WO2004033075A1 - Procedes de traitement biologique de gaz - Google Patents

Procedes de traitement biologique de gaz Download PDF

Info

Publication number
WO2004033075A1
WO2004033075A1 PCT/DE2003/003294 DE0303294W WO2004033075A1 WO 2004033075 A1 WO2004033075 A1 WO 2004033075A1 DE 0303294 W DE0303294 W DE 0303294W WO 2004033075 A1 WO2004033075 A1 WO 2004033075A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
vol
biogas
microorganisms
Prior art date
Application number
PCT/DE2003/003294
Other languages
German (de)
English (en)
Inventor
Robert Nusko
Original Assignee
Schmack Biogas Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmack Biogas Ag filed Critical Schmack Biogas Ag
Priority to AU2003280298A priority Critical patent/AU2003280298A1/en
Publication of WO2004033075A1 publication Critical patent/WO2004033075A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the invention relates to methods and devices for the biological treatment of gases.
  • Gaseous fuels which have arisen from the anaerobic decomposition of organic materials, always contain certain amounts of carbon dioxide in addition to the combustible hydrocarbons.
  • gases are biogas, sewage gas, fermentation gas, landfill gas and the natural gas that was formed a long time ago and is depleted of carbon dioxide by geochemical processes.
  • the composition of the gases mentioned varies depending on the genesis and storage conditions within certain limits.
  • the typical composition of the main and secondary components of biogas as well as sewage and fermentation gas is in the following range: methane: 40 - 75%, carbon dioxide: 25 - 55%, water vapor: 0 - 10%, nitrogen: 0 - 5%, Oxygen: 0-2%, hydrogen: 0-1%, ammonia: 0-1%, hydrogen sulfide: 0-1%.
  • the high levels of carbon dioxide have several negative effects on the use of the gases mentioned as fuel.
  • the high load of the inert gas carbon dioxide causes a reduction in the efficiency of the use of fuel gas.
  • the high level of carbon dioxide together with moisture causes increased plant corrosion.
  • the unusable CO 2 creates unnecessary additional costs if, when the fuel gas is compressed, it has to be compressed for storage or transport purposes and, if necessary, also transported.
  • Another disadvantage of high carbon dioxide levels in fuel gases is the failure of liquid carbon dioxide in the compressed state, which often causes problems when transporting gas flows in pipes.
  • CHP cogeneration plants
  • the invention is based on the object of providing methods for biological gas treatment which, in addition to inexpensive cleaning of the fuel gas, have an improved efficiency with respect to the amount of CO 2 emitted.
  • the present invention provides a method for the biological treatment of gases with a hydrocarbon content of 40% by volume to 95% by volume and a carbon dioxide content of 2% by volume to 60% by volume, the method comprising at least the steps partial photosynthetic fixation of the carbon dioxide contained in the gas by microorganisms in a reactor, implementation the resulting biomass by anaerobic degradation to biogas, at least partially photosynthetic fixation of the carbon dioxide contained in this biogas by microorganisms in the reactor and conversion of the resulting biomass by anaerobic degradation to biogas.
  • Fuel and fuel gases which have a hydrocarbon content of 40% by volume to 95% by volume and a carbon dioxide content of 2% by volume to 60% by volume can be processed by the method according to the invention.
  • solar energy is used to separate the carbon dioxide.
  • the biomass formed in this way is converted into biogas by anaerobic degradation and thus in turn serves to generate fuel gases.
  • the CO 2 is converted into biomass in the process according to the invention. This effectively reduces the release of carbon dioxide based on the energy used.
  • the method according to the invention thus makes a contribution to increasing efficiency in the production and use of renewable raw materials and renewable energies.
  • Another advantage of the method according to the invention lies in the fact that the purified fuel gases have an increased proportion of oxygen.
  • Biological cleaning increases the oxygen / nitrogen ratio by about 1: 4 above the oxygen / nitrogen ratio in the atmosphere. This increased proportion of oxygen in the processed gas has a particularly positive effect on combustion.
  • the gases to be treated are bio-, sewage or digestate gases resulting from the anaerobic decomposition of organic matter.
  • the carbon dioxide content in the gas is reduced by means of photosynthesis-driving microorganisms.
  • a photobioreactor PBR
  • the microorganisms mentioned metabolize carbon dioxide from the raw gas together with water using light energy.
  • Biomass and oxygen are generated according to the well-known photosynthesis equation.
  • the biomass surplus resulting from reproduction and growth is separated from the biomass required to operate the PBR and broken down bacterially in a fermenter under anaerobic conditions.
  • the biogas generated during the anaerobic breakdown of the excess biomass is fed to the raw gas stream.
  • solar energy is thus used by means of photosynthetic carbon dioxide fixation for the preparation of fuel gases and at the same time for the production of new fuel gases via the detour biomass generation - anaerobic biomass degradation.
  • the gases to be treated with the method according to the invention have a hydrocarbon content of between 40% by volume and 95% by volume and a carbon dioxide content of between 2% by volume and 60% by volume.
  • a hydrocarbon content of between 40% by volume and 95% by volume and a carbon dioxide content of between 2% by volume and 60% by volume.
  • cyanobacteria such as. B. Synechocystis aquatilis for carbon dioxide fixation particularly well suited. These bacteria therefore represent a particularly preferred embodiment of the present invention. Mixtures and, in particular, wild types of these bacteria can also be used.
  • microalgae and especially Chlorophyceae such.
  • B. Cyanidium Caldarium, Chla ydomonas noctigama, Nostoc E, Chlorella kessleri or Chlamydomonas moewusii are particularly suitable for carbon dioxide fixation. These microalgae are therefore particularly preferred embodiments of the present invention. Mixtures and in particular wild types of these algae can also be used.
  • Mixtures of algae and bacteria can also be used to fix carbon dioxide.
  • artificial light in addition to natural daylight, artificial light is also used to illuminate the microorganisms.
  • the use of artificial light in the dark period can prevent the microorganisms from breathing and thus releasing carbon dioxide.
  • the raw gas can come into contact with the biomass that drives photosynthesis in different ways.
  • the raw gas is passed directly through the PBR.
  • the microorganisms consume part of the carbon dioxide contained in the gas and enrich the gas with oxygen.
  • Washing the gas with a biomass-free aqueous liquid is structurally more complex. Due to the higher solubility of carbon dioxide in aqueous solutions compared to hydrocarbons, carbon dioxide is separated from the gas. The washing solution enriched with carbon dioxide is fed to the microorganisms in the PBR. The resulting oxygen is separated off there.
  • the raw gas can be passed outside the PBR in a gas washing device through the microorganism suspension become.
  • the gas can be kept almost free of oxygen without the complex separation of the microorganisms from the washing solution.
  • the direct passage of the raw gas through the PBR is shown.
  • the present invention also includes a method for operating a combined heat and power plant, in which the cleaning of a gas with a hydrocarbon content of 40 vol.% To 95 vol.% And a carbon dioxide content of 2 vol.% To 60 vol. % is carried out.
  • the gas is cleaned by the steps of at least partially photosynthetically fixing the carbon dioxide contained in the gas by microorganisms in a reactor, converting the resulting biomass to anaerobic degradation to biogas, at least partially photosynthetically fixing the carbon dioxide contained in this biogas by microorganisms in the Reactor and conversion of the resulting biomass through anaerobic degradation to biogas.
  • the biogas is then burned to operate the combined heat and power plant.
  • a defined amount of unpurified gas with a hydrocarbon content of 40% by volume to 95% by volume and a carbon dioxide content of 2% by volume to 60% by volume is used before the combustion of the purified gas. % added to the purified gas. This can compensate for fluctuations in the gas composition that would interfere with the operation of the combined heat and power plant.
  • gases containing high methane such as, for example, B. natural gas, biogas, sewage gas, fermentation gas or landfill gas.
  • the microorganisms used for carbon dioxide fixation are photosynthetic cyanobacteria such as.
  • the microorganisms used for carbon dioxide fixation are microalgae, particularly preferably chlorophyceae such as.
  • These microalgae show particularly good growth rates under the anaerobic conditions of fuel gas and thus a high efficiency in carbon dioxide fixation.
  • Mixtures of algae and bacteria are particularly preferably used for carbon dioxide fixation.
  • artificial light can also be used to illuminate the microorganisms. In this way, the use of artificial light in the dark period can prevent the microorganisms from breathing and thus releasing carbon dioxide.
  • the present invention also includes a device for the biological treatment of gases with a hydrocarbon content of 40% by volume to 95% by volume and a carbon dioxide content of 2% by volume to 60% by volume, the device comprising a fermenter, comprises a post-fermenter and a photobioreactor with a gas-liquid separator.
  • This device according to the invention is a very inexpensive system for gas treatment. On the one hand, the system creates comparatively low investment costs, on the other hand, it requires low maintenance costs in operation.
  • the device according to the invention is designed as part of a plant for producing biogas, sewage gas or fermentation gas by means of anaerobic decomposition of organic matter.
  • the gas with a hydrocarbon content of 40% by volume to 95% by volume and a carbon dioxide content of 2% by volume to 60% by volume is particularly preferably passed directly through the photobioreactor.
  • a combined heat and power plant is preferably provided, in which the cleaned biogas is burned.
  • Figure 1 is a graphical representation of the growth of Synechocystis aquatilis under ambient air and under biogas by plotting the dry weight of Synechocystis aquatilis against time.
  • FIG. 2 shows a graphical representation of the growth of a chlorella wild type under ambient air and under biogas by plotting the dry weight of the chlorella wild type against time;
  • Fig. 4 is a graphical representation of the growth of Cyanidium caldarium under ambient air and under biogas by plotting the dry weight of Cyanidium caldarium against time;
  • Fig. 5 is a schematic representation of a plant for performing a method according to the invention.
  • Figures 1 to 4 show the results of growth studies on a cyanobacterium and three different green algae.
  • the bacterial culture Synechocystis aquatilis and the green algae culture Cyanidium caldarium come from the collection of algal cultures in Göttingen (D), the Chlorella types (Chlorella fusca and a wild type occurring in the open area of the University of Regensburg) come from the University of Regensburg, biological faculty, Prof. Dr. Loos.
  • the test cultures were inoculated with a defined amount of the stock culture in a suitable nutrient medium. To carry out comparative tests in indoor air and in synthetic biogas, all samples were prepared twice.
  • Synthetic biogas was produced by mixing 60 vol.% Methane and 40 vol.% Carbon dioxide in a gas mixing device from the compressed gases in technical purity (Linde AG, Unterschleissheim, D).
  • Figures 1 to 4 compare the growth curves of different cultures determined under biogas with the growth curves obtained under indoor air. All of the cultures examined show stronger growth under a biogas atmosphere than under ambient air. This difference is particularly pronounced in the chlorella wild type living in almost anaerobic conditions ( Figure 2).
  • Figure 5 shows a schematic representation of a typical agricultural biogas plant. Due to methanogenic bacteria in the fermenter 1 and post-fermenter 2 biomass such. B. slurry, grass clippings and other agricultural residues converted into biogas. This is collected in the post-fermenter (with an elastic roof 3) and introduced into the PBR 4 in the finest bubbles. This contains biogas-tolerant, photosynthetic microorganisms. The PBR is adapted to optimal flow and light conditions. In the dark period, artificial light can be used to prevent the microorganisms from breathing.
  • the carbon dioxide dissolves in the aqueous system and is converted into oxygen and biomass by the microorganisms using light. Minor components in the gas such.
  • B. Ammonia and hydrogen sulfide dissolve in the aqueous system and are metabolized as trace components by the microorganisms. Additional trace elements required by the microorganisms and not provided by the gas must be metered in separately. Methane hardly dissolves and is not broken down by the organisms.
  • the undissolved gases are separated from the liquid in the PBR by a gas-liquid separator 5.
  • the clean gas thus prepared is passed into a second elastic hood 6 on the post-fermenter.
  • Treated and unprepared biogas are mixed to avoid fluctuations in the gas supply.
  • the increased oxygen content in the gas can be reacted to.
  • the oxygen in the processed gas has a particularly positive effect on combustion, since it was created by replacing carbon dioxide and not by adding nitrogen-rich ambient air.
  • a part of the waste heat generated when used in the CHP unit can be passed into a special jacket 8 to maintain the temperature in the PBR.
  • the biomass produced in the PBR is fermented again to biogas in the fermenter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne des procédés de traitement biologique de gaz contenant des hydrocarbures dans une proportion de 40 à 95 % du volume et du gaz carbonique dans une proportion de 2 à 60 % du volume. Un procédé de l'invention comporte les opérations suivantes : fixer au moins partiellement par photosynthèse le gaz carbonique contenu dans le gaz au moyen de micro-organismes dans un réacteur, transformer la biomasse ainsi obtenue en biogaz par décomposition anaérobie, fixer au moins partiellement par photosynthèse le gaz carbonique contenu dans le biogaz au moyen de micro-organismes dans un réacteur, et transformer la biomasse ainsi obtenue en biogaz par décomposition anaérobie.
PCT/DE2003/003294 2002-10-05 2003-10-02 Procedes de traitement biologique de gaz WO2004033075A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280298A AU2003280298A1 (en) 2002-10-05 2003-10-02 Methods for the biological treatment of gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10246597.5 2002-10-05
DE10246597 2002-10-05

Publications (1)

Publication Number Publication Date
WO2004033075A1 true WO2004033075A1 (fr) 2004-04-22

Family

ID=32010300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003294 WO2004033075A1 (fr) 2002-10-05 2003-10-02 Procedes de traitement biologique de gaz

Country Status (3)

Country Link
AU (1) AU2003280298A1 (fr)
DE (1) DE10346471B4 (fr)
WO (1) WO2004033075A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010865A1 (de) * 2005-03-07 2006-09-14 Schmack Biogas Ag Verfahren zur biologischen Gasaufbereitung
EP1801197A1 (fr) * 2005-12-22 2007-06-27 Mikrobiologisch-analytisches Labor GmbH Procédé de valorisation de source de carbone gazeuse et un bioréacteur
WO2009003460A2 (fr) * 2007-07-04 2009-01-08 Georg Fritzmeier Gmbh & Co. Kg Convertisseur de co2
WO2010045669A2 (fr) 2008-10-24 2010-04-29 Johann Staudinger Procédé de production de biomasse à partir de microalgues par photosynthèse
CN101870894A (zh) * 2009-04-21 2010-10-27 张扬 用微生态原理去除沼气内二氧化碳、硫化氢和氨气方法和生物装置
US7980024B2 (en) 2007-04-27 2011-07-19 Algae Systems, Inc. Photobioreactor systems positioned on bodies of water
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8507253B2 (en) 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
CN105695014A (zh) * 2016-01-28 2016-06-22 山东十方环保能源股份有限公司 一种沼气提纯初级过滤装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045239A1 (de) * 2004-09-17 2006-03-30 Gürtner, Michael Verfahren zur Erhöhung der Gasausbeute einer Biogasanlage
DE102005025040B4 (de) * 2005-05-30 2007-05-16 Foerderung Von Medizin Bio Und Verfahren und Vorrichtung zur Erzeugung von methanreichem Biogas
DE102005062727A1 (de) * 2005-12-22 2007-06-28 Mikrobiologisch-Analytisches Labor Gmbh Verfahren zur CO2-Verwertung
DE102005062726A1 (de) * 2005-12-22 2007-07-05 Mikrobiologisch-Analytisches Labor Gmbh Bioreaktor mit Gaskreislauf
DE102007018675B4 (de) * 2007-04-18 2009-03-26 Seyfried, Ralf, Dr. Biomassezuchtanlage und Verfahren zur Züchtung von Biomasse
DE102007029102A1 (de) * 2007-06-21 2008-12-24 Tilco Biochemie Gmbh Präparat zur Optimierung der Methangas-Bildung in Biogasanlgen
DE102007035707A1 (de) 2007-07-30 2009-02-05 GMBU Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. Verfahren und Vorrichtung zur Sauerstoffanreicherung und Schadstoffabsorption in aquatischen Systemen mit immobilisierten Mikroalgen
DE102007038870A1 (de) * 2007-08-16 2009-02-19 Joachim Kausch Verfahren zum Betreiben einer Feststofffermenteranlage und Feststofffermenteranlage
DE102007058548B4 (de) 2007-12-05 2009-10-15 Landwärme GbR (vertretungsberechtigter Gesellschafter, Tobias Assmann, 80638 München) Verfahren zum Aufreinigen von Biogas
DE102009022754A1 (de) 2009-05-26 2010-12-02 Christian-Albrechts-Universität Zu Kiel Photobioreaktor
NL2006297C2 (nl) * 2011-02-24 2012-08-27 Ingrepro B V Werkwijze, inrichting en systeem voor het behandelen van een vloeistof en/of het kweken van micro-organismen en ingekapseld micro-organisme.
AT12727U1 (de) * 2011-08-31 2012-10-15 Salzburg Ag Fuer En Verkehr Und Telekommunikation Verfahren und einrichtung zur aufbereitung eines abgases einer biogasaufbereitungsanlage
WO2013034947A1 (fr) * 2011-09-08 2013-03-14 Cellennium (Thailand) Company Limited Valorisation de biogaz en méthane purifié commercialisable exploitant la culture de microalgues
DE102013212537A1 (de) 2013-06-27 2014-12-31 Dürr Systems GmbH Anlage und Verfahren für das Aufbereiten von Gasen
DE102017000576A1 (de) 2017-01-23 2018-07-26 Waldemar Reule Bioverfahren und Anlage zur Erzeugung von Methan
US20210093998A1 (en) * 2017-11-04 2021-04-01 One Stiftungs Gmbh Device and method for the sequestration of atmospheric carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3607864A1 (de) * 1985-03-14 1986-09-25 Schimmelpfeng, Lutz, Dr., 35641 Schöffengrund Verfahren zur minderung von abgas-/abluft-schadstoffen mittels photosynthetisierender algen und vorrichtung zur durchfuehrung des verfahrens
DE4230644A1 (de) * 1992-09-12 1994-03-17 Johannes Martin Dipl I Mueller Verfahren zur Umwandlung organischer Reststoffe im Rauchgas durch bakterielle Vergärung zu Methan, als Endstufe der Rauchgasreinigung in Kraftwerken
EP0878533A2 (fr) * 1997-05-14 1998-11-18 Energy of Nature - Projektgesellschaft für umwelttechnische Anlagensysteme Leipzig mbH Procédé et appareillage pour la séparation photobiologique de gaz contenant du bioxyde de carbone et du méthane
DE19912952A1 (de) * 1999-03-23 2000-10-05 Martina Von Ahn Verfahren zur Verwertung von Kohlendioxid aus chemischen Prozessen und Vorrichtung zur Durchführung desselben
KR20020074029A (ko) * 2001-03-19 2002-09-28 라파즈 한라 시멘트 주식회사 반연속식 공정과 직렬식 공정을 이용한 생물학적이산화탄소 고정화 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690697A (en) * 1986-02-20 1987-09-01 Schwartz Arthur G Long residence pollution control system
DE4444191C1 (de) * 1994-12-12 1996-06-05 Melkonian Ezekian Michael Prof Verfahren zur Abreicherung oder Entfernung von Kohlendioxid aus Abgasen
EP0874043A1 (fr) * 1997-04-10 1998-10-28 Preussag AG Procédé d'obtention d'une biomasse par photosynthèse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3607864A1 (de) * 1985-03-14 1986-09-25 Schimmelpfeng, Lutz, Dr., 35641 Schöffengrund Verfahren zur minderung von abgas-/abluft-schadstoffen mittels photosynthetisierender algen und vorrichtung zur durchfuehrung des verfahrens
DE4230644A1 (de) * 1992-09-12 1994-03-17 Johannes Martin Dipl I Mueller Verfahren zur Umwandlung organischer Reststoffe im Rauchgas durch bakterielle Vergärung zu Methan, als Endstufe der Rauchgasreinigung in Kraftwerken
EP0878533A2 (fr) * 1997-05-14 1998-11-18 Energy of Nature - Projektgesellschaft für umwelttechnische Anlagensysteme Leipzig mbH Procédé et appareillage pour la séparation photobiologique de gaz contenant du bioxyde de carbone et du méthane
DE19912952A1 (de) * 1999-03-23 2000-10-05 Martina Von Ahn Verfahren zur Verwertung von Kohlendioxid aus chemischen Prozessen und Vorrichtung zur Durchführung desselben
KR20020074029A (ko) * 2001-03-19 2002-09-28 라파즈 한라 시멘트 주식회사 반연속식 공정과 직렬식 공정을 이용한 생물학적이산화탄소 고정화 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200328, Derwent World Patents Index; AN 2003-285874, XP002274426 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507253B2 (en) 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
DE102005010865A1 (de) * 2005-03-07 2006-09-14 Schmack Biogas Ag Verfahren zur biologischen Gasaufbereitung
EP1801197A1 (fr) * 2005-12-22 2007-06-27 Mikrobiologisch-analytisches Labor GmbH Procédé de valorisation de source de carbone gazeuse et un bioréacteur
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8877488B2 (en) 2006-07-10 2014-11-04 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8507264B2 (en) 2006-07-10 2013-08-13 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8859262B2 (en) 2007-04-27 2014-10-14 Algae Systems, LLC Photobioreactor systems positioned on bodies of water
US7980024B2 (en) 2007-04-27 2011-07-19 Algae Systems, Inc. Photobioreactor systems positioned on bodies of water
WO2009003460A3 (fr) * 2007-07-04 2009-07-09 Fritzmeier Georg Gmbh & Co Kg Convertisseur de co2
WO2009003460A2 (fr) * 2007-07-04 2009-01-08 Georg Fritzmeier Gmbh & Co. Kg Convertisseur de co2
WO2010045669A3 (fr) * 2008-10-24 2010-07-22 Johann Staudinger Procédé de production de biomasse à partir de microalgues par photosynthèse
WO2010045669A2 (fr) 2008-10-24 2010-04-29 Johann Staudinger Procédé de production de biomasse à partir de microalgues par photosynthèse
CN101870894A (zh) * 2009-04-21 2010-10-27 张扬 用微生态原理去除沼气内二氧化碳、硫化氢和氨气方法和生物装置
CN105695014A (zh) * 2016-01-28 2016-06-22 山东十方环保能源股份有限公司 一种沼气提纯初级过滤装置
CN105695014B (zh) * 2016-01-28 2018-03-06 山东十方环保能源股份有限公司 一种沼气提纯初级过滤装置

Also Published As

Publication number Publication date
AU2003280298A1 (en) 2004-05-04
DE10346471B4 (de) 2004-09-23
DE10346471A1 (de) 2004-04-15

Similar Documents

Publication Publication Date Title
DE10346471B4 (de) Verfahren zur biologischen Gasaufbereitung
DE102005010865A1 (de) Verfahren zur biologischen Gasaufbereitung
Mann et al. Biogas-conditioning with microalgae
DE102008060310B4 (de) Verfahren und Anlage zur Reinigung von Roh- oder Biogas zur Gewinnung von Methan
US20140318000A1 (en) Combining algae cultivation and co2 capture
Tóth et al. Degradation of hydrogen sulfide by immobilized Thiobacillus thioparus in continuous biotrickling reactor fed with synthetic gas mixture
DE102018126953A1 (de) Verfahren zur Verwendung von Industriegas zur Herstellung einer mit Methan angereicherten Gaszusammensetzung
WO2019086656A1 (fr) Dispositif et procédé de séquestration de dioxyde de carbone atmosphérique
CN111100796B (zh) 一种富含油脂的栅藻及其培养应用
DE19721280C2 (de) Verfahren und Vorrichtung zur photobiologischen Trennung von kohlendioxid- und methanhaltigen Gasgemischen
EP1801197A1 (fr) Procédé de valorisation de source de carbone gazeuse et un bioréacteur
DE4419766C2 (de) Verfahren zur biologischen Reinigung von Biogasen und Anreicherung von Methan
CN103667119A (zh) 用于降解乙硫醇的菌株及其培养方法和应用
DE102008037402A1 (de) Verfahren zur Erzeugung von Biogas
DE102005025040A1 (de) Verfahren und Vorrichtung zur Erzeugung von methanreichem Biogas
Hadiyanto et al. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor
DE19721243C2 (de) Verfahren und Anlage zur effizienten energetischen und stofflichen Nutzung von Biogas
DE4444191C1 (de) Verfahren zur Abreicherung oder Entfernung von Kohlendioxid aus Abgasen
DE102005062727A1 (de) Verfahren zur CO2-Verwertung
DE102013009874B4 (de) Vorrichtung und Verfahren zur Biosynthese von Methan
DE102012000239A1 (de) Verfahren zur biologischen Regenerierung von beladenen Adsorptionsmittel aus Biogasreinigungsprozessen
DE10260968B4 (de) Verfahren zur Entfernung von Schwefelwasserstoff aus Biogas
Vorisek et al. Towards an integrated process for CO2 capture and utilization: Cultivation of Scenedesmus acutus using gaseous CO2 and NH3
Juškaitė et al. Microalgae Strains Monoraphidium Griffithi and Chlorella sp. for the Carbon Dioxide Capture from Biogas
CN114507604B (zh) 一株富含油脂的纺锤纤维藻及其培养应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP