WO2004007982A1 - 磁気軸受スピンドル - Google Patents

磁気軸受スピンドル Download PDF

Info

Publication number
WO2004007982A1
WO2004007982A1 PCT/JP2002/007109 JP0207109W WO2004007982A1 WO 2004007982 A1 WO2004007982 A1 WO 2004007982A1 JP 0207109 W JP0207109 W JP 0207109W WO 2004007982 A1 WO2004007982 A1 WO 2004007982A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic bearing
rotor
axial
air passage
cooling air
Prior art date
Application number
PCT/JP2002/007109
Other languages
English (en)
French (fr)
Inventor
Akihiro Shimada
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2004521108A priority Critical patent/JP4176075B2/ja
Priority to DE60225725T priority patent/DE60225725T2/de
Priority to EP02746009A priority patent/EP1522749B1/en
Priority to PCT/JP2002/007109 priority patent/WO2004007982A1/ja
Priority to US10/486,984 priority patent/US7224094B2/en
Publication of WO2004007982A1 publication Critical patent/WO2004007982A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/10Driving main working members rotary shafts, e.g. working-spindles driven essentially by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a magnetic bearing spindle used for a machine tool spindle, and more particularly, to a method of reducing the rate of change of pipeline resistance when cooling air passes, and reducing heat generation sources such as a rotating shaft and an axial magnetic bearing stator.
  • the present invention relates to a magnetic bearing spindle that can be efficiently cooled.
  • Magnetic bearings are generally used for the main purpose of realizing ultra-high-speed rotation, which is difficult to achieve with rolling bearings that have been widely used in the past.
  • the main purpose of magnetic bearings used for machine tool spindles is the same.
  • magnetic bearing spindles can perform ultra-high speed driving compared to rolling spindles, but generally have a large number of electrical components, so that the heat generated by the spindle main body also increases.
  • a cooling fluid is circulated from outside the spindle unit to the inside of the rotating shaft, and the rotating shaft is directly cooled from the inside.
  • Such a cooling device is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-150345.
  • the above-described cooling device can be employed in a spindle unit used in a relatively low rotation speed range, but in a spindle unit used in an ultra-high speed rotation region, cooling fluid is supplied from outside the spindle unit to the inside of the rotation shaft. It is difficult to use due to the limitations of the high-speed performance and the life of the mechanism to circulate. If such a cooling device is applied to the magnetic bearing spindle, there is a problem that the mechanism to circulate the cooling fluid is damaged.
  • the present invention has been made to solve the above-mentioned problems, and a spindle unit that can efficiently cool a heat source with a simple configuration and is used in an ultra-high speed rotation range.
  • An object of the present invention is to provide a magnetic bearing spindle that can be applied to a magnetic field. Disclosure of the invention
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage are provided, and an outer diameter portion of the axial magnetic bearing rotor is formed in a triangular shape or a shape corresponding thereto.
  • the cooling air flowing from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator, Since the rate of change in pipeline resistance can be reduced, and loss due to sudden changes in flow path resistance can be reduced, the rotating shaft and the axial magnetic bearing stator can be efficiently cooled.
  • the magnetic bearing spinneret according to the next invention is characterized in that the housing has a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator arranged near the axial magnetic bearing rotor. Is provided with a plurality of through holes for introducing cooling air from the cooling air passage, is an outer magnetic pole tooth portion of the axial magnetic bearing stator, does not face the axial magnetic bearing rotor, and has a magnetic circuit. Top The unnecessary portion is provided with a plurality of axial through holes communicating with the through holes.
  • the pipeline resistance of the cooling air flowing through the through hole of the axial positioning member of the axial bearing magnetic bearing stator is reduced, and the diffusion of air into the unit is promoted. Not only the shaft but also each of the stators can be cooled more efficiently.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: Cooling air from the cooling air passage A plurality of through holes for introducing air, a core back portion of a radial magnetic bearing stator arranged near the radial magnetic bearing rotor, an outer magnetic pole tooth portion of the axial magnetic bearing stator, and a main shaft motor rotor. It is characterized in that a plurality of through holes in the axial direction are provided in the core back portion of the spindle motor stator arranged in the vicinity, and in portions not required in the magnetic circuit.
  • the pipe resistance of the cooling air flowing through the through hole of the axial positioning member of the axial bearing magnetic bearing stator is reduced, and the diffusion of the air to the unit No. is promoted. Not only the shaft but also each of the stators can be cooled more efficiently.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage; outer magnetic pole teeth of the axial magnetic bearing stator, which do not face the axial bearing magnetic bearing rotor; and
  • the outer diameter portion of the axial magnetic bearing rotor is formed in a triangular shape or a shape corresponding thereto.
  • the pipe resistance of the cooling air flowing from the through hole of the axial positioning member of the axial magnetic bearing stator is reduced, and the triangular shape of the outer diameter portion of the axial magnetic bearing rotor is reduced. Since the change rate of the pipeline resistance can be reduced by the shape or the shape corresponding thereto, the rotating shaft and each stator can be cooled more efficiently.
  • the housing includes a cooling air passage communicating with the outside, and an outer diameter portion of an axial positioning member of an axial magnetic bearing stator arranged near the axial magnetic bearing rotor.
  • An outer magnetic pole tooth portion of the receiving stator and a core back portion of the main shaft motor stator arranged near the main shaft motor rotor, and a portion unnecessary on the magnetic circuit has a plurality of axial through holes.
  • the magnetic bearing spindle is characterized in that the outer diameter portion of the axial magnetic bearing rotor is formed in a triangular shape or a shape corresponding thereto.
  • the pipe resistance of the cooling air flowing from the through hole of the axial positioning member of the axial magnetic bearing stator is reduced, and the outer diameter of the axial magnetic bearing rotor is reduced. Since the change rate of the pipe resistance can be reduced by the triangular shape or a shape corresponding thereto, the rotating shaft and each stator can be cooled more efficiently.
  • the magnetic bearing spinneret according to the next invention is characterized in that the treasure body has a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator arranged near the axial magnetic bearing rotor includes: A magnetic bearing spindle comprising a plurality of through holes for introducing cooling air from the cooling air passage, and having an outer diameter portion of the axial magnetic bearing rotor formed in a triangular shape or a shape corresponding thereto.
  • a plurality of axially extending grooves are provided at an outer diameter portion of the rotating shaft where the rotor, the axial magnetic bearing rotor and the main shaft motor rotor are fitted, and the radial magnetic bearing rotor and the axial magnetic
  • the air passage is formed by fitting the bearing rotor and the main shaft motor rotor adjacently and closely together in the axial direction.
  • a spiral fin for improving the efficiency of taking in cooling air into the air passage at at least one of the entrance and the exit of the air passage.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator.
  • the effect of the axially extending air passage provided on the rotating shaft and the spiral fins The rotating shaft rotates
  • air is taken into the air passage, and each rotor, which is a heat source, can be efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial positioning member of the axial magnetic bearing stator arranged near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage are provided.
  • the outer magnetic pole teeth of the axial magnetic bearing stator are not opposed to the axial magnetic bearing rotor, and are required on the magnetic circuit.
  • the magnetic bearing spindle provided with a plurality of axial through-holes communicating with the through-holes in the portion without the ⁇ , the outer diameter of the rotating shaft in which the radial magnetic bearing rotor, the axial bearing magnetic bearing rotor and the main shaft motor rotor fit.
  • the part is provided with a plurality of axially extending grooves, and the radial magnetic bearing rotor and the axial magnetic shaft are provided at fitting portions of the grooves.
  • An air passage is formed by fitting the rotor and the main shaft motor rotor so as to be closely adjacent to each other in the axial direction, and at least one of the entrance and exit portions of the air passage is connected to the air passage. It has a spiral fin that improves the efficiency of taking in cooling air.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator.
  • the effect of the axially extending air passage and the spiral fin provided on the rotating shaft is used.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial positioning member of the axial magnetic bearing stator arranged near the axial magnetic bearing rotor includes: A core back portion of a radial magnetic bearing stator provided with a plurality of through holes for introducing cooling air from the cooling air passage, and arranged near the radial magnetic bearing rotor; The outer magnetic pole teeth part of the data and the core back part of the main spindle motor stator arranged near the main spindle motor rotor, and the unnecessary parts on the magnetic circuit have multiple through holes in the axial direction.
  • a plurality of axially extending grooves are provided on an outer diameter portion of the rotating shaft in which the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor are fitted.
  • An air passage is formed by fitting the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor adjacently and closely together in the joint portion, and forming the air passage.
  • a spiral fin for improving the efficiency of taking in cooling air into the air passage is provided on at least one of the entrances and exits.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, after being separated into the front side and the rear side of the spindle unit, the outer diameter surface of each rotor and the surface of each stator are cooled, and the effect of the axially extending air passage provided on the rotating shaft and the spiral fin is used.
  • the rotating shaft rotates, air is taken into the air passage, and the rotors as heat sources can be efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A plurality of through-holes for introducing cooling air from the cooling air passage; outer magnetic pole teeth of the axial magnetic bearing stator, not facing the axial magnetic bearing rotor, and on a magnetic circuit; The unnecessary portion is provided with a plurality of axial through holes communicating with the through holes, and a magnetic bearing spindle in which the outer diameter portion of the axial magnetic bearing rotor is formed in a triangular shape or a shape corresponding to the triangular shape.
  • a plurality of axially extending grooves are provided on the outer diameter of the rotating shaft where the bearing rotor, axial magnetic bearing rotor and spindle motor rotor fit.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator.
  • the effect of the axially extending air passage and the spiral fin provided on the rotating shaft is used.
  • the housing includes a cooling air passage communicating with the outside, and an outer diameter portion of an axial positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor.
  • the outer magnetic pole teeth portion of the stator, and the core back portion of the main shaft motor stator arranged near the main shaft motor rotor, which are not required on the magnetic circuit.
  • a magnetic bearing spindle in which the outer diameter of the axial magnetic bearing rotor is formed in a triangular or equivalent shape, A plurality of axially extending grooves are provided in the outer diameter portion of the rotating shaft where the bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor are fitted, and the radial bearing magnetic bearing rotor and the aforementioned
  • the axial magnetic bearing rotor and the spindle motor motor are axially adjoined and closely fitted to each other to form an air passage, and at least one of an entrance and an exit of the air passage. It has a spiral fin that improves the efficiency of taking in cooling air into the air passage.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator is supplied to the axial magnetic bearing port.
  • the outer diameter surface of each rotor and the surface of each stator are cooled, and then the axial direction provided on the rotating shaft
  • air is taken into the air passage by the effect of the air passage and the spiral fin extending to the air passage, so that the rotors, which are heat sources, can be efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A magnetic bearing spindle comprising a plurality of through holes for introducing cooling air from the cooling air passage, and having an outer diameter portion of the axial magnetic bearing rotor formed in a triangular shape or a shape corresponding thereto.
  • a plurality of spiral grooves extending in the axial direction are provided at the outer diameter portion of the rotating shaft where the rotor, the axial magnetic bearing rotor and the main shaft motor rotor are fitted, and the radial magnetic bearing rotor and the radial magnetic bearing rotor are provided at fitting portions of the spiral grooves.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator.
  • the cooling air moves in the rotating shaft in the axial direction and can also circulate in the circumferential direction.
  • the source rotor can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: Cooling air from the cooling air passage A plurality of through-holes for introducing air, the outer magnetic pole teeth of the axial magnetic bearing stator, which are not opposed to the axial magnetic bearing rotor, and which are not necessary on the magnetic circuit, have the through-holes.
  • a magnetic bearing spindle provided with a plurality of axial through holes communicating with the shaft, a helical groove extending in the axial direction is formed in an outer diameter portion of the rotating shaft in which the radial bearing magnetic bearing rotor, the axial bearing magnetic bearing rotor and the main shaft motor rotor are fitted.
  • the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor are fitted into the fitting portions of the spiral grooves so as to be closely adjacent to each other in the axial direction so that air is provided.
  • a spiral that forms a passage and improves the efficiency of taking in cooling air into the air passage at at least one of the entrances and exits of the air passage. It is characterized by having fins.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Separate the front and rear sides of the spindle unit and cool the outer diameter surface of each rotor and the surface of each stator. Then, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move in the rotating shaft in the axial direction and circulate in the circumferential direction.
  • the rotor as a heat source can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage, a core back portion of a radial magnetic bearing stator disposed near the radial magnetic bearing rotor, and an outer side of the axial magnetic bearing stator.
  • a magnetic bearing having a plurality of axial through holes in a magnetic pole tooth portion and a core back portion of the main shaft motor stator arranged near the main shaft motor rotor and not required in the magnetic circuit.
  • the radial magnetic bearing rotor, axial magnetic bearing rotor, and main shaft motor rotor It comprises a spiral groove extending in the axial direction at a plurality of positions, before the fitting portion of the helical groove
  • An air passage is formed by fitting the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor port so as to be closely adjacent to each other in the axial direction, and to enter and exit the air passage.
  • a special feature is that at least one of the parts is provided with a spiral fin for improving the efficiency of taking in cooling air into the air passage.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. Then, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move in the rotating shaft in the axial direction and circulate in the circumferential direction.
  • the rotor as a heat source can be more efficiently cooled from inside and outside.
  • the magnetic bearing spindle according to the next invention is characterized in that the housing has a cooling air passage communicating with the outside, and an axial magnetic bearing disposed near the axial magnetic bearing port. Is provided with a plurality of through holes for introducing cooling air from the cooling air passage, is an outer magnetic pole tooth portion of the axial magnetic bearing stator, does not face the axial magnetic bearing rotor, and has a magnetic circuit.
  • a magnetic bearing spindle in which unnecessary portions are provided with a plurality of axial through holes communicating with the through holes, and the outer diameter portion of the axial magnetic bearing rotor is formed in a triangular or equivalent shape,
  • a plurality of spiral grooves extending in the axial direction are provided on the outer diameter of the rotating shaft where the radial magnetic bearing rotor, axial magnetic bearing rotor, and main shaft motor rotor fit.
  • the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor are fitted into the fitting portion of the spiral groove so as to be closely adjacent to each other in the axial direction to form an air passage.
  • a spiral fin for improving the efficiency of taking in cooling air into the air passage at at least one of the entrances and exits of the air passage.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator is supplied to the axial magnetic bearing row: It passes through the gap between the canola magnetic bearing stators and separates into the front and rear sides of the spindle unit, cooling the outer diameter surface of each rotor and the surface of each stator. Then, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move in the rotating shaft in the axial direction and circulate in the circumferential direction.
  • the rotor as a heat source can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and an outer diameter portion of an axial positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor.
  • An outer magnetic pole tooth portion of the stator, and a core back portion of the main shaft motor stator arranged near the main shaft motor rotor, and a portion not necessary on the magnetic circuit is provided with a plurality of axial through holes, respectively;
  • the radial magnetic shaft A plurality of spiral grooves extending in the axial direction are provided at an outer diameter portion of the rotating shaft where the rotor, the axial magnetic bearing rotor and the main shaft motor rotor are fitted, and the radial magnetic bearing rotor and the radial magnetic bearing rotor are fitted at the fitting portions of the spiral grooves.
  • An air passage is formed by fitting the axial magnetic bearing rotor and the main shaft motor rotor so as to be closely adjacent to each other in the axial direction, and to the air passage at at least one of the entrances and exits of the air passage. It has a spiral fin that improves the efficiency of taking in cooling air.
  • the cooling air supplied from the through hole of the axial positioning member of the axial bearing magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. After that, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move inside the rotating shaft in the axial direction and circulate in the circumferential direction. Therefore, the rotor as a heat source can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A magnetic bearing spindle having a plurality of through holes for introducing cooling air from the cooling air passage, and having an outer diameter portion of the axial magnetic bearing rotor formed into a triangular shape or a shape corresponding thereto; A radial magnetic bearing rotor having a notch groove is formed by laminating a ring-shaped punched plate having a plurality of notches so that the notch portion is parallel to the rotating shaft.
  • Notch grooves similar to the notch grooves are also formed in the inner diameter portions of the magnetic bearing rotor and the main shaft motor rotor, and the radial magnetic bearing rotor and the axial are formed.
  • An air passage is formed by fitting the air bearing port and the notch groove of the main shaft motor rotor to the rotating shaft so as to be aligned in the axial direction, and at least at the entrance and exit of the air passage.
  • a spiral fin ring having a spiral fin for improving the efficiency of taking in cooling air into the air passage is provided. Therefore, according to the present invention, the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator.
  • the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. After that, due to the effect of the spiral passage and the air passage extending in the axial direction provided on the rotation shaft, when the rotation shaft rotates, air is taken into the air passage, and each rotor, which is a heat source, is externally and internally. It can be cooled efficiently.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial positioning member of the axial magnetic bearing stator arranged near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage are provided.
  • the outer magnetic pole teeth of the axial magnetic bearing stator are not opposed to the axial magnetic bearing rotor, and are required on the magnetic circuit.
  • the magnetic shaft provided with a plurality of axial through holes communicating with the through holes In the receiving spindle, a radial magnetic bearing having a notch groove by laminating a ring-shaped punched plate having a plurality of notches in an inner diameter portion so that the notch portion is parallel to the rotation axis.
  • a notch groove similar to the notch groove in the inner diameter portion of the axial magnetic bearing rotor and the main shaft motor rotor, and forming the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor.
  • An air passage is formed by fitting the notch grooves to the rotating shaft so as to be aligned in the axial direction, and cooling of the air passage at at least one of the entrances and exits of the air passage. It is specially equipped with a spiral fin ring that has a spiral fin that improves air intake efficiency.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. After that, due to the effect of the spiral passage and the air passage extending in the axial direction provided on the rotation shaft, when the rotation shaft rotates, air is taken into the air passage, and each rotor, which is a heat source, is externally and internally. It can be cooled efficiently.
  • the housing includes a cooling air passage communicating with the outside, and an outer diameter portion of an axial positioning member of the axial bearing magnetic bearing stator arranged near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage, a core back portion of a radial magnetic bearing stator disposed near the radial magnetic bearing rotor, and an outer side of the axial magnetic bearing stator.
  • a magnetic bearing having a plurality of axial through holes in a magnetic pole tooth portion and a core back portion of the main shaft motor stator arranged near the main shaft motor rotor and not required in the magnetic circuit.
  • a ring-shaped punched plate having a plurality of notches on the inner diameter is laminated so that the notches are parallel to the rotation axis.
  • a radial magnetic bearing rotor having a notch groove the same as the above-described notch groove is formed on the inner diameter of the axial magnetic bearing rotor and the spindle motor rotor.
  • the notch groove is formed, and the radial magnetic bearing rotor, the axial magnetic bearing port, and the main shaft motor rotor are fitted to the rotary shaft so that the notch grooves are aligned in the axial direction.
  • a spiral fin ring having a spiral fin for improving the efficiency of taking in cooling air into the air passage is provided on at least one of the entrances and exits of the air passage.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. After that, due to the effect of the spiral passage and the air passage extending in the axial direction provided on the rotation shaft, when the rotation shaft rotates, air is taken into the air passage, and each rotor, which is a heat source, is externally and internally. It can be cooled efficiently.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage are provided.
  • the outer magnetic pole teeth of the axial magnetic bearing stator are not opposed to the axial magnetic bearing rotor, and are required on the magnetic circuit.
  • an inner diameter portion is provided in a magnetic bearing spindle in which a plurality of axial through-holes communicating with the through-holes are provided in a portion having no inner portion, and an outer diameter portion of the axial magnetic bearing rotor is formed in a triangular shape or a shape corresponding thereto.
  • a ring-shaped punched plate provided with a plurality of notches is laminated on the plate so that the notches are parallel to the rotation axis.
  • a notch groove similar to the notch groove is formed in the inner diameter portion of the axial magnetic bearing rotor and the main shaft motor rotor, and the radial magnetic bearing rotor and the axial magnetic bearing rotor are formed.
  • the notch grooves of the main shaft motor rotor are fitted to the rotary shaft such that the notch grooves are aligned in the axial direction, and an air passage is formed in at least one of an entrance and an exit of the air passage.
  • Spiral fin rings with spiral fins to improve the efficiency of cooling air intake It is characterized by having.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. After that, due to the effect of the spiral passage and the air passage extending in the axial direction provided on the rotation shaft, when the rotation shaft rotates, air is taken into the air passage, and each rotor, which is a heat source, is externally and internally. It can be cooled efficiently.
  • the housing includes a cooling air passage communicating with the outside, and an outer diameter portion of an axial positioning member of the axial bearing magnetic bearing stator disposed near the axial bearing magnetic rotor.
  • An outer magnetic pole tooth portion of the stator, and a core back portion of the main spindle motor stator arranged near the main spindle motor rotor, and a portion unnecessary on the magnetic circuit is provided with a plurality of axial through holes, respectively.
  • a radial magnetic bearing rotor having a notch groove is formed by laminating a ring-shaped punched plate having several notches so that the notch portion is parallel to the rotation axis.
  • Notch grooves similar to the notch grooves are also formed in the inner diameter portions of the magnetic bearing rotor and the spindle motor rotor, and the notch grooves of the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the spindle motor rotor are formed by shafts.
  • An air passage is formed by fitting to the rotating shaft so as to be aligned in the same direction, and at least one of the entrance and exit of the air passage is improved in taking-in efficiency of cooling air into the air passage.
  • a spiral fin ring having a spiral fin.
  • the cooling air supplied from the through-hole of the axial positioning member of the axial magnetic bearing stator is supplied to the axial magnetic bearing row: It passes through the gap between the canola magnetic bearing stators and separates into the front and rear sides of the spindle unit, cooling the outer diameter surface of each rotor and the surface of each stator. After that, due to the effect of the spiral passage and the air passage extending in the axial direction provided on the rotation shaft, when the rotation shaft rotates, air is taken into the air passage, and each rotor, which is a heat source, is externally and internally. It can be cooled efficiently.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A magnetic bearing spindle having a plurality of through holes for introducing cooling air from the cooling air passage, and having an outer diameter portion of the axial magnetic bearing rotor formed into a triangular shape or a shape corresponding thereto; A ring-shaped punched plate having a plurality of cutouts is laminated so that the cutouts form a spiral groove to form a radial magnetic bearing rotor, and an inner diameter of the axial magnetic bearing rotor and the spindle motor rotor.
  • a helical groove similar to the helical groove is also formed in the portion, the radiant magnetic bearing rotor, the axial magnetic bearing rotor, and the spindle motor
  • An air passage is formed by fitting the spiral groove of the motor to the rotating shaft so as to be continuous in the axial direction, and the air passage is formed in at least one of the entrances and exits of the air passage.
  • a spiral fin ring having a spiral fin for improving the efficiency of taking cooling air into the road is provided.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. Then, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move in the rotating shaft in the axial direction and circulate in the circumferential direction.
  • the rotor as a heat source can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and is disposed near the axial magnetic bearing rotor.
  • the outer diameter portion of the axial positioning member of the stator includes a plurality of through holes for introducing cooling air from the cooling air passage, and the outer magnetic pole teeth of the axial magnetic bearing stator.
  • a magnetic bearing spindle having a plurality of axial through-holes communicating with the through-holes at a portion that does not face the magnetic bearing rotor and is unnecessary on the magnetic circuit.
  • a ring-shaped punched plate having a notch is laminated so that the notch portion forms a spiral groove to form a radial magnetic bearing rotor, and the spiral groove is also formed in the inner diameter portions of the axial magnetic bearing rotor and the main shaft motor rotor.
  • a spiral groove similar to that described above is formed, and the spiral magnetic groove is formed so that the spiral magnetic grooves of the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the spindle motor rotor are continuous in the axial direction.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. Then, due to the effect of the spiral fin provided on the rotating shaft: and the spiral air passage, when the rotating shaft rotates, the cooling air can move inside the rotating shaft in the axial direction and circulate in the circumferential direction. Therefore, the rotor as a heat source can be more efficiently cooled from inside and outside.
  • the magnetic bearing spindle according to the next invention is characterized in that the housing has a cooling air passage communicating with the outside, and is provided at an outer diameter portion of an axial positioning member of an axial magnetic bearing stator arranged near the axial magnetic bearing rotor.
  • a plurality of through holes in the axial direction each of which is an outer magnetic pole tooth portion and a core back portion of the spindle motor stator disposed near the spindle motor rotor and which is not necessary on the magnetic circuit.
  • Magnetic bearing spindle A ring-shaped punched plate provided with a notch is formed so that the notch forms a spiral groove to form a radial magnetic bearing rotor, and the inner diameter of the axial magnetic bearing rotor and the spindle motor rotor.
  • a spiral groove similar to the spiral groove is formed on the rotary shaft so that the spiral magnetic grooves of the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the spindle motor rotor are continuous in the axial direction.
  • a spiral fin ring having a spiral fin for improving the efficiency of taking in cooling air into the air passage at at least one of the entrance and the exit of the air passage. I do.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. Then, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move in the rotating shaft in the axial direction and circulate in the circumferential direction.
  • the rotor that generates heat can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and the outer diameter portion of the axial magnetic positioning member of the axial magnetic bearing stator disposed near the axial magnetic bearing rotor includes: A plurality of through holes for introducing cooling air from the cooling air passage are provided.
  • the outer magnetic pole teeth of the axial magnetic bearing stator are not opposed to the axial magnetic bearing rotor, and are required on the magnetic circuit.
  • an inner diameter portion is provided in a magnetic bearing spindle in which a plurality of axial through-holes communicating with the through-holes are provided in a portion having no inner portion, and an outer diameter portion of the axial magnetic bearing rotor is formed in a triangular shape or a shape corresponding thereto.
  • a radial magnetic bearing rotor is formed by laminating a ring-shaped punched plate having a plurality of cutouts so that the cutouts form a spiral groove.
  • a helical groove similar to the helical groove is also formed in the inner diameter portion of the axial magnetic bearing rotor and the main shaft motor rotor, and the helical grooves of the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor are continuous in the axial direction.
  • the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Separate the front and rear sides of the spindle unit and cool the outer diameter surface of each rotor and the surface of each stator. Then, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air moves inside the rotating shaft in the axial direction and is also circulated in the circumferential direction.
  • the rotor which is a heat source, can be more efficiently cooled from inside and outside.
  • the housing includes a cooling air passage communicating with the outside, and an outer diameter portion of an axial positioning member of an axial bearing magnetic bearing stator disposed near the axial magnetic bearing rotor.
  • the outer diameter of the axial bearing magnetic bearing rotor is formed in a triangular shape or a shape equivalent to it, A ring-shaped punched plate having several cutouts is laminated so that the cutouts form a spiral groove to form a radial magnetic bearing rotor, and an axial magnetic bearing rotor and a main shaft motor rotor are formed.
  • a helical groove similar to the helical groove is also formed in the inner diameter portion, and the helical groove of the radial magnetic bearing rotor, the axial magnetic bearing rotor, and the main shaft motor rotor is fitted to the rotating shaft so that the helical grooves are continuous in the axial direction.
  • a spiral fin ring having a spiral fin for improving the efficiency of taking in cooling air into the air passage at at least one of the entrance and exit of the air passage. It is characterized by. Therefore, according to the present invention, the cooling air supplied from the through hole of the axial positioning member of the axial magnetic bearing stator passes through the gap between the axial magnetic bearing rotor and the axial magnetic bearing stator. Then, the spindle unit is separated into the front side and the rear side, and the outer diameter surface of each rotor and the surface of each stator are cooled. After that, due to the effect of the spiral fins provided on the rotating shaft and the spiral air passage, when the rotating shaft rotates, the cooling air can move in the rotating shaft in the axial direction and circulate in the circumferential direction.
  • the rotor as a heat source can be more efficiently cooled from inside and outside.
  • FIG. 1 is a sectional view showing the overall configuration of a magnetic bearing spindle unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view showing only a collar for axially positioning an axial magnetic bearing stator.
  • FIG. 3 is a cross-sectional view (2) showing an A-A cross section in FIG. 1 and a front view (1), and
  • FIG. 3 is a cross-sectional view showing the entire configuration of a magnetic bearing spindle unit according to Embodiment 2 of the present invention.
  • FIG. 4 is a front view (1) showing an axial magnetic bearing stator, and a cross-sectional view (2) showing a BB cross section in the front view (1).
  • FIG. 5 shows a third embodiment of the present invention.
  • FIG. 5 shows a third embodiment of the present invention.
  • FIG. 6 is a sectional view showing the overall configuration of a magnetic bearing spindle unit
  • FIG. 6 is a sectional view showing the overall configuration of a magnetic bearing spindle unit according to a fourth embodiment of the present invention
  • Fig. 8 is a cross-sectional view showing the entire configuration of the drunit
  • Fig. 8 is a perspective view of the rotating shaft shown in Fig. 7 as viewed from the front side of a front radial magnetic bearing rotor
  • Fig. 9 is a radial magnetic bearing rotor and an axial magnetic bearing.
  • FIG. 10 is a perspective view showing the state of the rotating shaft before the rotor and the main shaft motor rotor are fitted
  • FIG. 10 is a perspective view showing the state of the rotating shaft before the rotor and the main shaft motor rotor are fitted
  • FIG. 10 is a cross-sectional view showing the rotating shaft cut at a portion where each rotor is fitted
  • FIG. FIG. 12 is a cross-sectional view showing the entire configuration of a magnetic bearing spindle unit according to a sixth embodiment of the present invention.
  • FIG. 12 is a sectional view showing a state before a radial bearing magnetic bearing rotor and an axial magnetic bearing rotor and a main spindle motor rotor are fitted to each other.
  • FIG. 13 is a perspective view showing a state of the rotating shaft of FIG. 13
  • FIG. 13 is a cross-sectional view showing a configuration of a main part of a magnetic bearing spindle unit according to a seventh embodiment of the present invention, FIG. FIG.
  • FIG. 15 is a front view showing a ring-shaped punched plate having a notch in the inner diameter part
  • FIG. 15 is a perspective view showing a radial magnetic bearing rotor having an axial notch groove in the inner diameter part
  • FIG. Fig. 17 is a cross-sectional view showing a configuration of a main part of a magnetic bearing spindle unit according to an eighth embodiment of the present invention.
  • Fig. 17 is a perspective view showing a radial magnetic bearing rotor having a spiral groove formed in an inner diameter portion. is there.
  • BEST MODE FOR CARRYING OUT THE INVENTION In order to Setsujutsu the present invention in more detail, although the accompanying drawings c implementation describing the connection which forms 1.
  • FIG. 1 is a cross-sectional view illustrating an entire configuration of a magnetic bearing spindle unit according to Embodiment 1 of the present invention.
  • the magnetic bearing spindle comprises a rotating shaft 1, a radial magnetic bearing rotor 2 formed by laminating ring-shaped electromagnetic steel plates, an axial magnetic bearing rotor 3 made of magnetic material, and a main shaft motor rotor 4. And is manufactured by fitting.
  • the radial bearing magnetic bearing rotor 2 is composed of a front radial bearing magnetic bearing rotor 2a, a rear radial bearing bearing 2b, and a force, and the reference numerals of the rotors 2a and 2b are shown in the following figures. Only is displayed.
  • the outer diameter portion of the axial magnetic bearing rotor 3 is formed as a triangular portion 11 c. This is because cooling air that has flowed in from the outside as described below is used for the axial magnetic bearing rotor 3 and the axial magnetic bearing When passing through the gap between the stator 6 and the stator 6, the cooling air can smoothly pass through the gap in order to reduce the rate of change of the pipe resistance and suppress the generation of eddy currents. In addition to this, the cooling air is provided so that it can pass through it with a uniform force in the load side direction and the non-load side direction.
  • the shape of the outer diameter portion of the axial bearing magnetic bearing rotor 3 is not limited to a triangular shape as long as it has such an effect, and a shape corresponding to a triangular shape (for example, a top portion of the triangular portion 11). May be slightly flat or rounded without being sharpened.
  • a radial bearing magnetic bearing stator 5 composed of four electromagnets is arranged at an appropriate minute interval (usually about 0.5 to 1.0 mm). ing.
  • the radial magnetic bearing stator 5 includes a front radial magnetic bearing stator 5a and a rear radial magnetic bearing stator 5b, and corresponds to the front radial magnetic bearing rotor 2a and the rear radial magnetic bearing rotor 2b, respectively.
  • a front radial magnetic bearing stator 5a and a rear radial magnetic bearing stator 5b corresponds to the front radial magnetic bearing rotor 2a and the rear radial magnetic bearing rotor 2b, respectively.
  • an axial magnetic bearing stator 6 (a load-side axial magnetic bearing stator 6a, a non-load-side axial bearing) comprising a pair of ring-shaped electromagnets and having outer magnetic pole teeth 10 and coils 27.
  • the axial magnetic bearing stators 6 a and 6 b are axially positioned by a ring-shaped collar 12.
  • a main shaft motor stator 7 for rotationally driving the rotating shaft 1 is arranged at an appropriate minute interval in the radial direction from the outer diameter portion of the main shaft motor rotor 4.
  • Oil jackets 8 and 9 for cooling the stator are attached to the outer diameters of the radial magnetic bearing stator 5 and the spindle motor stator 7.
  • the oil jacket 8 includes a front radial bearing magnetic bearing stator 5a, a cooling oil jacket 8a, and a radial magnetic bearing stator 5b, cooling oil jacket 8b.
  • the rotating shaft 1, the radial magnetic bearing stator 5, the axial magnetic bearing stator 6, and the spindle motor stator 7 are housed in a frame 15. Further, a load-side bracket 16 and a non-load-side bracket 17 are attached to the frame 15. The load-side bracket 16 and the non-load-side bracket 17 are mounted with a non-contact displacement sensor 20 for magnetic bearing control, a 20-force rotating shaft 1 and a certain small distance (usually about 5 mm). I have.
  • protective bearings (also called touch-down bearings) 19 to avoid damage to the unit in an emergency They are mounted with a certain small space (usually about 2 mm).
  • the protection bearing 19 includes a load-side protection bearing 19a and a non-load-side protection bearing 19b.
  • the load-side protective bearing 19 a is fixed to the load-side bracket 16 by a mounting lid 18 and a special nut 21.
  • the radial and axial positions of the rotating shaft 1 are measured by a non-contact displacement sensor 20.
  • a front displacement sensor 20a and a rear displacement sensor 20b are provided at the front and rear portions of the rotating shaft 1, respectively. It is arranged. Then, based on the output signal of the non-contact displacement sensor 20, the gap between the radial magnetic bearing stator 5 and the radial magnetic bearing rotor 2 and the gap between the axial magnetic bearing stator 6 and the axial magnetic bearing rotor 3 are formed.
  • the rotating shaft 1 is supported in a non-contact manner at a target position separated from each of the stators 5, 6, 7 by applying an appropriate voltage to the spindle motor stator 7 in this non-contact state. It realizes ultra-high-speed rotation of the rotating shaft 1 (about 700 000 rZ min or more).
  • the rotation speed of the rotating shaft 1 is detected by an encoder gear 22 and an encoder head 23.
  • FIG. 2 shows only the ring-shaped collars 12 for axially positioning the axial magnetic bearing stators 6a and 6b, and shows A in the front view (1) and the front view (1).
  • FIG. 4 is a cross-sectional view (2) showing a section A.
  • the outer diameter portion of the collar 12 is provided with a plurality of through holes 13 evenly in the radial direction.
  • an air passage 25 is provided in the frame 15 to allow the cooling air to flow through the through hole 13, and the cooling air is supplied to the bracket 17 on the non-load side. Mouth 24 is provided.
  • the arrow shown in FIG. 1 is the air passage direction 14 indicating the flow of the cooling air.
  • the cooling air supplied from the cooling air supply port 24 of the non-load side bracket 17 passes through the air passageway 25 inside the frame 15, and the spindle unit is moved from the collar 12 partial force. It flows inside.
  • This collar 12 is provided with a plurality of through holes 13 evenly in the radial direction in the outer diameter part, so that the axial magnetic bearing rotor 3 is evenly distributed from a plurality of locations in the outer diameter part of the rotor 3. Cooling air flows in.
  • the outer diameter of the axial magnetic bearing rotor 3 is a triangular portion 11, when the flowing cooling air passes through the gap between the axial magnetic bearing rotor 3 and the axial magnetic bearing stator 6, Since the rate of change of the pipe resistance can be reduced and the generation of eddy currents can be suppressed, the cooling air can smoothly pass through the gaps, and the cooling air flows in the load side and the non-load side. It can be divided evenly in each direction.
  • the axial magnetic bearing stator 6 has a relatively small thickness in the axial direction (typically about 10 to 20 mm), a conventional cooling jacket is provided on the outer diameter of the axial magnetic bearing stator 6. Although it is difficult to provide and cool it, according to the present invention, the air bearing magnetic bearing stator 6 can be easily cooled by passing the cooling air through the gap.
  • Cooling air flowing toward the load side passes through the gap between the front radial magnetic bearing rotor 2a and the front radial magnetic bearing stator 5a, and the front radial magnetic bearing rotor 2a and the front radial magnetic bearing stator. After directly cooling 5a, it passes through the gap between the rotating shaft 1 and the load-side protective bearing 19a and flows out into the outside atmosphere.
  • the cooling air flowing in the direction opposite to the load passes through a gap between the main spindle motor rotor 4 and the main spindle motor stator 7 and a gap between the rear radial bearing magnetic bearing rotor 2 b and the rear radial bearing magnetic bearing stator 5 b, and then flows through the rotor 4. , 2b and the corresponding stators 7, 5b directly pass through the gap between the rotating shaft 1 and the non-load-side protective bearing 19b and flow out into the outside atmosphere.
  • the magnetic bearing spindle according to the first embodiment, it is not necessary to take in the cooling medium by another mechanical mechanism, and the rotating shaft 1 and the respective stators 5, 6, 7 are cooled by air cooling. Since the stators 5 and 7 can also be used with liquid cooling by oil jackets 8 and 9, the stators 5 and 7 can be applied to magnetic bearing spindles that rotate at ultrahigh-speed driving, and the configuration can be simplified.
  • FIG. 3 is a cross-sectional view showing the entire configuration of a magnetic bearing spindle unit according to a second embodiment of the present invention.
  • FIG. 4 is a front view (1) showing an axial magnetic bearing stator and this front view (1).
  • FIG. 2 is a cross-sectional view (2) showing a BB cross section in FIG.
  • members that are the same as or correspond to those already described are denoted by the same reference numerals, and redundant description is omitted or simplified.
  • a plurality of through holes 13 are provided in the outer diameter portion of the collar 12 of the axial magnetic bearing stator 6 evenly in the radial direction, and the cooling air flows through the through holes 13.
  • An air passage 25 is provided in the frame 15 so that air can flow in, and a cooling air supply port 24 is provided in the non-load side bracket 17.
  • the outer magnetic pole teeth 10 of the axial magnetic bearing stator 6 which are not opposed to the axial magnetic bearing rotor 3 and which are not required in the magnetic circuit include: A plurality of axial through holes 26 are provided at equal intervals.
  • the cooling air supplied from the cooling air supply port 24 of the non-load side bracket 17 passes through the air passageway 25 inside the frame 15, and the collar 1 of the axial magnetic bearing stator 6 It flows into the spindle unit from two parts. Since the collar 12 is provided with a plurality of through holes 13 in the outer diameter portion in the radial direction, cooling air flows in uniformly from a plurality of portions of the outer diameter portion of the axial magnetic bearing rotor 3. .
  • the pipeline resistance is reduced, and the cooling air is substantially dissipated in the load side direction and the anti-load side direction.
  • the cooling air passes through the through-holes 26 uniformly and a part of the cooling air passes through the gap between the axial magnetic bearing rotor 3 and the axial magnetic bearing stator 6.
  • the axial magnetic bearing stator 6 is efficiently cooled by the cooling air from both sides in the axial direction.
  • the cooling air flowing in the load side direction passes through a gap between the front radial magnetic bearing rotor 2a and the front radial magnetic bearing stator 5a, and flows into the rotor 2a.
  • the stator 5a passes through a gap between the rotating shaft 1 and the load-side protection bearing 19a and flows out into the outside atmosphere.
  • the cooling air flowing in the direction opposite to the load passes through the gap between the main spindle motor rotor 4 and the main spindle motor stator 7 and the gap between the rear radial bearing magnetic rotor 2b and the radial magnetic bearing stator 5b.
  • 2b and the stators 7, 5b directly pass through the gap between the rotating shaft 1 and the non-load-side protective bearing 19b and flow out into the outside atmosphere.
  • the magnetic bearing spindle according to the second embodiment it is not necessary to take in the cooling medium by another mechanical mechanism, and the rotating shaft 1 and the respective stators 5, 6, 7 are cooled by air cooling. Further, since the stators 5 and 7 can be used in combination with liquid cooling by oil jackets 8 and 9, the stators 5 and 7 can be applied to a magnetic bearing spindle that rotates at an ultra-high speed drive, and the configuration can be simplified.
  • FIG. 5 is a cross-sectional view illustrating an entire configuration of a magnetic bearing spindle unit according to Embodiment 3 of the present invention.
  • the outer diameter portion of the collar 12 of the axial bearing magnetic bearing stator 6 is provided with a plurality of through holes 13 evenly in the radial direction, and the cooling air flows through the through holes 13.
  • An air passageway 25 is provided in the frame 15 so that air can flow in, and a cooling air supply port 24 is provided in the non-load side bracket 17.
  • the core pack 28 of the radial bearing magnetic bearing stator 5, the outer magnetic pole teeth 10 of the axial bearing magnetic bearing ′ 10, and the core back 29 of the main shaft motor stator 7, and the parts that are not necessary on the magnetic circuit include the shaft.
  • Through holes 30, 26, 31 in the direction are provided at a plurality of locations at equal pitch.
  • the core back 28 is shown as a core back 28 a of the front radial magnetic bearing stator 5 a and a core back 28 b of the rear radial magnetic bearing stator 5 b.
  • the through hole 3 ⁇ is indicated as a through hole 30a provided in the axial direction of the core back 28a and a through hole 30b provided in the axial direction of the core back 28b.
  • the cooling air supplied from the cooling air supply port 24 of the non-load side bracket 17 passes through the air passage 25 inside the frame 15, and the collar 1 of the axial bearing magnetic bearing stator 6 It flows into the spindle unit from two parts. Since the collar 12 is provided with a plurality of through holes 13 in the outer diameter portion in the radial direction, cooling air flows in uniformly from a plurality of portions of the outer diameter portion of the axial magnetic bearing rotor 3. .
  • the pipeline resistance is reduced, and the cooling air is substantially dissipated in the load side direction and the anti-load side direction. While passing through the through holes 26 uniformly, a part of the cooling air passes through the gap between the axial magnetic bearing rotor 3 and the axial magnetic bearing stator 6. Thereby, the axial bearing magnetic bearing stator 6 is efficiently cooled from both sides in the axial direction by the cooling air.
  • the cooling air flowing toward the load side is supplied to the through holes 30 a provided in the core back 28 a of the front radial magnetic bearing stator 5 a, the front radial magnetic bearing rotor 2 a and the front radial magnetic bearing stator 5 a. After directly cooling the rotor 2a and the stator 5a through the gap between the two, the air passes through the gap between the rotating shaft 1 and the load-side protective bearing 19a and flows out into the outside atmosphere. .
  • the cooling air flowing in the direction opposite to the load is supplied to the through holes 31, 30 b provided in the core back 29 of the main shaft motor stator 7 and the core back 28 b of the rear radial bearing stator 5 b, and the main shaft motor rotor. 4 through the air gap between the spindle motor stator 7 and the air gap between the rear radial magnetic bearing rotor 2b and the radial magnetic bearing stator 5b, and directly connect the rotors 4, 2b and the stators 7, 5b. After cooling, it passes through the gap between the rotating shaft 1 and the protection bearing 19b on the non-load side, and flows out into the outside atmosphere.
  • the cooling medium does not need to be taken in by another mechanical mechanism, and the rotating shaft 1 and the respective stators 5, 6, 7 are cooled by air cooling.
  • the stators 5 and 7 can also be Since liquid cooling by units 8 and 9 can be used at the same time, it can be applied to magnetic bearing spindles that rotate at ultra-high speed drive, and the configuration can be simplified.
  • FIG. 6 is a cross-sectional view showing an overall configuration of a magnetic bearing spindle unit according to Embodiment 4 of the present invention.
  • the outer diameter portion of the collar 12 of the axial bearing magnetic bearing stator 6 is provided with a plurality of through holes 13 evenly in the radial direction, and the cooling air flows through the through holes 13.
  • An air passageway 25 is provided in the frame 15 so that air can flow in, and a cooling air supply port 24 is provided in the non-load side bracket 17.
  • the outer diameter of the axial magnetic bearing rotor 3 is a triangular portion 11 1, the core back 28 of the radial magnetic bearing stator 5, the outer magnetic pole teeth 10 of the axial magnetic bearing stator 6, and the main shaft motor stator 7.
  • axial through holes .30, 26, 31 are provided at a plurality of positions with equal pitch.
  • the cooling air supplied from the cooling air supply port 24 of the non-load side bracket 17 passes through the air passageway 25 inside the frame 15, and the collar 1 of the axial magnetic bearing stator 6 It flows into the spindle unit from two parts. Since the collar 12 is provided with a plurality of through holes 13 in the outer diameter portion in the radial direction, cooling air flows in uniformly from a plurality of portions of the outer diameter portion of the axial magnetic bearing rotor 3. .
  • the outer diameter of the axial magnetic bearing rotor 3 is formed as a triangular portion 11, the inflowing air can be smoothly divided into the load side and the non-load side and pass therethrough. Can be suppressed, and the rate of change of the pipe resistance can be reduced with respect to a part of the cooling air passing through the gap between the axial magnetic bearing rotor 3 and the axial magnetic bearing stator 6.
  • a part of the cooling air divided into the load side and the non-load side flows to the core pack side of the axial magnetic bearing stator 6, so that the axial magnetic bearing stator 6
  • the cooling air efficiently cools both sides in the axial direction.
  • the cooling air flowing in the direction opposite to the load is supplied to the through holes 31, 30 b provided in the core back 29 of the main shaft motor stator 7 and the core back 28 b of the rear radial bearing stator 5 b, and the main shaft motor rotor. 4 through the air gap between the spindle motor stator 7 and the air gap between the rear radial magnetic bearing rotor 2 b and the rear radial magnetic bearing stator 5 b, and through the rotors 4, 2 b and the stators 7, 5 b After cooling directly, it passes through the gap between the rotating shaft 1 and the protection bearing 19b on the non-load side, and flows out into the outside atmosphere.
  • the magnetic bearing spindle according to the fourth embodiment it is not necessary to take in the cooling medium by another mechanical mechanism, and the rotating shaft 1 and the respective stators 5, 6, 7 are cooled by air cooling. Since the stators 5 and 7 can also be used for liquid cooling with the oil jackets 8 and 9, they can be applied to magnetic bearing spindles that rotate at ultra-high speed drive, and the configuration can be simplified.
  • FIG. 7 is a cross-sectional view showing the entire configuration of a magnetic bearing spindle unit according to a fifth embodiment of the present invention.
  • the rotary shaft 1 shown in FIG. The shape is different from that of the rotating shaft 1 shown in.
  • FIG. 8 is a perspective view of the rotating shaft 1 shown in FIG. 7 as viewed from the front side of the front radial magnetic bearing rotor 2a.
  • FIG. 9 is a perspective view showing the state of the rotary shaft 1 before fitting the radial magnetic bearing rotor 2, the axial magnetic bearing rotor 3, and the spindle motor rotor 4 in FIG. 1st 0
  • the figure is a cross-sectional view showing the rotating shaft 1 cut at a portion where the rotors 2, 3, and 4 are fitted.
  • the fitting portion 36 where the radial magnetic bearing rotor 2, the axial magnetic bearing rotor 3 and the main shaft motor rotor 4 fit.
  • the groove 3 2 extending in the axial direction Are formed at several places.
  • a radial magnetic bearing rotor 2, an axial magnetic bearing rotor 3, and a main shaft motor rotor 4 are fitted to the rotating shaft 1 so that the rotors adjacent to each other in the axial direction are in close contact with each other, thereby forming an air passage inside the rotating shaft 1. 33 (see Fig. 7).
  • the same number of spiral fins 34 as the air passage 33 are formed integrally with the rotating shaft 1 on the front side of the spindle of the air passage 33, and when the main shaft motor rotor 4 rotates in the normal rotation direction 35.
  • the spiral direction of the spiral fins 34 is determined so that air is taken into the inlet of the air passageway 33, and the end of the spiral fin 34 on the rotating shaft 1 side is aligned with the convex part of the groove 32. It is composed.
  • the cooling air supplied from the cooling air supply port 24 of the non-load side bracket 17 passes through the air passageway 25 inside the frame 15, and the collar 1 of the axial magnetic bearing stator 6 It flows into the spindle unit from two parts.
  • the cooling air that has flowed in is divided almost equally between the load side and the non-load side.
  • the cooling air flowing in the load side flows through the gap of the front displacement sensor 20a and the gap of the load-side protective bearing 19a into the external atmosphere. Similarly, the cooling air flowing in the direction opposite to the load also flows out to the outside atmosphere through the gap in the rear displacement sensor 2 O b and the gap in the non-load side protection bearing 19 b.
  • the cooling air flowing in the load side direction is taken into the air passage 33 inside the rotating shaft 1 by the spiral fin 34 and passes therethrough.
  • the air that has flowed into the passage 33 cools the inside of the rotating shaft 1, is discharged to the rear of the spindle unit, and flows out into the outside atmosphere.
  • the cooling medium There is no need to take the body inside the rotating shaft 1 that is driven to rotate by another mechanical mechanism, and the rotating shaft 1 can be cooled from the inside by air cooling, so it can be applied to magnetic bearing spindles that rotate at ultra high speed driving Therefore, the configuration can be simplified.
  • FIG. 11 is a sectional view showing the overall configuration of a magnetic bearing spindle unit according to a sixth embodiment of the present invention.
  • the rotating shaft 1 shown in FIG. The shape is different from that of the rotating shaft 1 shown in Fig. 7.
  • FIG. 12 is a perspective view showing a state of the rotating shaft 1 before fitting the radial magnetic bearing rotor 2, the axial magnetic bearing rotor 3, and the main shaft motor rotor 4 in FIG.
  • the form of the air passage 33 is a long groove 32 extending in the axial direction, but in FIG. 12 shown in the sixth embodiment, Has formed multiple spiral grooves 37.
  • the cooling air supplied from the cooling air supply port 24 of the non-load side bracket 17 passes through the air passageway 25 inside the frame 15, and the collar 1 of the axial magnetic bearing stator 6 It flows into the spindle unit from two parts.
  • the cooling air that has flowed in is divided almost equally between the load side and the non-load side.
  • the cooling air flowing in the load side flows through the gap of the front displacement sensor 20a and the gap of the load-side protective bearing 19a into the external atmosphere. Similarly, the cooling air flowing in the direction opposite to the load also flows out to the outside atmosphere through the gap in the rear displacement sensor 2 O b and the gap in the non-load side protection bearing 19 b.
  • the cooling air flowing in the load side direction is taken into the air passage 33 inside the rotating shaft 1 by the spiral fin 34.
  • the cooling air taken into the rotating shaft 1 moves in the rotating shaft 1 in the axial direction, circulates in the circumferential direction, cools the rotating shaft 1 and is discharged to the rear of the spindle unit, and is then discharged to the outside world. Spills into atmosphere. Therefore, according to the magnetic bearing spindle according to the sixth embodiment, it is not necessary to take the cooling medium into the rotating shaft 1 that is driven to rotate by another mechanical mechanism. Because it can be cooled, it can be applied to magnetic bearing spindles that rotate at ultra-high speed drive, and the configuration can be simplified.
  • FIG. 13 is a cross-sectional view showing a configuration of a main part of a magnetic bearing spindle unit according to a seventh embodiment of the present invention
  • FIG. 14 is a ring-shaped punched plate having a cut-out portion in an inner diameter portion
  • FIG. 15 is a perspective view showing a radial magnetic bearing rotor having a cutout groove formed in the inner diameter portion in the axial direction.
  • the seventh embodiment differs from the fifth embodiment (see FIG. 7) only in the configuration of the rotating shaft 1. For this reason, FIG. 13 shows only the rotating body. The configuration other than the rotating body is the same as the configuration of FIG. 7 shown in the fifth embodiment.
  • a groove 32 extending in the axial direction is formed in the outer diameter portion of the rotating shaft 1 in advance, and the radial magnetic bearing rotor 2 and the axial magnetic bearing rotor are formed in the fitting portion 36.
  • the air passage 33 is formed by fitting the main shaft motor rotor 4 and the main shaft motor rotor 4 so that they are closely adjacent to each other in the axial direction.
  • FIG. 13 in the seventh embodiment as shown in FIG. 14, a ring-shaped punched plate 39 having a plurality of notches 38 in the inner diameter portion was manufactured, and The radial magnetic bearing rotor 2 as shown in FIG.
  • the air passage 33 is formed by fitting the rotary shaft 1 so as to be aligned. Further, a spiral fin ring 41 having a spiral fin 34 is fitted near the inlet of the air passage 33. As a result, the shape of the air passage 33 was as shown in FIG. Is equivalent to
  • FIG. 16 is a cross-sectional view showing a configuration of a main part of a magnetic bearing spindle unit according to an eighth embodiment of the present invention.
  • FIG. 17 is a radial magnetic bearing rotor having a spiral groove formed in an inner diameter portion.
  • FIG. 'The eighth embodiment is different from the sixth embodiment (see FIG. 11) only in the configuration of the rotating shaft 1. For this reason, FIG. 16 shows only the rotating body. The configuration other than the rotating body is the same as the configuration in FIG. 11 shown in Embodiment 6 above.
  • a spiral groove 37 extending in the axial direction is formed in the outer diameter portion of the rotating shaft 1 in advance, and the radial magnetic bearing rotor 2 and the axial magnetic bearing are formed in the fitting portion 36.
  • the air passage 33 is formed by fitting the rotor 3 and the spindle motor rotor 4 so that they are closely adjacent to each other in the axial direction.
  • FIG. 16 of the eighth embodiment as shown in FIG. 17, a ring-shaped punched plate 39 having a plurality of notches 38 in the inner diameter portion was manufactured, and The ring-shaped punched plate 39 is laminated so that the cutout portion 38 forms a spiral groove 42 in the axial direction to form the radial bearing magnetic bearing rotor 2. Further, spiral grooves 42 are formed in the inner diameter portion of the axial magnetic bearing rotor 3 and the main shaft motor rotor 4 in the same manner, and the inner diameter portion of each of the radial magnetic bearing rotor 2, the axial magnetic bearing rotor 3 and the main shaft motor rotor 4 is formed.
  • the air passage 33 is formed by fitting the spiral groove 42 to the rotating shaft 1 so as to be continuous in the axial direction. Further, a spiral fin ring 41 having a spiral fin 34 is fitted near the inlet of the air passage 33. As a result, the shape of the air passage 33 is the same as that shown in FIG. According to this structure, the same effects as in the sixth embodiment (see FIG. 11) can be obtained, and complicated groove machining of the rotating shaft 1 can be omitted, so that the manufacturing process is simplified. Is done.
  • Embodiments 1 to 8 have been described as embodiments of the present invention. However, the present invention is not limited to these embodiments. For example, any of the above embodiments may be arbitrarily combined. It can also be implemented. . Industrial Applicability
  • the magnetic bearing spindle according to the present invention can efficiently cool a heat source with a simple configuration, and is suitable for a spindle unit of a machine tool used in an ultra-high speed rotation range.

Abstract

回転軸(1)に電磁鋼板で製作したリング状抜板を積層して形成したラジアル磁気軸受ロータ(2)と磁性材で形成したアキシャル磁気軸受ロータ(3)と主軸モータロータ(4)とを固着し、当該回転軸(1)の回りに複数個の電磁石を微小間隔を設けて配置した磁気軸受スピンドルであり、反負荷側ブラケット(17)に冷却空気供給口(24)を設け、フレーム(15)内部に空気通過路(25)を設けた。また、アキシャル磁気軸受ロータ(3)の外径部に三角形状部(11)を設け、アキシャル磁気軸受ステータ(6)の軸方向位置決め用のカラー(12)の外径部には、半径方向の貫通穴(13)を等ピッチで設け、当該貫通穴(13)から冷却空気を供給するようにした。これにより、冷却空気通過時の管路抵抗の変化率を小さくでき、回転軸(1)およびアキシャル磁気軸受ステータ(6)等を効率良く冷却できる。

Description

明 細 書 磁気軸受スピンドル 技術分野
この発明は、 工作機械スピンドル用として使用される磁気軸受スピンドルに関 し、 さらに詳しくは、 冷却空気通過時の管路抵抗の変化率を小さくでき、 回転軸 およびアキシャル磁気軸受ステータ等の発熱源を効率良く冷却できる磁気軸受ス ピンドルに関する。 背景技術
磁気軸受は、 従来から広く用いられている転がり軸受では実現困難な超高速回 転を実現することを主目的として一般に使用される。 工作機械スピンドル用とし て使用される磁気軸受の主目的も同様である。 しかし、 磁気軸受スピンドルは転 がりスピンドルと比較して超高速ィ匕が可能である反面、 電気部品点数が多いため、 スピンドル本体の発熱も大きくなるのが一般的である。 従来の対策としては、 ス ピンドルュニット外部から回転軸内部へ冷却用流体を流通させ、 回転軸を内部か ら直接冷却している。 このような冷却装置は、 たとえば特開平 9— 1 5 0 3 4 5 号公報に開示されている。
しかしながら、 上述の冷却装置は、 比較的低い回転速度域で使用されるスピン ドルュニットでは採用できるが、 超高速回転域で使用されるスピンドルュニット では、 スピンドルュニット外部から回転軸内部へ冷却流体を流通させる機構部の 高速性能や寿命等の限界により使用困難であり、 .磁気軸受スピンドルにてこのよ うな冷却装置を適用すると、 冷却流体を流通させる機構部が破損するという課題 があつに。
この発明は、 上述の課題を解決するためになされたものであって、 簡易な構成 にて発熱源を効率良く冷却でき、 超高速回転域で使用されるスピンドルュニット に適用できる磁気軸受スピンドルを提供することを目的とする。 発明の開示
この発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通過 路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受ス テータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空気 を導入する複数の貫通穴を備え、 かつ、 前記アキシャル磁気軸受ロータの外径部 を三角形状またはそれに相当する形状に形成したことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から流入する冷却空気が、 アキシャル磁気軸受ロータとアキシャ ル磁気軸受ステータの間の空隙を通過する際、 管路抵抗の変化率を小さくするこ とができ、 流路抵抗の急変による損失を軽減することができるため、 回転軸およ びアキシャル磁気軸受ステータを効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドノレは、 筐体は外部と連通す'る冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記ァキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャノレ磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備えたことを 特徴とする。
したがって、 この発明によれば、 アキシャノレ磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から流入する冷却空気の管路抵抗が軽減され、 ュニット内部への 空気の拡散が促されるため、 回転軸のみならず、 前記各ステータもさら 効率良 く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配置さ れたラジアル磁気軸受ステータのコアバック部分と、 前記ァキシャル磁気軸受ス テータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸モー タステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それ ぞれ軸方向の貫通穴を複数備えたことを特徴とする。
したがって、 この発明によれば、 アキシャノレ磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から流入する冷却空気の管路抵抗が軽減され、 ュニット內部への 空気の拡散が促されるため、 回転軸のみならず、 前記各ステータもさらに効率良 く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャノレ磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備えた磁気軸 受スピンドルにおいて、 アキシャル磁気軸受ロータの外径部を三角形状またはそ れに相当する形状に形成したことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から流入する冷却空気の管路抵抗が軽減されるとともに、 アキシ ャノレ磁気軸受ロータの外径部の三角形状またはそれに相当する形状により管路抵 抗の変化率を小さくすることができるため、 回転軸および各ステータもさらに効 率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 前記ァキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気 軸受ステ一タの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷 却空気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配 置されたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャノレ磁気軸 受ステータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸 モータステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それぞれ軸方向の貫通穴を複数備えた磁気軸受スピンドルにおいて、 アキシャル 磁気軸受ロータの外径部を三角形状またはそれに相当する形状に形成したことを 特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から流入する冷却空気の管路抵抗が軽減されるとともに、 アキシ ャル磁気軸受ロータの外径部の三角形状またはそれに相当する形状により管路抵 抗の変化率を小さくすることができるため、 回転軸および各ステータもさらに効 率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドノレは、 寶体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 かつ、 前記アキシャル磁気軸受ロータの外径 部を三角形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータとが嵌 合する回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝の嵌合 部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主軸モ ータロータとを軸方向に隣接して密着するように嵌合させることにより空気通過 路を形成し、 力 、 当該空気通過路の出入口部の少なくとも一方に当該空気通過 路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特徴とす る。
したがって、 この発明によれば、 アキシャノレ磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルユニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却し後、 回転軸に設 けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸が回転し た際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内外部より 効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドノレは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、'前記貫通穴と連通する軸方向の貫通穴を複数備えた磁気軸 受スピンドルにおいて、 ラジアル磁気軸受ロータとアキシャノレ磁気軸受ロータと 主軸モータロータとが嵌合する回転軸の外径部には、 軸方向に延びる溝を複数箇 所に備え、 当該溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気 軸受ロータと前記主軸モータロータとを軸方向に隣接して密着するように嵌合さ せることにより空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なく とも一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィン を備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却し後、 回転軸に設 けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸が回転し た際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内外部より 効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドノレは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配置さ れたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャル磁気軸受ス テータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸モー タステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それ ぞれ軸方向の貫通穴を複.数備えた磁気軸受スピンドルにおいて、 ラジアル磁気軸 受ロータとアキシャル磁気軸受ロータと主軸モータロータとが嵌合する回転軸の 外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝の嵌合部に前記ラジア ル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主軸モータロータとを 軸方向に隣接して密着するように嵌合させることにより空気通過路を形成し、 か つ、 当該空気通過路の出入口部の少なくとも一方に当該空気通過路への冷却空気 の取り込み効率を向上させる螺旋フィンを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ 'ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニッ卜の前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却し後、 回転軸に設 けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸が回転、し た際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内外部より 効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路から.の冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備え、 アキシ ャノレ磁気軸受ロータの外径部を三角形状またはそれに相当する形状に形成した磁 気軸受スピンドルにおいて、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロー タと主軸モータロータとが嵌合する回転軸の外径部には、 軸方向に延びる溝を複 数箇所に備え、 当該溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル 磁気軸受ロータと前記主軸モータロータとを軸方向に隣接して密着するように嵌 合させることにより空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少 なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フ ィンを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却し後、 回転軸に設 けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸が回転し た際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内外部より 効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 前記アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気 軸受ステ一タの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷 却空気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配 置されたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャル磁気軸 受ステータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸 モータステータのコアバック部分とであって、 磁気回路上必要のない ¾5分には、 それぞれ軸方向の貫通穴を複数備え、 アキシャル磁気軸受ロータの外径部を三角 形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 ラジア ノレ磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータとが嵌合する 回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝の嵌合部に前 記ラジアノレ磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主軸モータ口 ータとを軸方向に隣接して密着するように嵌合させることにより空気通過路を形 成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該空気通過路への 冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特徴とする。 したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受口一 '. ャノレ磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却し後、 回転軸に設 けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸が回転し た際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内外部より 効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシヤル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 かつ、 前記アキシャル磁気軸受ロータの外径 部を三角形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータとが嵌 合する回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当該螺旋 溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前 記主軸モータロータとを軸方向に隣接して密着するように嵌合させることにより 空気通過路を形成し、 力つ、 当該空気通過路の出入口部の少なくとも一方に当該 空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを 特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニッ卜の前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過 の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備えた磁気軸 受スピンドルにおいて、 ラジアノレ磁気軸受ロータとアキシャノレ磁気軸受ロータと 主軸モータロータとが嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝を複 数箇所に備え、 当該螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシ ャル磁気軸受ロータと前記主軸モータロータとを軸方向に隣接して密着するよう に嵌合させることにより空気通過路を形成し、 かつ、 当該空気通過路の出入口部 の少なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺 旋フィンを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャノレ磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配置さ れたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャル磁気軸受ス テータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸モー タステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それ ぞれ軸方向の貫通穴を複数備えた磁気軸受スピンドルにおいて、 ラジアル磁気軸 受ロータとアキシャル磁気軸受ロータと主軸モータロータとが嵌合する回転軸の 外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当該螺旋溝の嵌合部に前 記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主軸モータ口 ータとを軸方向に隣接して密着するように嵌合させることにより空気通過路を形 成し、 かつ 当該空気通過路の出入口部の少なくとも一方に当該空気通過路への 冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特敷とする。 したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受口一タの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備え、 アキシ ャル磁気軸受ロータの外径部を三角形状またはそれに相当する形状に形成した磁 気軸受スピンドルにおいて、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロー タと主軸モータロータとが嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝 を複数箇所に備え、 当該螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記ァ キシャル磁気軸受ロータと前記主軸モータロータとを軸方向に隣接して密着する ように嵌合させることにより空気通過路を形成し、 かつ、 当該空気通過路の出入 口部の少なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上させ る螺旋フィンを備えたことを特徴とする。
したがって、 この発明によれば、.アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロー: ャノレ磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 前記アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気 軸受ステ一タの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷 却空気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配 置されたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャル磁気軸 受ステータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸 モータステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それぞれ軸方向の貫通穴を複数備え、 アキシャル磁気軸受ロータの外径部を三角 形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 ラジァ ル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータとが嵌合する 回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当該螺旋溝の嵌 合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主軸 モータロータとを軸方向に隣接して密着するように嵌合させることにより空気通 過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該空気通 過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特徴と する。
したがって、 この発明によれば、 アキシャ /レ磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャノレ磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステ一タの表面を冷却する。 その後、 回 転軸に設けた螺旋フインと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 かつ、 前記アキシャル磁気軸受ロータの外径 部を三角形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転軸と平 行になるように積層することにより切欠き溝を有したラジアル磁気軸受ロータを 形成し、 かつ、 アキシャノレ磁気軸受ロータと主軸モータロータの内径部にも前記 切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記アキシ ャル磁気軸受口一タと前記主軸モータロータの前記各切欠き溝が軸方向に揃うよ うに前記回転軸に嵌合させることにより空気通過路を形成し、 力つ、 当該空気通 過路の出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込み効率 を向上させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴とする。 したがって、 この発明によれば、 アキシャノレ磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸 が回転した際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内 外部より効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドノレは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備えた磁気軸 受スピンドルにおいて、 内径部に複数個の切欠き部を備えたリング状抜板を、 当 該切欠き部が回転軸と平行になるように積層することにより切欠き溝を有したラ ジアル磁気軸受ロータを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モータ ロータの内径部にも前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気 軸受ロータと前記ァキシャル磁気軸受ロータと前記主軸モータロータの前記各切 欠き溝が軸方向に揃うように前記回転軸に嵌合させることにより空気通過路を形' 成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該空気通過路への 冷却空気の取り込み効率を向上させる螺旋フィンを有する螺旋フィンリングを備 えたことを特 ί敷とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸 が回転した際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内 外部より効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャノレ磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配置さ れたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャル磁気軸受ス テータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸モー タステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それ ぞれ軸方向の貫通穴を複数備えた磁気軸受スピンドルにおいて、 内径部に複数個 の切欠き部を備えたリング状抜板を、 当該切欠き部が回転軸と平行になるように 積層することにより切欠き溝を有したラジアル磁気軸受ロータを形成し、 力つ、 アキシャル磁気軸受ロータと主軸モータロータの内径部にも前記切欠き溝と同様 な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受口 ータと前記主軸モータロータの前記各切欠き溝が軸方向に揃うように前記回転軸 に嵌合させることにより空気通過路を形成し、 かつ、 当該空気通過路の出入口部 の少なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺 旋フィンを有する螺旋フィンリングを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸 が回転した際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内 外部より効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備え、 アキシ ャル磁気軸受ロータの外径部を三角形状またはそれに相当する形状に形成した磁 気軸受スピンドルにおいて、 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転軸と平行になるように積層することにより切欠き溝を有した ラジアノレ磁気軸受ロータを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モー タロータの内径部にも前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁 気軸受ロータと前記アキシャル碟気軸受ロータと前記主軸モータロータの前記各 切欠き溝が軸方向に揃うように前記回転軸に嵌合させることにより空気通過路を 形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該空気通過路へ の冷却空気の取り込み効率を向上させる螺旋フィンを有する螺旋フインリングを 備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャノレ磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸 が回転した際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内 外部より効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドノレは、 筐体は外部と連通する冷却空気通 過路を備え、 前記アキシャノレ磁気軸受ロータの近傍に配置されたアキシャノレ磁気 軸受ステ一タの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷 却空気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配 置されたラジアル磁気軸受ステータのコアバック部分と、 前記ァキシャル磁気軸 受ステータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸 モ一タステータのコアバック部分とであって、 磁気回路上必要のない部分には、 それぞれ軸方向の貫通穴を複数備え、 アキシャル磁気軸受ロータの外径部を三角 形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 内径部 に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転軸と平行にな るように積層することにより切欠き溝を有したラジアル磁気軸受ロータを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モータロータの内径部にも前記切欠き溝 と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気 軸受ロータと前記主軸モ一タロータの前記各切欠き溝が軸方向に揃うように前記 回転軸に嵌合させることにより空気通過路を形成し、 力つ、 当該空気通過路の出 入口部の少なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上さ せる螺旋フィンを有する螺旋フィンリングを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャノレ磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 ァキシャル磁気軸受ロー: ャノレ磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた軸方向に延びる空気通過路と螺旋フィンの効果により、 当該回転軸 が回転した際、 当該空気通過路に空気が取り込まれ、 発熱源である各ロータを内 外部より効率良く冷却することができる。
つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 かつ、 前記アキシャル磁気軸受ロータの外径 部を三角形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋溝を形 成するように積層してラジアル磁気軸受ロータを形成し、 かつ、 アキシャル磁気 軸受ロータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を形成し、 前記ラジアノレ磁気軸受ロータと前記アキシャノレ磁気軸受ロータと前記主軸モータ ロータの前記各螺旋溝が軸方向に連続するように前記回転軸に嵌合させることに より空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なぐとも一方に 当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを有する螺 旋フィンリングを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置された ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯.部分であって、 前記アキシャノレ磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備えた磁気軸 受スピンドルにおいて、 内径部に複数個の切欠き部を備えたリング状抜板を、 当 該切欠き部が螺旋溝を形成するように積層してラジアル磁気軸受ロータを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モータロータの内径部にも前記螺旋溝と 同様な螺旋溝を形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受 ロータと前記主軸モータロータの前記各螺旋溝が軸方向に連続するように前記回 転軸に嵌合させることにより空気通過路を形成し、 力つ、 当該空気通過路の出入 口部の少なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上させ る螺旋フィンを有する螺旋フィンリングを備えたことを特徴とする。 ·
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、. アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィ: /と螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステ一タの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配置さ れたラジアル磁気軸受ステータのコアバック部分と、 前記ァキシャル磁気軸受ス テータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸モー タステータのコアバック部分とであって、 磁気回路上必要のない部分に.は、 それ ぞれ軸方向の貫通穴を複数備えた磁気軸受スピンドルにおいて、 内径部に複数個 の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋溝を形成するように積 層してラジアル磁気軸受ロータを形成し、 かつ、 アキシャル磁気軸受ロータと主 軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を形成し、 前記ラジアル 磁気軸受ロータと前記アキシャノレ磁気軸受ロータと前記主軸モータロータの前記 各螺旋溝が軸方向に連続するように前記回転軸に嵌合させることにより空気通過 路を形成し、 力つ、 当該空気通過路の出入口部の少なくとも一方に当該空気通過 路への冷却空気の取り込み効率を向上させる螺旋フィンを有する螺旋フィンリン グを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱 ¾!であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 アキシャル磁気軸受ロータの近傍に配置されたアキシャル磁気軸受 ステータの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷却空 気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極 歯部分であって、 前記アキシャル磁気軸受ロータと対向せず、 かつ、 磁気回路上 必要のない部分には、 前記貫通穴と連通する軸方向の貫通穴を複数備え、 アキシ ャル磁気軸受ロータの外径部を三角形状またはそれに相当する形状に形成した磁 気軸受スピンドルにおいて、 内径部に複数個の切欠き部を備えたリング状抜板を, 当該切欠き部が螺旋溝を形成するように積層してラジアル磁気軸受ロータを形成 し、 力つ、 アキシャル磁気軸受ロータと主軸モータロータの内径部にも前記螺旋 溝と同様な螺旋溝を形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気 軸受ロータと前記主軸モータロータの前記各螺旋溝が軸方向に連続するように前 記回転軸に嵌合させることにより空気通過路を形成し、 かつ、 当該空気通過路の 出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込み効率を向上 させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴とする。
したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャノレ磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フィンと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環でぎる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 つぎの発明にかかる磁気軸受スピンドルは、 筐体は外部と連通する冷却空気通 過路を備え、 前記アキシャル磁気軸受ロータの近傍に配置されたアキシャノレ磁気 軸受ステ一タの軸方向位置決め部材の外径部には、 前記冷却空気通過路からの冷 却空気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配 置されたラジアル磁気軸受ステータのコアバック部分と、 前記アキシャル磁気軸 受ステータの外側磁極歯部分と、 前記主軸モータロータの近傍に配置された主軸 モ一タステータのコアバック部分とであって、 磁気回路上必要のなレ、部分には、 それぞれ軸方向の貫通穴を複数備え、 ァキシャノレ磁気軸受ロータの外径部を三角 形状またはそれに相当する形状に形成した磁気軸受スピンドルにおいて、 内径部 に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋溝を形成する ように積層してラジアル磁気軸受ロータを形成し、 かつ、 アキシャル磁気軸受ロ ータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を形成し、 前記 ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主軸モータロー タの前記各螺旋溝が軸方向に連続するように前記回転軸に嵌合させることにより 空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該 空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを有する螺旋フ インリングを備えたことを特徴とする。 したがって、 この発明によれば、 アキシャル磁気軸受ステ一タの軸方向位置決 め部材の貫通穴から供給された冷却空気は、 アキシャル磁気軸受ロータとアキシ ャル磁気軸受ステータの間の空隙を通過して、 スピンドルュニットの前方側と後 方側に分離し、 各ロータの外径表面と各ステータの表面を冷却する。 その後、 回 転軸に設けた螺旋フインと螺旋形状の空気通過路の効果により、 回転軸が回転し た際、 冷却空気は回転軸内部を軸方向に移動するとともに周方向にも循環できる ため、 発熱源であるロータをさらに効率良く内外部より冷却することができる。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1にかかる磁気軸受スピンドルュニットの全 体構成を示す断面図、 第 2図は、 アキシャル磁気軸受ステ一タの軸方向位置決め 用のカラーのみを示す正面図 (1 ) および正面図 (1 ) における A— A断面を示 す断面図 (2 ) 、 第 3図は、 この発明の実施の形態 2にかかる磁気軸受スピンド ルユニットの全体構成を示す断面図、 第 4図は、 アキシャル磁気軸受ステータを 示す正面図 (1 ) およびこの正面図 (1 ) における B— B断面を示す断面図 (2 ) 、 第 5図は、 この発明の実施の形態 3にかかる磁気軸受スピンドルュニットの 全体構成を示す断面図、 第 6図は、 この発明の実施の形態 4にかかる磁気軸受ス ピンドルユニットの全体構成を示す断面図、 第 7図は、 この発明の実施の形態 5 にかかる磁気軸受スピンドルュニットの全体構成を示す断面図、 第 8図は、 第 7 図に示した回転軸をフロントラジアル磁気軸受ロータの前方側より見た斜視図、 第 9図は、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロータおよび主軸モー タロータを嵌合させる前の回転軸の状態を示す斜視図、 第 1 0図は、 .各ロータが 嵌合する部分で切断した回転軸を示す断面図、 第 1 1図は、 この発明の実施の形 態 6にかかる磁気軸受スピンドルュニットの全体構成を示す断面図、 第 1 2図は、 ラジアノレ磁気軸受ロータとアキシャル磁気軸受ロータおょぴ主軸モ一タロータを 嵌合させる前の回転軸の状態を示す斜視図、 第 1 3図は、 この発明の実施の形態 7にかかる磁気軸受スピンドルュニットの要部の構成を示す断面図、 第 1 4図は、 内径部に切欠き部を備えたリング状抜板を示す正面図、 第 1 5図は、 内径部に軸 方向の切欠き溝を形成したラジアル磁気軸受ロータを示す斜視図、 第 1 6図は、 この発明の実施の形態 8にかかる磁気軸受スピンドルュニットの要部の構成を示 す断面図、 第 1 7図は、 内径部に螺旋溝を形成したラジアル磁気軸受ロータを示 す斜視図である。 発明を実施するための最良の形態 , 本発明をより詳細に説述するために、 添付の図面にしたがつてこれを説明する c 実施の形態 1 .
まず、 本発明にかかる実施の形態 1について説明する。 第 1図は、 この発明の 実施の形態 1にかかる磁気軸受スピンドルュニットの全体構成を示す断面図であ る。 同図に示すように、 磁気軸受スピンドルは、 回転軸 1に、 リング状の電磁鋼 板を積層して形成したラジアル磁気軸受ロータ 2と、 磁性材からなるアキシャル 磁気軸受ロータ 3と、 主軸モータロータ 4とを嵌合して製作されている。 ラジア ノレ磁気軸受ロータ 2は、 フロントラジァノレ磁気軸受ロータ 2 aと、 リアラジアル 磁気軸受ロータ 2 bと力 ら構成されており、 以下の図中には当該各ロータ 2 a , 2 bの符号のみを表示してある。
アキシャル磁気軸受ロータ 3の外径部は、 三角形状部 1 1として形成している c これは、 後述するように外部から流入した冷却空気が、 アキシャル磁気軸受ロー タ 3と、 後述するアキシャル磁気軸受ステータ 6との間の空隙を通過する際に、 その管路抵抗の変化率を小さくし、 かつ、 渦流の発生を抑制するために、 冷却空 気がスムーズに当該空隙部を通過することができるようにするとともに、 冷却空 気が負荷側方向と反負荷側方向に均等に分力れて通過することができるように設 けたものである。 したがって、 このような効果を奏するものであれば、 アキシャ ノレ磁気軸受ロータ 3の外径部の形状は三角形状に限定されず、 三角形状に相当す る形状 (たとえば、 三角形状部 1 1の頂部を尖らせずに若干の平坦部や丸みをも たせた形状等) であってもよい。 ラジアノレ磁気軸受ロータ 2の外径部の半径方向には、 適当な微小間隔 (通常 0 5〜1 . O mm程度) をあけて、 4個の電磁石からなるラジアノレ磁気軸受ステ一 タ 5が配置されている。 このラジアル磁気軸受ステータ 5は、 フロントラジアル 磁気軸受ステータ 5 aとリアラジアル磁気軸受ステータ 5 bとから構成され、 そ れぞれフロントラジアル磁気軸受ロータ 2 aとリアラジアル磁気軸受ロータ 2 b に対応するように配置されている。
また、 アキシャル磁気軸受ロータ 3の近傍においては、 1対のリング状電磁石 からなり外側磁極歯 1 0およびコイル 2 7を有するアキシャル磁気軸受ステータ 6 (負荷側アキシャル磁気軸受ステータ 6 a , 反負荷側アキシャル磁気軸受ステ ータ 6 b ) 力 S、 軸方向に適当な微小間隔 (通常 5〜1 . 0 mm程度) をあけ て、 アキシャノレ磁気軸受ロータ 3を挟み込むように配置されている。 このアキシ ャル磁気軸受ステータ 6 a , 6 bは、 リング状のカラー 1 2によって軸方向の位 置決めがなされている。
また、 主軸モータロータ 4の近傍においては、 回転軸 1を回転駆動するための 主軸モータステータ 7が、 主軸モータロータ 4の外径部から半径方向に適当な微 小間隔を設けて配置されている。 ラジアル磁気軸受ステータ 5と主軸モータステ ータ 7の外径部には、 ステータ冷却用のオイルジャケット 8 , 9が取り付けられ ている。 なお、 オイルジャケット 8は、 フロントラジアノレ磁気軸受ステータ 5 a 冷却用のオイルジャケット 8 aと、 リァラジアル磁気軸受ステータ 5 b冷却用の オイルジャケット 8 bとから構成されている。
回転軸 1とラジアル磁気軸受ステータ 5とアキシャル磁気軸受ステータ 6と主 軸モータステータ 7とは、 フレーム 1 5に収められている。 また、 このフレーム 1 5には、 負荷側ブラケット 1 6と反負荷側ブラケット 1 7とが取り付けられて いる。 負荷側ブラケット 1 6および反負荷側ブラケット 1 7には、 それぞれ磁気 軸受制御用の非接触変位センサ 2 0力 回転軸 1とある適当な微小間隔 (通常 0 5 mm程度) をあけて取り付けられている。 また、 緊急時のユニット破損回避の ための保護ベアリング (タツチダウンベアリングとも言う) 1 9が、 回転軸 1と ある適当な微小間隔 (通常 2 mm程度) をあけて取り付けられている。 この 保護ベアリング 1 9は、 負荷側保護ベアリング 1 9 aと反負荷側保護ベアリング 1 9 bとから構成されている。 負荷側保護ベアリング 1 9 aは、 取付蓋 1 8およ び特殊ナツト 2 1によって負荷側ブラケット 1 6に固定されている。
回転軸 1の径方向および軸方向位置は、 非接触変位センサ 2 0によって測定さ れるようになっており、 回転軸 1の前後部にそれぞれフロント変位センサ 2 0 a とリア変位センサ 2 0 bが配設されている。 そして、 この非接触変位センサ 2 0 の出力信号に基づいて、 ラジアル磁気軸受ステータ 5とラジアル磁気軸受ロータ 2との空隙部、 およびアキシャル磁気軸受ステータ 6とアキシャル磁気軸受ロー タ 3との空隙部に適当な磁気吸引力を発生させ、 回転軸 1を各ステータ 5 , 6 , 7と離隔した目標位置に非接触で支承し、 この非接触状態で主軸モータステータ 7に適当な電圧を印加することにより、 回転軸 1の超高速回転 (7 0 0 0 0 r Z m i n程度以上) を実現している。 なお、 回転軸 1の回転数は、 エンコーダ用歯 車 2 2およびエンコーダへッド 2 3により検出するようになっている。
また、 第 2図は、 アキシャル磁気軸受ステータ 6 a , 6 bの軸方向位置決め用 のリング状カラー 1 2のみを取り出して示したものであり、 正面図 (1 ) および 正面図 (1 ) における A _ A断面を示す断面図 (2 ) である。 同図に示すように 当該カラー 1 2の外径部には、 半径方向に向かって均等に複数の貫通穴 1 3が設 けられている。 また、 この貫通穴 1 3から冷却空気を流入するために、 第 1図に 示すように、 フレーム 1 5に空気通過路 2 5が設けられているとともに、 反負荷 側ブラケット 1 7に冷却空気供給口 2 4が設けられている。 なお、 第 1図中に示 した矢印は、 冷却空気の流れを示す空気通過方向 1 4である。
この構造によれば、 反負荷側ブラケット 1 7の冷却空気供給口 2 4から供給さ れた冷却空気は、 フレーム 1 5内部の空気通過路 2 5を通過し、 カラー 1 2部分 力 らスピンドルユニット内部へ流入する。 このカラ一 1 2には、 その外径部に半 径方向に向かって均等に複数の貫通穴 1 3が設けられているため、 アキシャル磁 気軸受ロータ 3の外径部の複数箇所から均等に冷却空気が流入する。 さらに、 アキシャル磁気軸受ロータ 3の外径部は三角形状部 1 1となっている ため、 流入した冷却空気がアキシャル磁気軸受ロータ 3とアキシャル磁気軸受ス テータ 6の間の空隙を通過する際に、 その管路抵抗の変化率を小さくすることが でき、 かつ、 渦流の発生を抑制できるため、 冷却空気がスムーズに当該空隙部を 通過することができるとともに、 冷却空気が負荷側方向と反負荷側方向に均等に 分かれて通過することができる。
また、 アキシャノレ磁気軸受ステータ 6は、 軸方向の厚み寸法が比較的小さいた め (通常 1 0〜 2 0 mm程度) 、 当該アキシャル磁気軸受ステータ 6の外径部に 従来のような冷却用ジャケットを設けて冷却することは困難であるが、 本発明に よれば、 当該空隙を冷却空気が通過することにより当該アキシャノレ磁気軸受ステ ータ 6を容易に冷却することができる。
負荷側方向へ流れる冷却空気は、 フロント.ラジアル磁気軸受ロータ 2 aとフロ ントラジアル磁気軸受ステータ 5 aの間の空隙を通り、 当該フロントラジァノレ磁 気軸受ロータ 2 aと当該フロントラジアル磁気軸受ステータ 5 aとを直接冷却し た後、 回転軸 1と負荷側保護ベアリング 1 9 aの間の空隙を通過し、 外界雰囲気 中へ流出する。
また、 反負荷側方向へ流れる冷却空気は、 主軸モータロータ 4と主軸モータス テータ 7の間の空隙、 およびリアラジアノレ磁気軸受ロータ 2 bとリアラジアノレ磁 気軸受ステータ 5 bの間の空隙を通り、 当該ロータ 4 , 2 bおよび当該ステータ 7 , 5 bを直接冷却した後、 回転軸 1と反負荷側保護ベアリング 1 9 bの間の空 隙を通過し、 外界雰囲気中へ流出する。
したがって、 この実施の形態 1にかかる磁気軸受スピンドルによれば、 冷却媒 体を別の機械的機構により取り込む必要がなく、 空冷にて回転軸 1および各ステ ータ 5 , 6 , 7を冷却することがでぎ、 さらにステータ 5 , 7は、 オイルジャケ ッ ト 8, 9による液冷も併用できるため、 超高速駆動回転する磁気軸受スピンド ルに適用可能であり、 構成も簡易化できる。
実施の形態 2 . つぎに、 本発明にかかる実施の形態 2について説明する。 第 3図は、 この発明 の実施の形態 2にかかる磁気軸受スピンドルュニットの全体構成を示す断面図、 第 4図は、 アキシャル磁気軸受ステータを示す正面図 (1 ) およびこの正面図 ( 1 ) における B— B断面を示す断面図 (2 ) である。 なお、 以下の説明において、 すでに説明した部材と同一もしくは相当する部材には、 同一の符号を付して重複 説明を省略または簡略化する。
第 3図において、 アキシャル磁気軸受ステータ 6のカラー 1 2の外径部には、 半径方向に向かって均等に複数の貫通穴 1 3が設けられているとともに、 当該貫 通穴 1 3から冷却空気が流入できるように、 フレーム 1 5に空気通過路 2 5が設 けられ、 反負荷側ブラケット 1 7に冷却空気供給口 2 4が設けられている。 さら に、 第 4図に示すように、 アキシャル磁気軸受ステータ 6の外側磁極歯 1 0部分 であって、 アキシャル磁気軸受ロータ 3と対向せず、 かつ、 磁気回路上必要のな い部分には、 軸方向の貫通穴 2 6が複数箇所に等ピッチで設けられている。
この構造によれば、 反負荷側ブラケット 1 7の冷却空気供給口 2 4から供給さ れた冷却空気は、 フレーム 1 5内部の空気通過路 2 5を通過し、 アキシャル磁気 軸受ステータ 6のカラー 1 2部分からスピンドルュニッ ト内部へ流入する。 当該 カラー 1 2には、 外径部に半径方向に向かって複数箇の貫通穴 1 3が設けられて いるため、 アキシャル磁気軸受ロータ 3の外径部の複数箇所から均等に冷却空気 が流入する。
さらに、 アキシャル磁気軸受ステータ 6の外側磁極歯 1 0部に複数個の貫通穴 2 6が設けられているため、 管路抵抗が低減され、 冷却空気は負荷側方向と反負 荷側方向にほぼ均等に当該貫通穴 2 6を通過するとともに、 一部の冷却空気はァ キシャル磁気軸受ロータ 3とアキシャノレ磁気軸受ステータ 6の間の空隙を通過す る。 これにより、 アキシャル磁気軸受ステータ 6は、 冷却空気によって軸方向の 両面から効率良く冷却される。
また、 負荷側方向へ流れる冷却空気は、 フロントラジアル磁気軸受ロータ 2 a とフロントラジアル磁気軸受ステータ 5 aの間の空隙を通り、 当該ロータ 2 aと 当該ステータ 5 aを直接冷却した後、 回転軸 1と負荷側保護ベアリング 1 9 aの 間の空隙を通過し、 外界雰囲気中へ流出する。 一方、 反負荷側方向へ流れる冷却 空気は、 主軸モータロータ 4と主軸モータステータ 7の間の空隙およびリアラジ ァノレ磁気軸受ロータ 2 bとリァラジアル磁気軸受ステータ 5 bの間の空隙を通過 し、 当該ロータ 4 , 2 bおよび当該ステータ 7 , 5 bを直接冷却した後、 回転軸 1と反負荷側保護ベアリング 1 9 bの間の空隙を通過し、 外界雰囲気中へ流出す る。
したがって、 この実施の形態 2にかかる磁気軸受スピンドルによれば、 冷却媒 ' 体を別の機械的機構により取り込む必要がなく、 空冷にて回転軸 1および各ステ ータ 5, 6 , 7を冷却することができ、 さらにステータ 5 , 7は、 オイルジャケ ット 8 , 9による液冷も併用できるため、 超高速駆動回転する磁気軸受スピンド ルに適用可能であり、 構成も簡易化できる。
実施の形態 3 .
つぎに、 本発明にかかる実施の形態 3について説明する。 第 5図は、 この発明 の実施の形態 3にかかる磁気軸受スピンドルュニットの全体構成を示す断面図で ある。 第 5図において、 アキシャノレ磁気軸受ステータ 6のカラー 1 2の外径部に は、 半径方向に向かって均等に複数の貫通穴 1 3が設けられているとともに、 当 該貫通穴 1 3から冷却空気が流入できるように、 フレーム 1 5に空気通過路 2 5 が設けられ、 反負荷側ブラケット 1 7に冷却空気供給口 2 4が設けられている。 さらに、 ラジアノレ磁気軸受ステータ 5のコアパック 2 8、 アキシャノレ磁気軸受 'ステータ 6の外側磁極歯 1 0および主軸モータステータ 7のコアバック 2 9であ つて、 磁気回路上必要のない部分には、 軸方向の貫通穴 3 0 , 2 6, 3 1が複数 箇所に等ピッチで設け,られている。 なお、 第 5図では、 上記コアバック 2 8は、 フロントラジアル磁気軸受ステータ 5 aのコアバック 2 8 a、 およびリアラジア ル磁気軸受ステータ 5 bのコアバック 2 8 bとして表示してある。 また、 貫通穴 3〇は、 コアバック 2 8 aの軸方向に設けた貫通穴 3 0 a、 およびコアバック 2 8 bの軸方向に設けた貫通穴 3 0 bとして表示してある。 この構造によれば、 反負荷側ブラケット 1 7の冷却空気供給口 2 4から供給さ れた冷却空気は、 フレーム 1 5内部の空気通過路 2 5を通過し、 アキシャノレ磁気 軸受ステータ 6のカラー 1 2部分からスピンドルユニット内部へ流入する。 当該 カラー 1 2には、 外径部に半径方向に向かって複数箇の貫通穴 1 3が設けられて いるため、 アキシャル磁気軸受ロータ 3の外径部の複数箇所から均等に冷却空気 が流入する。
さらに、 アキシャル磁気軸受ステータ 6の外側磁極歯 1 0部に複数個の貫通穴 2 6が設けられているため、 管路抵抗が低減され、 冷却空気は負荷側方向と反負 荷側方向にほぼ均等に当該貫通穴 2 6を通過するとともに、 一部の冷却空気はァ キシャル磁気軸受ロータ 3とアキシャル磁気軸受ステータ 6の間の空隙を通過す る。 これにより、 アキシャノレ磁気軸受ステータ 6は、 冷却空気によって軸方向の 両面から効率良く冷却される。
また、 負荷側方向へ流れる冷却空気は、 フロントラジアル磁気軸受ステータ 5 aのコアバック 2 8 aに設けられた草通穴 3 0 a、 およびフロントラジアル磁気 軸受ロータ 2 aとフロントラジアル磁気軸受ステータ 5 aの間の空隙を通り、 当 該ロータ 2 aと当該ステータ 5 aを直接冷却した後、 回転軸 1と負荷側保護ベア リング 1 9 aの間の空隙を通過し、 外界雰囲気中へ流出する。
一方、 反負荷側方向へ流れる冷却空気は、 主軸モータステータ 7のコアバック 2 9とリアラジアノレ磁気軸受ステータ 5 bのコアバック 2 8 bに設けられた貫通 穴 3 1 , 3 0 b、 および主軸モータロータ 4と主軸モータステータ 7の間の空隙、 ならびにリアラジアル磁気軸受ロータ 2 bとリァラジアル磁気軸受ステータ 5 b の間の空隙を通過し、 当該ロータ 4, 2 b、 および当該ステータ 7 , 5 bを直接 冷却した後、 回転軸 1と反負荷側保護ベアリング 1 9 bの間の空隙を通過し、 外 界雰囲気中へ流出する。
したがって、 この実施の形態 3にかかる磁気軸受スピンドルによれば、 冷却媒 体を別の機械的機構により取り込む必要がなく、 空冷にて回転軸 1および各ステ ータ 5 , 6 , 7を冷却することができ、 さらにステータ 5 , 7は、 オイルジャケ ット 8, 9による液冷も併用できるため、 超高速駆動回転する磁気軸受スピンド ルに適用可能であり、 構成も簡易化できる。
実施の形態 4 .
つぎに、 本発明にかかる実施の形態 4について説明する。 第 6図は、 この発明 の実施の形態 4にかかる磁気軸受スピンドルュニットの全体構成を示す断面図で ある。 第 6図において、 アキシャノレ磁気軸受ステータ 6のカラー 1 2の外径部に は、 半径方向に向かって均等に複数の貫通穴 1 3が設けられているとともに、 当 該貫通穴 1 3から冷却空気が流入できるように、 フレーム 1 5に空気通過路 2 5 が設けられ、 反負荷側ブラケット 1 7に冷却空気供給口 2 4が設けられている。 また、 アキシャル磁気軸受ロータ 3の外径部は、 三角形状部 1 1となっており ラジアル磁気軸受ステータ 5のコアバック 2 8、 アキシャル磁気軸受ステータ 6 の外側磁極歯 1 0および主軸モータステータ 7のコアバック 2 9であって、 磁気 回路上必要のない部分には、 軸方向の貫通穴.3 0, 2 6 , 3 1が複数箇所に等ピ ツチで設けられている。
この構造によれば、 反負荷側ブラケット 1 7の冷却空気供給口 2 4から供給さ れた冷却空気は、 フレーム 1 5内部の空気通過路 2 5を通過し、 アキシャル磁気 軸受ステータ 6のカラー 1 2部分からスピンドルユニット内部へ流入する。 当該 カラー 1 2には、 外径部に半径方向に向かって複数箇の貫通穴 1 3が設けられて いるため、 アキシャル磁気軸受ロータ 3の外径部の複数箇所から均等に冷却空気 が流入する。
さらに、 アキシャル磁気軸受ロータ 3の外径部が三角形状部 1 1として形成さ れているため、 流入した空気はスムーズに負荷側方向と反負荷側方向に分かれて 通過することができるとともに、 渦流の発生を抑制でき、 アキシャル磁気軸受ロ ータ 3とアキシャノレ磁気軸受ステータ 6の間の空隙を通過する一部の冷却空気に 対して、 管路抵抗の変化率を小さくすることができる。
負荷側方向と反負荷側方向へ分かれた冷却空気の一部は、 アキシャル磁気軸受 ステータ 6のコアパック側に流れるため、 アキシャル磁気軸受ステータ 6は、 冷 却空気によって軸方向の両面から効率良く冷却される。
また、 負荷側方向へ流れる冷却空気は、 フロントラジアル磁気軸受ステータ 5 aのコアバック 2 8 aに設けられた貫通穴 3 0 a、 およびフロントラジアノレ磁気 軸受ロータ 2 aとフロントラジアル磁気軸受ステータ 5 aの間の空隙を通り、 当 該フロントラジアル磁気軸受ロータ 2 aと当該フロントラジアル磁気軸受ステ一 タ 5 aを直接冷却した後、 回転軸 1と負荷側保護ベアリング 1 9 aの間の空隙を 通過し、 外界雰囲気中へ流出する。
一方、 反負荷側方向へ流れる冷却空気は、 主軸モータステータ 7のコアバック 2 9とリアラジアノレ磁気軸受ステータ 5 bのコアバック 2 8 bに設けられた貫通 穴 3 1 , 3 0 b、 および主軸モータロータ 4と主軸モータステータ 7の間の空隙、 ならびにリアラジアル磁気軸受ロータ 2 bとリアラジアル磁気軸受ステータ 5 b の間の空隙を通過し、 当該ロータ 4, 2 b、 および当該ステータ 7 , 5 bを直接 冷却した後、 回転軸 1と反負荷側保護ベアリング 1 9 bの間の空隙を通過し、 外 界雰囲気中へ流出する。
したがって、 この実施の形態 4にかかる磁気軸受スピンドルによれば、 冷却媒 体を別の機械的機構により取り込む必要がなく、 空冷にて回転軸 1および各ステ ータ 5, 6 , 7を冷却することができ、 さらにステータ 5, 7は、 オイノレジャケ ット 8 , 9による液冷も併用できるため、 超高速駆動回転する磁気軸受スピンド ルに適用可能であり、 構成も簡易化できる。
実施の形態 5 .
つぎに、 本発明にかかる実施の形態 5について説明する。 第 7図は、 この発明 の実施の形態 5にかかる磁気軸受スピンドルュニットの全体構成を示す断面図で あり、 この第 7図に示した回転軸 1は、 上記実施の形態 1における第 1図に示し た回転軸 1と形状が異なっている。 第 8図は、 第 7図に示した回転軸 1をフロン トラジアル磁気軸受ロータ 2 aの前方側より見た斜視図である。 第 9図は、 第 8 図におい'て、 ラジアル磁気軸受ロータ 2、 アキシャル磁気軸受ロータ 3および主 軸モータロータ 4を嵌合させる前の回転軸 1の状態を示す斜視図である。 第 1 0 図は、 各ロータ 2, 3 , 4が嵌合する部分で切断した回転軸 1を示す断面図であ ' る。
第 8図に示すように、 回転軸 1の外径部において、 ラジアノレ磁気軸受ロータ 2、 アキシャル磁気軸受ロータ 3および主軸モータロータ 4が嵌合する嵌合部 3 6に. 軸方向に延びる溝 3 2が数箇所に形成されている。 この回転軸 1に、 ラジアル磁 気軸受ロータ 2、 アキシャル磁気軸受ロータ 3および主軸モータロータ 4を、 軸 方向にそれぞれ隣同士が密着するように嵌合することにより、 回転軸 1内部に空 気通過路 3 3を形成している (第 7図参照) 。
また、 空気通過路 3 3のスピンドル前方側に当該空気通過路 3 3と同個数の螺 旋フィン 3 4を回転軸 1と一体で形成し、 主軸モータロータ 4が正転方向 3 5に 回転した際に、 空気通過路 3 3の入口に空気を取り込む方向に螺旋フィン 3 4の 螺旋方向を決め、 かつ、 それぞれの螺旋フイン 3 4の回転軸 1側の終端部を溝 3 2の凸部に合わせて構成している。
この構造によれば、 反負荷側ブラケット 1 7の冷却空気供給口 2 4から供給さ れた冷却空気は、 フレーム 1 5内部の空気通過路 2 5を通過し、 アキシャル磁気 軸受ステータ 6のカラー 1 2部分からスピンドルユニット内部へ流入する。 流入 した冷却空気は、 負荷側方向と反負荷側方向にほぼ均等に分かれる。
回転軸 1の静止時には、 負荷側方向に流れる冷却空気は、 フロント変位センサ 2 0 a部の空隙および負荷側保護ベアリング 1 9 a部の空隙を経て、 外界雰囲気 中へ流出する。 反負荷側方向へ流れる冷却空気も同様に、 リア変位センサ 2 O b 部の空隙および反負荷側保護保護ベアリング 1 9 b部の空隙を経て、 外界雰囲気 中へ流出する。
回転軸 1が主軸モータロータ 4により正転方向 3 5に回転駆動した場合には、 負荷側方向へ流れる冷却空気は、 螺旋フイン 3 4により回転軸 1内部の空気通過 路 3 3に取り込まれ、 通過路 3 3に流入した空気は、 回転軸 1内部を冷却した後、 スピンドルュニット後方へ排出され、 外界雰囲気中へ流出する。
したがって、 この実施の形態 5にかかる磁気軸受スピンドルによれば、 冷却媒 体を別の機械的機構により、 回転駆動する回転軸 1内部に取り込む必要がなく、 空冷にて回転軸 1を内部より冷却することができるため、 超高速駆動回転する磁 気軸受スピンドルに適用可能であり、 構成も簡易化できる。
実施の形態 6 .
つぎに、 本発明にかかる実施の形態 6について説明する。 第 1 1図は、 この発 明の実施の形態 6にかかる磁気軸受スピンドルュニッ卜の全体構成を示す断面図 であり、 この第 1 1図に示した回転軸 1は、 上記実施の形態 5における第 7図に 示した回転軸 1と形状が異なっている。 第 1 2図は、 第 1 1図において、 ラジア ノレ磁気軸受ロータ 2、 アキシャル磁気軸受ロータ 3および主軸モータロータ 4を 嵌合させる前の回転軸 1の状態を示す斜視図である。
上記実施の形態 5において示した第 9図では、 空気通過路 3 3の形態は、 軸方 向に延びる長溝状の溝 3 2であったが、 本実施の形態 6において示す第 1 2図で は、 多条の螺旋溝 3 7を形成してある。
この構造によれば、 反負荷側ブラケット 1 7の冷却空気供給口 2 4から供給さ れた冷却空気は、 フレーム 1 5内部の空気通過路 2 5を通過し、 アキシャル磁気 軸受ステータ 6のカラー 1 2部分からスピンドルユニット内部へ流入する。 流入 した冷却空気は、 負荷側方向と反負荷側方向にほぼ均等に分かれる。
回転軸 1の静止時には、 負荷側方向に流れる冷却空気は、 フロント変位センサ 2 0 a部の空隙および負荷側保護ベアリング 1 9 a部の空隙を経て、 外界雰囲気 中へ流出する。 反負荷側方向へ流れる冷却空気も同様に、 リア変位センサ 2 O b 部の空隙および反負荷側保護保護ベアリング 1 9 b部の空隙を経て、 外界雰囲気 中へ流出する。
回転軸 1が主軸モータロータ 4により正転方向 3 5に回転駆動した場合には、 負荷側方向へ流れる冷却空気は、 螺旋フイン 3 4により回転軸 1内部の空気通過 路 3 3に取り込まれる。 回転軸 1内部に取り込まれた冷却空気は、 回転軸 1内部 を軸方向に移動するとともに、 周方向にも循環して、 回転軸 1内部を冷却した後、 スピンドルュニット後方へ排出され、 外界雰囲気中へ流出する。 したがって、 この実施の形態 6'にかかる磁気軸受スピンドルによれば、 冷却媒 体を別の機械的機構により、 回転駆動する回転軸 1内部に取り込む必要がなく、 空冷にて回転軸 1を内部より冷却することができるため、 超高速駆動回転する磁 気軸受スピンドルに適用可能であり、 構成も簡易化できる。
実施の形態 7 .
つぎに、 本発明にかかる実施の形態 7について説明する。 第 1 3図は、 この発 明の実施の形態 7にかかる磁気軸受スピンドルュニットの要部の構成を示す断面 図、 第 1 4図は、 内径部に切欠き部を備えたリング状抜板を示す正面図、 第 1 5 図は、 内径部に軸方向の切欠き溝を形成したラジアル磁気軸受ロータを示す斜視 図である。
本実施の形態 7においては、 上記実施の形態 5 (第 7図参照) に対して回転軸 1の構成のみが異なっている。 このため、 第 1 3図においては、 回転体のみを取 り出して図示している。 回転体以外の構成については、 上記実施の形態 5に示し た第 7図の構成と同様である。
すなわち、 上記実施の形態 5における第 7図では、 回転軸 1の外径部に予め軸 方向に延びる溝 3 2を形成し、 嵌合部 3 6にラジアル磁気軸受ロータ 2、 アキシ ャノレ磁気軸受ロータ 3および主軸モータロータ 4を軸方向にそれぞれが隣り合わ せに密着するように嵌合させることにより、 空気逋過路 3 3を形成していた。 これに対し、 本実施の形態 7における第 1 3図では、 第 1 4図に示すように、 内径部に複数個の切欠き部 3 8を備えたリング状抜板 3 9を製作し、 当該リング 状抜板 3 9を切欠き部 3 8が回転軸 1と平行になるように積層することで、 第 1 5図に示すようなラジアル磁気軸受ロータ 2を形成する。 そしてさらに、 アキシ ャノレ磁気軸受ロータ 3と主軸モータロータ 4の内径部にも同様な手法で切欠き溝 4 0を形成して、 それぞれのロータ 3, 4内径部の切欠き溝 4 0が軸方向に揃う ように回転軸 1に嵌合させることにより、 空気通過路 3 3を形成している。 また 螺旋フィン 3 4を有する螺旋フィンリング 4 1を、 空気通過路 3 3の入口付近に 嵌合させている。 その結果、 空気通過路 3 3の形状としては、 第 7図に示したも のと同等となる。
この構造によれば、 上記実施の形態 5 (第 7図参照) の場合と同様な効果が得 ¾れるとともに、 回転軸 1の複雑な溝力卩ェを省くことができるため、 製作工程が 簡易化される。
実施の形態 8 .
つぎに、 本発明にかかる実施の形態 8について説明する。 第 1 6図は、 この発 明の実施の形態 8にかかる磁気軸受スピンドルュニットの要部の構成を示す断面 図、 第 1 7図は、 内径部に螺旋溝を形成したラジアル磁気軸受ロータを示す斜視 図である。 '本実施の形態 8においては、 上記実施の形態 6 (第 1 1図参照) に対 して回転軸 1の構成のみが異なっている。 このため、 第 1 6図においては、 回転 体のみを取り出して図示している。 回転体以外の構成については、 上記実施の形 態 6に示した第 1 1図の構成と同様である。
すなわち、 上記実施の形態 6における第 1 1図では、 回転軸 1の外径部に予め 軸方向に延びる螺旋溝 3 7を形成し、 嵌合部 3 6にラジアル磁気軸受ロータ 2、 アキシャノレ磁気軸受ロータ 3および主軸モータロータ 4を軸方向にそれぞれが隣 り合わせに密着するように嵌合させることにより、 空気通過路 3 3を形成してい た。
これに対し、 本実施の形態 8における第 1 6図では、 第 1 7図に示すように、 内径部に複数個の切欠き部 3 8を備えたリング状抜板 3 9を製作し、 当該リング 状抜板 3 9を切欠き部 3 8が軸方向に螺旋溝 4 2を形成するように積層してラジ ァノレ磁気軸受ロータ 2を形成する。 そしてさらに、 アキシャル磁気軸受ロータ 3 と主軸モータロータ 4の内径部にも同様な手法で螺旋溝 4 2を形成し、 ラジアル 磁気軸受ロータ 2、 アキシャル磁気軸受ロータ 3および主軸モータロータ 4それ ぞれの内径部の螺旋溝 4 2が軸方向に連続するように回転軸 1に嵌合させること により空気通過路 3 3を形成している。 また、 螺旋フィン 3 4を有する螺旋フィ ンリング 4 1を、 空気通過路 3 3の入口付近に嵌合させている。 その結果、 空気 通過路 3 3の形状としては、 第 1 1図に示したものと向等となる。 この構造によれば、 上記実施の形態 6 (第.1 1図参照) の場合と同様な効果が 得られるとともに、 回転軸 1の複雑な溝加工を省くことができるため、 製作工程 が簡易化される。
以上のように、 本発明の実施の形態として、 実施の形態 1〜 8を例にして説明 したが、 本発明はこれに限定されるものではなく、 たとえば上記各実施の形態を 任意に組み合わせて実施することもできる。 . 産業上の利用可能性
以上のように、 この発明にかかる磁気軸受スピンドルは、 簡易な構成にて発熱 源を効率良く冷却できるので、 超高速回転域で使用される工作機械のスピンドル ユニットに適している。

Claims

請 求 の 範 囲
1 . 少なくとも、 ラジァノレ磁気軸受ロータとアキシャル磁気軸受ロータと主軸モ ータロータとが固着され回転自在に保持された回転軸と、 当該回転軸の回りに微 小間隔をあけて配置された複数の電磁石と、 これらを収納する筐体とを備えた磁 気軸受スピンドルにおいて、 '
前記筐体は外部と連通する冷却空気通過路を備え、 前記アキシャル磁気軸受口 ータの近傍に配置されたアキシャル磁気軸受ステ一タの軸方向位置決め部材の外 径部には、 前記冷却空気通過路からの冷却空気を導入する複数の貫通穴を備え、 かつ、 前記アキシャル磁気軸受ロータの外径部を三角形状またはそれに相当する 形状に形成したことを特徴とする磁気軸受スピンドル。
2 . ラジァノレ磁気軸受ロータとアキシャノレ磁気軸受ロータと主軸モータロータと が嵌合する回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝の 嵌合部に前記ラジアル磁気軸受ロータと前記アキシャノレ磁気軸受ロータと前記主 軸モータロータとを軸方向に隣接して密着するように嵌合させることにより空気 通過路を形成し、 力つ、 当該空気通過路の出入口部の少なくとも一方に当該空気 通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特徴 とする請求の範囲第 1項に記載の磁気軸受スピンドル。
3 . ラジァノレ磁気軸受ロータとアキシャノレ磁気軸受ロータと主軸モータロータと が嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当該 螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータ と前記主軸モータロータとを軸方向に隣接して密着するように嵌合させることに より空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に 当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたこ とを特徴とする請求の範囲第 1項に記載の磁気軸受スピンドル。
4 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転軸 と平行になるように積層することにより切欠き溝を有したラジアノレ磁気軸受ロー タを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モータロータの内径部にも 前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記ァ キシャル磁気軸受ロータと前記主軸モータロータの前記各切欠き溝が軸方向に揃 うように前記回転軸に嵌合させることにより空気通過路を形成し、 つ、 当該空 気通過路の出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込み 効率を向上させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴とす る請求の範囲第 1項に記載の磁気軸受ス
5 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋溝 を形成するように積層してラジアル磁気軸受ロータを形成し、 かつ、 アキシャル 磁気軸受ロータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を形 成し、 前記ラジアル磁気軸受ロータと前記ァキシャル磁気軸受ロータと前記主軸 モータロータの前記各螺旋溝が軸方向に連続するように前記回転軸に嵌合させる ことにより空気通過路を形成し、 力、つ、 当該空気通過路の出入口部の少なくとも 一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを有 する螺旋フィンリングを備えたことを特徴とする請求の範囲第 1項に記載の磁気 軸受スピンドル。
6 . 少なくとも、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モ ータロータとが固着され回転自在に保持された回転軸と、 当該回転軸の回りに微 小間隔をあけて配置された複数の電磁石と、 これらを収納する筐体とを備えた磁 気軸受スピンドルにおいて、
前記筐体は外部と連通する冷却空気通過路を備え、 前記アキシャル磁気軸受口 一タの近傍に配置されたアキシャル磁気軸受ステータの軸方向位置決め部材の外 径部には、 前記冷却空気通過路からの冷却空気を導入する複数の貫通穴を備え、 前記アキシャル磁気軸受ステータの外側磁極歯部分であって、 前記アキシャル磁 気軸受ロータと対向せず、 かつ、 磁気回路上必要のない部分には、 前記貫通穴と 連通する軸方向の貫通穴を複数備えたことを特徴とする磁気軸受スピンドル。
7 . ラジァノレ磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータと が嵌合する回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝の 嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主 軸モータロータとを軸方向に隣接して密着するように嵌合させることにより空気 通過路を形成し、 つ、 当該空気通過路の出入口部の少なくとも一方に当該空気 通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特徴 とする請求の範囲第 6項に記載の磁気軸受スピンドル。
8 . ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータと が嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当該 螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータ と前記主軸モータロータとを軸方向に隣接して密着するように嵌合させることに より空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に 当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたこ とを特徴とする請求の範囲第 6項に記載の磁気軸受スピンドル。
9 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転軸 と平行になるように積層することにより切欠き溝を有したラジアル磁気軸受口一 タを形成し、 かつ、 アキシャノレ磁気軸受口一タと主軸モータロータの内径部にも 前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記ァ キシャル磁気軸受ロータと前記主軸モータロータの前記各切欠き溝が軸方向に揃 うように前記回転軸に嵌合させることにより空気通過路を形成し、 かつ、 当該空 気通過路の出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込み 効率を向上させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴とす る請求の.範囲第 6項に記載の磁気軸受スピンドル。
1 0 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋 溝を形成するように積層してラジアル磁気軸受ロータを形成し、 かつ、 アキシャ ノレ磁気軸受ロータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を 形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主 軸モータロータの前記各螺旋溝が軸方向に連続するように前記回転軸に嵌合させ ることにより空気通過路を形成し、 力つ、 当該空気通過路の出入口部の少なくと も一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを 有する螺旋フィンリングを備えたことを特徴とする請求の範囲第 6項に記載の磁 気軸受スピンドル。
1 1 . アキシャル磁気軸受ロータの外径部を三角形状またはそれに相当する形状 に形成したことを特徴とする請求の範囲第 6項に記載の磁気軸受スピンドル。
1 2 . ラジアル磁気軸受ロータとアキシャノレ磁気軸受ロータと主軸モータロータ とが嵌合する回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝 の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記 主軸モータロータとを軸方向に隣接して密着するように嵌合させることにより空 気通過路を形成し、 つ、 当該空気通過路の出入口部の少なくとも一方に当該空 気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特 徴とする請求の範囲第 1 1項に記載の磁気軸受スピンドル。
1 3 . ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータ とが嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当 該螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャノレ磁気軸受ロー タと前記主軸モータロータとを軸方向に隣接して密着するように嵌合させること により空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方 に当該空気通過路 'への冷却空気の取り込み効率を向上させる螺旋フィンを備えた ことを特徴とする請求の範囲第 1 1項に記載の磁気軸受ス
1 4 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転 軸と平行になるように積層することにより切欠き溝を有したラジアル磁気軸受口 ータを形成し、 かつ、 アキシャノレ磁気軸受ロータと主軸モータロータの内径部に も前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記 アキシャル磁気軸受ロータと前記主軸モータロータの前記各切欠き溝が軸方向に 揃うように前記回転軸に嵌合させることにより空気通過路を形成し、 かつ、 当該 空気通過路の出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込 み効率を向上させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴と する請求の範囲第 1 1項に記載の磁気軸受スピンドル。
1 5 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋 溝を形成するように積層してラジアル磁気軸受ロータを形成し、 力、つ、 アキシャ ル磁気軸受ロータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を 形成し、 前記ラジアル磁気軸受ロータと前記アキシャノレ磁気軸受ロータと前記主 軸モータロータの前記各螺旋溝が軸方向に違続するように前記回転軸に嵌合させ ることにより空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくと も一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを 有する螺旋フィンリングを備えたことを特徴とする請求の範囲第 1 1項に記載の 磁気軸受スピンドル。
1 6 . 少なくとも、 ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸 モータロータとが固着され回転自在に保持された回転軸と、 当該回転軸の回りに 微小間隔をぁけて配置された複数の電磁石と、 これらを収納する筐体とを備えた 磁気軸受スピンドルにおいて、
前記筐体は外部と連通する冷却空気通過路を備え、 前記アキシャル磁気軸受口 —タの近傍に配置されたアキシャノレ磁気軸受ステ一タの軸方向位置決め部材の外 径部には、 前記冷却空気通過路からの冷却空気を導入する複数の貫通穴を備え、 前記ラジアル磁気軸受ロータの近傍に配置されたラジアル磁気軸受ステータのコ ァバック部分と、 前記アキシャル磁気軸受ステータの外側磁極歯部分と、 前記主 軸モータロータの近傍に配置された主軸モータステータのコアバック部分とであ つて、 磁気回路上必要のない部分には、 それぞれ軸方向の貫通穴を複数備えたこ とを特徴とする磁気軸受スピンドル。
1 7 . ラジアノレ磁気軸受ロータとアキシャノレ磁気軸受ロータと主軸モータロータ とが嵌合する回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝 の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記 主軸モータロータとを軸方向に隣接して密着するように嵌合させるごとにより空 気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該空 気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特 徴とする請求の範囲第 1 6項に記載の磁気軸受スピンドル。.
1 8 . ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータ とが嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当 該螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受口一 タと前記主軸モータロータとを軸方向に隣接して密着するように嵌合させること により空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方 に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えた ことを特徴とする請求の範囲第 1 6項に記載の磁気軸受ス
1 9 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転 軸と平行になるように積層することにより切欠き溝を有したラジアル磁気軸受ロ ータを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モータロータの内径部に も前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記 了キシャノレ磁気軸受ロータと前記主軸モータロータの前記各切欠き溝が軸方向に 揃うように前記回転軸に嵌合させることにより空気通過路を形成し、 かつ、 当該 空気通過路の出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込 み効率を向上させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴と する請求の範囲第 1 6項に記載の磁気軸受スピンドル。
2 0 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋 溝を形成するように積層してラジアル磁気軸受ロータを形成し、 力 、 アキシャ ル磁気軸受ロータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を 形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主 軸モータロータの前記各螺旋溝が軸方向に連続するように前記回転軸に嵌合させ ることにより空気通過路を形成し、 つ、 当該空気通過路の出入口部の少なくと も一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを 有する螺旋フィンリングを備えたことを特徴とする請求の範囲第 1 6項に記載の 磁気軸受スピンドル。
2 1 . アキシャノレ磁気軸受ロータの外径部を三角形状またはそれに相当する形状 に形成したことを特徴とする請求の範囲第 1 6項に記載の磁気軸受ス
2 2 . ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータ とが嵌合する回転軸の外径部には、 軸方向に延びる溝を複数箇所に備え、 当該溝 の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記 主軸モータロータとを軸方向に隣接し'て密着するように嵌合させることにより空 気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方に当該空 気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えたことを特 徴とする請求の範囲第 2 1項に記載の磁気軸受スピンドル。
2 3 . ラジアル磁気軸受ロータとアキシャル磁気軸受ロータと主軸モータロータ とが嵌合する回転軸の外径部には、 軸方向に延びる螺旋溝を複数箇所に備え、 当 該螺旋溝の嵌合部に前記ラジアル磁気軸受ロータと前記アキシャノレ磁気軸受ロー タと前記主軸モータロータとを軸方向に隣接して密着するように嵌合させること により空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくとも一方 に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを備えた ことを特徴とする請求の範囲第 2 1項に記載の磁気軸受スピンドル。
2 4 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が回転 軸と平行になるように積層することにより切欠き溝を有したラジアル磁気軸受口 ータを形成し、 かつ、 アキシャル磁気軸受ロータと主軸モータロータの内径部に も前記切欠き溝と同様な切欠き溝を形成し、 前記ラジアル磁気軸受ロータと前記 了キシャノレ磁気軸受ロータと前記主軸モータロータの前記各切欠き溝が軸方向に 揃うように前記回転軸に嵌合させることにより空気通過路を形成し、 かつ、 当該 空気通過路の出入口部の少なくとも一方に当該空気通過路への冷却空気の取り込 み効率を向上させる螺旋フィンを有する螺旋フィンリングを備えたことを特徴と する請求の範囲第 2 1項に記載の磁気軸受」
2 5 . 内径部に複数個の切欠き部を備えたリング状抜板を、 当該切欠き部が螺旋 溝を形成するように積層してラジアル磁気軸受ロータを形成し、 力つ、 アキシャ ル磁気軸受ロータと主軸モータロータの内径部にも前記螺旋溝と同様な螺旋溝を 形成し、 前記ラジアル磁気軸受ロータと前記アキシャル磁気軸受ロータと前記主 軸モータロータの前記各螺旋溝が軸方向に連続するように前記回転軸に嵌合させ ることにより空気通過路を形成し、 かつ、 当該空気通過路の出入口部の少なくと も一方に当該空気通過路への冷却空気の取り込み効率を向上させる螺旋フィンを 有する螺旋フィンリングを備えたことを特徴とする請求の範囲第 2 1項に記載の 磁気軸受スピンドル。
PCT/JP2002/007109 2002-07-12 2002-07-12 磁気軸受スピンドル WO2004007982A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004521108A JP4176075B2 (ja) 2002-07-12 2002-07-12 磁気軸受スピンドル
DE60225725T DE60225725T2 (de) 2002-07-12 2002-07-12 Magnetlagerspindel
EP02746009A EP1522749B1 (en) 2002-07-12 2002-07-12 Magnetic bearing spindle
PCT/JP2002/007109 WO2004007982A1 (ja) 2002-07-12 2002-07-12 磁気軸受スピンドル
US10/486,984 US7224094B2 (en) 2002-07-12 2002-07-12 Magnetic bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/007109 WO2004007982A1 (ja) 2002-07-12 2002-07-12 磁気軸受スピンドル

Publications (1)

Publication Number Publication Date
WO2004007982A1 true WO2004007982A1 (ja) 2004-01-22

Family

ID=30022650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007109 WO2004007982A1 (ja) 2002-07-12 2002-07-12 磁気軸受スピンドル

Country Status (5)

Country Link
US (1) US7224094B2 (ja)
EP (1) EP1522749B1 (ja)
JP (1) JP4176075B2 (ja)
DE (1) DE60225725T2 (ja)
WO (1) WO2004007982A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304045A (ja) * 2007-06-11 2008-12-18 Toshiba Corp 超電導フライホイールシステム
CN105658977A (zh) * 2013-05-29 2016-06-08 诺沃皮尼奥内股份有限公司 具有内部通风装置的磁性轴承组件
WO2017212713A1 (ja) * 2016-06-07 2017-12-14 株式会社Ihi 回転機械
KR20180073468A (ko) * 2016-12-22 2018-07-02 누보 피그노네 테크놀로지 에스알엘 회전형 부시를 갖는 베어링 시스템 및 터보기계
CN111457009A (zh) * 2019-01-21 2020-07-28 英格索兰工业美国公司 主动磁性轴承装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007982A1 (ja) * 2002-07-12 2004-01-22 Mitsubishi Denki Kabushiki Kaisha 磁気軸受スピンドル
DE102005008887A1 (de) * 2005-02-26 2006-08-31 Leybold Vacuum Gmbh Einwellige Vakuum-Verdränderpumpe
US20070228847A1 (en) * 2006-03-30 2007-10-04 Korea Fluid Machinery Co., Ltd. High speed electric motor
EP2110572A1 (en) 2008-04-16 2009-10-21 Siemens Aktiengesellschaft Cooling of the rotor lamination of a magnetic bearing
DE102008062679A1 (de) * 2008-12-17 2010-06-24 Minebea Co., Ltd. Fluiddynamisches Lagersystem
US8963356B2 (en) * 2010-01-21 2015-02-24 America Hydro Jet Corporation Power conversion and energy storage device
SE534838C2 (sv) * 2010-05-21 2012-01-17 Bae Systems Haegglunds Ab Kylanordning för elmotor
US8994237B2 (en) * 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
JP2015533410A (ja) * 2012-11-08 2015-11-24 ワウケシャ ベアリングズ コーポレーションWaukesha Bearings Corporation ハイブリッド軸受
EP2808571B1 (en) * 2013-05-27 2019-11-27 Nuovo Pignone S.r.l. Electro-magnetic bearing assembly with inner ventilation to cool the bearing
CN103386634B (zh) * 2013-06-26 2015-11-04 陈潮龙 侧孔加工装置
WO2015040510A1 (en) 2013-09-17 2015-03-26 Altigreen Propulsion Labs Private Limited An electric or hybrid vehicle using motor-generator having shaft with centrifugal fan blades for cooling
DE102014207470A1 (de) * 2014-04-17 2015-10-22 Zf Friedrichshafen Ag E-Maschine mit einem gekühlten Rotor
GB2544275B (en) * 2015-11-09 2022-02-16 Time To Act Ltd Cooling means for direct drive generators
US9822998B2 (en) 2016-03-17 2017-11-21 Daikin Applied Americas Inc. Centrifugal compressor with motor cooling
CN106357052A (zh) * 2016-09-26 2017-01-25 南京磁谷科技有限公司 一种磁悬浮电机风冷结构
CN106451866B (zh) 2016-12-05 2019-05-10 北京金风科创风电设备有限公司 电机转子支架以及电机
CN109441955B (zh) * 2018-12-18 2024-03-19 南京磁谷科技有限公司 一种用于径向磁轴承及推力磁轴承散热的磁轴承座结构
DE102019208304A1 (de) * 2019-06-06 2020-12-10 Zf Friedrichshafen Ag Kühlkörper für eine elektrische Maschine
DE102019208297A1 (de) * 2019-06-06 2020-12-10 Zf Friedrichshafen Ag Kühlkörper für eine elektrische Maschine
SE544730C2 (en) * 2019-09-12 2022-10-25 Zparq Ab Electrical motor with an intrinsic cooling system
CN111404317A (zh) * 2019-10-17 2020-07-10 浙江兆华机械制造有限公司 一种磁悬浮电机
CN111173839B (zh) * 2020-02-05 2021-08-06 常州市武进亚太机电配件有限公司 一种使用磁流体轴承的转子多源约束防爆电机
JP6881645B1 (ja) * 2020-03-31 2021-06-02 ダイキン工業株式会社 スラスト気体軸受、それを備える遠心型圧縮機、およびそれを備える冷凍装置
EP3907862A1 (en) * 2020-05-05 2021-11-10 Volvo Car Corporation Electric drive
US11855521B2 (en) 2021-02-02 2023-12-26 Black & Decker, Inc. Brushless DC motor for a body-grip power tool
CN116658524B (zh) * 2023-05-31 2024-02-06 深圳市汉诺克精密科技有限公司 一种自润滑且低磁扰的气浮主轴

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253516U (ja) * 1988-10-11 1990-04-18
US4935654A (en) * 1987-11-27 1990-06-19 Asea Brown Boveri Aktiengesellschaft Axial magnet bearing
JPH0571533A (ja) * 1991-09-17 1993-03-23 Toshiba Corp スラスト磁気軸受装置
JPH0861366A (ja) * 1994-08-25 1996-03-08 Koyo Seiko Co Ltd 磁気軸受装置
JPH09133133A (ja) * 1995-11-06 1997-05-20 Hitachi Ltd スラスト磁気軸受装置
US5804900A (en) * 1994-07-20 1998-09-08 Koyo Seiko Co., Ltd. Magnetic bearing spindle device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953993A (en) 1958-02-12 1960-09-27 Strickland Gerald Pump construction
CH663644A5 (de) * 1982-02-22 1987-12-31 Bbc Brown Boveri & Cie Turboverdichter.
FR2528127A1 (fr) * 1982-06-04 1983-12-09 Creusot Loire Moto-compresseur centrifuge electrique integre a grande vitesse
JP2516382B2 (ja) * 1987-11-06 1996-07-24 セイコー精機株式会社 磁気軸受を主軸にもつ加工装置
JPH0257719A (ja) 1988-08-19 1990-02-27 Hitachi Ltd 電磁軸受の冷却方法、及び同冷却装置
JPH04161035A (ja) 1990-10-19 1992-06-04 Sanyo Electric Co Ltd 篭型誘導電動機
JPH0492755U (ja) 1990-12-20 1992-08-12
JPH04118958U (ja) 1991-04-10 1992-10-23 村田機械株式会社 工作機械用スピンドル構造体
JP3282131B2 (ja) * 1991-04-22 2002-05-13 株式会社デンソー モ−タの冷却構造
JPH0645700A (ja) 1992-07-21 1994-02-18 Fujitsu Ltd レーザダイオードの試験方法
JP3494419B2 (ja) 1995-11-29 2004-02-09 株式会社日平トヤマ モータビルトインスピンドル
JP3696398B2 (ja) * 1997-04-28 2005-09-14 Ntn株式会社 静圧磁気複合軸受およびスピンドル装置
JP2863788B2 (ja) 1997-04-30 1999-03-03 株式会社荏原製作所 モータ
US6057619A (en) 1998-12-22 2000-05-02 Sundstrand Corporation Stress relief in a magnetic thrust bearing
US6508614B1 (en) * 1999-03-17 2003-01-21 Ntn Corporation Spindle device and machine tool utilizing the same
EP1063753B1 (de) 1999-06-22 2009-07-22 Levitronix LLC Elektrischer Drehantrieb mit einem magnetisch gelagerten Rotor
WO2004007982A1 (ja) * 2002-07-12 2004-01-22 Mitsubishi Denki Kabushiki Kaisha 磁気軸受スピンドル
WO2005003580A1 (ja) * 2003-07-04 2005-01-13 Mitsubishi Denki Kabushiki Kaisha 磁気軸受装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935654A (en) * 1987-11-27 1990-06-19 Asea Brown Boveri Aktiengesellschaft Axial magnet bearing
JPH0253516U (ja) * 1988-10-11 1990-04-18
JPH0571533A (ja) * 1991-09-17 1993-03-23 Toshiba Corp スラスト磁気軸受装置
US5804900A (en) * 1994-07-20 1998-09-08 Koyo Seiko Co., Ltd. Magnetic bearing spindle device
JPH0861366A (ja) * 1994-08-25 1996-03-08 Koyo Seiko Co Ltd 磁気軸受装置
JPH09133133A (ja) * 1995-11-06 1997-05-20 Hitachi Ltd スラスト磁気軸受装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1522749A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304045A (ja) * 2007-06-11 2008-12-18 Toshiba Corp 超電導フライホイールシステム
CN105658977A (zh) * 2013-05-29 2016-06-08 诺沃皮尼奥内股份有限公司 具有内部通风装置的磁性轴承组件
WO2017212713A1 (ja) * 2016-06-07 2017-12-14 株式会社Ihi 回転機械
JP2017219246A (ja) * 2016-06-07 2017-12-14 株式会社Ihi 回転機械
KR20180073468A (ko) * 2016-12-22 2018-07-02 누보 피그노네 테크놀로지 에스알엘 회전형 부시를 갖는 베어링 시스템 및 터보기계
JP2018155397A (ja) * 2016-12-22 2018-10-04 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. 回転ブッシュを備えた軸受システムおよびターボ機械
JP7063592B2 (ja) 2016-12-22 2022-05-09 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ 回転ブッシュを備えた軸受システムおよびターボ機械
KR102480696B1 (ko) * 2016-12-22 2022-12-22 누보 피그노네 테크놀로지 에스알엘 회전형 부시를 갖는 베어링 시스템 및 터보기계
CN111457009A (zh) * 2019-01-21 2020-07-28 英格索兰工业美国公司 主动磁性轴承装置
US11592060B2 (en) 2019-01-21 2023-02-28 Ingersoll-Rand Industrial U.S., Inc. Active magnetic bearing apparatus

Also Published As

Publication number Publication date
JP4176075B2 (ja) 2008-11-05
JPWO2004007982A1 (ja) 2005-11-10
EP1522749A1 (en) 2005-04-13
DE60225725D1 (de) 2008-04-30
US7224094B2 (en) 2007-05-29
EP1522749A4 (en) 2005-10-12
EP1522749B1 (en) 2008-03-19
DE60225725T2 (de) 2009-04-02
US20060175920A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
WO2004007982A1 (ja) 磁気軸受スピンドル
JP5911033B1 (ja) 回転電機の運転方法
JP4293185B2 (ja) 磁気軸受装置
JP5445675B2 (ja) 回転機
EP1343243A1 (en) Cooling structure of generator
EP1286446A1 (en) Permanent magnet rotor and permanent magnet machine
JP2006067777A (ja) 回転電機の冷却構造
JPH04251545A (ja) 電気機械の固定子冷却装置
JP5379611B2 (ja) 回転電機
JP4793748B2 (ja) スピンドル装置
EP1164688B1 (en) Electric rotary machine having a stator support structure
JP2019030059A (ja) 回転子及び回転電機
US11277056B2 (en) Fluid-cooled rotor for an electric machine
JP2019041476A (ja) 回転子及び回転電機
US6057619A (en) Stress relief in a magnetic thrust bearing
EP1484518B1 (en) Bearing lubricating structure of electric motor
JP2661805B2 (ja) 液冷用管路を外被内部に有した液冷モータ
JP5710886B2 (ja) 回転電機
CN110620475A (zh) 损耗热的排出被改善的电机
JP7142072B2 (ja) 回転電機のロータ
US11387697B2 (en) Rotary electric machine
CN113394937A (zh) 包括使冷却剂循环通过气隙的系统的轴向磁通电机
JP2006014565A (ja) ディスク型回転電機
JP2019161861A (ja) 回転電機
CN211351971U (zh) 旋转电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004521108

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 2002746009

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006175920

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10486984

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002746009

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10486984

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002746009

Country of ref document: EP