WO2004019665A1 - Verfahren zur herstellung von hochfrequenztechnisch verwendbaren elektrischen leitungsstrukturen - Google Patents

Verfahren zur herstellung von hochfrequenztechnisch verwendbaren elektrischen leitungsstrukturen Download PDF

Info

Publication number
WO2004019665A1
WO2004019665A1 PCT/DE2003/002227 DE0302227W WO2004019665A1 WO 2004019665 A1 WO2004019665 A1 WO 2004019665A1 DE 0302227 W DE0302227 W DE 0302227W WO 2004019665 A1 WO2004019665 A1 WO 2004019665A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
etching
frequency technology
structure carrier
laser
Prior art date
Application number
PCT/DE2003/002227
Other languages
English (en)
French (fr)
Inventor
Georg Busch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP03792118A priority Critical patent/EP1527659A1/de
Priority to JP2004529701A priority patent/JP2005535146A/ja
Publication of WO2004019665A1 publication Critical patent/WO2004019665A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0242Structural details of individual signal conductors, e.g. related to the skin effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/062Etching masks consisting of metals or alloys or metallic inorganic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/027Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles

Definitions

  • the invention relates to a method for producing high-frequency electrical line structures on a line structure carrier.
  • Chemical tin can be applied in a thickness of approx. 1 ⁇ m.
  • An amorphous resist can even be applied in a thickness of significantly less than 20 ⁇ m.
  • Previous resists had a layer thickness of significantly greater than 20 ⁇ m.
  • the much thinner resists enable lasering in a much more precise way. With an optimized manufacturing process, structures down to the 20 or 10 ⁇ m range are possible. These fine structures enable the formation of electrical line structures that can be used by high-frequency technology and replace the otherwise required conventional components with the corresponding disadvantages.
  • the line structures are designed in such a way that they form capacitors, coils and resistors that are effective in terms of high-frequency technology, each with the desired values in the smallest space.
  • the laser structuring method allows structuring z. B. compared to photo-technical processes in a relatively simple manner and still at high speed.
  • the combination of a laser structuring method with an etching method has the further advantage that entire areas can be removed simultaneously with the removal of other areas. This saves time, but is also often necessary so that the electrical line structures used in high-frequency technology are not negatively influenced by the electrical voltage fields that may be present through the full-area areas.
  • this method enables structured conductor tracks with small tolerances to be realized on the inner layers or on the outer layers of a printed circuit board as a microstrip conductor with almost any function over the entire production benefit.
  • the width of the conductor tracks can be narrowed down almost as desired. Tolerances of ⁇ +/- 5 ⁇ m are already possible today. In the past, typical tolerances were in the range of sizes of +/- 25 ⁇ m.
  • FR 4 carrier material is then used as a line structure carrier. This material is well known and inexpensive.
  • FIG. 1 shows a basic process sequence of the method according to the invention
  • Figure 2 shows a part of a larger produced by the method according to the Figure 1 circuit board structure in cross-section with a high frequency can be used industrially and a non-high-frequency-technologically usable line structure
  • Figure 3 is a ⁇ size comparison between a line structure according to the invention and according to an appropriate conventional technique
  • Figures 4 to 7 a step-by-step realization of a coil produced according to the invention
  • Figures 8 to 10 a side view of three finished
  • Figures 11 and 12 further applications according to the invention, Figures 13 to 16 application examples according to the invention with respect to a capacitor, a coil, a resistor and a moisture sensor.
  • the partial laser structured conductor pattern shown in FIG. 1 shows a line structure carrier 1 (substrate, for example an FR4 circuit board), the surface of which is pretreated in an initial coating phase in such a way that a thin layer chemical copper can be applied.
  • a further copper layer in the present exemplary embodiment with a total layer thickness of up to 20 ⁇ m, is then applied in a subsequent electrolytic coating.
  • ne thin resist layer here consisting of chemical tin with a layer thickness of approx. 1 ⁇ m, applied.
  • a structuring phase follows the coating phase.
  • the structuring is carried out according to FIG. 1 with a laser.
  • the chemical tin layer is milled away at the points at which the copper layer below the chemical tin layer is to be removed later.
  • the exposed copper layer is etched away. Finally, the chemical tin layer still present is stripped away.
  • FIG. 2 a line structure according to the invention is shown in the top left area, while a conventional line structure is shown in the middle area.
  • FIG. 3 shows size relationships when a predetermined line structure is implemented in accordance with the invention and in accordance with a conventional technique.
  • FIGS. 4 to 7 show the step-by-step realization of a coil realized with a microstrip line according to the invention.
  • a copper surface with an edge length of 1 mm is shown in FIG.
  • the copper surface is structured with a laser in the individual production steps.
  • a coil in the form of a worm can already be seen in FIG. In FIG. 6, the disruptive corner surfaces have been removed. In Figure 7 the coil is finished.
  • FIGS. 8 to 10 finished applications based on coils are shown in a respective side view.
  • the shape and size of the figures can be chosen freely. In the illustrated embodiment, the most compact form was chosen.
  • FIG. 11 shows a possible application within the circuit board below a component. In the form shown, no assembly area of the circuit board is required. The coil could also be placed anywhere in the layout.
  • FIG. 12 shows an application as capacitors below a pad (pad).
  • Layer thicknesses down z. B. up to 25 microns can capacitors in the range up to z. B. 20 pF can be realized in the smallest space. These capacitors have the additional advantage that they hardly have an inductive effect.
  • FIG. 13 shows an application with respect to an RF capacitor.
  • FIG. 14 shows an application with respect to an RF coil.
  • FIG. 15 shows an application with respect to an RF resistor and
  • FIG. 16 shows an application with regard to a moisture sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von hochfrequenztechnisch verwendbaren elektrischen Leitungsstrukturen auf einem Leitungsstrukturträger mit Lageabständen wesentlich kleiner als 180 µm, z.B. 30 µm, unter Verwendung von Mikrostreifenleitern angegeben. Gemäss diesem Verfahren erfolgt eine Kombination von einer Laserstrukturierungsmethode mit einer Ätzmethode in Verbindung mit einem Resist, das zumindest bezüglich des Laserns bei der Laserstrukturierungsmethode, des Ätzens bei der Ätzmethode und seiner maximal dünnen Aufbringbarkeit auf den Leitungsstrukturträger Eigenschaften hat, die mindestens denen von chemisch Zinn oder einem amorphen Resist entsprechen.

Description

Beschreibung
Verfahren zur Herstellung von hochfrequenztechnisch verwendbaren elektrischen Leitungsstrukturen
Die Erfindung betrifft ein Verfahren zur Herstellung von hochfrequenztechnisch verwendbaren elektrischen Leitungsstrukturen auf einem Leitungsstrukturtrager.
In der heutigen Leiterplattentechnik sind recht große Strukturen für Resonatoren, Bandpässe, Bandsperren und auch für Spiralinduktivitäten erforderlich. Bei Anwendungen mit dünneren Isolationsschichten beispielsweise in der Größenordnung von 50 μm erlauben die bisher vorhandenen relativ hohen Lei- terbahntoleranzen für Serienprodukte oft nicht die Verwendung von Mikrostreifenleitern. Auf jeden Fall sind die Verwendungsmöglichkeiten von Mikrostreifenleitern durch die relativ hohen Leiterbahntoleranzen stark eingeschränkt. Für hochfrequenztechnische Anwendungen beispielsweise sind sie derzeit nicht geeignet. Bei Anwendungen mit Keramiken werden bei der Fertigung im Vergleich zu als Leitungsstrukturtrager dienende Leiterplatten lange Durchlaufzeiten benötigt. Außerdem ist die Ausbeute bei der Verwendung von Keramiken im Vergleich zu den Leiterplatten deutlich ungünstiger. Weiter eignet sich Keramik nicht als optischer Träger.
Zur Vermeidung der großen Strukturen für Resonatoren, Bandpässe, Bandsperren und auch für Spiralinduktivitäten wurden bisher aus Platzgründen Bauteile auf der Oberfläche der Lei- terplatte eingesetzt. Durch diese Bauteile waren dann die
Kosten erhöht. Dazu kamen noch die Kosten für das Setzen der Bauteile auf die Leiterplatte. Ein weiterer Nachteil war, dass Bestückfläche für die Bauteile auf der Oberfläche der Leiterplatte bereitgestellt werden musste.
Es wurde zwar schon auf sogenannten FR4-Leiterplatten bei genügend großen vorhandenen Flächen im HF-Teil Mikrostreifen- leiter verwendet. Dies beschränkte sich aber insbesondere auf Flächenstellen, die einen vergleichsweise großen Lagenabstand von z. B.> 100 μm zu den HF-Strukturen hatten. Toleranzen in den Leiterbahnen konnten bei diesen Lagenabständen akzeptiert werden.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von hochfrequenztechnisch verwendbaren elektrischen Leitungsstrukturen auf einem Leitungsstrukturtrager mit Lageabständen wesentlich kleiner als 100 μm unter Verwendung von Mikrostreifenleitern anzugeben.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, dass die im Anspruch 1 angegebenen Verfahrensschritte aufweist.
Danach erfolgt eine Kombination von Laserstrukturierungsme- thode und Ätzmethode in Verbindung mit einem Resist mit hoher Haftfestigkeit, das zumindest bezüglich des Laserns bei der Laserstrukturierungsmethode, des Ätzens bei der Ätzmethode und seiner maximal dünnen Aufbringbarkeit auf den Leitungsstrukturtrager Eigenschaften hat, die mindestens denen von chemisch Zinn oder einem amorphen Resist entsprechen.
Chemisch Zinn kann in einer Stärke von ca. 1 μm aufgetragen werden. Ein amorphes Resist kann sogar nur in einer Stärke von deutlich kleiner 20um aufgetragen werden. Je dünner ein Resist aufgetragen werden kann, umso besser ist es für das vorliegende Verfahren. Bisherige Resiste wiesen eine Schicht- stärke von deutlich größer 20 μm auf. Die wesentlich dünneren Resiste ermöglichen das Lasern in einer wesentlich exakteren Weise. Bei einem optimierten Fertigungsprozess sind damit Strukturen bis in den 20- bzw. 10 μm-Bereich und kleiner möglich. Diese feinen Strukturen ermöglichen das Ausbilden von hochfrequenztechnisch verwendbaren elektrischen Leitungsstrukturen, die ansonsten benötigte herkömmliche Bauteile mit den entsprechenden Nachteilen ersetzen. Im Einzelnen können die Leitungsstrukturen in der Weise ausgebildet werden, dass sie hochfrequenztechnisch wirksame Kondensatoren, Spulen und Widerstände mit jeweils gewünschten Werten auf kleinstem Raum bilden. Die Laserstrukturierungsmethode erlaubt dabei eine Strukturierung z. B. gegenüber fototechnischen Verfahren in relativ einfacher Weise und trotzdem mit hoher Geschwindigkeit. Die Kombination von einer Laserstrukturierungsmethode mit einer Ätzmethode hat weiter den Vorteil, dass vollflächige Bereiche gleichzeitig mit dem Wegnehmen- anderer Bereiche entfernt werden können. Dies erspart Zeit, ist aber auch häufig nötig, damit die hochfrequenztechnisch verwendeten elektrischen Leitungsstrukturen durch die möglicherweise durch die vollflächigen Bereiche vorhandenen elektrischen Spannungsfelder nicht negativ beeinflusst werden.
Insgesamt lassen sich durch dieses Verfahren strukturierte Leiterbahnen mit geringen Toleranzen auf den Innenlagen oder auch auf den Außenlagen einer Leiterplatte als Mikrostreifen- leiter mit nahezu beliebigen Funktionen über den gesamten Fertigungsnutzen realisieren. Die Leiterbahnenbreite lässt sich fast beliebig eingrenzen. Heute sind bereits Toleranzen von < +/- 5 μm möglich. Früher lagen typische Toleranzen im Bereich der Größen von +/-25 μm.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.
Danach wird als ein Leitungsstrukturtrager ein FR 4-Träger- material verwendet. Dieses Material ist bekannt und kosten- günstig.
Der Vorteil von chemisch Zinn oder von einem amorphen Resist ist, dass in Verbindung mit. einer Kombination aus einer Laserstrukturierungsmethode und einer Ätzmethode hochfrequenz- technisch verwendbare elektrische .Leitungsstrukturen realisierbar sind. Nachfolgend wird die Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
Figur 1 einen prinzipiellen Verfahrensablauf des Verfahrens gemäß der Erfindung,
Figur 2 einen Teil einer größeren nach dem Verfahren gemäß der Figur 1 hergestellten Leiterplattenstruktur im Querschnitt mit einer hochfrequenztechnisch verwendbaren und einer nicht hochfrequenztechnisch verwendbaren Leitungsstruktur, Figur 3 einen Größenvergleich zwischen einer Leitungsstruktur gemäß der Erfindung und gemäß einer entsprechenden herkömmlichen Technik,
Figuren 4 bis 7 eine schrittweise Realisierung einer erfindungsgemäß hergestellten Spule, Figuren 8 bis 10 eine seitliche Darstellung dreier fertiger
Anwendungen in einer Leiterplatte, die ge- maß der Erfindung realisiert worden sind,
Figuren 11 und 12 weitere Anwendungen gemäß der Erfindung, Figuren 13 bis 16 Anwendungsbeispiele gemäß der Erfindung bezüglich eines Kondensators, einer Spule, eines Widerstandes und eines Feuchtesen- sors.
