WO2004024961A1 - 金属酸化物又は製鉄廃棄物の還元処理方法、及び、亜鉛及び/又は鉛の濃縮・回収方法 - Google Patents

金属酸化物又は製鉄廃棄物の還元処理方法、及び、亜鉛及び/又は鉛の濃縮・回収方法 Download PDF

Info

Publication number
WO2004024961A1
WO2004024961A1 PCT/JP2003/011654 JP0311654W WO2004024961A1 WO 2004024961 A1 WO2004024961 A1 WO 2004024961A1 JP 0311654 W JP0311654 W JP 0311654W WO 2004024961 A1 WO2004024961 A1 WO 2004024961A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
powder
slurry
water
raw material
Prior art date
Application number
PCT/JP2003/011654
Other languages
English (en)
French (fr)
Inventor
Hiroshi Ichikawa
Tetsuharu Ibaraki
Shoji Imura
Hiroshi Oda
Yoichi Abe
Shigeki Takahashi
Nobuyuki Kanemori
Satoshi Suzuki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003014268A external-priority patent/JP4299548B2/ja
Priority claimed from JP2003107420A external-priority patent/JP4236980B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US10/527,809 priority Critical patent/US7879132B2/en
Priority to EP20030795407 priority patent/EP1561829B1/en
Priority to AU2003262090A priority patent/AU2003262090A1/en
Publication of WO2004024961A1 publication Critical patent/WO2004024961A1/ja
Priority to US12/930,952 priority patent/US8308844B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/04Filters with filtering elements which move during the filtering operation with filtering bands or the like supported on cylinders which are impervious for filtering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/248Binding; Briquetting ; Granulating of metal scrap or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • C22B13/025Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/34Obtaining zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/961Treating flue dust to obtain metal other than by consolidation

Definitions

  • the present invention relates to a technology for reducing metal oxides and removing alkali metals, halogen elements, and other impurities in a rotary hearth-type reduction furnace using powder containing powdered metal oxides as a raw material. About.
  • the present invention relates to technology for separating and recovering zinc and lead from dust and the like of a refining furnace in a rotary hearth reduction furnace.
  • the present invention provides a mobile hearth-type reduction furnace that heats and reduces iron-making waste such as dust sludge containing iron oxide generated in the iron refining and processing process, and mainly reduces zinc oxide (ZnO).
  • the present invention relates to a method and an apparatus for treating steelmaking waste that collects waste.
  • This type of process is performed using a reduction furnace.
  • the reduction furnace include a shaft-type hydrogen gas reduction furnace, a rotary kiln-type reduction furnace, a rotary hearth-type reduction furnace, and the like. .
  • pellets of granulated ore are reduced with hydrogen gas.
  • the reduced iron production method using a rotary kiln type reduction furnace / rotary hearth type reduction furnace has attracted attention as an economical method for producing reduced iron because it can use inexpensive coal and the like.
  • the rotary hearth-type reduction furnace is a type of furnace in which a disc-shaped refractory hearth lacking a central part rotates at a constant speed on rails under a fixed refractory ceiling and side walls.
  • the diameter of the rotating hearth is 10 to 15 meters, and the width of the hearth is 2 to 6 meters.
  • the hearth As the hearth rotates, it moves sequentially through the raw material supply section, heating zone, reduction zone, and product discharge section.
  • the raw material compact is input from the raw material supply unit. Thereafter, the formed body is heated to about 1200 ° C. or more in a heating zone, and then, in the reduction zone, carbon and metal oxide react to generate metal.
  • the reduction reaction is completed in 7 to 20 minutes.
  • the reduced compact is discharged from the furnace and cooled, and then used as a raw material for an electric furnace or a blast furnace.
  • a powder mainly composed of carbon and metal oxide is formed into a compact, which is reduced by heating.
  • powders of three or more types of raw materials are used. This is because the ratio between the metal oxide and the carbon is adjusted, and also the particle size composition when manufacturing the molded body is adjusted.
  • the raw materials are mixed to produce a compact for operation.
  • the raw material powder is mixed at a predetermined ratio in order to make the chemical composition and the particle size composition appropriate. This is molded by a molding device.
  • ore is generally used as powder containing metal oxides, but dust and sludge generated in the metal refining and heating processes are reduced. Sometimes used.
  • impurities such as zinc and lead mixed in the compact (pellet) become dust components in the exhaust gas. If the concentration of zinc or lead in the dust is high, it will be used as a raw material for zinc or lead in non-ferrous metal refineries.
  • the total number of moles of zinc and lead (A), the total number of moles of potassium and sodium (B), and the total number of moles of chlorine and fluorine (C) in the raw materials are (0.8 C-0 7 B) / A ⁇ 0.36.
  • Some dusts generated from rotary hearth reduction furnaces contain alkali metals and halogen elements at a high ratio of about 20 to 45% by mass. This high content results in the formation of an inorganic mixture of zinc oxide, zinc chloride, sodium chloride, potassium chloride, and the like. This substance has a low melting point of 600 ° C or less.
  • Secondary dust containing such a high concentration of alkali metals and halogen elements has extremely high adhesion under the condition of 400 to 600 ° C. Show. This adheres to gas passages in boilers and heat exchangers, closing exhaust gas passages and hindering the operation of the rotary hearth reduction furnace.
  • the dust adhesion increases when the ratio of sodium chloride, potassium chloride, or the like to zinc oxide (partially zinc chloride) increases, and sodium dust, calcium chloride, or the like increases. It is also high when the ratio of aluminum itself is large.
  • a rotary hearth-type reduction furnace in which ironmaking waste such as dust sludge that is mainly composed of iron oxide but contains a large amount of zinc contains a reducing agent such as carbonaceous material.
  • a reducing agent such as carbonaceous material.
  • ZnO zinc oxide
  • Volatilization removal ⁇ Re-oxidation and secondary collection in the case of a recycling process in which the dust is collected by a dust collector. Since the dust contains a high concentration of zinc, secondary dust is used as a zinc raw material.
  • the zinc concentration of this zinc-containing secondary dust (in terms of metallic zinc, hereinafter referred to as T.Zn.
  • the lead concentration is also referred to as T.Pb in terms of metallic lead) is 50 to 5%. If it is 5% or more, it will be of a quality that can be directly used for zinc blast furnaces. This secondary dust is valuable as a zinc raw material.
  • the total metal content is 30% by mass or more, and the T.Zn is 30 to 40% by mass, and the secondary dust is directly used in a blast furnace for zinc.
  • the secondary dust is directly used in a blast furnace for zinc.
  • the restriction of the amount is an important management item in zinc refining.
  • pre-treatment of secondary dust with a low zinc concentration and high halogen concentration removes harmful substances and concentrates zinc.
  • the pre-treatment requires a large amount of cost, so the cost reduction that should be originally enjoyed by recovering zinc oxide is reduced.If the energy saving effect is reduced, it is offset. Sometimes.
  • Japanese Patent Publication No. 53-219122 discloses washing dust and the like, and chlorine, sodium, and the like.
  • a technique comprising a step of washing a sintered dust obtained by a dust removing operation with an alkaline water to remove fluorine to obtain a non-ferrous metal slag containing lead and cadmium.
  • International publication pamphlet WO 01/4 25 16 A1 contains a powder containing a metal oxide and carbon, which is agitated and mixed in a state of containing water at least 1.0 times the mass of the powder. This was dehydrated by a dehydrator to a moisture content of 16 to 26% by mass, and then molded by a compression molding machine to produce a compact having a powder filling rate of 0.43 to 0.58. There is disclosed a technique in which the compact is put into a rotary hearth-type reduction furnace having an atmosphere temperature of 117 ° C. or lower and calcined and reduced at a temperature of 1200 ° C. or higher.
  • Japanese Patent Application Laid-Open No. 2001-31031 discloses a method including a metal oxide. Slurry of a mixture of powder containing carbon and powder containing carbon is dewatered to a moisture content of 16 to 27% by a twin-necked press-type dewatering machine, and a compact is manufactured by an extrusion-type molding machine.
  • a technique for obtaining a metal by firing and reducing in a rotary hearth type reduction furnace is disclosed.
  • the present invention solves the above-mentioned problems of the prior art by providing a powder containing a metal oxide in the form of powder, or a dust sludge containing iron oxide generated in an iron refining and processing process.
  • a powder containing a metal oxide in the form of powder or a dust sludge containing iron oxide generated in an iron refining and processing process.
  • volatile harmful substances alkali metals, halogen elements, other impurities, etc.
  • ZnO zinc oxide
  • the gist of the invention for reducing a powder containing a powdery metal oxide is as follows.
  • (1) Contains a metal oxide, and contains an alkali metal and a halogen element Using a powder containing P2003 / 011654 as a raw material, mixing the raw material with water to produce a slurry, then dewatering, and introducing the dehydrated product into a rotary hearth-type reduction furnace to reduce the same.
  • a method for reducing a metal oxide Using a powder containing P2003 / 011654 as a raw material, mixing the raw material with water to produce a slurry, then dewatering, and introducing the dehydrated product into a rotary hearth-type reduction furnace to reduce the same.
  • a powder containing a metal oxide and containing an alkali metal and a halogen element is used as a raw material, and the raw material and water are mixed to produce a slurry.
  • a method for reducing metal oxides comprising mixing other raw materials and introducing the mixture into a rotary hearth reduction furnace to reduce the same.
  • a mixed powder of a powder containing a metal oxide, a powder containing an alkali metal and a halogen element, and a powder containing carbon is used as a raw material, and the raw material and water are mixed to form a slurry.
  • a method for reducing metal oxides comprising: producing water and then dehydrating the material; and introducing the dehydrated product into a rotary hearth-type reduction furnace for reduction.
  • a mixed powder of a powder containing a metal oxide, a powder containing an alkali metal and a halogen element, and a powder containing carbon is used as a raw material, and the raw material and water are mixed to produce a slurry. And then dehydrating the mixture, mixing the dehydrated product with other raw materials, and introducing the mixture into a rotary hearth-type reduction furnace to reduce the metal oxide.
  • the powder contains an alkali metal and a halogen element in a total of 0.
  • the mass ratio of powder and water in the slurry is not less than 1: 1.5 and the mass ratio of powder and water in the dehydrated product is not more than 1: 0.4.
  • the raw material contains zinc oxide and Z or lead oxide together with iron oxide, and contains an alkali metal and a halogen element, the total number of moles of alkali salts and the total number of moles of zinc and lead.
  • the raw material is a powder obtained by mixing a powder containing zinc oxide and / or lead oxide with iron oxide and a powder containing carbon, wherein an alkali metal and a halogen element are mixed with an alkali salt. (3), (4), wherein a mixed powder containing 0.1 or more in terms of alkali Z (zinc + lead) is used. And the method for reducing a metal oxide according to any one of (5) to (7).
  • the dehydrated product is molded into a wet molded product having a porosity of 35% or more, and the molded product is introduced into a rotary hearth-type reduction furnace without drying, and reduced.
  • the mass ratio of powder and water in the dehydrated product is set to 1: 0.2 to 1: 0.4, and the dehydrated product is formed into a wet molded product having an average volume of 100 0 ⁇ 3 or less.
  • the molar ratio of oxygen and carbon contained in the compact is set to 1: 0.6 to 1: 1.5, and the compact is charged into a rotary hearth-type reduction furnace, and the gas temperature is set to 120.
  • the rotary hearth-type reduction furnace is provided with an exhaust gas treatment facility having at least one of a waste heat boiler and an air preheater.
  • the gist of the invention for reducing iron waste such as dust and sludge containing iron oxide is as follows.
  • the slurry is pressed and dehydrated
  • the dehydrated product is extruded to form a molded body
  • a method for reducing iron-made waste comprising: introducing the compact into a moving-bed-type reduction furnace to reduce the dust; and collecting the generated secondary dust containing zinc oxide.
  • a carbon material is added to the dehydrated material and kneaded
  • the kneaded material is extruded to form a molded body
  • a method for reducing iron-made waste comprising: introducing the compact into a moving-bed-type reduction furnace to reduce the dust; and collecting the generated secondary dust containing zinc oxide.
  • a reduction treatment device for steelmaking waste comprising:
  • a kneader for adding and kneading a carbon material to the dehydrated product A kneader for adding and kneading a carbon material to the dehydrated product
  • a reduction treatment device for steelmaking waste comprising:
  • FIG. 1 is a diagram showing an embodiment of the present invention in which iron oxide is reduced using a rotary hearth-type reduction furnace.
  • FIG. 2 is a diagram showing another embodiment of the present invention in which iron oxide is reduced using a rotary hearth-type reduction furnace.
  • FIG. 3 is a diagram showing an embodiment of the present invention in which a steelmaking waste is reduced using a moving bed type reduction furnace.
  • FIG. 4 is a diagram showing another embodiment of the present invention in which a steelmaking waste is reduced using a moving-bed reduction furnace.
  • FIG. 1 shows an example of equipment for implementing the present invention.
  • the equipment in Fig. 1 consists of a stirring tank 1, a slurry pump 2, a dehydrator 3, a molding device 4, a rotary hearth-type reduction furnace 5, a reduced molded product cooling device 6, an exhaust gas discharge duct 7, a waste heat boiler 8, and a heat exchanger. It consists of a vessel 9, a dust collector 10 and a chimney 11.
  • an alkali metal halide (hereinafter, referred to as an alkali salt) is dissolved in water and removed from the raw material powder, and the raw material powder is subjected to reduction treatment in a rotary hearth-type reduction furnace 5. Things.
  • the method of the present invention will be described by taking as an example a raw material whose main component is an alkali salt, but the present invention relates to a raw material containing a compound of a water-soluble alkali metal and a halogen element. It is an effective method for the reduction treatment of water.
  • Such compounds of water-soluble alkali metal and a halogen element include sodium carbonate, potassium nitrate, sodium sulfate, and ammonium chloride.
  • dust generated from fine ore, iron sand, fine dust, pulverized coal, dust from steelmaking blast furnace, dust from steelmaking converter, dust from steelmaking electric furnace, pickling process of steel products and stainless steel products Use sludge or the like.
  • a dust containing iron oxide and zinc, which is generated when treating a steel dust in a rotary kiln or the like, can also be used.
  • fly ash generated in a molten garbage incinerator containing a large amount of sodium chloride and zinc and lead which could not be processed by the rotary hearth type reduction furnace in the prior art, It can be processed in a type reduction furnace.
  • the chemical components of these raw material powders are analyzed. It is preferable to determine the mixing ratio of each raw material powder based on the analysis result. The highest priority in component adjustment is to reduce oxides of the main target metal. First, determine the ratio of reducing metal oxide to carbon.
  • reducing metal oxide refers to an oxide reduced by carbon monoxide at about 130 ° C., such as iron oxide, manganese oxide, nickel oxide, zinc oxide, and lead oxide. .
  • the molar ratio of oxygen (active oxygen) and carbon combined with these reducing metal oxides is adjusted to an appropriate value.
  • the molar ratio of active oxygen to carbon is 1: 0.6 to 1: 1.5.
  • the molar ratio is a ratio of a value obtained by dividing the mass content of carbon by the atomic weight of carbon [12] and a value obtained by dividing the mass content of active oxygen by the atomic weight of oxygen [16].
  • alkali salts since quantitative analysis of alkali salts takes time, the content of alkali salts may be estimated based on the above-mentioned elemental analysis values.
  • the analytical value of the elemental mass ratio of sodium, calcium, chlorine, and fluorine is obtained and calculated from the balance of cations and anions.
  • the mass of the aluminum salt calculated from the cation amount and the molecular weight of the aluminum salt is the estimated content.
  • the content of zinc and lead is analyzed to determine the ratio of the total number of moles of aluminum salt contained in the raw material to the total number of moles of zinc and lead. In the following, this value is referred to as the alkali salt Z (zinc + lead) molar ratio.
  • a slurry is produced by mixing the raw material powder and water.
  • the ratio of powder to water may be almost constant, but for more efficient treatment, the mass ratio of this alkali salt and the molar ratio of alkali salt / (zinc + lead) are required. Based on this, it is good to determine the mixing ratio of powder and water.
  • the adhesion of the secondary dust inside the exhaust gas device of the rotary hearth reduction furnace 5 increases, and the exhaust gas path may be blocked.
  • zinc oxide (which may contain lead) readily reacts with alkali salts to produce a low melting point and highly adherent substance. This is because it adheres to the waste heat boiler 8 and the heat exchanger 9 at around 500 ° C.
  • the rotary hearth reduction furnace has less scattering of iron oxide powder than other processes such as a rotary kiln, so the concentration of alkali salts in the secondary dust is reduced. high.
  • the concentration ratio of the alkali salt to the secondary dust is 10 to 200 times. Therefore, when the ratio of the alkali salt in the raw material powder is 0.1% by mass, the content of the alkali salt in the secondary dust is 10% by mass depending on the raw material conditions and the operating conditions of the rotary hearth type reduction furnace. %, And when the ratio of the alkali salt in the raw material powder becomes 0.2% by mass, the content of aluminum salt in the secondary dust becomes 20 to 40% by mass. Is also a big problem.
  • the ratio of the alkali salt in the raw material powder is 0.1% by mass or more, particularly 0.2% by mass / 0 .
  • the method for reducing secondary dust and salt according to the present invention is effective.
  • Alkali salt alone is a highly adherent substance at around 500 ° C, but when combined with at least one of zinc oxide, zinc chloride, lead oxide, and lead chloride, It becomes a substance with high adhesion.
  • the present inventors have found that if the alkali salt is mixed into the zinc and lead oxides up to about 10 mol%, the adhesion is not so high, but the alkali salt is 10 mol 0/0 . It was found that when mixed, the adhesion of the secondary dust at around 500 ° C. was significantly increased.
  • the molar ratio of the alkali salt Z (zinc + lead) in the raw material powder is 0.1 or more, even if the mass of the alkaline salt in the raw material powder is 0.1% or less, the amount of the alkali salt Z Under these conditions, it is effective to carry out the method of the present invention, since the next dust adhesion problem may occur.
  • the raw material powder is mixed with water inside the stirring tank 1.
  • water inside the stirring tank 1.
  • stirring it is necessary to sufficiently stir and mix. Any method may be used for the stirring, but stirring with one rotation of the impeller, stirring with a water flow, and stirring with gas suction are effective.
  • the present inventors have studied the conditions for stirring the slurry. As a result, if the mixing ratio of the powder and water is appropriate, sufficient stirring is performed to dissolve the aluminum salt, It has been found that a slurry in which powder is uniformly dispersed can be produced.
  • the mass ratio of powder to water is 1: 1. 1.5 or more is necessary for good stirring and mixing.
  • the mass ratio of powder to water is 1 to 1.8 or more. Under these conditions, the slurry mixing becomes more satisfactory.
  • the mass ratio of powder to water is also changed by the mass ratio of aluminum salt contained in the raw material powder.
  • the weight ratio of the alkali salt is very high, for example, when the content of the alkali salt with respect to the total weight of the powder is as high as 0.4% by mass or more, or when the alkali salt Z (zinc + lead) If the molar ratio is very large, 1: 0.2 or more, increase the powder-water mass ratio.
  • the water mass ratio is preferably in the range of 1: 1.8 to 1: 5.
  • the reason is that when the above ratio is higher than 1: 5, the stirring and mixing conditions are not further improved, while the load on the dewatering machine when dewatering this slurry in the subsequent process This is because a problem arises that the size increases.
  • the mass ratio of powder to water is about 1: 5 to 1:15. .
  • the dissolution rate of the alkali salt is about 5 times, and the effect is further increased.However, when the water temperature is about 80 ° C or more, the effect of increasing the alkali salt dissolution rate is almost negligible. This will increase the consumption of energy to raise the water temperature and adversely affect the generation of steam in the slurry mixing tank.
  • the upper limit of the slurry heating temperature for promoting alkali salt dissolution is 80 ° C, preferably 40 ° C to 80 ° C.
  • Zinc and lead are amphoteric metals and dissolve in acidic solutions and strong pH solutions.
  • the pH is adjusted to pH at which zinc and lead do not dissolve in water.
  • the pH of the water forming the slurry is in the range of 7 to 11.5. It is desirable.
  • the slurry is sent to the dehydrator 3 using the slurry pump 2.
  • water is separated from the slurry powder.
  • the water content of the powder after dewatering should be not more than 1: 4 in mass ratio of powder to water (corresponding to 29% by mass in general notation of water content).
  • the powder-water mass ratio is determined by the conditions under which the reduction treatment in the rotary hearth-type reduction furnace can be performed efficiently, and the detailed reason will be described later.
  • dehydrator 3 Any type of dehydrator 3 may be used as long as the powder / water mass ratio can be set to 1 / 0.4 or less, but a high-pressure press dehydrator, a centrifugal dehydrator, and a twin roll press dehydrator are preferred. .
  • the powder containing water after dehydration is referred to as a dewatered cake.
  • the slurry stirring conditions of the present invention the slurry
  • the concentration of the alkaline salt in the dewatered cake is determined by the powder mass ratio of the slurry and the dewatered cake, that is, the concentration of the alkali salt in the water and the residual amount in the powder. It is almost determined by the water ratio.
  • the alkali salt content of the dewatered cake is about 15% of that of the raw material powder. It becomes. This means that about 85% of the alkali salts are removed.
  • the dehydrated cake is calcined and reduced in a rotary hearth-type reduction furnace 5.
  • the dewatered cake cannot be reduced as it is in the rotary hearth type reduction furnace 5, and therefore, the cake or the like having a diameter or a length of about 25 ⁇ or less is formed using the molding apparatus 4.
  • the compact is then reduced in a rotary hearth reduction furnace 5.
  • Examples of the type of compact include a spherical pellet produced by a pan-type granulator, a briquette in which powder is put into a concave portion of a roll and compression molded, and a cylindrical pellet which is extruded from a nozzle and molded.
  • a spherical pellet having an average of 10 to 20 mm is produced by a bread granulator.
  • the porosity (or porosity) of this spherical pellet is as low as 22 to 30%, and under high temperature conditions such as the atmospheric temperature of a rotary hearth-type reduction furnace, the porosity increases with the evaporation of water. Explosion occurs.
  • a dedicated dryer is used to dry the water until the water content is reduced to about 1% by mass or less, and the spherical beret is supplied to a rotary hearth type reduction furnace.
  • a prepacket is manufactured by using a compression molding machine as a molding device, similarly, a raw material powder is molded after the moisture is adjusted to 2 to 15% by mass using a dryer.
  • an organic binder such as corn starch
  • this method it is possible to produce a preket having a relatively low water content, and in many cases, a briquette drying step is unnecessary.
  • a dewatering cake dryer is required in addition to the equipment configuration shown in FIG. 1, and is installed between the dehydrator 3 and the molding apparatus 4.
  • a molded article may be produced using any of the above two types of molding apparatus, it is particularly effective to produce a cylindrical pellet using a nozzle extrusion molding machine. It is one of the important means.
  • FIG. 1 exemplifies the layout of equipment when this molding method is performed. Evaporation of water due to high porosity of cylindrical pellets Even at high speeds, the compact does not explode. Therefore, even if the powder / water content ratio is about 1: 0.4, it can be supplied directly to the rotary hearth reduction furnace.
  • the range of the water content of the powder is from 1: 0.2 to 1: 0.4 by mass ratio of powder to water.
  • the molded body has a porosity indicating the space ratio between the powders in a dry state of 40 to 60%, and has a structure in which water vapor easily escapes quickly.
  • the step of drying the powder or the compact can be omitted. Therefore, as shown in FIG. 1, it is very economical to prepare raw materials by a combination of raw material powder slurry stirring, dehydration, and nozzle extrusion molding. According to this method, the powder containing the alkali salt can be reduced with a simple equipment configuration.
  • the present inventors have found that even if a method other than nozzle extrusion molding is used to produce a molded product having a high porosity, the molded product can be supplied to a rotary hearth-type reduction furnace without a drying step. .
  • the method of solidifying the dehydrated cake by a method such as compression and dividing it, or forming it using a rolled compactor with a streak is the same as in the case of the nozzle extrusion forming, and the porosity is also increased.
  • the porosity is also increased.
  • a plate-shaped dewatered cake having a porosity of 40 to 60% and a thickness of 20 to 50 mm can be produced.
  • a molded body can be manufactured.
  • the mass ratio of powder to water is 1: 0.4 or more, the molded body is too soft, and the problems of deformation and adhesion during transport become apparent.
  • the powder-water mass ratio is preferably 1: 0.2 to 0.4.
  • a molded product of a circular pellet by such a method or a nozzle extrusion method is referred to as a wet molded product.
  • the compact (spherical beret, briquette, or wet compact) produced by the above method is supplied to the rotary hearth reduction furnace 5.
  • the rotary hearth-type reduction furnace 5 has a heating zone that plays a role of heating the compact to evaporate water and a role of raising the temperature of the compact.
  • the molded body heated to a high temperature in this heating zone enters a reduction zone in a reducing atmosphere at a higher temperature.
  • the compact is heated to 110 ° C. or higher to cause a reduction reaction.
  • the metal reacts with the reducing metal oxide to generate metal.
  • the residence time of the molded body in the furnace is generally 10 to 20 minutes. At this time, carbon monoxide is generated from the compact. At this time, metals having a high vapor pressure, such as zinc and lead, are vaporized and released together with carbon monoxide from the compact into the gas in the furnace of the rotary hearth reduction furnace 5.
  • the alkali salt having a high vapor pressure also evaporates from the compact and is released into the furnace gas.
  • the size of the wet molded body is preferably about 20 to 25 mm or less when the shape is close to a sphere. The reason for this is that if the compact is large, the heat transfer inside the compact will be delayed, and the time for water evaporation and reaction will be prolonged. As a result, the output of the rotary hearth reduction furnace will decrease. For it will occur.
  • the size of the wet molded product required to perform uniform - reducing reaction when expressed in volume is 1 0 0 0 0 mm 3 or less.
  • Reduced compacts containing reduced metals are discharged from a rotary hearth-type reduction furnace 5 by a screw-type discharger and cooled by a reduction compact cooling device 6. It becomes a product.
  • This reduced compact is used as a raw material for producing molten iron in furnaces with melting functions, such as steelmaking blast furnaces, electric furnaces, and cubola.
  • melting functions such as steelmaking blast furnaces, electric furnaces, and cubola.
  • Cubola where zinc, lead, and alkali salts are obstacles to operation, the content of these components must be reduced.
  • the raw material powder having a high content of zinc, lead, and alkali salt can be treated in a rotary hearth reduction furnace using the method of the present invention, and then used in a furnace having a melting function. desirable.
  • the exhaust gas generated inside the rotary hearth-type reduction furnace 5 and the zinc alkali salt are discharged to the exhaust gas discharge duct 7. Since this exhaust gas has a high temperature of about 1000 ° C., it is cooled by the waste heat boiler 8 and the heat exchanger 9.
  • the heat exchanger 9 produces heated air. This heated air is used as combustion air to reduce fuel consumption.
  • Fig. 1 shows the configuration of equipment with a waste heat boiler and a heat exchanger, only one of them may be installed. Also, some plants do not have such waste heat recovery equipment, and the water sprinklers spray water into the exhaust gas for cooling.
  • the secondary dust is collected by the dust collector 10. Since the secondary dust is fine particles, The machine 10 is preferably a bag-fino letter type or a wet type. The exhaust gas from which dust has been collected is released from the chimney 11 to the atmosphere.
  • an inorganic compound composed of an alkali salt, zinc, lead, an alkali metal, oxygen, and Z or halogen adheres to the inside of an exhaust gas treatment device of the rotary hearth reduction furnace 5. This technology is effective even when there is no waste heat recovery equipment and the water spray device is used to spray water into the exhaust gas to cool it.
  • the exhaust gas passages inside these may be only about 20 to 50 mm apart.
  • the secondary dust adhesion prevention measures according to the invention are particularly effective.
  • the secondary dust contains a large amount of zinc and lead.
  • the raw material powder is less scattered in the exhaust gas as compared with other processes such as a rotary kiln.
  • scattering of the iron oxide powder is small.
  • the iron oxide content in the secondary dust was very low, only a few percent. That is, when the amount of iron oxide mixed into the secondary dust is small, the zinc concentration rate of the secondary dust is high. Further, in the method of the present invention, since the raw material from which a part of the alkali salt has been removed is used, mixing of the alkali salt into the secondary dust is suppressed, and as a result, particularly, the concentration ratio of zinc and lead is high. Become.
  • the gas temperature in the reduction zone of the rotary hearth reduction furnace is set relatively high.
  • the rate of evaporative separation of zinc and lead is large.
  • the powder containing the alkali metal and the halogen element is washed with water and then treated in a rotary hearth reduction furnace.
  • the present invention also encompasses a method of subjecting only a powder containing a large amount of hydrogen and a halogen element to a water-washing treatment, followed by mixing with a raw material powder having a low content of an alkali metal and / or a halogen element.
  • powder containing a high content of alkali metals and halogen elements can be used as a slurry to remove alkali salts, and iron ore can be removed. Almost the intended purpose can be achieved without washing.
  • Rotary hearth-type reduction furnaces convert primary zinc-rich plants such as rotary kilns, steelmaking electric furnaces, steelmaking converters, dust from blast furnaces, and sludge and other raw materials rich in zinc and lead from the zinc plating process.
  • the secondary dust obtained by the treatment is used as a high-value zinc raw material.
  • secondary dust obtained by a dust collector for treating exhaust gas generated by operating the method of the present invention is used as a raw material for producing zinc products such as metallic zinc and zinc oxide in a zinc refining factory.
  • zinc contains relatively large amounts of lead, it can be processed directly in a wet electric refining apparatus or smelting furnace for zinc refining without prior treatment to recover metallic zinc.
  • the dehydrator 3 is a twin roll press type
  • the forming device 4 is a nozzle extrusion type.
  • the stirring time of the slurry in the stirring tank 1 was set to 20 minutes.
  • the reaction temperature in the reduction zone was about 130 ° C., and the treatment was performed for 10 to 15 minutes.
  • a bombardment device and a soot blow device were installed as a deposit removal device.
  • the exhaust gas temperature inside the waste heat boiler 8 is 850 to 950 ° C at the inlet and 450 to 600 ° C at the outlet, and the exhaust gas inside the heat exchanger 9 The temperature was 450-600 ° C. at the inlet and 200-300 ° C. at the outlet.
  • the processing capacity of both the dehydrator 3 and the molding device 4 is 25 tons / hour (a wet amount in terms of 25% moisture), and the capacity of the rotary hearth type reduction furnace 5 is And 23 tons (wet amount in terms of 25% moisture).
  • Example 1 The equipment shown in FIG. 2 was used in Example 1 and Comparative Examples 1 to 3. This also had a capacity of 23 tons Z hour (wet amount converted to 25% moisture).
  • This equipment is equipped with a pre-ket type molding device 4 and a powder dryer 12 between the dehydrator 3 and the molding device 4. The dehydrated cake is dried by the powder dryer 12 and the dehydrated cake is molded by the molding device 4 and the moisture content is set to a required value.
  • Comparative Example 1 and Example 1 are examples of operations using iron ore as a main component and a material having a relatively low content of alkali salts, zinc, and lead.
  • This raw material has a slightly high alkali salt ratio of 0.21% by mass
  • Comparative Example 1 uses the equipment shown in FIG. 2, but did not carry out the present invention, and treated the molded body with 1280 for 15 minutes. In operation by this treatment, a secondary dust of 8.3 kg Z ton-one compact was generated, and the dust-containing concentration of the exhaust gas was about 5 mg / Nm 3 .
  • the sum of alkali and halogen in this secondary dust is as high as 12.7% by mass, and the ratio of alkali and halogen to zinc and lead is also high.
  • a complex inorganic compound composed of zinc, lead, alkali, oxygen, and halogen is formed in the secondary dust.
  • This inorganic compound had a melting point of about 420 ° C. and was extremely high in adhesion at 400 to 600 ° C.
  • adhesion of the secondary dust to the heat exchanger 9 was observed.
  • the dust concentration in the exhaust gas was low, so that after about two months, the heat of the heat exchanger 9 was blocked due to the adhesion of the secondary dust.
  • alkali and halogen in the secondary dust are not described as alkali salt but as alkali and halogen is that zinc and lead in the secondary dust are zinc and lead. This is because they form a complex inorganic compound with, and in many cases, are not in the form of simple alkali salts.
  • Example 1 is an operation in which the present invention was carried out using exactly the same raw materials. Since the alkali salt concentration in the raw material powder was low and most of the alkali salts were contained in the blast furnace dust, only the blast furnace dust was mixed with water.
  • the mass ratio of the blast furnace dust was 25%, and 95% of the total alkali salts were contained in the blast furnace dust.
  • the mass ratio of powder to water in the stirring tank was reduced.
  • the powder / water mass ratio is shown as a water / powder ratio for easy description in the table.
  • Example 1 the water / Z powder ratio is 1.56.
  • the water temperature was set as low as 35 ° C.
  • the water Z powder ratio in the dehydrator 3 is 0.32.
  • the alkali salt content of the dehydrated cake was reduced, and the aluminum salt content of the molded product was significantly reduced to 0.05% by mass.
  • a molded body was prepared using the dehydrated cake as a raw material, and treated in a rotary hearth-type reduction furnace 5 at a reduction zone gas temperature of 128 ° C. for 15 minutes.
  • Example 1 Since the volume of the compact exceeds 1000 mm 3 , the metallization ratio and the dezincification ratio of iron are slightly low, but are sufficiently usable. In Example 1, the secondary dust generation ratio was reduced to 6.2 kg / ton-one compact, and the ratio of Al + H2 was also reduced to 5.8% by mass.
  • This secondary dust had little adhesion, and no remarkable adhesion of the secondary dust to the heat exchanger 9 was observed.
  • Example 2 is an operation example in which a raw material mainly composed of a converter dust and a blast furnace dust is treated.
  • the content ratio of alkali salt is 0.85% by mass, which is medium, but the molar ratio of alkali salt / (zinc + lead) is as high as 1.0.
  • the water / powder ratio in the stirring tank 1 was set slightly lower at 1.9.
  • the water temperature was set at 48 ° C to increase the dissolution rate of the alkali salt.
  • the ratio of water Z powder in the dehydrator 3 was 0.28.
  • the alkali salt content of the dehydrated cake was significantly reduced to 0.14% by mass.
  • This dewatered cake was formed into a compact and processed in a rotary hearth-type reduction furnace 5.
  • the secondary dust generation ratio was 15.7 kg / ton, and the concentration of dust contained in exhaust gas was about It was 1 l mgZNm 3.
  • the ratio of (alkali + halogen) was 4.6% by mass.
  • Comparative Example 2 is an operation example in which the same raw material powder as in Example 2 was subjected to a reduction treatment using the equipment shown in FIG. 2, but did not use the present invention.
  • the salt content is 0.85% by mass, and Lead + lead) since the molar ratio of 1. 0, (alkali + halogen) content in the secondary Dust 1 3. High as 6 mass 0/0 Natsuta.
  • the melting point of this secondary dust is about 460 ° C, and the adhesion of the secondary dust is extremely high at 450 to 65 ° C.
  • Example 3 is an operation example in which a raw material mainly composed of an electric furnace dust and a steel material rolled fine grain scale is treated.
  • the content ratio of the alkali salt was 0.7% by mass
  • the mole ratio of the alkali salt Z (zinc + lead) was 0.21.
  • the water / powder ratio of stirring tank 1 was set at 2.9, and the water temperature was set at 55 ° C.
  • the ratio of water Z powder in the dehydrator 3 was 0.38.
  • the secondary dust had little adhesion, and no adhesion of the secondary dust to the heat exchanger 9 was observed.
  • Secondary Dust collected by the dust collector 1 0 T. ⁇ ! 5 5.
  • the above secondary dust is It is a high-quality raw material for smelting furnaces for lead smelting, and can produce metallic zinc and metallic lead from this secondary dust.
  • Example 4 Example 4, Example 5, and Comparative Example 3 are operation examples in which an electric furnace dust and a rotary kiln dust for zinc concentration are treated as main raw materials.
  • This raw material powder has a high content of zinc and lead, and an extremely high alkali salt content of 3.31% by mass.
  • Example 4 and Example 5 are examples of operations in which the present invention was implemented, and Comparative Example 3 is an example of operations using conventional technology.
  • the main purpose of the above operation was to use secondary dust enriched with zinc and lead as a raw material for non-ferrous metal refining. To be collected.
  • the raw material contained about 0.2% more chlorine than the mass ratio of the alkali metal and the halogen element for forming the alkali salt. According to the analysis by X-ray diffraction, since a small amount of zinc chloride was present in the raw material, it is estimated that the excess chlorine had reacted with zinc.
  • Example 4 the ratio of water / powder in the stirring tank 1 was set to 7.5 and the water temperature was set to 60 ° C. because the content ratio of the alkali salt in the raw material powder was high.
  • the water / powder ratio in the dewaterer 3 was 0.24. As a result, the content of salt in the dehydrated cake was greatly reduced to 0.1% by mass.
  • This dehydrated cake was formed into a compact and processed in a rotary hearth reduction furnace 5.
  • the reaction conditions were as follows: the gas temperature in the reduction zone was 135 ° C., and the total residence time in the furnace was 12 minutes. In addition, the residence time in the gas temperature portion of 1200 ° C or more was 9 minutes.
  • the zinc removal rate of the molded body was 95% or more, and most of the zinc was recovered.
  • the secondary dust of Example 4 had a (alkali + halogen) ratio of 1. 03 011654
  • Secondary Dust generation ratio is 2 4 1 7 kg / ton -. Moldings with extremely large, exhaust gas ⁇ concentration was higher about 1 8 0 mg / Nm 3.
  • Example 5 also used the present invention, but the pH of the slurry water in the stirring tank 1 was too high, 11.9, so that part of zinc and lead dissolved in the water. As a result, the T.Zn of the molded body was 13.1 mass 0 /. In addition, T.Pb was reduced to 2.9% by mass.
  • the compact was processed in a rotary hearth-type reduction furnace 5.
  • the reaction conditions were as follows: the gas temperature in the reduction zone was 132 ° C., and the total residence time in the furnace was 15 minutes. However, the residence time in the gas temperature portion of 1200 ° C. or more was 11 minutes. As a result, most of the zinc in the compact was recovered.
  • Example 5 The secondary dust generation ratio in Example 5 was 26.7 kg / ton / mold, and the ratio of (Al + H2) was 1.86% by mass. As a result, despite the high dust content of the exhaust gas, the same response as in Example 4 resulted in little adhesion of secondary dust.
  • the secondary dust collected by the dust collector 10 was 58.8% by mass of T.11 and 8.7% by mass of T.Pb. Although slightly lower than that of Example 4, It is a very good raw material for dumbbell and lead. Wet this Used as a raw material for zinc refining, metal zinc was produced by electric refining.
  • the raw material powder was treated in the rotary hearth reduction furnace 5 without reducing the content of aluminum salt.
  • the processing conditions in the rotary hearth reduction furnace 5 were almost the same as in Examples 4 and 5. As a result, the total mass of alkali and halogen in the secondary dust was 18.6%.
  • the conditions for high zinc content also overlapped, and this secondary dust had extremely high adhesion.
  • the dust content of the exhaust gas was as high as about 200 mg ZNm 3 , and the heat exchanger 9 was blocked four days after the start of the treatment.
  • the secondary dust collected by the dust collector 10 had a high T.Zn of 52.9% by mass and a high T.Pb of 8.6% by mass. It could not be used directly in the zinc refining process because it contained too much.
  • FIG. 3 is a diagram showing an embodiment of the present invention for reducing ironmaking waste.
  • ironmaking waste X, water W, pH adjuster Y, and carbonaceous material C are stirred and mixed in a stirring tank 1, concentrated in a concentration tank 12 to form a slurry, and then a slurry pump 1 is formed. It is sent to the twin-roll press dehydrator 14 at 3 to remove volatile harmful substances (sodium chloride, chloride chloride, etc.) in the waste in this dehydration step.
  • the dewatered product dewatered by the twin-roll press dewatering machine 14 is conveyed to the extrusion-type molding machine 16 by the dewatering material conveyor 15 and formed into a columnar molded body, and the molded product conveyor It is conveyed by 17 and supplied to a moving hearth furnace (for example, a rotary hearth furnace) 19 via a molded article charging device 18.
  • a moving hearth furnace for example, a rotary hearth furnace
  • the molded product heat-reduced in the moving bed furnace 19 becomes reduced iron F, while the gas generated at this time is cooled by the gas cooler 20 and the zinc oxide (Zn O)) is recovered as high zinc secondary dust D, and the exhaust gas is discharged from chimney 23 through blower 22.
  • the water discharged from the concentration tank 12 and the twin-roll press dehydrator 14 is collected in a return water tank 24, and after being treated in a water treatment facility 25, the water required for stirring the raw materials is
  • the return water W 1 is returned to the stirring tank 1 by the return water pump 26, and the rest is discharged (W 2 in the figure).
  • the carbonaceous material C is stirred and mixed in the stirring tank 1, but as shown in FIG. 4, the steelmaking waste X and the pH adjuster Y are stirred and mixed in water, then compressed and dewatered.
  • the carbon material C may be added to the slurry thus obtained and kneaded using a kneader 27. If the molding machine 16 has a kneading function, the kneading machine 27 may be omitted.
  • Table 3 shows the results of cleaning the electric furnace dust using the present invention and analyzing the components
  • Table 4 shows the removal ratio of each component.
  • the test conditions were a cleaning liquid temperature of 60 ° C, a cleaning water / dust ratio of 10 and a stirring time of 30 minutes.
  • Table 5 shows the filtrate concentration (ppm) at this time.
  • Water treatment generally by carried out by addition of p H adjusting agent F e C 1 3 and the polymer coagulating Atsumarizai are, can be a P b rather 0. 1 ppm, it was possible to enable discharged.
  • the secondary dust when unwashed dust is reduced is as follows: C1 is about 16%, (Na + K) is about 9%, and Zn is about 55%. However, when the dust washed at a pH of about 9 is reduced, the secondary dust has about 2% of C1, about 1% of (Na + K), and about 70% of Zn (Zn n O was about 88%), and the Zn purity was greatly improved.
  • Table 7 shows the components of the fly ash used in the test
  • Table 8 shows the test results
  • Table 9 shows the removal rate of each component. You.
  • the test conditions were a washing temperature of 60 ° C, a washing water / dust ratio of 10 and a stirring time of 30 minutes.
  • Table 7 Table 8 Table 9 As shown in Table 7, the fly ash from the refuse melting furnace had a pH of about 11 and exhibited strong alkaline properties. This is because nitrate lime (C a (OH) 2 ) blown into the exhaust gas to neutralize HC 1 gas contained in the exhaust gas from the melting furnace remains in the fly ash.
  • C a (OH) 2 nitrate lime
  • the basicity (Ca OZ S SiO 2 ) also increased from about 0.6 before addition of fly ash in the refuse melting furnace to 0.9 or more.
  • the secondary dust when unwashed dust is reduced is as follows: C 1 is about 16%, (Na + K) is about 9%, Zn is about 55% (Zn O is about 68%). ), The Zn purity was low, but when washing, ash from the refuse melting furnace was added at a mass ratio of 10% to the electric furnace dust, and when the pH was set to about 10, C 1 was about 2.6. %, (Na + K) was about 1.7%, Zn was about 69% (ZnO was about 86%), and the Zn purity was greatly improved.
  • a problem of dust adhesion to an exhaust gas treatment device can be avoided even when a raw material containing a large amount of an alkali metal and a halogen element is used. It can be economically reduced to produce metal materials such as iron and nickel.
  • the present invention is effective when an exhaust gas treatment device is provided with a waste heat recovery device such as a waste heat boiler or a heat exchanger.
  • the purity of zinc and lead in the dust in the exhaust gas can be increased, and this dust can be recovered as a high-quality resource of zinc and lead.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

金属酸化物を含有し、かつ、アルカリ金属とハロゲン元素、さらに、必要に応じ炭素を含有する粉体を原料とし、該原料と水を混合してスラリーを製造し、次いで脱水し、該脱水物を、必要に応じ他の原料と混合し、回転炉床式還元炉に投入して還元することを特徴とする金属酸化物の還元処理方法。

Description

明 細 書 金属酸化物又は製鉄廃棄物の還元処理方法、 及び、 亜鉛及び/又は 鉛の濃縮 · 回収方法
〔技術分野〕
本発明は、 回転炉床式還元炉で、 粉状の金属酸化物を含む粉体を 原料と して、 金属酸化物を還元するとともに、 アルカリ金属、 ハロ ゲン元素、 その他の不純物を除去する技術に関する。
また、 回転炉床式還元炉で、 精鍊炉のダス ト等から亜鉛や鉛を分 離して回収する技術にも関する。
さらに、 本発明は、 鉄の精鍊及び加工プロセスにて発生する酸化 鉄を含むダス トゃスラッジなどの製鉄廃棄物を移動炉床式還元炉に て加熱還元し、 主として酸化亜鉛 ( Z n O ) を回収する製鉄廃棄物 の処理方法及び処理装置に関する。
〔背景技術〕
還元鉄や合金鉄を製造する還元プロセスとしては各種のものがあ る。 この内で、 粉状の金属酸化物を原料として、 球状のペレッ トを 製造し、 これを高温で還元するプロセスがある。
この種のプロセスは、 還元炉を用いて実施されるが、 該還元炉の 例としては、 シャフ ト式の水素ガス還元炉、 ロータ リーキルン式還 元炉、 回転炉床式還元炉、 その他がある。
これらの内、 シャフ ト式の水素ガス還元炉では、 粉鉱石を造粒し たペレッ トを、 水素ガスで還元する。
一方、 ロータ リーキルン式還元炉ゃ回転炉床式還元炉では、 還元 炉中へ熱を供給して、 還元反応はペレッ トに混在した炭素によって 行う。 つまり、 ロータ リーキルン式還元炉ゃ回転炉床式還元炉では 、 石炭ゃコークスなどの炭素と粉状の金属酸化物を混合して成形し た成形体 (ペレッ ト) を還元する。
ロータリ一キルン式還元炉ゃ回転炉床式還元炉を用いる還元鉄製 造方法は、 安価な石炭等を使用できることから、 経済的な還元鉄製 造方法と して注目されている。
回転炉床式還元炉は、 固定した耐火物の天井と側壁の下で、 中央 部を欠いた円盤状の耐火物の炉床がレールの上を一定速度で回転す る型式の炉である。 回転する炉床の直径は 1 0〜 1 5メー トルで、 かつ、 炉床の幅は 2〜 6メー トルである。
炉床は回転しながら、 原料供給部、 加熱帯、 還元帯、 及び、 製品 排出部を順次移動していく。 原料の成形体は原料供給部から投入さ れる。 その後、 成形体は、 加熱帯で、 約 1 2 0 0 °C以上まで加熱さ れ、 次いで、 還元帯で、 炭素と金属酸化物が反応して、 金属が生成 する。
回転炉床を用いる還元方法では、 輻射により加熱が迅速に行なわ れるので、 還元反応は 7〜 2 0分で終了する。 還元された成形体は 、 炉内から排出されて冷却され、 その後、 電気炉や高炉の原料とし て使用される。
このように、 回転炉床式還元炉では、 炭素と金属酸化物を主体と する粉体を成形体にして、 これを加熱還元する。 一般的には、 3種 類以上の原料の粉体を使用する。 これは、 金属酸化物と炭素の比率 を調整すると ともに、 成形体を製造する際の粒度構成を調整するた めである。
操業のために、 原料を調合して、 成形体を製造する。 この際に、 まず、 化学成分と粒度構成を適正にするために、 原料粉体を所定の 比率で混合する。 これを成形装置で成形する。 回転炉床式還元炉を用いる還元方法では、 金属酸化物を含む粉体 と して、 鉱石を用いることが一般的であるが、 金属の精鍊工程や加 ェ工程で発生するダス トゃスラジを用いる場合もある。
特に、 鉄鋼製造業で発生するダス トやスラジには、 亜鉛や鉛など の不純物が混在しているが、 これらは、 1 2 0 0 °C以上の還元反応 において蒸発する。 それ故、 回転炉床式還元炉は、 不純物の除去に 有効な手段である。
このよ う に、 回転炉床式還元炉では、 成形体 (ペレッ ト) 中に混 在する亜鉛や鉛などの不純物は、 排ガス中のダス ト成分となる。 ダ ス ト中の亜鉛や鉛の濃度が高い場合は、 非鉄金属精鍊所で亜鉛原料 や鉛原料と して利用される。
回転炉床式還元炉を安定して操業するためには、 成形体 (ペレツ ト) の化学組成を適正に調整することが重要である。 操業実施の点 で最も一般的な酸化鉄の還元の際には、 調整すべき成分として、 酸 化鉄と炭素の量、 主と して、 酸化鉄と炭素の比率が重要である。
亜鉛と鉛に加えて、 アル力リ金属とハロゲン元素が混在している 粉状原料を使用する場合は、 酸化鉄と炭素の比率を調整する以外に 、 酸化鉄に混在している揮発性の物質に特別な配慮が必要である。 本発明者は、 特開 2 0 0 3— 0 9 0 6 8 6号公報 (本発明者の特 願 2 0 0 1— 2 7 9 0 5 5号の公開公報) に開示するように、 回転 炉床式還元炉の排ガス中に塩化ナト リ ゥムゃ塩化力 リ ゥムなどのァ ルカ リ金属ハロゲン化物が多く含まれると、 ( i ) それら物質が、 排ガス処理装置の内部にダス ト と して付着して操業の阻害要因とな る問題や、 (ii) ダス ト中の亜鉛濃度が低下して亜鉛原料と しての 価値が低下する問題があることから、 以下の条件で、 原料を調製す ることが重要であることを解明した。
つまり、 特開 2 0 0 3— 0 9 0 6 8 6号公報に開示するように、 原料中の亜鉛と鉛の合計モル数 (A) 、 カリ ウムとナト リ ウムの合 計モル数 (B) 、 及び、 塩素と弗素の合計モル数 (C) を、 ( 0. 8 C - 0. 7 B ) / A < 0. 3 6の関係を満たすようにすることで ある。 この条件を満たすように原料を調製することによ り、 排ガス 処理装置の内部へのダス トの付着が抑制されて、 長時間安定した操 業を行なう ことができる。
また、 本発明者は、 特開 2 0 0 0— 1 6 9 9 0 6公報に示すよう に、 排ガス処理装置の構造を改善することや、 排ガス温度を制御す ることにより、 ダス ト付着を抑制する技術を提案した。 このダス ト 付着対策と、 特開 2 0 0 3— 0 9 0 6 8 6号公報記載の発明におけ る原料成分制約を組み合わせることにより、 排ガス処理装置の安定 した操業状態を維持することができる。
従って、 従来技術では、 回転炉床式還元炉用原料の成分分析を事 前に行い、 亜鉛と鉛、 ハロゲン元素とアルカ リ金属の含有率の原料 条件を制限することと、 排ガス処理装置を工夫することで、 上記の 問題を解決していた。
しかし、 原料中の亜鉛と鉛、 ハロゲン元素とアルカ リ金属の含有 率を制限して、 回転炉床式還元炉の排ガス処理装置のダス ト付着を 防止しながら.、 安定した操業を行なう方法は、 原料が、 ハロゲン原 子とアル力リ金属を比較的少なく含有する原料に制限されるという 問題を抱えている。
例えば、 製鉄所で発生する酸化鉄含有のダス トゃ鉄製品の酸洗ス ラッジなどを処理する場合、 これらの原料の塩化力 リ ゥムゃ塩化ナ ト リ ゥムの含有率が高く、 特開 2 0 0 3 - 0 9 0 6 8 6号公報に記 载される方法を適用することは困難である。
例えば、 高炉ガスに含まれるダス トの中には、 塩化カ リ ウムや塩 化ナト リ ウムを合計で 1質量%含むものも多い。 また、 鉄製品の酸 洗で生じたスラッジの中には、 酸洗時に使用する塩酸ゃフッ酸と残 留物と して含んでいるものが多い。 いずれの場合も、 前記原料条件 を満足できないという問題がある。
この結果、 これらのダス トゃスラッジを回転炉床式還元炉で処理 する場合は、 廃熱回収用のボイラーや熱交換器のガス通路などの排 ガス処理装置の内部へダス トが付着するという問題が起きていた。 つまり、 酸化亜鉛や酸化鉛に、 ある比率以上のアルカ リ金属とハロ ゲン元素が混在する結果となっていた。
回転炉床式還元炉から発生するダス ト (以降、 二次ダス トと称す る) には、 アルカリ金属とハロゲン元素を 2 0〜 4 5質量%程度と 高い比率で含有するものもある。 この高い比率での含有の結果、 酸 化亜鉛、 塩化亜鉛、 塩化ナト リ ウム、 塩化カ リ ウムなどが混在する 無機混合物が形成される。 この物質は、 融点が 6 0 0 °C以下と低い このようなアルカリ金属とハロゲン元素を高濃度で含む二次ダス トは、 4 0 0〜 6 0 0 °Cの条件で極めて高い付着性を示す。 これが 、 ボイラーや熱交換器のガス通路などに付着して、 排ガス流路を閉 塞し、 回転炉床式還元炉の操業を阻害する。
このように、 アル力 リ金属とハロゲン元素を多く含む原料の場合 、 従来技術のみでは、 これらの元素の悪影響を受けて、 安定した操 業を行なう ことができなかった。
なお、 このダス ト付着性は、 酸化亜鉛 (一部は塩化亜鉛) に対す る塩化ナト リ ウム、 塩化カリ ゥム等の比率が大きい場合に高くなり 、 また、 塩化ナト リ ウム、 塩化カ リ ウム等そのものの比率が大きい 場合も高くなる。
また、 回転炉床式還元炉で、 酸化鉄主体ではあるが亜鉛を多く含 むダス トゃスラッジなどの製鉄廃棄物に炭材などの還元剤を含有せ しめて加熱し、 該製鉄廃棄物中に含まれる酸化亜鉛 ( Z n O ) を還 元 . 揮発除去 ' 再酸化し、 二次ダス ト として集塵装置で回収すると いう リサイクル処理を行う場合、 二次ダス トには、 亜鉛が高濃度で 濃縮するので、 二次ダス トを亜鉛原料として利用する。
この亜鉛含有の二次ダス トの亜鉛濃度 (金属亜鉛換算で、 以降、 T . Z n と称する。 また、 鉛濃度についても金属鉛換算で T . P b と称する。 ) が、 5 0〜 5 5 %以上であれば、 亜鉛用溶鉱炉に直接 利用できる品質となる。 この二次ダス トは、 亜鉛原料と して価値の 高いものである。
しかしながら、 上記のようなアル力リ金属とハロゲン元素が多い 原料を用いる場合は、 原料の塩化ナト リ ウムや塩化カ リ ゥムなどが 二次ダス トに移行して、 二次ダス トの亜鉛濃度が低下するという問 題が起きていた。
場合によっては、 アル力リ金属とハロゲン元素で 3 0質量%以上 となり、 T . Z nが 3 0〜 4 0質量%と '低位になり、 二次ダス トを 亜鉛用溶鉱炉で直接利用することができなかった。
特に、 ハロゲン元素は、 亜鉛精練の際の反応を阻害するので、 そ の量の制約は、 亜鉛精鍊上での重要な管理項目である。
すなわち、 回収した二次ダス トを亜鉛原料と してリサィクルする ためには、 低亜鉛濃度、 高ハロゲン濃度の二次ダス トに対しては事 前処理により、 有害物質を除去し、 亜鉛を濃縮する必要がある。 そ して、 その事前処理には、 多大なコス トが必要となるので、 酸化亜 鉛の回収で本来享受すべきコス ト削減 '省エネルギ効果が低減した り、 悪い場合は、 相殺されてしまう ことがある。
このため、 従来は、 原料となる製鉄廃棄物と しては、 塩素分の少 ないもののみが原料として選択されることとなり、 塩素分の多い製 鉄廃棄物は、 処理メ リ ッ トがないものとしてリサイクル原料と して
6 使用されなかった。
また、 鉛のリサイ クルを実施する際にも、 亜鉛の場合とほぼ同様 の問題があった。
酸化鉄を含むダス トから亜鉛 · 鉛などの有価金属を回収する技術 と して、 例えば、 特公昭 5 3— 2 9 1 2 2号公報に、 ダス ト等を水 洗し、 塩素、 ナトリ ウム及びカ リ ウムを除去する工程と、 その工程 で得られる水洗ダス トにコークスを加えて造粒し焼結し、 亜鉛及び 鉛を含む焼結鉄鉱を得る工程と、 さらに、 その工程からの焼結ガス を除塵操作して得た焼結ダス トをアルカ リ性の水で洗浄して弗素を 除き、 鉛とカ ドミゥムを含む非鉄金属滓を得る工程からなる技術が 開示されている。
しかし、 この技術は、 特公昭 5 3— 2 9 1 2 2号公報 ( 3頁 6欄 、 参照) に記載されているように、 焼結工程で亜鉛を還元 ' 気化せ ずに焼結鉱中に残存させるので、 別途、 竪型蒸留炉等を用意し、 亜 鉛を還元 · 気化し、 回収する必要がある。
また、 この技術において、 水で洗浄したダス トは 3 0〜 4 0 %の 水分を含んでいるので、 同公報 ( 2頁 4欄、 参照) に記載されてい るように、 焼結する前に、 ロータリードライヤー等で乾燥する必要 める。
国際公開パンフレッ ト WO 0 1 /4 2 5 1 6 A 1 には、 金属 酸化物と炭素を含む粉体を、 該粉体質量に対して水分を 1. 0倍以 上含む状態で攪拌混合して、 これを 1 6〜 2 6質量%の含有水分ま で脱水装置で脱水した後に、 圧縮成形機で成形し、 粉体充填率 0. 4 3〜 0. 5 8の成形体を製造し、 該成形体を雰囲気温度 1 1 7 0 °C以下の回転炉床式還元炉に投入して、 1 2 0 0 °C以上の温度で焼 成還元する技術が開示されている。
また、 特開 2 0 0 1 — 3 0 3 1 1 5号公報には、 金属酸化物を含 む粉体と炭素を含む粉体の混合物のスラリーを双口ール圧搾式の脱 水機で、 1 6〜 2 7 %の含有水分まで脱水して、 押し出し式の成形 機で成形体を製造し、 回転炉床式還元炉にて焼成還元して金属を得 る技術が開示されている。
しかし、 この技術においては、 高水分の粉体を乾燥工程無しに還 元炉に投入するので、 塩化ナ ト リ ウム、 塩化カリ ウム等の揮発性有 害物質の除去については考慮されていない。
このよ うに回転炉床式還元炉で、 アルカリ金属とハロゲン元素を 多く含む原料を処理する場合、 上記のような問題が発生する。 特に 、 回転炉床式還元炉の安定的な操業と、 二次ダス トを良質な亜鉛原 料に改質する事前処理にも問題があった。
従って、 アルカリ金属とハロゲン元素を多く含む原料を使用して も、 安定操業と二次ダス トの事前処理を経済的に行なう ことができ る新しい技術が求められている。
〔発明の開示〕
本発明は、 前述のよ うな従来技術の問題点を解決するため、 粉状 の金属酸化物を含む粉体、 又は、 鉄の精鍊及び加工プロセスにて発 生する酸化鉄を含むダス トゃスラッジなどの製鉄廃棄物を回転炉床 式還元炉、 又は、 移動炉床式還元炉にて加熱還元し、 金属酸化物を 還元するとともに、 揮発性有害物質 (アルカ リ金属、 ハロゲン元素 、 その他不純物等) と酸化亜鉛 (Z n O ) を別々に回収する還元処 理方法、 及び、 還元処理装置、 さらに、 亜鉛及び/又は鉛の濃縮 ' 回収方法、 を提供するものである。
( A ) 粉状の金属酸化物を含む粉体を還元処理する発明の要旨は、 以下のとおりである。
( 1 ) 金属酸化物を含有し、 かつ、 アルカ リ金属とハロゲン元素 P2003/011654 を含有する粉体を原料と し、 該原料と水を混合してスラ リ一を製造 し、 次いで脱水し、 該脱水物を回転炉床式還元炉に投入して還元す ることを特徴とする金属酸化物の還元処理方法。
( 2 ) 金属酸化物を含有し、 かつ、 アルカリ金属とハロゲン元素 を含有する粉体を原料と し、 該原料と水を混合してスラ リ一を製造 し、 次いで脱水し、 該脱水物と他の原料を混合し、 該混合物を回転 炉床式還元炉に投入して還元することを特徴とする金属酸化物の還 元処理方法。
( 3 ) 金属酸化物を含有し、 かつ、 アルカリ金属とハロゲン元素 を含有する粉体と炭素を含有する粉体の混合粉体を原料と し、 該原 料と水を混合してスラ リ ーを製造し、 次いで脱水し、 該脱水物を回 転炉床式還元炉に投入して還元することを特徴とする金属酸化物の 還元処理方法。
( 4 ) 金属酸化物を含有し、 かつ、 アルカリ金属とハロゲン元素 を含有する粉体と炭素を含有する粉体の混合粉体を原料と し、 該原 料と水を混合してスラリーを製造し、 次いで脱水し、 該脱水物と他 の原料を混合し、 該混合物を回転炉床式還元炉に投入して還元する ことを特徴とする金属酸化物の還元処理方法。
( 5 ) 前記粉体が、 アルカ リ金属とハロゲン元素を、 合計で 0.
1質量%以上含有することを特徴とする前記 ( 1 ) 〜 ( 4) のいず れかに記載の金属酸化物の還元処理方法。
( 6 ) 前記スラ リ ーにおける粉体と水の質量比率が 1対 1. 5以 上であり、 かつ、 前記脱水物における粉体と水の質量比率が 1対 0 . 4以下であることを特徴とする前記 ( 1 ) 〜 ( 5 ) のいずれかに 記載の金属酸化物の還元処理方法。
( 7 ) 前記スラリーの製造において、 スラリーを 8 0 °C以下に加 熱して攪拌することを特徴とする前記 ( 1 ) 〜 ( 6 ) のいずれかに P T/JP2003/011654 記載の金属酸化物の還元処理方法。
( 8 ) 前記原料と して、 酸化鉄とともに酸化亜鉛及び Z又は酸化 鉛を含有し、 かつ、 アルカ リ金属とハロゲン元素を、 アルカ リ塩の モル数の合計と亜鉛と鉛のモル数の合計との比アル力 リ / (亜鉛 + 鉛) で 0. 1以上含有する粉体を用いることを特徼とする前記 ( 1 ) 、 ( 2 ) 、 及び、 ( 5 ) 〜 ( 7 ) のいずれかに記載の金属酸化物 の還元処理方法。
( 9 ) 前記原料と して、 酸化鉄とともに酸化亜鉛及び/又は酸化 鉛を含有する粉体と炭素を含有する粉体を混合した粉体であって、 アルカ リ金属とハロゲン元素を、 アルカリ塩のモル数の合計と亜鉛 と鉛のモル数の合計との比アルカリ Z (亜鉛 +鉛) で 0. 1以上含 有する混合粉体を用いることを特徴とする前記 ( 3 ) 、 ( 4 ) 、 及 び、 ( 5 ) 〜 ( 7 ) のいずれかに記載の金属酸化物の還元処理方法
( 1 0 ) 前記粉体を水と混合して製造したスラリーの P Hが 7〜 1 1 . 5であることを特徴とする前記 ( 8 ) に記載の金属酸化物の 還元処理方法。
( 1 1 ) 前記混合粉体を水と混合して製造したスラリーの p Hが 7〜 1 1. 5であることを特徴とする前記 ( 9 ) に記載の金属酸化 物の還元処理方法。
( 1 2 ) 前記脱水物を空隙率 3 5 %以上の湿潤成形体に成形し、 該成形体を、 乾燥せずに回転炉床式還元炉に投入して還元すること を特徴とする前記 ( 1 ) 〜 ( 1 1 ) のいずれかに記載の金属酸化物 の還元処理方法。
( 1 3 ) 前記脱水物における粉体と水の質量比率を 1対 0. 2〜 1対 0. 4 とし、 該脱水物を、 平均体積 1 0 0 0 Οππη3以下の湿潤 成形体に成形することを特徴とする前記 ( 1 2 ) に記載の金属酸化 物の還元処理方法。
( 1 4) 前記成形体が含有する酸素と炭素のモル比率を 1対 0. 6〜 1対 1 . 5 と し、 該成形体を回転炉床式還元炉に投入し、 ガス 温度 1 2 0 0 °C以上の炉内部分に 8分以上滞留せしめて還元するこ とを特徴とする前記 ( 1 3 ) に記載の金属酸化物の還元処理方法。
( 1 5 ) 前記回転炉床式還元炉が、 廃熱ボイラーと空気予熱器の 少なく ともいずれか一方を有する排ガス処理設備を備えていること を特徴とする前記 ( 1 ) 〜 ( 1 4) のいずれかに記載の金属酸化物 の還元処理方法。
( 1 6 ) 前記粉体が製鉄廃棄物であることを特徴とする前記 ( 1 ) 〜 ( 1 5 ) のいずれかに記載の金属酸化物の還元方法。
(B) 亜鉛及び Z又は鉛を濃縮 ' 回収する発明の要旨は、 以下のと おりである。
( 1 7 ) 前記 ( 1 ) 〜 ( 1 6 ) のいずれかに記載の金属酸化物の 還元処理方法において発生した排ガス中のダス トを、 亜鉛及び 又 は鉛の原料として回収することを特徴とする亜鉛及びノ又は鉛の濃 縮 · 回収方法。
( C) 酸化鉄を含むダス トゃスラッジなどの製鉄廃棄物を還元処理 する発明の要旨は、 以下のとおりである。
( 1 8 ) 製鉄廃棄物、 p H調整剤及び炭材を水中で攪拌混合し、 次いで濃縮してスラリーを製造し、
該ス ラ リ一を圧搾して脱水し、
該脱水物を押出して成形体に成形し、
該成形体を移動床式還元炉に投入して還元すると ともに、 発生す る酸化亜鉛含有の二次ダス トを回収することを特徴とする製鉄廃棄 物の還元処理方法。
( 1 9 ) 製鉄廃棄物と p H調整剤を水中で攪拌混合し、 次いで濃 縮してスラリ一を製造し、
該スラリ一を圧搾して脱水し、
該脱水物に炭材を添加して混練し、
該混練物を押出して成形体に成形し、
該成形体を移動床式還元炉に投入して還元すると ともに、 発生す る酸化亜鉛含有の二次ダス トを回収することを特徴とする製鉄廃棄 物の還元処理方法。
( 2 0 ) 前記 p H調整剤が OH—基を含む物質であることを特徴 とする前記 ( 1 8 ) 又は ( 1 9 ) に記載の製鉄廃棄物の還元処理方 法。
( 2 1 ) 前記 p H調整剤がゴミ溶融炉又は焼却炉から排出される 飛灰であるこ とを特徴とする前記 ( 1 8 ) 〜 ( 2 0 ) のいずれかに 記載の製鉄廃棄物の還元処理方法。
( 2 2 ) 前記 p H調整剤で p Hを調整したスラ リーの p Hが 8以 上であることを特徴とする前記 ( 1 8 ) 〜 ( 2 1 ) のいずれかに記 载の製鉄廃棄物の還元処理方法。
( 2 3 ) 前記脱水物が、 該脱水物の 1 6〜 2 7質量%の水分を含 有することを特徴とする前記 ( 1 8 ) 〜 ( 2 2) のいずれかに記載 の製鉄廃棄物の還元処理方法。
( 2 4) 製鉄廃棄物を還元処理する装置であって、
製鉄廃棄物、 p H調整剤及び炭材を水中で攪拌混合する攪拌槽、 該攪拌混合物を濃縮してスラリ一とする濃縮槽、
循環移動する濾布の上下に配置した一対以上の口ールで、 該濾布 上に'注がれたスラリ一を圧搾して脱水する脱水機、
該脱水物を穴型から押出して成形する成形機、
該成形体を還元する移動床式還元炉、 及び、
該移動床式還元炉にて発生する酸化亜鉛含有の二次ダス トを回収 する集塵機、
を備えることを特徴とする製鉄廃棄物の還元処理装置。
( 2 5 ) 製鉄廃棄物を還元処理する装置であって、
製鉄廃棄物及び P H調整剤を水中で攪拌混合する攪拌槽、 該攪拌混合物を濃縮してスラリ一とする濃縮槽、
循環移動する濾布の上下に配置した一対以上の口ールで、 該濾布 上に注がれたスラ リ一を圧搾して脱水する脱水機、
該脱水物に炭材を添加して混練する混練機、
該混練物を穴型から押出して成形する成形機、
該成形体を還元する移動床式還元炉、 及び、
該移動床式還元炉にて発生する酸化亜鉛含有の二次ダス トを回収 する集塵機、
を備えることを特徴とする製鉄廃棄物の還元処理装置。
〔図面の簡単な説明〕
図 1 は、 回転炉床式還元炉を用いて酸化鉄を還元処理する本発明 の実施態様を示す図である。
図 2は、 回転炉床式還元炉を用いて酸化鉄を還元処理する本発明 の別の実施態様を示す図である。
図 3は、 移動床式還元炉を用いて製鉄廃棄物を還元処理する本発 明の実施態様を示す図である。
図 4は、 移動床式還元炉を用いて製鉄廃棄物を還元処理する本発 明の別の実施態様を示す図である。
〔発明を実施するための最良の形態〕
( I ) 粉状の金属酸化物を含む粉体を還元処理する発明、 及び、 亜鉛及び/又は鉛を濃縮 · 回収する発明について 本発明を実施する設備の例を図 1に示す。 図 1の設備は、 攪拌槽 1、 スラリーポンプ 2、 脱水機 3、 成形装置 4、 回転炉床式還元炉 5、 還元成形体冷却装置 6、 排ガス排出ダク ト 7、 廃熱ボイラー 8 、 熱交換器 9、 集塵機 1 0、 及び、 煙突 1 1から構成される。
本発明は、 アルカリ金属ハロゲン化物 (以降、 アルカ リ塩と称す る) を水に溶解して、 原料粉体から除去して、 この原料粉体を回転 炉床式還元炉 5にて還元処理するものである。
なお、 ここでは、 混在物がアルカ リ塩主体の原料を例にと り、 本 発明の方法を説明するが、 本発明は、 水溶性のアルカ リ金属とハロ ゲン元素の化合物を含有する原科の還元処理にも有効な方法である このような水溶性のアル力リ金属とハロゲン元素の化合物には、 炭酸ナ ト リ ウム、 硝酸カリ ウム、 硫酸ナト リ ウム、 塩化アンモニゥ ムなどがある。
原料粉体は 2種類以上、 できれば 3種類から 6種類準備する。 金 属酸化物を多く含むものと炭素を含むものをそろえる。
一般的には、 微粉鉱石、 砂鉄、 微粉コ一タス、 粉炭、 製鉄高炉の 発生ダス ト、 製鋼転炉の発生ダス ト、 製鋼電炉の発生ダス ト、 鉄鋼 製品やステンレス製品の酸洗工程で発生するスラッジなどを用いる 。 ロータ リーキルンなどで製鉄ダス トを処理する際に発生する、 酸 化鉄と亜鉛を含むダス トを用いることもできる。
また、 本発明によれば、 従来技術では回転炉床式還元炉で処理で きなかった、 塩化ナト リ ウムと亜鉛 · 鉛を多く含む溶融型ゴミ焼却 炉で発生する飛灰も、 回転炉床式還元炉で処理できる。
まず、 これらの原料粉体の化学成分を分析する。 この分析結果を もとに、 各原料粉体の配合比率を決定することが好ましい。 成分調 整を行なうに際しての最優先事項は、 主たる目的金属の酸化物の還 元を十分に行う ことであるから、 まず、 第一に、 還元性金属酸化物 と炭素の比率を決定する。
ここで、 還元性金属酸化物とは、 約 1 3 0 0 °Cの一酸化炭素で還 元される酸化物を指し、 酸化鉄、 酸化マンガン、 酸化ニッケル、 酸 化亜鉛、 酸化鉛などである。
これらの還元性金属酸化物に化合している酸素 (活性酸素) と炭 素のモル比率を適正値に調整する。 活性酸素と炭素のモル比率は、 1対 0 . 6〜 1対 1 . 5 とする。
なお、 このモル比率は、 炭素質量含有比率を炭素の原子量 〔 1 2 〕 で割った値と、 活性酸素質量含有比率を酸素の原子量 〔 1 6〕 で 割つた値との比である。
成分分析の際には、 原料粉体中のナト リ ウム、 カ リ ウム、 塩素、 フッ素、 亜鉛、 鉛の元素分析値を得ておく ことが良い。 また、 必要 があれば、 臭素やリチウムなどの分析値も得ておく と良い。 また、 分析によ りアル力 リ塩の含有率を求めることが望ましい。
ただし、 アルカ リ塩の定量分析には時間がかかるので、 上記元素 分析値をもとに、 アルカ リ塩の含有率を推定しても良い。
一般には、 ナ ト リ ウム、 カ リ ウム、 塩素、 及び、 フッ素の元素質 量比率の分析値を得て、 陽イオンと陰イオンのパランスから計算す る。
塩素、 フッ素などの陰イオン比率が、 アルカ リ塩の化学当量数よ り も多い場合は、 塩素やフッ素の一部は、 塩化鉄、 塩化カルシウム や塩化亜鉛などを形成しているから、 少量な方の陽イオン量とアル 力リ塩の分子量から計算されるアル力 リ塩の質量を推定含有量とす る。
この場合は、 余剰の塩素とフッ素は、 質量比率按分の比率で、 ァ ルカリ金属以外の元素と結合している。 PC漏 003/011654 また、 元素分析で、 ナト リ ウムやカ リ ウムの陽イオンの方が多い 場合は、 陰イオン量とアル力リ塩の分子量から計算されるアル力リ 塩の質量を推定含有量とする。
この場合、 余剰のナト リ ウムとカリ ウムは、 質量比率按分の比率 で、 ハロゲン以外の元素と結合している。
また、 亜鉛と鉛の含有率を分析して、 原料に含有されているアル 力リ塩の合計モル数と亜鉛と鉛の合計モル数の比を求める。 なお、 以降、 この値をアルカ リ塩 Z (亜鉛 +鉛) モル比率と称する。
原料粉体と水を混合してスラリーを製造する。 この場合、 粉体と 水の比率をほぼ一定とする場合もあるが、 よ り効率的な処理のため には、 このアルカ リ塩の質量比率とアルカ リ塩/ (亜鉛 +鉛) モル 比率をもとに、 粉体と水との混合比率を決めることが良い。
アルカリ塩が多い場合には、 水比率を増加させることが良い。 ま た、 アルカ リ塩が少ない場合は、 必要なアルカ リ塩の低減量を確保 できる範囲で、 比較的低い水比率でスラ リ一を製造することが望ま しい。
原料粉体からアルカリ金属とハロゲン元素を除去しない場合は、 回転炉床式還元炉 5の排ガス装置の内部において二次ダス トの付着 性が高まり、 排ガス経路を閉塞することがある。
これは、 8 0 0 °C以上の高温では、 酸化亜鉛 (鉛を含む場合もあ る) とアルカ リ塩が容易に反応して、 低融点で、 かつ、 付着性の強 い物質を生成し、 これが、 5 0 0 °C前後で、 廃熱ボイラー 8や熱交 換器 9に付着するからである。
例えば、 酸化鉄粉を還元する際、 回転炉床式還元炉では、 ロータ リーキルンなどの他プロセスと比較して、 酸化鉄粉の飛散が少ない ので、 アルカリ塩の二次ダス トへの濃縮率は高い。
本発明者らがまとめた酸化鉄を還元する操業の操業結果では、 一 般に、 アルカリ塩の二次ダス トへの濃縮率は 1 0〜 2 0 0倍となる 。 従って、 原料粉体中のアルカリ塩の比率が 0 . 1質量%となると 、 原料条件や回転炉床式還元炉の操業条件によっては、 二次ダス ト 中のアルカリ塩の含有率が 1 0質量%を超え、 また、 原料粉体中の アルカリ塩の比率が 0 . 2質量%となると、 二次ダス ト中のアル力 リ塩の含有率が 2 0〜 4 0質量%となり、 いずれの場合も大きな問 題となる。
これらの場合は、 排ガス処理設備内の排ガスの温度や流速の条件 を極端に限定しても、 排ガス処理装置に二次ダス トが付着する問題 は発生する。
従って、 原料粉体中のアルカリ塩の比率が 0 . 1質量%以上、 特 に、 0 . 2質量0 /。以上の場合には、 本発明による二次ダス トのアル 力 リ塩低減方法が効果を発揮する。
また、 アルカ リ塩 Z (亜鉛 +鉛) モル比率が 0 . 1以上の原料条 件で、 本発明を実施することは有効である。
アル力リ塩は、 単独でも 5 0 0 °C前後で付着性の高い物質である が、 酸化亜鉛、 塩化亜鉛、 酸化鉛、 及び、 塩化鉛の少なく ともいず れか 1種類と結合すると、 更に付着性の高い物質となる。
本発明者らは、 亜鉛と鉛の酸化物にアルカ リ塩が 1 0モル%程度 まで混入する場合であれば、 付着性がさほど高くならないが、 アル カ リ塩が 1 0モル0 /。以上混入すると、 5 0 0 °C前後での二次ダス ト の付着性は著しく高まることを見出した。
従って、 原料粉体のアルカリ塩 Z (亜鉛 +鉛) モル比率が 0 . 1 以上の条件であれば、 原料粉体中のアルカ リ塩の質量が 0 . 1 %以 下であっても、 二次ダス トの付着問題が生ずることがあるので、 こ の条件において、 本発明の方法を実施することは有効である。
本発明では、 まず、 攪拌槽 1の内部で、 原料の粉体を水と混合し てスラリーを形成し、 水溶性のアルカ リ塩を水に溶解させる。
この際に、 十分に攪拌混合する必要がある。 攪拌方法はいずれの 方法で良いが、 イ ンペラ一回転での攪拌、 水流による攪拌、 及び、 気体吸込みによる攪拌が効果的である。
本発明者らは、 スラ リ ーを攪拌する条件を研究した結果、 粉体と 水の混合比が適正であれば、 十分な攪拌を行う ことによ り、 アル力 リ塩が溶解すると ともに、 粉体が均一に分散するスラリ一を製造す ることができることを見出した。
酸化鉄、 酸化マンガン、 酸化亜鉛などを主体と し、 他に、 全体の 質量に対して 8〜 1 5質量%程度の炭素粉を含む粉体の場合は、 粉 体 · 水質量比率を 1対 1 . 5以上とすることが、 良好な攪拌混合の ために必要である。
これ以下の水質量比率の場合は、 スラリーの動性が不十分となり 、 アルカリ塩の水への溶解とスラリーの均一混合ができない。 また 、 望ましくは、 粉体 · 水質量比率は、 1対 1 . 8以上であるように する。 この条件下で、 スラリー混合が更に十分となる。
原料粉体に含まれるアル力 リ塩の質量比率によっても、 粉体 ·水 質量比率を変化させる。 アル力リ塩の質量比率が非常に高い場合、 例えば、 粉体全質量に対するアルカリ塩の含有率が 0 . 4質量%以 上と高い場合、 もしく は、 アルカ リ塩 Z (亜鉛 +鉛) モル比率が 1 対 0 . 2以上と非常に大きい場合は、 粉体 · 水質量比率を大きくす る。
一般的には、 粉体 ♦ 水質量比率は、 1対 1 . 8〜 1対 5の範囲が 良い。 この理由は、 上記比率が 1対 5を超えて高い場合は、 これ以 上に攪拌や混合状態は改善されず、 一方、 後工程で、 このスラ リー を脱水する際の脱水機のへの負荷が大きくなるという問題が生じる からである。 ただし、 例えば、 アルカ リ塩の含有率が 1〜 2質量%以上のよう に、 アルカリ塩が極端に多く含まれる場合は、 粉体 ·水質量比率は 1対 5〜 1対 1 5程度とする。
アルカリ塩の溶解速度を大きく して、 攪拌時間を短縮することを 目的と して、 水温を高めることは効果的である。 本発明者らの実験 では、 水温 2 0 °Cに対して 3 0 °Cでは、 アルカ リ塩の溶解速度が 1 . 2倍となり、 また、 水温 4 0 °Cでは約 3倍と大幅に増加する。
また、 水温が 8 0 °Cの条件では、 アルカリ塩の溶解速度が約 5倍 となり、 更に効果が増すが、 水温が 8 0 °C程度以上では、 アルカリ 塩溶解速度の増加効果はほとんどなく、 水温を上げるエネルギの消 費量の増加や、 スラ リ一攪拌槽での蒸気発生の悪影響がでる。
従って、 アルカリ塩溶解促進のためのスラリー加熱温度の上限は 8 0 °Cであり、 好ましく は、 4 0 °C〜 8 0 °Cである。
この温度範囲であれば、 1 5〜 3 0分間のスラ リ ー攪拌で、 9 5 %以上のアル力リ塩を溶解することができる。
—方、 原料粉体が亜鉛と鉛を比較的多く含む場合は、 スラ リーの 水の P Hを調整する必要がある。 亜鉛と鉛は両性金属であり、 酸性 溶液や p Hの高い強アル力 リ溶液に溶解する。
この結果、 水の汚染原因となると ともに、 有用な金属である亜鉛 や鉛のロスとなることから、 水に亜鉛と鉛が溶解しない p Hに調整 する。
本発明者らの実験では、 p Hが 7以下の酸性条件で、 亜鉛と鉛の 溶解が認められた。 特に、 p Hが 5以下の条件では、 かなりの速度 で亜鉛と鉛が溶解する。
本発明者らの実験では、 粉体 ' 水質量比率が 1対 2のスラ リーで 、 p Hが 3 . 5、 水温 5 5 °Cの条件では、 2 0分間の攪拌で、 亜鉛 の 3 5 %、 鉛の 2 3 %が溶解した。 この結果、 水の重金属濃度が上 昇して、 脱水後の水の後処理が必要となる。
水の p Hが 7以上となると、 亜鉛と鉛はほとんど溶解しなく なる 。 一方、 p Hが 1 1 を越す時点から、 亜鉛と鉛の溶解が起きる。 こ れは、 亜鉛及び鉛が、 それぞれ、 亜鉛酸イオン、 及び鉛酸イオンと なって、 アルカリイオンと反応するからである。
本発明者らの実験では、 粉体 .水質量比率が 1対 2 のスラ リ一で 、 水温 5 5 °Cの 2 0分間の攪拌では、 p Hが 7〜 1 1 . 5の範囲で あれば、 亜鉛と鉛の溶解比率が 5 %以下であった。
一方、 p Hが 1 1 . 5を超えると溶解比率が増加していき、 p H 1 2で、 溶解比率は 8 . 8 %となっていた。
従って、 ある程度以上の、 一般には、 0 . 3質量%以上の亜鉛と 鉛を含有している原料粉体の場合は、 スラリーを形成する水の p H は 7〜 1 1 . 5の範囲であることが望ましい。
攪拌が終了した後、 スラ リ ーポンプ 2を用いて、 スラ リ ーを脱水 機 3に送る。 脱水機 3では、 スラ リーの粉体から水を分離する。 脱 水後の粉体の含有水分は、 粉体 · 水質量比率で、 1対◦ . 4以下と する (一般的な含有水分の表記では 2 9質量%に相当する) 。
粉体 · 水質量比率は、 回転炉床式還元炉での還元処理を効率的に 行う ことができる条件で決まるものであり、 詳細な理由は後に述べ る。
粉体 · 水質量比率を 1対 0 . 4以下とすることができれば、 脱水 機 3の機種はいずれのものでも良いが、 高圧プレス脱水機、 遠心式 脱水機、 双ロールプレス式脱水機が良い。
これら機種で高性能の機械であれば、 平均粒子径が 3〜 6 0 μ m の粒子からなる粉体であっても、 粉体 .水質量比率で 1対 0 . 4以 下とすることができる。 なお、 以降、 脱水後の水を含んだ粉体を脱 水ケーキと称する。 本発明のスラリ一攪拌条件では、 スラリー水の中にアル力 リ塩の
9 0〜 9 5 %以上が溶解するから、 脱水ケーキでのアル力リ塩濃度 は、 スラリーと脱水ケーキの粉体 ' 水質量比率、 つま り、 水中のァ ルカリ塩の濃度と粉体に残留する水比率でほぼ決定される。
例えば、 スラリーと脱水ケーキの粉体 · 水質量比率が、 各々、 1 対 2 と 1対 0 . 3の場合は、 脱水ケーキのアルカ リ塩含有率は、 原 料粉体のものの約 1 5 %となる。 つまり、 約 8 5 %のアルカ リ塩が 除去されることとなる。
この脱水ケーキを回転炉床式還元炉 5で焼成還元する。 一般には 、 脱水ケーキを、 そのままでは、 回転炉床式還元炉 5で還元するこ とができないので、 成形装置 4を用いて、 これを径、 又は、 長さが 2 5 ππη以下程度の塊 (成形体) に成形し、 この成形体を回転炉床式 還元炉 5で還元する。
成形体の種類としては、 パン式造粒装置で製造する球形ペレツ ト 、 ロールの凹みに粉体を入れて圧縮成形するブリ ケッ ト、 ノズルか ら押し出して成形する円柱形ペレツ トなどがある。
成形装置 4 としてパン式造粒装置を用いる場合、 造粒のために、 原料粉体の水分は 9〜 1 3質量%が適正である。 この水分含有率は 、 粉体 ' 水質量比で 1対 0 . 0 9 ~ 0 . 1 5に相当するものであり 、 一般には、 脱水機 3で到達できる水分下限よ り も低い値である。 従って、 この場合は、 脱水後に粉体を乾燥する必要がある。 一般 的な乾燥方法では、 アルカリ塩は蒸発しないので、 乾燥後もアル力 リ塩含有率は変わらない。
乾燥後の粉体の水分を 8〜 1 3質量%と して、 パン式造粒装置に て、 平均で 1 0〜 2 0 mmの球形ペレッ トを製造する。 この球形ペレ ッ トは気孔率 (又は、 空隙率と称する) は 2 2〜 3 0 %と低く、 回 転炉床式還元炉の雰囲気温度のような高温条件では、 水分蒸発に伴 う爆裂が起きる。
このため、 一般には、 専用の乾燥機で、 水分が 1質量%程度以下 になるまで乾燥して、 この球形べレッ トを回転炉床式還元炉に供給 する。
従って、 パン式造粒装置を用いて成形する場合は、 図 1に示す設 備構成に加えて、 脱水ケーキ乾燥機と球形ペレツ ト乾燥機が必要と なり、 各々、 脱水機 3 と成形装置 4の間、 及び、 成形装置 4 と回転 炉床式還元炉 5の間に設置される。
また、 成形装置と して圧縮成形機を用いてプリケッ トを製造する 場合は、 同様に、 乾燥機を用いて、 水分を 2〜 1 5質量%と した後 に、 原料粉体を成形する。
成形強度を上げるためには、 有機系バイ ンダー (コーンスターチ 等) を用いても良い。 この方法を用いた場合、 水分量が比較的低い プリケッ トを製造することが可能で、 ブリゲッ ト乾燥工程は不要で ある場合が多い。
一般に、 プリケッ トの空隙率が 3 5 %未満の場合は、 回転炉床式 還元炉 5の雰囲気温度のような高温条件では、 水分蒸発に伴う爆裂 が起こるので、 空隙率は 3 5 %以上にする必要がある。
この場合は、 水分が 1 6〜 2 0質量%のプリケッ トでも、 炉内で の爆裂はない。 このよ う に、 ブリゲッ ト成形装置を用いて成形する 場合は、 図 1の設備構成に加えて、 脱水ケーキ乾燥機が必要となり 、 脱水機 3 と成形装置 4の間に設置される。
以上の 2方式の成形装置のいずれかを用いて、 成形体を製造して も良いが、 ノズル押し出し式成形機を用いて円柱形ぺレツ トを製造 することは、 特に有効で、 本発明の重要な手段のひとつである。
図 1は、 この成形方法を実施する場合の設備のレイァゥ トを例示 したものである。 円柱形ペレッ トは空隙率が高いので、 水分の蒸発 速度が大きくても、 成形体の爆裂が起きない。 それ故、 粉体 · 水質 量比率が 1対 0 . 4程度であっても、 これを、 直接、 回転炉床式還 元炉に供給できる。
ノズル押し出し式成形機の場合、 原料水分が 1 6質量%以下であ ると、 粉体のノズルへの押し込みが困難となって、 成形が順調にで きない。 それ故、 粉体の水分量の範囲は、 粉体 · 水質量比率で、 1 対 0 . 2〜1対 0 . 4であることが重要である。
上記成形体は、 乾燥状態での粉体間の空間比率を示す空隙率が 4 0〜6 0 %あり、 水蒸気が、 すみやかに抜けやすい構造となってい る。
従って、 本発明において、 ノズル押し出し式成形機を用いる場合 は、 粉体や成形体の乾燥工程が省略できる。 それ故、 図 1に示すよ うに、 原料粉体のスラリー攪拌、 脱水、 及び、 ノズル押し出し式成 形の組み合わせで原料準備を行う ことが非常に経済的である。 この 方法によれば、 簡単な設備構成で、 アルカ リ塩を含む粉体を還元処 理することができる。
また、 本発明者らは、 ノズル押し出し式成形以外の方法でも、 空 隙率が高い成形体を製造すれば、 乾燥工程なしで、 該成形体を回転 炉床式還元炉に供給できることを見出した。
つまり、 脱水ケーキを圧縮等の方法で固めて、 これを分割するこ とや、 筋のついたロール式コンパクタ一を用いて成形するなどの方 法でも、 ノズル押し出し式成形と同様に、 空隙率が 4 0〜6 0 %の 成形体を製造できることを確認した。
特に、 高圧プレス式脱水機を用いると、 空隙率が 4 0〜6 0 %で 、 厚みが 2 0〜 5 0 mmの板状の脱水ケーキを製造することができ、 この脱水ケーキを適正な大きさに分割して、 成形体を製造できる。
この成形体の粉体 . 水質量比率が 1対 0 . 2以下の場合は、 水分 によるパインター効果が発現せず、 粉々になりやすい。
また、 粉体 ·水質量比率が 1対 0 . 4以上である場合は、 成形体 が柔らかすぎて、 搬送時の変形や付着の問題が顕在化する。
従って、 上記成形体を製造する場合も、 粉体 ·水質量比率は 1対 0 . 2〜 0 . 4が良い。 なお、 以降、 本発明では、 このような方法 やノズル押し出し方式による円形ペレツ トの成形物を湿潤成形体と 称する。
上記方法で製造した成形体 (球形べレッ ト、 ブリケッ ト、 又は、 湿潤成形体) を回転炉床式還元炉 5に供給する。 回転炉床式還元炉 5には、 成形体を加熱して水を蒸発させる役割と、 成形体の温度を 上昇させる役割を持つ加熱帯がある。
この加熱帯で高温となった成形体は、 更に高温で還元雰囲気の還 元帯に入る。 この還元帯では、 成形体を 1 1 0 0 °C以上に加熱して 還元反応を起こさせる。 成形体の内部においては、 還元性の金属酸 化物と炭素が反応して、 金属が生成する。
成形体の炉内滞在時間は、 一般に、 1 0〜 2 0分間である。 この 時、 成形体から一酸化炭素が発生する。 亜鉛や鉛などの蒸気圧の高 い金属は、 この時に気化し、 一酸化炭素と一緒に、 成形体から回転 炉床式還元炉 5の炉内ガス中に放出される。
この時、 成形体の温度は 1 0 0 0 °C以上であるので、 成形体から 、 蒸気圧の高いアルカ リ塩も蒸発し、 炉内ガス中に放出される。 湿潤成形体の大きさは、 球に近い形状をしている場合で、 最大 2 0〜 2 5 mm程度以下が良い。 この理由は、 成形体が大きいと、 成形 体の内部における熱伝達が遅れて、 水分蒸発や反応の時間が延長し て、 その結果、 回転炉床式還元炉の生産量が減少するという問題が 生ずるからである。
また、 上記大きさ以上の大きさの成形体を還元する場合は、 表面 PC蘭難 11654 と内部で還元率に差がつく という問題も生じる。
成形体は必ずしも球形をしているわけではないので、 一般に、 大 きさを容積で表現することが望ましい。 本発明において、 均一な還 元反応を行うために必要な湿潤成形体の大きさは、 容積で表現する と、 1 0 0 0 0 mm3以下である。
還元された金属 (鉄、 ニッケル、 マンガンなど) を含有する還元 成形体は、 スク リ ュー式排出機で、 回転炉床式還元炉 5から排出さ れて、 還元成形体冷却装置 6で冷却されて成品となる。
この還元成形体は、 製鉄高炉、 電気炉、 キュッボラ等の溶解機能 を持つ炉で、 溶融鉄を製造する原料となる。 特に、 亜鉛、 鉛、 アル カリ塩が操業の障害要因となる製鉄高炉ゃキュッボラに装入する還 元成形体の場合は、 これら成分の含有率を低くする必要がある。
従って、 亜鉛、 鉛、 及び、 アルカリ塩の含有率が高い原料粉体は 、 本発明の方法を用いて、 回転炉床式還元炉で処理した後、 溶解機 能を持つ炉で使用することが望ましい。
一方、 回転炉床式還元炉 5の内部で発生した排ガスと、 亜鉛ゃァ ルカリ塩などは、 排ガス排出ダク ト 7に排出される。 この排ガスは 、 1 0 0 0 °C前後と高温であるので、 廃熱ボイラー 8 と熱交換器 9 で冷却される。
熱交換器 9では、 加熱空気を製造する。 この加熱空気を、 燃焼用 空気に使用して、 燃料を削減する。 図 1では、 廃熱ボイラーと熱交 換器を設置した設備の構成を示したが、 どちらか一方のみを設置す る場合もある。 また、 プラントによっては、 このよ うな廃熱回収設 備がなく、 散水装置によって、 排ガスに散水して冷却する場合もあ る。
排ガス温度が 2 0 0 °C程度以下となった後に、 集塵機 1 0にて、 二次ダス トを回収する。 二次ダス トは微細な粒子であるので、 集麈 機 1 0は、 バグフイノレター式、 又は、 湿式のものが良い。 集塵が終 了した排ガスは、 煙突 1 1から大気に放出される。
本発明は、 回転炉床式還元炉 5の排ガス処理装置の内部に、 アル カリ塩や、 亜鉛、 鉛、 アルカ リ金属、 酸素、 及び Z又は、 ハロゲン によ り構成される無機化合物が付着するのを防止する技術であり、 廃熱回収設備がなく、 散水装置によって、 排ガスに散水して冷却す る装置構成の場合においても有効である。
例えば、 原料中の亜鉛やアル力リ塩の含有率が合計 3質量%程度 以上と高い場合には、 このよ うな単純な構成の排ガス処理装置でも 、 二次ダス ト付着の問題が頻繁に起きるからである。
更に、 廃熱ボイラー 8 と熱交換器 9の少なく とも一方が設置され ている排ガス処理装置の場合は、 これらの内部の排ガス通路は 2 0 〜 5 0 mm程度の間隔しかない場合もあり、 本発明による二次ダス ト 付着防止対策は特に有効である。
製鉄工程や製鉄ダス ト処理炉から発生するダス トを原料と して使 用する場合は、 この二次ダス トに亜鉛や鉛が多く含まれる。
回転炉床式還元炉 5では、 成形体が炉床上に静置されることから 、 ロータリーキルンなどの他のプロセスと比較して、 原料粉体の排 ガス中への飛散が少ない。 例えば、 亜鉛を多く含む酸化鉄主体の粉 体を還元する場合は、 酸化鉄粉の飛散が少ない。
本発明者らが行った実験では、 二次ダス ト中の酸化鉄含有率は、 非常に低く、 数パーセントに過ぎなかった。 即ち、 二次ダス ト中へ の酸化鉄の混入が少ない場合、 二次ダス トの亜鉛濃縮率は高い。 更に、 本発明の方法では、 アルカ リ塩の一部を除去した原料を用 いるので、 アルカリ塩の二次ダス トへの混入が抑制され、 その結果 、 特に、 亜鉛と鉛の濃縮率が高くなる。
この結果、 亜鉛を比較的多く含む高炉ダス ト、 転炉ダス ト、 電炉 ダス トなどを処理する場合は、 T . Z nは 5 0質量%以上にもなり 、 最大で 6 0 %に達することもある。 この亜鉛濃度の二次ダス トは 、 亜鉛精鍊原料として価値の高いものである。
このよ う に、 原料粉体の亜鉛や鉛を優先して回収する場合は、 成 形体の反応条件を適正に調整することが重要である。 回転炉床式還 元炉 5のガス温度が 1 0 0 0〜 1 1 0 0 °C程度の場合、 亜鉛や鈴の 蒸気圧は低く、 還元されたと しても、 成形体から蒸発分離する比率 が小さい。
そこで、 亜鉛や鉛の蒸発分離を促進する目的で、 回転炉床式還元 炉の還元帯のガス温度を比較的高くする。 本発明者らの解析の結果 、 1 2 0 0 °C以上の温度で、 亜鉛や鉛の蒸発分離速度が大きいこと が判明した。
また、 1 2 0 0 °C以上の温度が 8分間以上続く場合は、 脱亜鉛率 及びノ又は脱鉛率が 8 5 %以上となることも判明した。
また、 1 2 8 0 °C以上のガス温度とすれば、 9 5 %以上の脱亜鉛 率及び Z又は脱鉛率をも達成できることが判明した。
以上に説明したように、 本発明では、 アルカリ金属とハロゲン元 素を含む粉体を水洗し、 その後に、 回転炉床式還元炉で処理するも のであるが、 原料粉体のうち、 アルカリ金属とハロゲン元素を多く 含む粉体だけを水洗処理し、 その後に、 アルカリ金属及び/又はハ 口ゲン元素の含有率が低い原料粉体と混合する方法も本発明の範囲 内である。
つま り、 製鉄所のダス ト と鉄鉱石を混合して原料と して使用する 場合、 アルカリ金属とハロゲン元素の含有率が高い粉体をスラ リ ー としてアルカリ塩を除去すれば、 鉄鉱石の水洗を行わなく とも、 ほ ぼ所期の目的を果すことができる。
このよ うに、 亜鉛や鉛を多く含む原料粉体を使用する場合におい ては、 本発明の効果が大きく、 排ガス処理に問題が生じない操業を 行なう ことが可能となる。
ロータリーキルンなどの一次亜鉛濃縮プラント、 製鋼用電炉、 製 鋼転炉、 高炉から発生するダス ト、 亜鉛メ ツキ工程から発生するス ラッジなどの亜鉛や鉛の多い原料粉体を回転炉床式還元炉で処理し て得た二次ダス トは、 高価値の亜鉛原料と して使用される。
また、 本発明の方法で操業して発生した排ガスを処理する集塵機 で得た二次ダス トは、 亜鉛精練工場で、 金属亜鉛や酸化亜鉛などの 亜鉛製品を製造する原料と して使用される。
亜鉛に鉛が比較的多く含まれる場合は、 事前処理なしで、 直接に 、 湿式電気精練装置や亜鉛精鍊用溶鉱炉にて処理して、 金属亜鉛を 回収できる。
(実施例 1 )
図 1に示す設備を用いて、 本発明を実施した結果を実施例と して 示す。 図 1の設備では、 脱水機 3は双ロールプレス式であり、 また 、 成形装置 4はノズル押し出し式である。 いずれの操業でも、 攪拌 槽 1でのスラ リ一攪拌時間は 2 0分間と した。
回転炉床式還元炉 5では、 還元帯の反応温度を約 1 3 0 0 °Cと し て、 1 0〜 1 5分間処理した。 排ガス処理装置の廃熱ボイラー 8 と 熱交換器 9には、 付着物除去装置として、 打撃装置とスー トブロー 装置を設置した。
廃熱ボイラー 8の内部での排ガス温度は、'入口で 8 5 0〜9 5 0 °C、 出口で 4 5 0〜6 0 0 °Cであり、 また、 熱交換器 9の内部での 排ガス温度は、 入ロで 4 5 0〜6 0 0 °〇でぁり、 出口で 2 0 0〜3 0 0 °Cであった。
脱水機 3 と成形装置 4の処理能力は、 いずれも、 2 5 トン/時 ( 2 5 %水分換算の w e t量) であり、 回転炉床式還元炉 5の能力は 、 2 3 トン 時 ( 2 5 %水分換算の w e t量) であった。
また、 図 2に示す設備は、 実施例 1 と比較例 1〜 3に用いたもの である。 これも 2 3 トン Z時 ( 2 5 %水分換算の w e t量) の能力 があった。 この設備は、 プリケッ ト式の成形装置 4を装備し、 脱水 機 3 と成形装置 4の間に、 粉体乾燥機 1 2を備えている。 粉体乾燥 機 1 2で脱水ケーキを乾燥し、 脱水ケーキを成形装置 4で成形する とともに、 その水分含有率を所要の値とする。
図 2に示す排ガス処理装置の廃熱ボイラー 8 と熱交換器 9にも、 付着物除去装置と して、 打撃装置とスートブロー装置を設置した。 なお、 操業結果は、 実施例のものを表 1 に、 また、 比較例のものを 表 2に示す。
比較例 1 と実施例 1 は、 鉄鉱石を主体とし、 アルカ リ塩、 亜鉛、 鉛の含有率の比較的低い原料を用いた操業例である。 この原料は、 アルカ リ塩の比率が 0 . 2 1質量%とやや高く、 かつ、 アルカリ塩
/ (亜鉛 +鉛) モル比率が 1 . 0 5 と高い原料となっている。
図 2に示す設備を用いるが、 本発明を行わず、 成形体を 1 2 8 0 でで 1 5分間処理したのが比較例 1である。 この処理による操業で 、 8 . 3 kgZトン一成形体の二次ダス トが発生して、 排ガスの含塵 濃度は約 5 mg/ Nm3であった。
この二次ダス 卜におけるアルカ リ とハロゲンの合計は、 1 2 . 7 質量%と高く、 また、 亜鉛と鉛に対するアルカリ とハロゲンの比率 も高い。
即ち、 この二次ダス ト中には、 亜鉛、 鉛、 アルカ リ、 酸素、 及び 、 ハロゲンから構成される複雑な無機化合物が形成されている。 こ の無機化合物は融点が約 4 2 0 °Cであり、 4 0 0〜 6 0 0 °Cで付着 性が極めて高いものであった。 この結果、 比較例 1では、 熱交換器 9に二次ダス トの付着が認められた。 ただし、 比較例 1では、 排ガス中の含塵濃度が低いので、 約 2 ケ 月後に、 二次ダス トの付着による熱交換器 9の閉塞の影響が出た。
なお、 ここで、 二次ダス ト中のアルカ リ とハロゲンをアルカ リ塩 と表記せず、 アルカリ とハロゲンと表記する理由は、 二次ダス ト中 のアル力リ とハロゲンは、 亜鉛や鉛などと複合的な無機化合物を形 成していて、 多くは、 単純なアルカリ塩の形態をしていないからで ある。
全く同一の原料を用いて、 本発明を実施した操業が実施例 1であ る。 原料粉体中のアルカ リ塩濃度が低いこと、 また、 アルカ リ塩の ほとんどが高炉ダス トに含まれていることから、 高炉ダス トのみを 水と混合した。
なお、 高炉ダス トの質量比率は 2 5 %であり、 全アルカリ塩の 9 5 %は高炉ダス ト中に含まれていた。
高炉ダス トの水洗では、 攪拌槽における粉体 · 水質量比率を低く した。 なお、 実施例中では、 表中に記載しやすいように、 粉体 ·水 質量比率を水/粉体比率として示している。
実施例 1では、 水 Z粉体比率が 1 . 5 6である。 また、 水温も 3 5 °Cと低めに設定した。 脱水機 3での水 Z粉体比率は 0 . 3 2であ る。 この結果、 脱水ケーキのアルカリ塩含有率が低下して、 成形体 のアル力リ塩含有率は 0 . 0 5質量%と大幅に低下した。
水の p Hが 6 . 2 とやや酸性であることから、 少量の亜鉛と鉛の 溶解が認められたが、 元々原料に含まれる量が少ないことから、 実 際の問題は起きなかった。
この脱水ケーキを原料と して成形体を作り、 回転炉床式還元炉 5 で、 還元帯ガス温度 1 2 8 0 °C、 1 5分間の処理を施した。
成形体の容積が 1 0 0 0 0 mm3を超えていることから、 鉄の金属 化率と脱亜鉛率がやや低いが、 十分に利用可能なものである。 実施例 1では、 二次ダス ト発生比率が 6 . 2 kg /トン一成形体に まで減少し、 また、 アル力 リ +ハロゲンの比率も 5 . 8質量%まで 低下した。
この二次ダス トに付着性はほとんどなく、 熱交換器 9への顕著な 二次ダス トの付着は認められなかった。
実施例 2は、 転炉ダス ト と高炉ダス トを主体とする原料を処理し た操業例である。 この原料において、 アルカ リ塩含有比率は 0 . 8 5質量%と中程度であるが、 アルカ リ塩/ (亜鉛 +鉛) モル比率が 1 . 0 と高い。
原料粉体中のアルカ リ塩濃度が中程度であるので、 攪拌槽 1の水 /粉体比率は 1 . 9 とやや低くめに設定した。 水温は 4 8 °Cとして 、 アルカリ塩の溶解速度を高めた。 脱水機 3での水 Z粉体比率は 0 . 2 8であった。
この結果、 脱水ケーキのアルカリ塩含有率は、 0 . 1 4質量%と 大幅に低下した。 この脱水ケーキを成形体に成形して、 回転炉床式 還元炉 5で処理したところ、 二次ダス ト発生比率が 1 5 . 7 kg/ト ン一成形体で、 排ガス中含麈濃度は約 1 l mgZNm3であった。 また 、 (アルカ リ +ハロゲン) の比率は 4 . 6質量%であった。
この二次ダス トに付着性はほとんどなく、 熱交換器 9への二次ダ ス トへの顕著な付着は認められなかった。 集塵機 1 0で回収した二 次ダス トの T . Z nは 5 1 . 5質量0 /0と高かった。 また、 T . P b も 1 0 . 8質量%であり、 上記二次ダス トは、 亜鉛精鍊用溶鉱炉用 の良質な原料として、 金属亜鉛と金属鉛の製造に用いることができ るものである。
' 一方、 比較例 2は、 実施例 2 と同一の原料粉体を、 図 2の設備を 用いて還元処理したが、 本発明を用いなかった操業例である。
アル力リ塩含有比率が 0 . 8 5質量%、 また、 アル力 リ塩/ (亜 鉛 +鉛) モル比率が 1 . 0であることから、 二次ダス ト中の (アル カリ +ハロゲン) 量は 1 3 . 6質量0 /0と高くなつた。
この二次ダス トの融点は約 4 6 0 °Cであり、 4 5 0〜 6 5 0 °Cで 二次ダス トの付着性は極めて高い。
比較例 1 よ り も、 亜鉛と鉛の比率と二次ダス ト発生量が多く、 排 ガス中の含塵濃度は約 1 4 mg/Nm3であった。 その結果、 約 2週間 後に、 二次ダス トの付着による熱交換器 9の閉塞の影響が出た。 二次ダス トの亜鉛と鉛の含有率は 4 2 . 7質量%と、 実施例 2に 比較して低く、 亜鉛と鉛の原料としての価値は低い。
この結果、 上記二次ダス トを亜鉛精鍊用溶鉱炉で使用する場合は 、 その前に、 アルカ リ とハロゲンを除去する事前処理が必要となり 、 亜鉛精鍊コス トが増加するという問題が発生する。
実施例 3は、 電炉ダス ト と鋼材圧延の微粒スケールを主体とする 原料を処理した操業例である。 この原料において、 アルカリ塩の含 有比率は 0 . 7質量%、 アルカ リ塩 Z (亜鉛 +鉛) モル比率は 0 . 2 1である。
攪拌槽 1 の水/粉体比率は 2 . 9に、 また、 水温は 5 5 °Cに設定 した。 脱水機 3での水 Z粉体比率は 0 . 3 8であった。
この結果、 脱水ケーキのアルカリ塩の含有率は 0 . 1質量0 /0と大 幅に低下した。 この脱水ケーキを成形体に成形して、 回転炉床式還 元炉 5で処理したところ、 二次ダス ト発生比率は 6 2 . 9 kg/トン 一成形体と比較的多く、 また、 (アルカ リ +ハロゲン) の比率は 2 . 2質量%と少なかった。
上記二次ダス トに付着性はほとんどなく、 熱交換器 9への二次ダ ス トの付着は認められなかった。
集塵機 1 0で回収した二次ダス トは T . ∑ ! が 5 5 . 1質量0 /0、 また、 T . P bが 1 2 . 8質量0/。であった。 上記二次ダス トは、 亜 鉛精練用溶鉱炉用の良質な原料であり、 この二次ダス トから金属亜 鉛と金属鉛を製造できる。
実施例 4、 実施例 5、 及び、 比較例 3は、 電炉ダス トと亜鉛濃縮 用ロータリーキルンダス トを主原料として処理した操業例である。 この原料粉体は、 亜鉛と鉛の含有率が高く、 また、 アルカ リ塩含有 率が 3 . 3 1質量%と極めて高いものである。
実施例 4 と実施例 5は、 本発明を実施した操業例であり、. また、 比較例 3は、 従来技術での操業例である。
実施例 1〜 3が、 還元鉄を製造することを主目的にした操業であ るのに対して、 上記操業の主目的は、 亜鉛と鉛が濃縮した二次ダス トを非鉄金属精練の原料と して回収するこ とである。
なお、 この原料には、 アルカ リ塩を形成するためのアルカリ金属 とハロゲン元素の質量比率よりも、 塩素が 0 . 2 %程度多く含まれ ていた。 X線回折による分析によれば、 この原料中に少量の塩化亜 鉛が存在していたので、 上記過剰の塩素は亜鉛と反応していたと推 定される。
実施例 4では、 原料粉体のアルカリ塩含有率が高いので、 攪拌槽 1の水/粉体比率は 7 . 5に、 また、 水温は 6 0 °Cに設定した。 脱 水機 3での水/粉体比率は 0 . 2 4であった。 この結果、 脱水ケー キのアル力リ塩の含有率は 0 . 1質量%と大幅に低下した。
この脱水ケーキを成形体に成形して、 回転炉床式還元炉 5で処理 した。 反応条件は、 還元帯のガス温度が 1 3 5 0 °Cであり、 トータ ルの炉內滞在時間は 1 2分間であった。 なお、 1 2 0 0 °C以上のガ ス温度部分の滞在時間は 9分間であった。
この結果、 成形体の脱亜鉛率は 9 5 %以上となり、 ほとんどの亜 鉛が回収できた。
実施例 4の二次ダス トは、 (アルカリ +ハロゲン) の比率が 1 . 03 011654
7質量0 /oと少なかった。 この結果、 この二次ダス トの付着性はほと んどなかった。 二次ダス ト発生比率が 2 4 1 . 7 kg/トン—成形体 と極めて多く、 排ガス中含麈濃度は約 1 8 0 mg/ Nm3と多かった。
このため、 廃熱ボイラー 8 と熱交換器 9において、 打撃装置を頻 繁に使用した。 この対応により、 二次ダス トの顕著な付着は認めら れなかった。
集塵機 1 0で回収した二次ダス トは、 T . 2 11が 6 4 . 9質量% 、 また、 T . P b力 S 9 4質量0 /0であり、 さ らに、 アルカ リ とハロ ゲンの含有率が少ないので、 亜鉛と鉛の原料として極めて良好なも のである。 これを電気湿式亜鉛精練の原料と して用い、 金属亜鉛を 製造した。
実施例 5 も、 本発明を用いているが、 攪拌槽 1のスラ リー水の p Hは 1 1 . 9 と高すぎるので、 亜鉛と鉛の一部が水中に溶解した。 この結果、 成形体の T . Z nは 1 3 . 1質量0 /。、 また、 T . P bは 2 . 9質量%に低下した。
この成形体を回転炉床式還元炉 5で処理した。 反応条件は、 還元 帯のガス温度が 1 3 2 0 °Cであり、 トータルの炉内滞在時間は 1 5 分間であった。 ただし、 1 2 0 0 °C以上のガス温度部分の滞在時間 は 1 1分間であった。 この結果、 成形体中のほとんどの亜鉛を回収 できた。
実施例 5の二次ダス ト発生比率は 2 1 6 . 7 kg/トン一成形体、 (アル力 リ +ハロゲン) の比率は 1 . 8 6質量%であった。 この結 果、 排ガスの含塵濃度が高いにもかかわらず、 実施例 4 と同様の対 応をすることによ り、 二次ダス トの付着はほとんどなかった。
集塵機 1 0で回収した二次ダス トは、 T . 11が 5 8 . 8質量% 、 また、 T . P bが 8 . 7質量%と、 実施例 4 と比較するとやや低 いものの、 これも極めて良質な亜鈴と鉛の原料である。 これを湿式 亜鉛精練の原料と して用い、 電気精鍊によ り金属亜鉛を製造した。 比較例 3では、 原料粉体のアル力 リ塩の含有率を低下させずに、 回転炉床式還元炉 5で処理した。 回転炉床式還元炉 5での処理条件 は、 実施例 4及び 5 とほぼ同一であった。 この結果、 二次ダス ト中 のアルカ リ +ハロゲンの質量の合計が 1 8 . 6 %となった。
高亜鉛含有率の条件も重なり、 この二次ダス トは極めて付着性が 高かった。 また、 排ガスの含塵濃度は約 2 0 0 mgZNm3と多かった こともあり、 処理開始後 4 日で熱交換器 9が閉塞した。
この結果、 回転炉床式還元炉 5の操業が連続して継続できず、 経 済的な操業が行えなかった。
また、 集塵機 1 0で回収した二次ダス トは、 T . Z nが 5 2 . 9 質量%、 また、 T . P bが 8 . 6質量%と高かったが、 アルカ リ金 属とハロゲン元素を多く含んでいたため、 直接、 亜鉛精鍊工程で使 用できなかった。
これの理由で、 上記二次ダス トについては、 事前処理でアルカ リ とハロゲンを除去しなければならなかったので、 亜鉛精鍊コス トが 大幅に上昇した。 なお、 この原料を処理する.ために、 図 2に示す設 備において、 廃熱ボイラー 8 と熱交換器 9をパイパスして、 排ガス を散水冷却する操業も行った。
この対応により、 排ガス経路において幅の狭い部分がなくなった ので、 継続して操業できる期間は 1 0 日間まで延びたが、 やはり連 続操業ができないことによるコス トアップがあると ともに、 廃熱回 収できない問題も残った。 , 表 1
Figure imgf000038_0001
表 2
Figure imgf000039_0001
( I I ) 鉄廃棄物を還元処理する発明について
図 3は、 製鉄廃棄物を還元処理する本発明の実施態様を示す図で める。
図 3において、 攪拌槽 1 にて製鉄廃棄物 X、 水 W、 p H調整剤 Y 、 炭材 Cを攪拌混合し、 濃縮槽 1 2にて濃縮してスラ リ ー化した後 、 スラ リーポンプ 1 3にて双ロール式圧搾脱水機 1 4に送り、 この 脱水工程にて、 廃棄物中の揮発性有害物質 (塩化ナト リ ウム、 塩化 力リ ゥム等) を除去する。
双ロール式圧搾脱水機 1 4にて脱水された脱水物は、 脱水物搬送 コンベア 1 5によ り押出し式成形機 1 6に搬送されて、 円柱状の成 形体に成形され、 成形物搬送コンベア 1 7により搬送されて、 成形 物装入装置 1 8を経て移動床炉 (例えば回転炉床炉) 1 9に供給さ れる。
移動床炉 1 9で加熱還元された成形物は還元鉄 Fとなる一方で、 このときに発生するガスは、 ガス冷却機 2 0にて冷却され、 集塵機 2 1にて、 酸化亜鉛 ( Z n O ) を含む高亜鉛二次ダス ト Dと して回 収され、 排ガスは、 ブロア 2 2を介して煙突' 2 3から排出される。
また、 濃縮槽 1 2及び双ロール式圧搾脱水機 1 4から排出される 水分は、 返送水槽 2 4に集められ、 水処理設備 2 5にて処理された 後、 原料の攪拌に必要な水は、 返送水 W 1 と して返送水ポンプ 2 6 にて攪拌槽 1 に返送され、 残りは放水される (図中、 W 2 ) 。
このよ う にして、 製鉄廃棄物中の揮発性有害物質と酸化亜鉛 ( Z n O ) を別々に回収することができる。
図 1 に示す実施態様では、 攪拌槽 1 にて炭材 Cを攪拌混合するが 図 4に示すように、 製鉄廃棄物 Xと p H調整剤 Yとを水中で攪拌 混合した後に圧縮して脱水したスラリ一に炭材 Cを添加して、 混練 機 2 7を用いて混練してもよい。 また、 成形機 1 6が混練機能を兼ね備えたものであれば、 混練機 2 7はなくてもよい。
(実施例 2 )
本発明を用いて電炉ダス ト (製鉄廃棄物) を処理した結果を、 以 下に示す。
本発明を用いて電炉ダス トを洗浄し 、 成分分析を行った結果を表 3に、 また、 各成分の除去率を表 4に示す。 '
試験条件は、 洗浄液温度を 6 0 °C、 洗浄水/ダス ト比を 1 0、 攪 拌時間を 3 0分と した。
表 3
Figure imgf000041_0001
表 4
Figure imgf000041_0002
表 3及び表 4に示すよ うに、 p Hを調整しないで電炉ダス トを洗 浄すると、 p H 6 . 7の弱酸性を示し、 その時の C 1 除去率は約 5 2 %にとどまったが、 N a O Hを添加し p H約 9〜 1 2にすると、 C 1 除去率は約 9 0 %まで上昇し、 Z nのロスも非常に小さかった なお、 p Hが約 1 3まで上昇しても、 C 1 除去率の上昇は頭打ち で、 Z nロスが増加した。
このときの濾液濃度 (ppm) を表 5に示す。
表 5 (単 : ppm)
Figure imgf000042_0001
いずれの場合も、 日本における一般的な放流基準 : P b く 0 . 1 ppmを上回っているので、 放流するには水処理が必要である。
水処理は、 一般に行われている p H調整剤 F e C 1 3と高分子凝 集剤の添加により、 P b く 0 . 1 ppmにでき、 放流可能にすること ができた。
次に、 製鉄廃棄物に粉コータスを添加して加熱還元し、 二次ダス トを捕集して還元試験を行った。 その結果を表 6に示す。
表 6
Figure imgf000042_0002
洗浄しないダス トを還元したときの二次ダス トは、 C 1 が約 1 6 %、 ( N a + K ) が約 9 %、 Z nが約 5 5 %と、 Z nの純度が低か つたが、 p H約 9で洗浄したダス トを還元したときの二次ダス トは 、 C 1 が約 2 %、 ( N a + K ) が約 1 %、 Z nが約 7 0 % ( Z n O が約 8 8 % ) となり、 Z n純度が大幅に向上した。
また、 p H調整剤と して、 前記の N a O Hの代わりにゴミ溶融炉 飛灰を使用して試験を行った。 試験に使用したゴミ溶融炉飛灰の成 分を表 7に、 試験結果を表 8に、 また、 各成分の除去率を表 9に示 す。
試験条件は、 洗浄温度を 6 0 °C、 洗浄水/ダス ト比を 1 0、 攪拌 時間を 3 0分とした。
表 7
Figure imgf000043_0001
表 8
Figure imgf000043_0002
表 9
Figure imgf000043_0003
表 7に示すように、 ゴミ溶融炉飛灰は、 p Hが約 1 1で、 強アル カ リ性を示した。 これは、 溶融炉の排ガス中に含まれる H C 1 ガス を中和するために排ガス中に吹き込んだ硝石灰 (C a (OH)2) が 、 飛灰中に残存するためである。
従って、 上記飛灰は C a分も高く、 塩基度 ( C a OZ S i O2) が約 3であった。
表 8に示すように、 洗浄時に、 ゴミ溶融炉飛灰を電炉ダス トに対 して質量比で 1 0 %添加し、 p Hを約 1 0にすると、 C 1 除去率を 約 9 0 %まで上昇させることができ、 Z nのロスも非常に小さくな つた。
また、 塩基度 (C a OZ S i O2) も、 ゴミ溶融炉飛灰添加前の 約 0. 6から 0. 9以上に上昇した。
次に、 電気炉ダス トに粉コータスを添加し、 還元を行ない、 二次 ダス トを捕集した。 その結果を表 1 0に示す。 P T/JP2003/011654 表 1 0
Figure imgf000044_0001
洗浄しないダス トを還元した時の二次ダス トは、 C 1 が約 1 6 % 、 ( N a + K ) が約 9 %、 Z nが約 5 5 % ( Z n Oが約 6 8 % ) と 、 Z n純度が低かったが、 洗浄時に、 ゴミ溶融炉飛灰を電炉ダス ト に対する質量比で 1 0 %添加して、 p Hを約 1 0にすると、 C 1 が 約 2 . 6 %、 ( N a + K ) が約 1 . 7 %、 Z nが約 6 9 % ( Z n O が約 8 6 % ) となり、 Z n純度が大幅に向上した。
〔産業上の利用可能性〕
本発明により、 回転炉床式還元炉を操業において、 アルカ リ金属 とハロゲン元素を多く含む原料を使用しても、 排ガス処理装置への ダス ト付着問題を回避することができ、 金属酸化物を経済的に還元 して、 鉄やニッケルなどの金属素材を製造するこ とができる。
特に、 排ガス処理装置に、 廃熱ボイラーや熱交換器などの廃熱回 収装置が設置されている場合は、 本発明が効果を発揮する。
また、 本発明を実施することによ り、 排ガス中ダス トにおける亜 鉛や鉛の純度を高めることができ、 このダス トを、 亜鉛と鉛の良質 な資源として回収することができる。
さらに、 本発明によれば、 p Hを調整した製鉄廃棄物を洗浄する ことによ り、 揮発性有害物質 (塩化力リ ウム、 塩化ナト リ ウム等) と酸化亜鉛 ( Z n O ) と別々に回収でき、 しかも、 原料を移動炉床 炉に装入する前に乾燥する必要がない製鉄廃棄物の処理方法と処理 装置を提供することができるうえ、 回収できる酸化亜鉛の純度が著 しく向上するなど、 産業上著しい効果を奏する。
P H調整剤にゴミ溶融炉又は焼却炉の飛灰を使用するこ とで、 高 価な N a O H等の薬剤の使用量をなくすか又は低減することができ る。
また、 洗浄後の塩基度 (C a O/ S i 02) が 0. 9以上になる ので、 この洗浄後の材料を移動床式還元炉で還元して、 電気炉等に 鉄源としてリサイクルすれば、 塩基度調整のために使用する C a O の量を低減することができる。

Claims

請 求 の 範 囲
1 . 金属酸化物を含有し、 かつ、 アルカリ金属とハロゲン元素を 含有する粉体を原料と し、 該原料と水を混合してスラリ一を製造し 、 次いで脱水し、 該脱水物を回転炉床式還元炉に投入して還元する ことを特徴とする金属酸化物の還元処理方法。
2 . 金属酸化物を含有し、 かつ、 アルカリ金属とハロゲン元素を 含有する粉体を原料と し、 該原料と水を混合してスラリ一を製造し 、 次いで脱水し、 該脱水物と他の原料を混合し、 該混合物を回転炉 床式還元炉に投入して還元することを特徴とする金属酸化物の還元 処理方法。
3 . 金属酸化物を含有し、 かつ、 アルカ リ金属とハロゲン元素を 含有する粉体と炭素を含有する粉体の混合粉体を原料とし、 該原料 と水を混合してス ラ リ ーを製造し、 次いで脱水し、 該脱水物を回転 炉床式還元炉に投入して還元することを特徴とする金属酸化物の還 元処理方法。
4 . 金属酸化物を含有し、 かつ、 アルカリ金属とハロゲン元素を 含有する粉体と炭素を含有する粉体の混合粉体を原料とし、 該原料 と水を混合してスラリーを製造し、 次いで脱水し、 該脱水物と他の 原料を混合し、 該混合物を回転炉床式還元炉に投入して還元するこ とを特徴とする金属酸化物の還元処理方法。
5 . 前記粉体が、 アルカリ金属とハロゲン元素を、 合計で 0 . 1 質量0 /0以上含有することを特徴とする請求の範囲 1〜4のいずれか に記載の金属酸化物の還元処理方法。
6 . 前記スラ リ ーにおける粉体と水の質量比率が 1対 1 . 5以上 であり、 かつ、 前記脱水物における粉体と水の質量比率が 1対 0 . 4以下であることを特徴とする請求の範囲 1〜5のいずれかに記载 の金属酸化物の還元処理方法。
7. 前記スラ リ ーの製造において、 スラ リ ーを 8 0 °C以下に加熱 して攪拌することを特徴とする請求の範囲 1 ~ 6のいずれかに記载 の金属酸化物の還元処理方法。
8. 前記原料として、 酸化鉄と ともに酸化亜鉛及び/又は酸化鉛 を含有し、 かつ、 アルカリ金属とハロゲン元素を、 アルカリ塩のモ ル数の合計と亜鉛と鉛のモル数の合計との比アル力リ / (亜鉛 +鉛 ) で 0. 1以上含有する粉体を用いることを特徴とする請求の範囲 1、 2、 及び、 5〜 7のいずれかに記載の金属酸化物の還元処理方 法。
9. 前記原料として、 酸化鉄と ともに酸化亜鉛及び/又は酸化鉛 を含有する粉体と炭素を含有する粉体を混合した粉体であって、 ァ ルカリ金属とハロゲン元素を、 アル力 リ塩のモル数の合計と亜鉛と 鉛のモル数の合計との比アルカ リ Z (亜鉛 +鉛) で 0. 1以上含有 する混合粉体を用いることを特徴とする請求の範囲 3、 4、 及び、 5 ~ 7のいずれかに記載の金属酸化物の還元処理方法。
1 0. 前記粉体を水と混合して製造したスラ リ ーの p Hが 7〜 1 1. 5であることを特徴とする請求の範囲 8に記載の金属酸化物の 還元処理方法。
1 1. 前記混合粉体を水と混合して製造したスラ リ ーの P Hが 7 〜 1 1. 5であることを特徴とする請求の範囲 9に記載の金属酸化 物の還元処理方法。
1 2. 前記脱水物を空隙率 3 5 %以上の湿潤成形体に成形し、 該 成形体を、 乾燥せずに回転炉床式還元炉に投入して還元することを 特徴とする請求の範囲 1〜 1 1のいずれかに記載の金属酸化物の還 元処理方法。
1 3. 前記脱水物における粉体と水の質量比率を 1対 0. 2〜 1 対 0 . 4 と し、 該脱水物を、 平均体積 1 0 0 0 O mm3以下の湿潤成 形体に成形することを特徴とする請求の範囲 1 2に記載の金属酸化 物の還元処理方法。
1 4 . 前記成形体が含有する酸素と炭素のモル比率を 1対 0 . 6 〜 1対 1 . 5 と し、 該成形体を回転炉床式還元炉に投入し、 ガス温 度 1 2 0 0 °C以上の炉内部分に 8分以上滞留せしめて還元すること を特徴とする請求の範囲 1 3に記載の金属酸化物の還元処理方法。
1 5 . 前記回転炉床式還元炉が、 廃熱ボイラーと空気予熱器の少 なく ともいずれか一方を有する排ガス処理設備を備えていることを 特徴とする請求の範囲 1〜 1 4のいずれかに記載の金属酸化物の還 元処理方法。
1 6 . 前記粉体が製鉄廃棄物であることを特徴とする請求の範囲 1〜 1 5のいずれかに記載の金属酸化物の還元方法。
1 7 . 請求の範囲 1〜 1 6のいずれかに記載の金属酸化物の還元 処理方法において発生した排ガス中のダス トを、 亜紿及び/又は鉛 の原料として回収することを特徴とする亜鉛及び/又は鉛の濃縮 · 回収方法。
1 8 . 製鉄廃棄物、 p H調整剤及び炭材を水中で攪拌混合し、 次 いで濃縮してスラ リ一を製造し、
該スラ リ—を圧搾して脱水し、
該脱水物を押出して成形体に成形し、
該成形体を移動床式還元炉に投入して還元すると ともに、 発生す る酸化亜鉛含有の二次ダス トを回収することを特徴とする製鉄廃棄 物の還元処理方法。
1 9 . 製鉄廃棄物と p H調整剤を水中で攪拌混合し、 次いで濃縮 してスラリ一を製造し、
該スラ リ一を圧搾して脱水し、 該脱水物に炭材を添加して混練し、
該混練物を押出して成形体に成形し、
該成形体を移動床式還元炉に投入して還元すると ともに、 発生す る酸化亜鉛含有の二次ダス トを回収することを特徴とする製鉄廃棄 物の還元処理方法。
2 0 . 前記 p H調整剤が O H—基を含む物質であることを特徴と する請求の範囲 1, 8又は 1 9に記載の製鉄廃棄物の還元処理方法。
2 1 . 前記 p H調整剤がゴミ溶融炉又は焼却炉から排出される飛 灰であることを特徴とする請求の範囲 1 8〜 2 0のいずれかに記載 の製鉄廃棄物の還元処理方法。
2 2 . 前記 p H調整剤で p Hを調整したスラリーの p Hが 8以上 であることを特徴とする請求の範囲 1 8〜 2 1のいずれかに記載の 製鉄廃棄物の還元処理方法。
2 3 . 前記脱水物が、 該脱水物の 1 6〜 2 7質量%の水分を含有 することを特徴とする請求の範囲 1 8〜2 2のいずれかに記載の製 鉄廃棄物の還元処理方法。
2 4 . 製鉄廃棄物を還元処理する装置であって、
製鉄廃棄物、 P H調整剤及び炭材を水中で攪拌混合する攪拌槽、 該攪拌混合物を濃縮してスラリ一とする濃縮槽、
循環移動する濾布の上下に配置した一対以上のロールで、 該濾布 上に注がれたスラリ一を圧搾して脱水する脱水機、
該脱水物を穴型から押出して成形する成形機、
該成形体を還元する移動床式還元炉、 及び、
該移動床式還元炉にて発生する酸化亜鉛含有の二次ダス トを回収 する集塵機、
を備えることを特徴とする製鉄廃棄物の還元処理装置。
2 5 . 製鉄廃棄物を還元処理する装置であって、 製鉄廃棄物及び p H調整剤を水中で攪拌混合する攪拌槽、 該攪拌混合物を濃縮してスラリ一とする濃縮槽、
循環移動する濾布の上下に配置した一対以上のロールで、 該濾布 上に注がれたスラ リ一を圧搾して脱水する脱水機、
該脱水物に炭材を添加して混練する混練機、
該混練物を穴型から押出して成形する成形機、
該成形体を還元する移動床式還元炉、 及び、
該移動床式還元炉にて発生する酸化亜鉛含有の二次ダス トを回収 する集塵機、
を備えることを特徴とする製鉄廃棄物の還元処理装置。
PCT/JP2003/011654 2002-09-13 2003-09-11 金属酸化物又は製鉄廃棄物の還元処理方法、及び、亜鉛及び/又は鉛の濃縮・回収方法 WO2004024961A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/527,809 US7879132B2 (en) 2002-09-13 2003-09-11 Method for reduction treatment of metal oxide or ironmaking waste and method for concentration and recovery zinc and/or lead
EP20030795407 EP1561829B1 (en) 2002-09-13 2003-09-11 Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead.
AU2003262090A AU2003262090A1 (en) 2002-09-13 2003-09-11 Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead
US12/930,952 US8308844B2 (en) 2002-09-13 2011-01-19 Method of reduction treatment of metal oxides or steelmaking waste and method of concentrating and recovering zinc and/or lead

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002268414 2002-09-13
JP2002-268414 2002-09-13
JP2003014268A JP4299548B2 (ja) 2003-01-23 2003-01-23 酸化金属の還元方法、および、亜鉛および鉛の濃縮方法
JP2003-14268 2003-01-23
JP2003-107420 2003-04-11
JP2003107420A JP4236980B2 (ja) 2002-09-13 2003-04-11 製鉄廃棄物の処理装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10527809 A-371-Of-International 2003-09-11
US12/930,952 Continuation US8308844B2 (en) 2002-09-13 2011-01-19 Method of reduction treatment of metal oxides or steelmaking waste and method of concentrating and recovering zinc and/or lead

Publications (1)

Publication Number Publication Date
WO2004024961A1 true WO2004024961A1 (ja) 2004-03-25

Family

ID=31998768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011654 WO2004024961A1 (ja) 2002-09-13 2003-09-11 金属酸化物又は製鉄廃棄物の還元処理方法、及び、亜鉛及び/又は鉛の濃縮・回収方法

Country Status (7)

Country Link
US (2) US7879132B2 (ja)
EP (2) EP1561829B1 (ja)
KR (1) KR100703112B1 (ja)
CN (1) CN100374587C (ja)
AU (1) AU2003262090A1 (ja)
TW (1) TWI269813B (ja)
WO (1) WO2004024961A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415964A (zh) * 2021-06-29 2021-09-21 徐长飞 一种污泥预处理系统及工艺

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234388B1 (ko) * 2008-04-25 2013-02-18 제이에프이 스틸 가부시키가이샤 환원철의 제조 방법
KR101117114B1 (ko) * 2010-04-09 2012-02-22 한국알엔엠 주식회사 전기로 제강분진에 함유된 납염화물로부터 납 추출 방법
CN102389890B (zh) * 2011-08-09 2015-07-01 上海奥达科股份有限公司 一种工业废渣的处理方法
KR101181376B1 (ko) * 2012-03-20 2012-09-19 한국지질자원연구원 페로망간 합금철 제련부산물로부터 페로망간 합금철 원료 제조 방법
KR101504836B1 (ko) * 2013-10-10 2015-03-30 주식회사 포스코 탄재 내장 브리켓의 제조장치 및 이를 이용한 제조방법
RU2607858C1 (ru) * 2015-07-01 2017-01-20 Государственное унитарное предприятие учебно-научно-производственный центр "Экология" Министерства охраны окружающей среды и природных ресурсов Республики Северная Осетия-Алания Способ выщелачивания вельц-окислов
CN105648228B (zh) * 2016-03-25 2017-09-05 江苏省冶金设计院有限公司 用于处理含铅锌冶炼渣的转底炉
JP6427829B2 (ja) * 2016-03-31 2018-11-28 大陽日酸株式会社 冷鉄源の溶解・精錬炉、及び溶解・精錬炉の操業方法
TWI660048B (zh) * 2018-03-26 2019-05-21 郭風坤 焚化回收不鏽鋼材料之處理方法
CN112442589B (zh) * 2019-08-29 2022-07-19 宝山钢铁股份有限公司 一种垃圾焚烧飞灰与钢铁厂含锌尘泥协同处理的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329122B2 (ja) * 1974-01-12 1978-08-18
JPS55104434A (en) * 1979-02-06 1980-08-09 Dowa Mining Co Ltd Treating method for iron manufacturing dust containing zinc
JPH10265861A (ja) * 1997-03-24 1998-10-06 Sumitomo Metal Mining Co Ltd 二次飛灰からの有価物の回収方法
JP2001294942A (ja) * 2000-04-12 2001-10-26 Nippon Steel Corp ダストの処理方法
JP2002194452A (ja) * 2000-12-25 2002-07-10 Aichi Steel Works Ltd 電気炉ダストの処理方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261108A (en) * 1975-11-14 1977-05-20 Sumitomo Metal Ind Ltd Dezincifition method of blast furnace dust and its apparatus
US4133756A (en) * 1976-02-20 1979-01-09 Sumitomo Heavy Industries, Ltd. Method for dehydrating a mixed dust slurry
JPS5329122A (en) 1976-08-31 1978-03-18 Nippon Chemical Ind Aperture control type automatic exposure controller for camera
JPS5534685A (en) * 1978-09-05 1980-03-11 Tokuyama Soda Co Ltd Recovering method for luppe from waste slag
JPS6053090B2 (ja) * 1983-07-26 1985-11-22 住友金属鉱山株式会社 鉄鋼ダストからΖnおよびPbを回収する方法
US5942198A (en) * 1992-01-15 1999-08-24 Metals Recycling Technologies Corp. Beneficiation of furnace dust for the recovery of chemical and metal values
DE4209891A1 (de) * 1992-03-26 1993-09-30 Badische Stahlwerke Verfahren zur Aufbereitung von Zink und Blei enthaltenden Hüttenwerksstaub
US5851490A (en) * 1995-05-11 1998-12-22 Metals Recycling Technologies Corp. Method for utilizing PH control in the recovery of metal and chemical values from industrial waste streams
US5873925A (en) * 1995-08-25 1999-02-23 Maumee Research & Engineering, Inc. Process for treating iron bearing material
US6669864B1 (en) * 1996-08-14 2003-12-30 Discovery Resources, Inc. Compositions for improved recovery of metals
DE19640869B4 (de) * 1996-10-04 2010-08-12 Ruhr-Zink Gmbh Verfahren zur Gewinnung von Wertmetallen, insbesondere Zink, aus Chlor oder Fluor enthaltenden Rohstoffen
FR2777294B1 (fr) * 1998-04-08 2000-12-15 Recupac Procede de traitement de poussieres d'acieries
JP2000128530A (ja) * 1998-10-30 2000-05-09 Mitsui Mining & Smelting Co Ltd 粗酸化亜鉛粉末の処理方法
JP3637223B2 (ja) 1998-12-04 2005-04-13 新日本製鐵株式会社 回転炉床の排ガス処理装置
JP4047495B2 (ja) * 1999-07-21 2008-02-13 新日本製鐵株式会社 回転炉床法の排ガス処理設備の操業方法
CN100554448C (zh) * 1999-10-15 2009-10-28 株式会社神户制钢所 还原金属制造设备以及还原金属的制造方法
US6755888B2 (en) * 1999-12-13 2004-06-29 Nippon Steel Corporation Facility for reducing metal oxide, method for operating the facilities and moldings as raw material to be charged to reduction furnace
JP4355981B2 (ja) 2000-03-28 2009-11-04 日立化成工業株式会社 フェノール樹脂成形材料組成物
JP3737928B2 (ja) * 2000-04-25 2006-01-25 新日本製鐵株式会社 回転炉床式還元炉の操業方法、および、酸化金属の還元設備
JP4264188B2 (ja) 2000-10-04 2009-05-13 新日本製鐵株式会社 酸化金属の還元方法
JP3635255B2 (ja) 2001-09-14 2005-04-06 新日本製鐵株式会社 回転炉床式還元炉の操業方法
US6648942B2 (en) * 2001-01-26 2003-11-18 Midrex International B.V. Rotterdam, Zurich Branch Method of direct iron-making / steel-making via gas or coal-based direct reduction and apparatus
EP1439236B1 (en) 2001-09-27 2012-12-05 Nippon Steel Corporation Method for drying molding containing oxidized metal, method for reducing oxidized metal and rotary hearth type metal reduction furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329122B2 (ja) * 1974-01-12 1978-08-18
JPS55104434A (en) * 1979-02-06 1980-08-09 Dowa Mining Co Ltd Treating method for iron manufacturing dust containing zinc
JPH10265861A (ja) * 1997-03-24 1998-10-06 Sumitomo Metal Mining Co Ltd 二次飛灰からの有価物の回収方法
JP2001294942A (ja) * 2000-04-12 2001-10-26 Nippon Steel Corp ダストの処理方法
JP2002194452A (ja) * 2000-12-25 2002-07-10 Aichi Steel Works Ltd 電気炉ダストの処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1561829A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415964A (zh) * 2021-06-29 2021-09-21 徐长飞 一种污泥预处理系统及工艺

Also Published As

Publication number Publication date
EP2100978A1 (en) 2009-09-16
TWI269813B (en) 2007-01-01
US20060096419A1 (en) 2006-05-11
US20110113926A1 (en) 2011-05-19
EP1561829A1 (en) 2005-08-10
US8308844B2 (en) 2012-11-13
KR100703112B1 (ko) 2007-04-06
US7879132B2 (en) 2011-02-01
KR20050042498A (ko) 2005-05-09
EP1561829A4 (en) 2007-12-26
CN1681949A (zh) 2005-10-12
EP2100978B1 (en) 2014-08-27
AU2003262090A1 (en) 2004-04-30
TW200404897A (en) 2004-04-01
EP1561829B1 (en) 2013-12-18
CN100374587C (zh) 2008-03-12

Similar Documents

Publication Publication Date Title
US8308844B2 (en) Method of reduction treatment of metal oxides or steelmaking waste and method of concentrating and recovering zinc and/or lead
CN112442589B (zh) 一种垃圾焚烧飞灰与钢铁厂含锌尘泥协同处理的方法及系统
CN100469907C (zh) 含锌电炉粉尘的处理方法
JP3339638B2 (ja) 鋳物ダストから鉛と亜鉛を除く方法及び装置
CN109652653A (zh) 一种无机危废系统工艺
CN107699698A (zh) 处理铜渣的方法
EP1170384B1 (en) A method of operating a rotary hearth reducing furnace
CN114774684A (zh) 利用转底炉协同处置垃圾焚烧飞灰的方法及系统
CN106148682A (zh) 处理锌浸出渣的方法和系统
WO2009131242A1 (ja) 還元鉄の製造方法
JP2003089823A (ja) 回転炉床式還元炉への転炉ダストリサイクル方法
CN217351485U (zh) 利用转底炉协同处置垃圾焚烧飞灰的系统
JP4299548B2 (ja) 酸化金属の還元方法、および、亜鉛および鉛の濃縮方法
JP2706142B2 (ja) スクラップ予熱炉を有する電気炉における製鋼ダスト類の再利用方法
JP3779873B2 (ja) 回転炉床式還元炉の操業方法
CN107557532A (zh) 一种处理冶金除尘灰的方法
CN109371251B (zh) 一种含铬、镍除尘灰的处理方法
CN206256125U (zh) 铁矾渣的处理系统
CN111961861A (zh) 一种电镀污泥资源化利用方法
JP3996724B2 (ja) 還元用回転炉床法の操業方法
JP2003082418A (ja) 回転炉床式還元炉への転炉ダストリサイクル方法
PL225632B1 (pl) Sposób odzysku i separacji tlenku cynku w pirometalurgicznym procesie aglomeracji drobnoziarnistych odpadów, zwłaszcza hutniczych
JP2004076089A (ja) 低融点有価物の回収方法及び装置
CN107557575A (zh) 一种处理冶金尘泥废料的工艺
WO2004081240A1 (ja) 回転炉床式還元炉への転炉ダストリサイクル方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057004200

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003795407

Country of ref document: EP

Ref document number: 20038217619

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004200

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003795407

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006096419

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527809

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10527809

Country of ref document: US