WO2003104719A1 - 除湿空調装置 - Google Patents

除湿空調装置 Download PDF

Info

Publication number
WO2003104719A1
WO2003104719A1 PCT/JP2002/012024 JP0212024W WO03104719A1 WO 2003104719 A1 WO2003104719 A1 WO 2003104719A1 JP 0212024 W JP0212024 W JP 0212024W WO 03104719 A1 WO03104719 A1 WO 03104719A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
condenser
air
section
Prior art date
Application number
PCT/JP2002/012024
Other languages
English (en)
French (fr)
Inventor
前田 健作
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2004511748A priority Critical patent/JPWO2003104719A1/ja
Priority to AU2002349627A priority patent/AU2002349627A1/en
Publication of WO2003104719A1 publication Critical patent/WO2003104719A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present invention relates to a dehumidifying air conditioner, and more particularly to a dehumidifying air conditioner having high dehumidifying capacity per energy consumption and easy to cope with low temperature and high humidity air conditioning conditions.
  • FIG. 10 Japanese Unexamined Patent Publication No. 2001-208373
  • This device comprises a compressor 260 for compressing the refrigerant C, a condenser 220 for condensing the compressed refrigerant C in the outside air B, and an expansion valve 29 having a bypass for the condensed refrigerant C having solenoid pulp.
  • the pressure is reduced by 1 and the evaporation and condensation are repeated at an intermediate pressure.
  • the heat exchanger 300 ", and the condensed refrigerant C is decompressed by a bypass valve with a solenoid valve 292 which evaporates.
  • an evaporator 210 for cooling the processing air A from the air-conditioned space 101 to the dew point temperature.
  • the bypass solenoid valve of the expansion valve 292 is closed, and the evaporation and condensation pressure of the heat exchanger 300 "is reduced by the condensation pressure of the condenser 220 and the evaporator 21. It is an intermediate pressure of 0 evaporation pressure.
  • the heat exchanger 300 "performs heat exchange between the treated air before and after being cooled to the dew point temperature in the evaporator 210 using the refrigerant as a medium.
  • the treated air A cooled to the dew point in the evaporator 210 is reheated in the heat exchanger 300 ". .
  • the treated air A cooled to the dew point by the evaporator 210 is reheated by the heat exchanger 300 ", so that the air having a too low temperature is air-conditioned. Although it is not supplied to the space 101, there is a problem that the amount of reheat is insufficient especially under low temperature and high humidity weather conditions.
  • an object of the present invention is to provide a dehumidifying air conditioner having high dehumidifying capacity per energy consumption and easy to cope with low-temperature and high-humidity weather conditions. Disclosure of the invention
  • An object of the present invention is, for example, as shown in FIG. 1, a booster 260 for pressurizing the refrigerant C; a condenser 220 for condensing the refrigerant C to heat the high heat source fluid B; Evaporator 210 that cools process air A to the dew point temperature; provided in a refrigerant path between condenser 220 and evaporator 210, and condenses refrigerant C in condenser 220 An intermediate evaporator 310 for evaporating at an intermediate pressure between the pressure and the evaporation pressure of the evaporator 210 to cool the processing air A; and a refrigerant path between the condenser 220 and the evaporator 210 An intermediate condenser 320 for condensing the refrigerant C at a pressure intermediate between the condensation pressure of the condenser 220 and the evaporation pressure of the evaporator 210 to heat the processing air A; A reheater 32 A which heats A with
  • a first expansion mechanism 292 provided on a refrigerant path downstream of the intermediate condenser, and a second expansion mechanism provided on a refrigerant path upstream of the intermediate evaporator 310 are provided.
  • a squeezing mechanism 29 1 is provided.
  • a reheater that heats the processing air with the refrigerant C pressurized by the pressurizer in parallel with the heating in the intermediate condenser or after being heated in the intermediate condenser is provided.
  • the treated air can also be heated by a reheater.
  • a throttle 71 3 provided in a refrigerant path connecting the condenser 220 and the intermediate evaporator 310 is provided;
  • a flow path resistance 81 provided in the refrigerant path of the refrigerant;
  • a bypass path 802 for introducing the refrigerant to the reheater 32 OA from between the flow path resistance 81 and the booster 260;
  • a bypass valve 801 for increasing or decreasing the gas flow rate flowing through the bypass passage 802 may be provided.
  • Flow resistance is typically common to bypass valves (see, for example, Figure 1).
  • the flow path resistance may be a simple resistance of an orifice or the like, or a condenser may be used as a resistance, and a bypass valve may be provided in the bypass path (for example, see FIG. 5). If the flow path resistance is an orifice or valve and is provided separately from the condenser, The outlet can be between the condenser and the flow path resistance.
  • bypass valve 8 0 1 provided in the refrigerant path between the booster 260 and the throttle 7 13, and the reheater 3 2 OA from between the bypass valve 8 0 1 and the condenser 2 20
  • a bypass path 802 for guiding the refrigerant may be provided.
  • the intermediate evaporator 310 and the evaporator 210 are provided.
  • the bypass path can be installed on the side of the indoor unit including the intermediate condenser 320, and the system can be simplified.
  • a controller 501 for adjusting the bypass valve may be further provided.
  • a temperature detector 852 for detecting a processing air temperature downstream of the intermediate condenser 320 and the reheater 32OA is provided, and the controller is based on the temperature detected by the temperature detector. Then, the bypass valve may be adjusted.
  • the dehumidifying air conditioner may include a controller 501 for adjusting the flow rate of the high heat source fluid B.
  • the flow rate of the high heat source fluid can be adjusted, so that the amount of condensation in the condenser can be controlled, and hot gas for bypass can be secured downstream of the condenser.
  • a throttle 71 3 provided in a refrigerant path 202 connecting the condenser 220 and the intermediate evaporator 310,
  • the refrigerant is taken out from between 260 and the condenser 220, the refrigerant is guided to the reheater 813, and the refrigerant is returned between the condenser 220 and the throttle 713. 2; and a bypass valve 811 for adjusting the flow rate of the refrigerant flowing through the bypass 811 may be provided.
  • the refrigerant is taken out from between the booster and the condenser, the refrigerant is guided to the reheater, and a bypass path for returning the refrigerant between the condenser and the throttle is provided.
  • the temperature of the refrigerant can be relatively high.
  • a reheater 32OB may be provided in a refrigerant path 202 connecting the condenser 220 and the intermediate evaporator 310. Good. In this case, typically, it is preferable that the refrigerant condensed in the condenser 220 is entirely flown to the reheater 320B.
  • a throttle 713 provided in a refrigerant path 202 connecting the reheater 32OB and the intermediate evaporator 310 may be provided.
  • a heat radiation amount adjusting means 502, 140 for increasing or decreasing the heat radiation amount in the condenser 220 and increasing or decreasing the enthalpy of the refrigerant flowing into the reheater 320B may be provided.
  • This application is based on Japanese Patent Application No. 2000-2017 filed on June 11, 2002 in Japan, the contents of which are incorporated herein by reference. Form a part.
  • FIG. 1 is a flowchart of a dehumidifying air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a schematic side view showing an installation state of the dehumidifying air conditioner shown in FIG. 1 and a perspective view of a heat exchanger.
  • FIG. 3 is a Mollier diagram of the heat pump of the dehumidifying air conditioner shown in FIG.
  • FIG. 4 is a psychrometric chart illustrating the operation of the dehumidifying air conditioner of FIG. 1 in the dehumidifying operation mode.
  • FIG. 5 is a flowchart of the dehumidifying air conditioner according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart of the dehumidifying air conditioner according to the third embodiment of the present invention.
  • FIG. 7 is a flowchart of a dehumidifying air conditioner according to a fourth embodiment of the present invention.
  • FIG. 8 is a partially broken perspective view of a heat exchanger used in the dehumidifying air conditioner shown in FIG.
  • FIG. 9 is a Mollier diagram of the heat pump of the dehumidifying air conditioner shown in FIG.
  • FIG. 10 is a flowchart of a conventional heat pump and a dehumidifying air conditioner.
  • FIG. 1 is a flowchart of a dehumidifying air conditioner 21 according to a first embodiment of the present invention.
  • the dehumidifying air conditioner 21 is a dehumidifying air conditioner capable of performing a dehumidifying operation in which the treated air A is cooled to its dew point temperature to remove moisture, reheat and dehumidify, and a cooling operation in which sensible heat is mainly removed.
  • the processing air A may be slightly supercooled. In this case, “cooling and dehumidification below the dew point temperature” is performed. This concept is also included.
  • air cooled to the dew point temperature to remove moisture has a lower dew point temperature than the original air.Therefore, based on the initial dew point temperature, it is ⁇ cooled below the dew point temperature and dehumidified ''.
  • the configuration of the dehumidifying air conditioner 21 according to the first embodiment and the heat pump HP 1 as a component thereof will be described with reference to FIG.
  • the dehumidifying air conditioner 21 reduces the absolute humidity of the processing air A as a low heat source fluid by the evaporator 210 and maintains the air-conditioned space 101 to which the processing air A is supplied in a comfortable environment. is there.
  • the processing air-related equipment configuration will be described along the path of the processing air A from the air-conditioned space 101.
  • the route 107 connected to the air-conditioned space 101, the first section 310 of the heat exchanger 300 serving as a heat exchange means, the route 108, and the treated air A are taken to the dew point temperature.
  • the blower 102 and the path 111 are arranged in this order, and are configured to return to the air-conditioned space 101.
  • the air supplied from the dehumidifying air conditioner 21 to the air conditioning space 101 is denoted by S A
  • R A the air returning from the air conditioning space 101 to the dehumidifying air conditioner 21
  • the path 124, the condenser 220 for cooling and condensing the refrigerant C, the path 125, and the cooling air B A blower for blowing air 1400, a route 1266 and arranged in this order, It is configured to exhaust to outside OA.
  • evaporator 210 compresses refrigerant C evaporated and gasified in evaporator 210 (pressurizes) Compressor 260 as a booster, route 201, condenser 220, route 202, Evaporation section 251 that cools process air A flowing through first section 310 as an intermediate evaporator of heat exchanger 300, and process air A that flows through second section 320 as an intermediate condenser of heat exchanger 300.
  • the heat pump HP 1 is configured such that the condensing section 252 to be heated (reheated), the path 203, and the throttle 250 are arranged in this order, and return to the evaporator 210 again.
  • a bypass valve 801 and an expansion valve 713 are inserted and arranged from the condenser 220 side.
  • an outlet and a return of a bypass line 802 for guiding the refrigerant to a reheater 32 OA described later are connected, respectively.
  • the first section 31 is a section in which treated air flows, but is an intermediate evaporator 310 that evaporates at an intermediate pressure when viewed from the refrigerant flow side. That is, this portion is appropriately referred to as the first section 310 and the intermediate evaporator 310 depending on whether the force is viewed from the processing air side or viewed from the refrigerant side. The same applies to the relationship between the second section 320 and the intermediate condenser 320.
  • an indoor unit is configured to include the evaporator 210, the heat exchanger 300, the reheater 32OA, and the fan 102
  • an outdoor unit is configured to include the compressor 260, the condenser 220, and the fan 140. ing.
  • the evaporating section 251 is formed by a heat transfer tube meandering in the first section 310, and the condensing section 252 is formed by a tube meandering in the second section 320.
  • the heat transfer tube which is a thin tube, penetrates a large number of plate fins, for example, aluminum sheets while meandering.
  • the evaporating section 251 is connected to the condensing section 252 after meandering the first section 310 multiple times.
  • the condensing section 252 is connected to the path 203 after meandering the second section 320 several times.
  • each section is shown to meander in a plane along the flow of the processing air A, but in fact, it will meander in a plane perpendicular to the flow of the processing air A. (See Figure 2).
  • a plurality of orthogonal surfaces may be provided so that there are a plurality of meandering layers.
  • the evaporating section 25 1 and the condensing section 25 2 are formed by a continuous heat transfer tube, and after the evaporating section 25 1 is fully meandered several times in the first section 310, In other words, if the condensing section 25 2 is meandered several times in the second section after evaporating the refrigerant flowing inside, one pipe connecting the evaporating section 25 1 and the condensing section 25 2 is formed. Or the minimum number (2-4) is sufficient, so it is easy to install the first section 310 and the second section 320 apart (see Figs. 2 (b) and 2 (c)). ).
  • the condensed refrigerant liquid is not returned to the intermediate evaporator 310 and evaporated again.
  • the condensed refrigerant liquid is supplied to the evaporator 210 without returning to the intermediate evaporator 310. Therefore, the intermediate condenser 320 and the intermediate evaporator 310 can be easily formed as a heat exchanger that is installed apart from each other, and the communication pipe can be minimized.
  • a route 203 for bypassing the throttle 250 is provided in the route 203 of the refrigerant C, and a solenoid pulp 253 is provided in the route 203A.
  • the expansion valve 7 13 forms a second throttle mechanism 291, and the first throttle mechanism 2 92 includes the throttle 250 and the solenoid valve 253.
  • the solenoid valve 253 is opened, the opening area is formed so as to be substantially equal to the cross-sectional area of the path 203.
  • the solenoid pulp 25 3 is opened, the degree of throttle of the first throttle mechanism 29 2 is reduced (the aperture area is increased), and is large enough not to substantially act as a throttle. It will have an opening. .
  • thermosensitive cylinder 722 for detecting the temperature of the refrigerant flowing in the path is mounted on the path 204, and the pressure of the refrigerant is set between the path 204 and the expansion valve 713.
  • An equalizing pipe 7 22 A leading to the expansion valve 7 13 is provided.
  • the expansion valve 7 13 receives the temperature signal (pressure) from the temperature sensing cylinder 7 2 2 and receives the refrigerant pressure through the pressure equalizing pipe 7 2 2 A, and the refrigerant flowing through the path 2 0 4 evaporates.
  • the expansion valve 7 13 is opened and closed so as to appropriately maintain the dryness of the refrigerant that evaporates in the vessel 210. It is preferable that the refrigerant in the path 204 is just in a saturated state, but a small amount may be on the superheated side. If the compressor 260 sucks the liquid refrigerant, the compressor 260 may be overloaded or the compressor 260 may be damaged.
  • the heat exchanger 300 is a heat exchanger that indirectly exchanges heat between the treated air A before and after flowing into the evaporator 210 via the refrigerant C.
  • the heat exchanger 300 is provided with a first section 310 through which the processing air A before passing through the evaporator 210 flows, and a second section through which the processing air A after passing through the evaporator 210 flows.
  • Section 320 constitutes a separate rectangular parallelepiped space. Both compartments are provided with bulkheads 301 and 302 so that the process air flowing through both compartments is not mixed.Piping connecting the evaporating section 251, which is a heat exchange tube, and the condensing section 252 202B penetrates the partition walls of these two sections.
  • the treated air A before being introduced into the evaporator 210 is supplied from the right through the path 107 to the first section 310, and from the left through the path 108. get out.
  • the treated air A which has been cooled to the dew point temperature (below) through the evaporator 210 and has a reduced absolute humidity, is supplied from the left side of the figure to the second section 320 through the path 109 and to the right. Exit from Route 1 110 through
  • the reheater 32OA includes a reheat section 25A in which a refrigerant having the same pressure as that of the condenser 220 is introduced. That is, the reheating section 25A is formed of a tube meandering inside the reheater 32OA as in the condensing section 252.
  • the reheater 320 A is structurally configured to utilize a portion of the condensation section 250 of the second section (intermediate condenser) 320, and thus the condensation section 2.5. It is structurally integrated with 2.
  • the first section 310 and the second section 320 constitute a heat exchanger 300, and the heat exchanger 300 and the reheater 32OA are used to generate heat. It is assumed that the exchanger 300a is configured.
  • the evaporator 210 is formed by a large number of plate fins, for example, aluminum thin plates, and heat transfer tubes, which are small tubes that pass through the plate fins (see FIG. 2). ).
  • each heat transfer tube Although it is shown to meander in a plane along the flow of the processing air A, it is better to actually meander in a plane perpendicular to the flow of the processing air A (see Fig. 2).
  • the solenoid valve 253 when the solenoid valve 253 is closed, the refrigerant pipe between the heat exchanger 300 and the evaporator 210 is connected via the throttle 250, and the heat exchange
  • the evaporating pressure and the condensing pressure in the vessel 300 are intermediate pressures.
  • the temperature air temperature
  • the absolute humidity is usually high. In this case, it is better to select the cooling operation mode to actively remove both sensible heat and latent heat.
  • the selection of the dehumidifying operation mode or the cooling operation mode may be automatically performed by the controller based on the temperature of the processing air or the temperature and the absolute humidity, or may be manually performed. High and low humidity also have personal preferences. In addition, there are cases where it is desired to forcibly lower the temperature regardless of the humidity or temperature, or to lower the humidity for the purpose of forcibly drying the room.
  • the refrigerant pipe between the heat exchanger 300 and the evaporator 210 is connected substantially without restriction, and the refrigerant pipe inside the heat exchanger 300
  • the pressure inside the heat transfer tube is substantially equal to the evaporation pressure of the evaporator 210 in both the evaporator section 251 and the condensing section 252, and the heat exchanger 300 evaporates together with the evaporator 210. Acts as a vessel.
  • bypass valve 801 and the reheater 32OA will be described.
  • the outlet of the bypass line 802 is connected to the indoor unit of the downstream passage 202 of the condenser 220.
  • Reheater 3 2 OA Reheat section 2 5 2 A
  • the return line of the bypass line 8 02 through the 2 A is connected downstream of the bypass valve 8 0 1 to the upstream path 2 0 2 of the expansion valve 7 1 3 Have been.
  • the bypass valve 801 is a solenoid valve that performs an on-off operation, but is not limited to this, and may be a control valve that can freely adjust the opening. The operation in each case will be described in detail later.
  • the route 107 is provided with a temperature sensor 851 for detecting the temperature of the return air RA
  • the route 111 is provided with a temperature sensor 852 for detecting the temperature of the supply air SA. It can be said that the temperature sensor 851 detects the temperature in the air-conditioned space 101.
  • the dehumidifying air conditioner 21 is provided with a controller 501 for adjusting the amount of reheat by opening and closing and adjusting the bypass valve 81.
  • the controller 501 is connected to the temperature sensors 851, 852, the bypass valve 800, and the fan 140 by signal wiring. Then, it is configured to receive the temperature signals from the temperature sensors 851, 852 and transmit the control signal to the bypass valve 81 and the fan 140.
  • the controller 501 is preferably a digital controller, and may be a personal computer or a microcomputer on which control software is installed.
  • the controller 501 may be on the indoor unit side or on the outdoor unit side. However, it is preferable to install it on the indoor unit side that is not affected by severe outside air.
  • the circuit concept of the evaporator 210 shown in FIG. 1 (b) will be described.
  • the number of circuits of the heat exchanger that causes the refrigerant to flow through the heat transfer tube and exchange heat between the refrigerant and the fluid flowing outside the heat transfer tube is the number of flow paths through which the refrigerant flows in parallel.
  • the refrigerant path 203 is connected to the distributor 601, which is provided immediately after entering the heat transfer tubes 210A and 210B of the evaporator 210 after exiting the throttle 250. It has been.
  • the refrigerant path 62 1 and the refrigerant path 62 2 are branched from the distributor 601, and the refrigerant is introduced into the heat transfer tubes 210A and 21OB, respectively.
  • the heat transfer tubes 210A and 210B are arranged so that the refrigerant flows in parallel in the evaporator 210.
  • the flow direction of the refrigerant is opposite to the flow direction of the processing air A. This is preferably a countercurrent flow in temperature.
  • the number of circuits in the evaporator 210 is two.
  • one heat transfer tube meanders, and the number of circuits is one. That is, the circuit of the first section 310, which is the intermediate evaporator part of the heat exchanger 300, Since the number of circuits is one, it is less than the number of circuits in the evaporator 210.
  • the heat exchanger 300 may also be configured to have a plurality of circuits.
  • the number of circuits in the evaporator 210 may be larger than the number of circuits in the heat exchanger 300. This is because it corresponds to the specific volume of the flowing refrigerant. For example, if the former is 2, the latter is 3 or more, for example, 4.
  • the circuit of the heat exchanger 300 is merged once at the outlet, branched by the distributor, and then branched to the heat transfer tube of the evaporator 210.
  • the flow rates of the refrigerant in the evaporator 210 and the refrigerant in the heat exchanger 300 are both appropriate. Therefore, the heat transfer coefficients of the evaporator 210 and the heat exchanger 300 can both be kept high.
  • the circuit of the heat exchanger 300 is merged with the merging header, squeezed by the squeezing mechanism 292, and re-divided to the circuit of the evaporator 210. Even if evaporation and condensation in the vessel 300 are not uniform for each circuit, the unevenness is not brought into the evaporator 210.
  • the aperture mechanism can be centralized, and the structure can be simplified.
  • the solenoid valve 253 is closed to generate a pressure difference between the heat exchanger 300 and the evaporator 210.
  • the expansion valve 713 controls opening and closing such that the refrigerant from the evaporator 210 is dry. That is, adjustment is made so that an appropriate amount of refrigerant is supplied to the heat exchanger 300.
  • the mode for selecting the power for manually performing the cooling operation ⁇ the dehumidifying operation is selected.
  • the humidity is high and humid, dehumidification operation is selected.
  • the selection is made by the mode selection button (not shown) of the controller.
  • the controller 501 closes the bypass valve 81. Then, the refrigerant liquid from the condenser 220 flows into the reheater 32OA, and the reheat section 25 Heat the process air while flowing through 2A. .
  • the controller 501 sends a signal to the drive unit (not shown) of the fan 140 to reduce the rotation speed (rotation speed) of the fan 140.
  • the drive of fan 140 is a variable speed motor. The number of revolutions of the fan 140 is reduced to a value such that the amount of air in the condenser 220 is less than the amount of air sufficient to completely condense the refrigerant gas from the compressor 260.
  • the refrigerant 220 and the liquid flow from the condenser 220 to the reheat section 250A in a mixed state. Then, the processing air A is heated by the condensation of the refrigerant gas. Since this condensing temperature is higher than the condensing temperature of the condensing section 252, the processing air can be sufficiently heated.
  • the controller 501 Stops the operation of the dehumidifying air conditioner 21. Or open the bypass valve 801.
  • the bypass valve 801 When the bypass valve 801 is opened, the differential pressure across the bypass valve 801 disappears, so that the refrigerant does not flow to the reheater 32OA, and the reheater 32OA does not reheat. Les ,. That is, it is a normal dehumidification operation in which only the reheating by the second section (intermediate condenser) 320 is performed.
  • the temperature sensor 852 is auxiliary and need not be provided. In that case, the dehumidifying air conditioner 21 may be controlled so that the temperature detected by the temperature sensor 851 becomes a comfortable temperature. That is, it is only necessary to start / stop the dehumidifying air conditioner 21 or open / close the bypass valve 81.
  • the bypass valve 801 has been described as an on / off valve (a valve that is fully open or fully closed), but may be a control valve that can continuously adjust the opening degree from the fully closed state to the fully opened state including the intermediate opening degree. .
  • the controller 501 adjusts the opening of the bypass valve 81 so that the temperature detected by the temperature sensor 851 or the temperature sensor 852 becomes a set value.
  • bypass valve 801 is provided in the path 202 .
  • a throttle such as an orifice may be provided in place of the bypass valve of the path 202, and a bypass valve 801 may be provided in the bypass line 802.
  • the refrigerant can be guided to the reheater 320A.
  • the evaporating section 251 which is composed of heat transfer tubes (small tubes), is arranged so as to penetrate many plate fins. They are connected to each other by U-tubes outside the outermost fins. In this way, the heat transfer tube penetrates the first section 310 several times while meandering.
  • the first section 310 is a rectangular parallelepiped space formed by arranging a large number of rectangular plate fins in parallel. Further, it is preferable that the outer surface of the rectangular parallelepiped space accommodating the plate fin and the thin tube group is surrounded by a plate housing. However, the two opposing surfaces of the housing are open, and the processing air passes through the openings.
  • the condensing section 2552 which is a heat transfer tube, penetrates the second section 320 in a meandering manner multiple times.
  • the second section 320 is also a rectangular parallelepiped space having a structure similar to that of the first section 310.
  • the end of the evaporating section 25 1 and the end of the condensing section 25 2 are connected by a torch pipe 202B.
  • the pipe 202B is configured as a part of a continuous tube forming the evaporating section 251 and the condensing section 2502.
  • the reheater 32 O A is configured as a heat exchanger that shares a plate fin with the second section 320. However, since the temperature of the condensing section 255 and the temperature of the reheating section 250A are different, a cut is made in the pre-fin between the reheater 32OA and the second section 320. Better.
  • the second compartment 320 and the reheater 32OA looks like an integral heat exchanger except that the plate fins have cuts and the heat transfer tubes are not connected to each other.
  • the heat transfer tube is simply not connected, and the structure becomes an integral heat exchanger.
  • they are made separately by dividing the flow path according to the arrangement of the U-shaped heat transfer tubes.
  • the refrigerant C flowing in one direction as a whole from the evaporating section 25 1 to the condensing section 25 2 evaporates in the evaporating section 25 1 while flowing in a meandering manner in the small tube group, and evaporates in the condensing section 2 While condensing at 52, heat from the warmer process air A flowing through the first compartment 310 is transferred to the cooler process air A flowing through the second compartment 320.
  • the reheater 32OA heats the processing air A flowing in parallel with the processing air flowing in the second section 320 to a temperature higher than that of the second section 320.
  • the steamer 210 also has a heat transfer tube formed by passing through a number of rectangular plate fins.
  • the configuration is a rectangular parallelepiped space like the first section 310 and the second section 320. They are connected by U-tubes outside the outermost fins. In this way, the heat transfer tube penetrates the fin several times while meandering.
  • the evaporating section 25 1 and the condensing section 25 2 are each configured as a single-layer thin tube group arranged in a meandering manner in one plane orthogonal to the flow of the processing air A.
  • the evaporator 210 is configured as a two-layer thin tube group meanderingly arranged in two planes orthogonal to the flow of the processing air A.
  • the present invention is not limited to this, and the number of layers may be determined according to the amount of heat transfer. Further, the distribution of the heat transfer area of the thin tube group in the heat exchanger 300 and the evaporator 210 may be determined in accordance with the ratio between the latent heat load and the sensible heat load, as described later.
  • the evaporator 210 is disposed between the first section 310, the second section 320, and the reheater 320A.
  • one rectangular parallelepiped space is divided into three sections, each of which is configured as a first section 310, evaporator 210, second section 320, and reheater 32OA.
  • the structure becomes simple. It is preferable that the fins are cut so as to be discontinuous as shown in the drawing between the sections 310, 320, the reheater 32OA and the evaporator 210. This is because the temperature of each adjacent part is different.
  • the tubules are penetrated at equal intervals through the fins, expanded and fixed to the fins, connected between the thin tubes with a simple U-tube, between the sections 310, 320, and the evaporator. Since the connection to 210 can be made with one or a small number of pipes (or a part of small pipes), the configuration is simple and the production is easy.
  • the first compartment 310, evaporator 210, second compartment 320, and reheater 32OA are formed integrally in the air-conditioned space 101, that is, in the indoor unit installed indoors.
  • the assembled heat exchanger and a blower 102 for circulating return air RA and supply air SA are housed therein. If a cross flow fan is used as the blower 102, the indoor units can be compacted.
  • a dust filter is provided upstream of the flow of the return air RA in the first section 310.
  • Heat exchanger 300a (first section 310 and second section 320 constitute heat exchanger 300, heat exchanger 300 and reheater 32OA exchange heat
  • a drain pan 450 is provided below the evaporator 210, and a drain pipe leads from the drain pan 450 to the outside.
  • the return air RA is filtered to remove dust, precooled in the first section 310, further cooled in the evaporator 210 and dehumidified to saturated air.
  • This saturated air is reheated in the second section 320 (and the reheater 32OA), and is supplied as air SA having a suitable absolute humidity and a proper temperature, that is, a proper relative humidity. Is supplied to the air-conditioned space 101.
  • the treated air passes through one set of plate fins and tubules in one direction (although there is a gap between each section and the evaporator), which at first glance looks like a normal cooling fin tube heat exchanger.
  • the three processes of pre-cooling, pre-cooling, dewatering, and reheating are performed with care, resulting in supply air SA with moderate humidity and temperature.
  • a condenser 220, a compressor 260, and a blower 140 are housed in an outdoor unit installed outside the air-conditioned space 101. Then, the condenser 220 and the evaporating section 251 of the first section 310 are connected by piping 202, and the evaporator 210 and the compressor 260 are connected by piping 203. It is connected. That is, the indoor unit and the outdoor unit are connected only by two pipes 202 and 203. In this figure, the drawing mechanisms 29 1 and 29 2 are not shown.
  • bypass line 802 (not shown in FIG. 2) described with reference to the flow chart of FIG. 1 can be processed in the indoor unit, the refrigerant line connecting the outdoor unit and the indoor unit is connected to the path 20 Only 2, 2 3 is enough.
  • the solenoid valves 25 are closed.
  • the refrigerant gas C compressed by the compressor 260 is guided to the condenser 220 via the refrigerant gas pipe 201 connected to the discharge port of the compressor 260.
  • the refrigerant gas C compressed by the compressor 260 is cooled and condensed by outside air B as cooling air.
  • the refrigerant outlet of the condenser 222 is connected to the inlet of the evaporation section 251 of the heat exchanger 300 by a refrigerant path 202.
  • the bypass valve 801 is open, and the liquid refrigerant C that has exited the condenser 220 is decompressed by the expansion valve 711, expands, and some refrigerant C evaporates ( Flash).
  • the refrigerant C in which the liquid and gas are mixed reaches the evaporation section 251, where the liquid refrigerant C flows through the plate fins and evaporates so as to wet the inner wall of the tube of the evaporating section 251, which is meandering.
  • the processing air A flowing through the first section 310 and before flowing into the evaporator 210 is cooled (pre-cooled).
  • the refrigerant which has been vaporized to some extent in the evaporation section 251, and has become a mixture of gas and liquid, is led to the pipe 202B and flows into the condensation section 255.
  • Processed air A flowing through the second section 320 that is, pre-cooled in the first section 310, then cooled and dehumidified in the evaporator 210, and has a lower temperature than before flowing into the evaporator 210. Heats (reheats) the treated air A, which has lost its heat and condenses.
  • the evaporating section 25 1 and the condensing section 25 2 are formed by a series of tubes (including U tubes). That is, since the refrigerant gas C (and the non-evaporated refrigerant liquid C) evaporated in the evaporating section 25 1 flows into the condensing section 25 2 and is condensed, Heat transfer is performed simultaneously with the transfer.
  • the outlet side of the last condensation section 250 of the heat exchanger 300 is connected to the evaporator 210 by a refrigerant liquid pipe 203, and an expansion valve 250 is provided in the refrigerant pipe 203.
  • a solenoid valve 2'53 that bypasses JJ Peng Zhangben 250 is installed.
  • the refrigerant liquid C condensed in the condensing section is decompressed by the throttle 250 and expanded to lower the temperature, enters the evaporator 210 and evaporates, and cools the processing air A by the heat of evaporation.
  • the throttle 250 for example, an orifice, a capillary tube, an expansion valve, or the like is used. Since the solenoid valve 253 is closed, the refrigerant liquid C does not pass through the solenoid valve 253.
  • the refrigerant C evaporated and gasified by the evaporator 210 is led to the suction side of the compressor 260 through the path 204, and the above cycle is repeated.
  • the behavior of the refrigerant C in the evaporating section 25 1 and the condensing section 25 2 of the heat exchanger 300 will be described.
  • the liquid-phase and gas-phase refrigerant C flows into the evaporating section 25 1.
  • Refrigerant liquid C which is partially vaporized and slightly contains a gas phase may be used.
  • the refrigerant C pre-cools the processing air A while flowing through the evaporating section 251, and is heated by itself and flows into the condensing section 252 while increasing the gas phase.
  • the cooling air dehumidifies the processing air A, which has a lower temperature than the processing air A in the evaporating section 251, and deprives itself of heat to generate the gas-phase refrigerant C. Let it condense. As described above, the refrigerant C flows through the refrigerant channel while undergoing a phase change between a gas phase and a liquid phase, and the treated air A before being cooled by the evaporator 210 and the absolute air cooled by the evaporator 210 Heat is exchanged with the treated air A, which has reduced the temperature.
  • the process air is reheated to a higher temperature than that by the second section 320 by fully closing or opening the bypass valve 81.
  • the solenoid valve 253 is fully opened from fully closed so that the refrigerant C does not drop in pressure around the throttle 250, and the dehumidification as the first operation mode is performed.
  • the operation mode is switched from the operation to the cooling operation as the second operation mode.
  • the bypass valve 801 is fully opened.
  • the pressure drop of the refrigerant C around the throttle 250 can be reduced to almost zero, and the pressure drop of the refrigerant C can be generated by the expansion valve 7 13. 5 and the pressure of refrigerant C in the evaporator section 25 1 is almost equal to the pressure of the refrigerant C in the evaporator 210, and in addition to the evaporator 210, the condensation section 25 2 and the evaporator section Also in 251, the refrigerant C evaporates. Yotsu As a result, the heat transfer area for evaporation is increased, so that the cooling capacity, that is, the sensible heat treatment capacity can be increased.
  • the dehumidifying operation mode the amount of water condensed due to cooling is increased from that in the cooling operation mode by using the heat exchanger 300 as a reheat heat exchanger for the processing air A before and after passing through the evaporator 210.
  • the dehumidifying capacity that is, the latent heat processing capacity can be increased from the cooling operation mode.
  • the humidity can be reduced more quickly than in the cooling operation mode, and it is possible to cope with a so-called low sensible heat ratio and high humidity indoor air-conditioning load.
  • the amount of dew condensation may be increased by reducing the amount of air blown by the blower 102 from that in the cooling operation mode.
  • the blower 102 is also driven by a variable speed motor (not shown) to enable a reduction control of the rotation speed.
  • the dehumidifying air conditioner of the first embodiment When the dehumidifying air conditioner of the first embodiment is applied to a home air conditioner, the dehumidifying operation is performed so that the room does not become too cold during the rainy season or when sleeping at night in the summer, and the humidity is low and comfortable. You can create an environment. It can also handle low temperature and high humidity.
  • the dehumidifying air conditioner of the present embodiment can change the sensible heat ratio of the air conditioning load, and can perform energy-saving operation in both the dehumidifying operation and the cooling operation.
  • FIG. 3 is a Mollier diagram when the mixed refrigerant HFC407C is used.
  • the horizontal axis is entraumi and the vertical axis is pressure.
  • point a is the state of the refrigerant outlet of the evaporator 210, and the refrigerant C is in the state of a saturated gas.
  • the pressure is 0.67 MPa
  • the temperature is 11.2 ° C
  • the enthalpy is 41.4 O kJ / kg.
  • the state where this gas is sucked and compressed by the compressor 260 and the state at the discharge port of the compressor 260 are indicated by a point b. In this state, the pressure is 1.66 MPa, and the state is a superheated gas.
  • This refrigerant gas C is cooled in the condenser 220 and reaches a point c on the Mollier diagram.
  • This point is a saturated gas state, the pressure is 1.66 MPa and the temperature is 42.9 ° C. Under this pressure, it is further cooled and condensed, reaching point d.
  • This point is a saturated liquid state, the pressure is the same as point c, the temperature is 38 ° C, and the enthalpy is 256.9 kJ / kg. Since the refrigerant used is a mixed refrigerant, the temperature on the saturated gas line and the temperature on the saturated liquid line are different even when condensing at the same pressure.
  • the pressure is an intermediate pressure of the present invention, and has a value intermediate between 0.67 MPa and 1.66 MPa in the present embodiment. Here, a part of the liquid is evaporated and the liquid and the gas are mixed.
  • the refrigerant liquid C evaporates under the intermediate pressure and reaches a point f between the saturated liquid line and the saturated gas line at the same pressure.
  • a part of the liquid refrigerant C in which a part of the liquid is evaporated remains.
  • the refrigerant in the state indicated by the point f flows into the condensing section 2 52.
  • the refrigerant C is deprived of heat by the low-temperature process air A flowing through the second section 320, and reaches a point g.
  • Point g is on the saturated liquid line in the Mollier diagram.
  • the temperature is 18.
  • enthalpy is 226.1 kJ / kg.
  • the refrigerant liquid C at the point g is reduced in pressure by the throttle 250 to 0.67 MPa, which is a saturation pressure at a temperature of 5.2 ° C., and reaches the point j.
  • the refrigerant C of j reaches the evaporator 210 as a mixture of the refrigerant liquid C and the refrigerant gas C at 5.2 ° C, where it takes heat from the treated air A, evaporates and evaporates to form the Mollier wire.
  • the saturated gas in the state of point a in the figure becomes the gas, and is sucked into the compressor 260 again, and the above cycle is repeated.
  • a mixed refrigerant is used, so even at the same pressure, the temperature on the saturated gas line and the temperature on the saturated liquid line are different.
  • the specific temperature of the heat exchanger 300 is omitted, a similar effect can be obtained by similarly making the flow of the refrigerant and the processing air counter flow (see FIG. 1).
  • the refrigerant C changes the state of evaporation from the point e to the point f in the evaporating section 251, and changes from the point f to the point g1 in the condensation section 252.
  • the heat transfer rate is very high and the heat exchange efficiency is high because of the heat transfer of evaporation and condensation.
  • a compression heat pump HP 1 including a compressor 260, a condenser 220, an expansion valve 71 3 ⁇ a throttle 250, and an evaporator 210
  • HP 1 a compression heat pump HP 1 including a compressor 260, a condenser 220, an expansion valve 71 3 ⁇ a throttle 250, and an evaporator 210
  • the enthalpy difference available in the evaporator 210 is 41.4-25.6.
  • bypass valve 801 is fully closed and the rotation speed of the fan 140 is reduced, that is, the amount of air blow is reduced.
  • the refrigerant does not completely condense in the condenser 220, and the refrigerant exiting the condenser 220 is a point c and a point c on the Mollier diagram.
  • the state represented by the point Y between d and d is obtained. That is, the refrigerant liquid and the refrigerant gas are mixed.
  • the enthalpy difference between points Y and d is denoted by ⁇ SHr. That much is cooled in the reheat section 32 A of the reheater 32 OA. Then, the gas component remaining without being condensed in the condenser 220 is condensed, and reaches a point d.
  • evaporator 210 evaporates to point a.
  • the maximum value of the dehumidification load (latent heat load) of the air conditioning load is not so different between the midsummer and the rainy season.
  • the sensible heat load increases significantly during the high summer months, for example, in August. Therefore, as a design maximum load of an air conditioner that combines cooling and dehumidification, the load at the time of midsummer must be adopted.
  • the maximum load in the dehumidifying operation mode is less than half of the maximum load in the cooling operation mode.
  • the latent heat load is 30 and the total load in the rainy season such as the rainy season is 40 and the latent heat load is 25. .
  • the amount of heat to be taken by the evaporator is much higher in the cooling operation mode than in the dehumidification operation mode. This is because the increase in the sensible heat load increases. However, the latent heat load does not change much between the rainy season and midsummer.
  • a heat transfer area usable as an evaporator is added to the heat exchanger 300 in addition to the evaporator 210, so that sufficient heat transfer can be secured.
  • the heat transfer area that can be used as the evaporator corresponds to the evaporator 210, and can be a heat transfer area suitable for the dehumidification load.
  • the heat exchanger 300 can be used for reheating the so-called overcooled process air after dehumidification, and at the same time for precooling the process air.
  • the heat transfer area of the evaporator which has a heat transfer area necessary and sufficient for a cooling-only air conditioner, is divided into three parts, evaporator 210, evaporator section 251, and condensing section 25 2 ( And reheat section 2 5 2 A).
  • a compact and efficient air conditioner for both cooling and dehumidification can be constructed by adjusting the refrigerant piping with the same size as the evaporator of the air conditioner for cooling only.
  • the heat transfer area of the entire heat exchanger is approximately
  • the volumetric flow rate of the refrigerant in the heat exchanger 300 is smaller than the refrigerant volumetric flow rate in the evaporator 210.
  • the number of circuits in the heat exchanger 300 is 1, which is smaller than the number of circuits in the evaporator 2, so that both in the dehumidifying operation and in the cooling operation,
  • the refrigerant flow rates of the heat exchanger 300 and the evaporator 210 can be set to the same value, and a decrease in the heat transfer coefficient can be prevented.
  • the dehumidifying operation of the dehumidifying air conditioner 21 with the heat pump HP 1 is performed.
  • the operation in the mode will be described.
  • the alphabetic symbols K, X, L, and M indicate the air condition at each part. This symbol corresponds to the letter circled in the flow diagram in Figure 1.
  • the point P indicates the state of the supply air when reheating is performed by the reheater 32OA.
  • process air A (state K) from the air-conditioned space 101 is sent through the process air path 107 to the first section 310 of the heat exchanger 300, where it is evaporated. It is cooled to some extent by refrigerant C evaporating in section 25 1. This is pre-cooling before it is cooled to the dew point temperature (below) in the evaporator 210, so it can be called pre-cooling. During this time, while pre-cooling in the evaporating section 251, the water reaches a point X while removing a certain amount of water and slightly reducing the absolute humidity. Point X is on the saturation line. Alternatively, in the pre-cooling stage, cooling to an intermediate point between the point K and the point X may be performed. Alternatively, it may be cooled to a point where the temperature has slightly shifted from the point X to the low humidity side on the saturation line.
  • the pre-cooled process air A is introduced into the evaporator 210 through the passage 108.
  • the processing air A is cooled down to its dew point temperature (below) by the refrigerant C, which is decompressed by the throttle 250 and evaporates at a low temperature.
  • the refrigerant C which is decompressed by the throttle 250 and evaporates at a low temperature.
  • point L To point L.
  • the bold line indicating the change from point X to point L is drawn off the saturation line for convenience, but actually overlaps the saturation line.
  • the treated air A in the state of the point L flows into the second section 320 of the heat exchanger 300 through the path 109.
  • the refrigerant C condenses in the condensation section 25 2 It is heated to the point M with the absolute humidity kept constant.
  • the absolute humidity is sufficiently lower than point K, the dry-bulb temperature is not too low, and air having a relative humidity is sucked in by the blower 102 and returned to the air-conditioned space 101.
  • the processing air A is precooled by evaporating the refrigerant C in the evaporating section 251, and the processing air A is reheated by condensing the refrigerant C in the condensing section 252.
  • the refrigerant C evaporated in the evaporating section 25 1 is condensed in the condensing section 25 2. In this way, heat exchange between the treated air A before and after being cooled by the evaporator 210 is indirectly performed by the same evaporation and condensation of the refrigerant C.
  • the air in the state at the point M is supplied to the air-conditioned space 101 when there is a considerable sensible heat load in addition to the latent heat load.
  • the air-conditioning load in the air-conditioned space 101 is mostly latent heat load and almost no sensible heat load.
  • the temperature of the air-conditioned space 101 is too low. Then, the processing air A is heated by the reheater 320 A, and the dry bulb temperature is set to the point P which is almost the same as the point K.
  • the air at the point L is heated by the reheater 32 OA in parallel with the second section 320, but in FIG. It is shown as reheating the air.
  • the diagram of FIG. 4 corresponds to a second embodiment described later.
  • Outside air B is introduced into the condenser 222 through the path 124. This outside air B removes heat from the condensing refrigerant C, and the heated outside air B is sucked into the blower 140 via the route 125 and discharged outside via the route 126 ( EX).
  • the heat quantity of pre-cooling the processing air A in the first section 310 that is, the processing air A was reheated in the second section 320
  • the amount of heat ⁇ is the amount of heat recovered, and the amount of heat obtained by cooling the processing air A by the evaporator 210 is ⁇ Q.
  • the cooling effect of cooling the air-conditioned space 101 is ⁇ i.
  • the amount of heat by the reheater 32 O A is ⁇ S Ha. This is equivalent to ⁇ SHr mentioned in FIG. 3 multiplied by the mass flow ratio of refrigerant to air.
  • the dehumidifying air conditioner 21 of the first embodiment uses the heat exchanger 300 as an air-air heat exchanger as the evaporator in the cooling operation mode to reduce the heat transfer area of the evaporator. Increase the evaporating temperature to increase the cooling processing capacity, that is, the sensible heat treatment capacity Can be done. As a result, the room temperature can be rapidly lowered, and it is possible to cope with a so-called high sensible heat ratio, a dry and high-temperature indoor air conditioning load.
  • the processing air A that has left the air-conditioned space 101 (FIG. 1) (state K) is the first section 310 ( 1), evaporator 210 (FIG. 1), process air A cooled in the second section 320 of the heat exchanger (FIG. 1) and leaving the second section 320 of the heat exchanger. Is in a state represented by a point near point X in the figure.
  • the blower 102 is configured to make the air flow amount larger than that in the dehumidification operation mode. This is because a large amount of sensible heat can be easily obtained.
  • the dehumidifying air conditioner 21 uses the heat exchanger 300 as a reheat heat exchanger for the treated air A before and after passing through the evaporator 210 in the dehumidifying operation mode, thereby forming dew condensation by cooling.
  • the moisture content can be increased from the cooling operation mode to increase the dehumidification capacity, that is, the latent heat treatment capacity.
  • the humidity can be rapidly reduced, and it is possible to cope with a so-called low sensible heat ratio and a high humidity indoor air-conditioning load.
  • the dehumidifying air conditioner 21 has a variable sensible heat ratio of the air conditioning load, and also has a dehumidifying operation and a cooling operation! Energy-saving operation can be performed even in the operation mode with a shift of /.
  • the reheater is configured integrally with the second section 320 and heats the processing air in parallel with the second section 320.
  • the reheater 813 is provided on the downstream side of the processing air of the second section 320 as an intermediate condenser. That is, the processing air A is heated after being heated in the second section 320.
  • the processing air heated in the second section 320 and the processing air heated in parallel with the reheater 320 A are mixed to form an air-conditioned space 101.
  • the processing air A is heated after being heated in the second section 320, so that the reheating temperature is reduced. Can be higher.
  • the outlet of the bypass line to the reheater 32 OA is connected to the discharge port of the compressor 260.
  • the bypass valve 811 is provided on the bypass line 812.
  • the return line of the bypass line 8 12 is connected between the condenser 220 and the expansion ⁇ 7 13.
  • the refrigerant is in a gas state anyway. Therefore, it is not necessary to reduce the rotation speed of the fan 140 even when the reheater 8 13 is used.
  • the gas temperature is also higher than that via the condenser 220.
  • bypass line 8 12 must be run between the outdoor unit and the indoor unit.
  • the controller 501 When the temperature from the temperature sensor 851 is too low, the controller 501 'opens the bypass valve 811 to flow the refrigerant gas to the reheater 813.
  • a temperature sensor 852 (not shown in FIG. 5) may be used together as in the first embodiment.
  • a dehumidifying air conditioner 23 according to a third embodiment of the present invention will be described with reference to FIG.
  • the processing air bypasses 824, 825 are provided in the processing air path 107 to the path 110, and the reheater 823 is installed between them.
  • the reheater 8 23 is also a refrigerant pressurized by the compressor 260 and is one mode of heating in parallel with the heating in the second section 320, but the processing air to be heated is
  • the second embodiment is different from the first embodiment in that the pre-cooling by the first section and the processing air that does not pass through the water removal by the evaporator 210 are heated.
  • the path of the refrigerant gas leading to the reheater 8 23 is the same as in the second embodiment. That is, the outlet of the bypass line 822 to the reheater 823 is connected to the discharge side of the compressor 260 and upstream of the condenser 220.
  • the bypass valve 8 21 is provided on the bypass line 8 22.
  • the return port of the bypass line 822 is connected between the condenser 220 and the expansion valve 713.
  • the controller 501 "receives the temperature signal from the temperature sensor 851, and opens and closes the bypass valve 821.
  • the processing air heated by the reheater 8 23 is mixed with the low-humidity and low-temperature processing air passing through the second section 320 and supplied to the air-conditioned space 101 as supply air at an appropriate temperature. Be paid. '
  • a dehumidifying air conditioner 24 according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the reheater 320B is located downstream of the processing air of the second section 320 as an intermediate condenser, similarly to the reheater 813 of the second embodiment. Is provided. That is, the processing air A is heated after being heated in the second section 320.
  • reheater 320B is formed integrally with second section 320. With this configuration, as described later with reference to FIG. 8, the heat exchanger is compactly formed and the production is easy. However, it may be configured separately as the reheater 8 13.
  • the processing air heated in the second section 320 and the processing air heated in the reheater 320A in parallel are mixed to form an air-conditioned space.
  • the present embodiment is similar to the dehumidifying air conditioner 22 of the second embodiment, and is heated in the second section 320. After that, the processing air A is heated, so that the reheating temperature can be increased.
  • the reheater 320B is provided in the refrigerant path 202 connecting the condenser 220 and the intermediate evaporator 310. More specifically, it is provided between the condenser 22 and the expansion valve 7 13 of the second throttle mechanism 29 1.
  • the refrigerant path 202 of the present embodiment is a main path of the refrigerant, and is different from the bypass path path 802 in the first embodiment of FIG. The entire amount of the refrigerant circulating in the system flows through the refrigerant path 202. Therefore, the same amount of refrigerant as flowing through the condenser 220 flows through the reheater 320B. Typically, it is the same amount as flowing through the evaporator 210.
  • Heat exchanger 300b (first section 310 and second section 320 constitute heat exchanger 300, heat exchanger 300 and reheater 320B heat An evaporator 310b is provided), and a drain pan 450 is provided below the evaporator 210, and a drain pipe (not shown in FIG. 7) is led outside from the drain pan 450. ing.
  • the reheater 320B will be described with reference to a partially cutaway perspective view of FIG.
  • the reheater 320B is configured as a heat exchanger that shares a plate fin with the second section 320.
  • the temperature of the condensing section 25 2 is different from that of the reheating section, so that the intermittent section between the reheater 320 B and the second section 320 is intermittent.
  • the slits 321 a are formed in the cells (see (b)).
  • the plate fin is also formed with a hole 321b through the heat transfer tube.
  • the reheater 320B and a part of the second section 320 are cut away and removed. This is for easy understanding of the state in which the slits 321 a are formed on the plate fins 321.
  • the shape before removal is indicated by a dashed dotted line.
  • the second section and the reheater 320B are integrated heat exchangers, are easy to manufacture, and are compact heat exchangers as a whole. Between the second section 320 and the reheater 320B, it appears as an integral heat exchanger except that the plate fins have slits or cuts and the heat transfer tubes are not connected to each other. At the time of manufacture, they are made separately by dividing the flow path according to the arrangement of the U-shaped heat transfer tubes.
  • a cut may be formed in the plate fin, and a cut may be formed in the plate fin equivalent to the tube plate.
  • the second section and the reheater 320B are separate heat exchangers.
  • the structure of the reheater 320B such as the meandering of the heat transfer tube, is the same as that of the heat exchanger described in the other embodiments, and a duplicate description will be omitted.
  • the processing air path 107 is provided with a temperature sensor 851 for detecting the temperature of the return air RA and a humidity sensor 853 for detecting the humidity. These output signals are transmitted to the controller 502. It is configured to: The controller 502 is configured to transmit a control signal to the first throttle mechanism 292 and the fan 140. Returning to FIG. 7, an operation mode of the dehumidifying air conditioner 24 will be described.
  • the weak cooling operation mode is an operation mode where the cooling load is relatively large and the reheating is small. At this time, do not reduce the air flow of fan 140. Therefore, all the refrigerant sent from the compressor 260 is condensed in the condenser 220. The refrigerant liquid condensed in this way flows into the reheater 320B, where it releases heat to the dehumidified treated air to perform a reheating action. The refrigerant liquid is in a supercooled state.
  • This heat radiation reduces the heat radiation amount in the intermediate condenser 320, so that the heat transfer load of the intermediate condenser 320 is reduced, and the intermediate condensation temperature is lowered, and therefore, the intermediate evaporation temperature is also lowered.
  • the pre-cooling amount of the processing air increases, the relative humidity of the air entering the evaporator 210 rises, and the refrigerant enthalpy at the entrance of the evaporator 210 decreases as shown in the Mollier diagram described below, thereby reducing the cycle refrigeration effect. Because of the increase, the amount of dehumidification increases. However, the temperature of the blown air becomes lower in the reheat dehumidification mode.
  • This operation mode is used when the latent heat (dehumidification) load is relatively large. In this case, reduce the air flow of fan 140.
  • the controller 502 sends a signal to the drive unit (not shown) of the fan 140. Decrease the rotation speed (rotation speed) of feed fan 140. That is, the rotation speed of the fan 140 is reduced to a rotation speed that is less than the amount of air sufficient to completely condense the refrigerant gas from the compressor 260 in the condenser 220.
  • the variable speed fan 140 constitutes the heat radiation amount adjusting means of the present invention.
  • the heat radiation amount adjusting means may further include a controller 502, may include a temperature sensor 951, or may include a humidity sensor 853. Is also good. If you feel that the room temperature is too low without a temperature sensor or humidity sensor, you can change the speed by manually lowering the speed. A temperature sensor and / or a humidity sensor may be provided, and the controller 502 may automatically change the speed based on the detection result. By changing the rotation speed of the fan 140, the amount of heat radiation can be increased or decreased, and the enthalpy of the refrigerant flowing into the reheater 320B can be increased or decreased.
  • the refrigerant 220 and the liquid flow into the reheat section of the reheater 320B in a mixed state from the condenser 220. Then, the processing air A is heated by the condensation of the refrigerant gas. Since the condensing temperature is higher than the condensing temperature of the condensing section intermediate condenser 320, the treated air can be sufficiently heated.
  • the controller 502 stops the operation of the dehumidifying air conditioner 24.
  • a path connecting the condenser 220 and the expansion valve 713 and adding a path for bypassing the reheater 320B is added to the path. (Corresponding to 801 in FIG. 1). With this configuration, the configuration is almost the same as that of the first embodiment except that the reheater 320B is in parallel or in series with the intermediate condenser 320.
  • the reheater 320B hardly performs the reheat function, so that normal dehumidification operation can be performed. Further, if the bypass valve of the first throttle mechanism 292 in the present embodiment is fully opened by a signal sent from the controller 502 to the first throttle mechanism 2922, the intermediate evaporator 310 The intermediate condenser 320 also functions as an evaporator for evaporating the refrigerant at the same pressure as the evaporator 210, and enables strong cooling operation in the same manner as described in the first embodiment. It is.
  • the controller 502 selects either the weak cooling mode or the reheat dehumidification mode according to the detection results of the temperature and the humidity by the temperature sensor 851 and the humidity sensor 853.
  • the selection is performed, for example, as follows.
  • the controller 502 selects the weak cooling mode. For example, when the room temperature is 30 ° C and the room temperature setting is 27 ° C, the deviation is 3 ° C. At this time, when the cooling selection deviation is set to 5 ° C, the dehumidifying air conditioner 24 is operated in the weak cooling mode.
  • the controller 502 selects the strong cooling mode. For example, when the room temperature is 35 ° C (when the device is started, etc.) and the set value of the room temperature is 27 ° C, the deviation is 8 ° C. At this time, when the cooling selection deviation is set to 5 ° C, the dehumidifying air conditioner 24 is operated in the strong cooling mode.
  • the controller 502 selects the reheat dehumidification mode. For example, assume that the room temperature is 22 ° C and the indoor humidity is 80%. At this time, the set value of the indoor humidity is 6 When set to 0%, the dehumidifying air conditioner 24 is operated in the reheat dehumidifying mode. This is the case, for example, when the device is activated during the rainy season when the temperature is low.
  • points a, b, and c are the same as in FIG. Since the air flow from the fan 140 is sufficient, the refrigerant is completely condensed in the condenser 220 and reaches the point Y (however, it is sufficient that the refrigerant almost reaches the point Y, and some gas may remain. Then, it may be slightly advanced to the supercooling side). This point is a saturated liquid state, the pressure is 1.66 MPa, the temperature is 38 ° C, and the enthalpy is 256.9 kJ / kg.
  • This refrigerant liquid flows into the reheater 320B.
  • the refrigerant liquid is supercooled here and reaches point d.
  • the pressure is the same as at point Y, and the temperature is determined by the degree of supercooling, but is in the liquid phase of about 17 ° C.
  • the enthalpy difference between points Y and d is denoted by ⁇ SHr.
  • the refrigerant liquid is correspondingly cooled in the reheat section of the reheater 320B.
  • the refrigerant liquid in the supercooled state is throttled by the throttle 7 13, decompressed, and flows into the intermediate evaporator 3 10. On the Mollier diagram, it is indicated by point e.
  • the pressure is an intermediate pressure of the present invention, and in this embodiment, is a value intermediate between 0.67 ⁇ 1? & And 1.66 MPa. This point is still in the liquid phase.
  • the refrigerant liquid evaporates under the intermediate pressure and reaches the intermediate point f between the saturated liquid line and the saturated gas line at the same pressure. .
  • the refrigerant liquid C remains to some extent.
  • the refrigerant C in the state indicated by the point f flows into the condensing section 2 52.
  • the refrigerant C is deprived of heat by the low-temperature process air A flowing through the second section 320, and reaches a point g.
  • Point g is on the saturated liquid line in the Mollier diagram.
  • the temperature is 17 ° C and the enthalpy is 24.6 kJ / kg.
  • the refrigerant liquid C at the point g is reduced in pressure by the throttle 250 to 0.67 MPa, which is a saturation pressure at a temperature of 5.2 ° C., and reaches the point j.
  • 0.67 MPa which is a saturation pressure at a temperature of 5.2 ° C.
  • the dehumidifying air-conditioning apparatus for air-conditioning the air-conditioned space has been described.
  • the dehumidifying air conditioner of the present invention includes such a case.
  • the reheater which heats process air with the refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Description

明 細 書
技術分野
本発明は、 除湿空調装置、 特にエネルギー消費量当たりの除湿能力が高く、 且 つ低温高湿度の空調条件に対処し易い除湿空調装置に関するものである。 背景技術
従来、 図 1 0に示すような除湿空調装置があった (特開 2 0 0 1— 2 0 8 3 7 3号公報) 。 この装置は、 冷媒 Cを圧縮する圧縮機 2 6 0と、 圧縮された冷媒 C を外気 Bで凝縮する凝縮器 2 2 0と、 凝縮した冷媒 Cをソレノィドパルプを有す るバイパス付き膨張弁 2 9 1で減圧し、 中間圧力で蒸発と凝縮を繰り返して行う 熱交換器 3 0 0 " と、 ここで凝縮した冷媒 Cをソレノイドバルブを有するバイパ ス付き膨張弁 2 9 2で減圧し、 これを蒸発させて空調空間 1 0 1からの処理空気 Aを露点温度に冷却する蒸発器 2 1 0とを備える。
この装置では、 除湿運転モード時には膨張弁 2 9 2のバイパスソレノィドバル ブを閉として熱交換器 3 0 0 " の蒸発と凝縮の圧力を凝縮器 2 2 0の凝縮圧力と 蒸発器 2 1 0の蒸発圧力の中間圧力とする。
したがって除湿運転モード時には、 熱交換器 3 0 0 " は、 蒸発器 2 1 0で露点 温度に冷却される前後の処理空気同士の間で、 冷媒を媒体として熱交換を行う。 このようにして、 蒸発器 2 1 0で露点に冷却された処理空気 Aは、 熱交換器 3 0 0 " で再熱される。 .
以上のような従来の除湿空調装置では、 除湿運転時には、 蒸発器 2 1 0で露点 に冷却された処理空気 Aは熱交換器 3 0 0 " で再熱されるので、 温度の低すぎる 空気を空調空間 1 0 1に供給することはないものの、 特に低温で高湿度の気象条 件下では再熱量が不足するという問題があった。
そこで本発明は、 エネルギー消費量当たりの除湿能力が高く、 且つ低温高湿度 の気象条件に対処し易い除湿空調装置を提供することを目的としている。 発明の開示
本発明の目的は、例えば図 1に示すように、冷媒 Cを昇圧する昇圧機 2 6 0と ; 冷媒 Cを凝縮させて高熱源流体 Bを加熱する凝縮器 2 2 0と ;冷媒 Cを蒸発させ て処理空気 Aを露点温度に冷却する蒸発器 2 1 0と ;凝縮器 2 2 0と蒸発器 2 1 0との間の冷媒経路中に設けられ、 冷媒 Cを凝縮器 2 2 0の凝縮圧力と蒸発器 2 1 0の蒸発圧力との中間の圧力で蒸発させて処理空気 Aを冷却する中間蒸発器 3 1 0と ;凝縮器 2 2 0と蒸発器 2 1 0との間の冷媒経路中に設けられ、 冷媒 Cを 凝縮器 2 2 0の凝縮圧力と蒸発器 2 1 0の蒸発圧力との中間の圧力で凝縮させて 処理空気 Aを加熱する中間凝縮器 3 2 0と ;処理空気 Aを、 昇圧機 2 6 0で昇圧 された冷媒 Cで、 中間凝縮器 3 2 0での加熱と並行して、 又は中間凝縮器 3 2 0 で加熱された後に加熱する再熱器 3 2 O Aとを備え;中間蒸発器 3 1 0と蒸発器 2 1 0と中間凝縮器 3 2 0とをこの順番で接続する処理空気経路とを備える除湿 空調装置を提供することである。
典型的には、 前記中間凝縮器の下流側の冷媒経路上に設けられる第 1の絞り機 構 2 9 2と、 前記中間蒸発器 3 1 0の上流側の冷媒経路上に設けられる第 2の絞 り機構 2 9 1とを備える。
このように構成すると、 処理空気を、 昇圧機で昇圧された冷媒 Cで、 中間凝縮 器での加熱と並行して、 又は中間凝縮器で加熱された後に加熱する再熱器を備え るので、 中間凝縮器での加熱の他に、 再熱器によっても処理空気を加熱すること ができる。
また前記除湿空調装置では、 凝縮器 2 2 0と中間蒸発器 3 1 0とを接続する冷 媒経路中に設けられた絞り 7 1 3と ;昇圧機 2 6 0と絞り 7 1 3との間の冷媒経 路中に設けられた流路抵抗 8 0 1と ;流路抵抗 8 0 1と昇圧機 2 6 0との間から 再熱器 3 2 O Aに冷媒を導くバイパス経路 8 0 2と ;バイパス経路 8 0 2を流れ るガス流量を増減するバイパス弁 8 0 1とを備えるようにしてもよレ、。
流路抵抗は典型的にはバイパス弁と共通のものである (例えば図 1参照) 。 伹 しこれに限らず、 流路抵抗は単なるオリフィス等の抵抗とし、 又は凝縮器を抵抗 として利用し、 バイパス弁はバイパス経路に設けてもよい (例えば図 5参照) 。 流路抵抗をオリフィスや弁とし、 凝縮器とは別に設けるときは、 バイパス経路の 取り出し口は凝縮器と該流路抵抗との間にすることができる。
昇圧機 2 6 0と絞り 7 1 3との間の冷媒経路中に設けられたバイパス弁 8 0 1 と、 バイパス弁 8 0 1と凝縮器 2 2 0との間から再熱器 3 2 O Aに冷媒を導くバ- イパス経路 8 0 2とを備えるようにしてもよく、 この場合は、 凝縮器 2 2 0の上 流側から導く場合と異なり、 中間蒸発器 3 1 0、 蒸発器 2 1 0、 中間凝縮器 3 2 0を含む室内機の側にパイパス経路を設置することができ、 システムを単純にす ることが可能となる。
典型的には、 さらにバイパス弁を調節するコントローラ 5 0 1を備えるように してもよい。 また、 中間凝縮器 3 2 0及び再熱器 3 2 O Aの下流側の処理空気温 度を検出する温度検出器 8 5 2を備え、 前記コントローラは前記温度検出器で検 出された温度に基いて前記バイパス弁を調節するようにしてもよい。
また前記除湿空調装置では、 高熱源流体 Bの流量を調節するコントローラ 5 0 1を備えるようにしてもよレ、。
このように構成すると、 高熱源流体の流量を調節できるので、 凝縮器での凝縮 量を制御可能であり、 バイパスするためのホットガスを凝縮器の下流側で確保す ることが可能となる。
また前記除湿空調装置では、 例えば図 5に示すように、 凝縮器 2 2 0と中間蒸 発器 3 1 0とを接続する冷媒経路 2 0 2中に設けられた絞り 7 1 3と ;昇圧機 2 6 0と凝縮器 2 2 0との間から冷媒を取り出し、 再熱器 8 1 3に冷媒を導き、 凝 縮器 2 2 0と絞り 7 1 3との間に冷媒を戻すバイパス経路 8 1 2と ;バイパス経 路 8 1 2を流れる冷媒の流量を調節するバイパス弁 8 1 1とを備えるようにして あよい。
このように構成すると、 昇圧機と凝縮器との間から冷媒を取り出し、 再熱器に 冷媒を導き、 凝縮器と絞りとの間に冷媒を戻すバイパス経路を備えるので、 再熱 器で利用する冷媒の温度を比較的高くとることができる。
また前記除湿空調装置では、 例えば図 7に示すように、 凝縮器 2 2 0と中間蒸 発器 3 1 0とを結ぶ冷媒経路 2 0 2中に再熱器 3 2 O Bを設けるようにしてもよ い。 この場合、 典型的には凝縮器 2 2 0で凝縮された冷媒を全量再熱器 3 2 0 B に流すように構成するとよい。 · また再熱器 3 2 O Bと中間蒸発器 3 1 0とを結ぶ冷媒経路 2 0 2中に設けられ た絞り 7 1 3を備えるようにしてもよい。
また凝縮器 2 2 0における放熱量を増減し、 再熱器 3 2 0 Bに流入する冷媒の ェンタルピを増減する放熱量調節手段 5 0 2 , 1 4 0を備えるようにしてもよい。 この出願は、 日本国で 2 0 0 2年 6月 1 1日に出願された特願 2 0 0 2 - 1 7 0 3 7 0号に基づいており、 その内容は本出願の内容として、 その一部を形成す る。
また、 本発明は以下の詳細な説明によりさらに完全に理解できるであろう。 本 発明のさらなる応用範囲は、 以下の詳細な説明により明らかとなろう。 しかしな がら、 詳細な説明及ぴ特定の実例は、 本発明の望ましい実施の形態であり、 説明 の目的のためにのみ記載されているものである。 この詳細な説明から、 種々の変 更、改変が、本発明の精神と範囲内で、 当業者にとって明らかであるからである。 出願人は、 記載された実施の形態のいずれをも公衆に献上する意図はなく、 開 示された改変、 代替案のうち、 特許請求の範囲内に文言上含まれないかもしれな いものも、 均等論下での発明の一部とする。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態である除湿空調装置のフロー図である。 図 2は、 図 1に示す除湿空調装置の設置状態を示す模式的側面図と熱交換器の 斜視図である。
図 3は、 図 1に示す除湿空調装置のヒートポンプのモリエ線図である。
図 4は、 図 1の除湿空調装置の除湿運転モード時の作動を説明する湿り空気線 図である。
図 5は、 本発明の第 2の実施の形態である除湿空調装置のフロー図である。 図 6は、 本発明の第 3の実施の形態である除湿空調装置のフロー図である。 図 7は、 本発明の第 4の実施の形態である除湿空調装置のフロー図である。 図 8は、図 7に示す除湿空調装置ので用いる熱交換器の一部破断斜視図である。 図 9は、 図 7に示す除湿空調装置のヒートポンプのモリエ線図である。 図 1 0は、 従来のヒートポンプと除湿空調装置のフロー図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照して説明する。 なお、 各図に おいて互いに同一あるいは相当する部材には同一符号あるいは類似符号を付し、 重複した説明は省略する。
図 1は、 本発明による第 1の実施の形態である除湿空調装置 2 1のフロー図で ある。 この除湿空調装置 2 1は処理空気 Aをその露点温度に冷却して水分を除い た後に再熱して除湿する除湿運転と、 主として顕熱を奪う冷房運転ができる除湿 空調装置である。 ここで、 「処理空気 Aをその露点温度に冷却して除湿」 という とき、 処理空気 Aは多少過冷却されることがあり、 このときは 「露点温度以下に 冷却して除湿」 となるが、 この概念も含むものとする。 また露点温度に冷却され て水分が除かれた空気は当初の空気よりも露点温度が低下するので、 当初の露点 温度を基準にすると 「露点温度以下に冷却して除湿」 となるが、 この概念も含む。 図 1 ( a ) を参照して、 第 1の実施の形態である除湿空調装置 2 1及びその構 成要素であるヒートポンプ H P 1の構成を説明する。 この除湿空調装置 2 1は、 蒸発器 2 1 0によって低熱源流体としての処理空気 Aの絶対湿度を下げ、 処理空 気 Aの供給される空調空間 1 0 1を快適な環境に維持するものである。
図中、 空調空間 1 0 1から処理空気 Aの経路に沿って、 処理空気関連の機器構 成を説明する。 先ず、 空調空間 1 0 1に接続された経路 1 0 7、 熱交換手段とし ての熱交換器 3 0 0の第 1の区画 3 1 0、 経路 1 0 8、 処理空気 Aをその露点温 度に冷却する蒸発器 2 1 0、 経路 1 0 9、 熱交換器 3 0 0の第 2の区画 3 2 0、 経路 1 1 0、経路 1 1 0に接続された処理空気 Aを循環するための送風機 1 0 2、 経路 1 1 1とこの順番で配列され、 そして空調空間 1 0 1に戻るように構成され ている。 図中、 除湿空調装置 2 1から空調空間 1 0 1に供給される空気を S A、 空調空間 1 0 1から除湿空調装置 2 1に戻る空気を R Aとして示してある。
また、 屋外 O Aから高熱源流体としての冷却空気 (外気) Bの経路に沿って、 経路 1 2 4、 冷媒 Cを冷却して凝縮させる凝縮器 2 2 0、 経路 1 2 5、 冷却空気 Bを送風するための送風機 1 4 0、 経路 1 2 6とこの順番で配列され、 そして屋 外 OAに排気 EXするように構成されている。
次に蒸発器 210から冷媒 Cの経路に沿って、 ヒートポンプ HP 1の機器構成 を説明する。 図中蒸発器 21 0、 経路 204、 蒸発器 21 0で蒸発してガスにな つた冷媒 Cを圧縮する (昇圧する) 昇圧機としての圧縮機 260、 経路 201、 凝縮器 220、 経路 20 2、 熱交換器 300の中間蒸発器としての第 1の区画 3 10を流れる処理空気 Aを冷却する蒸発セクション 251、 熱交換器 300の中 間凝縮器としての第 2の区画 320を流れる処理空気 Aを加熱 (再熱) する凝縮 セクション 252、 経路 203、 絞り 250がこの順番で配列され、 そして再び 蒸発器 210に戻るようにして、 ヒートポンプ HP 1が構成されている。 なお経 路 202には、 凝縮器 220側から、 パイパス弁 801、 膨張弁 71 3が挿入配 置されている。 またパイパス弁 801の前後には、 それぞれ、 後述の再熱器 32 OAに冷媒を導くパイパスライン 802の取り出し口と戻し口とが接続されてい る。
なお、 第 1の区画 31 Οίま処理空気が流れる区画であるが、 冷媒の流れ側から 見ると中間圧力で蒸発する中間蒸発器 310である。 すなわち、 処理空気側から 見る力 \ 冷媒側から見るかにより、 適宜この部分を、 第 1の区画 31 0と呼び、 又中間蒸発器 310と呼ぶ。 第 2の区画 320と中間凝縮器 320の関係も同様 である。
本実施の形態では、 蒸発器 210、 熱交換器 300、 再熱器 32 OA, ファン 102を含んで室内機が構成され、 圧縮機 260、 凝縮器 220、 ファン 140 を含んで室外機が構成されている。
なお、 蒸発セクション 251は第 1の区画 310中を蛇行する伝熱チューブで 形成され、 凝縮セクシヨン 252は第 2の区画 320中を蛇行するチューブで形 成されている。 細管である伝熱チューブは、 多数の例えばアルミ薄板であるプレ 一トフインを蛇行しながら貫通している。 本実施の形態では、 蒸発セクション 2 51は第 1の区画 310を複数回蛇行した後、 凝縮セクシヨン 252に接続され る。 凝縮セクシヨン 252は第.2の区画 320を複数回蛇行した後、 経路 203 に接続される。 図中、 各セクションは、 処理空気 Aの流れに沿った面内で蛇行す るように示されているが、 実際は処理空気 Aの流れに直交する面内で蛇行するよ うにするとよい (図 2参照) 。 但し、 直交する面を複数設けて蛇行層が複数ある ようにしてもよレ、。
このように蒸発セクシヨン 2 5 1と凝縮セクション 2 5 2とを連続した伝熱チ ユーブで形成し、 蒸発セクシヨン 2 5 1を第 1の区画 3 1 0内で複数回十分に蛇 行させた後に、 即ち内部を流れる冷媒を蒸発させた後に、 凝縮セクション 2 5 2 を第 2の区画内で複数回蛇行させる構成にすると、 蒸発セクション 2 5 1と凝縮 セクション 2 5 2を接続する配管が 1本乃至は最小限 (2〜4本) の本数で足り るので、第 1の区画 3 1 0と第 2の区画 3 2 0とを離間して設置し易い(図 2 ( b ) ( c ) 参照) 。 蒸発セクション 2 5 1と凝縮セクシ aン 2 5 2を接続する配管が 2本以上となる場合の典型例は、 後述するように蒸発セクション 2 5 1と凝縮セ クシヨン 2 5 2 (熱交換器 3 0 0 ) のサーキット数が 2以上の場合である。
本実施の形態では、 中間凝縮器 3 2 0で凝縮させた後に、 凝縮した冷媒液を中 間蒸発器 3 1 0に戻して再び蒸発させることはしていない。 言い換えれば、 凝縮 した冷媒液を中間蒸発器 3 1 0に戻すことなく、 蒸発器 2 1 0に供給する。 その ため中間凝縮器 3 2 0と中間蒸発器 3 1 0を互いに離間して設置される熱交換器 として形成し易く、 連絡配管を最小限にすることができる。
なお、 冷媒 Cの経路 2 0 3に絞り 2 5 0をバイパスする経路 2 0 3 Aを設け、 経路 2 0 3 Aにソレノィドパルプ 2 5 3を設けてある。 膨張弁 7 1 3で第 2の絞 り機構 2 9 1が構成され、 絞り 2 5 0とソレノィドバルブ 2 5 3を含んで第 1の 絞り機構 2 9 2が構成されている。 ソレノイドバルブ 2 5 3が開となると、 開口 面積は経路 2 0 3の断面積にほぼ等しくなるように形成されている。 言い替えれ ば、 ソレノイドパルプ 2 5 3が開となったときは、 第 1の絞り機構 2 9 2の絞り 度が減って (開口面積が増えて) 、 実質的に絞りとしては作用しない程度に大き い開口を有することになる。 .
また、 経路 2 0 4には同経路中を流れる冷媒の温度を検出する感温筒 7 2 2が 搭載され、 経路 2 0 4と膨張弁 7 1 3との間には、 該冷媒の圧力を膨張弁 7 1 3 に導く均圧管 7 2 2 Aが敷設されている。
膨張弁 7 1 3は、 感温筒 7 2 2から温度信号 (圧力) を受けて、 また均圧管 7 2 2 Aを通して冷媒圧力を受けて、 経路 2 0 4中を流れる冷媒の、 ひいては蒸発 器 2 1 0で蒸発して '出てくる冷媒の乾き度を適切に維持するように膨張弁 7 1 3 を開閉する。 経路 2 0 4中の冷媒はちょうど飽和状態であるのが好ましいが、 多 少は過熱側にあってもよい。 圧縮機 2 6 0が液冷媒を吸い込むと、 過負荷になつ たり、 圧縮機 2 6 0の損傷を招く場合があるからである。
ここで、 熱交換器 3 0 0の構成を説明する。 熱交換器 3 0 0は、 蒸発器 2 1 0 に流入する前後の処理空気 A同士の間で、 冷媒 Cを介して間接的に熱交換をさせ る熱交換器である。
この熱交換器 3 0 0は、 蒸発器 2 1 0を通過する前の処理空気 Aを流す第 1の 区画 3 1 0と、 蒸発器 2 1 0を通過した後の処理空気 Aを流す第 2の区画 3 2 0 とが、 別々の直方体空間を構成している。 両区画には、 双方を流れる処理空気が 混合しないように隔壁 3 0 1、 3 0 2が設けられており、 熱交換チューブである 蒸発セクション 2 5 1と凝縮セクション 2 5 2とを接続する配管 2 0 2 Bはこの 2つの区画の隔壁を貫通している。
図中、 蒸発器 2 1 0に導入される前の処理空気 Aは、 右方から経路 1 0 7を通 して、 第 1の区画 3 1 0に供給され、 左方から経路 1 0 8を通して出て行く。 ま た蒸発器 2 1 0を通して露点温度 (以下) に冷却され絶対湿度の低下した処理空 気 Aは、 図中左方から経路 1 0 9を通して第 2の区画 3 2 0に供給され、 その右 方から経路 1 1 0を通して出て行く。
次に再熱器 3 2 O Aを説明する。 再熱器 3 2 O Aは、 凝縮器 2 2 0と同じ圧力 の冷媒を導入する再熱セクション 2 5 2 Aを含んで構成したものである。 即ち、 再熱セクション 2 5 2 Aは凝縮セクション 2 5 2と同じく再熱器 3 2 O A内を蛇 行するチューブで形成されている。 再熱器 3 2 0 Aは、 構造的には、 第 2の区画 (中間凝縮器) 3 2 0の凝縮セクシヨン 2 5 2の一部を利用する形で、 したがつ て凝縮セクション 2 .5 2と構造的に一体に構成されている。説明の便宜のために、 第 1の区画 3 1 0と第 2の区画 3 2 0が熱交換器 3 0 0を構成し、 熱交換器 3 0 0と再熱器 3 2 O Aとで、 熱交換器 3 0 0 aが構成されているものとする。
次に蒸発器 2 1 0について説明する。 蒸発器 2 1 0は、 熱交換器 3 0 0と同様 に、 多数の例えばアルミ薄板であるプレートフィンと、 それを貫通して蛇行する 細管である伝熱チューブで形成されている (図 2参照) 。 図中、 各伝熱チューブ は、 処理空気 Aの流れに沿った面内で蛇行するように示されているが、 実際は処 理空気 Aの流れに直交する面内で蛇行するようにするとよい (図 2参照) 。
本除湿空調装置では、 ソレノィドバルブ 2 5 3を閉じると、 熱交換器 3 0 0と 蒸発器 2 1 0との間の冷媒配管は、 絞り 2 5 0を介して接続されることになり、 熱交換器 3 0 0における蒸発圧力及び凝縮圧力は中間圧力となる。
温度 (気温) が比較的高いときは冷房運転モードを選択し、 ソレノィ ドバルブ 2 5 3を開く。特に日本の気候では、気温の高いときは、通常は絶対湿度も高い。 このときは冷房運転モードを選択して、 顕熱と潜熱の両方を積極的に奪うのがよ レ、。
なお、 除湿運転モード、 冷房運転モードの選択は、 処理空気の温度又は温度と 絶対湿度に基いてコントローラで自動的に行うようにしてもよいし、 手動で行う ようにしてもよい。 湿度の高い低いは個人的好みもある。 また、 湿度や温度にか かわらず、 強制的にとにかく温度を下げたい場合や、 室内を強制的に乾燥させる ためにとにかく湿度を下げたい場合もあるからである。
ソレノィドバルブ 2 5 3を開にすると、 熱交換器 3 0 0と蒸発器 2 1 0との間 の冷媒配管は、 実質的に絞り無しで接続されることになり、 熱交換器 3 0 0内の 伝熱チューブ内の圧力は蒸発セクション 2 5 1と凝縮セクション 2 5 2共に蒸発 器 2 1 0の蒸発圧力と実質的に等しくなり、 熱交換器 3 0 0も蒸発器 2 1 0と共 に蒸発器として作用する。
次にバイパス弁 8 0 1と再熱器 3 2 O Aについて説明する。 凝縮器 2 2 0の下 流側の経路 2 0 2の室内機中にバイパスライン 8 0 2の取り出し口が接続されて いる。 再熱器 3 2 O Aの再熱セクション 2 5 2 Aを経由したバイパスライン 8 0 2の戻り口はバイパス弁 8 0 1の下流側で膨張弁 7 1 3の上流側の経路 2 0 2に 接続されている。 このように構成するとバイパスライン 8 0 2は、 取り出し口も 戻り口も室内機中にあるので、 室内機と室外機との間でバイパスライン 8 0 2を 引きまわす必要がなく、 構造を単純にすることができる。
バイパス弁 8 0 1は、 オンオフ動作をするソレノイド弁であるが、 これに限ら ず、 自由に開度を調節できる調節弁であってもよい。 それぞれの場合の作用は後 で詳述する。 経路 1 0 7には、戻り空気 R Aの温度を検出する温度センサ 8 5 1が設けられ、 経路 1 1 1には供給空気 S Aの温度を検出する温度センサ 8 5 2が設けられてい る。温度センサ 8 5 1は空調空間 1 0 1内の気温を検出するものと言ってもよレ、。 また除湿空調装置 2 1は、 バイパス弁 8 0 1を開閉、 調節することにより再熱 量を調節するコントローラ 5 0 1を備えている。 コントローラ 5 0 1は、 温度セ ンサ 8 5 1、 8 5 2、 バイパス弁 8 0 1及びファン 1 4 0と信号配線で接続され ている。 そして、 温度センサ 8 5 1 , 8 5 2からの温度信号を受信し、 制御信号 をバイパス弁 8 0 1とファン 1 4 0に送信するように構成されている。 コント口 ーラ 5 0 1は、 デジタルコントローラとするのが好ましく、 制御ソフトをィンス トールしたパソコンやマイコンであってもよレ、。 コントローラ 5 0 1は室内機側 にあってもよいし、 室外機側にあってもよい。 ただし、 厳しい外気の影響をうけ ない室内機側に設置するのが好ましい。
図 1 ( b ) の部分図を参照して、 別の実施の形態を説明する。 本実施の形態は ( a ) の場合とは、 蒸発器の構造が異なるだけである。 したがって蒸発器とその 周辺の機器だけを図示し、 その他は省略してある。
図 1 ( b ) に示す場合の蒸発器 2 1 0についてサーキットの概念を説明する。 冷媒を伝熱チユーブ中に流してその伝熱チュ一ブの外側を流れる流体と冷媒とを 熱交換させる熱交換器のサーキット数とは、冷媒を並行して流す流路の数である。 図中冷媒経路 2 0 3は、 絞り 2 5 0を出た後、 蒸発器 2 1 0の伝熱チューブ 2 1 0 A、 2 1 0 Bに入る直前に設けられたディス トリビュータ 6 0 1に接続されて いる。 ディス トリビュータ 6 0 1から、 冷媒経路 6 2 1と冷媒経路 6 2 2が分岐 して、 それぞれ伝熱チューブ 2 1 0 A、 2 1 O Bに冷媒を導入するように構成さ れている。
伝熱チューブ 2 1 0 A、 2 1 O Bは、 蒸発器 2 1 0中で並列に冷媒を流すよう に配置されている。 また冷媒の流れ方向は、 処理空気 Aの流れ方向に対して対向 流となっている。 これは温度的な対向流とするのが好ましい。
この実施の形態では、 蒸発器 2 1 0のサーキットの数は 2である。 一方、 熱交 換器 3 0 0では、 伝熱チューブは 1本が蛇行しており、 サーキットの数は 1であ る。 即ち、 熱交換器 3 0 0の中間蒸発器部分である第 1の区画 3 1 0のサーキッ トの数は 1であるから、 蒸発器 2 1 0のサーキットの数 2よりも少ない。
なお、 熱交換器 3 0 0も複数のサーキットを有するように構成してもよい。 こ のときは熱交換器 3 0 0のサーキット数よりも蒸発器 2 1 0のサーキット数を多 くするとよい。 流れる冷媒の比容積に対応するためである。 例えば前者を 2とし たときは、 後者を 3以上、 例えば 4とする。 このとき、 熱交換器 3 0 0のサーキ ットを出口で一度合流させて、 ディストリビュータにより分岐した後に、 蒸発器 2 1 0の伝熱管に分岐するようにするとよレ、。
本実施の形態では、 蒸発器 2 1 0のサーキット数が熱交換器 3 0 0のそれより も多いので、 蒸発器 2 1 0と熱交換器 3 0 0内の冷媒の流速を双方とも適切な値 にすることができるので蒸発器 2 1 0、 熱交換器 3 0 0の熱伝達率を両方とも高 く維持することができる。
このようにすると、 熱交換器 3 0 0のサーキットを合流ヘッダーに合流して絞 り機構 2 9 2で絞り、 蒸発器 2 1 0のサーキットに再分流するように構成されて いるので、 熱交換器 3 0 0内での蒸発、 凝縮がサーキット毎に不均一であつたと しても、 その不均一さを蒸発器 2 1 0に持ち込むことがない。 また絞り機構を集 約することができ、 構造を単純化することができる。
再び図 1 ( a ) に戻って、 バイパスの作用を説明する。 除湿運転モードでは、 ソレノィドバルブ 2 5 3を閉として熱交換器 3 0 0と蒸発器 2 1 0との間に圧力 差を生じさせる。 また膨張弁 7 1 3は、 蒸発器 2 1 0からの冷媒が乾いているよ うに開閉制御する。 即ち、 適切な冷媒量が熱交換器 3 0 0に供給されるように調 節する。
先ず除湿空調装置 2 1を始動する際には、 通常は手動で冷房運転にする力 \ 除 湿運転にするかのモード選択をする。 湿度が高くじめじめしているときは除湿運 転が選択される。 選択はコントローラのモード選択ポタン (不図示) によって行 われる。 運転モードが設定され、 パワーボタンが押されると除湿空調装置 2 1が 始動する。
このとき温度センサ 8 5 1で検出する温度、 即ち空調空間 1 0 1の温度が快適 な温度よりも低いときは、 コントローラ 5 0 1はバイパス弁 8 0 1を閉とする。 すると凝縮器 2 2 0からの冷媒液は再熱器 3 2 O Aに流れ、 再熱セクション 2 5 2 Aを流れる間に処理空気を加熱する。 .
このときコントローラ 5 0 1は、 ファン 1 4 0の駆動機 (不図示) に信号を送 りファン 1 4 0の回転数 (回転速度) を下げる。 ファン 1 4 0の駆動機は速度可 変モータとする。 ファン 1 4 0の回転数を、 凝縮機 2 2 0内で圧縮機 2 6 0から の冷媒ガスを完全に凝縮するに十分な空気量よりも少なくなるような回転数まで 低下させる。
このようにすると、 凝縮器 2 2 0からは冷媒ガスと液が混合した状態で再熱セ クシヨン 2 5 2 Aに流れる。 そしてここで冷媒ガスが凝縮することにより、 処理 空気 Aを加熱する。 この凝縮温度は、 凝縮セクション 2 5 2の凝縮温度よりも高 いので、 処理空気を十分に加熱することができる。
空調空間 1 0 1の気温が上昇するにつれて、 温度センサ 8 5 2が検出する温度 も上昇する。 その温度が目標温度、 例えば空調空間 1 0 1の空調設定温度となつ たときには (温度センサ 8 5 1の検出温度と温度センサ 8 5 2の検出温度がほぼ 等しくなつたとき)、 コントローラ 5 0 1は除湿空調装置 2 1の運転を停止する。 またはバイパス弁 8 0 1を開とする。
バイパス弁 8 0 1を開とすると、 バイパス弁 8 0 1の前後の差圧がなくなるの で、 再熱器 3 2 O Aに冷媒が流れなくなり、 再熱器 3 2 O Aによる再熱が行われ なレ、。 即ち、 第 2の区画 (中間凝縮器) 3 2 0による再熱だけが行われる通常の 除湿運転となる。
温度センサ 8 5 2は補助的なものであり、 設けなくてもよい。 そのときは、 温 度センサ 8 5 1の検出する温度が快適な温度になるように除湿空調装置 2 1を制 御すればよい。 即ち、 除湿空調装置 2 1の発停またはバイパス弁 8 0 1の開閉を 行えばよい。
以上、 バイパス弁 8 0 1はオンオフ弁 (全開又は全閉となる弁) として説明し たが、 全閉から全開まで開度を中間開度を含めて連続的に調節できる調節弁とし てもよい。 このときは、 コントローラ 5 0 1は、 温度センサ 8 5 1または温度セ ンサ 8 5 2の検出する温度が設定値になるように、 パイパス弁 8 0 1の開度を調 節する。
以上、 経路 2 0 2にバイパス弁 8 0 1を設ける場合で説明したが、 これに限ら ず経路 2 0 2のバイパス弁の代わりにオリフィス等の絞りを設け、 バイパスライ ン 8 0 2にバイパス弁 8 0 1を設けてもよい。 この場合も、 冷媒を再熱器 3 2 0 Aに導く とができる。
次に図 2の除湿空調装置 2 1の設置状態を示す模式的側面図と熱交換器の斜視 図を参照して、 蒸発器 2 1 0と熱交換器 3 0 0 aの構成例'を具体的に説明する。
( b ) ( c ) に示すように、 伝熱チューブ (細管) で構成される蒸発セクション 2 5 1は多数のプレートフィンを貫通して配置されている。 そして最も外側のフ インの外側で Uチューブ (ユーチューブ) により互いに接続されている。 このよ うにして、伝熱チューブは第 1の区画 3 1 0を蛇行しながら複数回貫通している。 第 1の区画 3 1 0は、 長方形のプレートフィンを多数平行に並べることにより 形成される直方体の空間である。 また、 そのプレートフィンと細管群を収納する 直方体空間の外面をプレート製のハウジングで囲むようにするとよい。 ただしそ のハウジングの対向する 2つの面は開口しており、該開口を処理空気が通過する。 同様に、 伝熱チューブである凝縮セクション 2 5 2は、 第 2の区画 3 2 0を蛇 行しながら複数回貫通している。 第 2の区画 3 2 0も第 1の区画 3 1 0と同様な ' 構造を有する直方体の空間である。
蒸発セクション 2 5 1の端部と凝縮セクション 2 5 2の端部とは、 酉己管 2 0 2 Bで接続されている。 本実施の形態では、 配管 2 0 2 Bは、 蒸発セクション 2 5 1と凝縮セクション 2 5 2を構成する連続したチューブの一部として構成されて レヽる。
再熱器 3 2 O Aは、 第 2の区画 3 2 0とプレートフィンを共通にする熱交換器 として構成されている。 ただし、 凝縮セクション 2 5 2と再熱セクション 2 5 2 Aとは、 温度が異なるので、 再熱器 3 2 O Aと第 2の区画 3 2 0との間で、 プレ 一トフインには切れ目をいれた方がよい。
第 2の区画 3 2 0と再熱器 3 2 O Aの間では、 プレートフィンに切れ目がある こと、 伝熱チューブが互いに接続されていないことを除けば一体の熱交換器に見 える。 特に、 プレ一トフインに切れ目を入れないときは、 伝熱チューブが接続さ れていないだけで、 構造上一体の熱交換器となる。 製造の際は、 伝熱チューブの U字管の配置により流路を分けることにより作り分ける。 以上説明したように、 冷媒流路である蒸発セクション 2 5 1と凝縮セクション 2 5 2は、 それぞれ蛇行する細管群を構成している。 このようにして、 蒸発セク シヨン 2 5 1から凝縮セクション 2 5 2を、全体として一方向に流れる冷媒 Cは、 細管群中を蛇行して流れながら、 蒸発セクション 2 5 1で蒸発し凝縮セクション 2 5 2で凝縮する間に、 第 1の区画 3 1 0を流れる温度の高い処理空気 Aからの 熱を第 2の区画 3 2 0を流れる温度の低い処理空気 Aに伝'える。
また再熱器 3 2 O Aは、 第 2の区画 3 2 0を流れる処理空気と並行して流れる 処理空気 Aを第 2の区画 3 2 0よりも高い温度まで加熱する。
蒸努器 2 1 0も同様に、 伝熱チューブが多数の長方形のプレートフィンを貫通 して構成されている。 その構成は第 1の区画 3 1 0、 第 2の区画 3 2 0と同様に 直方体の空間として構成されている。 そして最も外側のフィンの外側で Uチュー ブ (ユーチューブ) により接続されている。 このようにして、 伝熱チューブはフ インを蛇行しながら複数回貫通している。
本実施の形態では、 蒸発セクシヨン 2 5 1、 凝縮セクシヨン 2 5 2が、 それぞ れ処理空気 Aの流れに直交する 1つの平面内に蛇行して配置された 1層の細管群 として構成されているのに対して、 蒸発器 2 1 0は、 処理空気 Aの流れに直交す る 2つの平面内に蛇行して配置された 2層の細管群として構成されている。 但し これに限らず、 層数は伝熱量に応じて決めればよい。 また、 熱交換器 3 0 0と蒸 発器 2 1 0における細管群の伝熱面積の配分は、 後で説明するように潜熱負荷と 顕熱負荷との割合に応じて決めればよい。
また、 蒸発器 2 1 0は第 1の区画 3 1 0と第 2の区画 3 2 0及ぴ再熱器 3 2 0 Aとの間に配置されている。 このように配置すると、 1つの直方体空間を 3つに 分割して、 それぞれを第 1の区画 3 1 0、 蒸発器 2 1 0、 第 2の区画 3 2 0及び 再熱器 3 2 O Aとして構成することができ、 構造が単純になる。 各区画 3 1 0、 3 2 0、 再熱器 3 2 O Aと蒸発器 2 1 0との間では、 フィンは図示のように不連 続となるように切れ目を入れるのが好ましい。 隣り合う各部の温度が異なるから である。
この構成では、細管群は等間隔でフィンに貫通させて拡管してフィンに固定し、 各細管の間は単純な Uチューブで接続し、 各区画 3 1 0、 3 2 0間、 また蒸発器 2 1 0との間は、 1本又は少数の配管 (あるいは細管の一部) で接続すればよい ので、 構成が単純で、 製造も容易である。
次に図 2 ( a ) の模式的断面図を参照して、 以上説明した除湿空調装置を空調 空間 1 0 1の空調機として応用した例を説明する。 空調空間 1 0 1中即ち室内に 設置される室内機中には、 第 1の区画 3 1 0、 蒸発器 2 1 0、 第 2の区画 3 2 0 及び再熱器 3 2 O Aが一体で形成された熱交換器組立と、 戻り空気 R A、 供給空 気 S Aを循環させる送風機 1 0 2が収納されている。 送風機 1 0 2としてはクロ スフローファンを用いると室内機をコンパクトにまとめることができる。 第 1の 区画 3 1 0の戻り空気 R Aの流れの上流側には除塵フィルタが設けられている。 熱交換器 3 0 0 a (第 1の区画 3 1 0と第 2の区画 3 2 0が熱交換器 3 0 0を 構成し、 熱交換器 3 0 0と再熱器 3 2 O Aが熱交換器 3 0 0 aを構成する) 、 蒸 発器 2 1 0の下方にはドレンパン 4 5 0が備えられ、 ドレンパン 4 5 0からはド レンパイプが屋外に導かれている。
戻り空気 R Aはフィルタを通って除塵され、 第 1の区画 3 1 0で予冷され、 蒸 発器 2 1 0でさらに冷却されて除湿され飽和空気となる。 この飽和空気は第 2の 区画 3 2 0 (及ぴ再熱器 3 2 O A) で再熱されて適度な絶対湿度で適度な温度の 即ち適度な相対湿度の供給空気 S Aとして、 送風機 1 0 2により空調空間 1 0 1 に供給される。 すなわち処理空気は、 (各区画と蒸発器との間に切れ目はあるも のの) 一見すると通常の冷房用フィンチューブ熱交換器に見える一塊のプレート フィンと細管群を一方向に通過する間に、 予冷、 水分除去、 再熱の 3つのプロセ スがー気に行われ、 適度な湿度と温度の供給空気 S Aとなる。
空調空間 1 0 1外に設置される室外機中には、 凝縮器 2 2 0、 圧縮機 2 6 0、 送風機 1 4 0が収納されている。 そして、 凝縮器 2 2 0と第 1の区画 3 1 0の蒸 発セクション 2 5 1とは配管 2 0 2で接続され、 蒸発器 2 1 0と圧縮機 2 6 0と は配管 2 0 3で接続されている。 即ち、 室内機と室外機とは 2本の配管 2 0 2と 2 0 3だけで接続されている。 なお本図では、. 絞り機構 2 9 1 , 2 9 2は図示を 省略してある。
図 1のフロー図を参照して説明したバイパスライン 8 0 2 (図 2には不図示) は、 室内機の中で処理できるので、 室外機と室内機を結ぶ冷媒ラインは経路 2 0 2、 2 0 3だけで済む。
次に先ず図 1を参照して、 各機器間の冷媒 Cの流れを説明し、 続けて図 3に示 すヒートポンプ H P 1の第 1の運転形態としての除湿運転モード時の冷媒モリェ 線図を参照して、 ヒートポンプ H P 1の作用を説明する。
図 1において、 先ず第 1の運転形態としての除湿運転モード時の場合を説明す る。 このときは、 ソレノイドバルブ 2 5 3は閉どする。 圧縮機 2 6 0により圧縮 された冷媒ガス Cは、 圧縮機 2 6 0の吐出口に接続された冷媒ガス配管 2 0 1を 経由して凝縮器 2 2 0に導かれる。 圧縮機 2 6 0で圧縮された冷媒ガス Cは、 冷 却空気としての外気 Bで冷却され凝縮する。
凝縮器 2 2 0の冷媒出口は、 熱交換器 3 0 0の蒸発セクシヨン 2 5 1の入り口 に冷媒経路 2 0 2により接続されている。 通常の除湿運転ではバイパス弁 8 0 1 は開となっており、 凝縮器 2 2 0を出た液冷媒 Cは、 膨張弁 7 1 3で減圧され、 膨張して一部の冷媒 Cが蒸発 (フラッシュ) する。 その液とガスの混合した冷媒 Cは、 蒸発セクシヨン 2 5 1に到り、 ここで液冷媒 Cはプレートフィンを貫通し ながら蛇行する蒸発セクション 2 5 1のチューブの内壁を濡らすように流れ蒸発 して、 第 1の区画 3 1 0を流れる、 蒸発器 2 1 0に流入する前の処理空気 Aを冷 却 (予冷) する。
蒸発セクシヨン 2 5 1である程度蒸発し、 ガスと液の混合物となつた冷媒は、 配管 2 0 2 Bに導かれて、 凝縮セクション 2 5 2に流入する。 第 2の区画 3 2 0 を流れる処理空気 A、 即ち第 1の区画 3 1 0で予冷された後に蒸発器 2 1 0で冷 却除湿され、 蒸発器 2 1 0に流入する前より温度が低くなった処理空気 Aを加熱 (再熱) し、 冷媒自身は熱を奪われ凝縮する。 本実施の形態では蒸発セクション 2 5 1と凝縮セクション 2 5 2とは一連のチューブ (Uチューブを含む) で形成 されている。 すなわち一体の流路として構成されているので、 蒸発セクション 2 5 1で蒸発した冷媒ガス C (及び蒸発しなかつた冷媒液 C ) は、 凝縮セクシヨン 2 5 2に流入して凝縮することにより、 物質移動と同時に熱移動を行う。
熱交換器 3 0 0の最後の凝縮セクシヨン 2 5 2の出口側は、 冷媒液配管 2 0 3 により、 蒸発器 2 1 0に接続され、 冷媒配管 2 0 3中には膨張弁 2 5 0、 JJ彭張弁 2 5 0をバイパスするソレノィドバルブ 2' 5 3が設置されている。 凝縮セクションで凝縮した冷媒液 Cは、 絞り 2 5 0で減圧され膨張して温度を 下げて、 蒸発器 2 1 0に入り蒸発し、 その蒸発熱で処理空気 Aを冷却する。 絞り 2 5 0としては、 例えばオリフィス、 キヤビラリチューブ、 膨張弁等を用いる。 ソレノィドバルブ 2 5 3は閉となっているので、 冷媒液 Cはソレノィドバルブ 2 5 3を通過しない。
蒸発器 2 1 0で蒸発してガス化した冷媒 Cは、 経路 2 0 4を通して圧縮機 2 6 0の吸込側に導かれ、 以上のサイクルを繰り返す。
図中、 熱交換器 3 0 0の蒸発セクション 2 5 1と凝縮セクション 2 5 2内の冷 媒 Cの挙動を説明する。 先ず蒸発セクション 2 5 1には、 液相及び気相の冷媒 C が流入する。 一部が気化した、 気相を僅かに含む冷媒液 Cであってもよい。 この 冷媒 Cは、 蒸発セクション 2 5 1を流れる間に、 処理空気 Aを予冷し自身は加熱 され気相を増やしながら凝縮セクション 2 5 2に流入する。 凝縮: i クシヨン 2 5 2では、 冷却除湿されることにより蒸発セクション 2 5 1の処理空気 Aよりも温 度の低くなった処理空気 Aを加熱し、自身は熱を奪われ気相冷媒 Cを凝縮させる。 このように冷媒 Cは気相と液相の相変化をしながら冷媒流路を流れ、 蒸発器 2 1 0で冷却される前の処理空気 Aと、 蒸発器 2 1 0で冷却されて絶対湿度を低下さ せた処理空気 Aとの間で熱交換させる。
既に説明したように、 低温高湿度の場合はバイパス弁 8 0 1を全閉または開度 調節することにより、 処理空気を第 2の区画 3 2 0によるよりも高い温度に再熱 する。
第 2の運転形態としての冷房運転の場合は、 ソレノィドバルブ 2 5 3を全閉か ら全開として冷媒 Cが絞り 2 5 0の前後で圧力低下を起こさないようにし、 第 1 の運転形態としての除湿運転から、 第 2の運転形態としての冷房運転に運転形態 を切り替える。 このとき、 パイパス弁 8 0 1は全開とする。
こうすることにより、 絞り 2 5 0前後の冷媒 Cの圧力低下をほぼゼロとし、 冷 媒 Cの圧力低下を膨張弁 7 1 3で発生させることができ、 熱交換器 3 0 0の凝縮 セクション 2 5 2と、 蒸発セクション 2 5 1における冷媒 Cの圧力が、 蒸発器 2 1 0における冷媒 Cの圧力にほぼ等しくなり、 蒸努器 2 1 0に加えて凝縮セクシ ヨン 2 5 2と、 蒸発セクション 2 5 1においても冷媒 Cの蒸発が発生する。 よつ て、 蒸発の伝熱面積が増えるので冷房能力すなわち顕熱処理能力を増加させるこ とができる。
そして、 除湿運転モード時では、 熱交換器 3 0 0を蒸発器 2 1 0を通過する前 後の処理空気 Aのレヒート熱交換器として使うことによって冷却による結露水分 量を冷房運転モード時より増やし、 冷房運転モード時より除湿能力すなわち潜熱 処理能力を増加させることができる。 これによつて、 除湿運転モード時では、 冷 房運転モード時より速やかに湿度を下げることができ、 いわゆる低顕熱比の湿度 の高い室内空調負荷にも対応できる。
またさらに、 除湿運転モード時には送風機 1 0 2による送風量を冷房運転モー ド時よりも減らすことにより、 結露水分量を冷房運転モード時より増やすように してもよい。そのために、送風機 1 0 2も不図示の可変速モータにより駆動して、 回転数の增減制御が可能に構成するとよい。
本第 1の実施の形態の除湿空調装置を、 家庭用のエアコンに適用した場合、 除 湿運転を行うことによって、 梅雨時や夏期夜間の就寝時に室内が冷えすぎること なく、 低湿度で快適な環境を作ることができる。 さらに低温高湿度の場合にも対 処できる。
以上説明したように、 本実施の形態の除湿空調装置は、 空調負荷の顕熱比が可 変であり、 しかも除湿運転、 冷房運転いずれの運転形態においても省エネルギー な運転ができる。
次に図 3のモリエ線図を参照して、 ヒートポンプ H P 1の除湿運転モード時の 作用を説明する。 なお、 機器等については適宜図 1を参照する。 図 3は、 混合冷 媒 H F C 4 0 7 Cを用いた場合のモリエ線図である。 この線図では横軸がェンタ ルビ、 縦軸が圧力である。 先ずバイパス弁 8 0 1が全開になっている通常の除湿 運転の場合を説明する。
図中、 点 aは蒸発器 2 1 0の冷媒出口の状態であり、 冷媒 Cは飽和ガスの状態 にある。 圧力は 0 . 6 7 M P a、 温度は 1 1 . 2 °C、 ェンタルピは 4 1 4 . O k J / k gである。 このガスを圧縮機 2 6 0で吸込圧縮した状態、 圧縮機 2 6 0の 吐出口での状態が点 bで示されている。 この状態は、 圧力が 1 . 6 6 M P aであ り、 過熱ガスの状態にある。 この冷媒ガス Cは、 凝縮器 2 2 0内で冷却され、 モリェ線図上の点 cに到る。 この点は飽和ガスの状態であり、 圧力は 1 . 6 6 M P a、 温度は 4 2 . 9 °Cであ る。 この圧力下でさらに冷却され凝縮して、 点 dに到る。 この点は飽和液の状態 であり、 圧力は点 cと同じであり、 温度は 3 8 °C、 ェンタルピは 2 5 6 . 9 k J / k gである。 使用している冷媒が混合冷媒であるので、 同圧力での凝縮でも飽 和ガス線上の温度と飽和液線上の温度が異なる。
バイパス弁 8 0 1が全開あり、 またファン 1 4 0の回転数も十分高い場合であ るので、冷媒の状態は点 cから点 dに移る。ここでは途中の点 Yは無視してよい。 この冷媒液 Cは、 膨張弁 7 1 3で減圧され熱交換器 3 0 0の蒸発セクション 2 5 1に流入する。 モリエ線図上では、 点 eで示されている。 圧力は、 本発明の中 間圧力であり、 本実施例では 0 . 6 7 M P aと 1 . 6 6 M P aとの中間の値とな る。 ここでは、 一部の液が蒸発して液とガスが混合した状態にある。
蒸発セクション 2 5 1内で、 前記中間圧力下で冷媒液 Cは蒸発して、 同圧力で 飽和液線と飽和ガス線の中間の点 f に到る。ここでは液の一部が蒸発している力 冷媒液 Cはある程度残っている。
点 f で示される状態の冷媒 が、 凝縮セクション 2 5 2に流入する。 凝縮セク シヨン 2 5 2では、 冷媒 Cは第 2の区画 3 2 0を流れる低温の処理空気 Aにより 熱を奪われ、 点 gに到る。
点 gはモリェ線図では飽和液線上にある。温度は 1 8。C、ェンタルピは 2 2 6 . 1 k J / k gである。
点 gの冷媒液 Cは、 絞り 2 5 0で、 温度 5 . 2 °Cの飽和圧力である 0 . 6 7 M P aまで減圧され、 点 jに到る。 この点; jの冷媒 Cは、 5 . 2 °Cの冷媒液 Cと冷 媒ガス Cの混合物として蒸発器 2 1 0に到り、 ここで処理空気 Aから熱を奪い、 蒸発してモリェ線図上の点 aの状態の飽和ガスとなり、 再び圧縮機 2 6 0に吸入 され、 以上のサイクルを繰り返す。 凝縮器におけるのと同様に、 混合冷媒を使用 しているので、 同圧力での蒸発でも飽和ガス線上の温度と飽和液線上の温度とが 異なる。
したがって、 図 1のフロー図を参照して説明したように、 冷媒と処理空気の流 れを対向流とすると両者の流れは温度的にも対向流となる。 即ち、 蒸発器 2 1 0 に流入する際の冷媒温度は 5. 2°Cであり流出冷媒温度 1 1. 2°Cよりも低い。 この低い温度の冷媒が蒸発器 2 1 0を流出しょうとする処理空気と接触する。 し たがって蒸発器 2 1 0の熱交換効率を高くすることができる。
熱交換器 3 0 0については、 具体的な温度は省略するが、 同様に冷媒と処理空 気の流れを対向流とすることにより (図 1参照)同様な効果を得ることができる。 以上説明したように、 熱交換器 3 0 0内では、 冷媒 Cは蒸発セクション 2 5 1 では点 eから点 f までと蒸発の状態変化を、 凝縮セクシヨン 2 5 2では点 f から 点 g 1までと凝縮の状態変化をしており、 蒸発伝熱と凝縮伝熱であるため、 熱伝 達率が非常に高くまた熱交換効率が高い。
さらに、 圧縮機 2 6 0、 凝縮器 2 2 0、 膨張弁 7 1 3\ 絞り 2 5 0及び蒸発器 2 1 0を含む圧縮ヒートポンプ HP 1としては、 熱交換器 3 0 0を設けない場合 は、 凝縮器 2 2 0における点 dの状態の冷媒 Cを、 絞りを介して蒸発器 2 1 0に 戻すため、 蒸発器 2 1 0で利用できるェンタルピ差は 4 1 4. 0 - 2 5 6. 9 = 1 5 7. 1 k J /k gしかないのに対して、 熱交換器 3 0 0を設けた本実施の形 態で用いるヒートポンプ HP 1の場合は、 4 1 4. 0 - 2 2 6. 1 = 1 8 7. 9 k J /k gになり、 同一冷却負荷に対して圧縮機 2 6 0に循環するガス量を、 ひ いては所要動力を 1 6 %も小さくすることができる。 すなわち、 サブクーノレサイ クルと同様な作用を持たせることができる。
次に低温高湿度に対処するため、 バイパス弁 8 0 1を全閉とし、 ファン 1 4 0 の回転数を下げ即ち送風量を少なくした場合の運転を説明する。
このときは、 ファン 1 4 0の送風量が減るので、 凝縮器 2 2 0内では冷媒は完 全には凝縮せず、 凝縮器 2 2 0を出る冷媒はモリェ線図上で点 cと点 dとの間の 点 Yで表わされる状態になる。 即ち、 冷媒液と冷媒ガスが混合した状態である。 点 Yと点 dとの間のェンタルピ差は Δ SH rで表わされている。 この分だけ、 再 熱器 3 2 OAの再熱セクション 2 5 2 A中で冷却される。 そして凝縮器 2 2 0で 凝縮されずに残ったガス成分が凝縮され、 点 dに到る。
その他は通常の除湿運転の場合と同様であるので重複した説明を省略する。 次に、 ヒートポンプ HP 1の冷房運転モード時の作用を説明する。 図中点 dま では除湿運転モード時と同様であるので点 dまでの説明は省略する。 凝縮器 2 2 0を出た冷媒 Cは、 膨張弁 7 1 3を通過する。 この絞りを通過すると圧力は 1 . 6 6 M P aから0 . 6 7 M P aまで減少し、 図中点 dから点; j ' に移行する。 こ の点 j , のェンタルピは、 2 5 6 . 9 k J / k gである。 そして冷媒は熱交換器
3 0 0、 蒸発器 2 1 0で蒸発し点 aに至る。
—般に、 特に日本のような温帯や亜熱帯地方における気候では、 空調負荷のう ち除湿負荷(潜熱負荷) の最大値は盛夏でも雨季でもそれほどの差はない。一方、 顕熱負荷は例えば 8月のような盛夏時には著しく増加する。 そのため、 冷房と除 湿を兼用する空調機の設計上の最大負荷としては、 盛夏時の負荷を採用しなけれ ばならない。
それに対して、 除湿運転モード時の最大負荷は、 冷房運転モードの最大負荷の 半分以下である。 一例をあげれば、 盛夏時の総負荷を 1 0 0とすると、 そのうち 潜熱負荷は 3 0であり、 梅雨時のような雨季の総負荷は 4 0であり、 そのうち潜 熱負荷は 2 5である。
したがって、 蒸発器で奪うべき熱量は、 冷房運転モード時の方が除湿運転モー ド時に比べてはるかに多い。 顕熱負荷が大きい分だけ多くなるからである。 しか しながら、 潜熱負荷は雨季と盛夏時とであまり変わらない。
本発明の実施の形態によれば、 冷房運転モード時には蒸発器として使用できる 伝熱面積が蒸発器 2 1 0に加えて熱交換器 3 0 0の分が加わるので、 十分な伝熱 が確保できる。 また除湿運転モード時には、 蒸発器として使用できる伝熱面積は 蒸発器 2 1 0の分であり、 除湿負荷に適した伝熱面積とすることができる。 熱交 換器 3 0 0は除湿した後のいわば冷えすぎた処理空気の再熱に使用でき、 同時に 処理空気の予冷に使用できる。
別の方向から見れば、 冷房専用の空調機に必要十分な伝熱面積を有する蒸発器 の伝熱面積を 3分割し、 蒸発器 2 1 0、 蒸発セクション 2 5 1、 凝縮セクション 2 5 2 (及ぴ再熱セクション 2 5 2 A) とすればよレ、。 即ち、 冷房専用の空調機 の蒸発器そのままの大きさをもって、 冷媒配管を調整するだけで、 冷房 ·除湿兼 用のコンパクトで効率的な空調機を構成することができる。
日本の気候におけるような負荷割合に対しては、 熱交換器全体の伝熱面積の約
4 0〜 6 0 %を蒸発器 2 1 0に配分し、 残り 6 0〜 4 0 %の伝熱面積を蒸発セク ショ ^ 2 5 1と凝縮セクション' 2 5 2とに伝熱量に応じて配分すればよい。
また除湿運転であっても、 冷房運転であっても、 熱交換器 3 0 0内の冷媒の体 積流量は蒸発器 2 1 0内の冷媒体積流量よりも小さい。 図 1 ( b ) に示す実施の 形態によれば、 熱交換器 3 0 0のサーキット数は 1であり、 蒸発器のサーキット 数 2よりも小さいので、 除湿運転の際も冷房運転の際も、 熱交換器 3 0 0と蒸発 器 2 1 0の冷媒流速をそれぞれ同じような値にすることができ、 熱伝達率の低下 を防止することができる。
図 4に示す除湿空調装置 2 1の除湿運転モード時の湿り空気線図を参照して、 また構成については適宜図 1を参照して、 ヒートポンプ H P 1を備えた除湿空調 装置 2 1の除湿運転モード時の作用を説明する。 図中、 アルファベット記号 K、 X、 L、 Mにより、 各部における空気の状態を示す。 この記号は、 図 1のフロー 図中で丸で囲んだアルファべットに対応する。 なお点 Pは再熱器 3 2 O Aで再熱 をした場合の供給空気の状態を表わす。
図中、 空調空間 1 0 1からの処理空気 A (状態 K) は、 処理空気経路 1 0 7を 通して、 熱交換器 3 0 0の第 1の区画 3 1 0に送り込まれ、 ここで蒸発セクショ ン 2 5 1で蒸発する冷媒 Cによりある程度まで冷却される。 これは蒸発器 2 1 0 で露点温度 (以下) まで冷却される前の予備的冷却であるので予冷と呼ぶことが できる。 この間、 蒸発セクション 2 5 1で予冷されながら、 ある程度は水分を除 去され僅かながら絶対湿度を低下させながら点 Xに到る。点 Xは飽和線上にある。 あるいは予冷段階では、点 Kと点 Xとの中間点まで冷却するものであってもよい。 又は点 Xを越えて、 多少飽和線上を低湿度側に移行した点まで冷却されるもので あってもよい。
予冷された処理空気 Aは、 経路 1 0 8を通して、 蒸発器 2 1 0に導入される。 ここでは、 絞り 2 5 0によって減圧され、 低温で蒸発する冷媒 Cにより、 処理空 気 Aはその露点温度 (以下) に冷却され、 水分を'奪われながら、 絶対湿度を低下 させつつ乾球温度を下げて、点 Lに到る。点 Xから点 Lまでの変化を示す太線は、 便宜上飽和線とはずらして描いてあるが、 実際は飽和線と重なっている。
点 Lの状態の処理空気 Aは、 経路 1 0 9を通して熱交換器 3 0 0の第 2の区画 3 2 0に流入する。 ここでは凝縮セクシヨン 2 5 2内で凝縮する冷媒 Cにより、 絶対湿度一定のまま加熱され点 Mに到る。 点 Mは、 点 Kよりも絶対湿度は十分に 低く、 乾球温度は低すぎない、 適度な相対湿度の空気として、 送風機 1 0 2によ り吸い込まれ、 空調空間 1 0 1に戻される。
熱交換器 3 0 0では、 蒸発セクション 2 5 1での冷媒 Cの蒸発により処理空気 Aを予冷し、 凝縮セクション 2 5 2での冷媒 Cの凝縮により処理空気 Aを再熱す る。 そして蒸発セクシヨン 2 5 1で蒸発した冷媒 Cは、 凝縮セクシヨン 2 5 2で 凝縮する。 このように同じ冷媒 Cの蒸発と凝縮作用により、 蒸発器 2 1 0で冷却 される前後の処理空気 A同士の熱交換を間接的に行う。
点 Mの状態の空気を空調空間 1 0 1に供給するのは、 潜熱負荷の他に顕熱負荷 もかなりある場合である。 低温高湿度の場合は、 空調空間 1 0 1内の空調負荷は 潜熱負荷がほとんどであり、 顕熱負荷がほとんどないので、 供給空気の状態が点
Mでは空調空間 1 0 1の温度が低くなりすぎる。 そこで再熱器 3 2 0 Aで処理空 気 Aを加熱し、 乾球温度が点 Kとほぼ同じ点 Pの状態にする。
なお図 2に示す実施の形態では、 点 Lの空気を第 2の区画 3 2 0と並行して再 熱器 3 2 O Aで加熱する構成となっているが、 図 4では便宜上点 Mの状態の空気 を再熱するものとして図示してある。 厳密に言えば、 図 4の線図は後述の第 2の 実施の形態に相当する。
凝縮器 2 2 0には、 経路 1 2 4を通して外気 Bが導入される。 この外気 Bは凝 縮する冷媒 Cから熱を奪い、 加熱された外気 Bは経路 1 2 5を経由して送風機 1 4 0に吸い込まれ、 経路 1 2 6を経由して屋外に排出される (E X) 。
ここで図 4の湿り空気線図上に示す空気側のサイクルでは、 第 1の区画 3 1 0 で処理空気 Aを予冷した熱量、 すなわち第 2の区画 3 2 0で処理空気 Aを再熱し た熱量 Δ Ηが熱回収分であり、 蒸発器 2 1 0で処理空気 Aを冷却した熱量分が Δ Qである。 また空調空間 1 0 1を冷房する、 冷房効果が Δ iである。
また再熱器 3 2 O Aによる加熱分が Δ S H aである。 これは図 3で言及した Δ S H rに冷媒と空気の質量流量比を乗じたものに等しい。
本第 1の実施の形態の除湿空調装置 2 1は、 冷房運転モード時に空気 ·空気熱 交換器としての熱交換器 3 0 0を蒸発器として使用することにより'、 蒸発器の伝 熱面積を増やして蒸発温度を上げて、 冷房処理能力すなわち顕熱処理能力を増加 させることができる。 これによつて、 速やかに室温を下げることができ、 いわゆ る高顕熱比の、 乾燥し且つ高温の室内空調負荷に対応できる。
すなわち、 冷房運転モード時においては、 図 4の湿り空気線図中、 空調空間 1 0 1 (図 1 ) (状態 K) を出た処理空気 Aは熱交換器の第 1の区画 3 1 0 (図 1 )、 蒸発器 2 1 0 (図 1 ) 、熱交換器の第 2の区画 3 2 0 (図 1 ) において冷却され、 熱交換器の第 2の区画 3 2 0を出た処理空気 Aは図中の点 Xの近傍の点で表され る状態にある。 また冷房運転モード時には、 送風機 1 0 2の送風量を除湿運転モ 一ド時よりも多くするように構成するのが好ましい。 このようにすると大量の顕 熱を取りやすいからである。
本実施の形態の除湿空調装置 2 1は、 除湿運転モード時に、 熱交換器 3 0 0を 蒸発器 2 1 0を通過する前後の処理空気 Aのレヒート熱交換器として使うことに よって冷却による結露水分量を冷房運転モード時より増やし、 除湿能力すなわち 潜熱処理能力を増加させることができる。 これによつて、除湿運転モード時では、 速やかに湿度を下げることができ、 いわゆる低顕熱比の湿度の高い室内空調負荷 にも対応できる。
除湿空調装置 2 1は、 空調負荷の顕熱比が可変であり、 しかも除湿運転、 冷房 運転!/、ずれの運転形態においても省エネルギーな運転ができる。
次に図 5を参照して、 本発明の第 2の実施の形態の除湿空調装置 2 2を説明す る。 第 1の実施の形態では、 再熱器は第 2の区画 3 2 0と一体に構成され、 第 2 の区画 3 2 0と並行して処理空気を加熱していたが、 本実施の形態では、 再熱器 8 1 3は中間凝縮器としての第 2の区画 3 2 0の処理空気下流側に設けられてい る。 すなわち第 2の区画 3 2 0で加熱された後に処理空気 Aを加熱するように構 成されている。
図 1の実施の形態では、 第 2の区画 3 2 0での加熱された処理空気と、 並行し て再熱器 3 2 0 Aで加熱された処理空気とを混合して空調空間 1 0 1に供給する ように構成されていたのに対して、 本実施の形態では、 第 2の区画 3 2 0で加熱 された後に処理空気 Aを加熱するように構成されているので、 再熱温度を高くす ることができる。
また再熱器 3 2 O Aへのバイパスラインの取り出し口は、 圧縮機 2 6 0の吐出 側で凝縮器 2 2 0の上流側に接続されている。 そしてバイパス弁 8 1 1は、 バイ パスライン 8 1 2に設けられている。 バイパスライン 8 1 2の戻り口は凝縮器 2 2 0と膨張^ 7 1 3との間に接続されている。
このように構成すると、 バイパスガスの取り出しが凝縮器 2 2 0の上流側であ るので、 冷媒はいずれにしてもガス状態にある。 したがって、 再熱器 8 1 3を用 いるときもファン 1 4 0の回転数を落とす必要がない。 またガス温度も凝縮器 2 2 0を経由したものよりも高い。
ただし、 室外機と室内器との間にバイパスライン 8 1 2を引きまわさなければ ならない。
コントローラ 5 0 1 ' は、 温度センサ 8 5 1からの温度が低すぎるときは、 バ ィパス弁 8 1 1を開として再熱器 8 1 3に冷媒ガスを流す。 もちろん第 1の実施 の形態と同様に、 温度センサ 8 5 2 (図 5には不図示) を併用してもよい。 次に図 6を参照して、 本発明の第 3の実施の形態の除湿空調装置 2 3を説明す る。 本実施の形態では、 処理空気経路 1 0 7から経路 1 1 0に処理空気のバイパ ス 8 2 4、 8 2 5を設けて、 その間に再熱器 8 2 3を設置したものである。 再熱 器 8 2 3も、 圧縮機 2 6 0で昇圧された冷媒で、 第 2の区画 3 2 0における加熱 と並行して加熱する場合の一形態ではあるが、 加熱する対象の処理空気は、 第 1 の区画による予冷と蒸発器 2 1 0による水分除去を経由しない処理空気を加熱す る点で第 1の実施の形態と異なる。
再熱器 8 2 3に導く冷媒ガスの経路は第 2の実施の形態と同様である。 即ち、 再熱器 8 2 3へのバイパスライン 8 2 2の取り出し口は、 圧縮機 2 6 0の吐出側 で凝縮器 2 2 0の上流側に接続されている。 そしてパイパス弁 8 2 1は、 バイパ スライン 8 2 2に設けられている。 バイパスライン 8 2 2の戻り口は凝縮器 2 2 0と膨張弁 7 1 3との間に接続されている。
コントローラ 5 0 1 " は、 温度センサ 8 5 1からの温度信号を受けて、 バイパ ス弁 8 2 1を開閉する。
再熱器 8 2 3で加熱された処理空気は、 第 2の区画 3 2 0を経由した低湿度で 低温の処理空気と混合されて、 適度な温度の供給空気として空調空間 1 0 1に供 給される。 ' 次に図 7を参照して、 本発明の第 4の実施の形態の除湿空調装置 2 4を説明す る。 本実施の形態では、 再熱器 3 2 0 Bが第 2の実施の形態の再熱器 8 1 3と同 様に、中間凝縮器としての第 2の区画 3 2 0の処理空気下流側に設けられている。 すなわち第 2の区画 3 2 0で加熱された後に処理空気 Aを加熱するように構成さ れている。 また本実施の形態では、 再熱器 3 2 0 Bは第 2の区画 3 2 0と一体に 構成されている。 このように構成すると、 図 8を参照して後述するように熱交換 器としてコンパクトにまとまり、 製造も容易である。 但し、 再熱器 8 1 3のよう に別体に構成してもよい。
図 1の第 1の実施の形態では、 第 2の区画 3 2 0での加熱された処理空気と、 並行して再熱器 3 2 0 Aで加熱された処理空気とを混合して空調空間 1 0 1に供 給するように構成されていたのに対して、 本実施の形態では、 第 2の実施の形態 の除湿空調装置 2 2と同様に、 第 2の区画 3 2 0で加熱された後に処理空気 Aを 加熱するように構成されているので、 再熱温度を高くすることができる。
冷媒経路中の位置づけとしては、 再熱器 3 2 0 Bは凝縮器 2 2 0と中間蒸発器 3 1 0とを接続する冷媒経路 2 0 2中に設けられている。 さらに具体的には、 凝 縮器 2 2 0と第 2の絞り機構 2 9 1の膨張弁 7 1 3との間に設けられている。 こ の実施の形態の冷媒経路 2 0 2は、、 冷媒の主経路であり、 図 1の第 1の実施の形 態におけるバイパスパス経路 8 0 2とは異なる。 冷媒経路 2 0 2には、 系を循環 する冷媒の全量が流れる。 したがって、 再熱器 3 2 0 Bには凝縮器 2 2 0を流れ るのと同量の冷媒が流れる。 典型的には、 蒸宪器 2 1 0を流れるのと同量でもあ る。
熱交換器 3 0 0 b (第 1の区画 3 1 0と第 2の区画 3 2 0が熱交換器 3 0 0を 構成し、 熱交換器 3 0 0と再熱器 3 2 0 Bが熱交換器 3 0 0 bを構成する) 、 蒸 発器 2 1 0の下方にはドレンパン 4 5 0が備えられ、 ドレンパン 4 5 0からはド レンパイプ (図 7には不図示) が屋外に導かれている。
図 8の一部破断斜視図を参照して、 再熱器 3 2 0 Bを説明する。 (a ) に示す ように、 再熱器 3 2 0 Bは、 第 2の区画 3 2 0とプレートフィンを共通にする熱 交換器として構成されている。 ただし、 凝縮セクション 2 5 2と再熱セクション とは、 温度が異なるので、 再熱器 3 2 0 Bと第 2の区画 3 2 0との間に、 断続的 にスリッ ト 3 2 1 aが形成されている ( (b ) 参照) 。 (b ) に一部破断して示 すように、 プレートフィンには伝熱チューブを貫通する穴 3 2 1 bも形成されて いる。 なお (a ) では、 再熱器 3 2 0 Bと第 2の区画 3 2 0の一部を破断して除 去して示してある。 プレートフィン 3 2 1にスリ ッ ト 3 2 1 aが形成されている 状態を分かり易く示すためである。 除去する前の形状は一点鎖線の想像線で示し てある。
多数のプレートフインの両端の各少なくとも 1枚には、 スリツトをいれない。 両端のプレートフィンはチューブプレートの役目を有するので、 強度を維持する 必要があるからである。 このように構成すると、第 2の区画と再熱器 3 2 0 Bは、 一体の熱交換器となり、製造が容易で、全体としてコンパクトな熱交換器となる。 第 2の区画 3 2 0と再熱器 3 2 0 Bの間では、 プレートフィンにスリット乃至 切れ目があること、 伝熱チューブが互いに接続されていないことを除けば一体の 熱交換器に見える。 製造の際は、 伝熱チューブの U字管の配置により流路を分け ることにより作り分ける。
なお、 前記スリッ トの代わりに、 プレートフィンに切れ目をいれ、 チューブプ レート相当のプレートフインにも切れ目をいれてもよい。 このときは第 2の区画 と再熱器 3 2 0 Bは別体の熱交換器となる。
再熱器 3 2 0 Bの伝熱チューブの蛇行等の構造は他の実施の形態で説明した熱 交換器と同様であるので重複した説明は省略する。
処理空気経路 1 0 7には、 戻り空気 R Aの温度を検出する温度センサ 8 5 1と 湿度を検出する湿度センサ 8 5 3とが設けられ、 これらの出力信号はコントロー ラ 5 0 2に送信されるように構成されている。 コントローラ 5 0 2からは、 第 1 の絞り機構 2 9 2及びファン 1 4 0に制御信号を送信するように構成されている。 図 7に戻って、 除湿空調装置 2 4の運転形態を説明する。
先ず弱冷房運転モード時の場合を説明する。 これは冷房負荷が比較的大きく、 再熱が小さくてよい場合にする運転モードである。 このときは、 ファン 1 4 0の 送風量を減らすことはしない。 したがって圧縮機 2 6 0から送られてきた冷媒は 凝縮器 2 2 0で全て凝縮される。 このようにして凝縮した冷媒液が再熱器 3 2 0 Bに流入し、そこで除湿後の処理空気に熱を放出することにより再熱作用を行う。 冷媒液は過冷却状態となる。
この放熱により中間凝縮器 3 2 0における放熱量が減少するため、 中間凝縮器 3 2 0の伝熱負荷が少なくなり、 中間凝縮温度が下り、 したがって中間蒸発温度 も下がる。 そのため処理空気の予冷却量が増え、 蒸発器 2 1 0に入る空気の相対 湿度が上昇するとともに、 後述のモリエ線図に示すように蒸発器 2 1 0入り口の 冷媒ェンタルピが下がりサイクル冷凍効果が高くなるため、 除湿量が増加する。 但し吹き出し空気温度は再熱除湿モードょりも低くなる。
次に、 再熱除湿運転モード時の場合を説明する。 これは相対的に潜熱 (除湿) 負荷が大きい場合にする運転モードである。 このときは、 ファン 1 4 0の送風量 を減らす。
温度センサ 8 5 1で検出する温度、 即ち空調空間 1 0 1の温度が快適な温度よ りも低いときは、 コントローラ 5 0 2は、 ファン 1 4 0の駆動機 (不図示) に信 号を送りファン 1 4 0の回転数 (回転速度) を下げる。 すなわち、 ファン 1 4 0 の回転数を、 凝縮機 2 2 0内で圧縮機 2 6 0からの冷媒ガスを完全に凝縮するに 十分な空気量よりも少なくなるような回転数まで低下させる。本実施の形態では、 速度可変のファン 1 4 0が本発明の放熱量調節手段を構成している。
放熱量調節手段は、 さらにコントローラ 5 0 2を含んで構成されていてもよい し、 温度センサ 9 5 1を含んで構成されていてもよいし、 湿度センサ 8 5 3を含 んで構成されていてもよい。 温度センサ、 湿度センサ無しでも、 室温が低すぎる と感じたときは、 手動で速度を下げる等、 速度変更をすることができる。 温度セ ンサ、 湿度センサの両方、 又は一方を備え、 検出結果に基づいてコントローラ 5 0 2で自動的に速度を変えるようにしてもよい。 ファン 1 4 0の回転速度を変え ることにより、 放熱量を増減し再熱器 3 2 0 Bに流入する冷媒のェンタルピを増 減することができる。
このようにすると、 凝縮器 2 2 0からは冷媒ガスと液が混合した状態で再熱器 3 2 0 Bの再熱セクションに流れる。 そしてここで冷媒ガスが凝縮することによ り、 処理空気 Aを加熱する。 この凝縮温度は、 凝縮セクション中間凝縮器 3 2 0 の凝縮温度よりも高いので、 処理空気を十分に加熱することができる。
空調空間 1 0 1の気温が上昇するにつれて、 温度センサ 8 5 1が検出する温度 も上昇する。 その温度が目標温度、 例えば空調空間 1 0 1の空調設定温度となつ たときには、 コントローラ 5 0 2は除湿空調装置 2 4の運転を停止する。 なお、 図 7の実施の形態の変形例として、 凝縮器 2 2 0と膨張弁 7 1 3とを接 続し、 再熱器 3 2 0 Bをバイパスする経路を追加し、 この経路にバイパス弁 (図 1の 8 0 1に相当する) を設けてもよい。 このように構成すると、 再熱器 3 2 0 Bが中間凝縮器 3 2 0と並列か直列かを除けば、 ほぼ第 1の実施の形態と同様に なる。 このときは前記バイパス弁を全開にすると再熱器 3 2 0 Bはほとんど再熱 機能は発揮しないので、 通常の除湿運転ができる。 さらにコントローラ 5 0 2か ら第 1の絞り機構 2 9 2に送られる信号により、 本実施の形態における第 1の絞 り機構 2 9 2のバイパス弁を全開にすれば、 中間蒸発器 3 1 0と中間凝縮器 3 2 0も蒸発器 2 1 0と同じ圧力で冷媒を蒸発させる蒸発器として機能し、 強冷房運 転が可能となるのは、 第 1の実施の形態で説明したのと同様である。
コントローラ 5 0 2は、 温度センサ 8 5 1、 湿度センサ 8 5 3による温度と湿 度の検出結果にしたがって、 弱冷房モードと再熱除湿モードのいずれかを選択す る。 選択は例えば次のように行われる。
温度センサ 8 5 1により検出される室温が室温の設定値よりも高く且つ室温と 設定値との間の偏差が冷房選択偏差よりも小さいときは、 コントローラ 5 0 2は 弱冷房モードを選択する。例えば室温が 3 0 °Cで室温の設定値が 2 7 °Cのときは、 偏差が 3 °Cである。 このとき冷房選択偏差が 5 °Cに設定されているときは、 除湿 空調装置 2 4は弱冷房モードで運転される。
室温が室温の設定値よりも高く且つ室温と設定値との間の偏差が冷房選択偏差 よりも大きいときは、 コントローラ 5 0 2は強冷房モードを選択する。 例えば室 温が 3 5 °C (装置起動時等) で室温の設定値が 2 7 °Cのときは、 偏差が 8 °Cであ る。 このとき冷房選択偏差が 5 °Cに設定されているときは、 除湿空調装置 2 4は 強冷房モードで運転される。
室温が室温設定値よりも低く且つ湿度センサ 8 5 3により検出される室内湿度 が設定湿度よりも高いときは、コントローラ 5 0 2は再熱除湿モードを選択する。 例えば室温が 2 2 °Cで室内湿度が 8 0 %とする。 このとき室内湿度の設定値が 6 0 %に設定されているときは、除湿空調装置 2 4は再熱除湿モードで運転される。 例えば気温の低い梅雨時に装置を起動したときなどの場合である。
次に図 9のモリェ線図を参照して、 除湿運転モード時の作用を説明する。 図 3 の説明と重複する部分は、適宜省略する。機器等については適宜図 7を参照する。 先ずファン 1 4 0の送風量を減らさない場合の弱冷房モード運転の場合を説明す る。
図中、 点 a、 点 b、 点 cは、 図 3の場合と同様である。 ファン 1 4 0の送風量 が十分にあるので、 冷媒は凝縮器 2 2 0で完全に凝縮し点 Yに到る (但し、 ほぼ 点 Yに到ればよく、 多少ガスが残っていてもいいし、 多少過冷却側に進んでいて もよい) 。 この点は飽和液の状態であり、圧力は 1 . 6 6 M P a、温度は 3 8 °C、 ェンタルピは 2 5 6 . 9 k J / k gである。
この冷媒液は、 再熱器 3 2 0 Bに流入する。 冷媒液はここで過冷却され点 dに 到る。 ここは圧力は点 Yと同じで、 温度は過冷却の程度により決まるが 1 7 °C程 度の液相状態にある。 点 Yと点 dとの間のェンタルピ差は Δ S H rで表わされて いる。 冷媒液は、 この分だけ再熱器 3 2 0 Bの再熱セクション中で冷却される。 この過冷却状態の冷媒液は、 絞り 7 1 3で絞られ、 減圧して中間蒸発器 3 1 0 に流入する。 モリエ線図上では、 点 eで示されている。 圧力は、 本発明の中間圧 力であり、 本実施例では 0 . 6 7 ^1 ? &と 1 . 6 6 M P aとの中間の値となる。 こ.の点は、 まだ液相状態にある。
ここからは、 図 1の場合と同様に、 蒸発セクション 2 5 1内で、 前記中間圧力 下で冷媒液は蒸発して、 同圧力で飽和液線と飽和ガス線の中間の点 f に到る。 こ こでは液の一部が蒸発しているが、 冷媒液 Cはある程度残っている。
点 f で示される状態の冷媒 Cが、 凝縮セクション 2 5 2に流入する。 凝縮セク シヨン 2 5 2では、 冷媒 Cは第 2の区画 3 2 0を流れる低温の処理空気 Aにより 熱を奪われ、 点 gに到る。
点 gはモリェ線図では飽和液線上にある。温度は 1 7 °C、ェンタルピは 2 2 4 . 6 k J / k gである。
点 gの冷媒液 Cは、 絞り 2 5 0で、 温度 5 . 2 °Cの飽和圧力である 0 . 6 7 M P aまで減圧され、 点 jに到る。 以下図 1の場合と同様であるので説明を省略す る。
次に低温高湿度に対処するため、 ファン 1 4 0の回転数を下げ即ち送風量を少 なくした場合の運転を説明する。 この場合は、 図 1において、 パイパス弁 8 0 1 を全閉にして、 ファン 1 4 0の回転数を下げた場合と同様である。 すなわちモリ ェ線図としては、 図 9の他図 3を参照して説明する。
このときは、 ファン 1 4 0の送風量が減るので、 凝縮器 2 2 0内では冷媒は完 全には凝縮せず、 凝縮器 2 2 0を出る冷媒の状態点 Yは、 図 9に示すよりも点 c の側に寄る。 即ち、 点 Yは図 3に示されるような位置となる。 点 Yと点 dとの間 のェンタルピ差は A S H rで表わされており、 この分だけ再熱器 3 2◦ Bの再熱 セクション中で冷却される。 そして凝縮器 2 2 .0で凝縮されずに残ったガス成分 が凝縮され、 点 d (図 3参照) に到る。 その他は、 図 1、 図 3で説明した場合と 同様であるので説明を省略する。
以上の実施の形態では、 空調空間を空調する除湿空調装置として説明したが、 本発明の除湿空調装置は、 必ずしも空調空間に限らず他の除湿を必要とする空間 に、 一般の除湿装置として応用することもでき、 本発明の除湿空調装置とはその ような場合も含むものとする。
以上 4つの実施の形態について説明したが、 本発明は上述の実施の形態に限定 されず、 その技術的思想の範囲内において種々異なる形態にて実施されてよレ、こ とは言うまでもない。 · 産業上の利用可能性
以上のように本発明によれば、 処理空気を、 昇圧機で昇圧された冷媒で、 中間 凝縮器での加熱と並行して、 又は中間凝縮器で加熱された後に加熱する再熱器を 備えるので、 中間凝縮器での加熱に加えて処理空気をさらに加熱することができ る除湿空調装置を提供することが可能となる。
ひいては、 低温高湿度の空調条件に対処し易い除湿空調装置を提供することが 可能となる。

Claims

請 求 の 範 囲
1 . 冷媒を昇圧する昇圧機と ;
前記冷媒を凝縮させて高熱源流体を加熱する凝縮器と ;
前記冷媒を蒸発させて処理空気を露点温度に冷却する蒸発器と ;
前記凝縮器と前記蒸発器との間の冷媒経路中に設けられ、 前記冷媒を前記凝縮 器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で蒸発させて前記処理空気 を冷却する中間蒸発器と ;
前記凝縮器と前記蒸発器との間の冷媒経路中に設けられ、 前記冷媒を前記凝縮 器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で凝縮させて前記処理空気 を加熱する中間凝縮器と ;
前記処理空気を、 前記昇圧機で昇圧された冷媒で、 前記中間凝縮器での加熱と 並行して、 又は前記中間凝縮器で加熱された後に加熱する再熱器とを備え; 前記中間蒸発器と前記蒸努器と前記中間凝縮器とをこの順番で接続する処理空 気経路とを備える ;
2 . 前記凝縮器と前記中間蒸発器とを接続する冷媒経路中に設けられた絞り と
前記昇圧機と前記絞りとの間の冷媒経路中に設けられた流路抵抗と ; 前記流路抵抗と前記昇圧機との間から前記再熱器に冷媒を導くバイパス経路 と ;
前記バイパス経路を流れるガス流量を増減するバイパス弁とを備える; 請求項 1に記載の除湿空調装置。
3 . 前記高熱源流体の流量を調節するコントローラを備える、 請求項 2に記載 の除湿空調装置。
4 . 前記凝縮器と前記中間蒸発器とを接続する冷媒経路中に設けられた絞り と S
前記昇圧機と前記凝縮器との間から冷媒を取り出し、前記再熱器に冷媒を導き、 前記凝縮器と前記絞りとの間に冷媒を戻すバイパス経路と ; 前記パイパス経路を流れる冷媒の流量を調節するバイパス弁とを備える ; 請求項 1に記載の除湿空調装置。
5 . 前記凝縮器と前記中間蒸発器とを結ぶ冷媒経路中に前記再熱器を設けた、 請求項 1に記載の除湿空調装置。
6 . 前記再熱器と前記中間蒸発器とを結ぶ冷媒経路中に設けられた絞りを備え る、 請求項 5に記載の除湿空調装置。
7 . 前記凝縮器における放熱量を増減し、 前記再熱器に流入する冷媒のェンタ ルビを増減する放熱量調節手段を備える、 請求項 5又は請求項 6に記載の除湿空
PCT/JP2002/012024 2002-06-11 2002-11-18 除湿空調装置 WO2003104719A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004511748A JPWO2003104719A1 (ja) 2002-06-11 2002-11-18 除湿空調装置
AU2002349627A AU2002349627A1 (en) 2002-06-11 2002-11-18 Dehumidifier/air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/170370 2002-06-11
JP2002170370 2002-06-11

Publications (1)

Publication Number Publication Date
WO2003104719A1 true WO2003104719A1 (ja) 2003-12-18

Family

ID=29727762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012024 WO2003104719A1 (ja) 2002-06-11 2002-11-18 除湿空調装置

Country Status (3)

Country Link
JP (1) JPWO2003104719A1 (ja)
AU (1) AU2002349627A1 (ja)
WO (1) WO2003104719A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280482A (ja) * 2005-03-31 2006-10-19 Terumo Corp 血圧測定装置
JP2020104106A (ja) * 2018-12-27 2020-07-09 テルマ−ストール エルエルシー 多重回路エバポレータ及び二次コンデンサコイルを備えた除湿装置
JP2020104108A (ja) * 2018-12-27 2020-07-09 テルマ−ストール エルエルシー 単一のコイルパック内に二次蒸発器および凝縮器コイルを備える除湿器
JPWO2021117199A1 (ja) * 2019-12-12 2021-06-17
JPWO2021245940A1 (ja) * 2020-06-05 2021-12-09
US11371725B2 (en) 2017-03-16 2022-06-28 Therma-Stor LLC Dehumidifier with multi-circuited evaporator and secondary condenser coils
US11530823B2 (en) 2017-03-16 2022-12-20 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
US11573016B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Water cooled dehumidification system
US11573015B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
EP4145065A3 (en) * 2021-09-02 2023-05-03 Therma-Stor LLC Parallel flow expansion for pressure and superheat control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031411A (en) * 1990-04-26 1991-07-16 Dec International, Inc. Efficient dehumidification system
JP2001208373A (ja) * 2000-01-31 2001-08-03 Ebara Corp ヒートポンプ及び除湿装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031411A (en) * 1990-04-26 1991-07-16 Dec International, Inc. Efficient dehumidification system
JP2001208373A (ja) * 2000-01-31 2001-08-03 Ebara Corp ヒートポンプ及び除湿装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280482A (ja) * 2005-03-31 2006-10-19 Terumo Corp 血圧測定装置
JP4693460B2 (ja) * 2005-03-31 2011-06-01 テルモ株式会社 血圧測定装置
US11573015B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
US11371725B2 (en) 2017-03-16 2022-06-28 Therma-Stor LLC Dehumidifier with multi-circuited evaporator and secondary condenser coils
US11573016B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Water cooled dehumidification system
US11530823B2 (en) 2017-03-16 2022-12-20 Therma-Stor LLC Split dehumidification system with secondary evaporator and condenser coils
JP2022009750A (ja) * 2018-12-27 2022-01-14 テルマ-ストール エルエルシー 多重回路エバポレータ及び二次コンデンサコイルを備えた除湿装置
JP2020104108A (ja) * 2018-12-27 2020-07-09 テルマ−ストール エルエルシー 単一のコイルパック内に二次蒸発器および凝縮器コイルを備える除湿器
JP2020104106A (ja) * 2018-12-27 2020-07-09 テルマ−ストール エルエルシー 多重回路エバポレータ及び二次コンデンサコイルを備えた除湿装置
JP7412402B2 (ja) 2018-12-27 2024-01-12 テルマ-ストール エルエルシー 多重回路エバポレータ及び二次コンデンサコイルを備えた除湿装置
JP7510754B2 (ja) 2018-12-27 2024-07-04 テルマ-ストール エルエルシー 単一のコイルパック内に二次蒸発器および凝縮器コイルを備える除湿器
CN114761107A (zh) * 2019-12-12 2022-07-15 三菱电机株式会社 除湿装置
WO2021117199A1 (ja) * 2019-12-12 2021-06-17 三菱電機株式会社 除湿装置
JPWO2021117199A1 (ja) * 2019-12-12 2021-06-17
JP7308975B2 (ja) 2019-12-12 2023-07-14 三菱電機株式会社 除湿装置
JPWO2021245940A1 (ja) * 2020-06-05 2021-12-09
JP7394993B2 (ja) 2020-06-05 2023-12-08 三菱電機株式会社 除湿装置
EP4145065A3 (en) * 2021-09-02 2023-05-03 Therma-Stor LLC Parallel flow expansion for pressure and superheat control
US11874035B2 (en) 2021-09-02 2024-01-16 Therma-Stor LLC Parallel flow expansion for pressure and superheat control

Also Published As

Publication number Publication date
AU2002349627A1 (en) 2003-12-22
JPWO2003104719A1 (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
JP2968231B2 (ja) 空調システム
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
JP3065975B2 (ja) 空調システム及び湿度制御方法
US9885486B2 (en) Heat pump humidifier and dehumidifier system and method
JP3228731B2 (ja) ヒートポンプ及び除湿装置
US20060288713A1 (en) Method and system for dehumidification and refrigerant pressure control
JPH04295568A (ja) 空気調和機
US20070157660A1 (en) Air conditioner capable of selectively dehumidifying separate areas
WO2003104719A1 (ja) 除湿空調装置
JP5537832B2 (ja) 外調機および外調システム
JP5049500B2 (ja) 除湿空調システム及び除湿空調機
US20090032228A1 (en) Recuperative climate conditioning system
JP4020705B2 (ja) ヒートポンプ及び除湿空調装置
JP2760500B2 (ja) 多室型冷暖房装置
JP3944418B2 (ja) 除湿空調装置
JP2948776B2 (ja) 空調システム
JP3699623B2 (ja) ヒートポンプ及び除湿装置
JP2004012106A (ja) 除湿空調装置
JP2004340476A (ja) 顕熱比が可変な空気除湿装置
JPH10148416A (ja) 除湿機
JP3924205B2 (ja) ヒートポンプ及び除湿空調装置
US20210148587A1 (en) Dehumidifiier cascade system and process
JP2692856B2 (ja) 多室型空気調和装置
JP3874624B2 (ja) ヒートポンプ及び除湿空調装置
JP2968230B2 (ja) 空調システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004511748

Country of ref document: JP

122 Ep: pct application non-entry in european phase