Das in der Figur 1 gezeigte partielle Laser strukturierte Leiterbild (PHDI: Partial High Density Interconnection) zeigt einen Leitungsstrukturtrager 1 (Substrat, z.B. eine FR4- Leiterplatte) , dessen Oberfläche in einer anfänglichen Beschichtungphase in einer solchen entsprechenden Weise vorbehandelt wird, dass eine dünne Lage chemisch Kupfer aufgebracht werden kann. In einer nachfolgenden elektrolytischen Beschichtung wird dann eine weitere Kupferschicht, in dem vorliegenden Ausführungsbeispiel mit einer Gesamtschichtstärke von bis zu 20 μm, aufgebracht. Im Anschluss daran wird ei- ne dünne Resist-Schicht, hier bestehend aus chemisch Zinn mit einer Schichtstärke von ca. 1 μm, aufgebracht.
Nach der Beschichtungsphase folgt eine Strukturierungsphase. Die Strukturierung wird gemäß der Figur 1 mit einem Laser durchgeführt. In der Strukturierungsphase wird mit dem Laser an denjenigen Stellen, an denen später die unterhalb der chemisch Zinn-Schicht liegende Kupferschicht abgetragen werden soll, die chemisch Zinn-Schicht weggefräst.
Nach der Strukturierungsphase wird, wie gerade angedeutet, die freigelegte Kupfer-Schicht weggeätzt. Abschließend wird die noch vorhandene chemisch Zinn-Schicht weggestrippt.
In der Figur 2 ist im linken oberen Bereich eine erfindungsgemäße Leitungsstruktur gezeigt, während im mittleren Bereich eine herkömmliche Leitungsstruktur gezeigt ist.
Figur 3 zeigt Größenverhältnisse, wenn eine vorgegebene Lei- tungsstruktur gemäß der Erfindung und gemäß einer herkömmlichen Technik realisiert ist.
In den Figuren 4 bis 7 ist die schrittweise Realisierung einer mit einem Mikrostreifenleiter realisierte Spule gemäß der Erfindung wiedergegeben. Dabei ist in der Figur 4 eine Kupferfläche mit einer Kantenlänge von 1 mm dargestellt. Die Kupferfläche wird in den einzelnen Fertigungsschritten mit einem Laser strukturiert. In der Figur 5 ist bereits eine Spule in Form einer Schnecke zu erkennen. In der Figur 6 wur- den die störenden Eckflächen entfernt. In der Figur 7 ist die Spule fertig.
In den Figuren 8 bis 10 sind nochmals in einer jeweiligen seitliche Darstellung fertige Anwendungen basierend hier je- weils auf Spulen dargestellt. Die Form und Größe der Figuren können beliebig gewählt werden. In den dargestellten Ausführungsbeispiel wurde jeweils die kompakteste Form gewählt. In der Figur 11 ist eine mögliche Anwendung innerhalb der Leiterplatte unterhalb eines Bauteils gezeigt. Bei der dargestellten Form wird keine Bestückfläche der Leiterplatte benö- tigt. Die Spule könnte auch an beliebigen anderen Stellen im Layout untergebracht sein.
In der Figur 12 ist eine Anwendung als Kondensatoren unterhalb eines Anschlussflächenstückes (Pad) gezeigt. Durch die Verwendung von geeigneten Isolierschichten und geringen
Schichtdicken herunter z. B. bis zu 25 μm können so Kondensatoren im Bereich bis zu z . B. 20 pF auf kleinstem Raum realisiert sein. Diese Kondensatoren haben zusätzlich den Vorteil, dass sie kaum induktiv wirken.
Figur 13 zeigt eine Anwendung bezüglich eines HF- Kondensators. Figur 14 zeigt eine Anwendung bezüglich einer HF-Spule. Figur 15 zeigt eine Anwendung bezüglich eines HF- Widerstandes und Figur 16 zeigt eine Anwendung bezüglich ei- nes Feuchtesensors.

Claims

Patentansprüche
1. Verfahren zur Herstellung von hochfrequenztechnisch verwendbaren elektrischen Leitungsstrukturen auf einem Leitungs- strukturträger, dadurch gekennzeichnet, dass eine Kombination von Laserstrukturierungsmethode und Ätzmethode angewandt wird unter Einsatz eines Resistes, das zumindest bezüglich des Laserns bei der Laserstrukturierungsmethode, des Ätzens bei der Ätzmethode und seiner maximal dünnen Auf- bringbarkeit auf den Leitungsstrukturtrager Eigenschaften hat, die mindestens denen von chemisch Zinn oder einem amorphen Resist entsprechen.
2. Verfahren nach Anspruch 1, dadurch gekennzeich- net, dass als Leitungsstrukturtrager ein FR4-
Trägermaterial verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Resist chemisch Zinn oder ein amor- phes Resist verwendet wird.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest in einem Umfeld von hochfrequenztechnisch verwendbaren elektrischen Leitungs- Strukturen zumindest großflächig verbleibende elektrische Leitungsstrukturen beseitigt werden.
PCT/DE2003/002227 2002-08-08 2003-07-03 Verfahren zur herstellung von hochfrequenztechnisch verwendbaren elektrischen leitungsstrukturen WO2004019665A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03792118A EP1527659A1 (de) 2002-08-08 2003-07-03 Verfahren zur herstellung von hochfrequenztechnisch verwendbaren elektrischen leitungsstrukturen
JP2004529701A JP2005535146A (ja) 2002-08-08 2003-07-03 高周波技術に使用可能な導体構造を作製する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10236466A DE10236466A1 (de) 2002-08-08 2002-08-08 Verfahren zur Herstellung von hochfrequenztechnisch verwend-baren elektrischen Leitungsstrukturen
DE10236466.4 2002-08-08

Publications (1)

Publication Number Publication Date
WO2004019665A1 true WO2004019665A1 (de) 2004-03-04

Family

ID=30469613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002227 WO2004019665A1 (de) 2002-08-08 2003-07-03 Verfahren zur herstellung von hochfrequenztechnisch verwendbaren elektrischen leitungsstrukturen

Country Status (6)

Country Link
EP (1) EP1527659A1 (de)
JP (1) JP2005535146A (de)
KR (1) KR20050059055A (de)
DE (1) DE10236466A1 (de)
TW (1) TW200406950A (de)
WO (1) WO2004019665A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822853A (zh) * 2020-12-30 2021-05-18 深圳市百柔新材料技术有限公司 一种激光刻蚀电路板线路制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917052B (zh) * 2013-12-30 2017-06-13 天津市德中技术发展有限公司 一种用激光直接成型技术加工电路板的方法
DE102021211807A1 (de) 2021-10-20 2023-04-20 Zf Friedrichshafen Ag Vorrichtung und Verfahren zur Detektion von Feuchtigkeit auf einer Leiterplatte
JP7461437B1 (ja) 2022-10-21 2024-04-03 旭東 陳 微細な相互接続を伴う回路基板を製造するためのサブトラクティブ方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732249A1 (de) * 1987-09-24 1989-04-13 Siemens Ag Verfahren zur herstellung von dreidimensionalen leiterplatten
EP0530564A1 (de) * 1991-09-05 1993-03-10 Siemens Aktiengesellschaft Verfahren zur Herstellung von Leiterplatten
US5474956A (en) * 1995-03-14 1995-12-12 Hughes Aircraft Company Method of fabricating metallized substrates using an organic etch block layer
US5929729A (en) * 1997-10-24 1999-07-27 Com Dev Limited Printed lumped element stripline circuit ground-signal-ground structure
US20020027129A1 (en) * 1999-03-16 2002-03-07 Marcel Heerman Method for introducing plated-through holes into an electrically insulating base material having a metal layer on each side

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732249A1 (de) * 1987-09-24 1989-04-13 Siemens Ag Verfahren zur herstellung von dreidimensionalen leiterplatten
EP0530564A1 (de) * 1991-09-05 1993-03-10 Siemens Aktiengesellschaft Verfahren zur Herstellung von Leiterplatten
US5474956A (en) * 1995-03-14 1995-12-12 Hughes Aircraft Company Method of fabricating metallized substrates using an organic etch block layer
US5929729A (en) * 1997-10-24 1999-07-27 Com Dev Limited Printed lumped element stripline circuit ground-signal-ground structure
US20020027129A1 (en) * 1999-03-16 2002-03-07 Marcel Heerman Method for introducing plated-through holes into an electrically insulating base material having a metal layer on each side

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822853A (zh) * 2020-12-30 2021-05-18 深圳市百柔新材料技术有限公司 一种激光刻蚀电路板线路制作方法

Also Published As

Publication number Publication date
EP1527659A1 (de) 2005-05-04
DE10236466A1 (de) 2004-02-19
JP2005535146A (ja) 2005-11-17
KR20050059055A (ko) 2005-06-17
TW200406950A (en) 2004-05-01

Similar Documents

Publication Publication Date Title
DE2810054C2 (de) Elektronische Schaltungsanordnung und Verfahren zu deren Herstellung
DE4116295C2 (de) Zusammengesetztes elektronisches Bauteil und Verfahren zur Frequenzjustierung
DE69024185T2 (de) Laminiertes LC-Element und sein Herstellungsverfahren
DE69830987T2 (de) Elektronisches bauelement
DE69936827T2 (de) Baugruppe und verfahren zur herstellung
DE69033522T2 (de) Gedruckte Schaltung
DE60201696T2 (de) Elektronische Bauteile und Verfahren zu ihrer Herstellung
DE19645854A1 (de) Verfahren zur Herstellung von Leiterplatten
DE3414808A1 (de) Verfahren zur herstellung eines preiswerten duennfilmkondensators und danach hergestellter kondensator
DE3927711C2 (de) Lamellierte Induktivität
DE19724473A1 (de) Entstörfilteranordnung für Stromrichter und Verfahren zu ihrer Herstellung
EP1314222A1 (de) Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung
DE4011773C2 (de) Durchführungskondensator
DE112022000537T5 (de) Mehrschichtiger Keramikkondensator mit Ultrabreitbandleistung
DE69623867T2 (de) Chip-Antenne
DE4401173C2 (de) Verzögerungsleitung
DE3416107A1 (de) Busleitungsanordnung mit hoher kapazitaet in schichtbauweise
DE19901540A1 (de) Verfahren zur Feinabstimmung eines passiven, elektronischen Bauelementes
DE2361804A1 (de) Verfahren zur herstellung von supraleitenden kontakten und schaltkreisen mit josephson-elementen
DE60211628T2 (de) Zusammengesetzte elektronische bauteile
WO2004019665A1 (de) Verfahren zur herstellung von hochfrequenztechnisch verwendbaren elektrischen leitungsstrukturen
DE69103920T2 (de) Verfahren zur Herstellung von elektromagnetischen Spulen.
EP1070329A1 (de) Trägerkörper für elektronische bauelemente
DE10117290B4 (de) Variabler Drei-Anschluß-Induktor
DE69622922T2 (de) Leiterplatte für Elektronikkomponenten mit hochdichten Anschlüssen und ihre Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003792118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057002065

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004529701

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003792118

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002065

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2003792118

Country of ref document: EP