WO2004030423A1 - X線発生装置及び露光装置 - Google Patents

X線発生装置及び露光装置 Download PDF

Info

Publication number
WO2004030423A1
WO2004030423A1 PCT/JP2003/009398 JP0309398W WO2004030423A1 WO 2004030423 A1 WO2004030423 A1 WO 2004030423A1 JP 0309398 W JP0309398 W JP 0309398W WO 2004030423 A1 WO2004030423 A1 WO 2004030423A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
ray
ray generator
plasma
nozzle
Prior art date
Application number
PCT/JP2003/009398
Other languages
English (en)
French (fr)
Inventor
Masayuki Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2004539457A priority Critical patent/JPWO2004030423A1/ja
Priority to EP03798368A priority patent/EP1545168A4/en
Priority to AU2003248107A priority patent/AU2003248107A1/en
Publication of WO2004030423A1 publication Critical patent/WO2004030423A1/ja
Priority to US11/084,380 priority patent/US7145987B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • H05G2/006Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state details of the ejection system, e.g. constructional details of the nozzle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation

Definitions

  • the present invention relates to an X-ray generator, an X-ray analyzer, and an X-ray generator provided in an X-ray apparatus such as an X-ray exposure apparatus, and an exposure apparatus including the same.
  • the present invention relates to an X-ray generator and an exposure apparatus capable of easily exchanging each element provided in a vacuum chamber.
  • FIG. 4 is a sectional view showing an example of a conventional liquid jet X-ray generator.
  • the liquid jet X-ray generator of FIG. 4 includes a light source chamber 100.
  • the light source chamber 100 is provided with a vacuum pump 102.
  • the inside of the light source champer 100 is evacuated by a vacuum pump 102.
  • a nozzle 101 is disposed in the light source chamber 100.
  • the nozzle 101 is connected to a pipe 103 connected to a liquid gas cylinder (not shown).
  • a support member 104 is provided between the pipe 103 and the inner surface of the light source chamber 100 to determine the position of the nozzle 101 and prevent the pipe 103 from shifting.
  • the liquid gas cylinder is filled with a mixture of a target gas such as xenon (Xe) and a liquid such as water.
  • a target gas such as xenon (Xe)
  • a liquid such as water.
  • the liquid gas in the liquid gas cylinder is sent to the nozzle 101 via the pipe 103, and is ejected from the tip of the nozzle 101 into the light source chamber 100.
  • the ejected liquid gas becomes a target material when generating plasma.
  • a mirror (first mirror) 105 is mounted inside the light source chamber 100 Attached via 106.
  • the mirror 105 is an elliptical mirror having a mortar-shaped reflecting surface 105a in this example.
  • the reflective surface 105a of the mirror 105 is coated with a multilayer film made of Mo / Si, for example.
  • X-rays radiated from the plasma X-rays having a wavelength of about 13.4 nm are reflected by the reflecting surface 105a of the mirror 105, and are guided to the subsequent optical system as an X-ray beam.
  • a flange member 110 is attached to the outer wall of the light source chamber 100 (upper right side in the figure).
  • a light collecting mechanism 108 including a light collecting lens 107 is attached to the outer surface of the flange member 110.
  • a laser light source 109 is arranged on the upstream side (right side in the figure) of the light collecting mechanism 108.
  • the condenser lens 107 condenses the laser light L emitted from the laser light source 109 to the tip of the nozzle 101. By irradiating the condensed laser beam L to the liquid gas, a plasma P is generated, and X-rays are radiated from the plasma P.
  • the mounting of the condenser lens 107 and the condenser mechanism 108 on the outer surface of the flange member 110 is mainly because of its ease of manufacture.
  • the flange member 110 also serves as a member for closing an opening for taking out an element such as the mirror 105 out of the chamber 100, and can be attached to and detached from the outer surface of the light source chamber 100.
  • an opening 100a for allowing the X-ray beam to pass is formed.
  • an X-ray transmission filter 111 is disposed at a position covering the opening 100a.
  • the X-ray transmission filter 111 is a thin film made of beryllium (Be) or the like, and cuts visible and ultraviolet light from the plasma.
  • an aperture plate 113 is disposed immediately below the X-ray transmission filter 111.
  • the aperture plate 113 is a disk having a pinhole 113a at the center.
  • the X-ray beam reflected by the mirror 105 passes through the pinhole 113a of the aperture plate 113 and reaches the optical system at the subsequent stage. At this time, the area around the pinhole 113a of the aperture plate 113 blocks scattered X-rays (leakage light).
  • liquid gas target And the like become atoms or ionic particles when plasma is generated.
  • the liquid gas cannot be normally ejected.
  • the reflectance of the mirror 105 decreases.
  • the scattered particles also adhere to and deposit on the X-ray transmission filter 111. For this reason, it is necessary to replace the nozzle 101, mirror 105, and X-ray transmission filter 111 in the light source chamber 100 of the X-ray generator with new ones at regular intervals. is there.
  • the frequency of replacement is high in the order of nozzle 101, mirror 105, and X-ray transmission filter 111.
  • the mirror 105 must be removed before replacing the nozzle 101. In this way, every time the nozzle 101, which is replaced the most frequently, is replaced, the mirror 105, the condenser lens 107, and the condenser mechanism 108, which are replaced less frequently, must be removed. Nara.
  • the nozzle 101, mirror 105, condenser lens 107, and condenser mechanism 108 must all be removed.
  • an X-ray generator is an X-ray generator that converts a target material into plasma in a vacuum chamber and radiates X-rays from the plasma. It has an element such as a mirror and an X-ray transmission filter on which rays are incident first, and among the elements having a high exchange frequency, an extraction means for extracting the element out of the vacuum chamber is provided by the vacuum. It is characterized by being provided in one chamber.
  • the elements are arranged in the vacuum chamber so that the elements can be taken out in descending order of replacement frequency without taking out the least frequently replaced elements. be able to.
  • the frequently exchanged element can be taken out without taking out the infrequently exchanged element from the vacuum chamber, so that the element exchange work becomes easier.
  • elements can be taken out in the order of replacement frequency without impairing the degree of design freedom and ease of production as much as possible. Can also be arranged as You.
  • the extraction means may include an extraction member to which a base end side of the target material supply nozzle is attached.
  • the replacement frequency is high in the order of a supply nozzle, a mirror, and an X-ray transmission filter, but according to this embodiment, merely removing the take-out member from the vacuum chamber causes other problems.
  • the supply nozzle can be removed without removing the element.
  • the take-out means may include a take-out member capable of taking out the mirror without removing the supply nozzle of the target material.
  • the mirror can be removed without removing the supply nozzle. Therefore, it is not necessary to remove and position the supply nozzle each time the mirror is removed, and the trouble of adjusting the plasma generation position (alignment of the target material injection position) can be saved.
  • the X-ray transmission filter is attached to the outer surface side of the vacuum chamber, and the extracting means includes an extracting member arranged in the exposure chamber connected to the downstream side of the vacuum chamber. Can be provided. In this case, the X-ray transmission filter 1 can be removed from one side of the exposure chamber without removing the elements in the vacuum chamber.
  • An X-ray generator for converting a target material into plasma in a vacuum chamber and radiating X-rays from the plasma, wherein elements such as a mirror and an X-ray transmission filter to which X-rays from the plasma enter first.
  • a special take-out window is provided in the vacuum chamber for taking out the element having a high replacement frequency from the vacuum chamber.
  • a dedicated take-out window is provided for an element that is frequently exchanged, so that another element that does not need to be taken out can be replaced without moving.
  • An exposure apparatus includes the above-described X-ray generator, and an X-ray generator.
  • An illumination optical system that irradiates the mask with the X-rays obtained, and a projection optical system that projects light reflected from the mask onto a sensitive substrate to form an image.
  • the term “element” as used in the present invention refers to all exchange elements that are indispensable for performance as components of a light source system, an illumination system, and a projection system of an exposure apparatus.
  • the elements referred to in the present invention include elements (metal fittings, etc.) for attaching each element to a vacuum chamber or the like, and elements constituting a cooling mechanism for cooling a mirror or the like.
  • FIG. 1 is a diagram showing an overall configuration of an exposure apparatus according to one embodiment of the present invention.
  • FIG. 2 is a view showing an X-ray generator of an exposure apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a view showing an X-ray generator of an exposure apparatus according to a third embodiment of the present invention.
  • FIG. 4 is a sectional view showing an example of a conventional liquid jet X-ray generator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing an overall configuration of an exposure apparatus according to one embodiment of the present invention.
  • an exposure apparatus using a laser plasma light source will be described as an example, but the present invention is also applicable to an exposure apparatus using a discharge plasma light source or the like.
  • a liquid jet type X-ray generator 1 is provided at the most upstream side (upper part in the figure) of the optical system of the exposure apparatus shown in FIG.
  • the X-ray generator 1 includes a light source chamber 10.
  • the light source chamber 110 is provided with a vacuum pump 12.
  • the inside of the light source chamber 10 is evacuated by the vacuum pump 12.
  • plasma X rays radiated from P are not attenuated.
  • a nozzle 11 is disposed in the light source chamber 10.
  • the nozzle 11 is connected to a pipe 13 connected to a liquid gas cylinder (not shown).
  • a support member 14 is provided between the pipe 13 and the inner surface of the light source chamber 10 to determine the position of the nozzle 11 and prevent the pipe 13 from shifting.
  • the liquid gas cylinder is filled with a target gas such as xenon (Xe) and a liquid such as water.
  • Xe xenon
  • the liquid gas in the liquid gas cylinder is sent to the nozzle 11 via the pipe 13 and is ejected from the tip of the nozzle 11 into the light source chamber 10.
  • the ejected liquid gas becomes the target material when generating plasma.
  • liquids not only liquids but also gases and solids can be used.
  • a solid target such as tin
  • a tape winding type in which a solid material is formed on the tape, or a tape is formed from the solid material itself, and a position to be irradiated with the laser is gradually changed can also be used.
  • a mirror (first mirror) 15 is mounted via a mount 16 and a slide mechanism 25.
  • the mirror 15 is an elliptical mirror having a mortar-shaped reflecting surface 15a in this example.
  • the reflective surface 15a of the mirror 15 is coated with a Mo / Si multilayer film, for example.
  • X-rays radiated from the plasma X-rays with a wavelength of about 13.4 nm are reflected by the reflecting surface 15a of the mirror 15 and become an X-ray beam, which is a downstream optical system (Fig. Side).
  • a flange member (extraction member) 20 is provided on an outer wall portion (lower right side in FIG. 1) of the light source chamber 10.
  • the flange member 20 is a member for closing an opening for taking out an element such as the mirror 15 out of the chamber 10 and is attachable to and detachable from the outer surface of the light source chamber 10.
  • the flange 13 is provided with the base end side of the pipe 13 of the nozzle 11 described above. By removing the member 20, the nozzle 11 can be taken out of the light source chamber 10. Can be. If the mirror 15 is in the way when removing the nozzle 11, use the slide mechanism 25 to slide the mirror 15 upward in FIG. Then, after removing and replacing the nozzle 11, slide the mirror 15 downward in FIG. 1 to return it to its original position.
  • a light collecting mechanism 18 including a light collecting lens 17 is attached to the outer wall of the light source chamber 10 above the flange member 20 (upper right side in FIG. 1).
  • a laser light source 19 is disposed on the right side in FIG. 1 of the light collecting mechanism 18.
  • the condenser lens 17 condenses the laser light L emitted from the laser light source 19 to the tip of the nozzle 11. When the collected laser light L is irradiated on the liquid gas, plasma P is generated, and X-rays are radiated from the plasma P.
  • the lower surface of the light source chamber 10 is provided with an opening 10a for allowing X-ray light to pass therethrough.
  • an X-ray transmission filter 21 is disposed at a position covering the opening 10a.
  • the X-ray transmission filter 21 is a thin film made of beryllium (Be) or the like, and cuts visible-ultraviolet light from plasma.
  • the laser beam L emitted from the laser light source 19 passes through the condenser lens 17 and is focused on the nozzle 11 directly.
  • the liquid gas ejected from the nozzle 11 becomes hot due to the energy of the collected laser light L and becomes plasma.
  • Generate X-rays are emitted when ions in this plasma transition to a low potential state.
  • the X-rays incident on the mirror 15 the X-rays having a wavelength of about 13.4 nm are reflected by the mirror reflecting surface 15 a to become an X-ray luminous flux E, and the light source chamber 1
  • the light is guided from the downstream side of 10 to the subsequent optical system.
  • the X-ray generator 1 When the X-ray generator 1 has been operated for a certain period of time, particles scattered from the plasma P accumulate on the ejection port of the nozzle 11 and the reflecting surface 15 a of the mirror 15. In this case, it is necessary to replace the nozzle with a new one.
  • the most frequently replaced element in a liquid jet X-ray generator is nozzle 11.
  • the X-ray generator 1 of the present embodiment when replacing the nozzle 11, it is only necessary to remove the flange member 20, and the mirror 15 and the X-ray transmission filter 1 that are less frequently replaced than the nozzle 11 are replaced. 2 1 or the condenser lens 17 ⁇ It is not necessary to remove the condenser mechanism 18.
  • the replacement work of the nozzle 11 is easy. Further, the alignment of the apparatus does not deviate due to the removal of the condenser lens 17 ′ and the condenser mechanism 18 and the like.
  • an exposure chamber 140 is provided below the X-ray generator 1.
  • An illumination optical system 46 is arranged in the exposure chamber 40.
  • the illumination optical system 46 is composed of a condenser mirror, a fly-eye optical mirror, etc., and adjusts the X-rays reflected by the mirror 15 into an arc shape. Irradiate toward.
  • An X-ray reflecting mirror 42 is disposed on the left side of the illumination optical system 46 in FIG.
  • the X-ray reflecting mirror 42 has a circular shape with a concave reflecting surface 42a on the right side in FIG. 1, and is vertically held by a holding member (not shown).
  • the optical path bending reflecting mirror 41 is arranged diagonally.
  • a reflection type mask 43 is horizontally disposed so that the reflection surface faces down. The X-rays emitted from the illumination optical system 46 are reflected and converged by the X-ray reflecting mirror 42, and then reach the reflecting surface of the reflective mask 43 via the optical path bending reflecting mirror 41.
  • the bases of the reflecting mirrors 41 and 42 are made of a quartz substrate on which the reflecting surface 42a is processed with high precision.
  • the reflecting surface 4 2a has the reflecting surface of the mirror 15 of the X-ray generator. 09398
  • a multilayer film of Mo / Si is formed.
  • substances such as Ru (ruthenium) and R (rhodium), Si, Be (beryllium), B4C (carbon tetraboride), etc. It may be a multilayer film in which the above materials are combined.
  • a reflection film made of a multilayer film is also formed on the reflection surface of the reflection type mask 43.
  • a mask pattern corresponding to the pattern to be transferred to the wafer 49 is formed on the reflection film.
  • the reflection type mask 43 is fixed to a mask stage 45 shown above.
  • the mask stage 45 is movable in at least the Y direction, and sequentially irradiates the mask 43 with the X-rays reflected by the optical path bending reflecting mirror 41.
  • the projection optical system 47 is composed of a plurality of reflecting mirrors and the like, reduces the X-rays reflected by the reflective mask 43 to a predetermined reduction magnification (for example, 1/4), and forms an image on the wafer 49.
  • the wafer 49 is fixed to the wafer stage 44 movable in the XYZ directions by suction or the like.
  • the illumination optical system 46 irradiates the reflective surface of the reflective mask 43 with X-rays.
  • the reflective mask 43 and the wafer 49 are relatively synchronously scanned with respect to the projection optical system 47 at a predetermined speed ratio determined by the reduction magnification of the projection optical system.
  • the entire circuit pattern of the reflective mask 43 is transferred to each of a plurality of shot areas on the wafer 49 by a step-and-scan method.
  • the chips of the wafer 49 are, for example, 25 ⁇ 25 mm square.
  • FIG. 2 is a view showing an X-ray generator of an exposure apparatus according to a second embodiment of the present invention.
  • the X-ray generator 50 shown in Fig. 2 is shown in Fig. 1: Compared with the X-ray generator 1, the X-ray generator 50 is largely different in the following two points.
  • the X-ray generator 50 in FIG. 2 is a gas type. That is, the pipe 13 connected to the nozzle 11 is connected to a gas cylinder (not shown). Gaspo The inside of the container is filled with a target gas such as krypton (Kr). The target gas in the gas cylinder is sent to the nozzle 11 via the pipe 13, and is ejected from the tip of the nozzle 11 into the light source chamber 10. The ejected target gas becomes the target material when generating plasma.
  • a target gas such as krypton (Kr).
  • a second flange member 51 is provided on the upper end surface of the light source chamber 110.
  • the flange member 51 is a member (extraction member) for closing an opening on the upper end side of the light source chamber 110, and is attachable to and detachable from the light source chamber 110.
  • the mirror 15, the nozzle 11, and the X-ray transmission filter 21 are frequently replaced in this order.
  • the X-ray generator 50 of this embodiment by removing the flange member 51 and opening the upper end surface of the light source chamber 110, the mirror 16 which is most frequently replaced can be removed. In that case, there is no need to remove the nozzle 11 and the X-ray transmission filter 21 that are less frequently replaced than the mirror 15, or the condenser lens 17 and the condenser mechanism 18. Therefore, there is no need to remove or reposition the nozzle 11 each time the mirror 15 is removed, and it is possible to save the trouble of adjusting the plasma generation position (positioning the target material for injection). .
  • the flange member 51 When the flange member 51 is provided as shown in FIG. 2, even if the aforementioned flange member 20 is not provided, the mirror 15, the nozzle 11, and the X-ray transmission filter 21 are arranged in the order of the light source chamber 10. It can be removed from the upper end side. For this reason, when the easiness of production of the device is impaired, the flange member 20 need not be provided. However, considering the convenience of removing the nozzle 11 and the X-ray transmission filter 21, it is more convenient to use both flange members 51, 20 together. Although the gas-type X-ray generator has been described, the flange member 51 can be installed in the above-described liquid jet-type X-ray generator, and in this case also, the removal operation can be simplified. 2003/009398
  • FIG. 3 is a view showing an X-ray generator of an exposure apparatus according to a third embodiment of the present invention.
  • the X-ray generator 60 shown in FIG. 3 differs greatly from the X-ray generator 50 shown in FIG. 2 mainly in the following two points.
  • the X-ray transmission filter 21 is attached to the outer surface of the light source chamber 110.
  • An aperture plate 23 is arranged directly below the X-ray transmission filter 21.
  • the aperture plate 23 is a disk having a pinhole 23 a in the center.
  • the diameter of the pinhole 23a is about one example.
  • the X-ray beam reflected by the mirror 15 passes through the pinhole 23a of the aperture plate 23 and reaches the optical system at the subsequent stage (see FIG. 1). At this time, the portion around the pinhole 23a of the aperture plate 23 blocks scattered X-rays (leakage light).
  • the one corresponding to the aperture plate 23 is also present in the apparatus of FIG. 1, but is not shown.
  • a third flange member 61 is provided on a side surface of the exposure chamber 40 (see FIG. 1) downstream of the light source chamber 10.
  • the flange member 61 is provided so as to be attachable / detachable to / from the exposure chamber 40 upstream of the illumination optical system 46 (see FIG. 1) inside the exposure chamber 140.
  • FIG. 3 the same components as those of the X-ray generators 1 and 50 in FIGS. 1 and 2 are denoted by the same reference numerals.
  • the flange member 20 is used to remove the nozzle 11
  • the flange member 51 is used to remove the mirror 15
  • the X-ray transmission filter 21 is used.
  • the flange member 61 can be replaced by removing it.
  • the flange member corresponding to each element can be removed and carried out from the exclusive take-out window for replacement regardless of the replacement frequency of each element. In this case, there is no need to remove other elements that are not the replacement target.
  • the aperture plate 23 basically transmits most of the X-ray beams through the pinhole 23a, the performance does not deteriorate much.
  • scattering Replacement is necessary because the area around the pinhole 23a is illuminated by the X-rays (leakage light) and deteriorates. Also in that case, the flange plate 61 can be removed and the opening plate 23 can be replaced. The invention's effect

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

リキッドジェット型X線発生装置1の光源チャンバー10内には、ノズル11やミラー15が配置されている。光源チャンバー10の外壁部には、フランジ部材20が設けられている。このフランジ部材20には、ノズル11の配管13基端側が取り付けられており、同部材20を取り外すことにより、ノズル11を光源チャンバー10外に取り出すことができる。リキッドジェット型X線発生装置1において、最も交換頻度の高い素子はノズル11であるが、ノズル11を交換する際にはフランジ部材20を取り外すだけでよく、ノズル11よりも交換頻度の低いミラー15等を取り外す必要がない。

Description

明 細 書
X線発生装置及び露光装置 技術分野
本発明は、 X線顕微鏡、 X線分析装置、 並びに、 X線露光装置等の X線機 器に装備される X線発生装置と、 それを備える露光装置に関する。 特には、 真空チャンバ一に付設された各素子の交換を楽に行うことができる X線発生 装置及び露光装置に関する。 背景技術
リキッドジエツト型 X線発生装置を例に採って、 従来の技術を説明する。 図 4は、 従来のリキッドジエツト型 X線発生装置の一例を示す断面図であ る。
図 4のリキッドジエツト型 X線発生装置は、 光源チャンバ一 1 0 0を備え ている。 この光源チャンバ一 1 0 0には、 真空ポンプ 1 0 2が付設されてい る。 光源チャンパ一 1 0 0内は、 真空ポンプ 1 0 2で排気されている。 光源 チャンバ一 1 0 0内には、 ノズル 1 0 1が配置されている。 このノズル 1 0 1は、 リキッドガスボンベ (図示されず) に繋がる配管 1 0 3に接続さ れている。 配管 1 0 3と光源チャンバ一 1 0 0内面間には、 ノズル 1 0 1の 位置を決めるとともに配管 1 0 3のズレを防止するための支持部材 1 0 4が 設けられている。
リキッドガスボンベ内には、 キセノン (X e ) 等のターゲットガスと水等 の液体が混合充填されている。 リキッドガスボンベ内のリキッドガスは、 配 管 1 0 3を介してノズル 1 0 1に送られ、 ノズル 1 0 1先端から光源チャン パー 1 0 0内に噴出される。 この噴出されたリキッドガスが、 プラズマを生 成する際の標的材料となる。
光源チャンバ一 1 0 0内部には、 ミラー (第 1ミラ一) 1 0 5がマウント 106を介して取り付けられている。 ミラー 105は、 この例ではすり鉢状 の反射面 1 0 5 aを有する楕円形ミラーである。 ミラ一 1 0 5の反射面 105 aには、 一例で Mo/S i製の多層膜がコートされている。 プラズマ から輻射された X線のうち、 波長 13. 4nm付近の X線がミラー 1 05の 反射面 10 5 aで反射し、 X線光束となって後段の光学系に導かれる。 光源チャンバ一 100の外壁部(図中右上側)には、フランジ部材 1 10が 取り付けられている。このフランジ部材 1 10外面には、集光レンズ 1 07を 含む集光機構 108が取り付けられている。この集光機構 108の上流側(図 中右側)には、レーザー光源 109が配置されている。集光レンズ 107は、 レーザー光源 109から放出されたレーザ一光 Lを、 ノズル 101の先に集 光する。 集光されたレーザー光 Lがリキッドガスに照射されることで、 ブラ ズマ Pが生成され、 このプラズマ Pから X線が輻射される。
なお、 フランジ部材 1 10外面に集光レンズ 107 ·集光機構 108を取 り付けるのは、 主に製作上容易であるという理由による。 フランジ部材 1 10は、 ミラ一 105等の素子をチャンバ一 100外に取り出す際の開口 を塞ぐ部材を兼ねており、 光源チャンバ一 100の外面に取り付け ·取り外 し可能となっている。
光源チャンバ一 1 0 0の下面には、 X線光束を通過させるための開口 1 00 aが形成されている。 光源チャンバ一 1 00の内部において、 開口 1 00 aを覆う位置には、 X線透過フィルタ一 1 1 1が配置されている。 X 線透過フィルタ一 1 1 1は、 ベリリウム (B e) 等からなる薄膜であり、 プ ラズマからの可視'紫外光をカツトする。光源チャンバ一 100外において、 X線透過フィルター 1 1 1の直下には開口板 1 1 3が配置されている。 この 開口板 1 1 3は、 中心にピンホール 1 1 3 aを有する円盤である。 ミラ一 1 05で反射した X線光束は、 開口板 1 1 3のピンホール 1 13 aを通って 後段の光学系に至る。 この際、 開口板 1 13のピンホール 113 a周囲の箇 所は、 散乱した X線 (洩れ光) を遮る。
前述のリキッドジェット型 X線発生装置においては、 リキッドガス (標的 材料) 等がプラズマ生成時に原子やイオン状の粒子となる。 そして、 この粒 子がノズル 1 0 1の先端に付着 ·堆積すると、 リキッドガスが正常に噴出さ れなくなる。 あるいは、 この粒子が周囲に飛び散り、 ミラー 1 0 5の反射面 1 0 5 aに付着 ·堆積すると、ミラー 1 0 5の反射率を低下させる。さらに、 飛び散った粒子は、 X線透過フィルタ一 1 1 1にも付着 '堆積する。 このた め、 X線発生装置の光源チャンバ一 1 0 0内のノズル 1 0 1やミラー 1 0 5、 X線透過フィルター 1 1 1は、 ある一定期間ごとに新たなものと交換する必 要がある。
ノズル 1 0 1、 ミラ一 1 0 5、 X線透過フィルター 1 1 1の各素子を交換 する際には、 前述のフランジ部材 1 1 0を光源チャンバ一 1 0 0から取り外 し、チャンバ一壁を開放した状態にする。ここで、図 4に示す光源チャンバ一 1 0 0は、フランジ部材 1 1 0が 1つだけであるため、ノズル 1 0 1、ミラー 1 0 5、 X線透過フィルタ一 1 1 1のどの素子を交換する場合にも、 このフ ランジ部材 1 1 0を取り外す必要がある。 一方、 前述の通り、 製作上の容易 さから、 フランジ部材 1 1 0には集光レンズ 1 0 7 ·集光機構 1 0 8が取り 付けられている。 したがって、 光源チャンパ一 1 0 0内のいずれの素子を交 換する場合にも、 本来は交換する必要のない集光レンズ 1 0 7 ·集光機構 1 0 8を一旦取り外さなければならない。
図 4に示すリキッドジェット型 X線発生装置においては、 ノズル 1 0 1、 ミラ一 1 0 5、X線透過フィルタ一 1 1 1の順で交換頻度が高い。ところが、 図 4のような位置関係で素子が配置されていると、 ノズル 1 0 1を交換する 際には先にミラー 1 0 5を取り外さなければならない。 このように、 最も交 換頻度の高いノズル 1 0 1の交換作業のたびに、 それよりも交換頻度の低い ミラー 1 0 5や集光レンズ 1 0 7 ·集光機構 1 0 8を取り外さなければなら い。 あるいは、 X線透過フィルター 1 1 1のみを交換する場合には、 ノズル 1 0 1やミラ一 1 0 5、 集光レンズ 1 0 7 ·集光機構 1 0 8を全て取り外さ なければならい。
このように、 従来の X線発生装置においては、 交換すべき素子を取り外す ために、 本来は交換の必要のない他の素子を度々取り外さなければならず、 交換作業が煩雑で面倒であった。さらに、外す必要のない集光レンズ 1 0 7 · 集光機構 1 0 8を交換作業のたびに取り外すと、 集光レンズ 1 0 7 '集光機 構 1 0 8のァライメントをやり直すだけではなく、 後段の光学系のァライメ ントもやり直さなければいけなくなる可能性が高くなるという問題もある。 本発明は、このような問題に鑑みてなされたものであって、真空チャンバ一 に付設された各素子の交換をより合理的に行うことができる X線発生装置及 び露光装置を提供することを目的とする。 発明の開示
前記の課題を解決するため、 本発明の X線発生装置は、 真空チャンバ一内 において標的材料をプラズマ化し、 該プラズマから X線を輻射させる X線発 生装置であって、 前記プラズマからの X線が最初に入射するミラ一、 X線 透過フィル夕一等の素子を有し、 それらの素子のうち、 交換頻度の高いも のについて、 前記真空チャンバ一外に取り出すための取出手段が前記真空 チャンバ一に設けられていることを特徴とする。
本発明によれば、 所望の素子を交換する際に、 それよりも交換頻度の低い 素子を度々取り外す必要がない。 本来交換する必要のない素子を取り外さな くて済むので、 素子の交換作業が簡単になる。 さらに、 交換不要な素子を取 り外すことに伴う、 装置のァライメントのズレを引き起こすこともない。 本発明の X線発生装置においては、 前記素子が、 少なくとも交換頻度の低 い素子を取り出すことなく、 交換頻度の高い順に取り出すことができるよう に前記真空チャンバ一内に配置されているものとすることができる。
この場合、真空チヤンバ一内から交換頻度の低い素子を取り出すことなく、 交換頻度の高い素子を取り出すことができるので、 素子の交換作業がより簡 単になる。 なお、 X線発生装置の光源のタイプ (ガス型、 リキッドジェット 型等)に応じて、設計自由度や制作上の容易性をできる限り損なうことなく、 交換頻度の高い順に素子を取り出すことができるように配置することもでき る。
本発明の X線発生装置のより具体的な態様においては、 前記取出手段が、 前記標的材料の供給ノズルの基端側が取り付けられた取出部材を備えるもの とすることができる。
例えば、リキッドジエツト型 X線発生装置においては、供給ノズル、ミラー、 X線透過フィルターの順で交換頻度が高いが、 この態様によれば、 真空チヤ ンバーから取出部材を取り外すだけで、 他の素子を取り外すことなく供給ノ ズルの取り外し作業を行なうことができる。
また、 前記取出手段が、 前記標的材料の供給ノズルを取り外すことなく前 記ミラーを取り出し可能な取出部材を備えるものとすることができる。
この場合、 供給ノズルを取り外すことなくミラーの取り外しを行なうこと ができる。 そのため、 ミラーの取り外しのたびに供給ノズルの取り外しや位 置合わせを行なう必要がなく、 プラズマ発生位置の調整 (標的材料の噴射位 置合わせ) 等の手間が省ける。
さらに、 前記 X線透過フィルターが、 前記真空チャンバ一の外面側に取り 付けられており、 前記取出手段が、 前記真空チャンバ一の下流側に接続さ れた露光チャンバ一に配置された取出部材を備えるものとすることができる。 この場合、 真空チャンバ一内の素子を取り外すことなく、 露光チャンバ一 側から X線透過フィルタ一の取り外しを行なうことができる。
真空チャンバ一内において標的材料をプラズマ化し、 該プラズマから X線 を輻射させる X線発生装置であって、 前記プラズマからの X線が最初に入 射するミラー、 X線透過フィルタ一等の素子を有し、 それらの素子のうち、 交換頻度の高いものにつき、 前記真空チャンバ一外に取り出すための専用の 取り出し窓が前記真空チャンバ一に設けられていることを特徴とする。
この発明においては、 交換頻度の高い素子につき専用の取り出し窓が設け られているので、 取り出しの不要な他の素子を動かさずに交換することがで きる。
本発明の露光装置は、 前述の X線発生装置と、 該 X線発生装置から発生 された X線をマスクに当てる照明光学系と、 該マスクから反射した光を感 応基板上に投影結像させる投影光学系と、 を具備することを特徴とする。 なお、 本発明でいう素子とは、 露光装置の光源系、 照明系、 投影系の構成 要素として、 性能上不可欠な交換素子を全て指すものとする。 さらに、 本発 明でいう素子には、 各素子を真空チャンパ一等に取り付けるための部材 (金 具等) や、 ミラ一等を冷却するための冷却機構を構成する素子も含むものと する。 図面の簡単な説明
第 1図は、 本発明の一実施例に係る露光装置の全体構成を示す図である。 第 2図は、 本発明の第 2の実施例に係る露光装置の X線発生装置を示す図 である。
第 3図は、 本発明の第 3の実施例に係る露光装置の X線発生装置を示す図 である。
第 4図は、 従来のリキッドジェット型 X線発生装置の一例を示す断面図で ある。 発明を実施するための形態
以下、 図面を参照しつつ説明する。
図 1は、 本発明の一実施例に係る露光装置の全体構成を示す図である。 なお、 以下の説明ではレーザプラズマ光源を用いた露光装置を例に採って 説明するが、 本発明は放電プラズマ光源等を用いた露光装置にも適用可能で ある。
図 1に示す露光装置の光学系の最上流側(図の上部)には、 リキッドジエツ ト型の X線発生装置 1が設けられている。 この; X線発生装置 1は、 光源チヤ ンバ一 1 0を備えている。 この光源チャンバ一 1 0には、 真空ポンプ 1 2が 付設されている。 光源チャンバ一 1 0内は、 真空ポンプ 1 2で排気されてい る。 光源チャンバ一 1 0内が真空ポンプ 1 2で減圧されることで、 プラズマ Pから輻射された X線が減衰しないようになっている。
光源チャンバ一 1 0内には、 ノズル 1 1が配置されている。 このノズル 1 1は、 リキッドガスボンベ (図示されず) に繋がる配管 1 3に接続されて いる。 配管 1 3と光源チャンバ一 1 0内面間には、 ノズル 1 1の位置を決め るとともに配管 1 3のズレを防止するための支持部材 1 4が設けられている。 リキッドガスボンベ内には、 キセノン (X e ) 等のターゲットガスと水等の 液体が混合充填されている。 リキッドガスボンベ内のリキッドガスは、 配管 1 3を介してノズル 1 1に送られ、 ノズル 1 1先端から光源チャンバ一 1 0内に噴出される。 この噴出されたリキッドガスが、 プラズマを生成する 際の標的材料となる。
なお、 本発明は、 液体に限らず気体や固体も同様に用いることができる。 錫等の固体ターゲットを用いる場合は、 テープに固体材料を形成したり、 固 体材料そのものでテープを作り、 徐々にレーザーの当たる位置を変えるテー プ巻き取り型等も用いることができる。
光源チャンバ一 1 0内部には、ミラ一(第 1ミラー) 1 5がマウント 1 6、 スライド機構 2 5を介して取り付けられている。 ミラー 1 5は、 この例では すり鉢状の反射面 1 5 aを有する楕円形ミラーである。 ミラー 1 5の反射面 1 5 aには、 一例で M o / S i製の多層膜がコートされている。 プラズマか ら輻射された X線のうち、 波長 1 3 . 4 n m付近の X線がミラー 1 5の反射 面 1 5 aで反射し、 X線光束となって後段の光学系 (図 1中下側) に導かれ る。
光源チャンバ一 1 0の外壁部 (図 1中右下側) には、 フランジ部材 (取出 部材) 2 0が設けられている。 このフランジ部材 2 0は、 ミラー 1 5等の素 子をチャンバ一 1 0外に取り出す際の開口を塞ぐ部材であって、 光源チャン バ一 1 0の外面に取り付け ·取り外し可能となっている。 このフランジ部材 2 0には、 前述のノズル 1 1の配管 1 3基端側が取り付けられており、 同部 材 2 0を取り外すことにより、 ノズル 1 1を光源チャンバ一 1 0外に取り出 すことができる。 ノズル 1 1を取り出す際にミラ一 1 5が邪魔な場合は、 スライド機構 2 5を用いてミラ一 1 5を図 1中上側にスライドさせる。 そして、 ノズル 1 1の取り外し ·交換が済んだ後に、 ミラー 1 5を図 1中下側にスライドさ せて元の位置に戻す。 あるいは、 フランジ部 2 0からミラー 1 5も取り出す 際には、 ノズル 1 1を取り外した後にミラー 1 5を下げると、 チャンバ一 1 0外への搬出が容易となる。このようなスライド機構 2 5を設けることで、 1つのフランジ部材 2 0からノズル 1 1、 ミラ一 1 5の順に取り出すことが 可能となる。 なお、 図示はしないが、 ミラ一 1 5が正確に元の位置に戻るよ うに、 ァライメント機構も追設するのが好ましい。
フランジ部材 2 0の上側の光源チャンバ一 1 0外壁(図 1中右上側)には、 集光レンズ 1 7を含む集光機構 1 8が取り付けられている。 この集光機構 1 8の図 1中右側には、 レーザー光源 1 9が配置されている。 集光レンズ 1 7は、 レーザ一光源 1 9から放出されたレーザ一光 Lを、 ノズル 1 1の先 に集光する。 集光されたレーザー光 Lがリキッドガスに照射されることで、 プラズマ Pが生成され、 このプラズマ Pから X線が輻射される。
光源チャンバ一 1 0の下面には、 X線光束を通過させるための開口 1 0 a が形成されている。 光源チャンバ一 1 0の内部において、 開口 1 0 aを覆う 位置には X線透過フィルター 2 1が配置されている。 X線透過フィルター 2 1は、 ベリリウム (B e ) 等からなる薄膜であり、 プラズマからの可視 - 紫外光をカットする。
ここで、 前述の構成を有する X線発生装置 1の総合的な作用について述べ る。
レーザー光源 1 9から放出されたレーザ一光 Lは、 集光レンズ 1 7を透過 してノズル 1 1の直上に集光される。 ノズル 1 1から噴出されたリキッドガ スは、 集光されたレ一ザ一光 Lのエネルギを受けて高温になり、 プラズマ? を生成する。このプラズマ中のイオンが低ポテンシャル状態へ遷移する際に、 X線を放出する。 ミラー 1 5に入射した X線のうち、 波長 1 3 . 4 n m付近 の X線がミラー反射面 1 5 aで反射して X線光束 Eとなり、 光源チャンバ一 1 0の下流側から後段の光学系へと導かれる。
X線発生装置 1をある程度の時間稼動すると、 プラズマ Pから飛び散った 粒子がノズル 1 1の噴出口やミラー 1 5の反射面 1 5 aに堆積する。 こうな ると、ノズルゃミラ一を新たなものと交換する必要がある。前述したように、 リキッドジェット型 X線発生装置において、 最も交換頻度の高い素子はノズ ル 1 1である。 本実施例の X線発生装置 1によれば、 ノズル 1 1を交換する 際にはフランジ部材 2 0を取り外すだけでよく、 ノズル 1 1よりも交換頻度 の低いミラー 1 5や X線透過フィルタ一 2 1、 あるいは、 集光レンズ 1 7 · 集光機構 1 8を取り外す必要がない。 このように、 本来交換する必要のない 素子は取り外さなくて済むので、 ノズル 1 1の交換作業が簡単である。 さら に、 集光レンズ 1 7 '集光機構 1 8等を取り外すことに伴う、 装置のァライ メントのズレを引き起こすこともない。
次いで、 X線発生装置 1を有する露光装置の全体構成について説明する。 図 1に示すように、 X線発生装置 1の下方には、 露光チャンバ一 4 0が設 置されている。 露光チャンバ一 4 0内には、 照明光学系 4 6が配置されてい る。 照明光学系 4 6は、 コンデンサ一系の反射鏡、 フライアイ光学系の反射 鏡等で構成されており、ミラ一 1 5で反射した X線を円弧状に調整し、図 1の 左方に向かって照射する。
照明光学系 4 6の図 1の左方には、 X線反射鏡 4 2が配置されている。 X 線反射鏡 4 2は、 図 1の右側の反射面 4 2 aが凹型をした円形をしており、 図示せぬ保持部材により垂直に保持されている。 X線反射鏡 4 2の図 1の右 方には、 光路折り曲げ反射鏡 4 1が斜めに配置されている。 光路折り曲げ反 射鏡 4 1の上方には、 反射型マスク 4 3が、 反射面が下になるように水平に 配置されている。 照明光学系 4 6から放出された X線は、 X線反射鏡 4 2に より反射集光された後に、 光路折り曲げ反射鏡 4 1を介して、 反射型マスク 4 3の反射面に達する。
反射鏡 4 1、 4 2の基体は、 反射面 4 2 aが高精度に加工された石英の基 板からなる。 この反射面 4 2 aには、 X線発生装置のミラ一 1 5の反射面と 09398
10 同様に、 Mo/S iの多層膜が形成されている。 なお、 波長が 10〜1 5 n mの X線を用いる場合には、 Ru (ルテニウム)、 R (ロジウム) 等の物質 と、 S i、 B e (ベリリウム)、 B 4C (4ホウ化炭素) 等の物質とを組み合 わせた多層膜でもよい。
反射型マスク 43の反射面にも多層膜からなる反射膜が形成されている。 この反射膜には、 ウェハ 49に転写するパターンに応じたマスクパターンが 形成されている。 反射型マスク 43は、 その上部に図示されたマスクステ一 ジ 45に固定されている。 マスクステージ 45は、 少なくとも Y方向に移動 可能であり、 光路折り曲げ反射鏡 41で反射された X線を順次マスク 43上 に照射する。
反射型マスク 43の下部には、 順に投影光学系 47、 ウェハ 49が配置さ れている。投影光学系 47は、複数の反射鏡等からなり、反射型マスク 43で 反射された X線を所定の縮小倍率 (例えば 1/4) に縮小し、 ウェハ 49上 に結像する。 ウェハ 49は、 XYZ方向に移動可能なウェハステージ 44に 吸着等により固定されている。
露光動作を行う際には、 照明光学系 46により反射型マスク 43の反射面 に X線を照射する。 その際、 投影光学系 47に対して反射型マスク 43及び ウェハ 49を投影光学系の縮小倍率により定まる所定の速度比で相対的に同 期走査する。 これにより、 反射型マスク 43の回路パターンの全体をウェハ 49上の複数のショット領域の各々にステップアンドスキャン方式で転写す る。 なお、 ウェハ 49のチップは例えば 25 X 25mm角である。
以下、 本発明に係る X線発生装置の他の実施例について述べる。
図 2は、 本発明の第 2の実施例に係る露光装置の X線発生装置を示す図で ある。
図 2に示す X線発生装置 50は、 図 1に示す: X線発生装置 1と比較して、 主に次の 2つの点で大きく異なる。
(1) 図 2の X線発生装置 50は、 ガス型である。 すなわち、 ノズル 1 1に 接続された配管 1 3が、 ガスボンベ (図示されず) に繋がっている。 ガスポ ンべ内には、 クリプトン (K r ) 等のターゲットガスが充填されている。 ガ スボンべ内のターゲットガスは、 配管 1 3を介してノズル 1 1に送られ、 ノ ズル 1 1先端から光源チャンパ一 1 0内に噴出される。 この噴出されたター ゲットガスが、 プラズマを生成する際の標的材料となる。
( 2 ) 光源チャンバ一 1 0の上端面に、 第 2のフランジ部材 5 1が設けられ ている。 このフランジ部材 5 1は、 光源チャンバ一 1 0の上端側の開口を塞 ぐ部材 (取出部材) であって、 光源チャンバ一 1 0に取り付け ·取り外し可 能となっている。
なお、 図 2において図 1の X線発生装置 1とほぼ同一の構成要素には、 同 一符号が付されている。
図 2のガス型の X線発生装置 5 0においては、 ミラー 1 5、 ノズル 1 1、 X線透過フィルター 2 1の順で交換頻度が高い。 本実施例の X線発生装置 5 0によれば、 フランジ部材 5 1を取り外して光源チャンバ一 1 0の上端面 を開放することで、最も交換頻度の高いミラー 1 6を取り外すことができる。 その際には、 ミラ一 1 5よりも交換頻度の低いノズル 1 1や X線透過フィル ター 2 1、あるいは、集光レンズ 1 7 ·集光機構 1 8を取り外す必要がない。 そのため、 ミラ一 1 5の取り外し作業のたびにノズル 1 1の取り外しや再位 置合わせを行なう必要がなく、 プラズマ発生位置の調整 (標的材料の噴射位 置合わせ) 等の手間を省くことができる。
なお、 図 2のようにフランジ部材 5 1を設ける場合は、 前述したフランジ 部材 2 0がなくとも、 ミラー 1 5、 ノズル 1 1、 X線透過フィルタ一 2 1の 順で光源チャンバ一 1 0の上端側から取り外すことが可能である。そのため、 装置の制作上の容易性等が損なわれる場合等は、 フランジ部材 2 0を設けな くともよい。 しかしながら、 ノズル 1 1や X線透過フィルター 2 1の取り外 しの利便性を考慮して、 両フランジ部材 5 1、 2 0を併用する方が都合がよ レ^ さらに、 図 2の実施例は、 ガス型の X線発生装置であるとして説明した が、 フランジ部材 5 1は前述したリキッドジェット型の X癱発生装置に設置 することもでき、 この場合も取り外し作業を簡単にできる。 2003/009398
12 図 3は、 本発明の第 3の実施例に係る露光装置の X線発生装置を示す図で ある。
図 3に示す X線発生装置 6 0は、図 2に示す X線発生装置 5 0と比較して、 主に次の 2つの点で大きく異なる。
( 1 ) 図 3の X線発生装置 6 0においては、 X線透過フィルター 2 1が光源 チャンバ一 1 0の外面側に取り付けられている。 そして、 この X線透過フィ ルター 2 1の直下に、 開口板 2 3が配置されている。 この開口板 2 3は、 中 心にピンホール 2 3 aを有する円盤である。 ピンホール 2 3 aの直径は、 一 例で 程度である。 ミラー 1 5で反射した X線光束は、 開口板 2 3のピ ンホール 2 3 aを通って後段の光学系 (図 1参照) に至る。 この際、 開口板 2 3のピンホール 2 3 a周囲の箇所は、 散乱した X線 (洩れ光) を遮る。 な お、 この開口板 2 3に相当するものは、 図 1の装置においても存在するが、 図示は省略してある。
( 2 ) 光源チャンバ一 1 0の下流側の露光チャンバ一 4 0 (図 1参照) の側 面に、第 3のフランジ部材 6 1が設けられている。このフランジ部材 6 1は、 露光チャンバ一 4 0内部の照明光学系 4 6 (図 1参照) よりも上流側におい て、 露光チャンバ一 4 0に取り付け ·取り外し可能に設けられている。
なお、 図 3において図 1、 図 2の X線発生装置 1、 5 0とほぼ同一の構成 要素には、 同一符号が付されている。
図 3の X線発生装置 6 0においては、 ノズル 1 1を取り外す際にはフラン ジ部材 2 0を、 ミラ一 1 5を取り外す際にはフランジ部材 5 1を、 X線透過 フィルタ一 2 1を取り外す際にはフランジ部材 6 1を、 それぞれ取り外すこ とで交換作業を行なうことができる。本実施例の X線発生装置 6 0によれば、 各素子の交換頻度にかかわらず、 素子ごとに対応するフランジ部材を取り外 し、 専用の取り出し窓から搬出して交換することができる。 その際には、 交 換対象ではない他の素子は取り外す必要がない。
なお、 開口板 2 3は、 基本的にはほとんどの X線光束がピンホール 2 3 a を通過するものであるから、 性能はあまり劣化しない。 しかしながら、 散乱 した X線(洩れ光)によりピンホール 2 3 a周囲が照らされて劣化するため、 交換は必要である。 その場合にも、 フランジ部材 6 1を取り外して、 開口板 2 3の交換作業を行なうことができる。 発明の効果
以上の説明から明らかなように、 本発明によれば、 真空チャンバ一に付設 された各素子の交換をより楽に行うことができる X線発生装置及び露光装置 を提供できる。

Claims

請 求 の 範 囲
1 . 真空チャンバ一内において標的材料をプラズマ化し、 該プラズマから X 線を輻射させる X線発生装置であって、
前記プラズマからの X線が最初に入射するミラ一; X線透過フィルタ一等 の素子を有し、
それらの素子のうち、 交換頻度の高いものについて、 前記真空チャンパ一 外に取り出すための取出手段が前記真空チャンバ一に設けられていることを 特徴とする X線発生装置。
2 . 前記素子が、 少なくとも交換頻度の低い素子を取り出すことなく、 交換 頻度の高い順に取り出すことができるように前記真空チャンバ一内に配置さ れていることを特徴とする請求項 1記載の X線発生装置。
3 . 前記取出手段が、 前記標的材料の供給ノズルの基端側が取り付けられた 取出部材を備えることを特徴とする請求項 1又は 2記載の X線発生装置。
4 . 前記取出手段が、 前記標的材料の供給ノズルを取り外すことなく前記ミ ラーを取り出し可能な取出部材を備えることを特徴とする請求項 1、 2又は 3記載の X線発生装置。
5 . 真空チャンバ一内において標的材料をプラズマ化し、 該プラズマから X 線を輻射させる X線発生装置であって、
前記プラズマからの X線が最初に入射するミラ一、 X線透過フィルタ一等 の素子を有し、
それらの素子のうち、 交換頻度の高いものにつき、 前記真空チャンバ一外 に取り出すための専用の取り出し窓が前記真空チヤンバーに設けられている ことを特徴とする X線発生装置。
6 . 請求項 1〜5いずれか 1項記載の X線発生装置と、
該 X線発生装置から発生された X線をマスクに当てる照明光学系と、 該マスクから反射した光を感応基板上に投影結像させる投影光学系と、 を具備することを特徴とする露光装置。
PCT/JP2003/009398 2002-09-24 2003-07-24 X線発生装置及び露光装置 WO2004030423A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004539457A JPWO2004030423A1 (ja) 2002-09-24 2003-07-24 X線発生装置及び露光装置
EP03798368A EP1545168A4 (en) 2002-09-24 2003-07-24 X-RAY GENERATING DEVICE AND EXPOSURE DEVICE
AU2003248107A AU2003248107A1 (en) 2002-09-24 2003-07-24 X-ray generating device and exposure device
US11/084,380 US7145987B2 (en) 2003-07-24 2005-03-18 X-ray-generating devices and exposure apparatus comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-276967 2002-09-24
JP2002276967 2002-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/084,380 Continuation US7145987B2 (en) 2003-07-24 2005-03-18 X-ray-generating devices and exposure apparatus comprising same

Publications (1)

Publication Number Publication Date
WO2004030423A1 true WO2004030423A1 (ja) 2004-04-08

Family

ID=32040390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009398 WO2004030423A1 (ja) 2002-09-24 2003-07-24 X線発生装置及び露光装置

Country Status (4)

Country Link
EP (1) EP1545168A4 (ja)
JP (1) JPWO2004030423A1 (ja)
AU (1) AU2003248107A1 (ja)
WO (1) WO2004030423A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110107A (ja) * 2005-09-27 2007-04-26 Asml Netherlands Bv 光学要素上の堆積物の装置外での除去
JP2008118020A (ja) * 2006-11-07 2008-05-22 Komatsu Ltd 極端紫外光源装置用コレクタミラー交換装置及び交換方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047000A (ja) * 1998-07-31 2000-02-18 Shimadzu Corp レーザ励起型x線源
JP2000091216A (ja) * 1998-09-17 2000-03-31 Nikon Corp 露光装置、該露光装置の調整方法、及び露光方法
JP2002252162A (ja) * 2001-02-26 2002-09-06 Nikon Corp X線反射マスク、その保護方法、x線露光装置及び半導体デバイスの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285743B1 (en) * 1998-09-14 2001-09-04 Nikon Corporation Method and apparatus for soft X-ray generation
US6727980B2 (en) * 1998-09-17 2004-04-27 Nikon Corporation Apparatus and method for pattern exposure and method for adjusting the apparatus
US6190835B1 (en) * 1999-05-06 2001-02-20 Advanced Energy Systems, Inc. System and method for providing a lithographic light source for a semiconductor manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047000A (ja) * 1998-07-31 2000-02-18 Shimadzu Corp レーザ励起型x線源
JP2000091216A (ja) * 1998-09-17 2000-03-31 Nikon Corp 露光装置、該露光装置の調整方法、及び露光方法
JP2002252162A (ja) * 2001-02-26 2002-09-06 Nikon Corp X線反射マスク、その保護方法、x線露光装置及び半導体デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1545168A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110107A (ja) * 2005-09-27 2007-04-26 Asml Netherlands Bv 光学要素上の堆積物の装置外での除去
US7767989B2 (en) 2005-09-27 2010-08-03 Asml Netherlands B.V. Ex-situ removal of deposition on an optical element
US8134136B2 (en) 2005-09-27 2012-03-13 Asml Netherlands B.V. Ex-situ removal of deposition on an optical element
US8598550B2 (en) 2005-09-27 2013-12-03 Asml Netherlands B.V. Ex-situ removal of deposition on an optical element
JP2008118020A (ja) * 2006-11-07 2008-05-22 Komatsu Ltd 極端紫外光源装置用コレクタミラー交換装置及び交換方法
US8477412B2 (en) 2006-11-07 2013-07-02 Gigaphoton Inc. Collector mirror exchanging apparatus and method for extreme ultraviolet light source apparatus
US8804902B2 (en) 2006-11-07 2014-08-12 Gigaphoton Inc. Collector mirror exchanging apparatus and method for extreme ultraviolet light source apparatus

Also Published As

Publication number Publication date
AU2003248107A1 (en) 2004-04-19
EP1545168A1 (en) 2005-06-22
JPWO2004030423A1 (ja) 2006-01-26
EP1545168A4 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
US6504903B1 (en) Laser-excited plasma light source, exposure apparatus and its making method, and device manufacturing method
JP5732392B2 (ja) 放射源およびリソグラフィ装置
JP4799620B2 (ja) 放射システムおよびリソグラフィ装置
JP4298336B2 (ja) 露光装置、光源装置及びデバイス製造方法
US8884257B2 (en) Chamber apparatus and extreme ultraviolet light generation system
EP1848004B1 (en) Extreme UV radiation focusing mirror and extreme UV radiation source device
US8405055B2 (en) Source module, radiation source and lithographic apparatus
JP4235480B2 (ja) 差動排気システム及び露光装置
US7145987B2 (en) X-ray-generating devices and exposure apparatus comprising same
US9632419B2 (en) Radiation source
JP2009130367A (ja) 照明光学装置、露光装置、及びデバイス製造方法
US20110199600A1 (en) Collector assembly, radiation source, lithographic apparatus and device manufacturing method
JP2007173792A (ja) 放射システムおよびリソグラフィ装置
WO2004090957A1 (ja) 光源ユニット、照明光学装置、露光装置および露光方法
JP5531053B2 (ja) 放射源、リソグラフィ装置及びデバイス製造方法
JP2009130366A (ja) 照明光学装置、露光装置、及びデバイス製造方法
WO2004032211A1 (ja) X線発生装置及び露光装置
JP2009060139A (ja) 光源ユニット、照明光学装置、露光装置および露光方法
JP2002311200A (ja) X線発生装置及び露光装置
WO2004030423A1 (ja) X線発生装置及び露光装置
JP2000098099A (ja) X線照明装置及びx線投影露光装置
JP2007128971A (ja) 差動排気システム及びそれを用いた光源、露光装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004539457

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11084380

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003798368

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003798368

Country of ref document: EP