WO2003105531A1 - Kochsystem mit direkt beheizter glaskeramikplatte - Google Patents

Kochsystem mit direkt beheizter glaskeramikplatte Download PDF

Info

Publication number
WO2003105531A1
WO2003105531A1 PCT/EP2003/005493 EP0305493W WO03105531A1 WO 2003105531 A1 WO2003105531 A1 WO 2003105531A1 EP 0305493 W EP0305493 W EP 0305493W WO 03105531 A1 WO03105531 A1 WO 03105531A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooking
ceramic plate
cooking system
glass
glass ceramic
Prior art date
Application number
PCT/EP2003/005493
Other languages
English (en)
French (fr)
Inventor
Karsten Wermbter
Peter Nass
Lutz Klippe
Original Assignee
Schott Glas
Carl-Zeiss-Stiftung Trading As Schhott Glass As Schott Glas
Carl-Zeiss-Stiftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glas, Carl-Zeiss-Stiftung Trading As Schhott Glass As Schott Glas, Carl-Zeiss-Stiftung filed Critical Schott Glas
Priority to CA002488620A priority Critical patent/CA2488620A1/en
Priority to AU2003237683A priority patent/AU2003237683A1/en
Priority to US10/516,991 priority patent/US20060118102A1/en
Priority to DE50302383T priority patent/DE50302383D1/de
Priority to EP03735463A priority patent/EP1516516B1/de
Publication of WO2003105531A1 publication Critical patent/WO2003105531A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3607Coatings of the type glass/inorganic compound/metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3655Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing at least one conducting layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer

Definitions

  • Cooking systems for cooking food consist of a level cooking surface on which the container for cooking is located.
  • the heating is installed underneath the cooking surface, whereby different functional principles of heat transfer are used.
  • An optimally coordinated cooking system has a flat contact between the bottom of the pot and the cooking surface so that the contact heat is transferred with as little loss as possible. All hot surfaces should be arranged as plane-parallel to each other as possible.
  • the temperature gradient between the heating element and the food to be cooked must be large enough to enable a quick heating process.
  • the heat loss to the environment should be minimized, what can be achieved by appropriate insulation of the heating element.
  • the heating element should be placed as close as possible to the food to be cooked, i.e. directly below the cooking surface, in compliance with electrical standards.
  • the heat source consists of electrically insulated heating coils made of resistance wire inside the hotplate.
  • the individual hot plates are inserted in a mostly metallic cooktop.
  • the cast hotplate is arranged above the cooking surface and slides on the surface of the carrier plate due to the thermal expansion during the cooking process. In this way, thermal and mechanical decoupling of the components is achieved. Due to their massive structure, these systems are very sluggish in the parboiling behavior and in their controllability.
  • a further development of such cooking systems is achieved through a changed arrangement of the heating elements and a material modification of the hotplate.
  • Thin ceramic disks with good thermal conductivity and high mechanical strength preferably made of non-oxide ceramics, such as Si 3 N 4 or SiC, are used as the hotplate.
  • EP 0 853 444 A2 and EP 0 069 298 describe ceramic cooking systems based on Si 3 N 4 with good thermal conductivity and high flatness.
  • These known hot plates are used in cooking surfaces, preferably made of toughened flat glass, but also in stone plates or in plates made of polymer-ceramic composite materials. In order to heat the entire cooking surface, but to counteract mechanical stresses, there is an expansion joint between the ceramic plate and the cooking surface. The connection is made using heat-resistant adhesive.
  • the electrical Heating takes place through current-carrying metallic layers, which adhere to the hotplate in a firm bond.
  • Full-area thin layers in particular made of SnO 2 , are used, as shown in US Pat. No. 6,037,5 72.
  • Metallic foils are also used as heating elements, which are pressed onto the substrate or connected to the ceramic plate using heat-conducting, temperature-resistant adhesives.
  • the ceramic plate itself ensures that the electrical insulation between the heater and the cooking vessel conforms to the standards.
  • a ceramic insulation layer can be installed between the heater and the hot plate in order to ensure the electrical insulation.
  • the structure described is characterized in particular by improved performance in the area of parboiling, efficiency and controllability.
  • the temperature gradient between the heater and the pot can be reduced during the boiling process, without reducing the boiling performance.
  • the heat losses are minimized, which increases the efficiency of the system.
  • the temperatures on the top of the cooking zone are reduced to around 350 ° C.
  • the overall height of the hotplate is also reduced compared to the cast hotplate.
  • the cooking surfaces are made of material with low thermal conductivity and thermal expansion, such as.
  • Radiant heaters are located below the one-piece flat cooking surfaces.
  • a current-flowing glowing resistance wire Metallic alloys generate the heating energy. The energy transfer takes place by heat conduction and convection, but with a share of about 40% by heat radiation.
  • the combination of heat radiation and heat conduction counteracts a drastic drop in the parboiling performance.
  • the standard-compliant (EN 60335 and UL 858) electrical insulation between the radiators and the cooking vessel, in which a dielectric strength of 3750 V and a leakage current of less than 0.25 mA must be achieved when operating with 230V ⁇ , is achieved by an air gap.
  • the radiator temperature is set to around 1 100 ° C so that the system has a maximum possible temperature of around 570 ° C on the top of the cooking zone.
  • the advantage of such systems is the high aesthetics that result from the appearance of the one-piece, flat cooking surface. Another advantage that can be derived from this is the ease of cleaning, as well as the free design option via a surface decoration.
  • the low-mass structure and the low heat capacity of the thin glass ceramic plate improve the control behavior and the heating time compared to the cast iron plate.
  • Ceramic cooking systems based on SiN or SiC are characterized above all by high performance data. Fast boil-up times and efficiency levels of over 80% are achieved. However, the technical solution cuts back on aesthetic aspects and ease of cleaning. Cooking performance is improved by using a hotplate with high thermal conductivity. With that, however, the heating locally on the cooking zone is limited, a heat barrier must be reached between the cooking zone and the rest of the cooking surface.
  • the one-piece total cooking surface is provided with holes in which ceramic discs are glued.
  • the ceramic disks also have to protrude slightly from the level of the cooking surface to ensure that the bottom of the saucepan always lies on the ceramic cooking zone and that there is no air gap to the heating surface. There is also an expansion joint filled with adhesive.
  • the haptic properties of the hob are therefore inhomogeneous and the ease of cleaning decreases.
  • a cooking zone that is contaminated with food can only be laboriously cleaned using the protruding ceramic panes and the expansion joint with mechanical tools such as sponges or scrapers.
  • the ceramic cooking zone differs in color from the rest of the cooking surface, the appearance is similar to the gray cast iron hob. The design of the cooking surface is therefore less attractive.
  • Radiation-heated glass ceramic cooktops are made in one piece and therefore have a high visual appearance and ease of cleaning. There are no disruptive edges and joints.
  • the performance of such cooking systems in terms of parboiling, efficiency and controllability compared to the Si 3 N 4 cooking systems are to be assessed as disadvantageous. Since the glass ceramic plates become electrically conductive at temperatures above 250 ° C, the heating element must be installed at a defined distance from the cooking surface in order to achieve the necessary dielectric strength of 3750 V. Due to the air gap between the heating and the cooking surface, the parboiling behavior and the controllability deteriorate. High temperatures of over 1,100 ° C must be generated on the heating conductor in order to achieve sufficient parboiling performance.
  • EP 0 861 014 A1 describes a hotplate in which a glass ceramic plate is heated by directly printed metallic conductors.
  • EP 0 866 641 A2 solves the problem with the compromise that a one-piece glass ceramic plate is used and, as in the Si 3 N 4 system, the heating is performed in a performance-increasing manner by heating elements attached directly on the underside.
  • the technical implementation is carried out by pressing or gluing a metallic foil, which is then heated electrically.
  • the disadvantage here is the low maximum possible cooking temperature. In our own investigations, it has been shown that simply pressing on a film heating element causes a strong reduction in the parboiling performance. A chemical connection or at least flat mechanical toothing is necessary. All commercially available adhesives with good heat conduction prohibit use at temperatures above 350 ° C.
  • temperatures around 550 ° C, measured on the heating element are required to achieve a parboil rate on a glass ceramic substrate with direct heating, which is required for fast roasting of food.
  • the reason for this is the low thermal conductivity of glass ceramic (1 -2 W / mK) compared to SiN ceramic hot plates (20-30 W / mK).
  • the temperature at the heating element in ceramic cooking systems is around 400 ° C.
  • temperatures of around 550 ° C are necessary to achieve equivalent performance.
  • Another problem is the different thermal expansion of glass ceramic (approximately 0 to 1.5 x 10 "6 / K) and metal heating elements (larger than 10 x 10 " 6 / K).
  • a glue that is stable up to 550 ° C and has good heat conductivity with sufficient ductility to compensate for the thermal stresses cannot be technically represented.
  • a firm bond between the heating element and the insulated glass-ceramic substrate takes place in that there is an electrical insulation layer between the glass-ceramic plate and the heating applied as a layer.
  • This preferably consists of highly electrically insulating ceramic materials from the Al 2 O 3 -SiO 2 -MgO system (corundum, quartz, cordierite, mullite).
  • WO 00/15005 describes possibilities for depositing the insulation layers with high thermal expansion on the low-expansion substrates. Even if the layered composite is mechanically stable, there is still the fundamental problem that the cooking zone warps when the cooking system heats up. This is caused by the different expansions of the glass ceramic plate and the insulation layer or heating layer (comparable to a bimetal effect).
  • EP 0 951 202 A2 describes a directly heated cooking system with a metallic intermediate layer which is grounded to meet the electrical standard. Any overvoltages or leakage currents are thus derived. However, the construction of such a system is technically difficult to implement and unprofitable.
  • the system performance should be improved compared to conventional cooking systems with radiant heating.
  • the hotplate should contain segment-specific heating zones for cooking and ensure a plane-parallel arrangement of pot bases and hotplate in cooking at temperatures up to 500 ° C.
  • the cooking surface is in one piece according to the requirements.
  • Cooking zones can be divided on the underside of the glass ceramic plate by the applied heating elements, which can be operated at different temperatures.
  • the low thermal conductivity of the glass ceramic plate must be selected so that the entire cooking surface is prevented from heating up by heat conduction.
  • the glass ceramic plate must have a low thermal expansion so that no or only slight thermal stresses occur when the temperature changes, which can lead to breakage of the glass ceramic plate. All this is guaranteed by the materials used for the glass ceramic plate.
  • the layered bond between the heating elements and the underside of the glass ceramic plate must meet the prescribed standards at cooking temperatures of up to 500 ° C on the top side of the glass ceramic plate. If the glass ceramic plate is electrically conductive, a ceramic layer made of Al 2 O 3 , mullite, cordierite, zirconium silicate or SiO 2 / TiO 2 is applied for electrical insulation between the underside of the glass ceramic plate and the heating elements.
  • the choice of material and the method for applying the heating elements is carried out according to one embodiment such that the heating elements in thermal syringes, in particular atmospheric plasma spraying, cold gas spraying made of NiCr-based alloys, NiAI-based alloys, CrFeAl-based alloys or oxidation-resistant cermets, such as Cr 3 C 2 -NiCr or WC-CoCr, are applied or that the heating elements are applied with a glass frit using pastes containing Ag / Pd containing pastes.
  • the insulating layer is bonded to the underside of the glass ceramic plate by means of thin webs of ceramic primary particles with a width of approximately 50 to 150 nm are.
  • the heating elements are covered by a thermal insulation layer made of silicate fiber material.
  • the required properties of the cooking system are then met in that the glass ceramic plate has a specific resistance> 10 6 ⁇ cm and the entire cooking system has a dielectric strength> 3750 V, while the stripping current according to the standard 60335-1 is ⁇ 0.25 mA per cooking zone.
  • Fig. 1 in section a cooking system made of glass ceramic plate, ceramic layer, heating elements and thermal protective layer and
  • Fig. 2 shows an enlarged partial section in the composite area between the glass ceramic plate and the ceramic plate as an electrical insulation layer.
  • Fig. 1 shows a cooking system according to the invention.
  • the top of the glass ceramic plate 10 forms the cooking surface.
  • a ceramic plate 20 is applied for electrical insulation, which can be provided with the glass ceramic plate 10 for increasing the surface with knobs.
  • the layer thicknesses are between 50 and 350 m, in particular in the range from 160 to 200 ⁇ m.
  • the insulation layer, ie the ceramic plate 20, carries the heating elements 30 which determine the cooking zones and which can be individually heated and regulated.
  • the heating elements can be designed with conductor tracks or surface heating elements.
  • the materials have main crystal phases of the high quartz mixed crystal or keatite mixed crystal type, which are mainly composed of the components Li 2 O-Al 2 O 3 -SiO 2 .
  • the electrical insulation between the underside 2 of the glass ceramic plate 10 and the ceramic layer 20 takes place through a layer of highly insulating ceramic.
  • the insulation layer 20 does not adhere to the underside of the glass ceramic layer 10. Thin webs of ceramic particles with widths of approximately 50 to 150 nm are formed in the interface, which are responsible for the connection, as can be seen from the enlarged partial section according to FIG. 2 with reference number 21. In the area of the pores 22 there is no contact between the glass ceramic and the insulation. This non-flat connection reduces the internal stresses of the system. This mechanism prevents delamination of the layer composite in the cooking mode. In addition, the warping of the glass ceramic plate 10 in the area of a cooking zone is minimized by the more extensive insulating layer 20, so that values ⁇ 0.2 mm across the diagonal of the cooking zone are achieved. This enables a high cooking performance of the cooking system.
  • the heating elements 30 can be applied by screen printing or in thermal spraying, in particular in atmospheric plasma spraying or cold gas spraying.
  • the heating elements 30 preferably consist of pastes containing Ag / Pd with glass frit or, in the case of thermal spraying, of NiCr-based alloys, NiAI-based alloys, CrFeAl-based alloys or oxidation-resistant cermets, such as Cr 3 C 2 -NiCr or WC-CoCr ,
  • the chemical bonding of the ceramic layer 20 is created by particle diffusion in the ceramic / glass ceramic interface in the area of the webs.
  • the described necessary chemical connection to the ceramic layer 20 enables.
  • the cause lies in the chemical relationship between the glass ceramic and the insulating materials.
  • the latter consist mainly of the compounds SiO 2 and Al 2 O 3 with additions of MgO and TiO 2 .
  • Interface diffusion occurs during chemical bonding. These elements are exchanged, both from the glass ceramic side and from the ceramic side.
  • a reaction layer is formed in the glass ceramic during the diffusion in the interface, which has an increased thermal expansion coefficient.
  • the induced mechanical stresses form microcracks, which lead to a reduction in the shock resistance of the overall system down to values that are below the standard requirements.
  • a poor connection of the layers and a consequent delamination during heating can also be observed.
  • the described positive effect was also shown.
  • a glass ceramic plate 10 as a cooking surface for the cooking system described thus combines the one-piece surface with a high visual appearance and ease of cleaning with the possibility of direct application of a permanently stable layer system for heating.
  • the installation of high heating capacities with simultaneous flatness of the cooking zones results in a significant increase in cooking capacities compared to conventional cooking systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cookers (AREA)
  • Electric Stoves And Ranges (AREA)
  • Resistance Heating (AREA)
  • Surface Treatment Of Glass (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Die Erfindung betrifft ein Kochystem, das auf dem Prinzip der Wärmeleitung basiert und eine einstöckige Kochfläche aus Glaskeramik (10) umfasst, die mindestens eine Kochzone aufweist, die mittels auf der Unterseite der Glaskeramikplatte (10) angeordneten Heizelementen (30) individuell direkt beheizbar ist. Ist nach der Erfindung vorgesehen, dass die Glaskeramikplatte (10) die Hauptkristallphasen Hochquarzmischkristall oder Keatitmischkristall aufweist, gebildet hauptsächlich aus den Komponenten Li2O-Al2O3-SiO2, mit einem Ausdehnungskoeffizienten von a = 0 bis 1,5 x 10-6/K, vorzugsweise von a = 0 bis 1 x 10-6/K, und einer Wärmeleitfähigkeit < 3 W/mK, vorzugsweise < 2,7 W/mK, besteht und auf der Unterseite mindestens eine Kochzone aufweist, dass die Heizelemente (30) der Kochzonen aus metallischen Schichten bestehen und dass zwischen der Unterseite der Glaskeramikplatte (10) als elektrische Isolationsschicht eine poröse Keramikschicht (20) angeordnet ist, dann werden optische Anmutung und Reinigungsfreundlichkeit des Kochsystems verbessert und die Möglichkeit zum direkten Auftrag eines dauerhaften Beheizungs-Schichtsystems bei erheblicher Steigerung der Kochleistungen geschaffen.

Description

Kochsystem mit direkt beheizter Glaskeramikplatte
Die Erfindung betrifft ein Kochsystem, das auf dem Prinzip der Wärmeleitung basiert und eine einstückige Kochfläche aus Glaskeramik umfasst, die mindestens eine Kochzone aufweist, die mittels auf der Unterseite der Glaskeramikplatte angeordneten Heizelementen individuell direkt beheizbar ist.
Kochsysteme zum Garen von Speisen bestehen aus einer eben angeordneten Kochfläche, auf der sich das Behältnis zum Garen befindet. Unterhalb der Kochfläche ist die Beheizung angebracht, wobei unterschiedliche Funktionsprinzipien der Wärmeübertragung genutzt werden. Ein optimal abgestimmtes Kochsystem weist einen flächigen Kontakt zwischen dem Topfboden und der Kochfläche auf, damit die Übertragung der Kontaktwärme möglichst verlustarm geschieht. Alle in Kontakt stehenden Flächen sollten im Heißzustand möglichst planparallel zueinander angeordnet sein. Der Temperaturgradient zwischen dem Heizelement und dem Gargut muss ausreichend groß sein, um einen schnellen Aufheizvorgang zu ermöglichen. Die Wärmeverluste an die Umgebung sollten minimiert sein, was durch eine entsprechende Isolation des Heizelementes erreicht werden kann. Das Heizelement sollte unter Einhaltung der elektrischen Normen in möglichst geringem Abstand zum Gargut, also direkt unterhalb der Kochfläche, angeordnet sein.
Bei konventionellen Systemen mit Kochplatten aus Gusseisen wird die Energie überwiegend nach dem Prinzip der Wärmeleitung übertragen. Die Heizquelle besteht hierbei aus elektrisch isolierten Heizwendeln aus Widerstandsdraht im Inneren der Kochplatte. Die einzelnen Kochplatten sind in eine meist metallische Kochfläche eingesetzt. Die Gusskochplatte ist oberhalb der Kochfläche angeordnet und gleitet aufgrund der thermischen Dehnung beim Kochvorgang auf der Oberfläche der Trägerplatte. Auf diese Art wird eine thermische und mechanische Entkopplung der Bauteile erreicht. Durch ihren massereichen Aufbau sind diese Systeme sehr träge im Ankochverhalten und in ihrer Regelbarkeit.
Eine Weiterentwicklung solcher Kochsysteme wird erzielt durch eine veränderte Anordnung der Heizelemente und eine Materialmodifikation der Kochplatte. Hierbei werden dünne keramische Scheiben mit gute Wärmeleitfähigkeit und hoher mechanischer Festigkeit, vorzugsweise aus nichtoxidischen Keramiken, wie Si3N4 oder SiC, als Kochplatte verwendet. Die EP 0 853 444 A2 und die EP 0 069 298 beschreiben keramische Kochsysteme auf Si3N4-Basis mit guter Wärmeleitfähigkeit und hoher Planität. Diese bekannten Kochplatten werden in Kochflächen, vorzugsweise aus vorgespanntem Flachglas, aber auch in Stein-platten oder in Platten aus polymerkeramischen Kompositmaterialien eingesetzt. Um eine Erwärmung der gesamten Kochfläche zu erreichen, jedoch mechanischen Spannungen entgegenzuwirken, befindet sich eine Dehnungsfuge zwischen der Keramikplatte und der Kochfläche. Die Verbindung erfolgt mittels hitzebeständiger Kleber. Die elektrische Beheizung erfolgt durch stromdurchflossene metallische Schichten, die in festem Verbund auf der Kochplatte haften. Verwendet werden vollflächige dünne Schichten insbesondere aus SnO2, wie die US 6,037,5 72, zeigt. Auch werden metallische Folien als Heiz-elemente verwendet, die an das Substrat angepresst oder durch wärmeleitende temperaturbeständige Kleber mit der Keramikplatte verbunden werden. Die normgerechte elektrische Isolation zwischen der Heizung und dem Kochgefäß wird durch die Keramikplatte selbst gewährleistet. Bei Kochplatten aus elek-trisch leitfähigem Material, wie beispielsweise SiC, kann eine keramische Isolationsschicht zwischen der Heizung und der Kochplatte installiert werden, um die elektrische Isolation zu gewährleisten. Der beschriebene Aufbau zeichnet sich insbesondere durch verbesserte Leistungen im Bereich des Ankochens, der Effizienz und der Regelbarkeit aus. Durch den direkten Kontakt von Heizelement, Kochplatte und Topf boden und die hohe Wärmeleitfähigkeit der Keramikplatte kann der Temperaturgradient zwischen der Heizung und dem Topf beim Ankochen erniedrigt werden, ohne dabei die Ankochleistung zu verringern. Die Wärmeverluste werden minimiert, wodurch die Effizienz des Systems steigt. Die Temperaturen der Kochzonenoberseite werden reduziert auf etwa 350° C. Auch wird die Bauhöhe der Kochplatte verglichen mit der Gusskochplatte verkleinert.
Alternativ zu diesen Systemen befinden sich strahlungsbeheizte Systeme auf dem Markt. Die Kochflächen bestehen aus Material mit niedriger Wärmeleitung und Wärmedehnung, wie z. B. Glaskeramikplatten, insbesondere Glaskeramikplatten mit Komponenten aus dem System Li2O-AI2O3-SiO2, auch bekannt unter dem Namen Ceran®. Unterhalb der einstückigen planen Kochflächen befinden sich Strahlungsheizkörper. Ein stromdurchflossener glühender Widerstandsdraht aus metallischen Legierungen erzeugt hierbei die Heizenergie. Der Energieübertrag erfolgt durch Wärmeleitung und Konvektion, jedoch mit einem Anteil von etwa 40 % durch Wärmestrahlung. Beim Einsatz von Kochgeschirr minderer Qualität existiert während des Kochbetriebs ein Luftspalt zwischen dem Topf boden und der Kochfläche, der den Kontaktwärmeübertrag reduziert. Durch die Kombination von Wärmestrahlung und Wärmeleitung wird einem drastischen Abfall der Ankochleistung entgegengewirkt. Die normgerechte (EN 60335 und UL 858) elektrische Isolation zwischen den Heizkörpern und dem Kochgefäß, bei der beim Betrieb mit 230V ~ eine Spannungsfestigkeit von 3750 V und ein Ableitstrom kleiner 0,25 mA geleistet werden muss, wird durch einen Luftspalt realisiert. Um eine ausreichende Ankochleistung zu erzielen, wird die Heizkörpertemperatur auf Werte um 1 100 °C eingestellt, so dass das System auf der Kochzonenoberseite eine maximal mögliche Temperatur von etwa 570° C hat. Der Vorteil derartiger Systeme ist die hohe Ästhetik, die durch die Anmutung der einstückigen planen Kochfläche entsteht. Ein weiterer daraus abzuleitender Vorteil ist die gute Reinigungsfreundlichkeit, ebenso wie die freie Designmöglichkeit über eine Oberflächendekorierung. Durch den masseärmeren Aufbau und die geringe Wärmekapazität der dünnen Glaskeramikplatte wird das Regelverhalten und die Ankochzeit gegenüber der Gusskochplatte verbessert.
Die keramischen Kochsysteme auf der Basis von SiN oder SiC zeichnen sich vor allem durch hohe Leistungsdaten aus. Schnelle Ankochzeiten und Wirkungs-grade von über 80 % werden erreicht. Die technische Lösung verursacht allerdings Abstriche bezüglich der ästhetischen Aspekte und der Reinigungsfreundlichkeit. Die Kochleistüng wird verbessert durch die Verwendung einer Kochplatte mit hoher Wärmeleitfähigkeit. Damit jedoch die Erwärmung lokal auf die Kochzone begrenzt wird, muss eine Wärmebarriere zwischen der Kochzone und der restlichen Kochfläche erreicht werden. Die einstückige Gesamtkochfläche wird dazu mit Bohrungen versehen, in die Keramikscheiben eingeklebt werden. Die Keramikscheiben müssen zudem noch geringfügig aus der Ebene der Kochfläche herausragen, damit sichergestellt ist, dass der Topfboden in jedem Fall auf der keramischen Kochzone aufliegt und kein Luftspalt zur Heizfläche entsteht. Weiterhin ist eine Dehnungsfuge, gefüllt mit Kleber, vorhanden. Die haptischen Eigenschaften der Kochfläche sind dadurch inhomogen und die Rei-nigungsfreundlichkeit sinkt. Eine mit Nahrungsmitteln verschmutzte Kochzone kann durch die abstehenden Keramikscheiben und die Dehnungsfuge mit mechanischem Werkzeug wie Schwa mm oder Schaber nur umständlich gereinigt werden. Die keramische Kochzone unterscheidet sich farblich vom Rest der Kochfläche, die Anmutung ähnelt dem Kochfeld aus Grauguss. Das Design der Kochfläche wird somit unattraktiver.
Strahlungsbeheizte Glaskeramikkochfelder sind einstückig ausgebildet und besitzen dadurch eine hohe optische Anmutung und Reinigungsfreundlichkeit. Störende Kanten und Fugen sind nicht vorhanden. Als nachteilig zu bewerten sind die Leistungen solcher Kochsysteme im Hinblick auf Ankochen, Effizienz und Regelbarkeit im Vergleich zu den Si3N4 Kochystemen. Da die Glaskeramikplatten bei Temperaturen ab 250° C elektrisch leitend werden, muss der Heiz-körper mit einem definierten Abstand zur Kochfläche montiert werden, um die nötige Spannungsfestigkeit von 3750 V zu erreichen. Durch den Luftspalt zwischen der Beheizung und der Kochfläche wird das Ankochverhalten und die Regelbarkeit verschlechtert. Es müssen hohe Temperaturen von über 1 100 °C am Heizleiter erzeugt werden, um eine ausreichende Ankochleistung zu erzielen. Da die Umgebung der Kochzone vom Heizkörper mit aufgeheizt wird, entstehen Wärmeverluste und die Effizienz des Kochsystems sinkt, verglichen mit kera-mischen SiN-Kochsystemen von etwa 80 % auf 60 %. Der Aufbau mit einem Luftspalt erzeugt eine Mindestbauhöhe, die die Einbaumöglichkeiten in einer Kochmulde beschränkt. Die Komponentenzahl einer Kochmulde mit Heizkörpern inklusive der Fixierung und einer Regelung ist hoch.
Der Aufbau eines optimierten Kochsystems mit einstückiger optisch anmutender Kochfläche und verbesserten Leistungsdaten wird möglich durch die direkte Beheizung einer Glaskeramikkochfläche.
Die EP 0 861 014 A1 beschreibt eine Kochplatte, bei der eine Glaskeramikplatte durch direkt aufgedruckte metallische Leiter beheizt wird. Die zu normgerechten Betrieb zwingend notwendige elektrische Isolationsschicht zwischen der Glaskeramikplatte und dem Heizelement wird hier nicht erwähnt.
Die EP 0 866 641 A2 löst die Aufgabe mit dem Kompromiss, dass eine ein-stücki- ge Glaskeramikplatte verwendet wird, und die Beheizung wie beim Si3N4 System leistungssteigernd durch direkt unterseitig angebrachte Heizelemente erfolgt. Die technische Umsetzung wird vollzogen durch das Anpressen oder Kleben einer metallischen Folie, die dann elektrisch beheizt wird. Nachteilig hierbei ist die geringe maximal mögliche Kochtemperatur. Bei eigenen Unter-suchungen hat sich gezeigt, dass ein einfaches Anpressen eines Folienheizelementes eine starke Reduzierung der Ankochleistung hervorruft. Eine chemische Anbindung oder zumindest flächige mechanische Verzahnung ist notwendig. Alle handelsüblichen Kleber mit guter Wärmeleitung verbieten den Einsatz bei Temperaturen größer als 350° C. Temperaturen um 550° C, gemessen am Heizelement, sind jedoch erforderlich, um bei einem Glaskeramiksubstrat mit Direktbeheizung eine Ankochleistung zu erzielen, die zum schnellen Braten von Speisen erforderlich ist. Grund dafür ist die im Vergleich zu SiN Keramik-kochplatten (20-30 W/mK) geringe Wärmeleitfähigkeit von Glaskeramik (1 -2 W/mK). Die Temperatur am Heizelement beträgt bei Keramikkochsystemen etwa 400° C. Bei Verwendung von Glaskeramikplatten als Kochplatte sind zum Er-reichen äquivalenter Leistungen Temperaturen um 550° C notwendig. Ein wei-teres Problem ist die unterschiedliche thermische Dehnung von Glaskeramik (etwa 0 bis 1 ,5 x 10"6/K) und Metallheizelementen (größer 10 x 10"6/K). Ein bis 550° C stabiler, gut wärmeleitender Kleber mit ausreichender Duktilität zum Ausgleich der Wärmespannungen ist technisch nicht darstellbar.
Ein fester Verbund zwischen dem Heizelement und dem isoliertem Glaskeramiksubstrat erfolgt gemäß eines Aufbaus dadurch, dass sich zwischen der Glaskeramikplatte und der als Schicht aufgebrachten Beheizung eine elektrische Isolationsschicht befindet. Diese besteht vorzugsweise aus elektrisch hoch-isolierenden keramischen Werkstoffen aus dem Stoffsystem AI2O3-SiO2-MgO (Korund, Quarz, Cordierit, Mullit). Die WO 00/15005 beschreibt Möglichkeiten, die Isolationsschichten mit hoher thermischer Dehnung auf den niedrig dehnen-den Substraten abzuscheiden. Auch wenn der Schichtverbund mechanisch stabil ist, besteht jedoch immer noch das grundlegende Problem, dass bei einer Erwärmung des Kochsystems eine Verwölbung der Kochzone auftritt. Diese entsteht durch die unterschiedlichen Dehnungen der Glaskeramikplatte und der Isolationsschicht bzw. Heizschicht (vergleichbar mit einem Bimetalleffekt). Der entstehende Luftspalt zwischen dem Topfboden und der Kochplattenoberseite verkleinert die Kontaktfläche und reduziert den Wärmeübergang erheblich. Die Ankochzeiten verschlechtern sich drastisch. Die EP 0 951 202 A2 beschreibt ein direkt beheiztes Kochsystem mit einer metallischen Zwischenschicht, die zur Erfüllung der elektrischen Norm geerdet ist. Auftretende Überspannungen oder Kriechströme werden so abgeleitet. Der Aufbau eines solchen Systems ist jedoch technisch schwierig realisierbar und unrentabel.
Es ist Aufgabe der Erfindung, ein elektrisch direkt beheizbares Kochsystem der eingangs erwähnten Art zu schaffen, das bei optischer Anmutung gute Reinigungseigenschaften zeigt. Die Systemleistungen sollen gegenüber konventionellen Kochsystemen mit Beheizung über Strahlungsheizkörper verbessert sein. Die Kochplatte soll segmentindividuelle Heizzonen zum Kochbetrieb beinhalten und eine planparallele Anordnung von Topfböden und Kochplatte im Kochbetrieb bei Temperaturen bis zu 500° C gewährleisten.
Diese Aufgabe wird nach der Erfindung dadurch gelöst, dass die Glaskeramikplatte mit Hauptkristallphasen vom Typ Hochquarzmischkristall oder Keatitmischkristall hauptsächlich aufgebaut aus den Komponenten LiO2-AI2O2-SiO2, mit einem Ausdehnungskoeffizienten von a = 0 bis 1 ,8 x 10"6/K, vorzugsweise von a = 0 bis 1 ,5 x 10"6/K, und einer Wärmeleitfähigkeit < 3 W/mK, vorzugsweise < 2,7 W/mK auf der Unterseite mindestens eine Kochzone aufweist, dass die Heizelemente der Kochzonen aus metallischen Schichten bestehen und dass zwischen der Unterseite der Glaskeramikplatte als elektrische Isolationsschicht eine poröse Keramikschicht angeordnet ist. Bei dieser Ausgestaltung ist die Kochfläche entsprechend den Anforderungen einstückig. An der Unterseite der Glaskeramikplatte können Kochzonen durch die aufgebrachten Heizelemente abgeteilt werden, die mit unterschiedlichen Temperaturen betrieben werden können. Die geringe Wärmeleitfähigkeit der Glaskeramikplatte muss gewählt werden, damit ein Aufheizen der gesamten Kochfläche durch Wärmequerleitung vermieden wird. Außerdem muss die Glaskeramikplatte eine geringe thermische Dehnung aufweisen, damit keine oder nur geringe Wärmespannungen beim Temperaturwechsel entstehen, die zum Bruch der Glaskeramikplatte führen können. All dies wird durch die für die Glaskeramikplatte verwendeten Materialien gewährleistet.
Der Schichtverbund zwischen den Heizelementen und der Untereite der Glaskeramikplatte muss bei Kochtemperaturen bis 500° C an der Oberseite der Glaskeramikplatte die vorgeschriebenen Normen erfüllen. Ist die Glaskeramikplatte elektrisch leitend, dann wird zur elektrischen Isolation zwischen der Unterseite der Glaskeramikplatte und den Heizelementen eine Keramikschicht aus AI2O3, Mullit, Cordierit, Zirkonsilikat oder SiO2/TiO2 aufgebracht.
Die Materialwahl und das Verfahren zum Aufbringen der Heizelemente ist nach einer Ausgestaltung so vorgenommen, dass die Heizelemente in thermischen Spritzen, insbesondere atmosphärischen Plasmaspritzen, Kaltgasspritzen aus NiCr- Basislegierungen, NiAI-Basislegierungen, CrFeAl-Basislegierungen oder oxidations- beständigen Cermets, wie Cr3C2-NiCr oder WC-CoCr, aufgebracht sind oder dass die Heizelemente im Siebdruckverfahren aus Ag/Pd-haltigen Pasten mit einer Glasfritte aufgebracht sind. Damit im Heizbetrieb bei Temperaturwechsel die Schichthaftung beständig bleibt, im Material jedoch das Auftreten hoher Wärmespannungen vermieden wird, ist nach einer weiteren Ausgestaltung vorgesehen, dass die Isolationsschicht mittels dünner Stege von Keramikprimärpartikeln mit einer Breite von etwa 50 bis 150 nm an der Unterseite der Glaskeramikplatte angebunden sind.
Zur Verringerung des Wärmeverlustes kann zusätzlich vorgesehen sein, dass die Heizelemente mittels einer thermischen Isolationsschicht aus silikatischem Fasermaterial abgedeckt sind.
Die geforderten Eigenschaften des Kochsystems sind dann dadurch eingehalten, dass die Glaskeramikplatte einen spezifischen Widerstand > 106 Ω cm und das gesamte Kochsystem eine Durchschlagfestigkeit > 3750 V aufweisen, während der Ableiststrom nach der Norm 60335-1 < 0,25 mA pro Kochzone beträgt.
Die Erfindung wird anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 im Schnitt ein Kochsystem aus Glaskeramikplatte, Keramikschicht, Heizelementen und thermischer Schutzschicht und
Fig. 2 einen vergrößerten Teilschnitt im Verbundbereich zwischen der Glaskeramikplatte und der Keramikplatte als elektrische Isolationsschicht.
Die Fig. 1 zeigt ein Kochsystem nach der Erfindung. Die Glaskeramikplatte 10 bildet mit ihrer Oberseite die Kochfläche. Auf der Unterseite der Glaskeramikplatte ist zur elektrischen Isolation eine Keramikplatte 20 aufgebracht, die mit der Glaskeramikplatte 10 zur Oberflächenvergrößerung mit Noppen versehen sein kann. Die Schichtdicken liegen zwischen 50 und 350 m, insbesondere im Bereich von 160 bis 200 μm. Die Isolationsschicht, d.h. die Keramikplatte 20, trägt die Heizelemente 30, welche die Kochzonen bestimmen und die individuell beheizt und geregelt werden können.
Die Ausbildung der Heizelemente kann mit Leiterbahnen oder Flächenheizelementen vorgenommen werden.
Das Material der Glaskeramikplatte hat eine Wärmeleitfähigkeit < 3 W/mK, insbesondere < 2,7 W/mK und ein Ausdehnungskoeffizenten a = 0 bis 1 ,8 x 10"6/K, insbesondere a = 0 bis 1 ,5 x 10"6/K. Die Materialien haben Hauptkristallphasen vom Typ Hochquarzmischkristall oder Keatitmischkristall, die hauptsächlich aus den Komponenten Li2O-AI2O3-SiO2 aufgebaut sind. Die elektrische Isolation zwischen der Unterseite 2 der Glaskeramikplatte 10 und der Keramikschicht 20 erfolgt durch eine Schicht aus hoch isolierender Keramik.
Dabei haben sich Materialien wie AI2O3, Mullit, Cordierit, Zirkonsilikat und SiO2/TiO2-Legierungen bewährt. Diese Materialien haben jedoch eine hohe thermische Dehnung mit Werten von a 3 x 10"6/K. Damit der Schichtverbund Glaskeramikplatte 10 und Isolationsschicht 20 im Heizbetrieb beständig ist, muss neben einer guten Schichthaftung gleichzeitig das Auftreten von hohen Wärmespannungen vermieden werden. Dies wird durch einen Mechanismus sichergestellt, der auf einem chemischen Haftmechanismus zwischen der Keramikschicht 20 und der Glaskeramikplatte 10 und einer eingestellten Porosität des keramischen Schichtmaterials beruht. Durch die Porosität wird der E-Modul der Schicht gesenkt, die Schichten werden quasiduktil. Untersuchungen haben auch gezeigt, dass die Isolationsschicht 20 nicht flächig an der Unterseite der Glaskeramikschicht 10 haftet. Im Interface bilden sich dünne Stege von Keramikpartikeln mit Breiten von etwa 50 bis 150 nm aus, die für die Verbindung verantwortlich sind, wie der vergrößerte Teilschnitt nach Fig. 2 mit dem Bezugszeichen 21 erkennen lässt. Im Bereich der Poren 22 besteht kein Kontakt zwischen Glaskeramik und Isolation. Diese nicht flächige Anbin-dung reduziert die Eigenspannungen des Systems. Durch diesen Mechanismus wird eine Delamination des Schichtverbundes im Kochbetrieb vermieden. Zudem wird die Verwölbung der Glaskeramikplatte 10 im Bereich einer Kochzone durch die sich stärker ausdehnende Isolationsschicht 20 minimiert, so dass Werte < 0,2 mm über die Diagonale der Kochzone erreicht werden. Damit lässt sich eine hohe Kochperformance des Kochsystems realisieren.
Die Heizelemente 30 können durch Siebdruck oder im thermischen Spritzen, insbesondere im atmosphärischen Plasmaspritzen oder Kaltgasspritzen aufgebracht werden. Im Siebdruckverfahren bestehen die Heizelemente 30 vorzugsweise aus Ag/Pd-haltigen Pasten mit Glasfritte oder im Fall von thermischem Spritzen aus NiCr-Basislegierungen, NiAI-Basislegierungen, CrFeAl-Basislegierungen oderoxida- tionsbeständigen Cermets, wie Cr3C2-NiCr oder WC-CoCr.
Die chemische Anbindung der Keramikschicht 20 entsteht durch Teilchendiffusion im Interface Keramik/Glaskeramik im Bereich der Stege. Überraschender Weise hat sich bei eigenen Untersuchungen gezeigt, dass allein die Verwendung von Glaskeramiken mit Hauptkristallphasen Hochquarzmischkristall aus den Komponenten Li2O-AI2O3-Siθ2, auch als LAS-Glaskeramiken bezeichnet und bekannt unter dem Namen Ceran, die beschriebene notwendige chemische Anbindung zu der Keramikschicht 20 ermöglicht. Die Ursache liegt in der chemischen Verwandtschaft von der Glaskeramik und den Isolierstoffen. Letztere bestehen hauptsächlich aus den Verbindungen SiO2 und AI2O3 mit Zusätzen von MgO und TiO2. Bei der chemischen Anbindung findet eine Grenzflächendiffusion statt. Es kommt zu einem Austausch dieser Elemente, sowohl von der Glaskeramikseite, als auch von der Keramikseite. Bei anderen Stoffpaarungen entsteht während der Diffusion im Interface eine Reaktions-schicht in der Glaskeramik, die einen erhöhten thermischen Ausdeh- nungs-koeffzienten hat. Durch die induzierten mechanischen Spannungen bilden sich Mikrorisse aus, die zu einer Erniedrigung der Stoßfestigkeit des Gesamtsystems führen bis auf Werte, die unterhalb den Normanforderungen liegen. Ebenfalls ist eine schlechte Anbindung der Schichten und eine daraus folgende Delamination beim Aufheizen zu beobachten. Im Fall der Verwendung von Glaskeramiken mit höherem thermischen Ausdehnungskoeffizienten zeigte sich ebenfalls der beschriebene positive Effekt. Gegenüber LAS-Glaskeramiken wird die Hauptkristallphase als Keatitmischkristall ausgebildet, wodurch sich unter anderem der thermische Ausdehnungeskoeffizient auf etwa a = 1 ,5 x 10"6/K erhöht. Der Dehnungsunterschied zur Keramikschicht 20 wird so minimiert.
Eine Glaskeramikplatte 10 als Kochfläche für das beschriebene Kochsystem vereint also die einstückige Oberfläche mit hoher optischer Anmutung und Reinigungsfreundlichkeit mit einer Möglichkeit zum direkten Auftrag eines dauerhaft beständigen Schichtsystems zur Beheizung. Die Installation hoher Heizleistungen bei gleichzeitig vorhandener Planität der Kochzonen bewirkt eine erhebliche Steigerung der Kochleistungen im Vergleich zu herkömmlichen Kochsystemen.

Claims

A n s p r ü c h e
1 . Kochsystem, das auf dem Prinzip der Wärmeleitung basiert und eine einstückige Kochfläche aus Glaskeramik umfasst, die mindestens eine Kochzone aufweist, die mittels auf der Unterseite der Glaskeramikplatte angeordneten Heizelementen individuell direkt beheizbar ist, dadurch gekennzeichnet, dass die Glaskeramikplatte mit Hauptkristallphasen vom Typ Hochquarzmischkristall oder Keatitmischkristall, hauptsächlich aufgebaut aus den Komponenten Li2-AI2O3-SiO2, mit einem Ausdehnungskoeffizienten von a = 0 bis 1 ,8 x 10"6/K und einer Wärmeleitfähigkeit < 3 W/mK besteht und auf der Unterseite mindestens eine Kochzone aufweist, dass die Heizelemente (30) der Kochzonen aus metallischen Schichten bestehen und dass zwischen der Unterseite (1 1 ) der Glaskeramikplatte (10) als elektrische Isolationsschicht (20) eine poröse Keramikschicht angeordnet ist.
2. Kochsystem nach Anspruch 1 , dadurch gekennzeichnet, dass der Ausdehnungskoeffizient a = 0 bis 1 ,5 x 10"6/K beträgt
3. Kochsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wärmeleitfähigkeit einem Wert < 2,7 W/mK einnimmt
4. Kochsystems nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass bei einem Kochbetrieb mit T = 550° C die Kochzone in der Diagonalen eine Verwölbung < 0,2 mm aufweist.
5. Kochsystem nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Heizelemente (30) im thermischen Spritzen, insbesondere atmosphärischen Plasmaspritzen oder Kaltgasspritzen aus NiCr-Basislegierun- gen, NiAI-Basislegierungen, CrFeAl-Basislegierungen oder oxidationsbestän- digen Cermets, wie Cr3C2-NiCr oder WC-CoCr, aufgebracht sind.
6. Kochsystem nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Heizelemente (30) im Siebdruckverfahren aus Ag/Pd-haltigen Pasten mit einer Glasfritte aufgebracht sind.
7. Kochsystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die als elektrische Isolationsschicht (20) verwendete Keramikschicht aus AI2O3, Mullit, Cordierit, Zirkonsilikat oder SiO2/TiO2 besteht.
8. Kochsystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Isolationsschicht (20) mittels dünner Stege (21 ) von Keramikprimärpartikeln mit einer Breite von etwa 50 bis 1 50 nm an der Unterseite (1 2) der Glaskeramikplatte (1 0) angebunden sind.
9. Kochsystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Heizelemente (30) mittels einer thermischen Isolationsschicht (40) aus silikatischem Fasermaterial abgedeckt sind.
10. Kochsystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Glaskeramikplatte (10) einen spezifischen Widerstand > 106 Ω cm und das gesamte Kochsystem eine Durchschlagfestigkeit > 3750 V nach 60335-1 aufweisen, während der Ableitstrom nach der Norm 60335-1 < 0,25 mA pro Kochzone beträgt.
PCT/EP2003/005493 2002-06-06 2003-05-26 Kochsystem mit direkt beheizter glaskeramikplatte WO2003105531A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002488620A CA2488620A1 (en) 2002-06-06 2003-05-26 Cooking system comprising a directly heated glass-ceramic plate
AU2003237683A AU2003237683A1 (en) 2002-06-06 2003-05-26 Cooking system comprising a directly heated glass-ceramic plate
US10/516,991 US20060118102A1 (en) 2002-06-06 2003-05-26 Cooking system comprising a directly heated glass-ceramic plate
DE50302383T DE50302383D1 (de) 2002-06-06 2003-05-26 Kochsystem mit direkt beheizter glaskeramikplatte
EP03735463A EP1516516B1 (de) 2002-06-06 2003-05-26 Kochsystem mit direkt beheizter glaskeramikplatte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225337.4 2002-06-06
DE10225337A DE10225337A1 (de) 2002-06-06 2002-06-06 Kochsystem mit direkt geheizter Glaskeramikplatte

Publications (1)

Publication Number Publication Date
WO2003105531A1 true WO2003105531A1 (de) 2003-12-18

Family

ID=29594317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005493 WO2003105531A1 (de) 2002-06-06 2003-05-26 Kochsystem mit direkt beheizter glaskeramikplatte

Country Status (9)

Country Link
US (1) US20060118102A1 (de)
EP (1) EP1516516B1 (de)
CN (1) CN100418389C (de)
AT (1) ATE317628T1 (de)
AU (1) AU2003237683A1 (de)
CA (1) CA2488620A1 (de)
DE (2) DE10225337A1 (de)
ES (1) ES2256752T3 (de)
WO (1) WO2003105531A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024092A1 (de) * 2011-08-17 2013-02-21 BSH Bosch und Siemens Hausgeräte GmbH Hausgerätevorrichtung mit einem überspannungsschutz

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356211A1 (de) * 2003-12-02 2005-06-30 Schott Ag Heizvorrichtung, insbesondere keramisches Kochfeld, und Verfahren zur Herstellung eines solchen
ITMI20041363A1 (it) * 2004-07-08 2004-10-08 Cedil Sa Elettrodomestico per cucine e simili
DE102009013127B9 (de) * 2009-03-13 2015-04-16 Schott Ag Transparente, eingefärbte Kochfläche und Verfahren zum Anzeigen eines Betriebszustandes einer solchen
ES2401890B1 (es) * 2011-06-29 2014-04-10 BSH Electrodomésticos España S.A. Dispositivo de aparato doméstico
US10648390B2 (en) * 2016-03-02 2020-05-12 Watlow Electric Manufacturing Company System and method for axial zoning of heating power
US10292286B2 (en) * 2017-07-31 2019-05-14 Apple Inc. Patterned glass layers in electronic devices
KR20200142319A (ko) * 2019-06-12 2020-12-22 엘지전자 주식회사 면상 발열체 및 그 제조방법
CN111698799A (zh) * 2020-05-14 2020-09-22 佛山市也牛科技有限公司 烹饪用非金属发热盘及其制备方法和加热装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951202A2 (de) * 1998-04-17 1999-10-20 BSH Bosch und Siemens Hausgeräte GmbH Kochplatte mit elektrisch leitfähiger Keramikplatte
EP0967838A1 (de) * 1998-06-25 1999-12-29 White Consolidated Industries, Inc. Dünnschichtheizanordnung
US6037572A (en) * 1997-02-26 2000-03-14 White Consolidated Industries, Inc. Thin film heating assemblies
DE19900178C1 (de) * 1999-01-07 2000-05-25 Schott Glas Formkörper aus Sprödwerkstoff, eingefaßt in einem Kunststoffrahmen aus temperaturbeständigem, relaxierfähigem, thermoplastischem Material
DE20114002U1 (de) * 2001-07-14 2002-03-07 Schott Glas, 55122 Mainz Kochfeld mit einer Glaskeramikplatte als Kochfläche

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646321A (en) * 1970-06-22 1972-02-29 Gen Motors Corp Infrared surface heating unit
US3733462A (en) * 1972-01-11 1973-05-15 Raytheon Co Heating element for flush top ranges
US4011091A (en) * 1975-08-13 1977-03-08 Owens-Illinois, Inc. Ceramic materials containing keatite
FR2623684A1 (fr) * 1987-11-24 1989-05-26 Labo Electronique Physique Element chauffant en vitroceramique
DE19711541A1 (de) * 1997-03-20 1998-09-24 Ako Werke Gmbh & Co Elektrokochplatte
DE19814949C2 (de) * 1997-05-07 2002-04-18 Aeg Hausgeraete Gmbh Gareinrichtung mit Induktionsbeheizung und Widerstandsbeheizung
DE19907038C2 (de) * 1999-02-19 2003-04-10 Schott Glas Transluzente oder opake Glaskeramik mit Hochquarz-Mischkristallen als vorherrschender Kristallphase und deren Verwendung
DE29905385U1 (de) * 1999-03-23 2000-08-03 Schott Glas Vorrichtung zum homogenen Erwärmen von Gläsern und/oder Glaskeramiken mit Hilfe von Infrarot-Strahlung
US6225608B1 (en) * 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
US6534751B2 (en) * 2000-02-28 2003-03-18 Kyocera Corporation Wafer heating apparatus and ceramic heater, and method for producing the same
US20030000938A1 (en) * 2000-12-01 2003-01-02 Yanling Zhou Ceramic heater, and ceramic heater resistor paste
DE10112234C1 (de) * 2001-03-06 2002-07-25 Schott Glas Keramik-Kochfeld

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037572A (en) * 1997-02-26 2000-03-14 White Consolidated Industries, Inc. Thin film heating assemblies
EP0951202A2 (de) * 1998-04-17 1999-10-20 BSH Bosch und Siemens Hausgeräte GmbH Kochplatte mit elektrisch leitfähiger Keramikplatte
EP0967838A1 (de) * 1998-06-25 1999-12-29 White Consolidated Industries, Inc. Dünnschichtheizanordnung
DE19900178C1 (de) * 1999-01-07 2000-05-25 Schott Glas Formkörper aus Sprödwerkstoff, eingefaßt in einem Kunststoffrahmen aus temperaturbeständigem, relaxierfähigem, thermoplastischem Material
DE20114002U1 (de) * 2001-07-14 2002-03-07 Schott Glas, 55122 Mainz Kochfeld mit einer Glaskeramikplatte als Kochfläche

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024092A1 (de) * 2011-08-17 2013-02-21 BSH Bosch und Siemens Hausgeräte GmbH Hausgerätevorrichtung mit einem überspannungsschutz

Also Published As

Publication number Publication date
EP1516516B1 (de) 2006-02-08
ES2256752T3 (es) 2006-07-16
DE10225337A1 (de) 2003-12-24
ATE317628T1 (de) 2006-02-15
CN100418389C (zh) 2008-09-10
CA2488620A1 (en) 2003-12-18
CN1659928A (zh) 2005-08-24
AU2003237683A1 (en) 2003-12-22
US20060118102A1 (en) 2006-06-08
EP1516516A1 (de) 2005-03-23
DE50302383D1 (de) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1983097B1 (de) Bügelsohle und bügeleisen damit
EP0853444B1 (de) Kochsystem mit einer Kontaktwärme übertragenden Elektro-Kochplatte
DE69834550T2 (de) Tauchheizkörper
EP2217036B2 (de) Küchenarbeitsplatte mit Induktionskochfeld
DE69830980T2 (de) Zirkuläres Schichtsheizelement und Kochherd aus Porzellan-Email
DE3728466A1 (de) Kochgeraet
EP1516516B1 (de) Kochsystem mit direkt beheizter glaskeramikplatte
US4751358A (en) Cooking container having a browning coating for microwave ovens and a method of forming the coating
DE19701640A1 (de) Kontaktwärmeübertragendes Kochsystem mit einer Elektro-Kochplatte
WO2011086504A2 (de) Hausgerätvorrichtung
DE69830984T2 (de) Dünnschichtheizanordnung
DE19845844A1 (de) Induktor für ein Induktions-Kochfeld
EP0859538B1 (de) Kochgerät mit Glaskeramikkochfläche mit Schnellkochzone
CA2439142A1 (en) Ceramic hob
US4827108A (en) Substrates for supporting electrical tracks and/or components
EP0866641A2 (de) Elektrokochplatte
EP2464196B1 (de) Beheizbarer Garraumeinsatz und Gargerät mit mindestens einer Mikrowellenquelle
DE10110789C1 (de) Kochgerät mit einer nicht planaren, mehrdimensional geformten Kochfläche aus Glas- oder Glaskeramik
DE10110792B4 (de) Keramisches Kochsystem mit Glaskeramikplatte,Isolationsschicht und Heizelementen
EP1366643B1 (de) Keramik-kochfeld
DE29702813U1 (de) Kontaktwärmeübertragendes Kochsystem mit einer Elektro-Kochplatte
DE202008008709U1 (de) Tisch sowie Tischplatte eines Tisches
DE19852366C2 (de) Hochwärmeleitender Körper, Verfahren zu seiner Herstellung und seine Verwendung
DE19961781C2 (de) Laminierbare Heizungsfolie mit hoher Temperaturbeständigkeit und Verfahren zum Aufbringen einer derartigen Heizungsfolie auf ein Trägermaterial
EP0836056A1 (de) Kochmulde

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003735463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2488620

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038130297

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003735463

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006118102

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10516991

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003735463

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10516991

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP