WO2004008023A1 - 導光装置および表示装置 - Google Patents

導光装置および表示装置 Download PDF

Info

Publication number
WO2004008023A1
WO2004008023A1 PCT/JP2003/008680 JP0308680W WO2004008023A1 WO 2004008023 A1 WO2004008023 A1 WO 2004008023A1 JP 0308680 W JP0308680 W JP 0308680W WO 2004008023 A1 WO2004008023 A1 WO 2004008023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
light
guide plate
triangular prism
guide device
Prior art date
Application number
PCT/JP2003/008680
Other languages
English (en)
French (fr)
Inventor
Kenichi Iwauchi
Yuji Maruo
Atsushi Yamanaka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2003252482A priority Critical patent/AU2003252482A1/en
Publication of WO2004008023A1 publication Critical patent/WO2004008023A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to a light guide device that emits light from a predetermined light emission surface by conducting light from the outside to the inside, and a display device using the light guide device, such as a liquid crystal display device.
  • FIG. 17 is a general configuration diagram of a light guide device having a conventional sidelight type backlight.
  • a light guide device 100 includes a plate-shaped light guide plate 101 having a thickness, and a reflecting plate 100 provided on a surface of the light guide plate 101 opposite to a light exit surface. 2, a light source reflector 103 opposing the end face of the light guide plate 101, and a cold cathode tube 104 disposed between the light guide plate 101 and the light source reflector 103 And
  • the light guide plate 101 has a light emission surface from which light is emitted in the direction of arrow L.
  • the direction in which light is emitted from the light emitting surface is controlled by printing a scattering pattern on the back surface (the surface on the side of the reflector 102) or by forming irregularities on the back surface.
  • the reflecting plate 102 emits light from the light guide plate 101 in the direction of the arrow L, but reflects light leaking from the side opposite to the light emitting surface to the light guide plate 101. It is arranged to use light effectively by returning it.
  • the light source reflector 103 reflects light from the cold-cathode tube 104 to make the light guide plate 101 more efficient. It is used for good incidence.
  • the cold cathode tube 104 is an external light source.
  • white LEDs light emitting diodes
  • the light source reflector 103 is not required due to the directivity inherent in the LED.
  • the advantage of using this white LED is that the light source reflector 103 is not required as compared with the cold cathode tube 104, so that the liquid crystal display can be downsized to save space. It is inexpensive because it does not require an inverter circuit.
  • Light sources that use red, green, and blue LEDs instead of white LEDs are also being considered.
  • the advantage of using light sources with high color purity is that images obtained with high color purity and sharp images are also obtained. It is to become.
  • FIG. 18 is a general configuration diagram of a light guide device showing a conventional two light guide plate type.
  • a light guide device 200 includes a plate-shaped front light guide plate 201 having a thickness, an LED group 202 serving as a light source of the front light guide plate 201, and a plate-shaped plate having a thickness disposed to face the front light guide plate 201.
  • the light guide plate 203 includes an LED group 204 as a light source of the rear light guide plate 203.
  • the front light guide plate 201 On the lower end surface of the front light guide plate 201, light from an LED group 202 in which, for example, a red LED 202a, a green LED 202b, and a blue LED 202c are sequentially arranged in a row is incident. Mix the red, green and blue light in the side half to white light, The white light is emitted in the arrow direction L from the upper half.
  • the light emission area (upper half surface) can be controlled by a scattering pattern formed on the back side of the front light guide plate 201 (on the rear light guide plate 203 side).
  • the light emission area (lower half surface) can be controlled by the scattering pattern formed on the back side of the rear light guide plate 203 (the side opposite to the front light guide plate 201 side).
  • one light guide plate is divided into upper and lower halves, and a region for mixing a plurality of colors and a light emission region are allocated.
  • Two light guide plates (a front light guide plate 201 and a rear light guide plate 203) are used. ) By using this, it is possible to mix a plurality of colors and obtain a light guide device 200 with less color unevenness.
  • FIG. 19 is a general configuration diagram of a conventional light guide device showing a 180-degree folded type.
  • a light guide device 300 includes a plate-shaped main light guide plate 301 having a thickness, a plate-shaped color mixing light guide plate 302 having a thickness disposed opposite to a lower region of the main light guide plate 301, and a color mixing device.
  • LED group 303 as a light source of light guide plate 302; 90-degree reflecting member 304 for guiding light from LED group 303 to color-mixed light guide plate 302; and 180-degree light from color-mixed light guide plate 302 to main light guide plate 301 side
  • a 180-degree reflecting member 305 for turning back is provided.
  • the main light guide plate 301 is for emitting light in the arrow direction L.
  • the color mixing light guide plate 302 is for mixing light of three colors (three primary colors) from the LED group 303.
  • LED group 303 includes red LED 303a, green LED 303b, blue LED 303c Are repeatedly arranged in this order, for example, a plurality are arranged in a line.
  • the 90-degree reflecting member 304 is for guiding the light from the LED group 303 so as to change its direction by 90 degrees by reflection and to enter the upper end surface of the color mixing light guide plate 302.
  • the 180-degree reflecting member 305 changes the 180-degree direction by reflecting the light mixed by the color mixing light guide plate 302 from the lower end surface of the color mixing light guide plate 302, and reflects the emitted light, thereby lowering the main light guide plate 301. This is to guide the light to the end face and make it incident.
  • the LED group in the conventional two light guide plate type (see Fig. 18), the LED group
  • the arrangement of 202 and 204 is made up and down of two places, and it is not possible to use one of the LED groups 202 and 204 and use only one row on one side. In other words, even if the number of L £ D groups in any one row is sufficient (brightness), the arrangement of the LED groups 202 and 204 becomes two rows in the upper and lower rows in the case of the two-light guide plate type, and the number is reduced. For this reason, thinning out LEDs causes uneven brightness and color. Furthermore, it is difficult to control the brightness equally between the upper half and the lower side of the front light guide plate 201 and the rear light guide plate 203, and especially in the overlapping part, the brightness becomes darker, and conversely, it becomes darker. It is difficult to control the brightness.
  • each color mixing area of the front light guide plate 201 and the rear light guide plate 203 is limited to a half area of the light guide plate, a panel having a small screen size cannot have a sufficient distance for mixing, resulting in uneven brightness and color. It was the cause of unevenness.
  • the color mixing light guide plate is used.
  • the direction of the light is changed from 180 degrees to the main light guide plate 301 from 1802.
  • the brightness is sacrificed due to the poor light use efficiency of the 180-degree reflecting member 30.5.
  • the main reasons for the poor light utilization efficiency are the low reflectance of the 90-degree reflecting member 304 and the 180-degree reflecting member 305 and the incomplete control of the reflected light.
  • the light from the color mixing light guide plate 302 is reflected and turned 180 degrees to return the light that should travel to the main light guide plate 301 side. Even if it enters 01, it may penetrate without satisfying the critical angle condition. This causes local uneven brightness.
  • the LEDs of the LED group 303 are arranged horizontally for heat dissipation, the 90-degree reflecting member 304, which reflects light 90 degrees, will also decrease the light use efficiency due to the same cause. . Disclosure of the invention
  • An object of the present invention is to solve the conventional problem described above, and to reduce the uneven brightness and uneven color when a plurality of light sources are used, and to efficiently change the traveling direction of light. It is an object of the present invention to provide a display device that has been used.
  • the light guide device is a light guide device that causes light from a light source to be incident on a light guide plate and emits light from a predetermined light emission surface, wherein the direction of the light source light is set between one end surface of the light guide plate and the light source.
  • a second triangular prism for guiding the other light guide plate to the other light guide plate is provided, and the first light guide plate and the second light guide plate are connected to each other.
  • a gas layer is interposed between each of the second triangular prisms, and the above object is achieved.
  • a light source is provided on the other end face of the light guide plate by changing a direction of the light source light by a predetermined angle separately from the first triangular prism between the other end face of the light guide plate and the light source.
  • a first triangular prism for guiding light is further provided, and a gas layer is interposed between the first triangular prism and the light guide plate.
  • a third light guide plate is provided in parallel with the first light guide plate.
  • the second triangular prism in the light guide device of the present invention is composed of two triangular prisms, and a gas layer is interposed between the two triangular prisms. More preferably, in the light guide device of the present invention, a parallel plane plate is interposed between the two triangular prisms, and a gas layer is interposed between the parallel plane plate and the two triangular prisms.
  • a light source is provided on the other end face of the first light guide plate by changing a direction of the light source light by a predetermined angle between the other end face to the one end face of the first light guide plate and the light source.
  • a first triangular prism for guiding light is provided, and a gas layer is interposed between the light guide plate and the first triangular prism.
  • the light source is provided between the other end face of the first light guide plate and the light source, and between the one end face of the third light guide plate with respect to the other end face and the light source.
  • Each first triangular prism for guiding light source light to the other end face of the first light guide plate and one end face of the third light guide plate by changing the direction of light by a predetermined angle is provided, and the light guide plate and each first triangular prism are provided.
  • a gas layer is interposed between the triangular prisms.
  • at least a part is located between the first light guide plate and the second light guide plate, and the second light guide plate has a surface opposite to the predetermined light emitting surface.
  • the reflecting members are arranged to face each other.
  • the reflection member is disposed so as to face a surface of the light guide plate opposite to the predetermined light emission surface.
  • the area of the light incident surface on which light from the light exit surface is larger than the area of the light exit surface.
  • At least a part of the light incidence surface and the light emission surface of the triangular prism and the light guide plate in the light guide device of the present invention is coated with an antireflection film.
  • the thickness of the light guide plate in the light guide device of the present invention is reduced as the optical path is farther from the light source.
  • the cross section of the triangular prism in the light guide device of the present invention is a right-angled isosceles triangle, and changes the direction of light by 90 degrees.
  • a mirror member or a reflection member is provided on the slope side of the triangular prism in the light guide device of the present invention.
  • a gas layer is interposed between the inclined surface of the triangular prism and the mirror member or the reflection member in the light guide device of the present invention.
  • the light source in the light guide device of the present invention is a group of light emitting diodes of three primary colors. Further, preferably, at least a part of the light guide device of the present invention is shielded from the outside air.
  • dry nitrogen is sealed in a portion of the light guide device of the present invention that is isolated from outside air.
  • the display device of the present invention uses the light guide device as a display light source, thereby achieving the above object.
  • a first triangular prism is interposed between light from the light source and an optical path of the light guide plate, and a gas layer is provided between the light guide plate and the first triangular prism.
  • a second triangular prism (two triangular prisms) for changing the optical path by 180 degrees is interposed between the optical paths of the first light guide plate and the second light guide plate. Since the gap of the gas layer is interposed between the triangular prisms and between the two triangular prisms, a light guide device that efficiently changes the traveling direction of light can be obtained. In addition, even when white light is generated using a plurality of color light sources, uneven brightness and uneven color are reduced.
  • a parallel plane plate is interposed between the two triangular prisms, and a gas layer gap is interposed between the two triangular prisms and the parallel plane plate, so that the two light guide plates are separated from each other. In such a case, it is possible to prevent light from leaking from one light guide plate to the other light guide plate and to transmit light efficiently.
  • the area of the light entrance surface is larger than the area of the light exit surface. Even when the gap between the materials is large, it is possible to prevent light leakage and transmit light efficiently.
  • the antireflection film since at least a part of the light entrance surface and the light exit surface of the light guide plate and the triangular prism are covered with the antireflection film, it is possible to minimize the loss due to interfacial reflection in the gas layer.
  • the thickness of the light guide plate is reduced as the distance from the light source increases, it is possible to obtain a light guide device which can be made thinner and lighter and has high efficiency.
  • the cross section of the triangular prism is a substantially right-angled isosceles triangle, light guiding efficiency is improved.
  • the light guide device since a gap between the gas layer is provided between the slope of the triangular prism and the mirror, reflection at the interface is used when the critical condition is satisfied, and reflection at the mirror is used when the critical condition is not satisfied. Therefore, the light guide device has higher light guide efficiency. Furthermore, since a light emitting diode is used as a light source, the light source has directivity, and more light beams satisfy the critical condition. Therefore, a light guide device having a light guide efficiency can be obtained. Furthermore, since at least a part of the light guide device is shielded from the outside air, it is possible to eliminate factors that have an adverse effect on the optical members such as dust and water, and to obtain a light guide device having stable optical characteristics.
  • FIG. 1 is a perspective view showing a schematic configuration of a light guide device according to a first embodiment of the present invention.
  • C FIGS. 2 (a) to 2 (d) illustrate a traveling state of light rays in the light guide device of FIG. FIG.
  • 3 (a) to 3 (d) are cross-sectional views for explaining a traveling state of light rays in the light guide device according to the second embodiment of the present invention.
  • FIG. 4 is a simulation result diagram by a ray tracing method in Embodiment 2 of the light guide device of the present invention.
  • FIGS. 5 (a) and 5 (b) are cross-sectional views for explaining a traveling state (part 1) of light rays in Embodiment 3 of the light guide device of the present invention.
  • FIGS. 6 (c) and 6 (d) are cross-sectional views for explaining a traveling state of light rays (part 2) in the light guide device according to the third embodiment of the present invention.
  • FIG. 7 is a simulation result diagram by a ray tracing method in Embodiment 3 of the light guide device of the present invention.
  • FIG. 8 is a perspective view illustrating a schematic configuration of a light guide device according to a fourth embodiment of the present invention.
  • FIG. 9 is a simulation result diagram of the light guide device of FIG. 8 by the ray tracing method.
  • FIG. 10 is a perspective view showing a schematic configuration of a light guide device according to a fifth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a schematic light traveling state in Embodiment 6 of the light guide device of the present invention.
  • FIG. 12 is a cross-sectional view showing a schematic light traveling state in Embodiment 7 of the light guide device of the present invention.
  • FIG. 13 is a cross-sectional view showing a schematic light traveling state in Embodiment 8 of the light guide device of the present invention.
  • FIG. 14 is a configuration diagram of a liquid crystal display device (Embodiment 9 of the present invention) using the light guide device of Embodiment 4 of the present invention.
  • FIG. 15 is a cross-sectional view showing a schematic light traveling state in Embodiment 10 of the light guide device of the present invention.
  • FIG. 16 is a cross-sectional view schematically showing a light traveling state in a modification of the light guide device of FIG.
  • FIG. 17 is a general configuration diagram of a light guide device having a conventional sidelight-type packed light.
  • FIG. 18 is a general configuration diagram of a light guide device showing a conventional two light guide plate type.
  • FIG. 19 is a general configuration diagram of a light guide device showing a conventional 180-degree folded type.
  • FIG. 1 is a perspective view showing a schematic configuration of a light guide device according to a first embodiment of the present invention. Here, the size and arrangement intervals of each member are exaggerated for easy understanding.
  • the light guide device 10 includes a plate-shaped light guide plate 11 having a thickness and a triangular prism 12 (a first triangular prism) for changing the direction of light at a predetermined angle, for example, 90 degrees.
  • Rhythm and LED groups 13 as a plurality of light sources.
  • the light guide plate 11 has a light emission surface from which light is emitted in the arrow direction L.
  • the direction in which light is emitted from the light emitting surface is controlled by printing a scattering pattern on the back surface or by forming an uneven shape on the back surface.
  • the triangular prism 12 is a prism having a right-angled isosceles triangular cross section, and the lower surface thereof is disposed facing the upper end surface of the light guide plate 11 with a slight gap.
  • the optical members of the light guide plate 11 and the triangular prism 12 have a refractive index of 1.49, and the surroundings of these optical members are filled with gas. That is, a gas layer also exists between the opposing surfaces of the triangular prism 12 and the light guide plate 11. This gas layer is an air layer having a refractive index of 1.
  • the LED group 13 is composed of a red light source (red LED) 13a, a green light source (green LED) 13b, and a blue light source (blue LED) 13c that repeat red, green, and blue to mix white to red. For example, a plurality are arranged in a row in a row.
  • FIGS. 2 (a) to 2 (d) schematically show how light travels from the triangular prism 12 and the light guide plate 11 from the £ 0 group 13.
  • FIG. 2A shows a case where light enters perpendicularly to the non-inclined surface of the triangular prism 12.
  • the light beam that has entered the triangular prism 12 perpendicularly reflects when it hits the slope, and enters from the upper end face 11 a of the light guide plate 11. This is because the angle of incidence on the slope of the triangular prism 12 is 45 degrees with respect to the normal P of the slope of the triangular prism 12, which is more than the critical angle of 42.2 degrees between the refractive index 1 and the refractive index 1.49. Because it is large, it satisfies the critical condition and reflects at an angle of 45 degrees with respect to the normal P, which is the same as the incident angle. In addition, since the light beam enters the opposite surface of the triangular prism 12 and the light guide plate 11 vertically, there is no influence of this gap.
  • FIG. 2B shows a case where a light beam having an inclination of 30 degrees is incident on the upper side with respect to the normal Q of the non-inclined surface of the triangular prism 12.
  • the light that has entered at an inclination of 30 degrees is refracted at the interface between the gas and the triangular prism 12, enters with an inclination of 19.6 degrees, and strikes the slope of the triangular prism 12.
  • the angle of the launch surface with respect to the normal P is 64.6 degrees, which is larger than the critical angle, so that the light is also reflected at an angle of 64.6 degrees with respect to the normal P of the triangular prism 12.
  • the reflected light beam enters the upper end surface 11a of the light guide plate 11 and strikes the wall surface of the light guide plate 11, but this angle is a normal to the wall surface. Since it has an angle of 70.4 degrees, it is larger than the critical angle and is reflected and propagates through the light guide plate 11.
  • the light beam enters the opposing surface of the triangular prism 12 and the light guide plate 11 at 19.6 degrees. Since this is an angle smaller than the critical condition, the influence of this gap does not need to be considered.
  • FIG. 2 (c) shows a case where the light beam is incident on a non-inclined surface of the triangular prism 12 at a larger angle.
  • the incident angle of the light beam is 45 degrees.
  • the light is refracted at the interface between the gas and the incident surface of the triangular prism 12 and is incident from the incident surface at an inclination of 28.3 degrees and strikes the interface of the triangular prism 12 on the light guide plate 11 side.
  • the incident angle of the light beam with respect to the normal S is 61.7 degrees, which is larger than the critical angle, and the light is reflected at an angle of 61.7 degrees with respect to the normal S.
  • This ray hits the slope of the triangular prism 12, and the angle of this ray is 16.7 degrees with respect to the normal P, so that the ray goes out.
  • FIG. 2D shows a case where light is incident on the triangular prism 12 at an angle of 45 degrees with respect to the normal Q in a direction opposite to the direction of the light beam in FIG. 2C.
  • the light beam enters the gas at 28.3 degrees with respect to the normal Q of the incident surface of the triangular prism 12 and is refracted at the interface. Since the light hits at an angle, the light rays also go out of the triangular prism 12 in this case.
  • FIGS. 3 (a) to 3 (d) are diagrams for explaining the propagation of light rays in Embodiment 2 of the light guide device of the present invention.
  • the light guide device 20 is different from the light guide device 10 of the first embodiment having the light guide plate 11, the triangular prism 12, and the LED group 13, in addition to the configuration of the triangular prism 12.
  • a mirror 24 for reflecting light leaking from the slope side is disposed in the vicinity. In the arrangement of the mirror 24, a predetermined gap is provided between the mirror 24 and the slope of the triangular prism 12, and an air layer is present in the gap.
  • the light is reflected at an angle larger than the critical angle with respect to the normal P of the slope of the triangular prism 12, so that the light is reflected and the light guide plate 1 1 Enter from 1 la of the upper end face.
  • the light beam is not transmitted to the mirror 24 and is reflected at the critical angle, so that the reflection is highly efficient.
  • the light beam hits at a state smaller than the critical angle with respect to the normal S of the lower surface of the triangular prism 12, and thereafter, from the slope of the triangular prism 12 I will go outside.
  • This ray returns by the reflection of mirror 24 And enters from the upper end face of the light guide plate 11.
  • the light beam enters the light guide plate 11 from the triangular prism 12 at an angle of 28.3 degrees with respect to the normal to the opposite surface, and since the incident angle of this light beam is smaller than the critical condition, The influence of the gap between the triangular prism 12 and the light guide plate 11 need not be considered.
  • This light hits the wall inside the light guide plate 11 at an angle of 61.7 degrees to the normal R, which is greater than the critical angle, and the light is reflected and travels down the light guide plate. Go.
  • the reflection efficiency is lower than the reflection under the critical condition, but the light leaked from the slope of the triangular prism 12 is completely wasted. It is far more effective.
  • the light beam enters each of the opposing surfaces of the triangular prism 12 and the light guide plate 11 at 28.3 degrees, and the angles of incidence and incidence are smaller than the critical angle condition. , During this time It is not necessary to consider the effect of the gap.
  • the refractive indexes of the light guide plate 11 and the triangular prism 12 were set to 1.492.
  • Apparatus 1 OA can be obtained.
  • the difference in reflectance depending on the incident angle of light is not considered.
  • the reflection efficiency is greatly improved.For example, the loss at one interface is only 2%, and it is 9 2.
  • anti-reflection treatment for example, an anti-reflection film (low-refractive-index film) is applied to at least one of the light incident surface and the light exit surface and at least a part thereof) at each interface between the light guide plate 11 and the triangular prism 12.
  • an antireflection treatment generally uses a multilayer film of silicon oxide or titanium oxide.
  • the invention is not limited to this method.
  • the light incident angle is limited as much as possible so that the angle of the incident light does not increase. Therefore, a light source having a directivity such as an LED (light emitting diode) for the light source 13 can achieve higher efficiency.
  • reflection by the mirror 124 arranged on the slope of the triangular prism 12 increases, so that the mirror 24 is arranged on the slope without a gas layer, so that interfacial reflection can be achieved. And the number of optical members can be reduced.
  • FIGS. 5 (a) to 6 (d) are diagrams for explaining the propagation of light rays in Embodiment 3 of the light guide device of the present invention.
  • the light guide plates 11A and 11B are arranged side by side in the thickness direction with a predetermined gap, and one right-angled surface of the triangular prism 12A faces the upper end surface of the light guide plate 11A.
  • one right-angled surface of the triangular prism 12B is disposed so as to oppose, and the other right-angled surfaces of the triangular prisms 12A and 12B oppose each other. It is arranged as
  • the light source of the LED group 13 that has entered at a predetermined angle from the lower end face of the light guide plate 11A hits the wall surface inside the light guide plate 11A, and is reflected by the critical condition to form a triangle.
  • the light enters the prism 12A.
  • the light beam that has entered the prism 12A strikes the slope, but does not meet the critical conditions, so it goes out of the slope once, is reflected by the mirror 24A, and is returned to the triangular prism 12A again.
  • Triangular prism The light beam re-entering 12A hits the slope of the other triangular prism 12B, is reflected here under critical conditions, and enters the other light guide plate 11B. In this way, the light beam from one light guide plate 11A changes its direction by a predetermined angle of 180 degrees, enters the other light guide plate 11B, and exits from the lower end face to the outside. .
  • Figs. 5 (a) to 6 (d) describe only the case where the incident angle is a specific angle
  • Fig. 7 shows the simulation results by the ray tracing method when the light beam enters at various angles. I have.
  • the simulation conditions are the same as in FIG. 4, and 27 rays enter from the lower end face of the light guide plate 11A at an equally divided angle of incidence of ⁇ 60 degrees.
  • the gas layer between the triangular prism 12A and the triangular prism 12A is arranged so as to be 50 / zm. Each member is arranged so that the gas layer between them also becomes 50 im.
  • the gas layer between the triangular prisms 12A and 12B and the gas layer between the light guide plates 11A and 11B are also arranged with a predetermined gap (50 m) so as to be 50.
  • the refractive indexes of the light guide plate 11A and the triangular prism 12A were set to 1.492.
  • FIG. 8 is a perspective view illustrating a schematic configuration of a light guide device according to a fourth embodiment of the present invention.
  • the light guide device 40 includes an LED group 13 as a light source of a plurality of colors, It has a light guide plate 4 1, 4 2 (or 4 2 B) with a plate thickness and three triangular prisms 1 2, 1 2 A, 1 2 B for changing the direction of the source light by 90 degrees. I have.
  • the LED group 13 uses the red LED 13a of the red light source, the green LED 13b of the green light source, and the blue LED 13c of the blue light source among the three primary colors.
  • the light guide plate 41 is a light guide plate for color mixing
  • the light guide plate 42 is a light guide plate having a light exit surface that emits a light beam in the arrow direction L.
  • the light guide plate 41 uses three primary colors of red, green, and blue LED light sources, so when directly entering the light guide plate 42, the color unevenness of the emitted light was large, but the stage before the light guide plate 42 In the light guide plate 41 disposed in the, there is a sufficient distance between the upper and lower end surfaces to cause color mixing.
  • a scattering pattern is printed on the back surface of the light guide plate 42 (the surface on the light guide plate 41 side), and light is emitted from the front side of the light guide plate 42 in the direction of arrow L by causing scattering. ing.
  • the uniformity of the light emission state can be controlled by the scattering pattern. In FIG. 8, the uniformity is reduced by making the scattering pattern small in the lower part of the light guide plate 42 and larger in the upper part. Obtainable. At the last upper end face, almost all of the light is emitted to the surface of the light guide plate 42 (in the direction of the arrow L), and the light emitted from the upper end face, that is, the unused light is reduced.
  • a reflection sheet as a reflection member is installed on the back side of the light guide plate 42, that is, between the light guide plate 41, light leaked from the scattering pattern is returned to the inside again to be guided.
  • a reflection sheet is used because the light efficiency can be improved.
  • the light guide plate 42 emits light in the direction of the arrow L from the front side thereof.
  • the light traveling direction is the upper and lower end faces, and the light guide direction is the upper end face or the lower end face. It can also be configured so that light is emitted therefrom.
  • FIG. 9 shows a simulation result of how the light rays travel in this case. The simulation conditions at this time are the same as those in FIGS.
  • the light emitted from the light source passes through each optical member in order.
  • the last light guide is used instead of the light exiting from the light exit surface (surface) in the direction of arrow L as in the last light guide plate 42. Light rays are emitted from the upper end face as in the light plate 42B (see Fig. 9).
  • Embodiment 4 is effective when the two light guide plates 41 and 42 can be arranged close to each other. However, when it is necessary to arrange them separately due to structural problems, they are arranged side by side.
  • the two triangular prisms 1 2 A and 1 2 B are too far apart. In this case, many light beams are not transmitted due to light leakage, and the light guiding efficiency is greatly reduced. Therefore, in order to solve this, in the fifth embodiment, as shown in FIG. 10, the light guide device 50 is different from the respective components in the light guide device 40 of the fourth embodiment.
  • a parallel plane plate 51 is provided between the triangle prisms 12A and 12B. By inserting the parallel flat plate 51 in this manner, the gas layer between the optical members can be made extremely thin, and all light beams can be transmitted without waste.
  • the gas layer in the gap between the optical members is arranged to be larger than the wavelength, but if the gap is set too large, light leakage occurs as described in Embodiment 5 above, so the parallel flat plate 51 is used. There is a need to. If the gap is not large enough to sandwich the parallel flat plate 51, it is effective to adopt the configuration of the sixth embodiment as shown in FIG. In the sixth embodiment, the opposite surface of the optical member is set so as to gradually increase in the order in which the light travels so that the leaked light is also incident.
  • FIG. 11 is a cross-sectional view showing a schematic light traveling state in Embodiment 6 of the light guide device of the present invention.
  • the light guide device 60 is composed of an LED group 13 as a light source of a plurality of colors, plate-like light guide plates 61 and 62 having a thickness, and a direction of the light source light of 90 degrees.
  • the three triangular prisms 6 3 to 65 are provided so that the area of the light incident surface is larger than that of the light exit surface on the upstream side of the light traveling path.
  • the light from the first group 13 enters the triangular prism 63, and this light is transmitted into the light guide plate 61.
  • the light path downstream The light incident surface of the light guide plate 61 on the side has a larger area than the light exit surface of the triangular prism 63. In this case, light leakage is suppressed even if the gap distance between the surfaces is large.
  • the light incident surface of the triangular prism 64 on the downstream side of the light traveling path has a larger area than the light exit surface of the light guide plate 61.
  • the light incident surface of the triangular prism 65 on the downstream side of the optical path is larger in area than the light emitting surface of the triangular prism 64. Is increasing. Furthermore, of the opposing surfaces of the triangular prism 65 and the light guide plate 62, the light incident surface of the light guide plate 62 downstream of the light traveling path has a larger area than the light exit surface of the triangular prism 65. are doing.
  • the light exit surface and the light incident surface of all the optical members are gradually increased toward the downstream side of the light traveling path. It may be just.
  • FIGS. 12 (a) and 12 (b) of the seventh embodiment are cross-sectional views schematically showing a light traveling state in Embodiment 7 of the light guide device of the present invention.
  • the light guide device 70 includes an LED group 13 as a light source of a plurality of colors, and a plate-shaped light guide plate 71 having a light incident surface having a larger area than a light emitting surface. 72, and three triangular prisms 73 to 75 for changing the direction of the light source light by 90 degrees.
  • the thickness is gradually reduced toward the end of the light guide plates 71 and 72.
  • the light guide plate 72 is configured to be thin at the end similarly to the light guide plate 71, the combined thickness of the two can be made uniform as shown in FIG. 12 (a), and as a result, the thickness and the weight can be reduced.
  • a large light guide plate end face here, a prism end face
  • the size of the triangular prisms 74 and 75 is different, but the larger size of the triangular prism 75 disposed on the rear side of the optical path causes a problem with light leakage as described in the sixth embodiment. No.
  • the thickness of the light guide plate 72 on the light exit side is changed, and the thickness of the light guide plate 71A on the front side of the optical path is the same (the thickness is uniform in the longitudinal direction). ).
  • the thickness of the light guide plate 71A is uniform, light transmission efficiency is good and light can be transmitted more effectively.
  • each optical member such as the triangular prism and the light guide plate has a gap between the gas layers.
  • a sealed case is used in order to create an environment where these light guide devices are shielded from the outside air.
  • this light guide device 80 is composed of an LED group 13 as a light source of a plurality of colors, plate-like light guide plates 8 1 and 8 2, and a 90-degree change in the direction of the light source light.
  • Sealing case that seals the triangular prism 83, the triangular prism 84 for changing the direction of the light source light by 180 degrees, and at least the light guide plates 81, 82 and the triangular prisms 83, 84 8 and 5 are provided.
  • the sealing case 85 may seal the light guide device 80 including the light source (LED group 13) and house it inside.
  • the LED group 13 emits a lot of heat, It is more effective to dispose it outside the stop case 85 in terms of heat dissipation. In this way, the light guide device 80 housed in the sealing case 85 is protected from outside dust and moisture.
  • the moisture in the sealing case 85 is dewed due to the temperature difference and adheres to the gap between the gas layers.
  • the inside of the sealed case 85 was filled with dry nitrogen, since there was almost no moisture in the dry nitrogen, no dew condensation due to a temperature difference in the sealed case 85 was observed. As for condensation, dry air has the same effect. However, nitrogen is more effective than air to minimize the effects of mold.
  • the triangular prism 84 shown in FIG. 13 is different from the third to seventh embodiments in that only one triangular prism 84 is used to change the direction of the light source light by 180 degrees. are doing. In this case, since all the light does not travel from the light guide plate 81 to the light guide plate 82 and many of the light returns again, the light transmission efficiency is smaller than that of the two triangular prisms in the third to seventh embodiments. However, there is a merit that only one triangular prism 84 has fewer optical members and is easier to handle.
  • FIG. 14 is a configuration diagram of a liquid crystal display device (Embodiment 9 of the present invention) using the light guide device of Embodiment 4 of the present invention.
  • a liquid crystal display device 90 includes a light guide device 40 as a backlight, a polarizing plate 91, a liquid crystal panel 92, a phase difference plate 93, and a polarizing plate in front of the light guide device 40 in this order. 94.
  • the light guide device 40 uses an LED as a light source, and light beams from the red light source 13a, the green light source 13b, and the blue light source 13c enter the triangular prism 12, and a light guide plate 41 for color mixing, a triangular prism 12A, 12B and the light guide plate 42 for light emission. Light is emitted to the front surface side by the scattering pattern printed on the back surface of the light guide plate 42.
  • the liquid crystal display device 90 has an optical sheet such as a retardation plate 93 and polarizing plates 91 and 94.
  • the light from the light guide device 40 which is a surface light source having a uniform light amount, is a polarizing plate.
  • Various information such as pictures and characters are displayed on the LCD screen by passing through a phase difference plate 93 and a polarizing plate 94 via a liquid crystal panel 92 which passes through 91 and is controlled according to various information such as pictures and characters. Will be displayed.
  • the displayed image is a clear image with a wide color reproduction range due to a light source with high color purity, and it is possible to display with little color unevenness and luminance unevenness.
  • the red, green and blue LED light sources are used.
  • the present invention is not limited to this. Even if a white LED light source is used, a display with less luminance unevenness can be obtained, and the effect is great. In addition, it is possible to transmit light efficiently to all light sources even if they are not LEDs.
  • the light guide device and the display device using the same are not limited to these applications.
  • the light source does not have to be attached to the device, and may be a light source for lighting the surrounding environment.
  • ambient light is condensed by, for example, a lens, enters the triangular prism, and is transmitted to the light guide plate, so that it can be used as a front light of reflective liquid crystal ⁇ an auxiliary light source of transmissive liquid crystal, or as a light source for printed matter Is possible.
  • a light guide plate 41 for color mixing a light guide plate 42 having a light exit surface
  • a light guide plate 42 having a light exit surface a light guide plate 42 having a light exit surface
  • a light guide from the LED group 13 to one end surface of the light guide plate 41.
  • the light guide device 40 including the triangular prism 12 and the triangular prisms 12A and 12B for guiding the light from the other end surface of the light guide plate 41 to one end surface of the light guide plate 42 serves as a backlight, and the liquid crystal display panel 92
  • the light guide device 40 has a gas layer interposed between the respective light guide plates 41 and 42 and the respective optical members of the triangular prisms 12, 12A and 12B.
  • each triangle is provided between the light from the light source and the light path of the light guide plate 41 and between the light paths of the light guide plates 41 and 42.
  • Each light source has a prism, and a gas layer is interposed between the optical parts of the light guide plates 41, 42 and the triangular prisms 12, 12A, 12B. And the traveling direction of light can be efficiently changed by the critical reflection of each triangular prism.
  • the light source light is not limited to being incident from one end surface (one end surface) of the light guide plate, but may be incident from a plurality of end surfaces.
  • Fig. 15 shows a case where light is incident from two end faces (opposite end faces).
  • FIG. 15 is a cross-sectional view showing a schematic light traveling state in Embodiment 10 of the light guide device of the present invention.
  • the configuration is symmetrical in the left-right direction, members having the same function on the left and right are denoted by the same reference numerals, and description thereof will be omitted.
  • this light guide device 400 includes plate-like light guide plates 401, 401, and 402 having a thickness, and a triangular prism 12, 12, 12, 12A, 12A, 12B for changing the direction of light by 90 degrees. And 12B, LED groups 13 and 13 as a plurality of light sources, and a reflecting member 403 for reflecting leaked light in one direction.
  • the light guide plate 401 is provided between the triangular prism 12 and the triangular prism 12A, This is a plane plate for mixing light, which guides the light emitted from the triangular prism 12 in the direction of the arrow (left-right direction) and emits it to the triangular prism 12A side.
  • the light guide plate 402 is provided between the two triangular prisms 12 B and 12 B to guide the light emitted from the two triangular prisms 12 B in the left and right directions and to emit the light in the arrow direction L. It has a light emitting surface.
  • the triangular prisms 12, 12 A and 12 B are prisms having a right-angled isosceles triangular cross section, with the surface facing the end face of the light guide plate 401 or 402 with a slight gap. It is arranged. Each surface of the triangular prism 12A and the triangular prism 12B is also arranged to face each other.
  • the refractive indexes of the optical members of the light guide plates 401, 402 and the triangular prisms 12, 12, 12A, and 12B are set to 1.49, and the surroundings of these optical members are filled with gas. I have.
  • This gas layer is an air layer having a refractive index of 1.
  • £ 0 group 13 is a red light source (red LE for mixing red, green and blue
  • a green light source green LED
  • a blue light source blue LED
  • the reflecting member 403 is provided so as to be sandwiched between the light guide plate 401 and the light guide plate 402.
  • the reflection member 403 may be a diffuse reflection plate typified by white PET (polyethylene terephthalate) or a specular reflection plate such as a mirror.
  • white PET polyethylene terephthalate
  • specular reflection plate such as a mirror.
  • the use of the reflecting member 403 is not effective only in the case of the tenth embodiment.
  • the light amount is improved in all cases where light is emitted from the light guide plate of the first to ninth embodiments as a surface light source. It goes without saying that it is effective.
  • the light from the LED group 13 is incident on the triangular prism 12 and 9
  • the light is emitted with the direction changed by 0 degrees, and efficiently enters the light guide plate 401 as described in the first to ninth embodiments.
  • the light emitted from the light guide plate 401 is a triangular prism.
  • the light is incident into the light guide plate 402 by changing its direction by 180 degrees through the triangular prism 12B and 12A.
  • the light guide plate 402 light from both end surfaces is emitted in the direction of arrow L.
  • the reflection member 403 is provided on the back side of the light guide plate 402 so that the leaked light can be efficiently emitted in the direction of the arrow.
  • the light guide plate 401 is used as a region where light is mixed, and the triangular prisms 12A and 12B efficiently guide light to the light guide plate 402 that emits light as a surface light source.
  • the light source can be made to emit light, and light can be incident from two end faces (left and right end faces).
  • the surface light source is brighter than in the case of Embodiments 1 to 9 in which light is incident only from one end face. Can be.
  • a brighter display screen can be obtained by using the light guide device 400 for a display device such as a liquid crystal display device.
  • FIG. 16 shows a light guide device 500 as a modification of the tenth embodiment.
  • This light guide device 500 includes a thick plate-like light guide plate 502, triangular prisms 12B and 12B for changing the direction of light by 90 degrees, LED groups 13 and 13 as a plurality of light sources, and light. And a reflecting member 503 for reflecting light.
  • the pair of light guide plates 401 and the triangular prisms 12 and 12 B shown in FIG. 15 are omitted, and the light source light from the LED group 13 is directly incident from one side of the triangular prism 12 B to form the light guide plate 5.
  • light from both end surfaces is emitted in the direction of arrow L.
  • the light becomes even brighter than in the case of the tenth embodiment because the light is not attenuated by the light guide plate 401. Further, when two such light guide devices 500 are superimposed on each other, a surface light source which is much brighter than that of the tenth embodiment is obtained. In this case, the reflecting member 503 is omitted. Further, the arrangement of the triangular prisms 12B, 12B may be shifted by 90 degrees in a plane between the upper and lower light guide devices 500. In addition, two opposing A triangular prism may be provided not only on the end faces but also on all end faces (for example, four end faces), and light may be incident from all the end faces (for example, four end faces).
  • a first triangular prism that changes the optical path by 90 degrees is interposed between the light from the light source and the optical path of the light guide plate, and Since a gas layer is interposed between the light plate and the first triangular prism, it is possible to obtain a light guide device that efficiently changes the traveling direction of light. And color unevenness can be reduced.
  • a second triangular prism (two triangular prisms) for changing the optical path by 180 degrees is interposed between the optical paths of the first light guide plate and the second light guide plate. Since a gas layer gap is interposed between the triangular prisms and between the two triangular prisms, a light guide device that can efficiently change the traveling direction of light can be obtained. Even in the case of white light, luminance unevenness and color unevenness can be reduced. Industrial applicability
  • a surface light source used for a display device such as a liquid crystal display device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 光源であるLED群13と、色混合用の導光板41と、光出射面を持つ導光板42と、LED群13からの光線を導光板41の一方端面に導く三角プリズム12と、導光板41の他方端面からの光線を導光板42の一方端面に導く三角プリズム12A、12Bとを備えた導光装置40をバックライトとして、液晶表示パネル92の後方に配設すると共に、各導光板41,42および三角プリズム12,12A,12Bの各光学部材間に気体層を介在させている。これにより、複数の光源を用いた場合の輝度ムラや色ムラを軽減でき、かつ光の進行方向を効率よく変えることができる。

Description

明 細 書 導光装置および表示装置 技術分野
本発明は、 外部からの光を内部を導通させて所定光出射面から光を出射させる 導光装置および、 これを用いた例えば液晶表示装置などの表示装置に関する。 背景技術
従来の表示装置として、 サイドライトを含むバックライ卜を用いた透過型液晶 表示装置や、 フロントライトを用いた反射型液晶表示装置などでは、 白色の冷陰 極管や白色の L E D (発光ダイオード) を搭載してディスプレイ表示している。 図 1 7は、 従来のサイドライト型バックライトを持つ導光装置の一般的な構成 図である。
図 1 7において、 導光装置 1 0 0は、 厚みを有する板状の導光板 1 0 1と、 こ の導光板 1 0 1の光出射面と反対面側に配設された反射板 1 0 2と、 導光板 1 0 1の端面に沿って対向配設された光源反射板 1 0 3と、 導光板 1 0 1と光源反射 板 1 0 3間に配設された冷陰極管 1 0 4とを備えている。
導光板 1 0 1は、 矢印 Lの方向に光が出射される光出射面を有している。 その 光出射面からの光の出射方向は、 散乱パターンを裏面 (反射板 1 0 2側の面) に 印刷する方法や、 その裏面に凹凸の形状を作ることにより制御されている。 反射板 1 0 2は、 導光板 1 0 1からは矢印 Lの方向に光が出射されるが、 その 光出射面とは反対面側から漏れてくる光を反射させて導光板 1 0 1に戻すことに より光を有効利用するために配置されている。
光源反射板 1 0 3は、 冷陰極管 1 0 4からの光を反射して導光板 1 0 1に効率 良く入射させるために用いられている。
冷陰極管 104は外部光源である。 なお、 外部光源として、 特に近年急激な普 及を見せた携帯電話装置には白色 LED (発光ダイオード) が多く使われている。 この場合、 冷陰極管 104を白色 LEDに置き換えると、 LED特有の指向性の ために光源反射板 103を必要としない。
この白色 LEDを用いるメリットとしては、 冷陰極管 104と比較して、 光源 反射板 103が不要であることにより、 液晶ディスプレイを省スペース化のため に小型化できることや、 冷陰極管 104に必要なインバー夕回路を必要としない ために安価であることなどが挙げられる。
また、 白色 LEDの代わりに赤、 緑、 青色の LEDを用いた光源も考えられて おり、 このメリットとしては、 色純度の高い光源を用いるので、 得られた画像も 色純度が高く鮮明な画像になるということである。
その反面、 赤、 緑、 青色の LEDを用いた場合には、 色ムラをなくすために色 を混合し白色にするのに特別な構成が必要となる。 この特別な構成として、 例え ば 2枚導光板タイプ (図 18参照) や 180度折り返しタイプ (図 19参照) な どが挙げられる。 なお、 白色 LEDであっても、 発光する面積に対し LEDの個 数が少ない場合は、 輝度ムラの要因になるので同様に特別な構成が必要である。 図 18は、 従来の 2枚導光板タイプを示す導光装置の一般的な構成図である。 図 18において、 導光装置 200は、 厚みを有する板状の前方導光板 201と、 前方導光板 201の光源としての LED群 202と、 前方導光板 201に対向配 設された厚みを有する板状の後方導光板 203と、 後方導光板 203の光源とし ての LED群 204とを備えている。
前方導光板 201の下側端面には、 赤 LED 202 a、 緑 LED 202 b、 青 LED 202 cが順に例えば一列に並べられた LED群 202からの光が入射さ れ、 前方導光板 201の下側半分で赤、 緑および青色光を混合して白色光とし、 その白色光を上側半分から矢印方向 Lへ出射する。 この場合、 光の出射領域 (上 側半分の面) は前方導光板 201の裏側 (後方導光板 203側) に形成された散 乱パターンにより制御できる。
これと同様に、 後方導光板 203の上側端面には、 赤 LED204 a、 緑 LE D 204 青 LED 204 cが順に例えば一列に並べられた LED群 204か らの光が入射され、 後方導光板 203の上側半分で赤、 緑、 青色光を混合して白 色光とし、 その白色光を下側半分から矢印方向 Lへ出射する。 この場合にも、 光 の出射領域 (下側半分の面) は後方導光板 203の裏面側 (前方導光板 201側 とは反対側) に形成された散乱パ夕一ンにより制御できる。
このように、 1枚の導光板を上下半分づつの領域に分割し、 複数色を混合する 領域と光出射領域とに割り当て、 この導光板を 2枚 (前方導光板 201および後 方導光板 203) 用いることにより複数色の混合を可能にし、 色ムラの少ない導 光装置 200を得ている。
図 19は、 従来の 180度折り返しタイプを示す導光装置の一般的な構成図で ある。
図 19において、 導光装置 300は、 厚みを有する板状の主導光板 301と、 主導光板 301の下側領域に対向配設された厚みを有する板状の色混合導光板 3 02と、 色混合導光板 302の光源としての LED群 303と、 LED群 303 からの光を色混合導光板 302に導くための 90度反射部材 304と、 色混合導 光板 302から主導光板 301側に光を 180度折り返すための 180度反射部 材 305とを備えている。
主導光板 301は光を矢印方向 Lへ出射させるためのものである。
色混合導光板 302は LED群 303からの複数色 (三原色) の光を混合する ためのものである。
LED群 303は、 赤 LED 303 a、 緑 LED 303 b、 青 LED 303 c がこの順に繰り返して例えば一列に複数個並べられて構成されている。
90度反射部材 304は、 LED群 303からの光が反射により 90度向きを 変えて色混合導光板 302の上側端面に入射するように導くためのものである。 なお、 90度反射部材 304を介さずに、 LED群 303からの光を直接、 色 混合導光板 302の上側端面に入射させている構成例もあるが、 これは、 LED 群 303からの発熱を放熱することを考えると、 図 19のように LED群 303 を横向き (水平方向) に取り付けたほうが構造上好ましい。
180度反射部材 305は色混合導光板 302で混合された光が色混合導光板 302の下側端面から出射され、 その出射光を反射することにより 180度向き を変えて主導光板 301の下側端面に導いて入射させるためのものである。 しかしながら、 上記の従来の 2枚導光板タイプ (図 18参照) では、 LED群
202, 204の配置が上下二箇所になり、 LED群 202, 204の何れかを 用い、 片側一列しか使わない配置をとることができない。 つまり、 何れか一列の L£D群で足りる個数 (明るさ) の場合においても、 2枚導光板タイプの場合に は LED群 202, 204の配置が上下二列になり、 また、 個数を減らすために LEDを間引くと輝度ムラや色ムラの原因となる。 さらに、 前方導光板 20 1お よび後方導光板 203の上側半分と下側 分で明るさを等しく制御するのは難し く、 特に重なりの部分では明るくなつてしまったり、 逆に暗くなつてしまったり して明るさの制御が難しい。 さらに、 前方導光板 201および後方導光板 203 の各色混合領域は導光板半分の領域という限定があるため、 画面サイズの小さな パネルでは十分に混合できる距離をとることができずに、 輝度ムラや色ムラの原 因になっていた。
また、 上記従来の 180度折り返しタイプ (図 19参照) では、 色混合導光板
302の長さは十分にとることができるので輝度ムラや色ムラを少なくすること が可能で、 上記 2枚導光板タイプにおける課題は解決しているが、 色混合導光板 3 0 2から主導光板 3 0 1へ 1 8 0度光の向きを変える 1 8 0度反射部材 3 0 5 の光利用効率の悪さで、 明るさを犠牲にしてしまっている。 この光利用効率の悪 い主な要因としては、 9 0度反射部材 3 0 4および 1 8 0度反射部材 3 0 5その ものの反射率の低さや反射光の制御が不完全であることが挙げられる。 具体的に は色混合導光板 3 0 2からの光が反射されて 1 8 0度方向転換して主導光板 3 0 1側に進行していくべき光が戻ってきてしまったり、 たとえ主導光板 3 0 1に入 射しても臨界角の条件を満たさずに突き抜けてしまったりする。 これは局所的な 輝度ムラの原因にもなる。 さらに、 放熱を考えて L E D群 3 0 3の各 L E Dを横 向きに配置した場合、 光を 9 0度反射させる 9 0度反射部材 3 0 4においても同 じ原因により光利用効率を下げてしまう。 発明の開示
本発明は、 上記従来の問題を解決するもので、 複数の光源を用いた場合の輝度 ムラゃ色ムラを軽減でき、 かつ光の進行方向を効率よく変えることができる導光 装置およびこれを用いた表示装置を提供することを目的とする。
本発明の導光装置は、 光源からの光を導光板に入射させて所定の光出射面から 光を出射させる導光装置において、 該導光板の一方端面と光源間に、 該光源光の 方向を所定角度変えて該導光板の一方端面に光源光を導くための第 1三角プリズ ムが設けられ、 該導光板と第 1三角プリズム間には気体層が介在されているもの であり、 そのことにより上記目的が達成される。
また、 本発明の導光装置は、 光源からの光を導光板に入射させて所定の光出射 面から光を出射させる導光装置において、 該導光板は第 1導光板と第 2導光板が 厚み方向に配設され、 該第 1導光板と第 2導光板の各一方端面間に、 一方の導光 板からの光の方向を所定角度 (例えば 9 0度 X 2 = 1 8 0度) 変えて他方の導光 板に導くための第 2三角プリズムが配設され、 該第 1導光板および第 2導光板と 該第 2三角プリズムとの各間に気体層が介在されているものであり、 そのことに より上記目的が達成される。
さらに、 好ましくは、 本発明の導光装置における導光板の他方端面と光源間に、 前記第 1三角プリズムとは別に、 該光源光の方向を所定角度変えて該導光板の他 方端面に光源光を導くための第 1三角プリズムが更に設けられ、 当該第 1三角プ リズムと該導光板間には気体層が介在されている。
さらに、 好ましくは、 本発明の導光装置における導光板は前記第 2導光板と第 3導光板が厚み方向に配設され、 該第 2導光板と第 3導光板の各他方端面間に、 前記第 2三角プリズムとは別に、 一方の導光板からの光の方向を所定角度 (例え ば 9 0度 X 2 = 1 8 0度) 変えて他方の導光板に導くための第 2三角プリズムが 更に配設され、 該第 2導光板および第 3導光板と当該第 2三角プリズムとの各間 に気体層が介在されている。
さらに、 好ましくは、 本発明の導光装置における第 3導光板は前記第 1導光板 と並設されている。
さらに、 好ましくは、 本発明の導光装置における一方端面と他方端面とは対向 している。
さらに、 好ましくは、 本発明の導光装置における第 2三角プリズムは二つの三 角プリズムで構成され、 該二つの三角プリズムの間に気体層が介在されている。 さらに、 好ましくは、 本発明の導光装置において、 二つの三角プリズム間に平 行平面板が介在され、 該平行平面板と該二つの三角プリズム間に気体層がそれぞ れ介在されている。
さらに、 好ましくは、 本発明の導光装置において、 第 1導光板の一方端面に対 する他方端面と光源間に、 該光源光の方向を所定角度変えて該第 1導光板の他方 端面に光源光を導くための第 1三角プリズムが設けられ、 該導光板と第 1三角プ リズム間には気体層が介在されている。 さらに、 好ましくは、 本発明の導光装置において、 第 1導光板の一方端面に対 する他方端面と光源間および、 前記第 3導光板の他方端面に対する一方端面と光 源間にそれぞれ、 該光源光の方向を所定角度変えて該第 1導光板の他方端面およ び該第 3導光板の一方端面に光源光をそれぞれ導くための各第 1三角プリズムが 設けられ、 該導光板と各第 1三角プリズム間には気体層が介在されている。 さらに、 好ましくは、 本発明の導光装置において、 少なくとも一部が前記第 1 導光板と第 2導光板の間にあって、 該第 2導光板の前記所定の光出射面とは反対 側の面に対向するように反射部材が配置されている。
さらに、 好ましくは、 本発明の導光装置における導光板の前記所定の光出射面 とは反対側の面に対向するように反射部材が配置されている。
さらに、 好ましくは、 本発明の導光装置における三角プリズムおよび導光板を 通過する光路において光出射面の面積よりも当該光出射面からの光が入射する光 入射面の面積の方が大きい。
さらに、 好ましくは、 本発明の導光装置における三角プリズムおよび導光板の 光入射面と光出射面の少なくとも一部には反射防止膜が被覆されている。
さらに、 好ましくは、 本発明の導光装置における導光板の厚みは光源から光路 が遠くなるにつれ薄くなつている。
さらに、 好ましくは、 本発明の導光装置における三角プリズムの断面が直角二 等辺三角形であり、 光の方向を 9 0度変える。
さらに、 好ましくは、 本発明の導光装置における三角プリズムの斜面側にミラ 一部材または反射部材を配設している。
さらに、 好ましくは、 本発明の導光装置における三角プリズムの斜面と前記ミ ラー部材または反射部材との間に気体層が介在されている。
さらに、 好ましくは、 本発明の導光装置における光源は三原色の発光ダイォ一 ド群である。 さらに、 好ましくは、 本発明の導光装置の少なくとも一部が外気と遮断されて いる。
さらに、 好ましくは、 本発明の導光装置における外気と遮断されている部分に 乾燥窒素を封入する。
本発明の表示装置は、 上記導光装置を用いて表示用光源としており、 そのこと により上記目的が達成される。
上記構成により、 本発明の作用を説明する。
本発明においては、 光源と導光板とを備えた導光装置において、 光源からの光 と導光板の光路間に第 1三角プリズムを介在させ、 かつ導光板と第 1三角プリズ ム間に気体層を介在したので、 効率良く光の進行方向を変化させる導光装置が得 られる。 しかも複数色の光源を用いて白色光とする場合にも輝度ムラや色ムラが 軽減される。
また、 第 1導光板と第 2導光板の光路間に光路を 1 8 0度変える第 2三角プリ ズム (二つの三角プリズム) を介在し、 かつ第 1導光板および第 2導光板と第 2 三角プリズムとの間および、 二つの三角プリズム間に気体層の間隙を介在させた ので、 効率良く光の進行方向を変化させる導光装置が得られる。 しかも複数色の 光源を用いて白色光とする場合にも輝度ムラや色ムラが軽減される。
また、 二端面 (一方端面と他方端面の両端面) から光を入射させるようにすれ ば、 一方端面からのみ光を入射する場合に比べて、 より明るい面光源とすること が可能となる。
さらに、 二つの三角プリズムの間に平行平面板を介在し、 かつ二つの三角プリ ズムと平行平面板との間に気体層の間隙を介在させたので、 2枚の導光板が離れ て構成される場合にも、 一方の導光板からもう一方の導光板に光の漏れなどを防 止して効率良く光を伝えることが可能となる。
さらに、 光入射面の面積は光出射面の面積と比較して大きくしたので、 光学部 材の間隙が大きな場合にも、 光の漏れを防止して効率よく光を伝えることが可能 となる。
さらに、 導光板や三角プリズムの光入射面と光出射面の少なくとも一部は反射 防止膜で被覆されているので、 気体層での界面反射による損失を最低限に抑える ことが可能となる。
さらに、 導光板の厚みが光源から遠くなるにつれ薄くしたので、 薄型化、 軽量 化を実現できしかも高効率の導光装置を得ることが可能となる。
さらに、 三角プリズムの断面は略直角二等辺三角形であるので、 導光効率が向 上する。
さらに、 三角プリズムの斜面にミラーを配したので、 三角プリズムの斜面側か ら漏れてくる光を全て三角プリズムに戻して、 導光効率の高い導光装置が得られ る。
さらに、 三角プリズムの斜面とミラー間に気体層の間隙を設けたので、 臨界条 件を満たす場合に、 界面による反射を利用し、 臨界条件を満たさない場合はミラ 一による反射を利用する。 このため、 より導光効率の良い導光装置となる。 さらに、 光源として発光ダイオードを用いたので、 指向性があり、 より多くの 光線が臨界条件を満たす。 したがって、 髙導光効率の導光装置が得られる。 さらに、 導光装置の少なくとも一部が外気と遮断されているので、 埃や水気な どの光学部材に悪影響の要因を排除でき、 安定した光学特性を持つ導光装置が得 られる。
さらに、 導光装置の外気と遮断されている部分に乾燥窒素を封入すれば、 カビ の発生を防ぎ、 また、 温度差による結露を排除し、 より安定した光学特性の導光 装置が得られる。
さらに、 上記導光装置を用いたことにより、 非常に光の利用効率の良い表示装 置が得られる。 図面の簡単な説明
図 1は、 本発明の導光装置の実施形態 1における概略構成を示す斜視図である c 図 2 (a) 〜図 2 (d) は図 1の導光装置における光線の進行状態を説明する ための断面図である。
図 3 (a) 〜図 3 (d) は本発明の導光装置の実施形態 2における光線の進行 状態を説明するための断面図である。
図 4は、 本発明の導光装置の実施形態 2における光線追跡法によるシミュレー ション結果図である。
図 5 (a) および図 5 (b) は本発明の導光装置の実施形態 3における光線の 進行状態 (その 1) を説明するための断面図である。
図 6 (c) および図 6 (d) は本発明の導光装置の実施形態 3における光線の 進行状態 (その 2) を説明するための断面図である。
囟 7は、 本発明の導光装置の実施形態 3における光線追跡法によるシミュレ一 シヨン結果図である。
図 8は、 本発明の導光装置の実施形態 4における概略構成を示す斜視図である。 図 9は、 図 8の導光装置の光線追跡法によるシミュレーション結果図である。 図 10は、 本発明の導光装置の実施形態 5における概略構成を示す斜視図であ る。
図 1 1は、 本発明の導光装置の実施形態 6における概略光進行状態を示す断面 図である。
図 12は、 本発明の導光装置の実施形態 7における概略光進行状態を示す断面 図である。
図 13は、 本発明の導光装置の実施形態 8における概略光進行状態を示す断面 図である。 図 1 4は、 本発明の実施形態 4の導光装置を用いた液晶表示装置 (本発明の実 施形態 9 ) の構成図である。
図 1 5は、 本発明の導光装置の実施形態 1 0における概略光進行状態を示す断 面図である。
図 1 6は、 図 1 5の導光装置の変形例における概略光進行状態を示す断面図で ある。
図 1 7は、 従来のサイドライト型パックライトを持つ導光装置の一般的な構成 図である。
図 1 8は、 従来の 2枚導光板タイプを示す導光装置の一般的な構成図である。 図 1 9は、 従来の 1 8 0度折り返しタイプを示す導光装置の一般的な構成図で ある。 発明を実施するための最良の形態
以下、 本発明の導光装置の実施形態 1〜1 0について図面を参照しながら詳細 に説明する。
(実施形態 1 )
図 1は、 本発明の導光装置の実施形態 1における概略構成を示す斜視図である。 なお、 ここでは、 分かりやすく説明するために各部材の大きさや配置の間隔は 誇張して表している。
図 1において、 この導光装置 1 0は、 厚みを持つ板状の導光板 1 1と、 光の方 向を所定角度であって例えば 9 0度変えるための三角プリズム 1 2 (第 1三角プ リズム) と、 複数の光源としての L E D群 1 3とを備えている。
導光板 1 1は、 光が矢印方向 Lに出射される光出射面を有している。 その光出 射面からの光の出射方向は、 散乱パターンを裏面側に印刷する方法や、 その裏面 に凹凸の形状を作ることにより制御している。 三角プリズム 12は断面が直角二等辺三角形状のプリズムであり、 その下面が わずかな間隙を置いて、 導光板 1 1の上側端面に対向して配設されている。 なお、 導光板 1 1および三角プリズム 12の光学部材の屈折率を 1. 49とし、 これら 光学部材の周りは気体で満たされている。 つまり、 三角プリズム 12と導光板 1 1との対向面間にも気体層が存在する。 この気体層は屈折率 1の空気層である。
LED群 13は、 赤、 緑、 青色を混合して白色にするための赤光源 (赤 LE D) 13 a、 緑光源 (緑 LED) 13 b、 青光源 (青 L E D) 13 cがこの順に 繰り返して例えば一列に複数個、 横方向に並べられて構成されている。
£0群1 3から三角プリズム 1 2および導光板 1 1内の光の進み方を図 2 (a) 〜図 2 (d) に模式的に表している。
まず、 図 2の (a) では、 三角プリズム 12の斜面でない面に対して垂直に光 が進入してきた場合である。 三角プリズム 12に垂直に進入した光線はその斜面 に当たると反射を起こし、 導光板 1 1の上側端面 1 1 aから進入する。 これは三 角プリズム 12の斜面に当たる角度が、 三角プリズム 12の斜面の法線 Pに対し 45度で入射し、 これは屈折率 1と屈折率 1. 49との臨界角の 42. 2度より 大きいために臨界条件を満たしており、 入射角と同じ法線 Pに対して 45度の角 度で反射するためである。 なお、 三角プリズム 12と導光板 1 1の対向する面に は垂直に光線が進入するため、 この間隙の影響はない。
次に、 図 2 (b) では、 三角プリズム 12の斜面ではない面の法線 Qに対して 上側に 30度の傾きをもった光線が入射した場合を示している。 30度の傾きで 入射してきた光は気体と三角プリズム 12の界面で屈折して 19. 6度の傾きを もって入射して、 三角プリズム 12の斜面に当たる。 このときの射面の法線 Pに 対する角度は 64. 6度で臨界角よりも大きいため、 同じく三角プリズム 12の 法線 Pに対し 64. 6度の角度で反射する。 この反射した光線は導光板 11の上 側端面 1 1 aに進入し導光板 1 1の壁面に当たるが、 この角度は壁面の法線尺に 対して 70. 4度の角度をもっているため、 臨界角より大きいので反射し導光板 1 1を伝わっていく。 なお、 三角プリズム 12と導光板 11との対向面に対して 光線は 19. 6度で進入する。 これは臨界条件よりも小さい角度であるために、 この間隙の影響は考えなくてもよい。
さらに、 図 2 (c) では、 光線がより大きな角度で三角プリズム 12の斜面で はない面に入射した場合を示している。 光線の入射角は 45度である。 気体と三 角プリズム 12の入射面との界面で屈折し、 その入射面から 28. 3度の傾きを もって入射して導光板 1 1側の三角プリズム 12の界面に当たる。 このときの法 線 Sに対する光線の入射角度は 6 1. 7度で臨界角より大きいため、 光線は法線 Sに対して 61. 7度の角度で反射する。 この光線は三角プリズム 12の斜面に 当たって、 この光線の角度は法線 Pに対して 16. 7度の角度のため外部へ出て 行くことになる。
また、 図 2 (d) では、 図 2 (c) の光線の方向とは逆の方向へ法線 Qに対し て 45度の角度で三角プリズム 12に光を入射させた場合を示している。 このと き、 光線は、 気体と三角プリズム 12の入射面の法線 Qに対して 28. 3度で入 射してその界面で屈折し、 三角プリズム 12の斜面に対して 16. 7度の角度で 当たるので、 やはりこの場合にも、 光線は三角プリズム 12から外へ出て行くこ ととなる。
このように入射する角度よつては導光板 1 1に入射せずに外に出てしまう光線 もあるが、 光線の臨界条件による反射のためミラ一などの金属反射に比べて高効 率の反射が得られる。
(実施形態 2)
本実施形態 2では、 上記実施形態 1の構成に加えて、 三角プリズム 12の斜面 側近傍に光反射手段としてのミラー部材 (以下単にミラーという) を配置した場 合である。 これを図 3 (a) 〜図 3 (d) に示している。 図 3 (a) 〜図 3 (d) はそれぞれ、 図 2 (a) 〜図 2 (d) のそれぞれに対応しており、 図 2 (a) 〜図 2 (d) とそれぞれ同じ角度で光線が三角プリズム 12に入射するも のとする。
図 3 (a) 〜図 3 (d) は本発明の導光装置の実施形態 2における光線の進行 を説明するための図である。
図 3 (a) において、 この導光装置 20は、 導光板 1 1、 三角プリズム 12お よび L E D群 13を有する上記実施形態 1の導光装置 10の構成に加えて、 三角 プリズム 12の斜面側近傍位置に、 その斜面側からの漏れ光を反射させるための ミラ一 24が配置されている。 このミラー 24の配置において、 三角プリズム 1 2の斜面との間に所定の間隙を有するようにし、 その間.隙には空気層が存在して いる。
£0群13からの光源光の導光装置 20での進み方について順次説明する。 まず、 図 3 (a) では、 図 2 (a) の場合と同様、 三角プリズム 12の斜面の 法線 Pに対して臨界角度より大きい角度で当たるため、 反射している。 ここでは、 界面による反射のためにミラー 24まで光線は外に漏れて伝わってはいない。 仮に、 ミラー 24とプリズムの間に気体層がない場合、 臨界角による反射では なくミラ一 24による反射になるため、 ミラー 24による反射損失があり、 臨界 角による反射に比べて反射効率は低下する。
次に、 図 3 (b) では、 図 2 (b) の場合と同様に三角プリズム 12の斜面の 法線 Pに対して臨界角度より大きい角度で当たるため、 光線は反射し、 導光板 1 1の上側端面 1 l aから進入する。 この場合にもミラー 24まで光線は伝わって おらず、 臨界角による反射であるため、 高効率の反射となる。
さらに、 図 3 (c) では、 図 2 (c) の場合と同様、 光線が三角プリズム 12 の下面の法線 Sに対して臨界角より小さい状態で当たり、 その後、 三角プリズム 1 2の斜面から外へ出てしまう。 この光線が、 ミラー 24による反射で再び戻つ てきて導光板 1 1の上側端面から入射する。 さらに、 光線は、 三角プリズム 1 2 から導光板 1 1にその対向面の法線に対して 2 8 . 3度の角度で進入し、 この光 線の入射角度は臨界条件よりも小さい角度のため、 三角プリズム 1 2と導光板 1 1の間隙の影響は考えなくてもよい。 この光は導光板 1 1内の壁面に当たるが、 このときの角度は法線 Rに対して 6 1 . 7度で、 この角度は臨界角よりも大きく、 光線は反射し、 導光板を伝わっていく。
この場合、 ミラー 2 4による反射は、 臨界条件による反射に比べて反射効率は 低いものの、 三角プリズム 1 2の斜面から漏れた光を全く無駄にするよりもはる かに有効である。 ここで、 三角プリズム 1 2と導光板 1 1の間隙に気体層がない 場合を考えると、 光源 1 3から入射してきた光線が三角プリズム 1 2と導光板 1 1の間で反射を起こさないため、 導光板 1 1に直接進入するが、 導光板 1 1の壁 面に 2 8 . 3度の角度で当たる。 この角度は臨界角より小さい角度であるため、 導光板 1 1の外へ出て行ってしまう。 つまり、 この入射角度の場合、 三角プリズ ム 1 2と導光板 1 1との間隙の気体層は大きな役割を持っている。
さらに、 図 3 ( d ) では、 図 2 ( d ) の場合と同様に、 入射光が臨界角よりも 小さく三角プリズム 1 2の斜面から外へ出てしまった場合、 その光線が、 ミラー 2 4での反射で再び三角プリズム 1 2内に戻って三角プリズム 1 2内の壁面に当 たりその壁面にて反射し、 導光板 1 1の上側端面から入射し、 さらに導光板 1 1 内の壁面に当たりその壁面で反射している。 三角プリズム 1 2の壁面と導光板 1 1の壁面の何れも 6 1 . 7度の角度で当たるため反射し、 光線は導光板 1 1を伝 わっていく。 これは、 図 3 ( c ) の場合と同様に、 ミラー 2 4による反射のため 臨界条件による反射と比べて反射効率は低いものの、 三角プリズム 1 2の斜面か ら漏れた光を全く無駄にするよりも遥かに有効である。 なお、 光線は三角プリズ ム 1 2と導光板 1 1との各対向面に対してそれぞれ 2 8 . 3度で進入し、 この出 射角度および入射角度はそれぞれ臨界角度条件よりも小さい角度のため、 この間 隙の影響は考えなくてもよい。
以上の図 3 ( a ) 〜図 3 ( d ) では、 光線の入射角をある特定の角度の場合の みについて説明したが、 光線追跡法で様々な角度を入射した場合のシミュレーシ ヨンをした結果を図 4に示している。 このシミュレーションの条件は、 光線の入 射角が ± 6 0度の範囲を等分した角度で 2 7本の光線が入射し、 導光板 1 1の厚 さを 1 0 mmとしたとき三角プリズム 1 2との間の気体層は 5 0 mとなるよう にミラー 2 4、 三角プリズム 1 2および導光板 1 1をそれぞれ配置し、 三角プリ ズム 1 2の斜面とミラー 2 4との間の気体層も 5 0 mとなるように配置してい る。 但し、 この図 4では上記気体層やミラー 2 4の存在を確認するのは困難であ る。 また、 導光板 1 1と三角プリズム 1 2の屈折率は 1 . 4 9 2とした。 三角プ リズム 1 2の手前位置から入射された光源光は三角プリズム 1 2に進入し、 さら に導光板 1 1に伝わり、 導光板 1 1内の下側端面 1 1 bから気体中に出射してい ることが分かる。 ここで注目すべきこととして、 入射したすべての光線が三角プ リズム 1 2と反対側の導光板 1 1の下側端面 1 1 bから出射していることである。 これはこの下側端面 1 1 b以外から光が漏れていないことからも明らかである。 このように、 三角プリズム 1 2に入射した光は屈折と反射を繰り返していずれは 導光板 1 1の下側端面 1 1 bから出射して、 光の利用効率および反射効率など高 効率の導光装置 1 O Aを得ることができる。
但し、 実際には、 三角プリズム 1 2や導光板 1 1と気体層との界面での反射に よる損失があるので、 これを考慮する必要がある。 本発明では気体層があること ですベての光線を導光板 1 1へ導けるが、 その気体層があるがゆえに損失も起き る。 図 4の構成の場合、 気体層と三角プリズム 1 2との界面、 三角プリズム 1 2 と導光板 1 1へ入る前の気体層との界面、 導光板 1 1の前方の気体層と導光板 1 1との界面、 導光板 1 1と光が出射する気体層との界面など、 四つの界面があり、 一つの界面での損失を 4 %と仮定すると四つの界面で 8 4. 9 %の透過率となる。 但し、 この場合、 光の入射角度による反射率の違いについては考慮していない。 しかし、 導光板 1 1や三角プリズム 1 2の気体層との界面に反射防止処理を施す ことにより反射効率は大きく改善され、 例えば一つの界面での損失が 2 %となる だけで、 9 2 . 2 %の光が導光板 1 1および三角プリズム 1 2を透過することに なる。 このように導光板 1 1および三角プリズム 1 2の各界面での反射防止処理 (例えば反射防止膜 (低屈折率膜) を光入射面および光出射面の少なくとも何れ かであって少なくとも一部分に施す) は透過率を向上させ、 また、 本実施形態 2 で説明した光進路による効果は変わらないので、 各界面での反射防止処理を施す ことが望ましい。 このような反射防止処理は、 酸化シリコンや酸化チタンの多層 膜を用いるのが一般的である。 しかし本発明はこの方法に限定されない。
また、 入射する光の角度が大きくなると三角プリズム 1 2の斜面に配置したミ ラー 2 4による反射になる。 このため反射効率は落ちるので、 入射する光の角度 が大きくならないように光入射角度ができるだけ制限されていることが望ましい。 そのため光源 1 3には L E D (発光ダイオード) のような指向性を持つ光源のほ うが、 より高効率化を実現することができる。
また、 指向性の低い光源の場合には、 三角プリズム 1 2の斜面に配置したミラ 一 2 4による反射が多くなるので、 気体層なしにミラー 2 4を斜面に配置するこ とで、 界面反射による損失を減らし、 また光学部材を減らすことができる。
(実施形態 3 )
本実施形態 3では、 上記実施形態 2で説明した三角プリズム 1 2と導光板 1 1 との組み合わせを二組用いた場合である。
図 5 ( a ) 〜図 6 ( d ) は本発明の導光装置の実施形態 3における光線の進行 を説明するための図である。
図 5 ( a ) および図 5 ( b ) において、 この導光装置 3 0は、 光源としての L E D群 1 3の他に、 上記実施形態 2の導光装置 2 0の構成を 2組、 即ち厚みを持 つ板状の導光板 1 1 A, 1 1 B (第 1導光板と第 2導光板) 、 光の方向をそれぞ れ 9 0度変えるための三角プリズム 1 2 A, 1 2 B (第 2三角プリズム;二つの 三角プリズム) および光反射用のミラー 2 4 A, 2 4 Bを有している。
導光板 1 1 A, 1 1 Bは所定間隙を置いて厚み方向に並べられて配設され、 導 光板 1 1 Aの上側端面上には三角プリズム 1 2 Aの一方の直角面が対向して配設 され、 導光板 1 1 Bの上側端面上には三角プリズム 1 2 Bの一方の直角面が対向 して配設され、 三角プリズム 1 2 A、 1 2 Bの他方の直角面は互いに対向して配 設されている。
ここで、 上記実施形態 2の場合と同様、 三角プリズム 1 2 Aと導光板 1 1 A間、 三角プリズム 1 2 Bと導光板 1 1 B間、 三角プリズム 1 2 A, 1 2 B同士の間、 導光板 1 1 A, 1 1 B同士の間には気体層として空気層が存在する。 また、 三角 プリズム 1 2 A, 1 2 Bの各斜面にはそれぞれ気体層を挟んで各ミラ一 2 4 A, 2 4 Bがそれぞれ配置されている。
次に、 四つの光線の進路パターンについて説明する。
図 5 ( a ) では、 導光板 1 1 Aの下側端面から垂直に入って来た L E D群 1 3 の光源光が三角プリズム 1 2 Aの斜面の法線 Pに対して 4 5度で当たり臨界条件 により反射し、 もう一方の三角プリズム 1 2 Bの斜面の法線 Pに対して 4 5度で 当たり、 再び臨界条件によりもう一方の導光板 1 1 Bに向けて出射する。 このよ うにして、 一方の導光板 1 1 Aからの光線が 1 8 0度方向を変えて、 もう一方の 導光板 1 1 B内に進入することが判る。
図 5 ( b ) では、 導光板 1 1 Aの下側端面から所定角度を持って入射してきた L E D群 1 3の光源光が導光板 1 1 A内の壁面に当たり、 臨界条件により反射し て三角プリズム 1 2 A内に入射する。 この場合、 ≡角プリズム 1 2 A内に入射し た光線はその斜面に当たるが臨界条件に満たないためその斜面から外部に一旦出 てミラ一 2 4 Aで反射され再び三角プリズム 1 2 Aに再入射する。 三角プリズム 1 2Aに再入射した光線は、 もう一方の三角プリズム 12Bの斜面に当たりここ では臨界条件により反射され、 もう一方の導光板 1 1 B内に進入する。 このよう にして、 一方の導光板 1 1 Aからの光線が所定角度の 1 80度方向を変えて、 も う一方の導光板 1 1 B内に進入してその下側端面から外部に出射する。
以上の図 5 (a) および図 5 (b) では三角プリズム 1 2 Aと導光板 1 1Aの 間、 三角プリズム 12Bと導光板 1 1 Bの間、 三角プリズム 1 2 A, 1 2 B同士 の間で気体層の影響は特にないが、 以下に説明する図 6 (c) および図 6 (d) の場合には大いに効果を発揮する。
図 6 (c) では、 光線が一つ目の導光板 1 1 Aを通り一つ目の三角プリズム 1 2Aで反射し、 二つ目の三角プリズム 1 2Bと二つ目の導光板 1 1 Bとの間、 即 ち三角プリズム 1 2 B内の壁面で反射を起こしている。 このように、 三角プリズ ム 1 2 Bと導光板 1 1 Bの間に気体層がない場合には、 光線は三角プリズム 1 2 B内の壁面で反射を起こさず、 二つ目の導光板 1 1 B内の壁面から外部へ出てし まうので導光効率が下がる。
図 6 (d) においても、 図 6 (c) の場合と同様に、 二つ目の三角プリズム 1
2 Bから二つ目の導光板 12 Bに入る前に三角プリズム 1 2 A, 1 2 B同士の対 向する面で反射を起こしている。 この対向面間に気体層がない場合には、 一つ目 の導光板 1 1 A側に光が戻ってしまい導光効率が下がる。
以上の何れの場合にも、 一方の導光板 1 1 Aから入射した光は、 もう一方の導 光板 1 1 Bに進入していることが判る。
図 5 (a) 〜図 6 (d) では、 入射角をある特定の角度の場合のみを説明した が、 光線が様々な角度で入射した場合の光線追跡法によるシミュレーション結果 を図 7に示している。
図 7において、 シミュレーションの条件は図 4の場合と同様であり、 入射角が ± 60度の範囲の等分した角度で 27本の光線が導光板 1 1 Aの下側端面から入 射し、 導光板 1 1 Aの厚さを 10mmとしたとき三角プリズム 12 Aとの間の気 体層は 50 /zmとなるように配置し、 三角プリズム 12 Aの斜面とミラ一 24と の間の気体層も 50 imとなるように各部材を配置している。 三角プリズム 12 A, 12B間の気体層および、 導光板 1 1 A, 1 1 B間の気体層も 50 とな るように所定間隙 (50^m) を置いて配置している。 また、 導光板 1 1Aと三 角プリズム 12 Aとの屈折率は 1. 492とした。
導光板 1 1の手前側 (下側端面) から入射された光線は導光板 1 1 A内部を進 行し、 二つの三角プリズム 12 A, 12B内を経て、 光の方向を 180度変えて、 もう一方の導光板 1 1 Bの上側端面から入射する。 光線はその導光板 1 1 Bの下 側端面から気体中に出射している。 このように、 図 7では、 導光板 1 1Aの下側 端面から入射した全ての光線が三角プリズム 12A, 12 Bと反対側の導光板 1 1 Bを経て導光板 1 1 Bの端面から出射していることが判る。
したがって、 導光板 1 1 Aに入射した全ての光は屈折と反射を繰り返しいずれ はもう一方の導光板 1 1 Bに伝わりその下側端面から出るため、 高導光効率の導 光装置 30を得ることが可能となる。
(実施形態 4)
本実施形態 4は、 上記実施形態 3で説明した二つの導光板 1 1A, 1 1 B、 二 つの三角プリズム 12 A, 12 Bおよび二つのミラー 24 A, 24 Bの組み合わ せに、 さらに三角プリズム 12を光源光入射部に光源光方向変更用に配置した場 合である。 即ち、 上記実施形態 2, 3を組み合わせた場合である。 当然、 各部材 の各間隙には気体層が存在するし、 特には図示していないが、 何れの三角プリズ ム 12A、 12 Bおよび 12の各斜面には所定間隙 (気体層) を置いてミラー 2 4 A〜 24 Cがそれぞれ配置されている。
図 8は、 本発明の導光装置の実施形態 4における概略構成を示す斜視図である。 図 8において、 この導光装置 40は、 複数色の光源としての LED群 13と、 厚みを持つ板状の導光板 4 1, 4 2 (または 4 2 B ) と、 光源光の方向を 9 0度 変えるための三つの三角プリズム 1 2, 1 2 A, 1 2 Bとを備えている。
L E D群 1 3は、 3原色のうち赤光源の赤 L E D 1 3 a、 緑光源の緑 L E D 1 3 b、 青光源の青 L E D 1 3 cを用いている。
導光板 4 1は色混合用の導光板であり、 導光板 4 2は矢印方向 Lに光線を出射 する光出射面を持つ導光板である。
導光板 4 1では、 3原色の赤、 緑、 青の各 L E D光源を用いているため、 直接 に導光板 4 2に入れたときには出射光の色ムラが大きかったものの、 導光板 4 2 の前段に配設された導光板 4 1において、 色混合を起こすのに十分な上下端面間 距離がある。
導光板 4 2の裏面 (導光板 4 1側の面) に散乱パターンを印刷してあり、 散乱 を起こすことにより導光板 4 2の表面側から矢印方向 Lに光が出射するように制 御している。 この光出射状態の均一性は散乱パターンにより制御が可能で、 図 8 において、 導光板 4 2の下側部分では散乱パターンを小さくし、 上側部分では散 乱パターンを大きくすることによりその均一性を得ることができる。 最後の上側 端面ではほぼ光が全て導光板 4 2の表面 (矢印方向 L側) に出射し、 その上側端 面からの光出射、 つまり利用されない光は少なくなる。 なお、 ここでは図示して いないが、 導光板 4 2の裏側、 つまり導光板 4 1との間に反射部材としての反射 シートを設置すると、 散乱パターンから漏れ出た光を内部に再び戻して導光有効 を有利にできるので、 反射シー卜を用いる。
したがって、 三つの三角プリズム 1 2, 1 2 A, 1 2 Bおよび各部材間の気体 層を用いる本実施形態 4によって、 より明るく均一性の高い面発光のバックライ トを得ることができる。
なお、 導光板 4 2はその表面側から矢印方向 Lに光が出射するが、 前述した導 光板 1 1 Bのように光線進行方向が上下端面方向で、 上側端面または下側端面か ら光が出射するように構成することもできる。 図 9に、 この場合の光線の進み方 'のシミュレーション結果を示している。 このときのシミュレ一ション条件は図 4 および図 7の場合の条件と同じである。 光源から発せられた光は各光学部材を順 に通り、 ここでは、 最後の導光板 4 2のように矢印方向 Lに光出射面 (表面) か ら光線が出射するのではなく、 最後の導光板 4 2 B (図 9参照) のように光線が 上側端面から出射している。
(実施形態 5 )
上記実施形態 4では、 2枚の導光板 4 1, 4 2が近くに配置できるときには有 効であるが、 構造上の問題で離間して配置する必要がある場合には、 並んで配置 する二つの三角プリズム 1 2 A, 1 2 Bの間も離れ過ぎてしまう。 この場合、 光 線の漏れによって多くの光線が伝わらなくなって導光効率が大幅に減少する。 そ こで、 これを解決するために、 本実施形態 5では、 図 1 0に示すように、 導光装 置 5 0は、 上記実施形態 4の導光装置 4 0における各構成部材の他に、 三角プリ ズム 1 2 A, 1 2 Bの間に平行平面板 5 1が配設されている。 このように平行平 面板 5 1を挿入することにより、 各光学部材間の気体層を非常に薄くすることが でき、 全ての光線が無駄なく伝わる。
(実施形態 6 )
各光学部材の間隙の気体層は波長よりも大きく配置すれば問題ないが、 あまり 大きく間隙を設定すると、 上記実施形態 5で説明したように光線の漏れが生じる ために平行平面板 5 1を使用する必要がある。 平行平面板 5 1を挟むほどの間隙 ではない場合には、 図 1 1に示すような本実施形態 6の構成を取るのが有効であ る。 本実施形態 6では、 漏れた光線をも入射させるために、 光の伝わる順に光学 部材の対向する面を少しずつ大きくなるように設定する場合である。
図 1 1は、 本発明の導光装置の実施形態 6における概略光進行状態を示す断面 図である。 図 1 1において、 この導光装置 6 0は、 複数色の光源としての L E D群 1 3と、 厚みを持つ板状の導光板 6 1 , 6 2と、 光源光の方向を 9 0度変えるための三つ の三角プリズム 6 3 ~ 6 5とを備え、 光進路上流側の光出射面よりも光入射面の 面積の方が大きくなるように構成している。
し£ 0群1 3からの光が三角プリズム 6 3に入射し、 この光が導光板 6 1内に 伝わるが、 三角プリズム 6 3と導光板 6 1の対向する各面のうち、 光進路下流側 の導光板 6 1の光入射面の方が三角プリズム 6 3の光出射面よりもその面積を大 きくしている。 この場合、 各面の間隙距離が大きくても光の漏れは抑制される。 また同様に、 導光板 6 1と三角プリズム 6 4の対向する各面のうち、 光進路下 流側の三角プリズム 6 4における光入射面の方が導光板 6 1の光出射面よりもそ の面積を大きくし、 さらに、 三角プリズム 6 4 , 6 5の対向する各面のうち、 光 進路下流側の三角プリズム 6 5における光入射面の方が三角プリズム 6 4の光出 射面よりもその面積を大きくしている。 さらに、 三角プリズム 6 5と導光板 6 2 の対向する各面のうち、 光進路下流側の導光板 6 2の光入射面の方が三角プリズ ム 6 5の光出射面よりもその面積を大きくしている。
なお、 ここでは、 光進路において、 全ての光学部材の光出射面および光入射面 が光進路下流側程、 少しずつ大きくなつている例を示したが、 これは当然間隙の 距離が大きくなるところだけであっても構わない。
(実施形態 7 )
ノートパソコンなどに使われている導光装置は出射末端に行くほど導光板の厚 みが薄くなるような構成をとる場合が多い。 これは薄くなるほど導光板内での反 射回数が増え、 同じ散乱パターンを印刷しても出射する光の量が増え、 その結果 として均一な光出射になるためである。 また、 導光板の厚みが薄くなることで軽 量化にもなる。 この構成を適用したのが本実施形態 7の図 1 2 ( a ) および図 1 2 ( b ) である。 図 12 (a) および図 12 (b) は、 本発明の導光装置の実施形態 7における 概略光進行状態を示す断面図である。
図 12 (a) において、 この導光装置 70は、 複数色の光源としての LED群 13と、 光出射面よりも光入射面の面積の方が大きい厚みを持つ板状の導光板 7 1, 72と、 光源光の方向を 90度変えるための三つの三角プリズム 73〜75 とを備えている。
ここでは、 導光板 71, 72の末端側程、 徐々に厚みが薄くなるように変化し ている。 導光板 7 1と同様に末端で薄くなるように導光板 72を構成すると、 図 12 (a) に示すように 2枚の合わせた厚みを均一にでき、 結果として薄型化、 軽量化を実現できる。 また、 光源に近い位置では光源の大きさをカバーできる大 きな導光板端面 (ここではプリズム端面) の方が光の有効活用の観点から望まし く、 この点においてもメリットが大きい。 また、 三角プリズム 74, 75ではそ の大きさが異なっているが、 光路後側に配置される三角プリズム 75の方が大き い分には実施形態 6で説明したとおり、 光の漏れに関して問題にならない。
なお、 図 12 (b) の導光装置 7 OAでは、 光出射側の導光板 72だけ厚みを 変化させ、 光路前方側の導光板 71 Aの厚みは同じ (その厚みが長手方向に対し て均等) で構成してもよい。 この場合、 導光板 71 Aの厚みが均一なために光の 伝達効率がよく、 より有効に光を伝えることができる。
(実施形態 8)
以上の説明では、 三角プリズムおよび導光板などの各光学部材は気体層の間隙 を持っているが、 埃などがこの間隙に入ると、 光の伝達効率が落ちることが容易 に想像できる。 そこで、 本実施形態 8では、 これら導光装置が外気から遮断され た環境を作るため、 封止ケースを用いた場合である。 これを図 13に示している。 図 13は、 本発明の導光装置の実施形態 8における概略光進行状態を示す断面 図である。 図 1 3において、 この導光装置 8 0は、 複数色の光源としての L E D群 1 3と、 厚みを持つ板状の導光板 8 1 , 8 2と、 光源光の方向を 9 0度変えるための三角 プリズム 8 3と、 光源光の方向を 1 8 0度変えるための三角プリズム 8 4と、 少 なくとも導光板 8 1 , 8 2および三角プリズム 8 3, 8 4を封止する封止ケース 8 5とを備えている。
封止ケース 8 5は、 光源 (L E D群 1 3 ) を含めた導光装置 8 0を封止して内 部に収めてもよいが、 L E D群 1 3は多くの熱を出すために、 封止ケース 8 5の 外に配置した方が熱発散の点で効果的である。 このように、 封止ケース 8 5に収 められた導光装置 8 0は、 外気の埃や水気から守られる。 しかし、 温度差により 封止ケース 8 5内の水分が結露し気体層の間隙に付着することが考えられる。 そ こで、 この封止ケース 8 5内を乾燥窒素で満たしたところ、 乾燥窒素には水分が ほとんどないので、 封止ケース 8 5内における温度差による結露は認められなか つた。 また、 結露に関しては、 乾燥空気でも同様の効果がある。 しかしカビなど の影響を最小限に抑えるためには、 空気よりも窒素のほうが効果的である。
なお、 ここでは、 図 1 3に示した三角プリズム 8 4は上記実施形態 3 ~ 7の場 合とは異なり、 光源光の方向を 1 8 0度変えるのに一つの三角プリズム 8 4だけ で構成している。 この場合、 導光板 8 1から導光板 8 2へ全ての光が伝わらず、 再び戻ってきてしまう光も多いので、 光の伝達効率としては、 上記実施形態 3〜 7における二つの三角プリズムの方がよいが、 一つの三角プリズム 8 4だけの方 が光学部材が少なく扱いやすいというメリッ卜がある。
(実施形態 9 )
図 8の上記実施形態 4で説明した導光装置 4 0をバックライトとして液晶表示 装置に適用した場合である。
図 1 4は、 本発明の実施形態 4の導光装置を用いた液晶表示装置 (本発明の実 施形態 9 ) の構成図である。 図 14において、 液晶表示装置 90は、 バックライトとしての導光装置 40と、 この導光装置 40の前方にこの順で、 偏光板 91と、 液晶パネル 92と、 位相差 板 93と、 偏光板 94とを備えている。
導光装置 40は、 その光源として LEDを用い、 赤光源 13 a、 緑光源 13 b、 青光源 13 cからの光線が三角プリズム 12に入射し、 色混合用の導光板 41、 三角プリズム 12A, 12B、 光出射用の導光板 42の順に伝わって行く。 導光 板 42の裏面に印刷された散乱パターンにより光が表面側に出射する。 一般的に は、 液晶表示装置 90は位相差板 93と偏光板 91, 94などの光学シートをも つており、 ここでは、 光量が均一な面光源である導光装置 40からの光線は偏光 板 91を通り、 絵や文字などの各種情報に応じて制御されている液晶パネル 92 を介して位相差板 93さらに偏光板 94を通過することにより、 絵や文字などの 各種情報が液晶表示画面上に表示される。 ここでは表示される映像は色純度の高 い光源のために色再現範囲の広い鮮明な画像で、 色ムラ ·輝度ムラの少ない表示 が可能である。
本実施形態 9では、 赤、 緑および青の LED光源を用いたが、 これに限定され ず、 白色の LED光源を用いても輝度ムラの少ない表示を得ることができ効果は 大きい。 また、 LEDでなくてもすべての光源に対し効率よく光を伝えることが 可能である。
なお、 以上の導光装置およびこれを用いた表示装置は、 これらの用途に限定さ れるものではない。 例えば、 光源は本装置に付属するものでなくても良く、 周囲 環境の照明の光源でも構わない。 これを利用すると周囲光を例えばレンズで集光 し三角プリズムに入射して導光板へ伝え、 反射型液晶のフロントライトゃ透過型 液晶の補助光源としたり、 印刷物の照明光源として使用したりすることが可能で ある。
以上により、 上記実施形態 4, 9によれば、 図 14に示すように、 光源である LED群 13と、 色混合用の導光板 41と、 光出射面を持つ導光板 42と、 光出 射面を持つ導光板 42と、 LED群 13からの光線を導光板 41の一方端面に導 く三角プリズム 12と、 導光板 41の他方端面からの光線を導光板 42の一方端 面に導く三角プリズム 12A、 12 Bとを備えた導光装置 40をバックライ卜と して、 液晶表示パネル 92の後方に配設すると共に、 導光装置 40は各導光板 4 1, 42および三角プリズム 12 , 12 A, 12 Bの各光学部材間に気体層を介 在させている。 このように、 光源の LED群 13および二つの導光板 41, 42 を備えた導光装置 40において、 光源からの光と導光板 41の光路間、 導光板 4 1, 42の光路間に各三角プリズムをそれぞれ備え、 導光板 41, 42および三 角プリズム 12, 12 A, 12 Bの各光学部間に気体層を介在させているため、 複数色の光源を用いた場合の輝度ムラや色ムラを軽減でき、 かつ光の進行方向を 各三角プリズムの臨界反射にて効率よく変えることができる。
(実施形態 10)
上記実施形態 1~9のように、 導光板の一端面 (一方端面) からの光源光の入 射に限定されるものではなく、 複数の端面からの光源光の入射であってもかまわ ない。 例えば二端面 (対向する両端面) から光を入射させた事例について図 15 に示している。
図 15は、 本発明の導光装置の実施形態 10における概略光進行状態を示す断 面図である。 なお、 この事例では左右対称の構成となっているため、 左右で同じ 機能を持つ部材には同じ符号を付してその説明を省略する。
図 15において、 この導光装置 400は、 厚みを持つ板状の導光板 401, 4 0 1および 402と、 光の方向を 90度変えるための三角プリズム 12、 12、 1 2A、 12A、 12 Bおよび 12 Bと、 複数の光源としての LED群 13、 1 3と、 漏れ光を一方向に反射させるための反射部材 403とを備えている。
導光板 401は、 三角プリズム 12と三角プリズム 12 Aとの間に設けられ、 三角プリズム 1 2からの出射光を矢印方向 (左右方向) に導光させて三角プリズ ム 1 2 A側に出射させるための光混合用の平行平面板である。 また、 導光板 4 0 2は、 両三角プリズム 1 2 B、 1 2 B間に設けられ、 両三角プリズム 1 2 Bから の出射光を左右方向に導光させて矢印方向 Lに出射させるための光出射面を有し ている。
三角プリズム 1 2、 1 2 Aおよび 1 2 Bは断面が直角二等辺三角形状のプリズ ムであり、 その表面がわずかな間隙を置いて、 導光板 4 0 1または 4 0 2の端面 に対向して配設されている。 また、 三角プリズム 1 2 Aと三角プリズム 1 2 Bの 各一面も互いに対向して配設されている。 なお、 導光板 4 0 1、 4 0 2および三 角プリズム 1 2、 1 2 Aおよび 1 2 Bの光学部材の屈折率を 1 . 4 9とし、 これ ら光学部材の周りは気体で満たされている。 つまり、 三角プリズム 1 2、 1 2 A と導光板 4 0 1との対向面間、 三角プリズム 1 2 Aと三角プリズム 1 2 Bとの対 向面間および、 三角プリズム 1 2 Bと導光板 4 0 2との対向面間には気体層が存 在する。 この気体層は屈折率 1の空気層である。
£ 0群1 3は、 赤、 緑、 青色を混合して白色にするための赤光源 (赤 L E
D) 、 緑光源 (緑 L E D) 、 青光源 (青 L E D) がこの順に繰り返して例えば一 列に複数個並べられている。
反射部材 4 0 3は、 導光板 4 0 1と導光板 4 0 2との間に挟み込まれた状態で 配設されている。 この反射部材 4 0 3は白色 P E T (poly e thylene tereph thal ate;ポリエチレンテレフタレート樹脂) に代表される拡散反射板であってもよ く、 ミラーなどの鏡面反射板であってもよい。 この反射部材 4 0 3の利用は本実 施形態 1 0の場合だけに対して効果的なものではなく、 上記実施形態 1 ~ 9の導 光板から面光源として光出射させる全ての場合に光量向上効果があることは言う までもない。
上記構成により、 L E D群 1 3からの光は、 三角プリズム 1 2に入射され、 9 0度方向を変えて出射し、 上記実施形態 1〜 9で詳述したとおり、 効率良く導光 板 401内に入射される。 さらに、 導光板 401からの出射光は、 三角プリズム
12 A、 三角プリズム 12Bを介して 180度方向を変えて、 導光板 402内に 入射される。 導光板 402では、 両端面からの光が矢印 Lの方向に出射される。 このとき、 反射部材 403を導光板 402の背面側に設けて漏れ光をも矢印 の 方向に効率よく光出射させる。
以上により、 本実施形態 10の導光装置 400では、 導光板 401は光を混合 する領域として用い、 三角プリズム 12A、 12Bにより、 面光源として光を出 射する導光板 402に効率よく光を導光させることができ、 二端面 (左右両端 面) から光を入射することが可能な構成で、 一方端面からのみ光を入射する上記 実施形態 1〜 9の場合に比べて明るい面光源とすることができる。
これによつて、 導光装置 400を液晶表示装置などの表示装置に用いて、 より 明るい表示画面とすることができる。
なお、 本実施形態 10の変形例として、 図 16に導光装置 500を示している。 この導光装置 500は、 厚みを持つ板状の導光板 502と、 光の方向を 90度変 えるための三角プリズム 12 B、 12Bと、 複数の光源としての LED群 13、 13と、 光を反射させる反射部材 503とを備えている。 この場合、 図 15に示 す各一対の導光板 401および三角プリズム 12、 12 Bが省略され、 LED群 13からの光源光が直に三角プリズム 12 Bの一面側から入射されて、 導光板 5 02では、 両端面からの光が矢印 Lの方向に出射される。 よって、 導光板 401 による光減衰がない分だけ、 上記実施形態 10の場合よりも更に明るくなる。 また、 このような導光装置 500を上下に二つ重ね合わせれば、 上記実施形態 10の場合よりも格段に明るい面光源となる。 この場合には、 反射部材 503は 省略される。 また、 三角プリズム 12B、 12Bの配置も、 上下の各導光装置 5 00で平面的に 90度だけ位置をずらすようにすればよい。 さらに、 対向する二 端面だけでなく、 すべての端面 (例えば四端面) に三角プリズムを設け、 すべて の端面 (例えば四端面) から光を入射するように構成してもよい。
以上により、 本発明によれば、 光源と導光板とを備えた導光装置において、 光 源からの光と導光板の光路間に光路を 9 0度変える第 1三角プリズムを介在させ、 かつ導光板と第 1三角プリズム間に気体層を介在したため、 効率良く光の進行方 向を変化させる導光装置を得ることができ、 しかも複数色の光源を用いて白色光 とする場合にも輝度ムラや色ムラを軽減することができる。
また、 第 1導光板と第 2導光板の光路間に光路を 1 8 0度変える第 2三角プリ ズム (二つの三角プリズム) を介在し、 かつ第 1導光板および第 2導光板と第 2 三角プリズムとの間および、 二つの三角プリズム間に気体層の間隙を介在させた ため、 効率良く光の進行方向を変化させる導光装置を得ることができ、 しかも、 複数色の光源を用いて白色光とする場合にも輝度ムラや色ムラを軽減することが できる。 産業上の利用可能性
例えば液晶表示装置などの表示装置に用いられる面光源の分野において、 複数 の光源を用いた場合の輝度ムラゃ色ムラを軽減でき、 かつ光の進行方向を効率よ く変えることができる。

Claims

請求の範囲
1 . 光源からの光を導光板に入射させて所定の光出射面から光を出射させる導 光装置において、
該導光板の一方端面と光源間に、 該光源光の方向を所定角度変えて該導光板の 一方端面に光源光を導くための第 1三角プリズムが設けられ、 該導光板と第 1三 角プリズム間には気体層が介在されている導光装置。
2 . 光源からの光を導光板に入射させて所定の光出射面から光を出射させる導 光装置において、
該導光板は第 1導光板と第 2導光板が厚み方向に配設され、 該第 1導光板と第
2導光板の各一方端面間に、 一方の導光板からの光の方向を所定角度変えて他方 の導光板に導くための第 2三角プリズムが配設され、 該第 1導光板および第 2導 光板と該第 2三角プリズムとの各間に気体層が介在されている導光装置。
3 . 請求の範囲第 1項記載の導光装置において、 前記導光板の他方端面と光源 間に、 前記第 1三角プリズムとは別に、 該光源光の方向を所定角度変えて該導光 板の他方端面に光源光を導くための第 1三角プリズムが更に設けられ、 当該第 1 三角プリズムと該導光板間には気体層が介在されている導光装置。
4 . 請求の範囲第 2項記載の導光装置において、 前記導光板は前記第 2導光板 と第 3導光板が厚み方向に配設され、 該第 2導光板と第 3導光板の各他方端面間 に、 前記第 2三角プリズムとは別に、 一方の導光板からの光の方向を所定角度変 えて他方の導光板に導くための第 2三角プリズムが更に配設され、 該第 2導光板 および第 3導光板と当該第 2三角プリズムとの各間に気体層が介在されている導 光装置。
5 . 請求の範囲第 4項記載の導光装置において、 前記第 3導光板は前記第 1導 光板と並設されている導光装置。
6 . 請求の範囲第 3項または第 4項記載の導光装置において、 前記一方端面と 他方端面とは対向している導光装置。
7 . 請求の範囲第 2項または第 4項記載の導光装置において、 前記第 2三角プ リズムは二つの三角プリズムで構成され、 該二つの三角プリズムの間に気体層が 介在されている導光装置。
8 . 請求の範囲第 7項記載の導光装置において、 前記二つの三角プリズム間に 平行平面板が介在され、 該平行平面板と該二つの三角プリズム間に気体層がそれ ぞれ介在されている導光装置。
9 . 請求の範囲第 2項記載の導光装置において、 前記第 1導光板の一方端面に 対する他方端面と光源間に、 該光源光の方向を所定角度変えて該第 1導光板の他 方端面に光源光を導くための第 1三角プリズムが設けられ、 該導光板と第 1三角 プリズム間には気体層が介在されている導光装置。
1 0 . 請求の範囲第 4項記載の導光装置において、 前記第 1導光板の一方端面 に対する他方端面と光源間および、 前記第 3導光板の他方端面に対する一方端面 と光源間にそれぞれ、 該光源光の方向を所定角度変えて該第 1導光板の他方端面 および該第 3導光板の一方端面に光源光をそれぞれ導くための各第 1三角プリズ ムが設けられ、 該導光板と各第 1三角プリズム間には気体層が介在されている導
1 1 . 請求の範囲第 2項または第 4項記載の導光装置において、 少なくとも一 部が前記第 1導光板と第 2導光板の間にあって、 該第 2導光板の前記所定の光出 射面とは反対側の面に対向するように反射部材が配置されている導光装置。
1 2 . 請求の範囲第 1項または第 3項記載の導光装置において、 前記導光板の 前記所定の光出射面とは反対側の面に対向するように反射部材が配置されている
1 3 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置において、 前記 三角プリズムおよび導光板を通過する光路において光出射面の面積よりも当該光 出射面からの光が入射する光入射面の面積の方が大きい導光装置。
1 4 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置において、 前記 三角プリズムおよび導光板の光入射面と光出射面の少なくとも一部には反射防止 膜が被覆されている導光装置。
1 5 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置において、 前記 導光板の厚みは光源から光路が遠くなるにつれ薄くなつている導光装置。
1 6 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置において、 前記 三角プリズムの断面が直角二等辺三角形であり、 光の方向を 9 0度変える導光装 置。
1 7 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置において、 前記 三角プリズムの斜面側にミラー部材または反射部材を配設した導光装置。
1 8 . 請求の範囲第 1 7項記載の導光装置において、 前記三角プリズムの斜面 と前記ミラ一部材または反射部材との間に気体層が介在されている導光装置。
1 9 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置において、 前記 光源は三原色の発光ダイオード群である導光装置。
2 0 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置の少なくとも一 部が外気と遮断されている導光装置。
2 1 . 請求の範囲第 2 0項記載の導光装置の前記外気と遮断されている部分に 乾燥窒素を封入した導光装置。
2 2 . 請求の範囲第 1項〜第 4項のいずれかに記載の導光装置を用いて表示用 光源とした表示装置。
PCT/JP2003/008680 2002-07-11 2003-07-08 導光装置および表示装置 WO2004008023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003252482A AU2003252482A1 (en) 2002-07-11 2003-07-08 Light guide device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002202594 2002-07-11
JP2002-202594 2002-07-11

Publications (1)

Publication Number Publication Date
WO2004008023A1 true WO2004008023A1 (ja) 2004-01-22

Family

ID=30112633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008680 WO2004008023A1 (ja) 2002-07-11 2003-07-08 導光装置および表示装置

Country Status (3)

Country Link
AU (1) AU2003252482A1 (ja)
TW (1) TWI234633B (ja)
WO (1) WO2004008023A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922269B2 (en) * 2003-04-03 2005-07-26 Samsung Electronics Co., Ltd. Light scanning unit
EP1643278A1 (en) * 2004-09-29 2006-04-05 Minebea Co., Ltd. Spread illuminating apparatus having two light conductive plates
JP2009258731A (ja) * 2008-04-16 2009-11-05 Honeywell Internatl Inc 液晶ディスプレイ用の折り曲げられたバックライトシステム
US7728923B2 (en) 2005-09-09 2010-06-01 Samsung Electronics Co., Ltd. Backlight unit and display device having the same
US8016473B2 (en) 2006-06-22 2011-09-13 Koninklijke Philips Electronics N.V. Symmetrical light guide structure for LED-based lighting device
US8113703B2 (en) 2006-07-07 2012-02-14 Koninklijke Philips Electronics N.V. Dual-layer light guide structure for LED-based lighting device
US8791645B2 (en) 2006-02-10 2014-07-29 Honeywell International Inc. Systems and methods for controlling light sources

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382200B (zh) * 2008-10-29 2013-01-11 E Ten Information Sys Co Ltd 指示燈導光裝置
JP5323274B2 (ja) * 2011-02-15 2013-10-23 三菱電機株式会社 面光源装置及び液晶表示装置
CN115407558A (zh) * 2022-08-30 2022-11-29 苏州华星光电技术有限公司 一种显示装置以及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646828A1 (en) * 1993-03-16 1995-04-05 Seiko Epson Corporation Projection type display device
JPH1064321A (ja) * 1996-08-22 1998-03-06 Omron Corp 導光装置、液晶表示装置及び電子装置
JPH10283817A (ja) * 1997-04-10 1998-10-23 Omron Corp 面光源装置
JP2001243822A (ja) * 2000-02-28 2001-09-07 Omron Corp 面光源装置及びその製造方法
JP2001307526A (ja) * 2000-04-20 2001-11-02 Fujitsu Kasei Kk バックライト式照明装置
JP2001307528A (ja) * 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 面発光装置
JP2002100224A (ja) * 2000-09-22 2002-04-05 Shimada Precision Kk 点−線光源変換導光体
JP2002140913A (ja) * 2000-10-31 2002-05-17 Alps Electric Co Ltd 面発光装置および液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646828A1 (en) * 1993-03-16 1995-04-05 Seiko Epson Corporation Projection type display device
JPH1064321A (ja) * 1996-08-22 1998-03-06 Omron Corp 導光装置、液晶表示装置及び電子装置
JPH10283817A (ja) * 1997-04-10 1998-10-23 Omron Corp 面光源装置
JP2001243822A (ja) * 2000-02-28 2001-09-07 Omron Corp 面光源装置及びその製造方法
JP2001307526A (ja) * 2000-04-20 2001-11-02 Fujitsu Kasei Kk バックライト式照明装置
JP2001307528A (ja) * 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 面発光装置
JP2002100224A (ja) * 2000-09-22 2002-04-05 Shimada Precision Kk 点−線光源変換導光体
JP2002140913A (ja) * 2000-10-31 2002-05-17 Alps Electric Co Ltd 面発光装置および液晶表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922269B2 (en) * 2003-04-03 2005-07-26 Samsung Electronics Co., Ltd. Light scanning unit
EP1643278A1 (en) * 2004-09-29 2006-04-05 Minebea Co., Ltd. Spread illuminating apparatus having two light conductive plates
US7728923B2 (en) 2005-09-09 2010-06-01 Samsung Electronics Co., Ltd. Backlight unit and display device having the same
US8791645B2 (en) 2006-02-10 2014-07-29 Honeywell International Inc. Systems and methods for controlling light sources
US8937443B2 (en) 2006-02-10 2015-01-20 Honeywell International Inc. Systems and methods for controlling light sources
US8016473B2 (en) 2006-06-22 2011-09-13 Koninklijke Philips Electronics N.V. Symmetrical light guide structure for LED-based lighting device
US8113703B2 (en) 2006-07-07 2012-02-14 Koninklijke Philips Electronics N.V. Dual-layer light guide structure for LED-based lighting device
JP2009258731A (ja) * 2008-04-16 2009-11-05 Honeywell Internatl Inc 液晶ディスプレイ用の折り曲げられたバックライトシステム

Also Published As

Publication number Publication date
TWI234633B (en) 2005-06-21
AU2003252482A1 (en) 2004-02-02
TW200409882A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US10401638B2 (en) Optical stack for imaging directional backlights
JP5149200B2 (ja) 面状照明装置とそれを用いた液晶表示装置
US8651726B2 (en) Efficient polarized directional backlight
US7476015B2 (en) Backlight apparatus and liquid crystal display apparatus
US20070064444A1 (en) Display device
JP2005539355A (ja) 偏光放射導波板を有する発光装置
US20100061080A1 (en) Symmetrical light guide structure for led based ambilight
US20120170314A1 (en) Backlight Module with Local Dimming Capability
US10795075B2 (en) Backlight module and display device
JP5323274B2 (ja) 面光源装置及び液晶表示装置
JP2007249052A (ja) 光制御フィルム、照明装置、および表示装置
CN111323982A (zh) 防窥膜、背光源和显示装置
JPWO2011135627A1 (ja) 面状光源装置およびこれを用いた表示装置
JP2007184286A (ja) 平面照明装置
WO2004008023A1 (ja) 導光装置および表示装置
WO2006059264A1 (en) Illumination system using a laser source for a display device
WO2017170017A1 (ja) 照明装置及び表示装置
US20170139097A1 (en) Wide angle imaging directional backlights
US8638409B2 (en) Dual liquid crystal display
JP7177946B2 (ja) 光源装置とそれを利用した情報表示システム
TWI431327B (zh) 混色透鏡及具有該混色透鏡之液晶顯示裝置
US6147723A (en) Display device with multilayer film between LCD and backlight
JP2000258768A (ja) 導光板、その導光板を用いた面光源装置及び表示装置
US11150516B2 (en) Display and electronic apparatus
JP3937797B2 (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP