WO2004016823A1 - シリコン基板又はシリコンスパッタリングターゲット及びこれらの製造方法 - Google Patents

シリコン基板又はシリコンスパッタリングターゲット及びこれらの製造方法 Download PDF

Info

Publication number
WO2004016823A1
WO2004016823A1 PCT/JP2003/006045 JP0306045W WO2004016823A1 WO 2004016823 A1 WO2004016823 A1 WO 2004016823A1 JP 0306045 W JP0306045 W JP 0306045W WO 2004016823 A1 WO2004016823 A1 WO 2004016823A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
less
substrate
silicon substrate
sputtering target
Prior art date
Application number
PCT/JP2003/006045
Other languages
English (en)
French (fr)
Inventor
Kenichi Nagata
Original Assignee
Nikko Materials Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Company, Limited filed Critical Nikko Materials Company, Limited
Publication of WO2004016823A1 publication Critical patent/WO2004016823A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material

Definitions

  • the present invention relates to a method for producing a high-quality (high-density, fine structure or amorphous structure, high-purity) and large-area silicon substrate or silicon sputtering using a high-frequency plasma spray.
  • the present invention relates to a silicon substrate or a silicon sputtering target obtained as described above. Background art
  • a method of manufacturing a silicon substrate used for a semiconductor device a method of slicing a single crystal ingot manufactured by a chocolate method or a floating zone method is generally used, but a large diameter single crystal is manufactured. It is technically difficult to carry out these methods, and these methods are very expensive.
  • powder sintering, melting, and vapor deposition are known as low-cost fabrication methods.
  • the powder sintering method it is difficult to obtain a density of 99% or more, and there is a problem that the oxygen content in the sintered body is high.
  • the melting method can produce a high-density, low-oxygen silicon substrate, but has a problem that cracks are liable to occur when processing the substrate because the crystal becomes huge, and the processing yield is poor.
  • the vapor deposition method has a problem in that the deposition rate is low, so that it is difficult to prepare a substrate, and the cost is extremely high.
  • Such a problem is not limited to the case of directly manufacturing a silicon substrate, and the same problem occurs in the case of manufacturing a silicon sputtering target used for forming a silicon thin film.
  • a thermal spraying method as a method for forming fine particles or a method for forming a coating on a substrate.
  • thermal spraying methods there is a proposal to produce a sputtering target by producing a spherical powder once by using RF thermal plasma spraying and sintering the powder by HIP or the like (Japanese Patent Application Laid-Open No. 2001-342506, Open 2001-2006 5, 2002-180112).
  • the present invention makes it easy to control oxygen and the like, easily adjust the silicon structure at the time of film formation, and without cracks, making it possible to increase the diameter and increase the film thickness.
  • the present invention is a.
  • a silicon substrate or silicon sputtering target characterized by having a relative density of 99.5% or more, an oxygen content of 2000 ppm or less, and a structure having an average crystal grain size of 100 m or less.
  • a silicon substrate or silicon sputtering target characterized by having a relative density of 99.5% or more, an oxygen content of 2000 ppm or less, and a structure having an average crystal grain size of 50 m or less.
  • a silicon substrate or silicon sputtering target characterized by having a relative density of 99.5% or more, an oxygen content of 2000 ppm or less, and a structure having an average crystal grain size of 10 m or less.
  • a silicon substrate or a silicon sputtering target characterized by having a relative density of 99.5% or more, an oxygen content of 2000 ppm or less, and having an amorphous structure.
  • the silicon substrate or silicon sputtering ring as described in 5 above characterized by having a relative density of 99.5% or more, an oxygen content of 2000 ppm or less, and a structure having an average crystal grain size of 100 or less.
  • the silicon substrate or the silicon sputter according to the above item 5 characterized by having a relative density of 99.5% or more, an oxygen content of 2000 ppm or less, and a structure having an average crystal grain size of 50 im or less. Evening Ring Evening Get Manufacturing Method
  • silicon is deposited on a substrate by radio frequency (RF) plasma spraying in the production of a silicon substrate or a silicon sputtering target. It has a remarkable feature that it has a structure or an amorphous structure having an average crystal grain size of 100% or less, more preferably 50 or less, and still more preferably 10 m or less, with a content of 99.5% or more and an oxygen content of 2000 ppm or less. Have.
  • RF radio frequency
  • deposition methods with a high deposition rate include the DC plasma spray method and the
  • the DC plasma spray method has a narrow plasma region, so that a raw material for spraying adheres to a substrate in a semi-molten state, so that a dense silicon deposit cannot be obtained.
  • the arc plasma method uses a substrate as an anode, so that the substrate is at a high temperature, and the substrate is melted or the film reacts with the substrate, and the film is extremely contaminated. is there.
  • this method has a problem in that, during cooling, warpage and cracking may occur due to a difference in thermal expansion coefficient between the substrate and the film-formed product.
  • the DC plasma spray method or the arc plasma spray method cannot be used, and only the high frequency plasma spray method of the present invention is effective.
  • the high-frequency plasma spray has a wide plasma region, it can completely melt or vaporize a silicon raw material to be supplied, and has a feature that a dense film can be formed on a substrate at a high speed with a purification effect of the raw material.
  • an inert gas or a reducing gas can be used as the atmosphere during the plasma spraying, there is an advantage that the oxygen content in the film formation material can be effectively reduced.
  • a substrate used for high-frequency plasma spray film formation it is desirable to use copper, aluminum, or an alloy thereof. All materials have good thermal conductivity and can efficiently cool the base material during silicon film formation.
  • the substrate After spraying silicon, the substrate can be peeled or dissolved and removed, and a silicon substrate or a silicon sputtering target itself can be obtained.
  • a silicon powder having a maximum particle size of 10 O ⁇ m or less, preferably 50 m or less, more preferably a silicon powder having a particle size of 20 m or less is used as a raw material of the high-frequency plasma spray.
  • the raw material powder is fine as described above, it is easier to adjust the crystal grains of the film, and a silicon substrate or a silicon sputtering target having a uniform structure can be obtained.
  • the density of the obtained silicon substrate was 99.9%, and as a result of X-ray diffraction measurement, it was confirmed to be amorphous.
  • the oxygen content of this silicon substrate was 50 ppm.
  • silicon powder obtained by grinding 5N (99.999wt%) silicon particles with a jet mill to a maximum particle size of 15zm was used as a feedstock for high-frequency plasma.
  • High-frequency plasma power 42 kW
  • carrier gas composition Ar + 10% H 2
  • gas flow rate 60 liter / min
  • raw material powder supply rate 50 g / min
  • sprayed onto water-cooled (flow rate 70 liter min) copper substrate Then, a silicon substrate having a diameter of 300 mm and a thickness of 1.5 mm was produced.
  • the density of the obtained silicon substrate was 99.8%, and as a result of X-ray diffraction measurement, it was confirmed to be amorphous.
  • the silicon substrate has an oxygen content of 45 ppm.
  • High-frequency plasma power 42 kW
  • carrier gas composition Ar
  • gas flow rate 60 liters Zmin
  • raw material powder supply rate 50 g / min
  • diameter 300 ⁇
  • thickness 1.
  • a 5 mm silicon substrate was fabricated.
  • the density of the obtained silicon substrate was 99.8%, and as a result of X-ray diffraction measurement, it was confirmed to be amorphous.
  • the oxygen content of this silicon substrate is 1
  • High-frequency plasma power 42 kW
  • carrier gas composition Ar
  • gas flow rate 60 liters Zmin
  • raw material powder supply rate 50 gZmin
  • sprayed on water-cooled (flow rate 70 liters / min) copper substrate diameter: A silicon substrate having a thickness of 30 mm and a thickness of 1.5 mm was manufactured.
  • the density of the obtained silicon substrate was 99.6%, the average crystal grain size was 93 ⁇ m, and the oxygen content was 510 ppm.
  • High-frequency plasma power 42 kW
  • carrier gas composition Ar + 10% H 2
  • gas flow rate 60 liters / min
  • raw material powder supply rate 50 gZmin
  • the density of the obtained silicon substrate was 99.7%, the average crystal grain size was 47 / im, and the oxygen content was 19 ppm.
  • silicon powder obtained by grinding 5 N (99.999 wt%) silicon particles with a jet mill to a maximum particle size of 30 m was used as a feedstock for high-frequency plasma.
  • High-frequency plasma power 42 kW
  • carrier gas composition Ar + 10% H 2
  • gas flow rate 60 l / min gas flow rate 60 l / min
  • raw material powder supply rate 50 g / min
  • water-cooled (water flow rate 30 l / min) aluminum base Spraying was carried out to produce a silicon 1-mm-thick 300 ⁇ silicon evening get plate.
  • the density of the obtained silicon target was 99.7, and the result of X-ray diffraction measurement confirmed that it was polycrystalline silicon.
  • the oxygen content of this silicon substrate was 55 ppm. Also, is the target structure average grain size? Fine crystals of ⁇ 8 m were present.
  • silicon powder obtained by grinding 5 N (99.999 wt%) silicon particles to a maximum particle size of 40 m with a jet mill was used as a feedstock for high-frequency plasma.
  • High-frequency plasma power 42 kW
  • carrier gas composition Ar + 10% H 2
  • gas flow rate 60 l / min gas flow rate 60 l / min
  • raw material powder supply rate 50 g / min
  • the target was sprayed to produce a silicon target plate with a thickness of 15 mm and a thickness of 30 ° ⁇ . Note that a target plate sprayed under the same conditions without cooling the base material was simultaneously produced.
  • the density of the obtained silicon target was 99.6, and the result of X-ray diffraction measurement confirmed that it was polycrystalline silicon.
  • the oxygen content of this silicon substrate was 88 ppm.
  • the evening-get texture was fine crystals with an average grain size of 10 m.
  • the density of the obtained sintered body was 98.5%, and the oxygen content was 2500 ppm.
  • the high-frequency plasma spray of the present invention makes it possible to easily control impurities such as oxygen, to form a large-diameter and thick film, and to produce a high-density amorphous silicon substrate and silicon target. It turns out that it is possible.
  • the above-described substrate cooling target fine crystals having an average crystal grain size of 7 to 8
  • the generation of particles was small, and the uniformity and film composition were uniform.
  • the spatter evening characteristics were good.
  • the silicon substrate and the sputtering target obtained by the high frequency plasma spray of the present invention can easily control impurities such as oxygen, can easily adjust the silicon structure at the time of film formation, and have no cracks. It is possible to increase the diameter and the film thickness, and has an excellent effect of high density. In addition, during sputtering of the target, there is little particle generation, uniformity and uniform film composition, good sputtering characteristics, and stable production of silicon substrates and silicon targets. Has a significant effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、高周波プラズマスプレーにより基材上にシリコンを堆積させ、相対密度99.5%以上、酸素含有量2000ppm以下であり、かつ平均結晶粒径100μm以下又はアモルファス組織を備えているシリコン基板又はシリコンスパッタリングターゲット及びその製造方法に関する。酸素等のコントロールが容易で、成膜時におけるシリコン組織の調整が容易にでき、またクラックの発生がなく、大口径化及び厚膜化が可能であり、かつ高密度である、シリコン基板及びスパッタリングターゲットを得ることができる。また、スパッタリングに際しては、パーティクルの発生が少なく、ユニフォーミティと膜組成が均一で、スパッタ特性が良好であるシリコンターゲット及び該ターゲットを安定して製造できる。

Description

明 細 書 シリコン基板又はシリコンスパッタリング夕一ゲット及びこれらの製造方法 技術分野
この発明は、 高周波プラズマスプレーを用いて、 高品質 (高密度、 微細組織若 しくはアモルファス組織、 高純度) であり、 かつ大面積シリコン基板又はシリコ ンスパッタリング夕一ゲットを製造する方法及びこれによつて得られたシリコン 基板又はシリコンスパッタリングタ一ゲットに関する。 背景技術
従来、 半導体装置に使用するシリコン基板の製造方法としては、 チョコラルス キ一法又は浮遊帯法で作製した単結晶ィンゴットをスライスして作製する方法が 一般的であるが、 大口径の単結晶を作製することは技術的に困難であり、 また、 これらの方法は非常にコストが高いという問題がある。
一方、 低コストで作製する方法としては、 粉末焼結法、 溶解法、 気相堆積法 ( C V D) が知られている。 しかし、 粉末焼結法の場合、 9 9 %以上の密度を得 ることが困難であり、 また焼結体中の酸素含有量が高いと言った問題がある。 また、 溶解法は高密度、 低酸素のシリコン基板を作製できるが、 結晶が巨大と なるので、 基板を加工する際に割れが発生し易く、 加工歩留まりが悪いという問 題がある。 さらに、 気相堆積法は、 堆積速度が遅いので基板作製が難しく、 著し くコスト高になるという問題がある。
このような問題は、 直接シリコン基板を製造する場合に限らず、 シリコン薄膜 を形成するために使用されるシリコンスパッタリングターゲットの製造において も、 同様の問題が発生する。 一般に、 微細な粒子を形成する方法又は基材上に被膜を形成する方法として、 溶射方法がある。 このような溶射法の中で RF熱プラズマ溶射を利用して、 一旦 球状の粉末を製造し、 これを H I P等により焼結してスパッタリングターゲット を製造する提案がある (特開 2001— 342506、 特開 2001— 2006 5、 2002 - 180112) 。
これらの方法において、 球状粉を作製する段階では、 酸素レベルの少ない焼結 用粉末を製造することができる。 しかし、 この粉末を使用して焼結する段階で、 処理容器からの不純物の混入があり、 また特別な工夫をしない限り、 酸素が増大 し、 焼結密度が低下するという問題がある。
したがって、 焼結密度を向上させかつ酸素等の不純物の混入を抑制する取扱又 は付加的な装置のために、 コストが著しく増大する欠点が予想される。 発明の開示
本発明は、 上記の問題を解決するために、 酸素等のコントロールが容易で、 成 膜時におけるシリコン組織の調整が容易にでき、 またクラックの発生がなく、 大 口径化及び厚膜化が可能であり、 かつ高密度である、 シリコン基板及びスパッ夕 リング夕一ゲット及びこれらの製造方法に関し、 またパッタリングに際しては、 パーティクルの発生が少なく、 ュニフォ一ミティと膜組成が均一で、 スパッタ特 性が良好であるシリコンターゲット及び該夕一ゲットを安定して製造できる方法 を得ることを課題とする。
本発明は、
1. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつ平 均結晶粒径 100 m以下の組織を備えていることを特徴とするシリコン基板又 はシリコンスパッ夕リング夕ーゲット
2. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつ平 均結晶粒径 50 m以下の組織を備えていることを特徴とするシリコン基板又は シリコンスパッタリングターゲット 3. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつ平 均結晶粒径 10 m以下の組織を備えていることを特徴とするシリコン基板又は シリコンスパッ夕リングタ一ゲット
4. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつァ モルファス組織を備えていることを特徴とするシリコン基板又はシリコンスパッ 夕リングターゲット、 を提供する。
また、 本発明は、
5. 高周波プラズマスプレーにより基材上にシリコンを堆積させたことを特徴と するシリコン基板又はシリコンスパッ夕リング夕一ゲットの製造方法
6. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平 均結晶粒径 100 以下の組織を備えていることを特徴とする上記 5記載の シリコン基板又はシリコンスパッ夕リングターゲットの製造方法
7. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平 均結晶粒径 50 im以下の組織を備えていることを特徴とする上記 5記載のシ リコン基板又はシリコンスパッ夕リング夕ーゲットの製造方法
8. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平 均結晶粒径 10 m以下の組織を備えていることを特徴とする上記 5記載のシ リコン基板又はシリコンスパッタリングタ一ゲットの製造方法
9. 相対密度 99. 5%以上、 酸素含有量 200 O ppm以下であり、 かつァ モルファス組織を備えていることを特徴とする上記 5〜 8のいずれかに記載の シリコン基板又はシリコンスパッタリングタ一ゲットの製造方法
10. 基材として銅若しくはアルミニウム又はこれらの合金を用いることを特徴 とする上記 5〜 9のそれぞれに記載のシリコン基板又はシリコンスパッ夕リング ターゲッ卜の製造方法
11. シリコンのスプレー後、 基材を剥離又は溶解除去することを特徴とする上 記 5〜 10のそれぞれに記載のシリコン基板又はシリコンスパッ夕リングターゲ ットの製造方法 12. 高周波プラズマスプレーの原料として、 粒径 100 m以下のシリコン粉 末を用いることを特徴とする上記 5〜 1 1のそれぞれに記載のシリコン基板又は シリコンスパッタリングターゲットの製造方法
13. 高周波プラズマスプレーの原料として、 粒径 50 _im以下のシリコン粉末 を用いることを特徴とする上記 5〜 11のそれぞれに記載のシリコン基板又はシ リコンスパッタリングターゲットの製造方法
14. 高周波プラズマスプレーの原料として、 粒径 20 zrn以下のシリコン粉末 を用いることを特徵とする上記 5〜 11記載のシリコン基板又はシリコンスパッ 夕リング夕一ゲッ卜の製造方法
15. 高周波プラズマスプレーにより基材上にシリコンを堆積させる際に、 基材 を冷却することを特徴とする上記 5〜 14のそれぞれに記載のシリコン基板又は シリコンスパッ夕リングタ一ゲットの製造方法
を提供する。 発明の実施の形態
本発明は、 シリコン基板又はシリコンスパッタリングターゲットの製造に際 し、 高周波 (RF) プラズマスプレーにより基材上にシリコンを堆積させるもの であるが、 成膜されたシリコン基板又はシリコンスパッタリングターゲットは、 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平均結 晶粒径 100 以下、 より好ましくは 50 以下、 さらに好ましくは 10 m以下の組織又はアモルファス組織を備えているという著しい特徴を有して いる。
また、 大口径化が可能であり、 厚さを任意に調節でき、 300ππηφ以上の クラックゃ割れが発生しないシリコン基板又はシリコンスパッ夕リングターゲ ットの製造ができる。
成膜速度が速い堆積方法として、 この他に D Cプラズマスプレー法あるいはァ
'一法等が検討された。 しかし、 D Cプラズマスプレー法はプラズマ領域が狭いため、 スプレーのため の供給原料が半溶融状態で基板に付着するため、 緻密なシリコンの堆積物を得る ことができない。 また、 アークプラズマ法は基材をアノードにするため、 高温状 態となり、 基材が溶融しあるいは成膜物と基材とが反応して、 成膜物が極度に汚 染されるという問題がある。 またこの方法では、 冷却時に、 基材と成膜物との熱 膨張係数の差により、 反りや割れの発生があるという問題がある。
したがって、 D Cプラズマスプレ一法あるいはアークプラズマスプレー法は使 用できず、 本発明の高周波プラズマスプレー法のみが有効である。
高周波プラズマスプレーはプラズマ領域が広いため、 供給シリコン原料を完全 に溶融又は気化することができ、 原料の精製効果を伴って、 基材上に緻密な膜を 高速で形成できる特徴を有する。 また、 このプラズマスプレー際に、 雰囲気を不 活性ガス又は還元性ガスを使用できるので、 成膜物質内の酸素含有量を効果的に 低減できるという利点もある。
さらに、 基材を冷却することにより、 組織の微細化又はアモルファス化が可能 であり、 また基材を冷却しているため、 材料の熱膨張差による膜の割れや反りを 防止できる効果を有するという特徴を有する。
高周波プラズマスプレー成膜に使用する基材としては、 銅若しくはアルミニゥ ム又はこれらの合金を用いることが望ましい。 いずれの材料も熱伝導性が良好で あり、 シリコン成膜時に基材を効率的に冷却することができる。
シリコンのスプレー後には、 基材を剥離又は溶解除去することができ、 シリコ ン基板又はシリコンスパッタリングターゲットそれ自体を得ることができる。 高周波プラズマスプレーの原料としては、 最大粒径 1 0 O ^ m以下、 好ましくは 5 0 m以下のシリコン粉末、 さらに好ましくは粒径 2 0 m以下のシリコン粉 末を用いる。 原料粉末が上記のように細かいものを使用すると、 成膜物の結晶粒 の調整がより容易となり、 均一な組織のシリコン基板又はシリコンスパッタリン グターゲットを得ることができる。 高密度で、 かつ結晶粒が細かく均一の組織のシリコンスパッタリングターゲッ トを用いてスパッタリングした場合には、 パーティクルの発生が少なく、 膜のュ ニフォーミティと膜組成が均一で、 スパッ夕特性が良好であるという多くの利点 がある。 実施例及び比較例
次に、 実施例について説明する。 なお、 本実施例は発明の一例を示すための ものであり、 本発明はこれらの実施例に制限されるものではない。 すなわち、 本発明の技術思想に含まれる他の態様及び変形を含むものである。
(実施例 1 )
[シリコン基板の製造]
市販の純度 5N ( 99. 999w t %) シリコン粒をジェットミルで最大粒 径 10 mに粉砕したシリコン粉末を高周波プラズマへの供給原料とした ς 高周波プラズマのパワー: 42 kW、 キヤリャガス組成: Ar + 10%H2、 ガス流量 60リットル/ m i n、 原料粉末供給速度: 50 g/m i nで、 水冷 (流量 80リットルノ m i n) した銅基材にスプレーし、 径: 300mm φ、 厚み: 1mmのシリコン基板を作製した。
得られたシリコン基板の密度は 99. 9%であり、 X線回折測定の結果、 ァ モルファスであることを確認した。 また、 このシリコン基板の酸素含有量は 5 0 p pmであった。
(実施例 2 )
市販の純度 5N (99. 999w t %) シリコン粒をジェットミルで最大粒 径 15 zmに粉砕したシリコン粉末を高周波プラズマへの供給原料とした。 高周波プラズマのパワー: 42 kW、 キヤリャガス組成: A r + 10%H2、 ガス流量 60リットル/ m i n、 原料粉末供給速度: 50 g/m i nで、 水冷 (流量 70リットル m i n) した銅基材にスプレーし、 径: 300mm 、 厚み: 1. 5 mmのシリコン基板を作製した。 得られたシリコン基板の密度は 99. 8 %であり、 X線回折測定の結果、 ァ モルファスであることを確認した。 また、 このシリコン基板の酸素含有量は 4 5 p pmであつ 7こ。
(実施例 3 )
実施例 2と同様に市販の純度 5 N (9 9. 999 w t ) シリコン粒をジェ ットミルで最大粒径 1 5 に粉砕したシリコン粉末を高周波プラズマへの供 給原料とした。
高周波プラズマのパヮ一: 42 kW、 キヤリャガス組成: A r、 ガス流量 6 0リットル Zm i n、 原料粉末供給速度: 5 0 g/m i nで、 水冷 (流量 7 0 リットル Zm i n) した銅基材にスプレーし、 径: 300πιπιφ、 厚み: 1.
5 mmのシリコン基板を作製した。
得られたシリコン基板の密度は 99. 8 %であり、 X線回折測定の結果、 ァ モルファスであることを確認した。 また、 このシリコン基板の酸素含有量は 1
600 p pmであった。
(実施例 4)
市販の純度 5 N (99. 999w t %) 、 平均粒径 78 mのシリコン粉末 を高周波プラズマへの供給原料とした。
高周波プラズマのパワー: 42 kW、 キヤリャガス組成: Ar、 ガス流量 6 0リットル Zm i n、 原料粉末供給速度: 5 0 gZm i nで、 水冷 (流量 70 リットル/ m i n) した銅基材にスプレーし、 径: 30 Οπιπιφ, 厚み: 1. 5 mmのシリコン基板を作製した。
得られたシリコン基板の密度は 99. 6 %であり、 平均結晶粒径は 93 ^m、 酸素含有量は 510 p pmであった。
(実施例 5 )
市販の純度 5 N (9 9. 999 w t ) 、 平均粒径 32 mのシリコン粉末 を高周波プラズマへの供給原料とした。 高周波プラズマのパワー: 42 kW、 キヤリャガス組成: Ar + 10 %H2、 ガス流量 60リットル/ m i n、 原料粉末供給速度: 50 gZm i nで、 水冷
(流量 70リットル/ m i n) した銅基材にスプレーし、 径: 300ιηπιφ、 厚み: 1. 5mmのシリコン基板を作製した。
得られたシリコン基板の密度は 99. 7%であり、 平均結晶粒径は 47 /im、 酸素含有量は 19 p pmであった。
(実施例 6)
[多結晶シリコンターゲッ卜の製造]
市販の純度 5 N (99. 999 w t %) シリコン粒をジェットミルで最大粒 径 30 mに粉砕したシリコン粉末を高周波プラズマへの供給原料とした。
高周波プラズマのパワー: 42 kW、 キヤリャガス組成: Ar + 10 %H2、 ガス流量 60リットル/ m i n、 原料粉末供給速度: 50 g/m i nで、 水冷 (水流量 30リットル/ m i n) したアルミニウム基材にスプレーし、 厚み 1 Omm、 300 πιπιφのシリコン夕一ゲット板を作製した。
得られたシリコンターゲットの密度は 99. 7であり、 X線回折測定の結果、 多結晶シリコンであることを確認した。 また、 このシリコン基板の酸素含有量 は 55 p pmであった。 また、 ターゲット組織は平均結晶粒径?〜 8 mの微 細結晶を呈していた。
(実施例 7 )
[多結晶シリコン夕一ゲットの製造]
市販の純度 5 N (99. 999wt %) シリコン粒をジェットミルで最大粒 径 40 mに粉砕したシリコン粉末を高周波プラズマへの供給原料とした。
高周波プラズマのパヮ一: 42 kW、 キヤリャガス組成: A r + 10 %H2、 ガス流量 60リットル/ m i n、 原料粉末供給速度: 50 g/m i nで、 水冷 (水流量 20リットル _ m i n) したアルミニウム基材にスプレーし、 厚み 1 5mm、 30 Οπιπιφのシリコンターゲット板を作製した。 なお、 基材を冷却 せずに、 同様の条件でスプレーしたターゲット板を同時に作製した。 得られたシリコンターゲットの密度は 99. 6であり、 X線回折測定の結果、 多結晶シリコンであることを確認した。 また、 このシリコン基板の酸素含有量 は 88 p pmであった。 また、 夕ーゲット組織は平均結晶粒径 1 0 mの微細 結晶を呈していた。
上記において、 基材を冷却しない場合は結晶粒が粗大化し、 またクラックの 発生が見られた。
(比較例 1 )
市販の純度 5 Nの高純度 S i粉をジエツトミルで最大粒径 10 im以下に 粉砕した後、 ホットプレス法で 1000〜 1220° ( 、 面圧 250〜 300 k g f /cm2で 2時間焼結した。
得られた焼結体の密度は、 98. 5 %であり、 酸素含有量は 2500 p pm であった。
以上の実施例比較例から、 本発明の高周波プラズマスプレーによって、 酸素等 の不純物がコントロールし易く、 大口径化及び厚膜化が可能であり、 かつ高密度 であるアモルファスシリコン基板及びシリコンターゲットの作製が可能であるこ とが分かった。
また、 冷却条件により成膜時におけるシリコン組織の調整が容易にでき、 また クラック防止のためには、 冷却条件を適宜調節することが望ましいことが分かつ た。
また、 上記基材冷却ターゲット (平均結晶粒径 7〜 8 の微細結晶) を使用 してパッ夕リングを実施したが、 パ一ティクルの発生が少なく、 ュニフォ一ミテ ィと膜組成が均一で、 スパッ夕特性が良好であった。
さらに、 シリコン基板自立体 (自立膜) を作製するためには、 高周波プラズマ スプレー時に使用した基材を硫酸 +過酸化水素等の酸により溶解除去することに より、 容易に得られた。 発明の効果
本発明の高周波プラズマスプレーによつて得たシリコン基板及びスパッタリン グターゲットは、 酸素等の不純物がコントロールし易く、 成膜時におけるシリコ ン組織の調整が容易にでき、 またクラックの発生がなく、 大口径化及び厚膜化が 可能であり、 かつ高密度であるという優れた効果を有する。 またターゲットのス パッタリングの際には、 パーティクルの発生が少なく、 ュニフォーミティと膜組 成が均一で、 スパッタ特性が良好であるという効果を有し、 シリコン基板及びシ リコンターゲットを安定して製造できる著しい効果を有する。

Claims

請 求 の 範 囲 1. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつ平 均結晶粒径 100 j m以下の組織を備えていることを特徴とするシリコン基板又 はシリコンスパッタリングターゲット。
2. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平 均結晶粒径 50 im以下の組織を備えていることを特徴とするシリコン基板又は シリコンスパッタリングターゲット。
3. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつ平 均結晶粒径 10 m以下の組織を備えていることを特徴とするシリコン基板又は シリコンスパッタリングターゲット。
4. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつァ モルファス組織を備えていることを特徴とするシリコン基板又はシリコンスパッ 夕リング夕一ゲット。
5. 高周波プラズマスプレーにより基材上にシリコンを堆積させたことを特徴と するシリコン基板又はシリコンスパッタリング夕一ゲットの製造方法。
6. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平 均結晶粒径 10 以下の組織を備えていることを特徴とする請求の範囲第
5項記載のシリコン基板又はシリコンスパッ夕リングタ一ゲットの製造方法。
7. 相対密度 99. 5%以上、 酸素含有量 2000 ppm以下であり、 かつ平 均結晶粒径 50 m以下の組織を備えていることを特徴とする請求の範囲第 5 項記載のシリコン基板又はシリコンスパッタリング夕ーゲットの製造方法。
8. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつ平 均結晶粒径 1 O^m以下の組織を備えていることを特徴とする請求の範囲第 5 項記載のシリコン基板又はシリコンスパッタリング夕一ゲットの製造方法。
9. 相対密度 99. 5%以上、 酸素含有量 2000 p pm以下であり、 かつァ モルファス組織を備えていることを特徴とする請求の範囲第 5項〜第 8項のい ずれかに記載のシリコン基板又はシリコンスパッタリングターゲットの製造方 法。
1 0 . 基材として銅若しくはアルミニウム又はこれらの合金を用いることを特徴 とする請求の範囲第 5項〜第 9項のそれぞれに記載のシリコン基板又はシリコン スパッタリングターゲットの製造方法。
1 1 . シリコンのスプレー後、 基材を剥離又は溶解除去することを特徴とする請 求の範囲第 5項〜第 1 0項のそれぞれに記載のシリコン基板又はシリコンスパッ 夕リングターゲットの製造方法。
1 2 . 高周波プラズマスプレーの原料として、 粒径 1 0 0 m以下のシリコン粉 末を用いることを特徴とする請求の範囲第 5項〜第 1 1項のそれぞれに記載のシ リコン基板又はシリコンスパッ夕リング夕一ゲットの製造方法。
1 3 . 高周波プラズマスプレーの原料として、 粒径 5 0 m以下のシリコン粉末 を用いることを特徴とする請求の範囲第 5項〜第 1 1項のそれぞれに記載のシリ コン基板又はシリコンスパッ夕リングターゲットの製造方法。
1 4 . 高周波プラズマスプレーの原料として、 粒径 2 0 m以下のシリコン粉末 を用いることを特徴とする請求の範囲第 5項〜第 1 1項記載のシリコン基板又は シリコンスパッタリングターゲットの製造方法。
1 5 . 高周波プラズマスプレーにより基材上にシリコンを堆積させる際に、 基材 を冷却することを特徴とする請求の範囲第 5項〜第 1 4項のそれぞれに記載のシ リコン基板又はシリコンスパッ夕リング夕ーゲットの製造方法。
PCT/JP2003/006045 2002-08-12 2003-05-15 シリコン基板又はシリコンスパッタリングターゲット及びこれらの製造方法 WO2004016823A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002234417 2002-08-12
JP2002/234417 2002-08-12

Publications (1)

Publication Number Publication Date
WO2004016823A1 true WO2004016823A1 (ja) 2004-02-26

Family

ID=31884350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006045 WO2004016823A1 (ja) 2002-08-12 2003-05-15 シリコン基板又はシリコンスパッタリングターゲット及びこれらの製造方法

Country Status (2)

Country Link
TW (1) TW570990B (ja)
WO (1) WO2004016823A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096189A1 (en) * 2008-02-28 2009-09-02 Applied Materials, Inc. Sprayed Si- or Si:Al-target with low iron content
EP2709952A1 (en) * 2011-05-16 2014-03-26 Boston Silicon Materials LLC Manufacturing and applications of silicon metal
CN111118437A (zh) * 2019-12-31 2020-05-08 广州市尤特新材料有限公司 一种旋转硅磷合金靶材及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0358804A1 (en) * 1987-02-25 1990-03-21 General Electric Company RF plasma method of forming multilayer reinforced composites
JPH05222528A (ja) * 1991-12-18 1993-08-31 Asahi Glass Co Ltd セラミックス回転カソードターゲット及びその製造方法
JPH06346232A (ja) * 1993-06-11 1994-12-20 Asahi Glass Co Ltd スパッタリング用ターゲットおよびその製造方法
US5505805A (en) * 1992-03-05 1996-04-09 Industrieanlagen-Betriebsgesellschaft Gmbh Method for the production of reflectors
EP0960955A1 (en) * 1998-05-26 1999-12-01 Universiteit Gent Method and apparatus for flame spraying to form a tough coating
WO2001042522A2 (en) * 1999-12-03 2001-06-14 N.V. Bekaert S.A. Sputtering target and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0358804A1 (en) * 1987-02-25 1990-03-21 General Electric Company RF plasma method of forming multilayer reinforced composites
JPH05222528A (ja) * 1991-12-18 1993-08-31 Asahi Glass Co Ltd セラミックス回転カソードターゲット及びその製造方法
US5505805A (en) * 1992-03-05 1996-04-09 Industrieanlagen-Betriebsgesellschaft Gmbh Method for the production of reflectors
JPH06346232A (ja) * 1993-06-11 1994-12-20 Asahi Glass Co Ltd スパッタリング用ターゲットおよびその製造方法
EP0960955A1 (en) * 1998-05-26 1999-12-01 Universiteit Gent Method and apparatus for flame spraying to form a tough coating
WO2001042522A2 (en) * 1999-12-03 2001-06-14 N.V. Bekaert S.A. Sputtering target and methods of making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096189A1 (en) * 2008-02-28 2009-09-02 Applied Materials, Inc. Sprayed Si- or Si:Al-target with low iron content
US8157975B2 (en) 2008-02-28 2012-04-17 Applied Materials, Inc. Sprayed Si- or Si:Al-target with low iron content
EP2709952A1 (en) * 2011-05-16 2014-03-26 Boston Silicon Materials LLC Manufacturing and applications of silicon metal
EP2709952A4 (en) * 2011-05-16 2014-12-10 Boston Silicon Materials Llc PREPARATION AND APPLICATIONS OF SILICONE METAL
CN111118437A (zh) * 2019-12-31 2020-05-08 广州市尤特新材料有限公司 一种旋转硅磷合金靶材及其制备方法与应用

Also Published As

Publication number Publication date
TW570990B (en) 2004-01-11
TW200402478A (en) 2004-02-16

Similar Documents

Publication Publication Date Title
US8430978B2 (en) Sputtering target and method for production thereof
JP5396276B2 (ja) 焼結体の製造方法、焼結体ターゲット及びスパッタリングターゲット−バッキングプレート組立体
KR100689597B1 (ko) 규화철 스퍼터링 타겟트 및 그 제조방법
US11967493B2 (en) Cr—Si sintered body
WO2009116213A1 (ja) 焼結体ターゲット及び焼結体の製造方法
JPWO2006051737A1 (ja) 金属ガラス膜作製用スパッタリングターゲット及びその製造方法
TWI510659B (zh) Sputtering targets and / or coils, and the like
CN109609925A (zh) 一种化学气相沉积高纯钽溅射靶材制作方法
US11299801B2 (en) Structure and method to fabricate highly reactive physical vapor deposition target
WO2004001092A1 (ja) AlRuスパッタリングターゲット及びその製造方法
CN114561628A (zh) 一种循环化学气相沉积高纯钽的制备方法及其应用
US20170175252A1 (en) Sputtering Target Comprising Al-Te-Cu-Zr Alloy, and Method for Producing Same
JPH06346232A (ja) スパッタリング用ターゲットおよびその製造方法
WO2004016823A1 (ja) シリコン基板又はシリコンスパッタリングターゲット及びこれらの製造方法
CN109338316B (zh) 一种组织及织构可控的超高纯钽及其制备方法和应用
CN116496760B (zh) 一种具有多主元中/高熵合金镀覆层的超硬材料磨粒及其制备方法
KR20130110107A (ko) Cu-Ga 합금 스퍼터링 타깃 및 그 제조 방법
JP7480533B2 (ja) Cr-Si系焼結体
JP7494567B2 (ja) Cr-Si系焼結体
JP5206199B2 (ja) 真空装置用部品及びその製造方法
CN114231940A (zh) 以羰基钼为前驱体制备钼溅射靶材的方法
TW202140829A (zh) 釔錠、使用其的釔濺鍍靶及氧化釔膜的製造方法
US20170306473A1 (en) Sputtering Target Comprising Al-Te-Cu-Zr-Based Alloy and Method of Manufacturing Same
JP2005248307A (ja) ターゲット材およびその製造方法
JPS60116763A (ja) スパッタデポジション方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP