーポネー ト
B T S は 1 , 4 —プチレンスノレ 卜 ンを示す。
(実施例 9〜 1 3 )
L i と C ο の モ ノレ比 ( X L i / 7 X Co ) お よび、 ピーク 強度 比 ( I 003 I 1 04 ) 、 体積累積頻度 1 0 %粒径 D 1 0 を、 下 記表 1 に示すよ う に変更する こ と以外は、 前述した実施例 1 で説明 したのと 同様に して角形非水電解質二次電池を組み立 てた。
(比較例 1 〜 5 )
非水電解質の組成を下記表 4 に示すよ う に変更する こ と以 外は、 前述した実施例 1 で説明 したの と 同様に して角形非水 電解質二次電池を組み立てた。
なお、 表 4 において、 E Cはエチレンカーボネー ト、 M E
C はメ チノレエチノレカーボネー ト、 P R S は 1 , 3 —プロペン スル ト ン、 D E Cはジェチルカーポネー ト、 G B L は γ —ブ チロ ラ タ ト ン、 P C はプロ ピレンカーボネー ト、 P S はプロ バ ンスノレ ト ンを示す。
(比較例 6 〜 8 )
L i と C o のモル比 ( X Li Z X Co) および、 ピーク 強度 比 ( I 003ダ I 104) 、 体積累積頻度 1 0 %粒径 D 1 0 を、 下 記表 3 に示すよ う に変更する こ と以外は、 前述した実施例 1 で説明 したの と 同様に して角形非水電解質二次電池を組み立 てた。
得られた実施例 1 〜 1 3 および比較例 1 〜 8 の二次電池に ついて、 充電高温保存特性を下記に説明する条件で評価し、 その結果を下記表 2 、 表 4 に示す。
(充電高温貯蔵特性)
各二次電池について、 初充放電工程と して、 室温で 0 . 2 C ( 1 3 O m A ) で 4 . 2 Vまで定電流 · 定電圧充電を 1 5 時間行い、 その後、 室温で 0 . 2 Cで 3 . 0 Vまで放電した 次に、 充電レー ト 1 C、 充電終止電圧 4 . 2 Vで充電 し、 温度 8 0 °Cの環境中において 1 2 0時間保存した後の電池容 器の厚みを測定し、 ( 2 ) 式よ り保存中の電池容器の厚み変 化率を求めた。
{ ( t !- t 0) / t 0} X 1 0 0 (% ) ( 2 ) 但し、 前記 t 0 は、 保存直前の電池容器厚さ で、 前記 t 丄 は、 保存 1 2 0時間後の電池容器厚さ を示す。
表 1
Figure imgf000033_0001
表 2
主溶媒の種類と混合比 電解質の スルトン化合物の 電池容器の
(%は体積%を示す) 種類と濃度 種類と配合比 厚み変化率 )
実施例 1 33も EC, 66%MEC 1.0M-LiPF6 PRS- 1体積0 /0 1. 12
実施例 2 33も EC, 33%MEC, 33 DEC 1.0M-LiPF6 PRS- 1 0 /o 1. 12
実施例 3 49.5%EC, 49.5%GBL 1.5M-LiBF PRS-1体積0 /o 0. 96
実施例 4 49.5%EC, 49.5%PC 1.0M-LiPF6 PRS- 1体積0 /o 0. 95
実施例 5 33 EC, 66%MEC 1.0M-LiPF6 BTS- 1体積0 /o 1. 5 1
t 実施例 6 33 EC, 33%MEC, 33 DEC 1. OM-LiPFg BTS- 1体積0 /o 1. 48
実施例 7 49.5 EC, 49.5 GBL 1.5M-LiBF4 BTS - 1体積0 /o 1. 23
実施例 8 49.5%EC, 49.5%PC l.OM-LiPFg BTS- 1體0 /0 1. 3 1
実施例 9 33%EC, 66%MEC 1.0M-LiPF6 PRS- 1體% 1. 55
実施例 10 33 EC, 66%MEC l.OM-LiPFg PRS- 1体積0 /o 0. 96
実施例 11 33 EC, 66%MEC 1.0M-LiPF6 PRS- 1体積0 /o 1. 00
実施例 12 33も EC, 66%MEC 1.0M-LiPF6 PRS- 1脑0 /o 0. 95
実施例 13 33 EC, 66%MEC l.OM-LiPFg PRS-1體0 /0 1. 82
表 3
リチウム複合酸化物の組成 Liと Coのモル!:匕 ピ ク強度比 D 10
(XLiZXC。) ( 1003, 1104) (βΐΏ.) 比較例 1 L i 1.04C °0? 1. 04 30 2. 9 比較例 2 L i 1 04し 0〇2 1. 04 30 2. 9 比較例 3 L i !.04C o 0?. 1. 04 30 2. 9 比較例 L i 1.04C o O2 1. 04 30 2. 9 比較例 5 L i i.04CoO 1. 04 30 2. 9 比較例 6 L i C o 02 1. 00 2. 7 1. 99 比較例 L ii.oiCo0 1. 01 4. 2 3. 0 比較例 8 L i L04C 00? 1. 04 30 5. 55
表 4
主溶媒の種類と混合比 電解質の スルトン化合物の 電池容器の (%は体積%を示す) 種類と配合比 厚み変化率 ( ) 比較例 1 33. %EC, 66.6%MEC 1. OM-LiPFg 無添加 8. 22 比較例 2 33 - %EC, 33.3%MEC, 33.3%DEC 1.0M-LiPF6 無飾 6. 02 比較例 3 50%EC, 50%GBL 1.5M-LiBF4 無添加 5. 45 比較例 50 EC, 50 PC 1. OM-LiPFg 無添加 5. 66 比較例 5 33 EC, 66%MEC 1.0M-LiPF6 PS- 1体積0 /0 8. 19 比較例 6 33も EC, 66%MEC 1. OM-LiPFg PRS-1髓0 /0 5. 34 比較例 7 33%EC, 66%MEC 1.0M-LiPF6 PRS-1雜0 /0 4. 33 比較例 8 33%EC, 66%MEC 1. OM-LiPFg PRS- 1体積0 /0 4. 01
表 1 〜表 4 力、 ら明 ら力 な よ う に、 D 1 0 カ 4 . 5 μ ΐη以下 で、 ピーク 強度比 ( I 003Ζ I 104) 力 S 5 よ り 大き く 、 かつモ ル比 ( X LiZ X co) 力 0 2 以上であ る リ チ ウ ム複合酸 化物粉末と 、 環内に少な く と も一つの二重結合を有するスル ト ン化合物 と を含む実施例 1 〜 1 3 の二次電池は、 8 0 °Cの 環境下に充電状態で保管 した際の電池膨れが、 比較例 1 〜 8 の二次電池に比較 して小さ いこ と が理解でき る。
なお、 スル ト ン化合物が無添加の比較例 1 〜 4 の二次電池 と 、 二重結合を持たない P S を添加剤 と して用いる比較例 5 の二次電池 と 、 モル比 ( X Ll/ X Co) が 1 · 0 2 未満で、 かつ ピーク 強度比 ( I 003/ I 104) が 5 以下の比較例 6 , 7 の二次電池 と 、 D 1 0 が 4 . 5 i mを超える比較例 8 の二次 電池は、 いずれも、 8 0 °Cの環境下に充電状態で保管 した際 の電池膨れが、 4 %以上と 大き かった。
(実施例 1 4 )
D 1 0 カ 2 . 9 /1 mで、 ピーク 強度比 ( I 003 Z I 104) が 3 0 の L i ! 04C o O 2 粒子 (第 1 の活物質粒子) を 7 0 重 量 0 /0 と 、 D 1 0 力 S 1 . 8 μ mで、 ピーク 強度比 ( I 003 Z I 104) カ 5 0 の 1^ 1 1 05 0 0 973 11 0 0302 粒子 (第 2 の活 物質粒子) を 3 0 重量% と を混合する こ と に よ り 、 正極活物 質粒子を得た。 得られた正極活物質粒子の D 1 0 と 、 正極活 物質粒子のモル比 ( Y LiZ Y Co ) と 、 正極活物質におけ る L i と O以外の元素を 1 と した際の C o のモル比率を下記表 5 に示す。
得られた正極活物質粒子を用いる こ と以外は、 前述 した実 施例 1 で説明 したの と 同様な構成の角形非水 m解 ―次電池 を得た
(実施例 1 5 〜 1 8 ) 第 1 の正極活物質並びに第 2 の正極活物質の組成ヽ ピーク 強度比 ( 1 003ノ ζ I 1 04) 及び D 1 0 と、 正極活物質中の第 1 の正極活物質の重量比率と 、 正極活物質のモ ル比 ( Y Li / Y
C o ) 並びに D 1 0 と 、 正極活物質における L i と o以外の 元素を 1 と した際の C ο のモル比率を下記表 5 に示すよ う に する と以外は 、 前述 した実施例 1 で説明 したの と 様な構 成の角形非水電解質二次電池を得た。
、 得られた実施例 1 4 〜 1 8 の二次電池について 、 刖述した 実施例 1 で説明 したの と 同様に して電池容器の厚み変化率を 測定し 、 その結果を下記表 6 に示す。
また 、 実施例 1 4 〜 1 8 及び前述した実施例 1 について、 充放電レー ト 1 C、 充電終止電圧 4 . 2 V 、 放電終止電圧 3
0 Vの充放電試験を行い、 温度 2 0 °Cの環境中に いて充放 電を 5 0 0 回繰り 返した後の放電容量維持率を 、 1 回 目 の放 電の容量を 1 0 0 % と して算出 し、 その結果を下記表 6 に示 す。 表 5
第 1の活物質 第 2の活物質 正極活物質 正極 正極
モル
ピーク強度比 D10 比率 組成 ピ-ク贿比 D10 比 組成 活物質 活物質 (1003/1104> (pm) (ェ 003/:Ε104) (¾± Coモル比率 D10 量%) ¾。) (pm) 例 Li1.04CoO2 30 2.9 100 - 一 - 1.04 1 2.9
1
Ll1.04CoO2 30 2.9 70 Ll1.05Co0.97Sn0.03o2 50 1.8 2.8
14
Li1.04CoO2 30 2.9 60 Lll.04CoSn0.0007°2 10 3 1.04 0.9997 2.9 15
mm
Li1.04Co°2 30 2.9 70 LiCo02 3 6 1.02 1 4
16
Li1.04CoO2 30 2.9 80 L Ni0.76Co0.18Mn0.06°2 3 5 1.23 0.836 4 17
Lj-1.04CoO2 30 2.9 80 LiNi0.76°00.18^0.06°2 3 5 1.23 0.836 4 18
ο
表 6
Figure imgf000040_0001
表 5 , 表 6 カゝ ら 明 ら かな よ う に、 ピーク 強度比が ( I 003 I ι ο 4 > 力 s 5 よ り 大き い 2 種類の リ チ ウ ム コ バル ト含有複 合酸化物 らなる正極活物質を含む正極を備えた実施例 1 4
〜 1 5 の電池は実施例 1 に比べて厚み変化率と サイ ク ル維持 率の どち らかが良 く なつている。 また、 ピーク強度比が ( I
003 / 1 1 04 ) が 5 よ り 大きレヽ リ チウム コバル ト含有複合酸化 物と ピーク 強度比が ( I 003 / 1 1 04 ) 力 S 5 未満の リ チゥム含 有複合酸化物と を含む正極を備えた実施例 1 6〜 1 8 の二次 電池は、 5 0 0 サィ クル時の容量維持率を実施例 1 に比較 し て高 く する こ と ができ た
( P R S の検出方法 )
ま た、 実施例 1 の二次電池について、 前記初充放電工程後、
5 時間以上回路を開放 して十分に電位を落ち着かせた後、 A r 濃度が 9 9 . 9 %以上 、 かつ露点が一 5 0 °c以下のグ口一 ブボ ッ ク ス内で分解 し 、 電極群を取 り 出 した。 刖 極群を 遠沈管につめ、 ジメ チルス /レホキシ ド ( D M S O ) ― d 6 を 加えて密封 し、 前記グ口ーブボ ッ ク ス よ り 取 り 出 し m 'し、分 離を行った。 その後、 前記グローブボック ス内で、 前記遠沈 管から前記電解液と前記 D M S O — d 6 の混合溶液を採取し た。 前記混合溶媒を 5 πιπι φ の N M R用試料管に 0 . 5 m l 程度入れ、 N M R測定を行った。 前記 N M R測定に用いた装 置は 日本電子株式会社製 J NM— L A 4 0 0 W Bであ り 、 観 測核は 1 H、 観測周波数は 4 0 0 M H z 、 ジメ チルスルホキ シ ド ( D M S O ) - d 6 中に僅かに含まれる残余プロ ト ン信 号を内部基準と して利用 した ( 2 . 5 p p m ) 。 測定温度は
2 5 と した。 iH N M Rスぺク トルでは E C に対応する ピ ーク が 4 . 5 p p m付近、 P R S に対応する ピークが、 図 5 に示すスぺク トノレの よ う に 5 . l p p m付近 ( P i) 、 7 . 0 5 p p m付近 ( P 2) 及び 7 . 2 p p m付近 ( P 3) に観測 された。 これらの結果から、 初充放電工程後の実施例 1 の二 次電池に存在する非水溶媒中に P R S が含まれている こ と を 確認できた。
また、 観測周波数を 1 0 0 M H z と し、 ジメ チルスルホキ シ ド ( D M S O ) - d 6 ( 3 9 . 5 p p m ) を内部基準物質 と して 13C N M R測定を行った と こ ろ、 E C に対応する ピ 一ク カ 6 6 p p m付近、 P R S に対応する ピーク ;^ 7 4 p p m付近と 1 2 4 p p m付近と 1 4 0 p p m付近に観測され、 この結果から も、 初充放電工程後の実施例 1 の二次電池に存 在する非水溶媒中に P R S が含まれている こ と を確認できた。
なお、 本発明は、 上記の実施例に限る も のではなく 、 他の 種類の正極 · 負極 · セパ レータ · 容器の組合わせにおいても 同様に適用可能である。 産業上の利用可能性
以上詳述 したよ う に本発明によれば、 充電状態で高温環境 下に保管 した際の膨れが抑制された非水電解質二次電池を提 供する こ とができ る。

Claims

請 求 の 範 囲
1 . 正極活物質粒子を含む正極と、 負極と、 非水電解質と を 具備した非水電解質二次電池であって、
前記正極活物質粒子は、 ピーク強度比が下記 ( 1 ) 式を満 足する リ チウムコ バル ト含有複合酸化物粒子を 5 0重量%よ り 多く 含み、
前記正極活物質粒子の体積累積頻度 1 0 %の粒径 ( D 1 0 ) が 4 . 5 ηι以下で、 前記正極活物質粒子の リ チウム と コ バル ト のモル比が下記 ( 2 ) 式を満た し、
前記非水電解質は、 環内に少なく と も一つの二重結合を有 する ス ル ト ン化合物を含む。
( I 003/ I 104) 〉 5 ( 1 )
1 . 0 2 ≤ ( Y Li/ Y Co) ≤ 2 ( 2 )
伹し、 I 003 は前記リ チウムコ バル ト含有複合酸化物粒子 の粉末 X線回折における ( 0 0 3 ) 面の ピーク 強度 ( c p s ) で、 I i 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク 強度 ( c p s ) であ り 、 Y は前記正極活物質粒子 中の リ チウムのモル数で、 Y Co は前記正極活物質粒子中の コ ノ ノレ ト のモノレ数である。
2 . 前記正極活物質粒子中の前記リ チウムコバル ト含有複合 酸化物粒子の含有量は 6 0重量%以上である請求項 1 記載の 非水電解質二次電池。
3 . 前記体積累積頻度 1 0 %粒径 ( D 1 0 ) は、 0 . 1 μ m 以上、 4 . 5 μ πι以下である請求項 1 記載の非水電解質二次 電池。
4. 前記リ チウムコ バル ト含有複合酸化物粒子は、 N i 、 M ii、 A l 、 S n、 F e 、 C u、 C r 、 Z n、 M g 、 S i 、 P、 F、 C I 及び B よ り なる群から選択される少なく と も 1 種類 の元素をさ らに含有する請求項 1 記載の非水電解質二次電池。
5 . 前記正極活物質粒子は、 ピーク強度比が下記 ( 3 ) 式を 満足する リ チウム含有複合酸化物粒子をさ らに含有する請求 項 1 記載の非水電解質二次電池。
2 ≤ ( I 003/ I 104) く 5 ( 3 )
伹し、 1 003 は前記リ チウム含有複合酸化物粒子の粉末 X 線回折における ( 0 0 3 ) 面のピーク強度 ( c p s ) で、 I 104 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク強度
( c p S ) であ 。
6 . 前記リ チウム含有複合酸化物粒子は、 N i 及び C o の う ち少なく と も一方の元素を含有する請求項 5記載の非水電解 質二次電池。
7 . 前記正極活物質粒子中の前記リ チウム含有複合酸化物粒 子の含有量は、 0 . 1 重量%以上、 5 0重量。 /。未満である請 求項 5記載の非水電解質二次電池。
8 . 正極活物質を含む正極と、 負極と、 非水電解質と を具備 した非水電解質二次電池であって、
前記正極活物質は、 体積累積頻度 1 0 %の粒径 ( D 1 0 ) が 4 . 5 μ m以下で、 ピーク強度比が下記 ( 4 ) 式を満た し、 かつ リ チウム と コ バル ト のモル比が下記 ( 5 ) 式を満足する リ チウム複合酸化物粉末を含み、
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む。
( I 003/ I 104) > 5 ( 4 )
( XLi/ X Co) ≥ 1 . 0 2 ( 5 )
但し、 I 003 は前記リ チウム複合酸化物粉末の粉末 X線回 折における ( 0 0 3 ) 面の ピーク強度 ( c p S ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク強度 ( c p s ) であ り 、 X Li は前記リ チ ウム複合酸化物粉末中の リ チウム のモル数で、 X C() は前記リ チウム複合酸化物粉末中 の コ バノレ ト のモノレ数である。
9 . 前記正極活物質は前記リ チウム複合酸化物粉末である請 求項 8記載の非水電解質二次電池。
1 0 . 前記スル ト ン化合物は、 1 , 3 — プロ ペンスノレ ト ン及 び 1 , 4 一プチレ ンスル ト ンの う ち少な く と も一方カゝら構成 される請求項 1 または 8記載の非水電解質二次電池。
PCT/JP2003/014153 2002-11-06 2003-11-06 非水電解質二次電池 WO2004042859A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-322892 2002-11-06
JP2002322892 2002-11-06

Publications (1)

Publication Number Publication Date
WO2004042859A1 true WO2004042859A1 (ja) 2004-05-21

Family

ID=32310403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014153 WO2004042859A1 (ja) 2002-11-06 2003-11-06 非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2004042859A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922693A (ja) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd 非水電解液電池およびその正極活物質と正極板の製造法
JP2002329528A (ja) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2003142152A (ja) * 2001-11-01 2003-05-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003168434A (ja) * 2001-12-03 2003-06-13 Toshiba Corp 正極活物質,二次電池用正極およびそれを用いた非水電解液二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922693A (ja) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd 非水電解液電池およびその正極活物質と正極板の製造法
JP2002329528A (ja) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2003142152A (ja) * 2001-11-01 2003-05-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003168434A (ja) * 2001-12-03 2003-06-13 Toshiba Corp 正極活物質,二次電池用正極およびそれを用いた非水電解液二次電池

Similar Documents

Publication Publication Date Title
JP5910627B2 (ja) 二次電池
JP4897223B2 (ja) 非水電解質二次電池
US7455933B2 (en) Nonaqueous electrolyte secondary battery
CN108199035B (zh) 锂二次电池
JPWO2004012284A1 (ja) 非水電解質二次電池
JP2005317508A (ja) 非水電解質二次電池
JP2010062113A (ja) リチウムイオン二次電池
JP2006202647A (ja) 非水電解質二次電池
KR100763218B1 (ko) 비수성 2차 배터리용 음극
WO2011061999A1 (ja) リチウムイオン二次電池の製造方法
JP4909512B2 (ja) 非水電解質二次電池
CN112335076A (zh) 电极、电池及电池包
US8148014B2 (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JP4836415B2 (ja) 非水電解質二次電池
JP4690643B2 (ja) 非水電解質二次電池
JP4467951B2 (ja) 非水電解質二次電池
JP2002237331A (ja) リチウム二次電池
JP2008243718A (ja) 非水電解液二次電池の製造方法
JP4287123B2 (ja) 非水電解質及び非水電解質二次電池
KR100778961B1 (ko) 비수전해질 이차 전지
JP2006156021A (ja) 非水電解質二次電池
JP4599050B2 (ja) 非水電解質二次電池
JP4686131B2 (ja) 非水電解質二次電池
JP2005310662A (ja) 非水電解質二次電池
JP4346395B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase