WO2004042467A1 - Procede et appareil de controle de securite par amplification optique - Google Patents

Procede et appareil de controle de securite par amplification optique Download PDF

Info

Publication number
WO2004042467A1
WO2004042467A1 PCT/CN2003/000938 CN0300938W WO2004042467A1 WO 2004042467 A1 WO2004042467 A1 WO 2004042467A1 CN 0300938 W CN0300938 W CN 0300938W WO 2004042467 A1 WO2004042467 A1 WO 2004042467A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
optical
output
reflected
control
Prior art date
Application number
PCT/CN2003/000938
Other languages
English (en)
French (fr)
Inventor
Jiaying Wang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to AU2003284794A priority Critical patent/AU2003284794A1/en
Priority to EP03773423.3A priority patent/EP1560065B1/en
Publication of WO2004042467A1 publication Critical patent/WO2004042467A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Definitions

  • the present invention relates to an optical communication system, and in particular, to a method and a device for safely controlling optical amplification during an optical transmission process.
  • an optical amplifier is required in order to extend the transmission distance.
  • a Raman amplifier to feed high-power pump light into the fiber. Due to the stimulated RAMAN scattering effect (SRS effect) in the fiber, the pump light energy will be transferred to a signal longer than its wavelength. In light, signal light is amplified.
  • fiber amplifiers such as erbium-doped fiber amplifiers
  • the pump light energy is transferred to Among the long-wavelength signal light, the signal light is amplified.
  • the above two amplifiers are suitable for use in WDM equipment to achieve broadband amplification.
  • Amplifiers that can be used also include semiconductor optical amplifiers, which rely on injecting sufficient current into the semiconductor heterojunction to cause energy transfer to amplify the signal light passing through it. Regardless of the amplifier or laser, the optical power can be controlled by changing the driving current.
  • the amplifier outputs invisible laser radiation with large power.
  • the RAMAN amplifier outputs the The pump laser radiation power can reach hundreds to 1000 milliwatts, and the signal optical power amplified by the fiber laser can also reach more than 100 milliwatts when output to the optical cable through the optical port.
  • the device commissioner should be careful to avoid the end face of its connector to avoid burns to eyes and skin. Before use, be sure to keep the end face of the output pigtail clean, to prevent the dust from adhering to the end face of the fiber due to the strong light power, which will damage the end face. Because the connector used in the optical port of the device is not connected properly, the end face of the connector is damaged, Excessive reflected light power caused by damage to other related devices in the device may also cause damage to the hardware facilities of the device and affect the performance of the device. Reducing the optical power can ensure the safety of the equipment or personnel, and return to normal after the equipment defects are eliminated.
  • the technical problem to be solved by the present invention is to provide a method and a device for safety control of optical amplification, so as to avoid possible human damage when using facilities with strong optical power output, and to prevent the device optical port connector from being connected and connected when it appears.
  • the device's function is damaged when the end face of the device is damaged and other related components inside and outside the device are damaged.
  • the safety control method for optical amplification comprises: detecting the output power and reflection power of an optical amplifier, calculating the reflection coefficient and the reflection power; determining whether the reflection coefficient or the reflection power exceeds a given threshold; The amplifier performs safety control, adjusts the output power of the optical amplifier below a safe value, and continues to detect the power value; if it does not exceed, it determines whether the optical power adjustment is needed, and if necessary, adjusts the output power to the output power configuration value; If not required, continue to detect the power value.
  • the safety control device for optical amplification includes: a strong light output optical device group for generating high-power pump light; an isolator for ensuring unidirectional transmission of optical power and limiting reverse transmission of optical power; An output optical interface for outputting pump optical power to an external optical fiber; an optical power acquisition device for acquiring output optical power detection amount and reflected optical power detection amount; detection information processing and control circuit for detecting the obtained output optical power amount Perform information conversion with the reflected optical power detection amount, and calculate based on the obtained conversion information A reflection coefficient is obtained, and the power of the strong light output optical device group is automatically controlled according to the obtained reflection coefficient.
  • the detection information processing and control circuit further includes: a photoelectric conversion device configured to convert the obtained output optical power detection amount and reflected optical power detection amount into corresponding analog detection signals, respectively; the optical power analog-to-digital conversion circuit is configured by the photoelectric The analog detection signals transmitted by the conversion device are respectively converted into corresponding digital signals; the control unit calculates a reflection coefficient according to the digital signals transmitted from the optical power analog-to-digital conversion circuit, and automatically issues a power control instruction according to the obtained reflection coefficient, and Implement power control on the optical component group, and issue performance detection instructions; the optical component group power control and performance acquisition circuit receives the power control instruction issued by the control unit, and after digital-to-analog conversion, implements automatic optical component power control, and receives The performance detection instruction sent by the control unit detects the performance of the optical device, and inputs the obtained information into the control unit after analog-to-digital conversion.
  • a photoelectric conversion device configured to convert the obtained output optical power detection amount and reflected optical power detection amount into corresponding analog detection signals, respectively
  • Figure 1 is a structural diagram of a RAMAN amplifier reflected light detection and automatic optical power control device
  • FIG. 2 is a structural diagram of a lumped amplifier reflected light detection and automatic optical power control device
  • FIG. 3 is a structural block diagram of a detection information processing and control circuit
  • FIG. 4 is a schematic diagram of a detection range of a reflection coefficient
  • Figure 5 is a software flow chart running in the control unit.
  • G1 is an optical device group that generates a pump laser and outputs strong optical power.
  • P1 is a general-purpose pump laser group, consisting of one or more lasers, and all N lasers are connected to the control circuit C2 through electrical interfaces JP1, JP2, ..., JPN. P1 can output laser radiation that meets the working requirements of the equipment during normal operation.
  • I is an isolator, which guarantees the unidirectional transmission of optical power, and the optical power opposite to the arrow direction of the isolator will be isolated. I's reverse isolation is i [dB].
  • T is a proportional coupler with 4 optical ports, and the splitting ratio is X: y, that is, the optical power pi [mw] input from port 1, and pi y / (x + y) [mw] will be output to port 2 Pi x / (x + y) [mw] is output to port 4; On the contrary, if the optical power p2 [kitchen] is input from port 2, p2 xy / (x + y) [mw] is output to port 1, Have pi X x / (x + y) [Li] output to port 3.
  • the reflected light generated by the device downstream of port 2 will be input from port 2 along the light guide and output from port 1 and port 3 in proportion.
  • x «y should be selected.
  • the light output from port 4 and port 3 are respectively used as the detection quantities P-mon of the output optical power and the measured values Pr-tnon of the reflected optical power.
  • W is a multiplexer.
  • a pump light path is formed between port 1 and port 3, and a signal light path is formed between port 2 and port 3.
  • the pump light is input from port 1 and output from port 3. If the signal light is input from port 2 and port 3 (ie, direction a), the amplifier is applied in the forward direction; if the signal light is input from port 3 and port 2 is output (that is, direction b), it is the amplifier applied in the reverse direction.
  • the insertion loss of W is w [dB], and the isolation between port 2 and port 3 is iw [dB].
  • Co is an output optical interface implemented with a movable fiber optic connector. Pump optical power is output to the optical fiber connected to G1 through this connector.
  • E is the detection information processing and control circuit.
  • E is the detection information processing and control circuit.
  • PD1 and PD2 are photoelectric detection diodes, and perform photoelectric conversion on the output optical power detection amount P-mon and the reflected optical power detection amount P r-mon, respectively.
  • C1 includes dual amplifier and A / D conversion circuits.
  • the analog detection signals output from P1 and P2 are input into C1. After proper amplification and A / D conversion, the above-mentioned detection of output power and reflected power is obtained by digital signals. value.
  • CS is a control unit.
  • the digital signal output from C1 is input to the CPU in CS, and the output reflection coefficient is calculated.
  • the software running in CS can make a judgment based on the obtained reflection coefficient value, and automatically implement power control according to the method described in section (4) below.
  • C2 is a power control circuit.
  • C2 is managed by CS and is connected to P1 through the pump laser interface.
  • the CS can be connected to the device communication bus B through a communication interface included therein, so that the device of the present invention can report the working state information of the amplifier (or other strong light output facility) to the device through the communication bus.
  • Management system and can accept the control of equipment management system.
  • FIG. 2 a structure diagram of a device for implementing safety control of a lumped amplifier through reflection coefficient detection is shown as another embodiment embodying the same design concept as that in FIG. 1.
  • G2 is an optical device group that realizes signal light amplification and outputs strong optical power to the outside of the device.
  • G2 is an optical device group that realizes signal light amplification and outputs strong optical power to the outside of the device.
  • P2 is a lumped amplifier, which is composed of one or more optical amplifier devices. Taking fiber amplifier as an example, it contains one or more pump lasers. All N lasers are connected to the control circuit C2 through electrical interfaces JP1, JP2, ..., JPN. P2 can output signal light that meets the working requirements of the device during normal operation.
  • T has the same meaning as in FIG. 1.
  • Ci is the input optical interface of this device.
  • the optical signal to be amplified is input to P2 through Ci.
  • C2 is connected to P2 through the pump laser electrical interfaces JP1, JP2, ..., JPN.
  • Fig. 2 is another application example embodying the same design concept as Fig. 1 and shows the different input and output modes of optical signals in different applications.
  • FIG. 3 is a detailed description of the structure of E in FIGS. 1 and 2.
  • CS is a control unit composed of a CPU, a ROM memory, a RAM memory, and an FPGA.
  • the ROM memory serves as a program and data memory, and stores the executable software and the default configuration data required for the program to run.
  • the ROM may include an electrically erasable memory to realize downloading configuration data online; the RAM memory is used as a data memory to record important data generated during program running.
  • Each circuit chip is connected through data lines D-R0M, D-RAM, D-FPGA and control lines EN-FPGA, EN-RAM, EN-ROM; CPU is connected to J2 through data line DJ and I / O interface circuit .
  • J2 is the signal connector between this device and device bus B.
  • the circuit also includes a standard DC / DC conversion circuit that outputs the bias voltages VC1, VC2, VCC, VO, VP required by each part of the functional circuit.
  • the DC / DC conversion circuit is connected to Jl.
  • J1 is the power connector between the device and the device bus B.
  • J1 and J2 together realize the electrical connection between the device and the device bus.
  • C1 is an output light and reflected light detection circuit composed of an amplifier circuit and an AD conversion circuit.
  • the analog detection signals output from P1 and P2 are amplified by API and AP2 respectively.
  • the CPU communicates with the AD conversion circuit through the data line D1.
  • the CPU controls the CIS signal of the FPGA to select the input port 1 of the AD, and at the same time, the AD conversion circuit outputs data to the CPU through D1;
  • the Pr-mon needs to be detected, the CPU controls the CIS of the FPGA The signal selects the input port 2 of AD, and the AD conversion circuit outputs data to the CPU through D1.
  • C2 is composed of AD / DA conversion circuit and amplifier circuits Al, A2, A3, A4 to form the pump laser control and performance acquisition part.
  • JP1 indicates the controlled electrical interface of the pump laser.
  • the application of the pump laser interface follows the user application data of commercial lasers. Take JP1 as an example, I I is the laser bias current input, 12 is the laser cooling current input, 01 is the laser backlight power detection signal output, and 02 is the laser die operating temperature output.
  • the CPU communicates with the AD / DA conversion circuit through the data line D2. When it is necessary to control the output power of the pump laser 1, the CPU controls the C2S signal of the FPGA to select the AD / DA output port. At the same time, the CPU outputs data to the AD / DA conversion circuit through D2.
  • the port outputs and maintains the analog working current, and then sends it to JP1 II after amplification.
  • the CPU controls the FPGA to select the AD / DA output port, and the CPU outputs data to the AD / DA conversion circuit through D2.
  • the analog working current is output through the port selected by the FPGA and is maintained, and then sent to JP1 12 after i ⁇ large.
  • the CPU controls the FPGA to select the AD / DA input port.
  • the 01 signal output by JP1 is appropriately amplified and input to the AD / DA circuit. After the AD conversion is implemented, it is output to the CPU through D2.
  • the CPU controls the FPGA to select the input port for AD / DA conversion.
  • the 02 signal output by JP1 is appropriately amplified and input to the AD / DA circuit. After the AD conversion is implemented, it is input to the CPU through D2.
  • the corresponding performance needs to be checked for more accurate feedback adjustment.
  • the electrical interfaces JP1, JP2,..., and JPN are connected to each of the lasers separately. Select the appropriate AD / DA converter to achieve multiple detection and control.
  • [P, Pr] [dB] [P-mon, Pr-mon] [dB] + 101g (1 + y / x) (1)
  • the formula (1) is ignored This inherent loss.
  • the above-mentioned reflection coefficient can be defined on the end face of the connector Co in the device of the present invention. Taking the application shown in Figure 1 as an example, the relationship between the reflection coefficient of the connector end face and the reflected and output detection light is:
  • R [dB] P [dB] -2w [dB] — Pr [dB] (2)
  • R [dB] is the end face reflection coefficient of the connector Co (R> 0)
  • w is the insertion loss of W (w> 0).
  • the optical power of the reflected light entering the PI is:
  • Pr i [dB] P [dB] -2w [dB] — R [dB] — i [dB] -201g ⁇ y / (x + y) ⁇ [dB]
  • Pro [dB] P [dB] -w [dB] — R [dB] — iw [dB] (5)
  • iw is the isolation between W port 2 and port 3 and satisfies iw> 0.
  • R-th 2 [dB] P [dB] -w [dB] —Pro— th [dB] -iw [dB] (6)
  • the threshold value of the reflected power can also be directly defined on the end face of the output interface connector Co, and is denoted as Pr-th.
  • Pr-th the threshold value of the reflected power
  • the reflection coefficient R-th 3 should meet:
  • the alarm condition may be:
  • FIG. 4 shows the detection range of the reflection coefficient.
  • the detection range of the reflection coefficient is determined by the detection range of the output light and the reflected light.
  • the abscissa P [dB] is the output power of P1 (at port 1 of T)
  • the ordinate Pr [dB] is the reflected power (at port 2 of T).
  • Pmax is the upper limit of the output power detection range
  • Pmin is the lower limit of the output power detection range
  • Prmax ⁇ ⁇ is the upper limit of the detection range of the power
  • Prmin is the lower limit of the detection range of the reflected power.
  • Prmin ⁇ Prmax is the working range of the detection circuit; in a straight line that intersects this range,
  • the detection range of the reflection coefficient is Rmin ⁇ Rmax, and is limited by the detection range of the output optical power and the reflected optical power.
  • the reflection coefficient can be measured. At this time, P is at a safe output power. In this state, using the detected reflection coefficient, it is possible to predict Pri and Pro when P is adjusted above a safe output power (for example, the position of C). If the reflection coefficient detected when P is raised to position B under the control of external command of the device reaches the reflection coefficient threshold, further power increase will be prohibited; if Pri or Pro is predicted to reach or exceed when P is adjusted to a safe output power or higher Beyond its threshold Pri-th and Pro-th, then enter One step power increase is also prohibited.
  • the reflection coefficient can be measured. At this time, P is above the safe output power.
  • the device works in this situation, if a sudden failure causes the detected reflection coefficient to reach the threshold R-th l 5 R-th 2 or R-th 3 , it automatically starts the safety control and adjusts the output power to the power safety line The following (for example, the position of B).
  • the software running in the CPU of the device can store the current detection data into the memory RAM as a performance list, including the current reflection coefficient R, reflected input power Pri, reflected output power Pro, laser output power P, and so on.
  • the software running in the CPU of the device can store the configuration data of the device through the data bus B into the memory as a configuration list, including the reflection coefficient threshold R-th 3 and the reflection input power threshold Pri-th currently configured by the device. , Reflected output power threshold Pro-th, laser output power Pc, etc.
  • the software running in the CPU of the device can store the alarm information generated by the device into the memory as an alarm list, including the reflected input power alarm I R-tl currently occurring in the device, and the reflected output power alarm R ⁇ R-th 2 , Optical interface status is poor R ⁇ R-th 3 and so on.
  • this device can communicate with the equipment management system.
  • This section details the types of device communication related to the functions of this unit.
  • the equipment management system can perform the following queries on the device through the equipment bus B:
  • Alarm information query (corresponding to message 3) This device will also output the following messages to the device bus B through the I / O interface:
  • the device management system can implement the following control on the device through the device bus B:
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • ADD is the address mark of the device in the device
  • C1 is the communication protocol code, which indicates that the device is performing performance query
  • L is the message length
  • F refers to the performance value category queried from the device, including the current reflection coefficient R, reflected input power Pri, reflected output power Pro, laser output power P, etc. of the device.
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • ADD is the address mark of the device in the device
  • C2 is the communication protocol code, which indicates that the device is configured to query the configuration information
  • L is the message length C represents the type of configuration data that is queried from the device, including the reflection coefficient threshold R-th 3 , the reflection input power threshold Pri-th, the reflection output power threshold Pro-th, and the laser output power Pc, which are currently configured by the device.
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • ADD is the address mark of the device in the device
  • C3 is the communication protocol code, which indicates that the device is querying the alarm information
  • L is the message length .
  • this device In response to the inquiry of the text 1, this device will output the following format to the device bus B through the I / 0 interface.
  • Text :
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • A is the address mark of the device in the device
  • C4 is the protocol code, where the performance value of the device is reported
  • L is the message length
  • F Represents the category of performance values queried by this device, including the current reflection coefficient R, reflected input power Pri, reflected output power Pro, laser output power P, etc.
  • VI, V2,..., Vn represents n performance values reported.
  • the device can output a message of the following format to the device bus B through the I / O interface:
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • ADD is the address mark of the device in the device
  • C5 is the protocol code, which indicates the configuration information of the device is reported
  • L is the message length
  • C Represents the type of configuration data queried from this device, including the reflection coefficient threshold R-th 3 , the reflection input power threshold Pri-th, the reflection output power threshold Pro-th, and the laser output power Pc, etc. currently configured by this device
  • VI, V2, .., Vn represents the n configuration information values reported.
  • this device can output a message of the following format to the device bus B through the I / O interface:
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • ADD is the address mark of the device in the device
  • C6 is the protocol code, which indicates the alarm information reporting of the device
  • L is the message length
  • Al A2
  • An represents the n alarm information values reported. Including the reflected input power alarm I R-th currently occurring in the device, the reflected output power alarm R ⁇ R-th 2 , the optical interface state bad R ⁇ R-th 3, and so on.
  • the device management system updates the configuration data of the device, it sends a message of the following format to the device through the device bus B
  • H is the message header, which is a fixed-format pulse train for communication synchronization
  • ADD is the address mark of the device in the device
  • C7 is the protocol code, which indicates that the device is configured to update the configuration data
  • L is the message length
  • C represents the type of configuration data to be updated, including the reflection coefficient thresholds R-thi, R-th 2 and R-th 3 currently configured by the device, the reflection input power threshold Pri-th, the reflection output power threshold Pro-th, and the laser output Power P, etc .
  • VI, V2, ..., Vn represent n configuration information values reported.
  • Step 1 When the device is powered on / reset, the CPU system starts and loads the executable program from the memory.
  • the program starts with valid default values, such as Pc, Prith, Proth, and R- 3, etc., and adjusts the power to the default values.
  • Step 2 The CPU system controls C1 to perform detection, and Pr-mon and P-mon are obtained after performing the performance detection. Then calculate the performance values Pr, P, R, Pri, Pro according to formulas 1-6, After the calculation, the result is stored in the performance list of the memory.
  • Step 3 Determine whether the reflection coefficient or the reflected power meets the safety requirements. According to one or more of conditions 1 to 6. If the reflection exceeds a threshold value, the process proceeds to step 4 that is the safety control process; if the reflection does not exceed the threshold value, the process proceeds to step 5 that is the optical power adjustment process.
  • Step 4 Enter the security control process.
  • the alarms can be generated according to the following situations: If R ⁇ R- tiu, a reflected input power over-limit alarm is generated; if R ⁇ R- th 2 , then A reflected output power over-limit alarm is generated; if R ⁇ R- th 3 , a device optical interface alarm is generated. Can actively report [message 6 ] through the device communication bus, and in the newly generated alarm and memory The original alarm list does not modify the alarm list at the same time). (2) The CPU system control C 2 implements optical power control to reduce the output optical power below a safe value.
  • Step 5 As the result of the judgment in step 3 is that the reflection coefficient is normal, the optical power adjustment process is performed. In the process of optical power adjustment, first compare the current output optical power performance value P and the configuration value Pc. If
  • This control can be called power classification control. After entering the next cycle, it will be adjusted again according to the step size d. The optical power will gradually approach Pc when there is no fault in the device. When the reflection is normal, the current alarm list in the memory can be deleted to avoid alarms.
  • Step 6 Query the command stack related to the I / O interface in the CPU system. If the query result is empty, no message is received. Then it proceeds to step 2 to implement cyclic performance testing. If there is a message received, it will be processed, and the CPU communicates with the device through the I / O interface.
  • the command stack has a performance query command (message 1), report it according to the performance list (message 4); if the command stack has a configuration query command (message 2), report it according to the column configuration table (message 5); If the command stack has an alarm query command (message 3), report it according to the alarm list (message 6); if the command stack has a configuration data update command (message 7), modify the configuration list in the memory. After completion, proceed to step 2 and continue to implement cyclic performance testing.
  • messagessage 1 For example: if the command stack has a performance query command (message 1), report it according to the performance list (message 4); if the command stack has a configuration query command (message 2), report it according to the column configuration table (message 5); If the command stack has an alarm query command (message 3), report it according to the alarm list (message 6); if the command stack has a configuration data update command (message 7), modify the configuration list in the memory.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

光放大的安全控制方法及装置 技术领域
本发明涉及光通信系统, 具体地说, 涉及在光传输过程中对光放大的安全 控制的方法及装置。
背景技术
在密集波分复用 DWDM系统中,为了实现传输距离的延长需要使用光放大器。 一种是使用拉曼(RAMAN )放大器, 将大功率的泵浦光馈入光纤中, 由于光纤中 的受激 RAMAN散射效应( SRS效应),泵浦光能量会转移到比其波长长的信号光中, 实现信号光的放大。 另一种方法是使用光纤放大器(例如掺铒光纤放大器), 就 是将一定功率的泵浦光馈入特种光纤, 由于光纤中粒子受激产生的能级跃迁, 使泵浦光能量转移到比其波长长的信号光中, 实现信号光的放大。 以上两种放 大器适合应用在 WDM设备中以实现宽带放大。可以使用的放大器还包括半导体光 放大器, 依靠向半导体异质节中注入足够的电流, 造成能量转移使通过其的信 号光放大。 无论以上何种放大器或激光器, 均可以通过改变驱动电流来控制光 功率。 在目前使用的光通信设备中, 放大器输出的为较大功率的不可见激光辐 射,例如为实现 C波段信号在 G. 652光纤中的分布式放大, RAMAN放大器通过设备 光端口输出到光缆中的泵浦激光辐射功率可达到数百至 1000毫瓦, 而由光纤激 光器放大的信号光功率通过光端口输出到光缆时也可以达到 100毫瓦以上。由于 输出光的功率较大, 因此在没有对设备进行相关的安全性控制时, 当放大器工 作时, 设备调试人员应小心避开其连接器端面, 避免灼伤眼睛及皮肤。 在使用 之前, 务必保持输出尾纤端面清洁, 防止强光功率令附着在光纤端面的尘埃炭 化而导致端面损坏。 由于设备光端口使用的连接器没有接好、连接器端面损坏、 及设备内其它相关器件损坏而造成的反射光功率过大, 也可能给设备的硬件设 施带来损伤、影响设备的性能。减小光功率可以使设备或人员获得安全性保障, 待设备缺陷被排除后再使之恢复正常。
公开发表的专利文献 US6417965 Opt ical ampl if ier control sys tem公布 了一种对放大器输入、 输出光进行分光检测和根据检测结果对放大器泵浦激光 器进行控制的电路系统, 但该系统没要考虑反射光的检测, 因而无法检测到光 端口的缺陷, 易导致安全性的故障。
发明内容
本发明所要解决的技术问题在于提供一种光放大的安全控制方法和装置, 以避免使用具有强光功率输出的设施时可能造成的人员损伤, 及在出现设备光 端口连接器没有接好、 连接器端面损坏、 及设备内外其它相关器件损坏时所造 成设备功能损伤。
本发明所述光放大的安全控制方法, 包括: 检测光放大器的输出功率和反 射功率, 计算反射系数和反射功率; 判断反射系数或反射功率是否超过给定的 阔值, 如果超过, 则对光放大器进行安全控制, 将光放大器的输出功率调整到 安全值以下, 继续检测功率值; 如果未超过, 则判断是否需要进行光功率调节, 如果需要, 则将输出功率调整到输出功率的配置值; 如果不需要, 则继续检测 功率值。
本发明所述光放大的安全控制装置, 包括: 强光输出光器件组, 用于产生 高功率泵浦光; 隔离器, 用于保证光功率的单向传递, 限制光功率的反向传递; 输出光接口, 用于将泵浦光功率输出到外部光纤; 光功率采集装置, 用于采集 输出光功率检测量和反射光功率检测量; 检测信息处理及控制电路, 对所得输 出光功率检测量和反射光功率检测量进行信息转换, 根据所得转换信息计算得 出反射系数,根据所得反射系数对所述强光输出光器件组自动进行光功率控制。 所述检测信息处理及控制电路进一步包括: 光电转换装置, 用于将所得输 出光功率检测量和反射光功率检测量分别转换为相应的模拟检测信号; 光功率 模数转换电路, 将由所述光电转换装置传送来的模拟检测信号分别转换为相应 的数字信号; 控制单元, 根据从所述光功率模数转换电路传送来的数字信号, 计算反射系数, 根据所得反射系数自动下达功率控制指令, 和对光器件组实施 功率控制, 下达性能检测指令; 光器件组功率控制和性能采集电路, 接收由所 述控制单元发出的功率控制指令, 经数模转换后, 实施光器件功率自动控制, 和接收由所述控制单元发出的性能检测指令, 检测光器件的性能, 将所得信息 经模数转换后输入所述控制单元。
采用本发明所述装置, 与现有技术相比, 取得了有强光输出的设施尤其是 光通信设备中放大器工作安全性保证方式的进步, 达到了通过检测输出反射系 数对放大器(或其他强光输出设施) 自动实现功率控制的效果, 使设备或人员 获得更多的安全性保障。
附图说明
图 1是 RAMAN放大器反射光检测及自动光功率控制装置结构图;
图 2是集总式放大器反射光检测及自动光功率控制装置结构图;
图 3是检测信息处理及控制电路的结构框图;
图 4是反射系数的检测范围示意图;
图 5是运行在控制单元中的软件流程图。
具体实施方式
下文详细介绍本发明各个组成部分的实施方案, 各个组成部分之间的光、 电连接关系、 控制方式、 软件工作方法、 及本发明所述装置通过设备总线实现 的通信功能。
( 1 )硬件组成
在图 1中,给出了通过反射系数检测实现 RAMAN放大器安全性控制的实施例。 其中 G1是产生泵浦激光并向输出强光功率的光器件组, 在 G1中:
P1是通用的泵浦激光器组, 由 1只或多只激光器組成, 所有 N只激光器通过 电接口 JP1 , JP2 , …, JPN与控制电路 C2相连接。 P1在正常工作时可以输出满足 设备工作要求的激光辐射。
I是隔离器,保证光功率的单向传递, 与隔离器箭头方向相反的光功率将被 隔离。 I的反向隔离度为 i [dB]。
T是带有 4个光端口的比例耦合器, 分光比例为 X: y, 即由端口 1输入的光功 率 pi [mw] ,将有 pi y/ (x+y) [mw]输出到端口 2,有 pi x/ (x+y) [mw]输出到端口 4; 相反, 若由端口 2输入光功率 p2 [厨] , 将有 p2 x y/ (x+y) [mw]输出到端口 1 , 有 pi X x/ (x+y) [丽]输出到端口 3。 当泵浦光功率从端口 1输入、 按比例由端口 2 和端口 4输出时,其端口 2下游的器件所产生的反射光将沿光导从端口 2输入、按 比例从端口 1和端口 3输出。为了减小耦合器对输出光功率的影响,应选择 x«y。 端口 4和端口 3输出的光分别作为输出光功率的检测量 P-mon和反射光功率的检 测量 Pr—tnon。
W是合波器,端口 1和端口 3之间构成泵浦光通路,端口 2和端口 3之间则构成 信号光通路。 泵浦光由端口 1输入、 端口 3输出。 若信号光由端口 2输入、 端口 3 输出 (即 a方向), 是正向应用放大器; 若信号光由端口 3输入、 端口 2输出 (即 b 方向), 是反向应用的放大器。 端口 1存在泵浦光 p, 端口 2存在信号光 s , 端口 3 则存在泵浦和信号的混合光(p+s )。 W的插入损耗为 w [dB] , 端口 2和端口 3之间 的隔离度为 iw [dB]。 Co是用活动式光纤连接器实现的输出光接口。 泵浦光功率通过此连接器输 出到与 G1连接的光纤。
E是检测信息处理及控制电路。 在 E中:
PD1和 PD2是光电检测二极管,分别对所述输出光功率检测量 P-mon和反射光 功率检测量 P r - mon进行光电转换。
C1包含双路放大及 A/D转换电路,从 P1和 P2输出的模拟检测信号被输入到 C1 中, 经过适当放大和进行 A/D转换, 以数字信号方式获得上述输出功率和反射功 率的检测值。
CS是一个控制单元。从 C1输出的数字信号被输入到 CS内的 CPU中,计算输出 反射系数。 在 CS中运行的软件可以根据所得出的反射系数值进行判断, 按照下 文笫 (4 ) 节说明的方法自动实施功率控制。
C2是功率控制电路。 C2受到 CS的管理, 并通过泵浦激光器接口与 P1相连接。
B是设备通信总线, CS可以通过其包含的通信接口与设备通信总线 B相连接, 使本发明的装置能够通过通信总线将所述放大器(或其他强光输出设施) 的工 作状态信息上报到设备管理系统 , 并能够接受设备管理系统的控制。
在图 2中,给出了通过反射系数检测实现集总式放大器安全性控制的装置结 构图, 作为体现与图 1相同设计构思的另一实施例。
与图 1的结构相似, G2是实现信号光放大和向设备外部输出强光功率的光器 件组, 在 G2中
P2是集总式放大器, 由 1只或多只光学放大器件组成, 以光纤放大器为例, 其中包含 1只或多只泵浦激光器。 所有 N只激光器通过电接口 JP1 , JP2 , .·. , JPN 与控制电路 C2相连接。 P2在正常工作时可以输出满足设备工作要求的信号光。
I的含义与图 1相同。 T的含义与图 1相同。
Ci是本装置的输入光接口, 待放大的光信号经过 Ci输入到 P2中。
Co的含义与图 1相同。
E及 E内部的各组成部分含义与图 1相同。 其中的 C2通过泵浦激光器电接口 JP1 , JP2 , …, JPN与 P2相连接。
B的含义与图 1相同。
图 2作为体现与图 1相同设计构思的另一应用实例, 表现了在不同的应用中 光信号输入、 输出方式的不同。
图 3是对图 1和图 2中 E的结构进行进一步细致的描述。
CS是由 CPU、 ROM存储器、 RAM存储器、 FPGA构成的控制单元, 其中的 ROM存 储器作为程序和数据存储器, 保存着本发明的装置得以运行的可执行软件及程 序运行所需要的缺省配置数据, ROM中可包含电可擦除存储器, 实现在线下载配 置数据; RAM存储器作为数据存储器, 记录在程序运行中所产生的重要数据。 各 电 路 芯 片 之 间 通 过数据 线 D-R0M , D-RAM , D-FPGA和控 制 线 EN-FPGA, EN- RAM, EN- ROM相连接; CPU通过数据线 DJ和 I /O接口电路连接到 J2。 J2 是本装置与设备总线 B之间的信号连接器。电路中还包含标准的 DC/DC转换电路, 输出各个部分功能电路所需要的偏置电压 VC1, VC2 , VCC, VO, VP。 DC/DC转换 电路连接到 Jl , J1是本装置与设备总线 B之间的电源连接器, J1与 J2共同实现本 装置和设备总线的电气连接。
C1是由放大器电路、 AD转换电路构成的输出光和反射光检测电路。 对从 P1 和 P2输出的模拟检测信号分别经过 API , AP2放大。 CPU通过数据线 D1与 AD转换电 路通信。 当需要检测 P- mon时, CPU控制 FPGA之 CIS信号选择 AD的输入端口 1 , 同 时 AD转换电路通过 D1向 CPU输出数据; 当需要检测 Pr- mon时, CPU控制 FPGA之 CIS 信号选择 AD的输入端口 2 , 同时 AD转换电路通过 D1向 CPU输出数据。
C2是由 AD/DA转换电路、放大器电路 Al , A2 , A3 , A4构成泵浦激光器控制和 性能采集部分。 JP1表示受控的泵浦激光器电接口, 泵浦激光器接口的应用遵照 商用激光器的用户应用资料。 以 JP1为例, I I表示激光器偏置电流输入, 12表示 激光器制冷电流输入, 01表示激光器背光功率检测信号输出, 02表示激光器管 芯工作温度输出。 CPU通过数据线 D2与 AD/DA转换电路通信。 当需要控制泵浦激 光器 1的输出功率时, CPU控制 FPGA之 C2S信号选择 AD/DA的输出端口, 同时 CPU 通过 D2向 AD/DA转换电路输出数据, 实现 DA转换后通过 FPGA输出 C2S所选择的端 口输出模拟工作电流并保持,再经过放大后送到 JP1的 I I。 当需要控制泵浦激光 器 1的管芯温度时, CPU控制 FPGA选择 AD/DA的输出端口, 同时 CPU通过 D2向 AD/DA 转换电路输出数据。 实现 DA转换后通过 FPGA所选择的端口输出模拟工作电流并 保持, 再经 i±丈大后送到 JP1的 12。 当需要检测泵浦激光器 1的输出功率时, CPU 控制 FPGA选择 AD/DA的输入端口, JP1输出的 01信号经过适当放大后输入到 AD/DA 电路,实现 AD转换后经过 D2口输出到 CPU。当需要检测泵浦激光器的制冷电流时。 CPU控制 FPGA选择 AD/DA转换的输入端口, JP1输出的 02信号经过适当放大后输入 到 AD/DA电路, 实现 AD转换后经过 D2口输入到 CPU。 当对泵浦激光器进行控制时 需要对相应的性能进行检测以便进行更精确的反馈调节。
当需要检测控制的泵浦激光器较多时, 需要更多的检测和控制电路, 通过 电接口 JP1 , JP2 , …, JPN分别与各个激光器相连, 根据激光器的数量、 需要进 行检测和控制的参数数量来选择合适的 AD/DA转换器, 实现多路检测和控制。
( 2 )反射系数阈值及反射系数检测范围
不失一般性, 下文的反射系数、插入损耗等均以其 dB值的正数值表示。设 P 是 P1的输出功率 (在 T的端口 1 ), Pr是反射功率 (在 T的端口 2 )。 比例耦合器 T 各端口光功率关系是:
[P, Pr] [dB] = [P-mon, Pr-mon] [dB]+101g (1+y/x) (1) 在比例耦合器 T的固有插入损耗很小时, 公式 (1) 忽略了该固有损耗。 上 文所述反射系数可定义于本发明的装置中连接器 Co的端面。以在图 1所示的应用 为例, 连接器端面反射系数和反射、 输出检测光之间的关系为:
R [dB] =P [dB] -2w [dB]— Pr [dB] ( 2 ) 其中 R[dB]是连接器 Co的端面反射系数(R〉0), w是 W的插入损耗(w>0)。
反射光进入 PI的光功率为:
Pr i [dB] =P [dB] -2w [dB]— R [dB]— i [dB] -201g {y/ (x+y) } [dB]
«P[dB]-2w[dB] -R[dB]-i[dB], 当 x«y时 (3) 其中, i是隔离器 I的反向隔离度。在比例耦合器 T的固有插入损耗很小时, 公式 (3)忽略了该固有损耗。 在设备正常工作时希望进入 P1的反射光足够小, 设其 阈值为 Pri- th, 在反射输入功率 Pri达到阈值时的反射系数为:
R-th! [dB] =P [dB] -2w [dB] -Pr i-th [dB] - i [dB] ( 4 ) 反射光经过 W的端口 2输出的光功率为:
Pro [dB] =P [dB] -w [dB]— R [dB]— iw [dB] ( 5 ) 其中, iw是 W端口 2和端口 3之间的隔离度, 且满足 iw>0。 在设备正常工作时希望 反射光经过 W的端口 2输出的光功率足够小, 设其阈值为 Pro- th, 在反射输出功 率 Pro达到阈值时的反射系数为:
R-th2 [dB] =P [dB] -w [dB]—Pro— th [dB] -iw[dB] ( 6 )
R - 和!^-^是随着设备输出功率 P变化的参数。
此外, 在输出接口连接器 Co端面也可以直接定义反射功率的阈值, 记为 Pr-th。 在设备应用中应考虑以下情况的反射系数:
I. 设连接器光纤端面良好匹配时的反射系数为 Rc [dB] ,是由设备所选用的 连接器规格确定的参数;
II. 设连接器光纤端面暴露在空气中的反射系数为 Rl [dB], 是由设备所选 用的连接器规格确定的参数; 有 Rl [dB] <Rc [dB]。
I II . 设外部光纤虽然接好但是连接器光纤端间存在空隙时反射系数为 R2 [dB] , 有 R2 [dB] <Rc [dB];
IV. 假设在连接器光纤端面有灰尘污染时、连接器法兰盘配合公差较大时、 连接器器件损坏、 或设备外部光缆损伤时导致反射光变大时的反射系数为 R3 [dB] , 则有 R3 [dB] <Rc [dB]。
因此在保证设备内外部连接正常时, 反射系数 R-th3应满足:
Rc [dB] >R-th3 [dB] >raax {Rl [dB] , R2 [dB], R3 [dB] } ( 7 ) 考虑到以上各性能量, 告警条件可以是:
条件 1 当反射功率 Pri>Pri- th时, 表明进入功率输出装置的光功率过大; 条件 2 当反射功率 Pro>Pro- th时, 表明信号光端口输出的反射光功率过 大;
条件 3 当反射功率 Pr>Pr-th时,表明由输出端口连接器产生的反射光功率 过大;
条件 4 当反射系数 I R-ttu, 发生反射输入功率告警;
条件 5 当反射系数 R<R-th2, 发生反射输出功率告警;
条件 6 当反射系数 R<R- th3, 发生光接口工作状态不良告警, 表明设备有 上述 II、 II I、 IV等情况发生。
本发明可以采用上述条件 ί至 6的一部分或全部作为依据, 实施安全控制。 考虑以上几个方面, 设备正常工作时应满足:
R>MAX [R-thl 5 R - th2, R-th3] ( 8 ) 图 4表示反射系数的检测范围。反射系数的检测范围决定于输出光和反射光 检测的范围。 图中横坐标 P [dB]是 P1的输出功率(在 T的端口 1 ), 纵坐标 Pr [dB] 是反射功率(在 T的端口 2 )。 Pmax是输出功率检测范围上限, Pmin是输出功率检 测范围下限; Prmax^ ^射功率检测范围上限, Prmin是反射功率检测范围下限。
¾ Pmin - Pmax, Prmin ~ Prmax范围内是检测电路的工作范围; 在与此范 围相交的直线中,
直线 1表示 R=0时, Pr随 P的变化; 直线 1上方的部分为无现实意义的区域; 直线 2表示 R=Pmin- Prmin- 2w时, Pr随 Ρ的变化;
直线 3表示 R=Pmax-Prmax - 2w时, Pr随 P的变化;
直线 4表示 R=Praax- Prtnin - 2w时, Pr随 P的变化。
反射系数的检测范围为 Rmin ~ Rmax , 并受到输出光功率和反射光功率检测 范围的限制。 有:
Rmin=0; Rmax=Pmax-Prmin-2w ( ) 图 4中直线 5表示设备在特定的输出反射系数条件下, Pr随 P的变化。在直线 5上的 A、 B、 C标志着本装置的几种典型工作状态。
A: 在 P和 Pr的检测范围之外, 反射系数不可测;
B:在 P和 Pr的检测范围内,可测得反射系数。此时的 P处于安全的输出功率。 在此状态下利用所检测的反射系数,可以预测 P被调节到安全的输出功率以上时 (例如 C的位置)的 Pri和 Pro。若 P在装置外部命令控制下提高到位置 B时检测到 的反射系数达到反射系数阈值,则进一步的功率提高会被禁止; 若预测 P被调节 到安全的输出功率以上时的 Pri或 Pro达到或超过其阔值 Pri- th和 Pro- th, 则进 一步的功率提高也会被禁止。
C: 在 P和 Pr的检测范围内, 可测得反射系数。 此时的 P处于安全的输出功率 以上。 设备在此情况下工作时, 若突发的故障使检测到的反射系数达到阈值 R-thl 5 R- th2或 R- th3, 则自动启动安全控制, 将输出功率调节到功率安全线以 下 (例如 B的位置)。
当上述内容用于图 2所表示的应用实例中时, 反射输出功率 Pro不存在, 并 且在 上各式中取 w=0 [dB]。
本装置在 CPU中运行的软件可以把当前的检测数据等存入存储器 RAM中, 作 为性能列表, 包括本装置当前的反射系数 R、 反射输入功率 Pri、 反射输出功率 Pro, 激光器输出功率 P等。
本装置在 CPU中运行的软件可以把通过数据总线 B下达到本装置的配置数据 存入存储器, 作为配置列表, 包括本装置当前配置的反射系数阈值 R-th3、 反射 输入功率阈值 Pri-th、 反射输出功率阈值 Pro- th、 激光器输出功率 Pc等。
本装置在 CPU中运行的软件可以把本装置所产生到告警信息存入存储器,作 为告警列表, 包括本装置当前发生的反射输入功率告警 I R-tl 反射输出功率 告警 R<R-th2、 光接口状态不良 R<R- th3等。
( 3 )设备通信
本装置作为实用设备的组成部分, 可与设备管理系统进行通讯。 本节详细 说明与本装置的功能相关的设备通信类型。
设备管理系统可以通过设备总线 B对本装置实施以下查询:
性能信息查询 (对应报文 1 )
配置信息查询 (对应报文 2 )
告警信息查询 (对应报文 3 ) 本装置还将通过 I/O接口向设备总线 B输出以下报文:
性能信息上报(对应报文 4 )
配置信息上报(对应报文 5 )
告警信息上报(对应报文 6 )
设备管理系统可以通过设备总线 B对本装置实施以下控制:
配置数据更新 (对应艮文 7 )
下面分别给出上述艮文 1 ~ 7的实施例:
报文 1: [H, ADD, CI , L, F]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; ADD表示本装 置在设备中的地址标志; C1是通信协议编码, 在这里表示对本装置实施性能查 询; L表示报文长度; F表示向本装置查询的性能值类别, 包括本装置当前的反 射系数 R、 反射输入功率 Pri、 反射输出功率 Pro、 激光器输出功率 P等。
报文 2: [H, ADD, C2 , L, C]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; ADD表示本装 置在设备中的地址标志; C2是通信协议编码, 在这里表示对本装置实施配置信 息查询; L表示报文长度; C表示向本装置查询的配置数据类别, 包括本装置当 前配置的反射系数阈值 R-th3、 反射输入功率阈值 Pri-th、 反射输出功率阈值 Pro-th, 激光器输出功率 Pc等。
报文 3: [H, ADD, C3, L]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; ADD表示本装 置在设备中的地址标志; C3是通信协议编码, 在这里表示对本装置实施告警信 息查询; L表示报文长度。
为回应拫文 1的查询,本装置将通过 I /0接口向设备总线 B输出以下格式的才艮 文:
报文 4: [H, ADD, C4, L, F, VI, V2, .··, Vn]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; A表示本装置 在设备中的地址标志; C4是协议编码, 在这里表示本装置性能值上报; L表示报 文长度; F表示向本装置查询的性能值类别, 包括本装置当前的反射系数 R、 反 射输入功率 Pri、 反射输出功率 Pro、 激光器输出功率 P等; VI, V2, …, Vn表示 上报的 n个性能值。
为回应报文 2的查询,本装置可通过 I/O接口向设备总线 B输出以下格式的报 文:
报文 5: [H, ADD, C5, L, C, VI, V2, …, Vn]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; ADD表示本装 置在设备中的地址标志; C5是协议编码, 在这里表示本装置配置信息上报; L 表示报文长度; C表示向本装置查询的配置数据类别, 包括本装置当前配置的反 射系数阈值 R- th3、 反射输入功率阈值 Pri- th、 反射输出功率阈值 Pro- th、 激光 器输出功率 Pc等; VI, V2, .··, Vn表示上报的 n个配置信息值。
为回应报文 3的查询,本装置可通过 I/O接口向设备总线 B输出以下格式的报 文:
报文 6: [H, ADD, C6, L, Al, A2, .·., An]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; ADD表示本装 置在设备中的地址标志; C6是协议编码, 在这里表示本装置告警信息上报; L 表示报文长度; Al, A2, An表示上报的 n个告警信息值。 包括本装置当前发 生的反射输入功率告警 I R-th 反射输出功率告警 R<R- th2、 光接口状态不良 R<R - th3等。; 设备管理系统对本装置实施配置数据更新时,通过设备总线 B对本装置发送 以下格式的报文
报文 7: [H, ADD, C7, L, C, VI, V2, Vn]
其中 H表示报文头, 是为了实现通信同步的固定格式脉冲串; ADD表示本装 置在设备中的地址标志; C7是协议编码, 在这里表示对本装置进行配置数据更 新; L表示报文长度; C表示要更新的配置数据类别, 包括本装置当前配置的反 射系数阈值 R- thi, R- th2和 R- th3、 反射输入功率阈值 Pri- th、 反射输出功率阈 值 Pro-th、 激光器输出功率 P等; VI, V2, .·., Vn表示上报的 n个配置信息值。
(4) 实现自动控制的软件流程
本装置实现光功率自动控制的软件流程如图 5所示。 下面给出详细说明。 步骤 1: 装置上电 /复位时, CPU系统启动, 自存储器中装载可执行程序。 程 序启动有效的缺省值, 如 Pc、 Pri- th、 Pro- th和 R- 3等, 并将功率调整到缺省 值。
步骤 2: CPU系统控制 C1实施检测, 执行性能检测后得到 Pr- mon和 P- mon。 然 后根据公式 1 -6, 分别计算性能值 Pr、 P、 R、 Pri、 Pro,
Figure imgf000016_0001
计算后 将结果存入存储器之性能列表。
步骤 3: 判断反射系数, 或反射功率是否符合安全性要求。 根据条件 1至条 件 6中的一个或多个。 若反射超过阔值, 则进入步驟 4即安全控制过程; 若不超 过阈值则进入步骤 5即光功率调节过程。
步骤 4: 进入安全控制过程。 包括: (1)告警产生和上报, 在图 1实施例中, 可以按照以下情况分别产生告警: 若 R<R- tiu, 则产生反射输入功率过限告警; 若 R<R- th2, 则产生反射输出功率过限告警; 若 R<R- th3, 则产生设备光接口不良 告警。可以通过设备通信总线主动上报 [报文 6], 并在新产生的告警与存储器中 原告警列表不同时修改告警列表)。 (2 ) CPU系统控制 C2实施光功率控制, 使输 出光功率减小到安全值以下。
步骤 5: 因步骤 3的判断结果是反射系数正常, 则执行光功率调节过程。 在 光功率调节过程中, 首先比较当前输出光功率性能值 P和配置值 Pc , 若 | P-Pc | <err (其中 err是准许的调节误差),则当前功率值正常,直接进入步骤 6; 否则进行功率调整: 若? 0;, CPU系统控制 C2实施光功率控制, 直接降 ^氐输出功 率至 Pc; 若? 0 , 则调节当前输出光功率, 使光功率分级提高。 注意此时可以 按照步长 d进行一次调节,避免在 Pc超过安全值时由于可能的设备故障导致设备 损伤和人员损伤。 完成后进入步驟 6。 这个控制可称为功率分级控制, 当进入下 一循环后将再次按照步长 d进行一次调节,在设备无故障情况下光功率将逐步接 近 Pc。 在反射正常时可删除存储器中当前告警列表, 避免告警产生。
步骤 6:对 CPU系统中与 I/O接口相关的命令堆栈进行查询,若查询结果为空 时, 无接收报文。 则进入步骤 2 , 实施循环性能检测。 若有接收报文时, 则进行 4艮文处理, CPU通过 I/O接口进行设备通讯。 举例说明: 若命令堆栈有性能查询 命令(报文 1 ), 按照性能列表上报(报文 4 ); 若命令堆栈有配置查询命令(报 文 2 ), 按照列配置表上报(报文 5 ); 若命令堆栈有告警查询命令(报文 3 ), 按 照告警列表上报(报文 6 ); 若命令堆栈有配置数据更新命令(报文 7 ), 则修改 存储器中配置列表。 完成后进入步骤 2, 继续实施循环性能检测。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理 解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方 案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1、 一种光放大的安全控制方法, 其特征在于, 包括: 检测光放大器的输出 功率和反射功率, 计算反射系数和反射功率; 判断反射系数或反射功率是否超 过给定的阔值, 如果超过, 则对光放大器进行安全控制, 将光放大器的输出功 率调整到安全值以下, 继续检测功率值; 如果未超过, 则判断是否需要进行光 功率调节, 如果需要, 则将输出功率调整到输出功率的配置值; 如果不需要, 则继续检测功率值。
2、 根据权利要求 1所述的光放大的安全控制方法, 其特征在于, 所述执行 光功率调节的依据是: 比较当前输出功率与输出功率配置值的误差是否在准许 的范围内, 如果是, 则表明当前输出功率值正常, 不执行功率调节; 如果否, 则执行光功率调节。
3、 根据权利要求 2所述的光放大的安全控制方法, 其特征在于, 所述光功 率调节进一步包括: 判断输出功率是否大于输出功率配置值, 如果大于, 则控 制输出功率经过一次调节直接降低至输出功率配置值; 如果小于, 则分级控制 提高输出功率。
4、 根据权利要求 1所述的光放大的安全控制方法, 其特征在于, 所述安全 控制进一步包括: 产生告警信息并上报; 控制输出功率降低到安全值。
5、 根据权利要求 4所述的光放大的安全控制方法, 其特征在于, 所述告警 信息为: 如果反射输入功率大于反射输入功率阔值, 则进入功率输出装置的光 功率过大; 如果反射输出功率大于反射输出功率阈值, 则由光接口输出的反射 光功率过大; 如果反射功率大于反射功率阈值, 则由输出端口连接器产生的反 射光功率过大; 如果反射系数小于反映反射输入光功率的反射系数阈值, 则产 生反射输入功率过限告警; 如果反射系数小于反映反射输出光功率的反射系数 阈值, 则产生反射输出功率过限告警; 如果反射系数小于反映光接口工作状态 的反射系数阔值, 则产生设备光接口不良告警。
6、 根据权利要求 3所述的光放大的安全控制方法, 其特征在于, 在调节光 功率过程中, 分级控制提高输出功率采用步长式调节, 每次只调节一个步长, 同时进行检测, 只有在分级控制过程中不发生告警时, 输出功率才能逐步提高 到输出功率配置值。
7、 一种光放大的安全控制装置, 包括:
强光输出光器件组, 用于产生高功率泵浦光;
隔离器, 用于保证光功率的单向传递, 限制光功率的反向传递;
输出光接口, 用于将泵浦光功率输出到外部光纤;
光功率采集装置, 用于采集输出光功率检测量和反射光功率检测量; 检测信息处理及控制电路, 对所得输出光功率检测量和反射光功率检测量 进行信息转换, 根据所得转换信息计算得出反射系数, 根据所得反射系数对所 述强光输出光器件组自动进行光功率控制。
8、 根据权利要求 7所述的光放大的安全控制装置, 其特征在于: 所述强光 输出器件组是通过改变驱动电流来控制光功率的放大器。
9、 根据权利要求 8所述的光放大的安全控制装置, 其特征在于: 所述通过 改变驱动电流来控制光功率的放大器是集总式放大器。
10、根据权利要求 '8所述的光放大的安全控制装置, 其特征在于: 所述集总 式放大器是由一只或多只光纤放大器或半导体放大器组合而成。
11、根据权利要求 9或 10所述的光放大的安全控制装置, 其特征在于: 所述 光防大的安全控制装置还包括输入光信号的输入光接口, 将输入的光信号输出 到所述集总式放大器中。
12、根据权利要求 8所述的光放大的安全控制装置, 其特征在于: 所述通过 改变驱动电流来控制光功率的放大器是分布式拉曼放大器。
13、 根据权利要求 12所述的光放大的安全控制装置, 其特征在于: 所述分 布式拉曼放大器是由一只或多只激光源构成的泵浦激光器组。
14、 才艮据权利要求 12或 13所述的光放大的安全控制装置, 其特征在于: 所 述光放大的安全控制装置还包括用于合成泵浦光和信号光的合波器, 所述合波 器的一个端口接收所述光功率采集装置输出的泵浦光,另一个端口输入信号光, 向所述输出光接口输出泵浦光和信号光的混合光。
15、根据权利要求 7所述的光放大的安全控制装置, 其特征在于: 所述光功 率采集装置是比例耦合器。
16、根据权利要求 7所述的光放大的安全控制装置, 其特征在于: 所述输出 光接口是活动式光纤连接器。
17、根据权利要求 7所述的光放大的安全控制装置, 其特征在于: 所述检测 信息处理及控制电路包括:
光电转换装置, 用于将所得输出光功率检测量和反射光功率检测量分别转 换为相应的模拟检测信号;
光功率模数转换电路, 将由所述光电转换装置传送来的模拟检测信号分别 转换为相应的数字信号;
控制单元, 根据从所述光功率模数转换电路传送来的数字信号, 计算反射 系数,根据所得反射系数自动下达功率控制指令,和对光器件组实施功率控制, 下达性能检测指令;
光器件组功率控制和性能采集电路, 接收由所述控制单元发出的功率控制 指令, 经数模转换后, 实施光器件功率自动控制, 和接收由所述控制单元发出 的性能检测指令, 检测光器件的性能, 将所得信息经模数转换后输入所述控制 单元。
18、 根据权利要求 17所述的光放大的安全控制装置, 其特征在于: 所述光 电转换装置是光电检测二极管。
19、 根据权利要求 17所述的光放大的安全控制装置, 其特征在于: 所述控 制单元有通信接口, 使所述控制单元与设备通信总线相连接, 将光放大装置的 工作状态信息上报设备管理系统, 并接收设备管理系统的控制指令。
20、才艮据权利要求 17所述的光放大的安全控制装置, 其特征在于: 所述光 器件组功率控制和性能采集电路上有电接口, 使所述光器件组功率控制和性能 采集电路与各个光器件相连接, 实现功率控制和性能采集。
PCT/CN2003/000938 2002-11-08 2003-11-07 Procede et appareil de controle de securite par amplification optique WO2004042467A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003284794A AU2003284794A1 (en) 2002-11-08 2003-11-07 Optical amplification safety control method and apparatus
EP03773423.3A EP1560065B1 (en) 2002-11-08 2003-11-07 Optical amplification safety control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02145220.2 2002-11-08
CNB021452202A CN1313877C (zh) 2002-11-08 2002-11-08 光放大的安全控制方法和装置

Publications (1)

Publication Number Publication Date
WO2004042467A1 true WO2004042467A1 (fr) 2004-05-21

Family

ID=32304063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000938 WO2004042467A1 (fr) 2002-11-08 2003-11-07 Procede et appareil de controle de securite par amplification optique

Country Status (5)

Country Link
EP (1) EP1560065B1 (zh)
CN (1) CN1313877C (zh)
AU (1) AU2003284794A1 (zh)
RU (1) RU2324963C2 (zh)
WO (1) WO2004042467A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949690B (zh) * 2006-10-09 2011-06-22 华为技术有限公司 一种光通信系统中激光安全保护方法和装置
JP2012015934A (ja) * 2010-07-05 2012-01-19 Nec Corp 光伝送装置、及び、光伝送方法
CN104104428A (zh) * 2013-04-15 2014-10-15 昂纳信息技术(深圳)有限公司 一种应用在分布式拉曼光纤放大器中的激光安全保护装置及方法
CN105406329A (zh) * 2015-11-19 2016-03-16 深圳市镭神智能系统有限公司 2um调Q脉冲掺铥光纤激光器
CN105406330A (zh) * 2015-11-19 2016-03-16 深圳市镭神智能系统有限公司 1550nm调Q脉冲铒镱共掺光纤激光器
CN105450297A (zh) * 2015-12-30 2016-03-30 桂林创研科技有限公司 一种智能光功率采集系统
RU2649852C1 (ru) * 2017-04-10 2018-04-05 Акционерное общество "Российский институт радионавигации и времени" Система синхронизации
RU2757834C1 (ru) * 2021-01-28 2021-10-21 Акционерное Общество "Наука И Инновации" Съемная кассета для усилительного модуля

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697552A (ja) * 1992-09-17 1994-04-08 Nec Corp 光ファイバ増幅器
EP0954125A2 (en) 1998-04-28 1999-11-03 Lucent Technologies Inc. A method and apparatus for controlling optical signal power in response to faults in an optical fiber path
JP2000310727A (ja) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The 光増幅分配装置
US6417965B1 (en) 2001-02-16 2002-07-09 Onetta, Inc. Optical amplifier control system
EP1229382A1 (en) 2000-09-07 2002-08-07 Fujitsu Limited Optical amplifier using raman amplification
US20030002145A1 (en) * 2001-06-27 2003-01-02 Fujitsu Limited Optical amplification system using Raman amplification

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305851B1 (en) * 2000-01-12 2001-10-23 Ciena Corporation Systems and methods for detecting imperfect connections in optical systems
KR20020068853A (ko) * 2001-02-23 2002-08-28 주식회사 머큐리 이득고정형 광섬유증폭기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697552A (ja) * 1992-09-17 1994-04-08 Nec Corp 光ファイバ増幅器
EP0954125A2 (en) 1998-04-28 1999-11-03 Lucent Technologies Inc. A method and apparatus for controlling optical signal power in response to faults in an optical fiber path
JP2000310727A (ja) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The 光増幅分配装置
EP1229382A1 (en) 2000-09-07 2002-08-07 Fujitsu Limited Optical amplifier using raman amplification
US6417965B1 (en) 2001-02-16 2002-07-09 Onetta, Inc. Optical amplifier control system
US20030002145A1 (en) * 2001-06-27 2003-01-02 Fujitsu Limited Optical amplification system using Raman amplification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1560065A4 *

Also Published As

Publication number Publication date
EP1560065A1 (en) 2005-08-03
EP1560065B1 (en) 2017-01-18
CN1499281A (zh) 2004-05-26
EP1560065A4 (en) 2006-04-12
RU2005114006A (ru) 2006-05-27
RU2324963C2 (ru) 2008-05-20
CN1313877C (zh) 2007-05-02
AU2003284794A1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US6317255B1 (en) Method and apparatus for controlling optical signal power in response to faults in an optical fiber path
US6233091B1 (en) Optical amplifier unit control methods, optical amplifier systems and systems which use the methods and amplifier systems
US7161734B2 (en) Method and apparatus for controlling power transients in an optical communication system
JPH0837497A (ja) 光増幅器及び光送信装置
WO2004042467A1 (fr) Procede et appareil de controle de securite par amplification optique
US5546221A (en) Optical amplifier apparatus
CN1180283C (zh) 包括双控制回路的光衰减器
US6901222B2 (en) Optical transmission system and terminal device applicable to the system
US6469824B2 (en) Bi-directional pumped optical fiber amplifier with fault detection means and novel pump control
JP3166695B2 (ja) 波長分割多重送信装置
US20110135298A1 (en) Optical signal shutoff mechanism and associated system
CN215378929U (zh) 一种长距离光模块
CN105813344A (zh) 一种光模块的光功率控制系统及其控制方法
JPH07240717A (ja) 光増幅器
JP2546499B2 (ja) 光信号直接増幅器
JP3128287B2 (ja) 出力端開放検出回路付光増幅器
CN115377793A (zh) 一种激光器控制系统
CN201436794U (zh) 带有温度补偿和rf信号自动关断功能的光工作站回传光发射模块
JP3462555B2 (ja) 光ファイバ増幅器の増幅率制御装置
KR100406959B1 (ko) 광 반사 신호 검출에 의한 광원 자동 차단 장치
JPH08331050A (ja) 光コネクタ外れ検出回路
JP2003218796A (ja) 光伝送システムおよび光遮断方法
JP3227467B2 (ja) 光検出装置
CN115065405A (zh) 一种光纤信号衰减检测系统及其检测方法
JPH0818136A (ja) 光増幅器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2003773423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003773423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 899/KOLNP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2003773423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005114006

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP