WO2004011390A1 - 多孔質セラミックス体の製造方法 - Google Patents

多孔質セラミックス体の製造方法 Download PDF

Info

Publication number
WO2004011390A1
WO2004011390A1 PCT/JP2003/008712 JP0308712W WO2004011390A1 WO 2004011390 A1 WO2004011390 A1 WO 2004011390A1 JP 0308712 W JP0308712 W JP 0308712W WO 2004011390 A1 WO2004011390 A1 WO 2004011390A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
binder
firing
porous ceramic
pore
Prior art date
Application number
PCT/JP2003/008712
Other languages
English (en)
French (fr)
Inventor
Yumi Toda
Yoshinori Yamamoto
Yukihisa Wada
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP03771260A priority Critical patent/EP1541538B1/en
Priority to US10/522,011 priority patent/US7544320B2/en
Priority to AU2003252489A priority patent/AU2003252489A1/en
Priority to DE60335555T priority patent/DE60335555D1/de
Publication of WO2004011390A1 publication Critical patent/WO2004011390A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • B01D39/2037Metallic material the material being particulate otherwise bonded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a method for producing a porous ceramic body. More specifically, the present invention relates to a method for producing a porous ceramic body in which the occurrence of cracks and the like is suppressed by controlling the rate of temperature rise in a firing atmosphere during firing.
  • the production method of the present invention is applicable to the production of various types of porous ceramics. In particular, high porosity in which the temperature rise inside the compact due to the burning of the pore former during firing of the compact is remarkable. It is suitable for producing a porous ceramic honeycomb structure having a high ratio. Background art
  • a porous ceramic honeycomb structure is widely used as an exhaust gas purifying means, and the method for manufacturing the porous ceramic honeycomb structure includes molding using a ceramic material to which a binder, a pore former, etc. are added. A method is performed in which a body is produced, and the formed body is dried and fired. At this time, the firing atmosphere in the firing step is generally heated at a constant rate.
  • a binder an organic binder such as methylcellulose or hydroxypropylmethylcellulose is used because of good moldability.
  • various pore-forming agents are used as the pore-forming agent for each purpose. However, pore-forming agents such as starch that burn at a low temperature have the advantage of being burned out at an early stage of the firing process.
  • the manufacturing method in which the firing atmosphere is switched from the atmosphere to the inert gas at an early stage when the firing atmosphere temperature is low is frequently used. It is used for Also, in a manufacturing method in which a molded body is fired in an air atmosphere, such as a method for manufacturing a ceramic body made of cordierite or the like, a pore-forming agent that burns at a low temperature such as starch is used in order to increase porosity. It has been used in combination with a pore-forming agent that burns at a high temperature such as.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to produce a ceramic body having not only a low porosity but also a high porosity without generating cracks during firing. It is an object of the present invention to provide a method for producing a porous ceramic body which can be performed. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems.
  • the firing temperature reaches the burning start temperature of the binder in the firing step, the firing atmosphere is formed inside the molded body.
  • a remarkable temperature rise deviating from the temperature was observed, and it was found that a large temperature difference occurred near the outer surface of the compact.
  • the firing process in which the firing atmosphere temperature was increased linearly, caused the temperature rise due to the burning of the organic binder, and the chain burning of a pore-forming agent such as starch with a low firing temperature.
  • the simultaneous combustion of the organic binder and the pore-forming agent caused a remarkable temperature rise inside the ceramic body which easily stored heat. Accordingly, the present inventor diligently studied to eliminate the chain combustion between the organic binder and the pore-forming agent, and as a result, when firing the molded body, the firing atmosphere temperature reached the firing temperature of the binder. From this point, it has been found that the above problem can be solved by maintaining the binder at a temperature near the combustion start temperature of the binder until the binder is burned off.
  • the present invention relates to a method for producing a porous ceramic body, wherein a molded body is produced using a ceramic raw material containing a pore former and a binder, and the molded body is dried and fired.
  • PC orchid 08712
  • the firing atmosphere temperature is set at a temperature of 50 to +50 from the temperature at which the binder starts burning until the time when the binder is burned down.
  • An object of the present invention is to provide a method for producing a porous ceramic body, which is maintained at a temperature of 10 ° C.
  • the firing temperature of the binder when the green body is fired, is set to be 50 ° C. lower than the combustion start temperature of the binder until the binder is burned off. It is more preferable to maintain the temperature in a temperature range of 150 to 110 ° C.
  • a binder composed of at least one selected from the group consisting of hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, and polyvinyl alcohol is preferable.
  • the pore-forming agent used in the present invention is at least one selected from the group consisting of wheat flour, starch, phenolic resin, foamed resin, foamed foamed resin, polymethyl methacrylate, and polyethylene terephthalate. Is preferred.
  • the production method of the present invention is preferably applied to the production of a honeycomb structure among porous ceramic bodies.
  • Fig. 1 shows the temperature of the center of the compact and the temperature of the outer periphery (firing atmosphere) in the firing step of the present invention in which the firing atmosphere is maintained until the binder is completely burned out after reaching the burning start temperature of the binder.
  • FIG. 2 is a graph showing the temperature at the center of the compact and the temperature at the outer periphery (the temperature of the baking atmosphere) in the conventional baking process in which the baking atmosphere is heated at a constant rate.
  • FIG. 3 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (the temperature of the firing atmosphere) in the firing step in Example 1.
  • FIG. 4 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (firing atmosphere temperature) in the firing step in Example 2.
  • FIG. 5 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (the firing atmosphere temperature) in the firing step in Example 3.
  • FIG. 6 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (firing atmosphere temperature) in the firing step in Example 4.
  • FIG. 7 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (firing atmosphere temperature) in the firing step in Comparative Example 1.
  • FIG. 8 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (the temperature of the firing atmosphere) in the firing step in Comparative Example 2.
  • FIG. 9 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (firing atmosphere temperature) in the firing step in Comparative Example 3.
  • FIG. 10 is a graph showing the temperature of the central portion of the molded body and the temperature of the outer peripheral portion (the temperature of the firing atmosphere) in the firing step in Comparative Example 4.
  • Fig. 1 shows the shape of a molded product containing a pore former (starch) and a binder (hydroxypropylmethylcellulose) when fired by a firing program that raises the firing temperature at a constant rate. It is a graph which shows temperature transition of an outer surface and a central part.
  • Fig. 2 shows that the molded body containing the pore-forming agent (starch) and the binder (hydroxypropylmethylcellulose) was heated at the combustion start temperature (220 ° C of the binder (hydroxypropylmethylcellulose)).
  • the firing atmosphere temperature is the firing temperature of the binder (hydroxypropyl methylcellulose).
  • the temperature reaches 20 ° C Begins to deviate from the outer surface temperature.
  • the internal temperature of the molded body changes at a higher temperature than the outer surface temperature of the molded body as it is, and when it reaches 290 ° C, which is the combustion start temperature of the pore-forming agent (starch) in a short time, further increases.
  • the internal temperature of the compact rapidly rises, and at peak times, is about 150 ° C higher than the outer surface temperature of the compact.
  • the molded body was heated until the binder (hydroxypropylmethylcellulose) reached the combustion start temperature (220 ° C) until the binder burned down.
  • the following describes a case in which firing is performed by a firing program that maintains the combustion start temperature (220 T :).
  • the firing atmosphere temperature reaches 200 ° C, which is the firing temperature of the binder (hydroxypropylmethylcellulose)
  • the internal temperature of the compact starts to deviate from the external surface temperature. This is similar to the case where the green body is fired by the firing program that raises the firing temperature at a constant rate as described above.
  • the firing temperature was raised again, and when it reached 290 ° C, which is the combustion start temperature of the pore-forming agent (starch), the internal temperature of the molded body deviated again from the external surface temperature, and It changes above the surface temperature.
  • the internal temperature of the compact is about 100 ° C higher than the external surface temperature even at the peak.
  • hydroxypropylmethylcellulose was used as the binder
  • starch was used as the pore-forming agent
  • the firing atmosphere was kept constant at the combustion start temperature.However, when another binder or pore-forming agent was used.
  • the basic principle is the same even in the case where the firing atmosphere is maintained at a fixed width while changing the firing atmosphere, and the present invention is not limited by the above description.
  • a molded body is prepared from a ceramic raw material containing a pore former, a binder, and the like, and the molded body is dried.
  • the ceramic raw material is not particularly limited, and examples thereof include a SiC raw material, a cordierite-forming raw material, alumina, and zirconium phosphate.
  • the cordierite forming material and the ceramic material is usually a force Orin
  • talc, quartz, fused silica, silica (S i 0 2) source components such as mullite, talc, magnesia, etc.
  • M g O magnesite
  • kaolin kaolin
  • quartz, F e 2 0 3 C A_ ⁇ may be one which contains N a 2 0, K 2 ⁇ like .
  • the porosity and the pore diameter of the obtained filter are controlled by controlling the types of the raw materials to be constituted or the compounding ratio thereof or controlling the particle diameters of various raw materials while maintaining the theoretical composition. You may do.
  • a compound in which Si is blended so as to have a theoretical composition of Si pound Si C can be mentioned.
  • the types of raw materials to be constituted or their mixing ratios or controlling the particle diameters of various raw materials the porosity and the pore diameter of the obtained filter can be improved. It may be controlled.
  • Examples of the pore-forming agent used in the present invention include graphite, activated carbon such as activated carbon, foamed foamed resin such as acrylic microcapsules, foamed resin, flour, starch, phenolic resin, and polymethacrylic acid. Examples thereof include methyl, polyethylene, and polyethylene terephthalate. However, in the present invention
  • the content of the pore-forming agent is not particularly limited.
  • the content in the case of polymethyl methacrylate, the content is preferably 1 to 20% by mass, and in the case of polyethylene terephthalate, the content is 1 to 20% by mass.
  • it is contained in an amount of from 1 to 30% by mass in the case of starch.
  • each pore forming agent is contained in this range, a ceramic body having a desired high porosity can be obtained without occurrence of molding failure and firing failure.
  • simultaneous firing of the binder and the pore-forming agent is cut off.
  • the inside of the molded body is not fired during firing. A remarkable rise in temperature does not occur, and a ceramic body having a high porosity can be produced without generating cracks or the like.
  • binder used in the present invention examples include hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, and polyvinyl alcohol.
  • the content of the binder is not particularly limited.
  • the content in the case of hydroxypropyl methylcellulose, the content is preferably 1 to 20% by mass, and in the case of methylcellulose, it is 1 to 20% by mass.
  • additives can be contained as necessary.
  • a molding aid or a dispersant may be contained.
  • molding aid examples include stearic acid, oleic acid, lauric acid, ethylene glycol, and trimethylene glycol.
  • dispersing agent examples include dextrin and fatty acid stone. , Or polyalcohol.
  • any method may be used as appropriate.
  • Babai which manufactures a ceramic 82-cam structure that is used as an exhaust gas purification filter
  • water is added to a ceramic material such as a cordierite-forming material, a SiC material, and the like.
  • a raw material is prepared by adding a desired amount of an agent, a binder, and a dispersant used as necessary, and a raw material is prepared, and the raw material is kneaded to form a kneaded clay.
  • Examples of the method for forming the kneaded clay include an extrusion molding method, an injection molding method, and a press molding method. Among them, continuous molding is easy, and the ceramic crystal is oriented at low heat. It is preferable to carry out the extrusion molding method in that it can be expanded.
  • Examples of the method for drying the molded body include hot-air drying, microwave drying, dielectric drying, reduced-pressure drying, vacuum drying, and freeze-drying.
  • a suitable method is selected according to the ceramic raw material used. Is preferred.
  • hot air drying, microwave drying, or dielectric drying can be used because the whole can be dried quickly and uniformly. It is preferable to carry out in a drying step in which is combined.
  • the obtained molded body is subjected to a specific heating program, that is, the firing atmosphere temperature is changed from the time when the burning start temperature of the binder to be used is reached to the time when the binder is burned out.
  • a specific heating program that is, the firing atmosphere temperature is changed from the time when the burning start temperature of the binder to be used is reached to the time when the binder is burned out.
  • Up to 50% of the binder's firing temperature Baking is performed by a temperature raising program that maintains the temperature in the range of ⁇ 10 oC.
  • combustion start temperature refers to each binder as shown in FIG.
  • the combustion start temperature is, for example, 220 ° C. for hydroxypropyl methylcellulose.
  • the temperature of methyl cellulose is 220 ° C.
  • these binders are kneaded together with the ceramic raw material and are present in the molded body, they may change depending on factors other than the characteristics of the binder itself.
  • the point at which the binder is burned out means, as shown in FIG. 1, after the center temperature of the molded body has deviated from the firing atmosphere temperature (outer surface temperature) due to the start of burning of the binder.
  • the time at which the binder is burned out varies depending on various conditions such as the type, particle size, and content of the binder, and the holding temperature. It is preferable to hold for a time. Specifically, when firing a molded body containing 1 to 10% by mass of methylcellulose as a binder in all components while maintaining the firing atmosphere temperature at about 170 to 230 ° C. After the firing atmosphere temperature reaches about 220 ° C. (combustion start temperature of methylcellulose), the temperature is maintained for 2 hours or more, preferably 3 hours or more, more preferably 4 hours or more, and particularly preferably 5 hours or more. Good.
  • a molded body containing 1 to 10% by mass of hydroxypropyl methylcellulose as a binder in all components is fired while maintaining the firing atmosphere temperature constant at 170 to 230 ° C.
  • the sintering atmosphere temperature reaches about 220 ° C. (combustion start temperature of hydroxypropylmethylcellulose)
  • the sintering time is preferably 2 hours or more, preferably 3 hours or more, more preferably 4 hours or more, and particularly preferably. Should be kept for more than 5 hours.
  • the term “maintain the firing atmosphere temperature” means, of course, a constant temperature in the temperature range of 150 to 110 ° C. with respect to the binder combustion start temperature. This includes the case where the temperature is varied within the temperature range.
  • the lower limit of the temperature range for maintaining the firing atmosphere temperature is based on the combustion start temperature of the binder having the lowest combustion start temperature, and the upper limit is the combustion start temperature. Is based on the combustion start temperature of the binder, which is the highest temperature.
  • the firing atmosphere temperature in the present invention is more preferably in a temperature range of 130 to 0 ° C, and more preferably in a temperature range of 120 to 0 ° C, with respect to the combustion start temperature of the binder used. Is particularly preferred.
  • the firing atmosphere temperature is from ⁇ 50 ° C. to 10 ° C. with respect to the binder combustion start temperature from the time when the temperature reaches 50 ° C. lower than the combustion start temperature to the time when the binder is burned out. It is preferable to maintain the temperature in the temperature range of C.
  • the binder can be removed by using a decomposition reaction that does not generate heat before the combustion start temperature is reached, and a rapid rise in the internal temperature of the molded body due to the subsequent combustion phenomenon is prevented. It is possible to further reduce, and further, it is possible to more completely eliminate the chain burning of the pore forming agent caused by the burning of the binder.
  • the binder to be used is The temperature is more preferably in the range of 130 to 0 ° C with respect to the combustion start temperature, and particularly preferably in the range of ⁇ 20 to 0 ° C.
  • the firing step in the present invention is not particularly limited except that the firing atmosphere temperature is maintained for a specific time in a specific temperature range, and the firing atmosphere temperature is maintained at a constant rate outside the specific temperature range. May be raised.
  • the heating rate of the firing atmosphere is set within a range where control is easy, and at a rate of 5 to 200 ° CZ hr.
  • the firing atmosphere is preferably filled with an appropriate gas depending on the ceramic raw material to be used.
  • an appropriate gas depending on the ceramic raw material to be used.
  • a ceramic raw material which is burned in an aerobic state such as a SiC raw material
  • binder, and a r when the additive is destroyed the pore forming agent it is preferable to replace the atmosphere with N 2 or the like, as such co-one cordierite, in the case of material to be ceramic by aerobic conditions
  • the air atmosphere may be used.
  • the method of manufacturing a porous ceramic body according to the present invention has been described above, but the manufacturing method is applicable to various porous ceramic bodies regardless of shape, size, structure, and the like. However, since the combustion of the pore-forming agent is promoted, the temperature difference between the firing atmosphere and the central portion is likely to be large, so that it can be particularly preferably applied to a method for producing a porous honeycomb structure having a high porosity.
  • the temperature of the center of the formed body and the temperature of the firing atmosphere were measured with an R thermocouple, and the difference between the two was determined.
  • the presence or absence of cracks was visually checked for 100 honeycomb structures manufactured based on each of the examples and comparative examples.
  • this kneaded material was extruded, formed into a honeycomb shape, microwave-dried, and then absolutely dried by hot air drying.
  • the firing atmosphere temperature was kept constant until 5 hours, when hydroxypropoxyl methylcellulose was completely burned out, and the firing atmosphere was heated to 400 ° C at a rate of 30 ° C / hr. Thereafter, the firing atmosphere temperature was switched to Ar, and firing was performed by a heating program in which the firing atmosphere temperature was raised to 1450 ° C.
  • Table 1 shows the manufacturing conditions and the evaluation results
  • Fig. 3 shows the changes in the temperature at the center of the compact and the temperature at the outer periphery (firing atmosphere temperature) in the firing step.
  • An 82 cam filter was manufactured in the same manner as in Example 1, except that the firing atmosphere was changed according to the heating program shown in Table 1.
  • the manufacturing conditions and the evaluation results are shown in Table 1, and the changes in the temperature of the central part of the compact and the temperature of the outer surface (firing atmosphere temperature) in the firing step are shown in Figs.
  • the ambient temperature is 30 ° C / hr before and after the temperature is maintained at a constant value.
  • the method for producing a porous ceramic body of the present invention even when producing a ceramic body having not only low porosity but also high porosity, cracks can be generated by firing. Thus, a porous ceramics body can be manufactured without any problem. Particularly, in a manufacturing method using a pore-forming agent having a low combustion start temperature, the effect is remarkable. Further, the production method of the present invention can be applied as a method for producing various ceramic bodies, and particularly preferably as a method for producing a ceramic honeycomb structure.

Abstract

造孔剤及びバインダーを含有するセラミックス原料を用いて、成形体を作製し、該成形体を、乾燥、焼成する多孔質セラミックス体の製造方法において、成形体を焼成する際に、焼成雰囲気温度を、焼成する多孔質セラミックス体に含まれる該バインダーの燃焼開始温度に達した時点から、バインダーが焼失する時点まで、バインダーの燃焼開始温度に対して−50~+10℃の温度範囲で保持する。この方法によれば、焼成の際にクラックを発生させることなく、低気孔率のみならず高気孔率のセラミックス体を製造することができる。

Description

03 008712
1 明 細 書
多孔質セラミックス体の製造方法 技術分野
本発明は、 多孔質セラミックス体の製造方法に関する。 さらに詳しくは、 焼成 時における焼成雰囲気の昇温速度を制御してクラック等の発生を抑制した多孔質 セラミックス体の製造方法に関する。 なお、 本発明の製造方法は、 各種多孔質セ ラミックス体の製造に適用可能であるが、 特に、 成形体焼成時に造孔剤の燃焼に よる成形体内部の温度上昇が顕著である高気孔率の多孔質セラミックスハニカム 構造体の製造に好適である。 背景技術
排ガス浄化手段等として多孔質セラミックスハニカム構造体が広く用いられて いるが、 当該多孔質セラミックスハニカム構造体を製造する方法としては、 バイ ンダ一、 造孔剤等を添加したセラミックス原料を用いて成形体を作製し、 この成 形体を、 乾燥、 焼成する方法が行われる。 この際、 焼成工程での焼成雰囲気は一 定速度で昇温させるのが一般的である。 また、 バインダーとしては、 成形性が良 好である点から、 メチルセルロース、 ヒドロキシプロピルメチルセルロース等の 有機バインダーが用いられている。 更に、 造孔剤としては、 目的毎に各種造孔剤 が用いられているが、 澱粉等の低温で燃焼する造孔剤は、 焼成工程の早い段階で 燃失する利点を有することから、 S i C等からなるセラミックス体の製造方法の 如く、 成形体の焼成を不活性ガス雰囲気で行う必要上、 焼成雰囲気温度の低い早 い段階で大気から不活性ガスに焼成雰囲気を切り替える製造方法で頻繁に用いら れている。 また、 コーディエライト等からなるセラミックス体の製造方法の如く 、 成形体の焼成を大気雰囲気で行う製造方法でも、 髙気孔率化を図るため、 澱粉 等の低温で燃焼する造孔剤を、 カーボン等の高温で燃焼する造孔剤と併用するこ とが行われている。
ところで、 排ガス浄化手段として用いられる多孔質セラミックスハニカム構造 体にあっては、 圧力損失の低減、 捕集効率の向上等の要請から、 近年、 高気孔率 2 化が進展しており、 気孔率 4 0 %以上のものが主流になりつつある。 このため、 澱粉等の造孔剤の添加量は、 年々増加する傾向にあり、 最近では、 セラミックス 原料中、 2 0質量%程度まで含有させることが主流になりつつある。
然るに、 このような造孔剤の多量の添加は、 従来の多孔質セラミックスハニカ ム構造体の製造方法に新たな問題、 即ち、 高気孔率化のために造孔剤を多量に含 有する成形体を、 従来と同様の昇温プログラムで焼成すると、 得られるセラミツ クス体に、 原因不明のクラックが発生するという問題を生じ、 高気孔率のセラミ ックス体を製造する際の大きな障害となっていた。
本発明は、 上述の問題に鑑みてなされたものであり、 その目的とするところは 、 焼成の際にクラックを発生させることなく、 低気孔率のみならず高気孔率のセ ラミックス体を製造することができる多孔質セラミックス体の製造方法を提供す ることにある。 発明の開示
本発明者は、 上述の課題を解決す べく鋭意研究した結果、 まず、 クラックが 発生したハニカム構造体では、 焼成工程において、 焼成温度がバインダーの燃焼 開始温度に達すると、 成形体内部で焼成雰囲気温度から乖離する著しい温度上昇 が認められ、 成形体外表面付近とで大きな温度差を生じていることを知見した。 また、 その原因について調査、 研究したところ、 焼成雰囲気温度を直線的に上昇 させる焼成工程では、 有機バインダーの燃焼による温度上昇が、 燃焼開始温度が 低い澱粉等の造孔剤について連鎖的な燃焼を招き、 この有機バインダ一と造孔剤 の同時燃焼が、 蓄熱し易いセラミックス体の内部で、 著しい温度上昇を生じさせ ていることが解った。 そこで、 本発明者は、 有機バインダーと造孔剤との連鎖的 な燃焼を絶つべく、 鋭意、 検討した結果、 成形体を焼成する際に、 焼成雰囲気温 度を、 バインダーの燃焼開始温度に達した時点から、 バインダーが焼失するまで 、 当該バインダーの燃焼開始温度付近の温度で保持することにより、 上記問題を 解決し得ることを見出した。
即ち、 本発明は、 造孔剤及びバインダーを含有するセラミックス原料を用いて 、 成形体を作製し、 該成形体を、 乾燥、 焼成する多孔質セラミックス体の製造方 PC蘭難 08712
3 法であって、 成形体を焼成する際に、 焼成雰囲気温度を、 バインダーの燃焼開始 温度に達した時点から、 バインダーが焼失する時点まで、 バインダーの燃焼開始 温度に対して一 5 0〜+ 1 0 °Cの温度範囲で保持することを特徴とする多孔質セ ラミックス体の製造方法を提供するものである。
本発明においては、 成形体を焼成する際に、 当該焼成雰囲気温度を、 バインダ 一の燃焼開始温度より 5 0 °C低い温度に達した時点から、 バインダーが焼失する 時点まで、 バインダ一の燃焼開始温度に一 5 0〜十 1 0 °Cの温度範囲で保持する ことがより好ましい。
また、 本発明において用いられるバインダーとしては、 ヒドロキシプロピルメ チルセルロース、 メチルセルロース、 ヒドロキシェチルセルロース、 カルボキシ ルメチルセルロース、 及びポリビニルアルコールからなる群より選ばれる少なく とも 1種からなるものが好ましい。
また、 本発明において用いられる造孔剤としては、 小麦粉、 澱粉、 フエノール 樹脂、 発泡樹脂、 発泡済みの発泡樹脂、 ポリメチルメタクリレート、 及びポリェ チレンテレフ夕レートからなる群より選ばれる少なくとも 1種からなるものが好 ましい。
本発明の製造方法は、 多孔質セラミックス体の中でも、 ハニカム構造体の製造 に適用することが好ましい。 図面の簡単な説明
図 1は、 焼成雰囲気を、 バインダーの燃焼開始温度に達してからバインダーが 完全に焼失するまで保持する本発明の焼成工程において、 成形体の中心部の温度 と、 同外周部の温度 (焼成雰囲気温度) を示すグラフである。
図 2は、 焼成雰囲気を、 一定速度で昇温させる従来の焼成工程において、 成形 体の中心部の温度と、 同外周部の温度 (焼成雰囲気温度) を示すグラフである。 図 3は、 実施例 1における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。
図 4は、 実施例 2における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。 図 5は、 実施例 3における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。
図 6は、 実施例 4における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。
図 7は、 比較例 1における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。
図 8は、 比較例 2における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。
図 9は、 比較例 3における焼成工程で、 成形体の中心部の温度と、 同外周部の 温度 (焼成雰囲気温度) を示すグラフである。
図 1 0は、 比較例 4における焼成工程で、 成形体の中心部の温度と、 同外周部 の温度 (焼成雰囲気温度) を示すグラフである。 発明を実施するための最良の形態
まず最初に、 図 1、 2により、 本発明の製造方法における焼成工程の基本原理 について説明する。
図 1は、 造孔剤 (澱粉) 、 及びバインダ一 (ヒドロキシプロピルメチルセル口 ース) を含有させた成形体を、 一定速度で焼成温度を上昇させる焼成プログラム で焼成した場合の、 成形体の外表面及び中心部の温度推移を示すグラフである。 一方、 図 2は、 造孔剤 (澱粉) 、 及びバインダー (ヒドロキシプロピルメチルセ ルロース) を含有させた成形体を、 バインダー (ヒドロキシプロピルメチルセル 口一ス) の燃焼開始温度 (2 2 0 °C) に達した時点から、 バインダー (ヒドロキ シプロピルメチルセルロース) が焼失する時点まで、 当該バインダーの燃焼開始 温度で保持する焼成プログラムで焼成した場合の、 成形体の外表面及び中心部の 温度推移を示すグラフである。 なお、 各図中、 点線は、 成形体中心部の温度を示 し、 実線は外表面温度及び焼成雰囲気温度を示す。
まず、 図 2に示すように、 一定速度で焼成温度を上昇させる焼成プログラムに より、 成形体を焼成した場合には、 焼成雰囲気温度が、 バインダ一 (ヒドロキシ プロピルメチルセルロース) の燃焼開始温度である 2 2 0 °Cに達すると、 成形体 の内部温度が同外表面温度から乖離し始める。 そして、 成形体の内部温度は、 そ のまま成形体の外表面温度より高温で推移し、 短時間で造孔剤 (澱粉) の燃焼開 始温度である 2 9 0 °Cに達すると、 更に急激に成形体の内部温度が上昇し、 ピ一 ク時では成形体の外表面温度に対し、 約 1 5 0 °C高温となる。 この結果、 成形体 の内部と同外周部間で大きな熱収縮較差が起こり、 これに起因して得られるセラ ミックス体にクラック等の損傷を生じることとなる。 なお、 その後の成形体の内 部温度は、 造孔剤の総てが焼失することにより、 急速に成形体の外表面温度と同 温度に収束し、 当該外表面温度とほぼ同様に推移する。
次に、 図 1に示すように、 成形体を、 バインダー (ヒドロキシプロピルメチル セルロース) の燃焼開始温度 (2 2 0 °C) に達した時点から、 バインダーが焼失 する時点まで、 バインダー (ヒドロキシプロピルメチルセルロース) の燃焼開始 温度 (2 2 0 T:) を保持する焼成プログラムで焼成した場合について説明する。 まず、 この焼成プログラムによる焼成でも、 焼成雰囲気温度がバインダー (ヒド ロキシプロピルメチルセルロース) の燃焼開始温度である 2 0 0 °Cに達すると、 成形体の内部温度が同外表面温度から乖離し始める点では、 前述した一定速度で 焼成温度を上昇させる焼成プログラムにより成形体を焼成した場合と同様である しかし、 バインダー (ヒドロキシプロピルメチルセルロース) の燃焼開始温度 ( 2 2 0 °C) に達した焼成開始後 5時間の時点から、 バインダー (ヒドロキシプ 口ピルメチルセルロース) が完全に焼失した焼成開始後 1 0時間の時点まで、 バ インダ一 (ヒドロキシプロピルメチルセルロース) の燃焼開始温度 (2 2 0 °C) に保持した結果、 バインダ一の燃焼による成形体内部温度の同外表面温度からの 乖離は、 最大でも 5 0 °Cと、 前述した図 2に示す従来の製造方法による例に対し 、 約 1 Z 3となる。 この結果、 成形体の内部と同外周部間での熱収縮較差は小さ くなり、 焼成時における成形体のクラック等の発生は大幅に低減される。 勿論、 その後、 焼成温度を再度上昇させて、 造孔剤 (澱粉) の燃焼開始温度である 2 9 0 °Cに達すると、 成形体の内部温度が同外表面温度から再度乖離し、 同外表面温 度より高温で推移する。 しかし、 この時点では、 バインダーが既に焼失している ため、 成形体の内部温度は、 ピーク時でも、 同外表面温度に対し、 約 1 0 0 °C高 2003/008712
6 温となる程度で、 前述じた図 2に示す従来の製造方法による例に対し、 約 2 / 3 となる。 この結果、 造孔剤の燃焼による成形体の内部温度の上昇によっても、 成 形体の内部と同外周部間での熱収縮較差はさほど大きくならず、 この段階でも焼 成時における成形体のクラック等の発生は大幅に低減される。 なお、 その後に、 成形体の内部温度が、 成形体の外表面温度と同温度に収束し、 当該外表面温度と ほぼ同様に推移する点は、 前述した図 2に示す従来の製造方法による例と同様で ある。
なお、 以上は、 バインダーとしてヒドロキシプロピルメチルセルロースを用い 、 造孔剤として澱粉を用い、 焼成雰囲気を燃焼開始温度で一定に保持した例で説 明したが、 他のバインダー又は造孔剤を用いた場合、 並びに'焼成雰囲気を変化さ せながら燃焼開始温度に対して一定の幅で保持する場合であっても基本的原理は 同様であり、 本発明は、 上述の説明により限定されるものではない。
以下、 本発明の実施の形態について、 各工程毎に具体的に説明する。
本発明の製造方法においては、 まず、 造孔剤、 バインダー等を含有するセラミ ックス原料から成形体を作製し、 当該成形体を乾燥する。
本発明においては、 セラミックス原料について特に制限はなく、 例えば、 S i C原料、 コ一ディエライト化原料、 アルミナ、 又はリン酸ジルコニウム等を挙げ ることができる。
また、 コーディエライト化原料をセラミックス原料とする場合には、 通常、 力 ォリン、 タルク、 石英、 溶融シリカ、 ムライト等のシリカ (S i 02) 源成分、 タルク、 マグネサイト等のマグネシア (M g O) 源成分、 及びカオリン、 酸化ァ ルミ二ゥム、 水酸化アルミニウム等のアルミナ (A 1 203) 源成分をコーデイエ ライト結晶の理論組成となるように配合したものを挙げることができる。 但し、 用途によっては、 当該理論組成を意識的にずらしたもの、 或いは不純物として雲 母、 石英、 F e 203、 C a〇、 N a 20、 K2〇等を含有したものでもよい。 また 、 当該理論組成を維持しながら、 構成させる原料の種類又はその配合比率を制御 したり、 或いは各種原料の粒径について制御したりすることで、 得られるフィル ターの気孔率及び気孔径を制御するものでもよい。
また、 S i C原料をセラミックス原料とする場合には、 通常、 S i C及び金属 2003/008712
7
S iを、 S iポンド S i Cの理論組成となるように配合したものを挙げることが できる。 また、 当該理論組成を維持しながら、 構成させる原料の種類又はその配 合比率を制御したり、 或いは各種原料の粒径について制御したりすることで、 得 られるフィルタ一の気孔率及び気孔径を制御するものでもよい。
また、 本発明で用いられる造孔剤としては、 例えば、 グラフアイト、 活性炭等 の力一ボン、 アクリル系マイクロカプセル等の発泡済みの発泡樹脂、 発泡樹脂、 小麦粉、 澱粉、 フエノール樹脂、 ポリメタクリル酸メチル、 ポリエチレン、 又は ポリエチレンテレフタレート等を挙げることができる。 但し、 本発明においては
、 小麦粉、 澱粉、 フエノール樹脂、 発泡樹脂、 発泡済みの発泡樹脂、 ポリメチル メタクリレート、 又はポリエチレンテレフタレート等の 5 0 0 °C以下の低温で燃 焼して、 有機バインダーの燃焼により連鎖的に燃焼が起こり易いものを用いる場 合に好適である。 勿論、 本発明が、 これらとグラフアイト、 活性炭等の力一ボン を併用する場合に好ましいことはいうまでもない。
本発明においては、 造孔剤の含有量について特に制限はないが、 例えば、 ポリ メチルメタクリレートであれば、 1〜2 0質量%含有させることが好ましく、 ポ リエチレンテレフタレ一トであれば、 1〜1 0質量%含有させることが好ましく 、 デンプンであれば、 1〜3 0質量%含有させることが好ましい。
各造孔剤が、 この範囲で含有されれば、 成形不良及び焼成不良が発生すること なく、 所望の高気孔率のセラミックス体を得ることができる。 なお、 本発明にお いては、 前述したように、 バインダーと造孔剤の同時燃焼を絶つ結果、 高気孔率 化のために、 造孔剤を多量に含有させても、 焼成時に成形体内部の顕著な温度上 昇は起こらず、 クラック等を発生させることなく、 高気孔率のセラミックス体を 製造することができる。
本発明で用いられるバインダーとしては、 例えば、 ヒドロキシプロピルメチル セルロース、 メチルセルロース、 ヒドロキシェチルセルロース、 カルボキシルメ チルセルロース、 又はポリビニルアルコール等を挙げることができる。
本発明においては、 バインダーの含有量についても特に制限はないが、 例えば 、 ヒドロキシプロピルメチルセルロースであれば、 1〜2 0質量%含有させるこ とが好ましく、 メチルセルロースであれば、 1〜2 0質量%含有させることが好 ましい。 各バインダーが、 この範囲で含有されれば成形不良及び焼成不良が発生 することなく、 所望の高気孔率のセラミックス体を得ることができる。
本発明においては、 必要に応じて、 この他の添加剤を含有させることができ、 例えば、 成形助剤、 又は分散剤等を含有させてもよい。
また、 成形助剤としては、 例えば、 ステアリン酸、 ォレイン酸、 ラウリン酸力 リ石鹼、 エチレングリコール、 又はトリメチレングリコール等を挙げることがで き、 分散剤としては、 例えば、 デキストリン、 脂肪酸石鹼、 又はポリアルコール 等を挙げることができる。
なお、 これら各添加剤は、 目的に応じて 1種単独又は 2種以上組み合わせて用 いることができる。
本発明においては、 成形体の作製方法についても特に制限はなく、 適宜好まし い方法により行えばよい。 例えば、 排ガス浄化フィル夕一として用いられるセラ ミックス八二カム構造体を作製する塲合では、 コーディエライト化原料、 S i C 原料等のセラミックス原料に水を添加し、 更に、 上述した造孔剤、 バインダー、 及び必要に応じて用いられる分散剤を所望量添加して原料を調製し、 当該原料を 混練して得られる坏土を成形することにより作製することができる。
また、 坏土を成形する方法としては、 例えば、 押出し成形法、 射出成形法、 プ レス成形法等を挙げることができるが、 中でも、 連続成形が容易であるとともに 、 セラミックス結晶を配向させて低熱膨張性にできる点で押出し成形法で行うこ とが好ましい。
また、 成形体の乾燥方法としては、 例えば、 熱風乾燥、 マイクロ波乾燥、 誘電 乾燥、 減圧乾燥、 真空乾燥、 又は凍結乾燥等を挙げることができ、 用いるセラミ ックス原料に応じて適切な方法を選択することが好ましい。 なお、 S i C原料又 はコーデイエライト化原料を主成分とする成形体の場合には、 全体を迅速かつ均 一に乾燥できる点で、 熱風乾燥と、 マイクロ波乾燥又は誘電乾燥の何れかを組み 合わせた乾燥工程で行うことが好ましい。
次に、 本発明の製造方法においては、 得られた成形体を、 特定の昇温プロダラ ム、 即ち、 焼成雰囲気温度を、 用いるバインダーの燃焼開始温度に達した時点か ら、 バインダーが焼失する時点まで、 バインダーの燃焼開始温度に対して一 5 0 〜十 1 o °cの温度範囲で保持する昇温プログラムで焼成する。
これにより、 バインダ一と造孔剤との連鎖的な燃焼をほぼ絶つことができるた め、 セラミックス体内部における急激な温度上昇がなく、 成形体各部間の焼成収 縮較差によるクラック等を発生させることなく高気孔率のセラミックス体を得る ことができる。
ここで、 本明細書中、 「燃焼開始温度」 とは、 図 1に示すように、 各バインダ
—が、 熱を発しながら酸化され、 ハニカム構造体の外表面と中心部とで温度が乖 離し始める温度 Eを意味する。 当該燃焼開始温度は、 バインダーの物性のみから 考えると、 例えば、 ヒドロキシプロピルメチルセルロースでは、 2 2 0 °Cであり
、 メチルセルロースでは、 2 2 0 °Cである。 但し、 これらバインダーは、 セラミ ックス化原料と伴に混練され、 成形体中で存在する為、 バインダー自体の特性以 外の要素によって変化する場合がある。
また、 本明細書中、 「バインダーが焼失する時点」 とは、 図 1に示すように、 バインダーの燃焼開始によって、 成形体の中心部温度が焼成雰囲気温度 (外表面 温度) から乖離した後、 再度焼成雰囲気温度に収束し、 バインダーの約 9割以上 が消失したと推定できる時点 Xをいう。
もっとも、 当該バインダーが焼失する時点は、 バインダーの種類、 粒径、 及び 含有量、 並びに保持温度等の各種条件で変動するものであり、 各種条件に応じて 、 焼成雰囲気温度の保持開始から特定の時間だけ保持することが好ましい。 具体 的には、 バインダーとしてメチルセルロースを全成分中 1〜1 0質量%含有させ た成形体を、 焼成雰囲気温度を途中、 約 1 7 0〜2 3 0 Cで保持して焼成を行う 場合には、 焼成雰囲気温度が、 約 2 2 0 °C (メチルセルロースの燃焼開始温度) に達してから、 2時間以上、 好ましくは 3時間以上、 より好ましくは 4時間以上 、 特に好ましくは 5時間以上保持すればよい。 同様に、 バインダーとして、 ヒド ロキシプロピルメチルセルロースを全成分中 1〜 1 0質量%含有させた成形体を 、 焼成雰囲気温度を途中、 1 7 0〜2 3 0 °Cで一定に保持して焼成を行う場合に は、 焼成雰囲気温度が、 約 2 2 0 °C (ヒドロキシプロピルメチルセルロースの燃 焼開始温度) に達してから、 2時間以上、 好ましくは 3時間以上、 より好ましく は 4時間以上、 特に好ましくは 5時間以上保持すればよい。 ここで、 本明細書中、 焼成雰囲気温度を 「保持する」 とは、 バインダーの燃焼 開始温度に対して、 一 5 0〜十 1 0 °Cの温度範囲で一定温度とすることは勿論、 同温度範囲内で温度を変動させる場合も含むものである。
また、 バインダーを 2種以上用いる場合には、 当該焼成雰囲気温度を保持する 温度範囲の下限は、 燃焼開始温度が最も低温であるバインダ一の燃焼開始温度を 基準とし、 同上限は、 燃焼開始温度が最も高温であるバインダーの燃焼開始温度 を基準とするものである。
また、 本発明における焼成雰囲気温度は、 用いるバインダーの燃焼開始温度に 対して、 一 3 0〜0 °Cの温度範囲とすることがより好ましく、 一 2 0〜0 °Cの温 度範囲とすることが特に好ましい。
焼成雰囲気温度をこのような範囲とすると、 バインダーの燃焼によって生じる 造孔剤の連鎖的な燃焼をより完全に絶つことができる。
本発明においては、 更に焼成雰囲気温度を、 燃焼開始温度より 5 0 °C低い温度 に達した時点から、 バインダーが焼失する時点まで、 バインダーの燃焼開始温度 に対して— 5 0〜十 1 0 °Cの温度範囲で保持することが好ましい。
焼成雰囲気温度をこのような範囲とすると、 燃焼開始温度に達する前に生じる 発熱を伴わない分解反応を併用して脱バインダーを行うことでき、 その後の燃焼 現象による急激な成形体内部温度の上昇をより低減することができ、 更には、 バ インダ一の燃焼によって生じる造孔剤の連鎖的な燃焼をより完全に絶つことがで きる。
なお、 このように、 燃焼開始温度より低い温度に達した時点から焼成雰囲気温 度を保持する場合でも、 燃焼開始温度に達した時点から焼成雰囲気温度を保持す る場合と同様に、 用いるバインダーの燃焼開始温度に対して、 一 3 0〜0 °Cの温 度範囲とすることがより好ましく、 ― 2 0〜0 °Cの温度範囲とすることが特に好 ましい。
本発明における焼成工程は、 上述したように、 特定の温度範囲で特定の時間だ け焼成雰囲気温度を保持することの他は特に制限はなく、 当該特定の温度範囲外 では一定速度で焼成雰囲気温度を上昇させてよい。 伹し、 焼成雰囲気の昇温速度 は、 制御が容易な範囲で設定することが好ましく、 5〜2 0 0 °CZ h rの速度で P 漏曙 008712
11 昇温することが好ましい。
また、 焼成雰囲気は、 用いるセラミックス原料等に応じて、 適切な気体で満た すことが好ましく、 例えば、 S i C原料等の如く、 有酸素状態で焼失してしまう セラミックス原料を用いる場合には、 バインダー、 及び造孔剤等の添加物が焼失 した時点で A r、 N2等で雰囲気を置換することが好ましく、 コ一ディエライト 等の如く、 有酸素状態によりセラミックス化させる原料の場合には、 大気雰囲気 とすればよい。
以上、 本発明における多孔質セラミックス体の製造方法について説明したが、 当該製造方法は、 形状、 大きさ、 構造等を問わず、 各種多孔質セラミックス体に 適用可能である。 但し、 造孔剤の燃焼が促進されるため、 焼成雰囲気と中心部と の温度差が大きくなり易い、 高気孔率の多孔質ハニカム構造体の製造方法に、 特 に好ましく適用することができる。
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら実施例によ つて何ら限定されるものではない。 なお、 各実施例及び比較例についての評価を 以下のようにして行った。 '
(評価方法)
各実施例及び比較例に基づいてハニカム構造体を作製する際に、 成形体の中心 部と焼成雰囲気の温度を R熱電対により測定して両者の差を求めた。 また、 各実 施例及び比較例に基づいて製造されたハニカム構造体 1 0 0個について、 肉眼に てクラックの有無を確認した。
(実施例 1 )
金属シリコン (M e— S i ) 及び S i Cを質量比 2 0 : 8 0の割合で調合した 原料 1 0 0質量部に、 バインダーとして、 ヒドロキシプロピルメチルセルロース を 1 0質量部、 造孔剤として澱粉を 5質量部添加し、 更に界面活性剤、 水を添加 して可塑性の坏土を作製した。
次いで、 この坏土を押出成形して、 ハニカム状に成形し、 マイクロ波乾燥した 後、 熱風乾燥で絶乾した。
最後に、 室温からヒドロキシプロボキシルメチルセルロースの燃焼開始温度で ある 2 2 0 °Cより 5 0。C低い 1 7 0 °Cまで、 3 0 °C/ h rの速度で焼成雰囲気を 03008712
12 昇温させ、 その後ヒドロキシプロボキシルメチルセルロースが完全に焼失する時 点である 5時間まで焼成雰囲気温度を一定に保持し、 30°C/h rの速度で焼成 雰囲気を 400°Cまで昇温させた後、 焼成雰囲気温度を A rに切り換え、 焼成雰 囲気温度を 1450°Cまで昇温させる昇温プログラムで焼成した。 得られたセラ ミックスハニカム構造体は、 サイズ: 1 5 OmmXL 1 5 Omm、 隔壁厚さ : 300 urn, セル数: 46. 5セル X 10— 2/mm2のハニカムフィルタ一を製造 した。 製造条件及び評価結果を表 1に、 焼成工程における、 成形体の中心部の温 度と、 同外周部の温度 (焼成雰囲気温度) の変化を図 3に示す。
(実施例 2〜 4及び比較例 1〜 4 )
焼成雰囲気を、 表 1に示す昇温プログラムにより焼成したこと以外は実施例 1 と同様にして八二カムフィルターを製造した。 製造条件及び評価結果を表 1に、 焼成工程における、 成形体の中心部の温度と、 同外表面の温度 (焼成雰囲気温度 ) の変化を図 :〜 10に示す。
(表 1)
Figure imgf000014_0001
* 1 :表中、 雰囲気温度は、 一定の温度に保持した前後では、 昇温速度 30°C/h rで
変化させた。 P2003/008712
13
(評価)
表 1及び図 3〜 1 0に示すように、 比較例 1〜 4の製造方法では、 成形体の外 表面の温度 (焼成雰囲気温度) に対するの同中心部温度の較差が、 最大で 1 5 0 °C以上に達していた。 また、 製造したハニカム構造体 1 0 0個いずれもクラック が発生した。
これに対して、 実施例 1〜4の製造方法では、 成形体の外表面の温度 (焼成雰 囲気温度) に対する同中心部温度の較差が、 最大で 1 0 0 °Cであり、 比較例 1の 製造方法に比べ 2 / 3以下となった。 また、 いずれの製造方法でも、 製造したハ 二カム構造体 1 0 0個いずれもクラックが発生しなかった。 産業上の利用可能性
以上説明したように、 本発明の多孔質セラミックス体の製造方法によれば、 低 気孔率のみならず高気孔率のセラミックス体を製造する場合であっても、 焼成に よりクラックを発生させることのなく多孔質セラミツクス体を製造することがで き、 特に、 燃焼開始温度が低い造孔剤を用いる製造方法では、 その効果が顕著と なる。 また、 本発明の製造方法は、 各種セラミックス体の製造方法として適用す ることができるが、 特にセラミックスハニカム構造体の製造方法として好ましく 適用することができる。

Claims

請 求 の 範 囲
1 . 造孔剤及びバインダーを含有するセラミックス原料を用いて、 成形体を作 製し、 該成形体を、 乾燥、 焼成する多孔質セラミックス体の製造方法であって、 該成形体を焼成する際に、 焼成雰囲気温度を、 焼成する多孔質セラミックス体 に含まれる該バインダ一の燃焼開始温度に達した時点から、 該バインダ一が焼失 する時点まで、 該バインダーの燃焼開始温度に対して— 5 0〜十 1 0 °Cの温度範 囲で保持することを特徴とする多孔質セラミックス体の製造方法。
2 . 前記焼成雰囲気温度を、 該バインダ一の燃焼開始温度より 5 0 低い温度 に達した時点から、 該バインダーが焼失する時点まで、 該バインダーの燃焼開始 温度に対して一 5 0〜+ 1 0 °Cの温度範囲で保持する請求項 1に記載の多孔質セ ラミックス体の製造方法。
3 . 前記バインダーが、 ヒドロキシプロピルメチルセルロース、 メチルセル口 ース、 ヒドロキシェチルセルロース、 カルボキシルメチルセルロース、 及びポリ ビエルアルコールからなる群より選ばれる少なくとも 1種からなる請求項 1又は 2に記載の多孔質セラミックス体の製造方法。
4 . 前記造孔剤が、 小麦粉、 澱粉、 フエノール樹脂、 発泡樹脂、 発泡済みの発 泡樹脂、 ポリメチルメタクリレート、 及びポリエチレンテレフタレートからなる 群より選ばれる少なくとも 1種からなる請求項 1〜 3の何れか一項に記載の多孔 質セラミックス体の製造方法。
5 . 前記多孔質セラミックス体が、 ハニカム構造体である請求項 1〜4の何れ か一項に記載の多孔質セラミックス体の製造方法。
PCT/JP2003/008712 2002-07-26 2003-07-09 多孔質セラミックス体の製造方法 WO2004011390A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03771260A EP1541538B1 (en) 2002-07-26 2003-07-09 Method for producing porous ceramic article
US10/522,011 US7544320B2 (en) 2002-07-26 2003-07-09 Method of manufacturing porous ceramic body
AU2003252489A AU2003252489A1 (en) 2002-07-26 2003-07-09 Method for producing porous ceramic article
DE60335555T DE60335555D1 (de) 2002-07-26 2003-07-09 Enstands

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002217941A JP4311609B2 (ja) 2002-07-26 2002-07-26 多孔質セラミックス体の製造方法
JP2002-217941 2002-07-26

Publications (1)

Publication Number Publication Date
WO2004011390A1 true WO2004011390A1 (ja) 2004-02-05

Family

ID=31184662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008712 WO2004011390A1 (ja) 2002-07-26 2003-07-09 多孔質セラミックス体の製造方法

Country Status (8)

Country Link
US (1) US7544320B2 (ja)
EP (1) EP1541538B1 (ja)
JP (1) JP4311609B2 (ja)
KR (1) KR100636727B1 (ja)
AU (1) AU2003252489A1 (ja)
DE (1) DE60335555D1 (ja)
PL (1) PL208358B1 (ja)
WO (1) WO2004011390A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315425B2 (en) 2013-10-28 2016-04-19 Universiti Brunei Darussalam Macroporous ceramic body, method of manufacture and uses thereof
CN115521140A (zh) * 2022-08-10 2022-12-27 中山大学 一种焦磷酸盐固溶体多孔陶瓷及其制备方法和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699885B2 (ja) * 2005-12-02 2011-06-15 日本碍子株式会社 ハニカム構造体の製造方法
JP2010501467A (ja) * 2006-08-25 2010-01-21 コーニング インコーポレイテッド 低背圧の多孔質コージエライトセラミックハニカム物品およびその製造方法
JP5338317B2 (ja) * 2006-09-29 2013-11-13 日立金属株式会社 コージェライト質セラミックハニカムフィルタの製造方法
RU2346971C2 (ru) * 2006-12-27 2009-02-20 Шлюмбергер Текнолоджи Б.В. Проппант, способ его получения и способ его применения
WO2009017688A2 (en) * 2007-07-31 2009-02-05 Corning Incorporated Carbon pore formers for dielectric drying
US20090298670A1 (en) * 2008-05-27 2009-12-03 Martin Joseph Murtagh Method for removing graphite from cordierite bodies
US8444737B2 (en) * 2009-02-27 2013-05-21 Corning Incorporated Ceramic structures and methods of making ceramic structures
FR2943928B1 (fr) 2009-04-02 2012-04-27 Saint Gobain Ct Recherches Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
CN102459125A (zh) 2009-06-05 2012-05-16 康宁股份有限公司 形成堇青石的批料及其使用方法
US20110152850A1 (en) * 2009-06-23 2011-06-23 Niedbala R Sam Devices and methods for dispensing a cryogenic fluid
US8647337B2 (en) * 2009-06-23 2014-02-11 Stc Consulting, Llc Devices and methods for dispensing a cryogenic fluid
US9097463B2 (en) 2010-02-23 2015-08-04 Ngk Insulators, Ltd. Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device
FR2965489B1 (fr) 2010-09-30 2013-03-29 Saint Gobain Ct Recherches Structure en nid d'abeille microfissuree.
EP2748121A4 (en) * 2011-08-24 2015-05-06 Polyvalor Société En Commandite POROUS SIC CERAMIC AND METHOD OF MANUFACTURING
US9133062B2 (en) * 2012-11-21 2015-09-15 Corning Incorporated Method of firing cordierite bodies
JP6067394B2 (ja) * 2013-01-31 2017-01-25 東京窯業株式会社 焼成治具
US9999879B2 (en) 2013-05-30 2018-06-19 Corning Incorporated Formed ceramic substrate composition for catalyst integration
US10479734B2 (en) 2013-08-15 2019-11-19 Corning Incorporated Method and apparatus for thermally debindering a cellular ceramic green body
US9670762B2 (en) 2015-02-20 2017-06-06 Halliburton Energy Services, Inc. Fracturing tight subterranean formations with a cement composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357789A1 (en) * 1988-02-10 1990-03-14 Ngk Insulators, Ltd. Process of producing a ceramic honeycomb structural body
JPH10273366A (ja) * 1997-03-28 1998-10-13 Ngk Insulators Ltd セラミック成形体の焼成方法
JP2001316190A (ja) * 2000-05-02 2001-11-13 Shinagawa Refract Co Ltd 多孔質焼結体の焼成方法とその装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119843A (en) * 1981-01-20 1982-07-26 Kobe Steel Ltd Calcining method for catalyst carrier molding
JP2543565B2 (ja) 1988-03-31 1996-10-16 日本碍子株式会社 セラミックスの焼成に用いるトンネル炉
WO1999028268A1 (en) * 1997-12-02 1999-06-10 Corning Incorporated Method for firing ceramic honeycomb bodies
CN1093521C (zh) * 1997-12-02 2002-10-30 康宁股份有限公司 陶瓷蜂蜜体的烧制方法
CN1174210C (zh) * 1997-12-02 2004-11-03 康宁股份有限公司 用于烧制陶瓷蜂窝体的隧道窑
JP4723085B2 (ja) * 1997-12-22 2011-07-13 コーニング インコーポレイテッド セラミックハニカム体の焼成方法及び焼成に用いられるトンネルキルン
US6287510B1 (en) * 1999-11-23 2001-09-11 Corning Incorporated Method of firing green structures containing organics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357789A1 (en) * 1988-02-10 1990-03-14 Ngk Insulators, Ltd. Process of producing a ceramic honeycomb structural body
JPH10273366A (ja) * 1997-03-28 1998-10-13 Ngk Insulators Ltd セラミック成形体の焼成方法
JP2001316190A (ja) * 2000-05-02 2001-11-13 Shinagawa Refract Co Ltd 多孔質焼結体の焼成方法とその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541538A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315425B2 (en) 2013-10-28 2016-04-19 Universiti Brunei Darussalam Macroporous ceramic body, method of manufacture and uses thereof
CN115521140A (zh) * 2022-08-10 2022-12-27 中山大学 一种焦磷酸盐固溶体多孔陶瓷及其制备方法和应用
CN115521140B (zh) * 2022-08-10 2023-09-19 中山大学 一种焦磷酸盐固溶体多孔陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
US7544320B2 (en) 2009-06-09
EP1541538A4 (en) 2007-07-11
US20050242455A1 (en) 2005-11-03
PL208358B1 (pl) 2011-04-29
AU2003252489A1 (en) 2004-02-16
KR100636727B1 (ko) 2006-10-23
DE60335555D1 (de) 2011-02-10
JP4311609B2 (ja) 2009-08-12
EP1541538A1 (en) 2005-06-15
KR20050030959A (ko) 2005-03-31
PL373646A1 (en) 2005-09-05
JP2004059357A (ja) 2004-02-26
EP1541538B1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
WO2004011390A1 (ja) 多孔質セラミックス体の製造方法
KR100493755B1 (ko) 세라믹스 구조체의 제조 방법
JP2981034B2 (ja) セラミックハニカム構造体の焼成方法
US8187525B2 (en) Method of firing green bodies into porous ceramic articles
US7429351B2 (en) Method for manufacturing a porous ceramic structure
US20030151155A1 (en) Method for manufacturing a porous ceramic structure
JP2001524450A (ja) セラミックハニカム体の焼成方法
WO2002041972A1 (fr) Filtre alveolaire poreux et procede de fabrication
WO2003048073A1 (fr) Procede de production d'un article en ceramique poreux
EP1483221A1 (en) Strontium feldspar aluminum titanate for high temperature applications
US20190177232A1 (en) Aluminum titanate compositions, aluminum titanate articles, and methods of making same
JP2009532195A (ja) セラミック物品の製造における細孔形成剤としての過酸化物含有化合物
JP2006232590A (ja) セラミック構造体の製造方法
US8101117B2 (en) Controlled gas pore formers in extruded ware
WO2004060830A1 (ja) セラミックハニカム構造体の焼成方法
KR100638236B1 (ko) 허니컴 구조체
JP2016534001A (ja) セラミックにおける細孔形成のための架橋澱粉
JP2018167397A (ja) ハニカムフィルタの製造方法
US20230242449A1 (en) High oxygen fast firing methods for ceramics manufacture
JP2007237653A (ja) セラミックスハニカム構造体の製造方法
JP2007039333A (ja) セラミックス構造体の製造方法
JP2008120656A (ja) 栓詰めハニカム成形体の製造方法
JP2018162180A (ja) ハニカム構造体の製造方法
JPH0920566A (ja) 焼成用治具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 373646

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 2003771260

Country of ref document: EP

Ref document number: 1020057001449

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057001449

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10522011

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003771260

Country of ref document: EP