WO2004007952A1 - エンジンのアースシステム - Google Patents

エンジンのアースシステム Download PDF

Info

Publication number
WO2004007952A1
WO2004007952A1 PCT/JP2002/010564 JP0210564W WO2004007952A1 WO 2004007952 A1 WO2004007952 A1 WO 2004007952A1 JP 0210564 W JP0210564 W JP 0210564W WO 2004007952 A1 WO2004007952 A1 WO 2004007952A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
ground
wire
cylinder head
ground wire
Prior art date
Application number
PCT/JP2002/010564
Other languages
English (en)
French (fr)
Inventor
Jun Suzuki
Akira Sato
Original Assignee
Sun Automobile Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Automobile Corporation filed Critical Sun Automobile Corporation
Priority to JP2004521120A priority Critical patent/JP3950140B2/ja
Priority to AU2002344073A priority patent/AU2002344073A1/en
Priority to US10/521,471 priority patent/US7104234B2/en
Publication of WO2004007952A1 publication Critical patent/WO2004007952A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/005Other installations having inductive-capacitance energy storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/22Connectors or cables specially adapted for engine management applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • F02D41/2435Methods of calibration characterised by the writing medium, e.g. bar code

Definitions

  • the present invention relates to a grounding system for an engine, for example, by directly grounding a ground point of an automobile engine equipped with a direct ignition coil having a built-in igniter to a negative terminal of a battery via a grounding wire.
  • the present invention relates to a grounding system for an engine, which reduces an electric resistance and smoothes a current flow to improve various performances of the engine. Background art
  • the earthing system for automobiles has been used for various electronic components such as electronic control units, ignition plugs, starter motors, instrument panels and other instrumentation, lighting devices such as lamps, and acoustic devices.
  • a power supply current is supplied from the positive terminal. And the current flows through the electrical components After that, it flows through the ground wire grounded to the vehicle body and returns to the negative electrode of the battery again.
  • the car body is usually made of steel plate, its conductivity is about 10 times lower than that of copper used for the wire harness.
  • an object of the present invention is to provide an engine ground system that increases the potential of the engine. Disclosure of the invention
  • the present invention relates to an engine grounding system, wherein an intermediate portion of a ground wire, one end of which is electrically connected to a negative terminal of a battery, is electrically connected to a grounding point of the engine, and then passes through.
  • An engine grounding system in which the other end of the ground wire is grounded to the vehicle body, wherein a grounding point of the engine is set to a cylinder head of the engine.
  • the engine ground system according to the second aspect of the present invention is configured such that, after passing through an intermediate portion of a ground wire having one end electrically connected to a negative terminal of the battery and electrically connected to a ground point of the engine, An engine grounding system in which the other end of a ground wire is grounded to a vehicle body, wherein the engine grounding point is connected to a cylinder head of the engine and an intake manifold is mounted to the cylinder head. It is a fastening member for an intake manifold to be fastened.
  • a negative current of the ignition plug also flows from the fastening member for the intake manifold to the negative terminal of the battery via the ground wire, so that the ignition characteristics are further improved. I do.
  • the grounding system for an engine is configured such that, after passing through an intermediate portion of a ground wire having one end electrically connected to a negative terminal of the battery and electrically connected to a ground point of the engine, An engine ground system in which the other end of a ground wire is grounded to a vehicle body, wherein the engine ground point is connected to the engine cylinder head and the cylinder head. It is characterized in that it is a fastening member for an intake manifold for fastening the bear manifold and a cylinder head cover.
  • the negative current of the ignition plug flows from the cylinder head cover, so that the ground tuning can be performed more accurately.
  • the engine ground system according to the invention of claim 4 is configured such that, after passing through an intermediate portion of a ground wire having one end electrically connected to a negative terminal of the battery and electrically connected to a ground point of the engine, An engine grounding system in which the other end of the ground wire is grounded to a vehicle body, wherein the engine ground point is connected to the engine cylinder head, and an intake manifold is fastened to the cylinder head.
  • the throttle body is also used as the ground point of the engine, so that the static electricity generated in the throttle body can be removed.
  • the negative current of the spark plug can be reduced. Flow to the negative terminal of the battery, which not only improves the ignition performance of the spark plug, but also prevents noise induced by static electricity to acoustic equipment wired around the engine.
  • the ignition means provided in the engine includes a igniter built-in type direct ignition coil. One end is electrically connected to a Bragg cap for storing the direct ignition coil, and the other end of the ground wire for the Bragg cap is electrically connected to the fastening member for the Inte-Kuma-Hold. I do.
  • the ground wire for the plug cap includes a plug cap for accommodating a direct ignition coil, and an ink cap. Since it is provided so as to connect with the holding fastening member, the negative current of the spark plug flows directly from the plug cap to the ground wire for the plug cap, and the electric resistance flowing to the negative terminal of the battery can be reduced accordingly. The ignition performance of the ignition plug is improved.
  • the invention according to claim 6 relates to the engine ground system according to claim 5, wherein the one end of the plug cap ground wire is for a plug cap that fastens the plug cap to the cylinder head. It is characterized by being connected to a fastening member.
  • the invention according to claim 7 relates to the engine ground system according to any one of claims 1 to 6, wherein the other end of the ground wire is electrically connected to a negative electrode terminal of the battery.
  • the vehicle body is grounded through another ground wire different from the wire.
  • the invention according to claim 8 relates to the engine ground system according to any one of claims 1 to 7, wherein the ground wire and the plug cap ground wire are a thin copper wire from a central portion.
  • the core wire of the ground wire and the plug-cap ground wire having the four-layer structure is formed of steel, so that ultra-low resistance is realized.
  • FIG. 1 is an external perspective view showing the inside of an engine room in an embodiment according to the present invention.
  • FIG. 2 is an external perspective view showing a cross-sectional structure of the wire harness.
  • FIG. 3 is an external perspective view of a first ground wire, a second ground wire, and a ground wire for a Bragg cap which constitute the ground system of the engine shown in FIG.
  • FIG. 4 is an output performance graph showing a relationship between power, torque, and time before the ground is attached.
  • FIG. 5 is an output performance graph showing the relationship between power, torque, and time after mounting the ground.
  • FIG. 6 is a graph showing an ignition waveform by an oscilloscope before the ground is attached.
  • FIG. 7 is a graph showing an ignition waveform by an oscilloscope after attaching the ground.
  • FIG. 8 shows data showing the results of photometric measurement, (a) is a data table thereof, and (b) is a graph showing the data table in a graph.
  • FIG. 9 is a graph of an output measurement result showing a relationship between the output and the speed of the car A.
  • FIG. 10 is a graph showing the output measurement result of the car B, as in FIG.
  • FIG. 11 is a constant fuel consumption graph showing the test results of the constant fuel consumption in relation to the fuel consumption and the speed per hour.
  • FIG. 12 is a start acceleration graph showing the results of a start acceleration test.
  • FIG. 13 is a graph showing the results of an overtaking acceleration test on car A.
  • FIG. 14 is a graph showing the results of an overtaking acceleration test on vehicle B.
  • FIG. 15 is a graph showing the relationship between the torque and the engine speed in relation to the output measurement result of the C car.
  • FIG. 16 is a graph showing the relationship between the output and the engine speed in relation to the output measurement result of the C car.
  • Fig. 17 shows the relationship between the engine speed and the torque, with the horizontal axis representing the engine speed and the vertical axis representing the torque, based on the results of the power performance test conducted without installing the earth system on the C car.
  • Fig. 18 shows the relationship between the engine speed and the output, with the horizontal axis representing the engine speed and the vertical axis representing the output, based on the results of the power performance performed without installing the ground system on the C car. It is a graph.
  • Fig. 19 shows the results of a power performance test in a mode in which the grounding system is installed on the C car but the grounding is not connected to the throttle body.
  • the horizontal axis indicates the engine speed and the vertical axis indicates the engine torque.
  • 4 is a graph showing the relationship between the rotation speed and the torque.
  • Fig. 20 shows the results of the power performance in the case where the grounding system is installed in the C car but the grounding is not connected to the slotted body.
  • Engine rotation is plotted on the horizontal axis and engine rotation is plotted on the vertical axis.
  • 5 is a graph showing the relationship between numbers and outputs.
  • Fig. 21 shows an example of a car C with a ground connection to the throttle body.
  • 4 is a graph showing the relationship between the engine speed and the torque, with the horizontal axis representing the engine speed and the vertical axis representing the torque, according to the results of the power performance test in the embodiment of the engine system.
  • Fig. 22 relates to the results of the power performance in the form of a ground system in which the throttle body is also connected to the throttle body in car C.
  • the horizontal axis represents the engine speed
  • FIG. 23 is a table showing the maximum torque values and the maximum output values in FIGS. 17 to 22 collectively.
  • FIG. 1 is an external perspective view of the engine room 1 of the passenger car according to the present embodiment, as viewed from a position where the engine room 1 stands on a front bumper.
  • the engine 2 arranged horizontally in the engine room 1 is, for example, a four-cylinder ignition engine, and its cylinder head 2a accommodates an ignition plug for each cylinder.
  • the ignition plug is screwed into the cylinder head 2a to be received and fixed.
  • a plug cap 3 containing a so-called direct ignition coil with a built-in igniter is detachably attached to the positive terminal of each ignition plug head facing the outside from the ignition plug stopper fixed to the cylinder head cover 2b.
  • This direct ignition coil is an ignition system that does not use a plug cord, suppresses current loss and noise caused by using a plug cord, and supplies secondary current directly to the ignition plug using the primary current of the igniter.
  • the ignition timing is detected by, for example, an engine crank sensor, and the fuel It can be obtained by computer processing and electronic control in conjunction with the information of the injection device.
  • An intake manifold 4 is fastened and fixed to the side surface of the cylinder head 2a by a port 4a which is a fastening member for the intake manifold.
  • Each cylinder (not shown) is formed so that the outside air taken into the air cleaner 5 is supplied from the intake manifold 4 after passing through the intake duct 6 and the throttle device 7.
  • the negative terminal 8a of the package 8 has a strut tower 1a on the left side (which may be a car body or a fender panel pinner) forming the engine room 1 and a strut tower 1b on the right side (the car body).
  • the first ground wire 10 and the second varnish wire 11 are electrically connected respectively to the fender panel-inner, are electrically connected to each other.
  • both the first ground wire 10 and the second ground wire 11 are wired so as to be grounded to the negative terminal 8a of the battery 8 and the left and right strut towers 1a, 1b. ing.
  • the wire harness 12 used in the engine grounding system in the present embodiment has a four-layer structure, and the core wire 12 a at the center is formed by seven twisted wires 120 a. You. Each twisted wire 120a is made by bundling and twisting, for example, 2 1 1 high-purity (99, 9%) copper wires of 0, 120, thereby securing a large conductivity. Is what it is. The surface of this copper wire has been subjected to antioxidant treatment to take measures against corrosion.
  • the outside of the core wire 12a is covered with an inner covering member 12b made of a synthetic resin material such as polyvinyl chloride or polyolefin, for example, to reduce noise and secure strength.
  • a conductive material such as brass, for example, is
  • the shielded wire 1 2c is shielded to prevent electromagnetic waves from leaking outside.
  • the outer periphery of the mesh wire 12c is covered with an outer covering member 12d made of a synthetic resin material having high heat resistance and flexibility. In this way, the wire harness 12 is formed in a four-layer structure as a whole, and an electric wire 12 (wire harness) with greatly reduced electric resistance is configured.
  • the first ground wire 10 and the second ground wire 11 use the wire harness 12 described above, and are connected to the negative electrode terminal 8 a of the battery 8. According to a, it is crimped to the lead body to form a continuous ground wire.
  • the first ground wire 10 has a throttle metal terminal 10 b connected to the throttle body 7 b of the throttle device 7 and a cylinder head 2 a in addition to the battery metal terminal 1 O a described above.
  • Cylinder head metal terminal 1 O c connected to the connection member, and an in-clutch two-hold metal terminal 10 d (two force points in the present embodiment) connected to the connection member 4 a.
  • the cylinder head cover metal terminal 10 e connected to the cylinder head cover 2 b and the strut metal terminal 10 f connected to the left strut tower 1 a are tightened, and each wire harness 12 is connected.
  • These terminals 1 Ob to 1 Oe are connected so as to be integrally continuous.
  • the second ground wire 11 integrally crimped and connected to the battery metal terminal 10a has a strut metal terminal 11a connected to the right strut tower 1b at its free end. They are joined by caulking.
  • Each plug cap ground wire 100 has a plug cap metal terminal 100 a electrically connected to each plug cap 3 at one end thereof, and a bolt 4 as a fastening member for an intake manifold at the other end.
  • the manifold metal terminal 100 b electrically connected to a can be re-fastened by caulking. That is, when two adjacent plug cap ground wires 100 are paired, they are tightened and connected together when they are crimped by the manifold metal terminal 100 b. It is formed so as to branch from 100 b in a forked shape.
  • the manifold metal terminal 100b is fastened to the intake manifold metal terminal 100d via the port 4a, so that each plug cap ground wire 100b is connected to the first metal terminal 100b. It is electrically connected to the ground line 10.
  • reference numeral 8b denotes a positive terminal of the note 8
  • reference numeral 13 denotes a ground wire as vehicle negative wiring.
  • the positive terminal 8b is connected to each electric component as an electric load, and the ground wire 13 as a vehicle negative wiring is connected to the negative terminal 8a together with the battery terminal 10a by using a terminal extension (not shown). It is electrically connected.
  • 1c and 1d denote bolt holes drilled in both left and right struts 1a, 1b, and 7a denotes a port hole drilled in the body 7b of the throttle device 7, respectively.
  • the first ground wire 10 has a battery metal terminal 10a electrically connected to the negative electrode terminal 8a of the battery 8 together with the vehicle ground wire 13 using a terminal extension not shown, and a left strut metal terminal.
  • the 10f is grounded to the vehicle body by screwing an existing bolt into the bolt hole 1c together with an existing headlight ground wire (not shown).
  • the right strut metal terminal 11a of the second ground wire 11 is connected to the existing bolt (not shown) together with the existing headlight ground wire (not shown) to the port hole 1d. By screwing, it is grounded to the vehicle body.
  • the negative metal terminal 8a is connected to the battery metal terminal 10a, and the left strut tower 1a is connected to the strut metal terminal 10f.
  • the intermediate portion of the first ground wire 10 is electrically connected to a ground point provided in the engine 2 to form an engine ground system. That is, as the earth points provided in the engine, the cylinder head 2a, the port 4a as a fastening member for the intake manifold, the cylinder head cover 2b, and the body 7b of the throttle device 7 are set.
  • the throttle metal terminal 10b is connected to the throttle device 7 by the port that is screwed into the bolt hole 7a of the throttle body 7b.
  • the cylinder head metal terminal 10c is connected to the cylinder head 2a by an existing port (not shown) together with an existing ground wire (not shown) of the engine.
  • the intake manifold metal terminal 1 Od is connected to the intake manifold 4 by co-tightening using the port 4 a together with the manifold metal terminal 100 b of the plug cap ground wire 100 b. Is done.
  • the cylinder head cover metal terminal 10e is attached to the cylinder head cover 2b by bolts 20b (provided at an appropriate force on the periphery of the cylinder head cover 2b) to attach the cylinder head cover 2b to the cylinder head 2a. Connected to b.
  • the plug cap metal terminal 100a of the plug cap ground wire 100 is attached to a plug cap port (not shown) for positioning and fixing the plug cap 3 to the cylinder head 2b. Connected. Therefore, in the present embodiment configured as described above, the first ground wire 10, the ground wire 100 for the plug cap, and the second ground wire 11 have excellent power conductivity.
  • a wire harness 12 having a low resistance value is used, and an intermediate portion of the first ground wire 10 formed by the wire harness 12 is connected to each ground point of the engine, and each ground point is connected to the first ground wire. It is electrically connected to the negative terminal 8a of the battery 8 via the ground wire 10. You.
  • the measurement was performed with a load applied to reproduce the situation when the vehicle was running, and the measurement conditions were a speed mode that reproduced the load situation, and a dynamo was used.
  • the engine is set so that the engine speed is fixed at 400 rpm, the accelerator is fully opened, and measurement is performed when the engine speed is fixed at 400 rpm.
  • a performance graph showing the relationship between power, torque, and time before mounting, and a performance graph showing the relationship between power, torque, and time after mounting the ground, as shown in Fig. 5, were obtained.
  • the ⁇ measurement point '' means that after the engine speed reaches 400 rpm, The point at which a predetermined time has passed since the movement became stable is the measurement point.
  • the negative current of the spark plug can flow smoothly to the negative electrode terminal 8a of the battery 8 via the first ground wire 10. can, thereby improving the ignition performance of the spark plug is significantly further c can therefore improve the performance of the engine, so was subjected to various performance evaluation tests the above ignition quality, its The result will be described below.
  • the tests shown below were performed on vehicles A and B, which have different vehicle types, that is, equipped with different engines and have different vehicle weights.
  • FIG. Fig. 8 shows the results of a photometric measurement by a bench test using a head light tester.
  • A is a table showing the photometric data
  • (b) is a graph showing the data described in the table. is there. From these data, it was found that the luminous intensity of the headlights of both cars A and B increased after installation of the headlights than before the installation. For this reason, the ground wire for the headlight is connected to the first ground formed by the four-layered wire harness 12 centered on the core wire 12 a with excellent conductivity in the strut tower 1 a. 1 b. Since it is connected to the wire 10 and the second ground wire 11, it has the effect of increasing the luminous intensity.
  • Fig. 9 Fig. 10 explains the output measurement results.
  • Fig. 9 is a graph showing the output measurement results for car A
  • Fig. 10 is a graph showing the output measurement results for car B.
  • the point of measurement was at 180 km / h, when the maximum output was generated
  • the point of measurement was at 11 Okm / h when the maximum output was generated.
  • the output of the car A increases by 2.5% when the ground is attached before the earth is installed, and the output of the car B increases by 2, 0 ⁇ 1 ⁇ 2. It has been found that the use of the above has the effect of significantly increasing the engine output.
  • Fig. 11 explains the measurement results of the constant fuel efficiency by the actual vehicle driving test.
  • the constant fuel efficiency is a test in which the vehicle travels on a horizontal straight road at a constant speed. The vehicle travels at a constant speed from 100 km per hour to 100 km every 20 km, and the fuel efficiency required at that time ( kmZ).
  • a constant fuel consumption graph based on the constant fuel consumption measurement data was obtained as shown in Fig. 11.
  • the measurement results of the starting acceleration performance are described with reference to FIGS.
  • the measurement conditions were those in which the vehicle was driven on a horizontal route and the so-called zero-yon acceleration was measured using a non-contact five-wheel measuring device.
  • the start acceleration graph shown in Fig. 12 was obtained. That is, when the time required to reach 4 O Om is measured, the vehicle A uses 0,15 seconds and the vehicle B uses 0,15 seconds when the same ground system is used than when the ground system is not used. , Was reduced by 64 seconds. Therefore, the adoption of the earth system has the effect of improving the feeling of acceleration when starting.
  • Figs. Figures 13 and 14 are measured with a non-contact five-wheel measuring instrument, and are based on the standard hourly speed, such as from 40 km / h to 60 km / h and from 60 km / h to 80 km / h. It was obtained by measuring the time required to increase the speed to 20 km.
  • Fig. 13 shows the overtaking acceleration graph for car A
  • Fig. 14 shows the overtaking acceleration graph for car B.
  • the vehicle will reach the specified speed in a shorter time after the ground is installed than before the earth is installed. As a result, there is an effect that the overtaking acceleration performance is excellent.
  • FIG. 15 is a rotational speed-torque diagram showing the relationship between the engine speed and the torque
  • FIG. 16 is a rotational speed-output diagram showing the relationship between the engine speed and the output (PS).
  • the measurement conditions were as follows. When the grounding system shown in Fig. 1 was used and the grounding system without the plug cap grounding wire 100 was used (this is called “after grounding"), System at all A comparison test was performed for a normal mode that was not adopted (this is called “before grounding”). As a result, as is evident from Fig.
  • FIG. 23 is a table in which the maximum values shown in FIGS. 17 to 22 are summarized.
  • the maximum torque value when the engine is driven without the grounding system installed As can be seen from the table shown in Fig. 23 that summarizes the values of the maximum torque and the maximum output described above, the maximum torque value when the engine is driven without the grounding system installed.
  • the maximum torque value (T2, T3) and maximum output value ( ⁇ 2, ⁇ 3) when driving the engine with the ground system installed are larger, so the engine with the earth system installed is better. It was found that the power performance could be improved. Even when the grounding system is installed, the maximum torque value with the ground connection ⁇ 3.
  • the maximum output value ⁇ 3 is greater than the maximum torque value ⁇ 2 and maximum output value ⁇ 2 when the grounding is not connected to the throttle body. Because of the large size, it was found that the engine with the ground system connected to the throttle body 7b with the ground was superior in power performance.
  • the cylinder head 2a, the intake manifold holding member (port 4a), the cylinder head cover 2b, the body 7b of the throttle device 7, and the like are set as engine ground points.
  • a surge tank or the like provided in the transmission / intake system may be used as an earth point. The more earth points, the more advantageous the ignition performance of the ignition plug.
  • the direct ignition coil is used.
  • the present invention can be applied to a so-called mechanical ignition system using a distributor or the like.
  • the present invention can be applied to various engines used for an outboard motor, a motorcycle, a cart, a snowmobile, and the like. The invention's effect
  • the present invention has the following effects.
  • the invention of claim 1 after the intermediate portion of the ground wire having one end electrically connected to the negative electrode terminal of the battery is electrically connected to the ground point of the engine and passed therethrough, the other end of the ground wire
  • the negative current of the spark plug also flows from the intake manifold fastening member via the ground wire.
  • the current flows to the negative terminal of the battery, which further improves the ignition characteristics.
  • the invention of claim 4 has a configuration in which the throttle body is added to the ground point, so that the static electricity generated in the throttle pod can be removed, so that the negative current of the spark plug flows through the negative electrode terminal of the battery. Not only does it perform smoothly, the ignition performance of the spark plug is further improved, but also it is possible to avoid induction noise disturbance to audio equipment and the like due to static electricity, and to maintain the performance of the audio equipment in a good state.
  • the ignition means provided in the engine includes a direct ignition coil having a built-in igniter, and one end of which is electrically connected to a plug cap that houses the direct ignition coil.
  • the other end of the ground wire is electrically connected to the coupling member for the input bearer, so that the plug cap ground wire is connected to the plug cap for accommodating the direct ignition coil. Therefore, the negative current of the ignition plug directly flows from the plug to the ground wire for the plug cap, and the electrical resistance that flows to the negative terminal of the battery is the same. The ignition performance can be improved.
  • the invention of claim 7 has an effect of increasing the luminous intensity of lights such as a headlight.
  • the earth wire and the plug cap earth wire may be a core wire obtained by bundling a twisted wire formed by twisting a copper thin wire from the center.
  • An inner covering member made of a synthetic resin material coated on the outer periphery of the wire, a mesh wire made of a conductive material provided to cover the outer circumference of the coating member, and a synthetic resin material provided on the outer circumference of the mesh wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

エンジンのポテンシャルをアップさせるエンジンのアースシステムを提供する。一端部をバッテリの負極端子に電気接続したアース線の中間部位を、エンジンのアースポイントに電気接続して経由した後、アース線の他端部を車体に接地してなるエンジンのアースシステムであって、エンジンのアースポイントを、エンジンのシリンダヘッド、インテークマニホールド用締結部材、シリンダヘッドカバー、スロットルボディ7b等にし、さらに、プラグキャップ用締結部材とインテークマニホールド用締結部材との間にもプラグキャップ用アース線を配線した。

Description

明細騫
エンジンのアースシステム 技術分野
本発明は、 エンジンのアースシステムに係り、例えばィグナイタ内蔵型 のダイレク トイグニッシヨンコイルを搭載した自動車用エンジンのァー スポイントを、アース線を介してバッテリの負極端子に直接にアースする ことにより、 電気抵抗を小さくして電流の流れを円滑にして、 エンジンの 各種性能を向上させるエンジンのアースシステムに関する。 背景技術
自動車に搭載されたエンジンの出力性能を増大させる手段には、種々の 工夫がなされているが、 例えば、 点火プラグを特殊な構造を有するワイヤ ハーネスで接続して、 点火プラグに対する点火チューニングを行なうこと により、エンジン燃焼室内の混合気をより完全燃焼の状態に近づける点火 チューニングに関するシステムが開発され、 本出願人も、 かかる点火チュ 一二ングシステムを実用化するに至っている。 かかる技術は、 点火プラグ がスパークする前の状態において、点火プラグの正極端子側に入力される 電流値を最適にコントロールすることにより、 エンジンの出力を向上させ る技術であるが、 他方、 点火プラグがスパークした後、 すなわち、 点火プ ラグ放電後のマイナス電流をコントロールするアースシステムの開発も 要請されている。
従来、 自動車におけるアースシステムは、 自動車に搭載された電子制御 装置、 点火プラグ、 スタータモータ、 インストルメントパネル等の計器装 置、 ランプ類の灯火装置、 あるいは音響装置といった各種電装品に、 バッ テリの正極端子から電源電流が供給される。 そして、 電流は、 電装品を流 れた後、 車体に接地されたアース線を流れて、 再びバッテリの負極に帰還 するように構成されている。 これによつて、 各種電装品とバッテリとの間 を電気接続されるワイヤハーネスの配線が簡素になるようにしている。 しかしながら、通常車体は、 鋼板を使用して形成されているため、 その電 導率は、 ワイヤハーネスに使用される銅に対して約 1 0分の 1と低く、 車 体をアースとして接地するには、 電気的に大きな抵抗となり、 その結果、 エンジンの点火系システムに悪影響をもたらし、 エンジンが発揮すべき本 来のポテンシャルを著しく阻害する要因となり、 エンジンの出力の向上に は一定の限界を有するという問題があった。 また、 エンジン吸気系のスロ ットル装置内を吸気流が通過するときに、吸気の庫擦により静電気が生じ るが、 この静電気によりエンジンルーム内に配線された音響機器の信号線 に静電気によるノイズ障害を与える問題もある。
そこで、 本出願人は、 上述したように、 先に開発した点火プラグチュー ニングシステムで得られた知見に基づいて、 エンジンの出力特性をよリア ップさせるためのエンジンのアースシステムを研究開発した結果、 ェンジ ンの有するポテンシャルを大幅に引き出せる新技術を創出するに至った。 すなわち、 本発明は、 上記問題点に鑑みて案出されたものであって、 バ ッテリの負極端子と車体との間に配線されるアース線の中間部位を、 ェン ジンのアースポイントであるシリンダへッドゃ、 このシリンダへッドを経 由してダイレク 卜ィグニッシヨンコイルのプラグキャップ等に接続する ことで、 点火プラグがスパークした後のマイナス電流を、 アース線に円滑 に流すことにより、 エンジンのポテンシャルをアップさせるエンジンのァ ースシステムを提供することを目的とする。 発明の開示
上記課題を解決するために、 本発明者等は次の通り本発明を構成した。 すなわち、 請求項 1記載の発明においては、 エンジンのアースシステムに 係り、一端部をバッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのアースポイントに電気接続して経由した後、前記アース線の他 端部を車体に接地してなるエンジンのアースシステムであって、前記ェン ジンのアースポイントを、前記エンジンのシリンダへッドにした構成を採 ることとした。
かかる構成を採用することにより、 点火プラグのスパーク時における負 極側のマイナス電流は、 シリンダへッドに設けられたアースポイントから アース線を経由してバッテリの負極端子にスムースに流れ、 その結果、 2 次側のィグニッシヨンコイルに誘起する起電力が増大し、点火性能が顕著 に向上する。
また、 請求項 2の発明に係るエンジンのアースシステムは、 一端部をバ ッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのァー スポイントに電気接続して経由した後、前記アース線の他端部を車体に接 地してなるエンジンのアースシステムであって、前記エンジンのアースポ イン卜を、 前記エンジンのシリンダへッド、 および同シリンダへッドにィ ンテークマ二ホールドを締結するインテークマ二ホールド用締結部材に したことを特徴とする。
この構成により、請求項 1の発明に加えて、 さらにインテークマ二ホー ルド用締結部材からも点火プラグのマイナス電流が、アース線を経由して バッテリの負極端子に流れるので、 さらに点火特性がァップする。
また、 請求項 3の発明に係るエンジンのアースシステムは、 一端部をバ ッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのァー スポイントに電気接続して経由した後、前記アース線の他端部を車体に接 地してなるエンジンのアースシステムであって、前記エンジンのアースポ イントを、 前記エンジンのシリンダへッド、 同シリンダへッドにインテー クマ二ホールドを締結するインテークマ二ホールド用締結部材、 およびシ リンダへッドカバーにしたことを特徴とする。
この請求項 3の発明によれば、 請求項 2の発明に加えて、 さらにシリン ダへッドカバーからも点火プラグのマイナス電流が流れることにより、 そ れだけアースチューニングを的確に行える。
また、 請求項 4の発明に係るエンジンのアースシステムは、 一端部をバ ッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのァー スポィン卜に電気接続して経由した後、前記アース線の他端部を車体に接 地してなるエンジンのアースシステムであって、前記エンジンのアースポ イン卜を、 前記エンジンのシリンダへッド、 同シリンダへッドにインテー クマ二ホールドを締結するィンテークマ二ホールド用締結部材、 シリンダ へッドカバー、 およびスロットルボディにしたことを特徴とする。
この請求項 4の発明によれば、 請求項 3の発明に加えて、 スロッ卜ルポ ディをもエンジンのアースポイントにしたため、スロットルボディに発生 する静電気を除去でき、 その結果、 点火プラグのマイナス電流をバッテリ の負極端子へ流すのを円滑に行え、 点火プラグの点火性能が一層アップす るだけでなく、エンジン周辺に配線された音響機器等への静電気による誘 導ノイズ障害を回避できる。
また、 請求項 5の発明は、 請求項 2乃至 4のいずれか一に記載のェンジ ンのアースシステムに係り、 前記エンジンに設けられる点火手段は、 ィグ ナイタ内蔵型のダイレクトイグニッシヨンコイルを有し、 同ダイレクトイ グニッシヨンコィルを収納するブラグキヤップに一端部を電気接続した ブラグキヤップ用のアース線の他端部を、前記ィンテ一クマ二ホールド用 締結部材に電気接続させたことを特徴とする。
この請求項 5の発明によれば、 プラグキャップ用のアース線は、 ダイレ クトイグニッシヨンコイルを収納するプラグキャップと、 イン亍ークマ二 ホールド用締結部材とを接続するように設けられているので、点火プラグ のマイナス電流は、直接的にプラグキャップからプラグキャップ用アース 線に流れ、 バッテリの負極端子へ流れる電気抵抗はそれだけ低くでき、 点 火プラグの点火性能は向上する。
また、 請求項 6の発明は、 請求項 5に記載のエンジンのアースシステム に係り、 前記プラグキャップ用アース線の前記一端部は、 前記プラグキヤ ップを前記シリンダへッドに締結するプラグキャップ用締結部材に接続 されたことを特徴とする。
この請求項 6の発明によれば、 プラグキャップ用アース線の一端部を、 エンジンのシリンダへッドにねじ込まれるプラグキャップ用締結部材に 接続されているので、 より確実に点火プラグのマイナス電流が、 プラグキ ャップ用アース線に流れることになる。
また、 請求項 7の発明は、 請求項 1乃至 6のいずれか一に記載のェンジ ンのアースシステムに係り、前記アース線の他端部が電気接続される前記 バッテリの負極端子に、前記アース線とは異なる別のアース線を介して前 記車体に接地されたことを特徴とする。
この請求項フの発明によれば、 アース線の他に、 別のアース線がバッテ リの負極端子に電気接続されているので、 アース線の配線の簡素化を図れ る。
また、 請求項 8の発明は、 請求項 1乃至 7のいずれか一に記載のェンジ ンのアースシステムに係り、前記アース線および前記プラグキャップ用ァ ース線は、中心部から、銅の細線を撚つて形成された撚リ線を束ねた芯線、 この芯線の外周に被覆された合成樹脂材でなる内部被覆部材、 この被覆部 材の外周を被覆するように設けられた導電材でなる網線、 およびこの網線 の外周に設けられた合成樹脂材でなる外部被覆部材を有する 4層構造で あることを特徴とする。 この請求項 8の発明によれば、 4層構造をなすアース線やプラグキヤッ プ用アース線の芯線が、鋼材で形成されているので、超低抵抗を実現する。 そのため、 点火プラグに発生するマイナス電流は、 バッテリの負極端子へ 円滑に流すことが可能となり、 また網線により芯線を被覆しているので、 エンジンルームから外部環境へ放散する電磁波の遮蔽を確実に行え、 ェン ジン用電子コントロール機器に対するノイズ、オーディオ機器に及ぼす雑 音等の障害を未然に回避することが可能となる。 図面の簡単な説明
第 1図は、本発明に係る実施の形態におけるエンジンルームの内部を示 す外観斜視図である。
第 2図は、 ワイヤハーネスの断面構造を示す外観斜視図である。
第 3図は、 図 1に示したエンジンのアースシステムを構成する第 1のァ ース線、第 2のアース線、ブラグキヤップ用アース線の外観斜視図である。 第 4図は、 アース装着前におけるパワーとトルクと時間との関係を示す 出力性能グラフである。
第 5図は、 アース装着後におけるパワーとトルクと時間との関係を示す 出力性能グラフである。
第 6図は、 アース装着前におけるオシロスコープによる点火波形を示す グラフである。
第 7図は、 アース装着後におけるオシロスコープによる点火波形を示す グラフである。
第 8図は、 光度測定結果を示すデータで、 (a ) はそのデータ表、 (b ) はデータ表をグラフ化して示したグラフである。
第 9図は、 A車の出力と速度との関係を示す出力測定結果のグラフであ る。 第 1 0図は、 図 9と同様に、 B車の出力測定結果を示すグラフである。 第 1 1図は、定地燃費の試験結果を燃費と時速との関係で示した定地燃 費グラフである。
第 1 2図は、発進加速試験を行った結果を示した発進加速グラフである。 第 1 3図は、 A車における追越加速試験の結果を示したグラフである。 第 1 4図は、 同様に、 B車における追越加速試験の結果を示すグラフで あ 。
第 1 5図は、 C車における出力測定結果に係り、 トルクとエンジン回転 数との関係を示すグラフである。
第 1 6図は、 C車における出力測定結果に係り、 出力とエンジン回転数 との関係を示すグラフである。
第 1 7図は、 C車においてアースシステムを装着しないで行った動力性 能試験の結果に係り、 横軸をエンジン回転数で、 縦軸をトルクで示したェ ンジン回転数とトルクとの関係を示すグラフである。
第 1 8図は、 C車においてアースシステムを装着しないで行った動力性 能の結果に係り、 横軸をエンジン回転数で、 縦軸を出力で画いたエンジン 回転数と出力との関係を示すグラフである。
第 1 9図は、 C車においてアースシステムを装着しているが、 スロット ルボディにアース接続しない態様における動力性能試験の結果に係り、横 軸をエンジン回転数で、縦軸をトルクで示したエンジン回転数とトルクと の関係を示すグラフである。
第 2 0図は、 C車においてアースシステムを装着しているが、 スロット ルポディにアース接続しない態様における動力性能の結果に係り、横軸を エンジン回転数で、縦軸を出力で画いたェンジン回転数と出力との関係を 示すグラフである。
第 2 1図は、 C車においてスロットルボディにもアース接続をしたァ一 スシステムの態様にける動力性能試験の結果に係り、横軸をエンジン回転 数で、縦軸をトルクで示したエンジン回転数とトルクとの関係を示すグラ フである。
第 2 2図は、 C車においてスロットルボディにもアース接続をしたァー スシステムの態様における動力性能の結果に係り、横軸をエンジン回転数 で、縦軸を出力で画いたエンジン回転数と出力との関係を示すグラフであ る。
第 2 3図は、上記図 1 7〜図 2 2の各最大トルク値と各最大出力値とを、 まとめて示した表である。 発明を実施するための最良の形態
実施例
本発明の実施の形態を図 1乃至図 3に基づいて詳述する。 図 1は、 本実施 の形態に係る乗用自動車のエンジンルーム 1をフロン卜バンパーに立つ た位置から俯瞰したエンジンルーム 1の外観斜視図である。 図 1に示され るように、 エンジンルーム 1内に横配置されたエンジン 2は、 例えば 4気 筒の点火機関であり、 そのシリンダへッド 2 aには各気筒ごとに点火ブラ グを収容する空洞が形成されていて、 点火プラグをシリンダへッド 2 aに ねじ込むことにより収容固定される。 また、 シリンダヘッドカバー 2 bに 固定される点火プラグ栓から外部に臨む各点火プラグ頭部の正極端子に は、 ィグナイタ内蔵型のいわゆるダイレクトイグニッシヨンコイルを収納 したプラグキャップ 3が、 それぞれ着脱自在に設けられる。 このダイレク トイグニッシヨンコイルは、 プラグコードを使用しない点火システムであ つて、 プラグコードを使用することによる電流損失やノイズを抑制し、 ィ グナイタの一次電流により、点火プラグに直接二次電流を供給するもので、 点火タイミングは、 例えばエンジンのクランクセンサー等で感知し、 燃料 噴射装置の情報と相まってコンピュータが演算処理して電子制御するこ とで得られる。
また、 シリンダヘッド 2 a側面には、 インテークマ二ホールド用締結部 材であるポル卜 4 aによりイン亍ークマ二ホールド 4が締結して固定さ れている。 各気筒 (図示されない) には、 エアクリーナ 5に取り入れられ た外気が、 吸気ダクト 6、 スロットル装置 7を経由した後、 インテークマ 二ホールド 4から供給されるように形成されている。
パッ亍リ 8の負極端子 8 aには、 エンジンルーム 1を形成する左側のス トラッ卜タワー 1 a (車体であって、フェンダーパネル■ィンナでもよい) と、 右側のストラットタワー 1 b (車体であって、 フェンダーパネル-ィ ンナでもよい) とにそれぞれ電気接続される第 1のアース線 1 0と、 第 2 のァニス線 1 1 (別のアース線) とが電気接続される。 こうして、 第 1の アース線 1 0と第 2のアース線 1 1とは共に、バッテリ 8の負極端子 8 a と、 左右の各ストラッ卜タワー 1 a , 1 bとにアース接続するように配線 されている。
次に、 図 2において、 上記第 1のアース線 1 0、 第 2のアース線 1 1お よび後述するプラグキャップ用アース線 1 0 0に用いられるワイヤハー ネス 1 2の構造を説明する。本実施の形態におけるエンジンのアースシス テムに使用されるワイヤハーネス 1 2は、 4層構造をなしておリ、 中心部 の芯線 1 2 aは、 7本の撚リ線 1 2 0 aで形成される。 各撚リ線 1 2 0 a は、 例えば 0 , 1 2 0の高純度 (9 9 , 9 %) の銅線を 2 1 1本束ねて撚 つたもので、 これにより大幅な電導率を確保しているものである。 この銅 線の表面は、 酸化防止処理が施されていて、 腐食対策を講じている。 芯線 1 2 aの外側には、 例えばポリ塩化ビニル、 あるいはポリオレフイン等の 合成樹脂材でなる内部被覆部材 1 2 bが被覆され、 ノイズ低減と強度確保 を図っている。 内部被覆部材 1 2 bの外周には、 例えば真鍮製等の導電材 でなる網線 1 2 cが被覆され、電磁波が外部に漏れないようにシールドす るようにしている。 この網線 1 2 cの外周に、 耐熱性と屈曲性に富む合成 樹脂材でなる外部被覆部材 1 2 dが被覆されている。 こうして、 ワイヤハ 一ネス 1 2は、 全体として 4層構造に形成され、 電気抵抗を大幅に低減し た電線 1 2 (ワイヤハーネス) が構成されることとなる。
次に、 図 1および図 3において、 エンジンのアースシステムに使用され る第 1のアース線 1 0および第 2のアース線 1 1の構造を説明する。すな わち、 第 1のアース線 1 0と第 2のアース線 1 1とは、 上記したワイヤハ —ネス 1 2を使用され、バッテリ 8の負極端子 8 aに接続されるバッテリ 金属端子 1 0 aによ.リー体に加締められて、連続したアース線が形成され る。 そして、 第 1のアース線 1 0には、 上記したバッテリ金属端子 1 O a の他に、 スロットル装置 7のスロットルボディ 7 bに接続されるスロット ル金属端子 1 0 b、 シリンダへッド 2 aに接続されるシリンダへッド金属 端子 1 O c、 インテ一クマ二ホールド用締結部材 4 aに接続されるイン亍 一クマ二ホールド金属端子 1 0 d (本実施の形態では 2力所)、 シリンダ へッドカバー 2 bに接続されるシリンダへッドカバー金属端子 1 0 e、 お よび左側ス卜ラッ卜タワー 1 aに接続されるストラッ卜金属端子 1 0 f が加締められ、各ワイヤハーネス 1 2がこれら各端子 1 O b〜 1 O eにお いて一体に連続するように連結されている。 また、 バッテリ金属端子 1 0 aに一体に加締められて結合された第 2のアース線 1 1は、 その自由端に、 右側のストラットタワー 1 bに接続されるストラッ卜金属端子 1 1 aを 加締めにより結合している。
また、 第 1のアース線 1 0の途中には、 4本のプラグキャップ用アース 線 1 0 0が設けられる。 各プラグキャップ用アース線 1 0 0は、 その一端 部に各プラグキャップ 3に電気接続されるプラグキャップ金属端子 1 0 0 aを、 その他端部にインテークマ二ホールド用締結部材であるボルト 4 aに電気接続されるマ二ホールド金属端子 1 0 0 bを加締めによリ取リ 付けられる。 すなわち、 隣り合う各 2本のプラグキャップ用アース線 1 0 0をペアとして、 マ二ホールド金属端子 1 0 0 bにより加締められ際に、 一体に加締められて接続され、マ二ホールド金属端子 1 0 0 bから二股状 に分岐するように形成される。 そして、 そのマ二ホールド金属端子 1 0 0 bは、 ィンテークマ二ホールド金属端子 1 0 dにポルト 4 aを介して共締 めされることにより、 各プラグキャップ用アース線 1 0 0が、 第 1のァ一 ス線 1 0に電気接続されることとなる。
なお、 図中、 符号 8 bは、 ノ ッテリ 8の正極端子を、 1 3は車両マイナ ス配線としてのアース線を示す。 正極端子 8 bは、 電気負荷としての各電 装品に接続され、 車両マイナス配線としてのアース線 1 3は、 図示されな い端子増設具を用いてバッテリ端子 1 0 aと共に負極端子 8 aに電気接 続されるものである。 また、 1 cおよび 1 dは、 左右の両ストラットタヮ - 1 a , 1 bに穿たれたボルト用孔を、 7 aはスロットル装置 7のボディ 7 bに穿たれたポルト用孔をそれぞれ示す。
次に、第 1のアース線 1 0および第 2のアース線 1 1を取り付けを説明 する。 第 1のアース線 1 0は、 バッテリ金属端子 1 0 aがバッテリ 8の 負極端子 8 aに図示されない端子増設具を用いて車両アース線 1 3と共 に電気接続され、 左側ス卜ラット金属端子 1 0 f は、 図示されない既存の ヘッドライ ト用のアース線と共に既存のボルトをボルト用孔 1 cにねじ 込むことで車体に接地される。 同様に、 第 2のアース線 1 1の右側ス卜ラ ット金属端子 1 1 aも、既存のヘッドライト用のアース線(図示されない) と共に既存ボルト (図示されない) をポルト用孔 1 dに螺合することによ リ、 車体に接地される。
このようにして、 負極端子 8 aにバッテリ金属端子 1 0 a力 また、 左 側ストラッ卜タワー 1 aにストラッ卜金属端子 1 0 f 力 それぞれ締結さ れた第 1のアース線 1 0の中間部位は、 エンジン 2に設けられたアースポ イン卜に電気接続されていくことで、 エンジンのアースシステムが形成さ れる。 すなわち、 エンジンに設けられるアースポイントは、 シリンダへッ ド 2 a、 イン亍ークマ二ホールド用締結部材としてのポルト 4 a、 シリン ダヘッドカバー 2 b、 スロットル装置 7のボディ 7 bが設定される。 こうして、 スロットル金属端子 1 0 bは、 スロットルボディ 7 bのボル ト用孔 7 aに螺合されるポルトによリスロットル装置 7に接続される。 シリンダへッド金属端子 1 0 cは、 エンジンの既存アース線 (図示され ない) と共に既存ポルト (図示されない) によリシリンダヘッド 2 aに接 続される。
インテークマ二ホールド金属端子 1 O dは、 プラグキャップ用アース線 1 0 0のマ二ホールド金属端子 1 0 0 bと共にポルト 4 aを用いて共締 めされることでインテークマ二ホールド 4に接続される。
シリンダへッドカバー金属端子 1 0 eは、 シリンダへッドカバー 2 bを シリンダヘッド 2 aに取り付けるボルト 2 0 b (シリンダヘッドカバー 2 bの周縁の適数力所に設けられている) によリシリンダへッドカバー 2 b に接続される。
さらに、 プラグキャップ用アース線 1 0 0のプラグキャップ金属端子 1 0 0 aは、 プラグキャップ 3をシリンダへッド 2 bに位置決め固定するた めのプラグキャップ用ポル卜(図示しない)に取り付けられて接続される。 したがって、 上記のように構成された本実施の形態にあっては、 第 1の アース線 1 0、 プラグキャップ用アース線 1 0 0、 さらには第 2のアース 線 1 1力 電導率の優れた低抵抗値を有するワイヤハーネス 1 2を用いる と共に、 係るワイヤハーネス 1 2で形成された第 1のアース線 1 0の中間 部位を、 エンジンの各アースポイントに接続し、 各アースポイントが第 1 のアース線 1 0を介してバッテリ 8の負極端子 8 aに電気接続されてい る。 このため、 エンジン稼働時、 点火プラグの負極側に生じるマイナス電 流は、第 1のアース線 1 0を経由して直ちにバッテリの負極端子 8 aに円 滑に流れることとなり、 その結果、 エンジン性能が向上する。 すなわち、 エンジンの低速、 中速域でのトルクの向上、 燃費向上、 エンジンの始動性 能のアップ、 完全燃焼による排ガス浄化、 ヘッドランプの照度アップ、 各 種オーディオ装置のノイズ低減等の種々の効果がある。
以下において、本出願人が行った各種性能試験の結果について詳細に説 明する。
まず、 図 4、 図 5に基づいて、 点火プラグの性能評価試験を説明する。 第 1のアース線 1 0が、 その中間部位においてエンジンのアースポイント としてシリンダへッド 2 aをアースポイントとして設定して接続した場 合、 すなわち、 シリンダへッド金属端子 1 0 cをシリンダへッド 2 aに電 気接続した場合 (以下 「アース装着後」 と称する) と、 このような第 1の アース線 1 0を有しない場合 (以下 「アース装着前 J と称する) とにおけ る点火プラグの性能評価試験を実施した。 この点火プラグの性能評価試験 は、アース装着前と、アース装着後とにおける点火プラグの点火 1次電流、 パワー (P S )、 およびトルク (k g—m) を同時測定して比較した。 測 定は、 車両走行時の状況を再現するために、 負荷をかけて行った。 測定条 件は、 負荷状況を再現するスピードモードで、 ダイナモを用い、 ダイナモ 設定をエンジン回転数を 4 0 0 0 r p mで固定するように設定すると共 に、 アクセルを全開にし、 4 0 0 0 r p mに固定されたときに計測を行つ この結果、 図 4のように、 アース装着前のパワーとトルクと時間との関 係を示す性能グラフ、 および図 5のように、 アース装着後のパワーとトル クと時間との関係を示す性能グラフを得た。各グラフ中、 「測定ポイント」 とあるのは、 エンジン回転数が 4 0 0 0 r p mに到達してから、 回転数変 動が安定してから所定時間経過した時点を測定ポイントとしたものであ る。 図 4, 図 5において、 アース装着前と比較すると、 アース装着後は、 パワーにおいて、 1 04— 99 = 5 (P S)、 トルクにおいて、 1 8, 4 一 1 7, 7 = 0, 7 (k g-m) の向上が見られた。
また、そのときにおける点火プラグの点火 1次電流の波形として、図 6, 図 7のオシロスコープによる点火波形を示すグラフが得られた。 これによ れば、点火 1次電流は、 8, 64-8, 56 = 0, 08 (A) だけ増加し、 F a l l t i me (立ち下がり時間、 すなわち出力電流がゼロになるま での時間) は、 1 7 , 7 - 1 1 , 8 = 5, 9 (/ s) だけ短縮されている ことがわかった。 この電流値と時間は 1次側であるので、 相互誘導作用に より 2次側に誘起する起電力 Eは、 E = M ( i Z t ) で表せる。 ここで、 Mは相互インダクタンスを、 tは時間を、 ίは電流を表す。 相互インダク タンス Μは変化しないため、 かかる式より、 アース装着前の場合における 起電力 E nは、 E n二 M (8, 56 A/ 1 7, 7 μ s ) =4836 1 5, 8 Mとなり、 アース装着後の場合における起電力 E hは、 E h =M (8, 64 A/ 1 1 , 8 s) = 7 3223, 4Mとなる。 このことから、 E h = 1 , 5 E nとなる。 したがって、 アース装着後におけるエンジンのァー スシステムによれば、 アース装着前の普通の状態における場合の約 1 , 5 倍の起電力が発生していることが判明した。図 4と図 5とのデータを比較 して得られたように、 パワーが 5 P S、 トルクが 0, 7 k g— mも向上し た要因は、 この 1 , 5倍もの起電力の発生にあると考えられる。
このように、本実施の形態に係るエンジンのアースシステムを適用する ことにより、 点火プラグのマイナス電流を、 第 1のアース線 1 0を介して バッテリ 8の負極端子 8 aにスムースに流すことができ、 これにより点火 プラグの点火性能が著しく向上し、ひいてはエンジンの性能を向上できる c さらに、 上記の点火性能以外にも各種の性能評価試験を行ったので、 そ の結果を以下に説明する。 なお、 以下に示される試験は、 車種の異なる、 すなわち異なるエンジンを搭載し、異なる車両重量を有する A車と B車と についてそれぞれ試験を行ったものである。
図 8に基づき光度測定結果を説明する。 図 8は、 へッドライ卜テスター を用いて行ったベンチテストによる光度測定結果で、 (a ) は光度測定デ ータを示す表、 (b ) はその表に記載されたデータを示したグラフである。 これらデータから、 A車、 B車共に、 アース装着前よりも装着後の方が、 いずれもへッドライ卜の光度が上昇していることが判明した。 このことか ら、 へッドライト用のアース線は、 ストラットタワー 1 a . 1 bにおいて 電導率に優れた芯線 1 2 aを中心に有する 4層構造のワイヤハーネス 1 2で形成された第 1のアース線 1 0と第 2のアース線 1 1 とに接続され ているため、 光度が増大する効果がある。
図 9 . 図 1 0により出力測定結果を説明する。 シャシダイナモテスター によりエンジンの出力を測定した結果、図 9および図 1 0を得た。図 9は、 A車についての出力測定結果を示したグラフ、 図 1 0は B車に関する出力 測定結果を示したグラフである。 A車の場合、 最大出力発生時である時速 1 8 0 k m時点を測定ポイントとし、 B車の場合は、 最大出力発生時を時 速 1 1 O k m時点を測定ポイントとした。 その結果、 A車ではアース装着 前よリもアース装着後の場合に、出力が 2 , 5 %上昇し、 B車の場合には、 出力が 2 , 0 <½も上昇することとなり、 アースシステムを採用することに より、 エンジン出力が顕著に増大する効果があることがわかった。
図 1 1において、実車走行テストによる定地燃費の測定結果について説 明する。 ここで、 定地燃費とは、 水平直線路を一定速度で走行するテスト で、時速 4 0 k mから 2 0 k mごとに 1 0 0 k mまでについて一定速度で 走行し、そのときに要した燃費(k mZリツトル)を測定した。この結果、 図 1 1のように、 定地燃費測定データに基づく定地燃費グラフを得た。 A 車、 B車いずれの場合も、 アースシステムを採用することにより、 平均で 1 7, 1 6%、 1 1 , 52%もの大幅な燃費向上率を得た。 これにより、 アースシステムには、 燃費を向上できる効果がある。
図 1 2において、 発進加速性能の測定結果を説明する。 測定条件は、 水 平路線にて走行させ、 非接触式 5輪測定器を使用し、 いわゆるゼロヨン加 速を測定したものである。 これにより、 図 1 2に示される発進加速グラフ が得られた。 すなわち、 4 O Omに到達するまでに要した時間を測定する と、 アースシステムを採用しない場合よりも同アースシステムを採用した 場合の方が、 A車では 0, 1 5秒、 B車では 0, 64秒だけ短縮すること ができた。 このことから、 アースシステムを採用することにより、 発進時 の加速感を向上できる効果がある。
図 1 3, 図 14に基づいて追越加速性能の測定結果を説明する。 これら 各図 1 3, 図 1 4は、 非接触 5輪測定器で計測したもので、 時速 4 O km から時速 60 kmに、時速 60 kmから時速 80 kmにというように基準 となる時速から時速 20 kmまで増速するに要する時間を計測して得ら れたものである。 図 1 3は A車に関する追越加速グラフを、 図 1 4は B車 の追越加速グラフを示す。 A車、 B車いずれの場合も、 アース装着前より もアース装着後の方が、 短い時間で所定時速に到達することとなり、 この 結果、 追越加速性能に優れるという効果がある。
次に、図 1 5,図 1 6において、上記 A車や B車とは異なる第 3の車(以 下 「C車」 という) について測定した動力性能の結果を説明する。 図 1 5 はエンジン回転数とトルクとの関係を示した回転数一トルク線図、図 1 6 はエンジン回転数と出力(PS)との関係を示す回転数一出力線図である。 測定条件は、 図 1に示すアースシステムであって、 かつ、 プラグキャップ 用アース線 1 00を取り付けない態様のアースシステムを採用した場合 (これを 「アース装着後」 という) と、 このようなアースシステムを全く 採用しないノーマルな態様の場合 (これを 「アース装着前」 という) とに ついて比較テス卜を行った。 その結果、 図 1 5から明らかなように、 ェン ジンの全回転域において、アースシステムを採用した場合(アース装着後) の方が、 アースシステムを採用しない場合 (アース装着前) よりも格段に トルクが大きい。 また、 図 1 6からは、 アース装着後の方が、 アース装着 前よりも終始出力が上回っていることがわかる。 これらのことから、 C車 においても、 アースシステムを採用することで、 動力性能が向上する効果 があることがわかった。
さらに、 図 1 7〜図 2 3に示す動力性能テス卜の結果について説明する。 すなわち、 上記 C車の場合には、 測定条件において、 プラグキャップ用ァ —ス線 1 0 0を取り付けない態様のアースシステムについてテストを行 つたが、 図 1 7〜図 2 3に示すテストにおける測定条件では、 図 1に示さ れるようにプラグキャップ用アース線 1 0 0を取り付けたアースシステ ムは採用するが、 スロットル装置 7にスロットル金属端子 1 0 bを接続し ない態様のアースシステムと、 当該スロットル金属端子 1 O bを接続した 態様のアースシステムとの 2つの測定条件に分けて性能比較試験を行つ た。 こうして、 図 1 7、 図 1 9、 図 2 1のように、 横軸にエンジン回転数 ( r p m) を、 縦軸にトルク (k g—m) をプロットしたエンジン回転数 一トルクの関係を示すグラフを、 また、 図 1 8、 図 2 0、 図 2 2に示され るように、 横軸にエンジン回転数を、 縦軸に出力をプロッ卜して画かれた 動力性能のグラフを得ることができた。 なお、 図 2 3は、 これら図 1 7〜 図 2 2に示される各最大値をまとめた表である。
すなわち、 図 1 7において、 アースシステムを何ら装着しない場合の、 トルクの最大値は、 T 1 = 2 6 , 9 7 ( k g—m) , 出力の最大値は、 図 1 8に示されるように、 P 1 = 2 2 9 , 3 ( P S ) であった。 次に、 ァー スシステムを装着してはいるが、 スロットルボディ 7 bへのアースを接続 していないアースシステムの態様における場合の、 最大トルク値は、 図 1
9から T 2 = 27, 01 (k g— m)、 最大出力値は、 図 20から Ρ 2 = 233, 7 (PS) という結果を得た。 さらに、 図 1に示されるようなァ ースシステム、 すなわち、 スロットルボディ 7 bに対してもアース接続を 行ったアースシステムの態様にした場合には、 図 21からわかるように、 最大トルク値として T 3 = 27, 82 (k g— m)、 図 22からは、 最大 出力値として P 3 = 236, 6 (PS) という測定結果を得ることができ た。
上記した最大トルク、 および最大出力の値をまとめた図 23に示す表か らわかるように、アースシステムを装着しない態様でエンジンを駆動する 場合の最大トルク値 T 1. 最大出力値 P 1よりも、 アースシステムを装着 した態様でエンジンを駆動する場合の最大トルク値 (T 2, T3)、 最大 出力値 (Ρ2, Ρ3) の方が、 大きいことから、 アースシステムを装着し たエンジンの方が、 動力性能を向上できることが判明した。 また、 アース システムを装着している場合でも、 スロットルボディにアース接続しない 場合の最大トルク値 Τ2, 最大出力値 Ρ 2よりも、 アース接続した場合の 最大トルク値 Τ3. 最大出力値 Ρ3の方が、 大きいことから、 スロットル ボディ 7 bにアース接続したアースシステムのエンジンの場合が、動力性 能において優れていることが判明した。
上記実施の形態では、 エンジン側のアースポイントとして、 シリンダへ ッド 2 a、 インテークマ二ホールド用締結部材 (ポルト 4 a)、 シリンダ ヘッドカバー 2 b、 スロットル装置 7のボディ 7 b等に設定したが、 これ らの他に、例えばトランスミツションゃ吸気系に設けられたサージタンク 等をアースボイントとしてもよく、 アースボイン卜が増えるほど点火ブラ グの点火性能に有利となる。
また、 上記実施の形態では、 ダイレクトイグニッシヨンコイルを使用し た場合について説明したが、 デイストリビュータ等を用いたいわゆる機械 的な点火システムにも適用できるのは言うまでもない。
また、 上記実施の形態では、 自動車用のエンジンについて説明したが、 船外機、 二輪車、 カート、 スノーモービル等に用いられる各種エンジンに ついても応用することができる。 発明の効果
以上のとおり本発明を構成したので、 本発明は下記の効果を奏する。 即 ち、 請求項 1の発明によれば、 一端部をバッテリの負極端子に電気接続し たアース線の中間部位を、 エンジンのアースポイントに電気接続して経由 した後、前記アース線の他端部を車体に接地してなるエンジンのアースシ ステムであって、 前記エンジンのアースポイントを、 前記エンジンのシリ ンダヘッドにした構成を有するため、 エンジンの低速、 中速域でのトルク の向上、 燃費の向上だけでなく、 点火性能、 エンジンの始動性能、 ェンジ ンの発進加速性能、 および追越加速性能の各性能の向上、 完全燃焼による 排ガス浄化、 ヘッドランプの照度アップ、 各種オーディオ装置のノイズ低 減等の種々の効果がある。
また、 請求項 2の発明によれば、 ィンテークマ二ホールド用締結部材を アースボイン卜として追加した構成であるので、 ィンテークマ二ホールド 用締結部材からも点火プラグのマイナス電流が、アース線を経由してバッ テリの負極端子に流れることとなり、 さらに点火特性等において効果がァ ップする。
また、 請求項 3の発明によれば、 エンジンのアースポイントに、 シリン ダへッドカバーを加えたので、 さらにシリンダへッドカバーからも点火プ ラグのマイナス電流が流れることにより、 それだけアースチューニングを 的確に行える。 また、 請求項 4の発明は、 アースポイントに、 スロットルボディを追加 した構成にしたので、 スロットルポディで発生する静電気を除去でき、 そ のため、 点火プラグのマイナス電流をバッテリの負極端子 流すことを円 滑に行え、 点火プラグの点火性能等が一層アップするだけでなく、 静電気 による音響機器等へ誘導ノイズ障害を回避でき、音響機器の性能を良好な 状態に維持できる効果を奏する。
また、 請求項 5の発 は、 エンジンに設けられる点火手段は、 ィグナイ タ内蔵型のダイレク トイグニッシヨンコイルを有し、 同ダイレクトイグニ ッシヨンコイルを収納するプラグキャップに一端部を電気接続したブラ グキャップ用のアース線の他端部を、前記イン亍一クマ二ホールド用締結 部材に電気接続させた構成を採ったので、 プラグキャップ用のアース線は、 ダイレク卜ィグニッシヨンコイルを収納するプラグキャップと、 インテー クマ二ホールド用締結部材とを接続するように設けられることとなり、 点 火ブラグのマイナス電流は、直接的にブラグキヤップからプラグキャップ 用アース線に流れ、 バッテリの負極端子へ流れる電気抵抗はそれだけ低く でき、 点火プラグの点火性能等を向上できる。
また、 請求項 6の発明は、 プラグキャップ用アース線の一端部は、 ブラ グキヤップ用締結部材に接続した構成にしたため、 ブラグキヤップ用ァ一 ス線の一端部を、 エンジンのシリンダへッドにねじ込まれるプラグキヤッ プ用締結部材に接続するだけで、 より確実に点火プラグのマイナス電流が、 プラグキヤップ用アース線に流れることになる効果がある。
また、 請求項 7の発明は、 バッテリの負極端子に接続した別のアース線 を、 車体に接地したので、 へッドライ卜等の灯火類の光度を上昇させる効 果を有する。
また、請求項 8の発明は、アース線およびプラグキャップ用アース線は、 中心部から、 銅の細線を撚つて形成された撚リ線を束ねた芯線、 この芯線 の外周に被覆された合成樹脂材でなる内部被覆部材、 この被覆部材の外周 を被覆するように設けられた導電材でなる網線、 およびこの網線の外周に 設けられた合成樹脂材でなる外部被覆部材を有する 4層構造にした構成 を採ったので、 4層構造をなすアース線やプラグキャップ用アース線の芯 線が、 超低抵抗を実現する。 そのため、 点火プラグに発生するマイナス電 流は、 バッテリの負極端子へ円滑に流すことが可能となり、 また網線によ リ芯線を被覆しているので、 エンジンルームから外部環境へ放散する電磁 波の遮蔽を確実に行え、 エンジン用電子コントロール機器に対するノイズ、 オーディォ機器に及ぼす雑音等の障害を未然に回避することが可能とな る効果を奏する。

Claims

請求の範囲
1 . —端部をバッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのアースポイントに電気接続して経由した後、前記アース線の他 端部を車体に接地してなるエンジンのアースシステムであって、前記ェン ジンのアースポイントを、前記エンジンのシリンダへッドにしたことを特 徴とするエンジンのアースシステム。
2 · 一端部をバッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのアースポイントに電気接続して経由した後、前記アース線の他 端部を車体に接地してなるエンジンのアースシステムであって、前記ェン ジンのアースポイントを、 前記エンジンのシリンダへッド、 および同シリ ンダへッドにイン亍ークマ二ホールドを締結するインテークマ二ホール ド用締結部材にしたことを特徴とするエンジンのアースシステム。
3 . 一端部をバッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのアースポイントに電気接続して経由した後、前記アース線の他 端部を車体に接地してなるエンジンのアースシステムであって、前記ェン ジンのアースポイントを、 前記エンジンのシリンダへッド、 同シリンダへ ッドにィンテークマ二ホールドを締結するィンテークマ二ホールド用締 結部材、 およびシリンダへッドカバーにしたことを特徴とするエンジンの アースシステム。
4 . 一端部をバッテリの負極端子に電気接続したアース線の中間部位を、 エンジンのアースポイントに電気接続して経由した後、前記アース線の他 端部を車体に接地してなるエンジンのアースシステムであって、前記ェン ジンのアースポイントを、 前記エンジンのシリンダへッド、 同シリンダへ ッドにィンテークマ二ホールドを締結するィンテークマ二ホールド用締 結部材、 シリンダヘッドカバー、 およびスロットルボディにしたことを特 徴とするエンジンのアースシステム。
5. 前記エンジンに設けられる点火手段は、 ィグナイタ内蔵型のダイレ クトイダニッシヨンコイルを有し、同ダイレクトイグニッシヨンコイルを 収納するプラグキヤップに一端部を電気接続したプラグキヤップ用のァ ース線の他端部を、前記ィンテークマ二ホールド用締結部材に電気接続さ せたことを特徴とする請求項 2乃至 4のいずれか一に記載のエンジンの アースシステム。
6. 前記プラグキャップ用アース線の前記一端部は、 前記プラグキヤッ プを前記シリンダへッドに締結するプラグキャップ用締結部材に接続さ れたことを特徴とする請求項 5記載のエンジンのアースシステム。
7 . 前記アース線の他端部が電気接続される前記バッテリの負極端子に、 前記アース線とは異なる別のアース線を介して前記車体に接地されたこ とを特徴とする請求項 1乃至 6のいずれか一に記載のエンジンのアース システム。
8. 前記アース線および前記プラグキャップ用アース線は、 中心部から、 銅の細線を撚つて形成された撚リ線を束ねた芯線、 この芯線の外周に被覆 された合成樹脂材でなる内部被覆部材、 この被覆部材の外周を被覆するよ うに設けられた導電材でなる網線、およびこの網線の外周に設けられた合 成樹脂材でなる外部被覆部材を有する 4層構造であることを特徴とする 請求項 1乃至 7のいずれか一に記載のエンジンのアースシステム。
PCT/JP2002/010564 2002-07-16 2002-10-10 エンジンのアースシステム WO2004007952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004521120A JP3950140B2 (ja) 2002-07-16 2002-10-10 エンジンのアースシステム
AU2002344073A AU2002344073A1 (en) 2002-07-16 2002-10-10 Engine ground system
US10/521,471 US7104234B2 (en) 2002-07-16 2002-10-10 Engine ground system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002207624 2002-07-16
JP2002-207624 2002-07-16

Publications (1)

Publication Number Publication Date
WO2004007952A1 true WO2004007952A1 (ja) 2004-01-22

Family

ID=30112826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010564 WO2004007952A1 (ja) 2002-07-16 2002-10-10 エンジンのアースシステム

Country Status (6)

Country Link
US (1) US7104234B2 (ja)
JP (1) JP3950140B2 (ja)
KR (1) KR20050046658A (ja)
CN (1) CN1628214A (ja)
AU (1) AU2002344073A1 (ja)
WO (1) WO2004007952A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029341A1 (ja) * 2005-09-07 2007-03-15 Kouichi Osugi スパーク増強装置
JP2010250718A (ja) * 2009-04-20 2010-11-04 Rohm Co Ltd 車両の記録装置
WO2015186553A1 (ja) * 2014-06-04 2015-12-10 合同会社堀高 静電気除去装置およびその方法
US9804012B2 (en) 2008-06-30 2017-10-31 Rohm Co., Ltd. Vehicle traveling information recording device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381026B2 (ja) * 2002-07-15 2009-12-09 本田技研工業株式会社 車両用アース構造
DE102006010601A1 (de) * 2005-03-10 2006-10-12 Mann + Hummel Gmbh Motorbauteil mit einer Wabenstruktur
JP4695031B2 (ja) * 2006-07-12 2011-06-08 ハスクバーナ・ゼノア株式会社 エンジンブロワ
JP4636007B2 (ja) * 2006-11-14 2011-02-23 いすゞ自動車株式会社 衝突安全制御装置
JP4450332B1 (ja) * 2009-02-04 2010-04-14 美和 島田 点火プラグ用ガスケット
JP2012241687A (ja) * 2011-05-24 2012-12-10 Yamaha Motor Co Ltd 船外機
CN104067449A (zh) * 2012-01-20 2014-09-24 矢崎总业株式会社 接地连接结构及其制造方法
CN103384440A (zh) * 2012-05-03 2013-11-06 通用汽车环球科技运作有限责任公司 挤压夹子接地带
US9261062B2 (en) * 2012-05-03 2016-02-16 GM Global Technology Operations LLC Squeeze clip ground strap
WO2013187277A1 (ja) * 2012-06-12 2013-12-19 日産自動車株式会社 バッテリカバーのガス排出構造
US20200059085A1 (en) * 2018-08-14 2020-02-20 Steering Solutions Ip Holding Corporation Power input circuit with improved reverse polarity protection for isolation under supply short circuit condition and mitigation of microcontroller restart from post-failure shutdown condition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196267U (ja) * 1981-06-10 1982-12-13
JPH0932713A (ja) * 1995-07-19 1997-02-04 Masashi Ogami 接地電極通電端子付き点火プラグ
JP2002303205A (ja) * 2001-04-04 2002-10-18 Denso Corp 内燃機関

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180313A (en) * 1989-01-07 1993-01-19 Uwe Brandt Ground connection for the spark plugs of a multi-cylinder internal-combustion vehicle engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196267U (ja) * 1981-06-10 1982-12-13
JPH0932713A (ja) * 1995-07-19 1997-02-04 Masashi Ogami 接地電極通電端子付き点火プラグ
JP2002303205A (ja) * 2001-04-04 2002-10-18 Denso Corp 内燃機関

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029341A1 (ja) * 2005-09-07 2007-03-15 Kouichi Osugi スパーク増強装置
US9804012B2 (en) 2008-06-30 2017-10-31 Rohm Co., Ltd. Vehicle traveling information recording device
JP2010250718A (ja) * 2009-04-20 2010-11-04 Rohm Co Ltd 車両の記録装置
WO2015186553A1 (ja) * 2014-06-04 2015-12-10 合同会社堀高 静電気除去装置およびその方法

Also Published As

Publication number Publication date
AU2002344073A1 (en) 2004-02-02
US20050166882A1 (en) 2005-08-04
JP3950140B2 (ja) 2007-07-25
CN1628214A (zh) 2005-06-15
JPWO2004007952A1 (ja) 2005-11-10
KR20050046658A (ko) 2005-05-18
US7104234B2 (en) 2006-09-12

Similar Documents

Publication Publication Date Title
JP3950140B2 (ja) エンジンのアースシステム
JP5691642B2 (ja) シールド導電体
KR101744997B1 (ko) 자동차의 실드 도전체
JPS6368773A (ja) 複数気筒内燃機関用点火コイル
US8851040B2 (en) Ignition coil of engine
US9670887B1 (en) Ionizing device for improving combustion engine performance and methods of use
US7301747B2 (en) Voltage stabilizing and surge preventing vehicle grounding system
JP2004239115A (ja) バッテリの電圧安定装置
JP3082526U (ja) 自動車用アース線
WO2003091074A1 (fr) Procede de mise a la terre de vehicule et cable de mise a la terre
CN206278043U (zh) 一种便于汽车动力总成装配的发动机线束布线结构
JP3119628U (ja) エンジン用静電気除去装置
US7320317B2 (en) Auxiliary device for engine spark plug ignition
AU2005331756B2 (en) Voltage stabilizing and surge preventing vehicle grounding system
US10408172B2 (en) Ionizing device for improving combustion engine performance and methods of use
JP3516650B2 (ja) 内燃機関用点火プラグコード
JP4058061B2 (ja) スパイク電流防止安定電圧を有する車両導線装置及びその接続方法
KR200174551Y1 (ko) 자동차 점화플러그용 고압케이블
EP1727015B1 (en) Voltage stabilizing and surge preventing vehicle grounding system
KR20170052275A (ko) 차량용 통전체
JPH0763068A (ja) 燃費向上装置
JPH07253073A (ja) 内燃機関用配電器
JP2007309135A (ja) 自動車用燃費改善装置及び自動車用燃費改善構造
JP2020193613A (ja) 電源システム
JPH0138188B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004521120

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028291662

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047021138

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10521471

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047021138

Country of ref document: KR

122 Ep: pct application non-entry in european phase