WO2003100795A1 - Oxide superconducting wire producing method - Google Patents

Oxide superconducting wire producing method Download PDF

Info

Publication number
WO2003100795A1
WO2003100795A1 PCT/JP2003/006429 JP0306429W WO03100795A1 WO 2003100795 A1 WO2003100795 A1 WO 2003100795A1 JP 0306429 W JP0306429 W JP 0306429W WO 03100795 A1 WO03100795 A1 WO 03100795A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
wire
oxide superconducting
pressure
superconducting wire
Prior art date
Application number
PCT/JP2003/006429
Other languages
English (en)
French (fr)
Other versions
WO2003100795A8 (en
Inventor
Shin-Ichi Kobayashi
Takeshi Kato
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to AU2003242406A priority Critical patent/AU2003242406B2/en
Priority to CNB038018012A priority patent/CN1296943C/zh
Priority to US10/487,354 priority patent/US6993823B2/en
Priority to EP03730593A priority patent/EP1508904B1/en
Priority to PCT/JP2003/006429 priority patent/WO2003100795A1/ja
Priority to KR1020047019038A priority patent/KR100900417B1/ko
Priority to JP2004508357A priority patent/JP4513567B2/ja
Publication of WO2003100795A1 publication Critical patent/WO2003100795A1/ja
Publication of WO2003100795A8 publication Critical patent/WO2003100795A8/ja
Priority to HK05105990A priority patent/HK1073385A1/xx

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/49222Contact or terminal manufacturing by assembling plural parts forming array of contacts or terminals

Definitions

  • the present invention relates to a method for producing an oxide superconducting wire, and more particularly, to a method for producing an oxide superconducting wire from a wire in which a raw material powder of an oxide superconductor is coated with a metal.
  • an oxide superconducting raw material powder is filled into a metal tube, and then a wire obtained by subjecting the metal tube to wire drawing or rolling is heat-treated.
  • a method of sintering raw material powder of a superconductor to obtain an oxide superconducting wire.
  • the superconducting properties of the obtained oxide superconducting wire are deteriorated due to swelling of the wire in the heat treatment step for sintering.
  • a metal tube filled with oxide superconductor powder or a flat body thereof is heat-treated in a pressurized atmosphere to remove the powder of oxide superconductor.
  • a method for producing an oxide superconducting wire characterized by sintering has been proposed. According to the above-mentioned publication, according to this method, a wire having excellent superconductivity can be obtained by heat treatment under pressure.
  • a metal tube filled with oxide superconductor powder is housed in a hermetic container with heat and pressure resistance, and swelling during sintering occurs due to an increase in internal pressure that increases as the temperature inside the hermetic container increases. Attempts have been made to prevent this.
  • the internal pressure at this time can be obtained from a gas state equation and the like.For example, it is described in the above-mentioned publication that an internal pressure of about 4 atm can be obtained at a heating temperature of about 900 ° C. ing.
  • Japanese Patent No. 25922846 Japanese Patent Application Laid-Open No. Hei 11-3164 discloses that at least one of during and after heat treatment is filled with an oxide superconducting powder or the like. Of an oxide superconducting conductor, characterized in that the metal tube is maintained at a high pressure. A fabrication method has been proposed. According to the above-mentioned publication, according to this method, partial separation at the interface between the oxide superconductor and the metal tube, which occurs during sintering, can be eliminated by placing the device in a high pressure state.
  • a metal tube filled with oxide superconducting powder inside is heat-treated at least one of 500-2000 kg / cm 2 (about 50-20
  • the metal tube By maintaining the high pressure state of OMP a), the metal tube can be pressed against the sintered body. Thus, when the superconductor partially generates a quench phenomenon, heat generated by the quench phenomenon can be quickly removed. In addition, it is possible to prevent the superconducting characteristics from deteriorating due to the occurrence of distortion due to the peeled portion becoming a stress concentration portion.
  • the applied pressure is 500 to 200
  • An object of the present invention is to suppress the generation of voids between oxide superconducting crystals and the swelling of an oxide superconducting wire, and to facilitate the control of oxygen partial pressure during heat treatment, thereby improving the critical current density. Is to provide a method of manufacturing the same.
  • the method for producing an oxide superconducting wire of the present invention has the following features.
  • a wire having a form in which a raw material powder of an oxide superconductor is covered with a metal is produced. Then, the wire is heat-treated in a pressurized atmosphere.
  • the total pressure of the pressurized atmosphere is IMPa or more and less than 5 OMPa.
  • a large external pressure of IMPa or more causes plastic flow and tallip deformation of the superconducting crystal generated during heat treatment, so that the voids between the oxide superconducting crystals are generated. Is reduced.
  • the expansion of the gas in the gap between the oxide superconducting crystal powder generated during heat treatment and the gas attached to the oxide superconducting crystal powder generated during heat treatment during heat treatment is suppressed by the pressure from outside the metal tube. Therefore, the swelling of the oxide superconducting wire is suppressed. As a result, the critical current density is improved.
  • the step of heat treatment is performed by a hot isostatic pressing method (HIP: HotIssostaticPresssing).
  • the oxide superconducting wire is pressed isotropically, so that voids and swelling of the wire are uniformly prevented.
  • the oxide superconductor contains bismuth, lead, strontium, calcium, and copper, and has an atomic ratio of (bismuth and lead): strontium: calcium: Copper is a Bi-Pb-Sr-Ca-Cu-O-based oxide superconductor containing Bi2223 phase, which is expressed as approximating 2: 2: 2: 3.
  • the step of heat-treating comprises: The test is performed in an oxygen atmosphere, and the oxygen partial pressure is in the range of ⁇ .03 MPa to 0.02 MPa.
  • the oxygen partial pressure is 0.003?
  • a stable oxide superconducting phase By maintaining the value in the range of > < 0.02 MPa to a stable oxide superconducting phase, it is possible to improve the critical current density.
  • the oxygen partial pressure exceeds 0.02 MPa, a heterogeneous phase is formed.
  • the oxygen partial pressure is less than 0.03 MPa, an oxide superconducting phase is hardly generated, and the critical current density is reduced.
  • the oxygen partial pressure is controlled to increase as the temperature in the pressurized atmosphere increases.
  • the optimal oxygen partial pressure for the formation of the oxide superconducting phase increases with increasing temperature. Accordingly, an appropriate oxygen partial pressure is obtained even when the temperature is raised before the heat treatment in the heat treatment step, so that a stable oxide superconducting phase is generated and the critical current density can be improved.
  • the heat treatment is controlled so that the total pressure in the pressurized atmosphere is constant.
  • the heat treatment step is performed in an oxygen atmosphere, and the oxygen partial pressure during the heat treatment is controlled to be constant within a fluctuation range of 10% or less. .
  • the oxygen partial pressure can be kept within the range of the optimal oxygen partial pressure for the generation of the oxide superconducting phase, so that a stable oxide superconducting phase is generated and the critical current
  • the density can be improved.
  • a gas is injected so as to compensate for a decrease in pressure due to the temperature drop.
  • the gas is injected so as to compensate for the pressure drop due to the temperature drop, so that it is possible to prevent the wire from swelling due to the rapid pressure reduction at the time of the temperature drop immediately after the heat treatment.
  • the metal covering the raw material powder contains silver, and the ratio of the area of the metal part to the area of the oxide superconductor part in the cross section of the wire after the heat treatment step (Hereinafter, silver ratio) is 1.5, the pressure reduction rate at the time of temperature reduction immediately after the heat treatment is controlled to 0.05 MPa / min or less.
  • the temperature in the atmosphere is 20 in the heat treatment step.
  • the pressure is controlled so that the pressure reduction rate of the total pressure in the pressurized atmosphere is equal to or lower than 0.05 MPa / min.
  • the pressure inside the wire becomes higher than the pressure outside the wire, thereby causing swelling of the wire. I do. Therefore, when the silver ratio is 1.5, the effect of suppressing the generation of swelling of the wire due to rapid pressure reduction during the heat treatment (before, during, and after the heat treatment) is more remarkable. .
  • the pressure reduction rate at the time of temperature reduction immediately after the heat treatment is 0.0. It is controlled to 3 MPa / mi 11 or less.
  • the metal coating the raw material powder contains silver, the silver ratio is 3.0, and the heat treatment step includes the steps of: When the temperature is 200 ° C. or higher, control is performed so that the pressure reduction rate of the total pressure in the pressurized atmosphere is equal to or lower than 0.03 MPa / min.
  • the pressure inside the wire becomes higher than the pressure outside the wire, thereby causing swelling of the wire. I do.
  • the silver ratio is 3.0, the effect of suppressing the swelling of the wire rod due to the rapid pressure reduction during the heat treatment (before, during, and after the heat treatment) is more remarkable. .
  • the pressure reduction rate of the total pressure in the pressurized atmosphere is 0.05. It is controlled to be equal to or less than MP a / min.
  • the method further comprises a step of rolling the wire by a roll after the step of preparing the spring material and before the step of heat treatment, and the outer skin of the wire after the step of rolling.
  • the thickness is 200 ⁇ or more.
  • the pinhole is mainly formed by the surface of the wire rod being roughened by friction between the wire rod and the rolling roll and penetrating from the outside to the oxide superconductor filament. If, after the rolling step, the oxide superconducting wire is rolled so that the outer skin thickness of any part becomes 20 m or more, even if the surface of the wire is roughened by rolling, it will be oxidized from the outside. Since the hole does not penetrate to the superconductor filament, no pinhole is generated. This suppresses the formation of voids and blisters in the heat treatment step, and improves the critical current density.
  • a pinhole means a hole having a diameter of 100 m or more penetrating from the outside to the oxide superconductor wire filament.
  • a wire having a pinhole means a wire having a diameter of 100 ⁇ or more in a wire of 4 mm ⁇ 10 mm.
  • a step of producing a wire The method further comprises a step of attaching silver or a silver alloy to the surface of the wire rod after the heat treatment step.
  • the silver ratio of the oxide superconducting wire is made as small as possible.
  • wires with a low silver ratio cannot be made thicker because the metal portion is small.
  • a pinhole is likely to be formed in a process such as rolling before the heat treatment step. Even when the wire having a pinhole is subjected to the heat treatment in the above-described pressurized atmosphere, the gas under pressure enters the inside of the wire through the pinhole.
  • the pressure difference between the inside and outside of the spring material disappears, and the pressurization suppresses the formation of voids and blisters, so that the effect of preventing a decrease in critical current density is reduced. Therefore, by attaching silver or a silver alloy to the surface of the wire after the wire manufacturing process and before the heat treatment process, the pinhole is covered with silver or a silver alloy and disappears from the surface. Therefore, the step of heat treatment is performed after the wire having no pinholes is formed in advance, so that the pressurized gas does not enter the wire through the pinholes during the heat treatment. This suppresses generation of voids and blisters in the step of heat treatment in the above-described pressurized atmosphere, thereby improving the critical current density.
  • the method further comprises a step of rolling the wire by a roll after the wire forming step and before the heat treatment step, wherein a surface roughness of a portion where the wire of the roll comes into contact is provided.
  • R y is less than or equal to 320 ⁇ .
  • the surface roughness R y is the maximum height specified in Japanese Industrial Standards (JIS).
  • the pressure increases stepwise as the temperature in the atmosphere increases. Is controlled.
  • the total pressure of the atmosphere is controlled to increase at a rate of 0.05 MPa / min or more.
  • the rate at which the gas under pressure enters the wire from the pinhole is less than about 0.05 MPa / min. Therefore, by controlling the total pressure of the atmosphere to increase continuously at a rate of 0.05 MPa / min or more at the time of temperature rise before heat treatment, the pressure in the atmosphere is always kept higher than the pressure inside the wire. You can continue.
  • a compressive force can be applied to the wire at the time of temperature increase before the heat treatment, so that voids and swelling can be generated. Generation is suppressed.
  • a decrease in the critical current density can be effectively suppressed by heat treatment in a pressurized atmosphere of IMPa or more and less than 5 OMPa.
  • the total pressure in the atmosphere is controlled to keep increasing.
  • the method further comprises a step of rolling the wire rod, and the reduction ratio of the wire rod in the rolling step is 84% or less, preferably 80% or less.
  • the oxide superconducting wire is also compressed during the step of heat-treating. Therefore, even if the process of rolling the wire is performed at a reduction ratio of 84% or less, which is lower than the conventional reduction ratio, the raw material powder is compressed in the subsequent heat treatment process, resulting in superconductivity. The filament density can be increased. On the other hand, since the step of rolling the wire is performed at a reduction rate of 84% or less, which is lower than the conventional reduction rate, voids are less likely to be generated in the raw material powder, so that the longitudinal direction of the oxide superconducting wire is reduced.
  • the generation of voids extending in a direction perpendicular to the direction can be suppressed.
  • the critical current density of the oxide superconducting wire can be improved.
  • the step of rolling the wire is performed at a rolling reduction of 80% or less, voids are not generated in the raw material powder, so that voids extending in a direction perpendicular to the longitudinal direction of the oxide superconducting wire are prevented. It can be further deterred.
  • the rolling reduction (%) is defined by the following equation.
  • the wire is subjected to a plurality of heat treatments, and at least one of the plurality of heat treatments has a total pressure of 1 MPa or more and less than 5 OMPa. This is performed in a pressurized atmosphere.
  • FIG. 1 is a partial cross-sectional perspective view conceptually showing the configuration of an oxide superconducting wire.
  • FIG. 2 is a diagram showing one manufacturing process of the oxide superconducting wire.
  • FIG. 3 is a schematic sectional view of a hot isostatic pressing (HIP) apparatus.
  • HIP hot isostatic pressing
  • FIG. 4A to 4D are conceptual diagrams showing the behavior of voids between oxide superconducting crystals in a stepwise manner.
  • FIG. 5 is a diagram showing the relationship between the total pressure P (MPa) of the pressurized atmosphere and the number of bulging wires (pieces / 10 m).
  • FIG. 6 is a diagram showing the total pressure and the oxygen partial pressure for a mixed gas containing about 80% of nitrogen and about 20% of oxygen.
  • FIG. 7 is a diagram showing the relationship between the total pressure and the oxygen concentration value when the oxygen partial pressure is kept constant.
  • Fig. 8A shows the relationship between the time when the pressure reduction rate control was performed immediately after heat treatment and the wire temperature
  • Fig. 8B shows the time when the pressure reduction rate control was performed immediately after heat treatment and the temperature in the vessel. It is a figure showing the relation with total pressure.
  • Fig. 9A is a graph showing the thickness of the oxide superconducting wire without pinholes before and after heat treatment in a pressurized atmosphere
  • Fig. 9B is the thickness of the oxide superconducting wire with pinholes. It is a graph.
  • FIG. 10 is a partial cross-sectional perspective view conceptually showing the configuration of an oxide superconducting wire having a pinhole.
  • FIG. 11 is a schematic sectional view showing a rolling method according to the second embodiment.
  • FIG. 12 is a diagram showing another manufacturing process of the oxide superconducting wire.
  • FIG. 13 is a partial cross-sectional perspective view conceptually showing the configuration of the oxide superconducting wire after the step of plating silver or silver alloy on the wire.
  • FIG. 14 is a diagram showing a relationship between time and temperature and pressure during heat treatment in the fourth method of the second embodiment.
  • FIG. 15A is a diagram showing the relationship between the temperature and the time of the heat treatment step in the case where the silver ratio in Embodiment 2 is 1.5
  • FIG. 15B is the diagram in which the silver ratio in Embodiment 2 is 1.5
  • FIG. 15C shows the relationship between the oxygen concentration and the time of the heat treatment step when the silver ratio in Embodiment 2 is 1.5 when the silver ratio is 1.5
  • FIG. 15D is a diagram showing the relationship between the oxygen partial pressure and the time in the heat treatment step when the silver ratio is 1.5 in the second embodiment.
  • FIG. 16 is a diagram showing the relationship between the temperature, the pressure, and the time in the heat treatment step in the fifth method of the second embodiment.
  • Figure 17 shows the optimal combination of temperature and oxygen partial pressure during heat treatment.
  • FIG. 18 is a partial cross-sectional perspective view conceptually showing the configuration of an oxide superconducting wire in which voids remain.
  • FIG. 19 is a diagram schematically showing the relationship between the rolling reduction and the critical current density in the primary rolling of an oxide superconducting wire.
  • the oxide superconducting wire 1 has a plurality of oxide superconductor filaments 2 extending in the longitudinal direction, and a sheath 3 covering the filaments.
  • the material of each of the plurality of oxide superconductor filaments 2 is preferably, for example, a composition of Bi-Pb-Sr-Ca-Cu-O system.
  • strontium A material containing Bi 2 223 phase, whose calcium: copper atomic ratio is approximated by an approximate ratio of 2: 2: 2: 3, is optimal.
  • the material of the sheath portion 3 is, for example, silver.
  • an oxide superconducting wire having a single core structure in which one oxide superconductor filament 2 is covered with the sheath portion 3 may be used.
  • a raw material powder of an oxide superconductor is filled in a metal tube (step S 1).
  • the raw material powder of this oxide superconductor is made of, for example, a material containing a Bi2223 phase.
  • silver or silver alloy having high thermal conductivity is preferable to use silver or silver alloy having high thermal conductivity as the metal tube. This makes it possible to quickly remove the heat generated from the metal tube when the superconductor partially causes the phenomenon.
  • the metal tube filled with the raw material powder is drawn into a wire having a desired diameter by wire drawing (step S2).
  • a wire having a form in which the raw material powder of the oxide superconducting wire is covered with the metal can be obtained.
  • the wire is first rolled S3), and then a first heat treatment is performed (step S4). Through these operations, an oxide superconducting phase is generated from the raw material powder.
  • the heat-treated wire is subjected to secondary rolling (step S5). This removes the voids generated by the first heat treatment.
  • the second rolled wire is subjected to a second heat treatment. (Step S6). In the second heat treatment, sintering of the oxide superconducting phase proceeds, and at the same time, the oxide superconducting phase becomes single-phase.
  • the oxide superconducting wire shown in FIG. 1 can be manufactured.
  • At least one of the first heat treatment (step S4) and the second heat treatment (step S6) is pressurized by applying a pressure of IMPa or more and less than 50 MPa as the total pressure. It takes place in an atmosphere.
  • the heat treatment in the pressurized atmosphere is performed, for example, by a hot isostatic pressing method (HIP).
  • HIP hot isostatic pressing method
  • the apparatus 13 for performing the hot isostatic pressing method includes a pressure vessel cylinder 6, an upper lid 5 and a lower lid 11 that seal both ends of the pressure vessel cylinder 6, and a pressure vessel cylinder 6 It comprises a gas inlet 4 provided in the upper lid 5 for introducing gas into the inside, a heater 9 for heating the processed product 8, a heat insulating layer 7, and a support 10 for supporting the processed product 8.
  • a wire rod which is drawn and rolled after filling a raw material powder into a metal tube is supported by a support 10 as a processed product 8 in a pressure vessel cylinder 6.
  • a predetermined gas is introduced into the pressure vessel cylinder 6 from the gas inlet 4, and the inside of the pressure vessel cylinder 6 becomes a pressurized atmosphere of IMPa or more and less than 5 OMPa.
  • the wire 8 is heated to a predetermined temperature by the heater 9.
  • This heat treatment is preferably performed in an oxygen atmosphere, and the oxygen partial pressure is preferably from 0.003 MPa to 0.02 MPa. In this way, the wire 8 is subjected to a heat treatment by hot isostatic pressing.
  • the following three effects are mainly obtained by performing the heat treatment in the pressurized atmosphere of IMPa or more and less than 5 OMPa as described above.
  • the inventor of the present application has found that by performing heat treatment in a pressurized atmosphere of IM Pa or more, voids between oxide superconducting crystals mainly generated during the heat treatment can be significantly reduced as compared with the case of less than IM Pa.
  • FIGS. 4A to 4D when heat treatment is performed in a pressurized atmosphere, the contact area between oxide superconducting crystals generated during heat treatment increases due to plastic flow, and the number of oxide superconducting crystals The voids on the order of ⁇ m to several tens of m are reduced (Fig. 4A ⁇ Fig. 4B).
  • creep deformation occurs as shown in Fig. 4C, voids existing at the joint interface shrink, and contaminated parts such as oxide films are partially destroyed and decomposed, causing the diffusion of atoms. Sintering proceeds.
  • Fig. 4D there are almost no gaps between the superconducting crystals, and a stable bonding interface is formed.
  • passing a current through a superconducting wire means flowing a current between the superconducting crystals that make up the superconducting wire.
  • superconducting wires for example, liquid nitrogen or helium, or a refrigerator
  • the amount of current that can flow while maintaining the superconducting state (without generating electrical resistance) is limited by the superconducting state.
  • the gaps at the joints between the superconducting crystals always remain in normal atmospheric firing. Therefore, by reducing the gap between the superconducting crystals, the performance of the superconducting wire is improved, and a decrease in the critical current density can be prevented.
  • the sintered density of the oxide superconductor when heat-treated at atmospheric pressure is 80-90%
  • the sintering density of the oxide superconductor when manufactured by the manufacturing method of the present invention is 93 to 96%, and is generated between the oxide superconductor crystals. Void reduction was observed.
  • the powder of the oxide superconductor in the metal tube usually has a packing ratio of about 80% of the theoretical density before sintering, gas exists in the gaps of the powder.
  • the gas in the gap between the powders expands in volume when heated to a high temperature, causing the wire to swell.
  • the heat treatment is performed in a pressurized atmosphere of 1 MPa or more, so that the pressure outside the metal tube can be higher than the pressure inside the metal tube. Therefore, it is considered that the swelling of the wire rod due to the gas in the gap between the powders is prevented.
  • the inventors of the present application further examined the cause of the swelling of the wire, and found that adsorbed substances such as carbon (C), water (H 20 ), and oxygen (O 2 ) adhered to the raw material powder of the oxide superconductor. Was vaporized during sintering, and it was found that this gas caused the volume inside the metal tube to expand and the wire to swell.
  • adsorbed substances such as carbon (C), water (H 20 ), and oxygen (O 2 ) adhered to the raw material powder of the oxide superconductor.
  • the inventor of the present application has set the oxygen partial pressure to 0.003 MPa or more regardless of the total pressure.
  • the 2223 phase of the Bi-based oxide superconductor was stably formed. That is, the oxygen partial pressure is hetero-phase if the less than Shimare ,, 0. 003MP a generated B i 2223 phase is hardly generated, such as C a 2 P b 0 4 exceeds 0. 02 MP a, The critical current density decreases.
  • the oxygen partial pressure is indicated by a dotted line without performing the oxygen partial pressure control. It is equivalent to a level of 2 atmospheres (0.02MPa), so the Bi 2223 phase is produced stably.
  • the oxygen partial pressure increases as the total pressure of the pressurized atmosphere increases to 2 atm and 3 atm, the oxygen partial pressure also increases. More than As a result, the B i 2223 phase is not generated stably. Therefore, as shown in FIG. 7, it is necessary to control the oxygen partial pressure from 0.003 MPa to 0.02 MPa by changing the mixing ratio of oxygen gas in the mixed gas. Note that the dotted line in FIG. 7 indicates the level of 0.2 atm (0.02 MPa) as in the dotted line in FIG.
  • Actual oxygen partial pressure control is performed by monitoring the total pressure and oxygen concentration. That is, the oxygen partial pressure is calculated by multiplying the value of the total pressure by the oxygen concentration. Therefore, for example, when the total pressure is 5 OMPa, if the heat treatment is performed at an oxygen partial pressure of 0.005 MPa, the oxygen concentration will be ⁇ .01%. Therefore, it is necessary to control the mixed gas to be injected by measuring the oxygen concentration of 0.01%. However, since the oxygen concentration of 0.01% is almost the same as the measurement error, it is difficult to accurately measure the oxygen concentration and control the oxygen gas in the mixed gas to be injected.
  • the total pressure in the pressurized atmosphere to less than 5 OMPa
  • the effect of the measurement error of the oxygen concentration is reduced, and the concentration of the oxygen gas in the mixed gas to be injected is increased to a certain degree. Because it can be maintained, the oxygen partial pressure can be easily controlled.
  • it is preferable to control the decompression rate so that rapid decompression does not occur in the pressurized atmosphere during and after the heat treatment.
  • a mixed gas of an inert gas and 0 2 gas, such as total pressure is constant A r (argon) or N 2 (nitrogen) Injected into container.
  • a r argon
  • N 2 nitrogen
  • a mixed gas of an inert gas and an oxygen gas is injected into the container so as to compensate for the pressure drop caused by the temperature reduction.
  • the range of the decompression rate necessary to prevent the swelling of the oxide superconducting wire differs depending on the ratio of the area of the metal part to the area of the oxide superconductor part in the cross section of the heat-treated wire (silver ratio).
  • the present inventor has found that. That is, preferably, when the silver ratio is 1.5, the decompression rate at the time of cooling (temperature range from 800 ° C to 300 ° C) immediately after the heat treatment is 0.05 MPa / mi 11 or less. Yes, when the silver ratio is 3.0, the temperature reduction rate immediately after the heat treatment (temperature range from 800 to 300 ° C) is 0.03 MPa / min or less.
  • the heat treatment conditions in FIGS. 9A and 9B are a total pressure of 20 MPa, an oxygen partial pressure of 0.008 MPa, a temperature in the atmosphere of 825 ° C., and a heat treatment time of 5 hours.
  • the oxide superconducting wire without pinhole has a thickness of about 0.006m ⁇ ! ⁇ 0.01 mm has been reduced. This is because the heat treatment in a pressurized atmosphere at a total pressure of 20 MPa suppresses the formation of voids between the oxide superconducting crystals and the swelling of the oxide superconducting wire.
  • FIG. 9A the heat treatment in a pressurized atmosphere at a total pressure of 20 MPa suppresses the formation of voids between the oxide superconducting crystals and the swelling of the oxide superconducting wire.
  • the thickness of the oxide superconducting wire having a pinhole decreases only by about 0.002 mm to 0.005 mm after the heat treatment, and the gap between the oxide superconducting crystals and the oxidation Superconductivity and the swelling of the wire are not sufficiently suppressed.
  • the part of the wire where the pinhole was located is thicker after heat treatment than before heat treatment.
  • Embodiment 1 when there is no pinhole, if the heat treatment is performed in the pressure range of Embodiment 1 (IMPa or more and less than 5 OMPa), the generation of voids and blisters can be effectively suppressed. However, it was found that the formation of voids and blisters could not be sufficiently suppressed only by heat treatment in the pressure range of the first embodiment.
  • the superconducting crystal generated during the heat treatment undergoes plastic flow and creep deformation due to the external pressure of the wire larger than IMPa.
  • the gap between them is suppressed.
  • the gas in the gap between the oxide superconducting crystal powder generated during heat treatment and the gas adhering to the oxide superconducting crystal powder generated during heat treatment are prevented from expanding during heat treatment by the pressure from outside the metal tube.
  • the swelling of the oxide superconducting wire is suppressed.
  • a decrease in critical current density due to voids and swelling is prevented.
  • the pressurized gas enters the wire through the pinhole, and the pressure difference between the inside and outside of the wire disappears.
  • the pressure does not sufficiently suppress the formation of voids and blisters. As a result, the effect of preventing a decrease in critical current density is reduced.
  • the inventors of the present application have studied diligently and have found a method capable of sufficiently suppressing generation of voids and blisters by using a wire without pinholes before heat treatment.
  • the first method is to increase the skin thickness of the oxide superconducting wire after rolling (step S3 or S5) in Fig. 2 and before heat treatment (step S4 or step S6) to 200 ⁇ or more. It is to be.
  • the second method is to reduce the surface roughness Ry of a portion of the roll used in the rolling (step S3 or S5) in FIG.
  • the third method is to coat silver or silver alloy on the oxide superconducting wire after the rolling (step S3 or S5) and before the heat treatment (step S4 or S6) in Fig. 2. It is.
  • the pin during rolling (step S 3 or S 5)
  • the outer skin thickness W is, as shown in Fig. 10, the distance W between the oxide superconductor filament 2 arranged on the outer periphery in the cross section of the wire 1 and the outer surface of the f spring material 1 after rolling. Means.
  • the reason why the pinhole 14 is not generated by setting the outer skin thickness W to be equal to or more than 200 ⁇ is considered as follows.
  • the pinhorn 14 is formed mainly by the surface of the wire 1 being roughened by friction between the wire 1 and a roll of rolling, and penetrating from the outside to the oxide superconductor filament 2. If, after rolling, the oxide superconducting wire 1 is rolled in a state where the outer skin thickness W is 200 ⁇ m or more in any part, the surface of the wire 1 may be roughened by rolling. Also, since the hole does not penetrate from the outside to the oxide superconductor filament 2, it is considered that the pinhole 14 is not generated. Since the configuration of FIG. 10 other than that described above is substantially the same as the configuration shown in FIG. 1, the same reference numerals are given to the same members, and description thereof will be omitted.
  • the wire having no pinholes 14 before the heat treatment can be obtained by using the second and third methods described above.
  • the present inventors have found that the formation of voids and blisters is suppressed by heat treatment in a pressurized atmosphere, and a decrease in critical current density is effectively prevented.
  • rolling involves passing a plate or rod-shaped material between rotating (usually two) rolls 15 to reduce its thickness or cross-sectional area, and simultaneously forming the cross-section into the desired shape. It is a processing method.
  • the oxide superconducting wire 1 is drawn between the plurality of rolls 15 by frictional force from the rolls 15, where it is deformed by a compressive force from the surface 15 a of the roll 15.
  • step S 3 the primary rolling (step S 3) and the secondary rolling
  • a roll 15 having a surface roughness Ry of 320 ⁇ m or less on a surface 15a, which is a portion in contact with the wire 1, is used.
  • the surface roughness Ry of the surface 15a of the roll 15 used in rolling is less than or equal to 320 ⁇ m, the friction between the wire 1 and the surface 15a of the mouth 15 is small.
  • the surface of the wire 1 is less likely to be roughened, and a wire 1 without a pinhole can be obtained regardless of the outer cover thickness of the wire 1. Therefore, during the heat treatment process, the gas under pressure does not enter the wire 1 from the pinhole. Thereby, irrespective of the outer skin thickness W of the wire 1, generation of voids and blisters is suppressed by the step of heat treatment in the above-described pressurized atmosphere, and lowering of the critical current density is effectively prevented.
  • Step S11 or S12 is performed.
  • the method is almost the same as that of FIG. 2 except that a step (step S 11 or S 12) for adding a step is added. Therefore, corresponding steps are denoted by corresponding reference numerals and description thereof will be omitted.
  • silver or silver alloy 16 is plated around the outer periphery of the sheath portion 3, whereby the pinhole 14 opened to the outside is closed by silver or silver alloy 16.
  • the remaining configuration is almost the same as the configuration in FIG. 1, and therefore, the same members are denoted by the same reference numerals and description thereof will be omitted.
  • the silver ratio of the oxide superconducting wire 1 is made as small as possible.
  • the wire thickness 1 of the wire 1 having a small silver ratio cannot be increased because the ratio of the metal portion is small. Accordingly, the silver ratio is small, and the wire 1 has an outer skin thickness of less than 200 ⁇ m, and pinholes 14 are easily formed by a process (for example, rolling) before the heat treatment process.
  • the wire 1 having the pin horn 14 does not sufficiently suppress the generation of voids and blisters due to the pressurization. As a result, the effect of preventing a decrease in critical current density is reduced.
  • the silver or silver alloy 16 is plated on the surface of the wire 1 before the heat treatment step, so that the pinhole 14 is closed by the silver or silver alloy 16 and disappears from the surface. Therefore, since the heat treatment is performed after the pinholes 14 have disappeared from the wire 1, the gas under pressure does not enter the wire 1 from the pinholes 14 during the heat treatment. Thereby, regardless of the value of the outer skin thickness W of the wire 1 and the value of the surface roughness Ry of the roll 15 used for rolling, the process of heat treatment in the above-described pressurized atmosphere suppresses the formation of voids and blisters. And the critical current density decreases Effectively prevented.
  • the fourth or fifth method described below is used, even in the wire 1 having the pinholes 14, the generation of voids and blisters is suppressed, and the reduction of the critical current density is effectively reduced. The present inventors have found that this is prevented.
  • at least one of the first heat treatment (step S4) and the second heat treatment (step S6) shown in FIG. The pressure is controlled so as to increase in the floor.
  • the pressure is controlled so as to compensate for the pressure drop caused by the temperature decrease (additional pressure).
  • the heat treatment is performed under the conditions of a heat treatment temperature of 800 ° C. and a pressure of 20 MPa.
  • the pressure is controlled to increase stepwise as the temperature rises.
  • the pressure is controlled so as to repeat the process of maintaining the pressure at a predetermined pressure for a certain period of time and then increasing the pressure, and then maintaining the pressure again for a certain period of time.
  • the pressure is maintained for about a period of time at about 7 MPa, about 10 MPa, about 12.5 MPa, about 15 MPa, and about 17 MPa.
  • the timing of increasing the pressure after maintaining the pressure for a certain time is performed based on the measured value of the temperature in the atmosphere.
  • the pressure is increased to about 7 MPa at room temperature, the pressure is increased to about 1 OMPa when the temperature reaches about 400 ° C, and the pressure is increased to 12.5 MPa when the temperature reaches 500 ° C.
  • the pressure is controlled such that the pressure is increased to about 15 MPa when the temperature reaches 600 ° C, and the pressure is increased to about 17 MPa when the temperature reaches 700 ° C.
  • the oxygen partial pressure is always controlled to be in the range of 0.003 to 0.008 MPa.
  • the gas under pressure enters the wire through the pinholes.
  • the pressure difference between the inside and outside of the material is eliminated, and the effect of preventing the decrease in critical current density due to voids and swelling due to pressurization is small.
  • the pressure is controlled so that the pressure increases stepwise as the temperature rises, so that the gas under pressure does not enter the wire through the pinhole. External pressure increases.
  • a pressure difference occurs between the inside and outside of the wire, and the generation of voids and blisters is suppressed, regardless of whether the wire before the heat treatment process has pinholes, and the critical current density is effectively reduced. Is prevented.
  • the temperature in the atmosphere is 200 ° C.
  • control is performed so that the pressure reduction rate of the total pressure in the pressurized atmosphere is less than a certain rate.
  • the pressure is controlled to increase stepwise as the temperature in the atmosphere increases, as in the fourth method described above.
  • the force that does not appear to be held at the predetermined pressure for a certain period of time is the force.This is because the scale of the elapsed time in Fig. 15B is too large compared to Fig. 14, so it appears that the pressure holding part is omitted.
  • the pressure is maintained at a predetermined pressure for a certain time. In this temperature raising step, the temperature is set to 815 ° C and the pressure is set to 2 QMPa, and heat treatment is performed for 50 hours in this state.
  • the pressure reduction rate of the total pressure in the pressurized atmosphere should be 0.05 MPa / min or less. Controlled. After the heat treatment, the temperature is decreased at a rate of 50 ° C / h. Even after the heat treatment, if the temperature in the atmosphere is 200 ° C or higher, the rate of reduction of the total pressure in the pressurized atmosphere is controlled to be 0.05 MPa / min or less. If the temperature reduction rate after heat treatment is 50 ° C / h, the natural pressure reduction rate due to the temperature drop is always 0.05 MPa / min or less, so it is not necessary to control the pressure reduction rate. Absent. Furthermore, the oxygen concentration is kept at 0.04% before, during and after the heat treatment. 429 Thus, the oxygen partial pressure is always in the range of 0.003 to 0.008 MPa, and a stable oxide superconducting phase can be generated.
  • the temperature in the atmosphere is 200 ° C or higher, if the pressure in the heating vessel is rapidly reduced, the pressure inside the wire becomes higher than the pressure outside the wire, and the wire swells. Therefore, by controlling the decompression rate of the total pressure in the pressurized atmosphere to be less than a certain rate, the swelling of the wire rod due to rapid decompression during heat treatment (before, during, and after heat treatment) is performed. The effect of suppressing generation is more significant.
  • the pressure reduction rate is controlled to be 0.03 MPa / min or less when the temperature in the atmosphere is 200 ° C or higher.
  • the fifth technique in at least one of the first heat treatment (step S4) and the second heat treatment (step S6), at a rate of 0.05 MPa / min or more at the time of temperature increase before the heat treatment. It is controlled so that the total pressure of the atmosphere continues to increase. During the heat treatment, the total pressure in the atmosphere is controlled so as to keep increasing. In addition, when the temperature is lowered immediately after the heat treatment, the pressure is controlled so as to compensate for the pressure decrease due to the temperature decrease (additional pressure).
  • the pressure in the atmosphere is increased to about 10 MPa. At this time, the pressure in the atmosphere is increased at a stretch at a pressurization rate of 0.05 MPa / min or more.
  • the present inventors when heat treating an oxide superconducting wire having a pinhole in a pressurized atmosphere, the present inventors have found that the rate at which the gas under pressure enters the inside of the wire from the pinhole is about 0.05 MPa / less than min. Therefore, by controlling so that the total pressure of the atmosphere continues to increase at a rate of 0.05 MPa / min or more at the time of temperature rise before heat treatment, the atmosphere at the time of temperature rise before heat treatment is better than that of the wire rod.
  • the pressure inside can be kept high.
  • the temperature is kept at, for example, 830 ° C.
  • the pressure in the atmosphere continues to increase. It is preferable that the pressurization rate during heat treatment is as fast as possible, but if the pressurization rate is too high, the total pressure will exceed 5 OMPa. Pressure must be continuously applied at an appropriate pressure rate so that the total pressure during heat treatment does not exceed 50 MPa. In FIG. 16, the pressure is increased to about 3 OMPa. Thus, as compared with the case where the pressure is kept constant, it is Rukoto delay from the wire inside of the pressure and time in which the pressure is equal in the atmosphere time period t 2 during the heat treatment. In this way, the state in which the pressure in the atmosphere is higher than the pressure in the wire during the heat treatment can be kept longer.
  • the pressure in the atmosphere will decrease as the temperature in the atmosphere decreases according to the equation of state of the gas.
  • the pressure is controlled so as to compensate for the pressure drop caused by the temperature drop (adding pressure).
  • the oxygen partial pressure is always controlled to be in the range of 0.003 to 0.02 MPa.
  • the pressure in the atmosphere is higher than the pressure in the wire at the time of temperature rise before the heat treatment, so that a compressive force can be applied to the wire.
  • the state in which the pressure in the atmosphere is higher than the pressure in the wire can be kept longer.
  • the formation of voids and blisters is suppressed during and before the heat treatment, and the critical current density is effectively reduced by heat treatment in a pressurized atmosphere of IMPa or more and less than 5 OMPa. Can be deterred.
  • the present inventors have conducted intensive studies on the optimum oxygen partial pressure at the time of temperature increase before heat treatment and at the time of heat treatment. As a result, the result shown in FIG. 17 was obtained.
  • the oxygen partial pressure when the oxygen partial pressure is 0.007 MPa, a stable oxide superconducting phase is generated in a temperature range of 815 ° C. to 825 ° C., and the critical current It can be seen that the density is improved.
  • the temperature range when the oxygen partial pressure is 0.0003 MPa, the temperature range is 750 ° C or more and 800 ° C or less, preferably, the temperature range is 770 ° C or more and 800 ° C or less. Within this range, a stable oxide superconducting phase is generated, and the critical current density is improved.
  • the optimal value of oxygen partial pressure for the formation of the oxide superconducting phase increases with increasing temperature. Therefore, at the time of temperature rise before heat treatment, by controlling the oxygen partial pressure to increase as the temperature in the atmosphere rises, the oxygen partial pressure is adjusted to the optimum range for generating the oxide superconducting phase. can do. As a result, a stable oxide superconducting phase is generated, and the critical current density can be improved.
  • the optimal oxygen partial pressure is 0.0061 ⁇ [? & More Although it is less than 0.0 IMPa, when the temperature fluctuates to 825 ° C, the optimal oxygen partial pressure is more than 0.007 MPa and less than 0.1 OlMPa. When the temperature fluctuates to 820 ° C, the optimal oxygen partial pressure is 0.005M & above and 0.009MPa & below.
  • the oxygen partial pressure will be 0.007MP.
  • the control should be performed so as to be constant within the fluctuation range of not less than a and not more than 0.009 MPa (shaded area in Fig. 17).
  • the fluctuation range of the oxygen partial pressure is about 10% of the value of the oxygen partial pressure. Therefore, by controlling the oxygen partial pressure during heat treatment to be constant within a fluctuation range of 10% or less, the oxygen partial pressure should be kept within the optimum oxygen partial pressure range even if the temperature fluctuates. Therefore, a stable oxide superconducting phase is generated, and the critical current density can be improved.
  • the present inventors controlled the decompression rate of the total pressure during the heat treatment to be 0.05 MPa / min, and determined the value of the total pressure and the value of the wire. The relationship with the formation of blisters was studied diligently.
  • a raw material powder having a composition ratio of 3.02 was prepared. This raw material powder was heat-treated at 750 ° C for 10 hours and then at 800 ° C for 8 hours. Thereafter, the powder obtained by the pulverization was heat-treated at 850 ° C for 4 hours, and then pulverized again. The powder obtained by the pulverization was heat-treated under reduced pressure, and then filled in a metal tube made of silver having an outer diameter of 36 mm and an inner diameter of 31 mm. Next, the metal tube filled with the powder was drawn.
  • the drawn wires were bundled into 61 wires and fitted into a metal tube with an outer diameter of 36 mm and an inner diameter of 31 mm.
  • wire drawing and primary rolling were performed to obtain a tape-shaped superconducting wire having a Bi 2223 phase having a thickness of 0.25 mm and a width of 3.6 mm.
  • the wire was subjected to the first heat treatment.
  • the first heat treatment was performed in the air at a heat treatment temperature of 842 ° C and a heat treatment time of 50 hours.
  • a second heat treatment was performed.
  • the oxygen partial pressure is set to 0.008 MPa
  • the heat treatment temperature is set to 825 ° C
  • the heat treatment time is set to 50 hours
  • the pressure reduction rate of the total pressure during the heat treatment is set to 0.05 MPa min.
  • the total pressure was changed as shown in Table 1.
  • the wire was inspected for blisters. Table 1 shows the total pressure and whether or not the wire swells.
  • the heat treatment temperature of the second heat treatment was set at 500 ° C, and the presence or absence of blistering of the wire was similarly examined.
  • Table 1 shows the total pressure and whether or not the wire swells.
  • FIG. 18 shows a single core superconducting wire having a single superconducting filament. That is, the present inventors have found that the voids 20 extending in the direction perpendicular to the longitudinal direction of the oxide superconducting wire 1 are hard to be reduced by heat treatment in a pressurized atmosphere. This is considered to be due to the following reasons.
  • the voids 20 extending in the direction perpendicular to the longitudinal direction of the oxide superconducting wire 1 block the current in the superconducting filament, which is one of the causes of the decrease in the critical current density of the oxide superconducting wire 1. . Therefore, if the formation of the voids 20 is suppressed, the critical current density of the oxide superconducting material 1 can be further improved.
  • the rolling reduction of the oxide superconducting wire is set to 84% or less, preferably 80% or less, so that the direction perpendicular to the longitudinal direction of the oxide superconducting wire is obtained.
  • the inventors of the present application have found that the generation of voids can be suppressed before the heat treatment, and as a result, the critical current density of the oxide superconducting wire can be improved. The reason will be described below.
  • Primary rolling is a process performed to increase the density of the raw material powder filled in the metal tube.
  • the primary rolling as the rolling reduction of the oxide superconducting wire is increased (the working ratio is increased), the density of the raw material powder filled in the metal tube increases.
  • the density of the superconducting crystal generated by the subsequent heat treatment step S4 and step S5 increases, and the critical current density of the oxide superconducting wire increases.
  • the primary rolling be performed at a rolling reduction such that the density of the raw material powder becomes high and no voids are formed in the raw material powder.
  • the oxide superconducting wire was rolled at a rolling reduction of about 86 to 90%.
  • the heat treatment is performed in a pressurized atmosphere of IMPa or more and less than 5 OMPa
  • the effect of compressing the oxide superconducting wire can be obtained even during the heat treatment. Therefore, even if the primary rolling is performed at a rolling reduction of 84% or less, the raw material powder is compressed in the subsequent heat treatment in a pressurized atmosphere, and as a result, the density of the superconducting filament of the oxide superconducting wire is reduced. Can be higher.
  • the primary rolling when the primary rolling is performed at a rolling reduction of 84% or less, voids are less likely to be generated in the raw material powder, and voids extending in a direction perpendicular to the longitudinal direction of the oxide superconducting wire are generated. Can be suppressed. Further, since the primary rolling is performed at a rolling reduction of 80% or less, voids are not completely generated in the raw material powder. For the above reasons, the critical current density of the oxide superconducting wire can be improved.
  • the critical current density of the oxide superconducting wire becomes highest when the primary rolling is performed at a rolling reduction of about 86%.
  • the critical current density of the oxide superconducting wire is highest when the primary rolling is performed at a rolling reduction of about 82%.
  • the optimal primary rolling reduction rate for improving the critical current density of the oxide superconducting wire is the low rolling reduction rate. It turns out that it shifts to the side.
  • the present inventors fabricated the oxide superconducting wire of the present embodiment under the following conditions and measured the critical current density in order to confirm the above effects.
  • the raw material powder was filled in a metal tube and drawn.
  • primary rolling was performed to obtain a tape-shaped superconducting wire.
  • the primary rolling was performed at two types of reduction ratios of 82% and 87%.
  • a lubricating oil having a kinematic viscosity of 1 Omm 2 Zs was used using a roll having a diameter of 10 Omm.
  • the wire was subjected to the first heat treatment.
  • the first heat treatment was performed at an oxygen pressure of 0.08 MPa, a heat treatment temperature of 830 ° C., and a heat treatment time of 30 hours.
  • secondary rolling was performed.
  • Secondary rolling is 5-30% pressure
  • the test was carried out at a lower rate, using a roll having a diameter of 30 Omm, without using lubricating oil.
  • a second heat treatment was performed.
  • the second heat treatment was performed at an oxygen partial pressure of 0.08 MPa, a heat treatment temperature of 820 ° C., and a heat treatment time of 50 hours. After the second heat treatment, the critical current density of the obtained oxide superconducting wire was measured.
  • the critical current density of the oxide superconducting wire with a reduction of 87% was 30 kAZ cm 2 .
  • the critical current density of the oxide superconducting wire with the rolling reduction of 82% was 40 kAZcm 2 .
  • a method for producing an oxide superconducting wire having a Bi 2 223 phase by a hot isostatic pressing method is described, but IMP a and less than 5 OMPa
  • the present invention can be carried out by a pressurizing method other than the hot isostatic pressurizing method as long as the heat treatment is performed in the above pressurized atmosphere. Further, the present invention can be applied to a method for producing an oxide superconducting wire having another composition such as a yttrium-based material other than the bismuth-based material.
  • the step of plating silver or silver alloy on the wire is performed.
  • the step of attaching silver or silver alloy to the wire is performed, for example, the step of sputtering is performed by a sputtering process. It is also possible to carry out the invention.
  • FIGS. 14 and 15A to 15D the force S indicating specific control conditions of temperature, pressure, oxygen concentration, and oxygen partial pressure is shown. The present invention is limited to these conditions.
  • the pressure is controlled so that the pressure increases stepwise with the temperature rise, and when the temperature in the atmosphere is 200 ° C or more, the pressure reduction rate of the total pressure in the pressurized atmosphere Should be controlled so as to be equal to or less than 0.05 MPa / min.
  • the first to fifth methods of the second embodiment of the present invention can prevent the generation of pinholes or can be used even when the pinholes are generated by combining with the heat treatment conditions of the first embodiment. However, generation of voids and swelling of the wire can be effectively suppressed. Further, the first to fifth methods of the second embodiment of the present invention can be appropriately combined. Thereby, generation of voids and swelling of the wire can be more effectively suppressed.
  • the present invention controls the oxygen partial pressure in this numerical range.
  • the present invention is not limited to this case, and any method may be used as long as the control is such that the oxygen partial pressure increases as the temperature in the atmosphere increases.
  • the method for manufacturing an oxide superconducting wire according to the present invention can be applied to a method for manufacturing an oxide superconducting wire that can prevent a decrease in critical current density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

明細書 酸化物超電導線材の製造方法 技術分野
本発明は、 酸化物超電導線材の製造方法に関し、 特に、 酸化物超電導体の原材 料粉末を金属で被覆した形態の線材から酸化物超電導線材を製造する方法に関す るものである。 背景技術
従来から、 酸化物超電導線材の製造方法として、 酸化物超電導体の原材料粉末 を金属管に充填した後、 伸線加工や圧延加工を金属管に施すことによって得られ た線材を熱処理して酸化物超電導体の原材料粉末を焼結し、 酸化物超電導線材を 得る方法が知られている。 しかしながら、 上記の焼結のための熱処理工程におい て線材に膨れが生じることにより、 得られた酸化物超電導線材の超電導特性が低 下する等の問題があった。
そこで特開平 5— 1 0 1 7 2 3号公報では、 酸化物超電導体の粉末を充填して なる金属管またはその偏平体を加圧雰囲気中で加熱処理して酸化物超電導体の粉 末を焼結させることを特徴とする酸化物超電導線材の製造方法が提案されている。 この方法によれば、 加圧熱処理することによって超電導特性に優れた線材が得ら れると上記公報に記載されている。
具体的には、 酸化物超電導体の粉末を充填した金属管を耐熱耐圧の密閉容器内 に収容し、 密閉容器内の温度上昇に伴なつて増大する内部の圧力の上昇によって 焼結時の膨れを防止することが試みられている。 このときの内部圧は、 気体の状 態方程式などから求めることができ、 たとえば、 温度 9 0 0 °C程度の加熱温度で は約 4気圧の内部圧を得ることができると上記公報に記載されている。
また、 特許第 2 5 9 2 8 4 6号公報 (特開平 1一 3 0 1 1 4号公報) には、 熱 処理時と熱処理後との少なくとも一方において、 内部に酸化物超電導粉末などを 充填した金属管を高圧力状態に保持することを特徴とする酸化物超電導導体の製 造方法が提案されている。 この方法によれば、 高圧力状態に置くことによって、 焼結時に生じる酸化物超電導体と金属管との界面における部分的剥離をなくすこ とができると上記公報に記載されている。
具体的には、 内部に酸化物超電導粉末を充填した金属管を、 熱処理時と熱処理 後との少なく とも一方において、 500〜2000 k g/cm2 (約 50〜20
OMP a) の高圧力状態に保持することにより金属管を焼結体側に圧着すること ができる。 これにより、 超電導体が部分的にクェンチ現象を生じた場合に、 この クェンチ現象によって発生した熱を速やかに取り去ることができる。 また、 これ 以外に、 剥離部が応力集中部になり、 歪を生じることによる超電導特性の劣化を 防止することもできる。
しかしながら、 特開平 5— 101723号公報では、 密閉容器内の温度上昇に 伴なつて得られる内部圧は 4気圧 (0. 4MP a) 程度である。 これにより、 焼 結時に酸化物超電導結晶間に空隙が生成され、 それにより臨界電流密度が低下す るという問題があった。
また、 内部圧が 4気圧 (0. 4MP a) 程度であるため、 焼結時に生成する酸 化物超電導線材の膨れを十分に抑制できず、 それにより、 臨界電流密度が低下す るという問題もあった。
また、 特許第 2592846号公報の方法では、 加える圧力が 500〜200
O k g/cm2 (約 5 OMP a〜 20 OMP a ) と高すぎるために熱処理時の酸 素分圧制御が困難となり、 臨界電流密度が低下してしまう。 発明の開示
本発明の目的は、 酸化物超電導結晶間の空隙および酸化物超電導線材の膨れの 生成を抑止するとともに熱処理時の酸素分圧制御を容易にすることにより、 臨界 電流密度を向上できる酸化物超電導線材の製造方法を提供することである。
本発明の酸化物超電導線材の製造方法は、 以下の特徴を備えている。
酸化物超電導体の原材料粉末を金属で被覆した形態を有する線材が作製される。 そして、 線材が加圧雰囲気中で熱処理される。 加圧雰囲気の全圧力は IMP a以 上 5 OMP a未満である。 本発明の酸化物超電導線材の製造方法によれば、 I M P a以上という大きな線 材外部の圧力によって、 熱処理時に生成する超電導結晶の塑性流動およびタリー プ変形が起こるため、 酸化物超電導結晶間の空隙は減少される。 また、 熱処理時 に生成する酸化物超電導結晶粉末の隙間内のガスや熱処理時に生成する酸化物超 電導結晶粉末に付着したガスが熱処理時に膨張することを、 金属管外部からの圧 力により抑制することができるので、 酸化物超電導線材の膨れの生成は抑止され る。 以上の結果、 臨界電流密度が向上する。
また、 安定した酸化物超電導相を生成するには、 加圧雰囲気中の全圧力の値に かかわらず酸素分圧を常に一定範囲に制御する必要がある。 しかし、 この場合、 加圧雰囲気中の全圧力が 5 O M P aを超える場合には、 その全圧力に対する酸素 分圧が小さくなる。 これにより、 加圧雰囲気中の酸素濃度の値が非常に小さくな るため、 測定誤差等の影響を強く受けるようになるので、 酸素分圧の制御が困難 になるという問題がある。 本発明の酸化物超電導線材の製造方法によれば、 5 0 M P a未満の加圧雰囲気中で熱処理が行なわれるので、 加圧雰囲気中の全圧力に 対する酸素分圧が小さくなりすぎず、 加圧雰囲気中の酸素濃度の値がある程度高 いので、 測定誤差等の影響をそれほど受けないで酸素分圧の制御が容易となる。 上記の酸化物超電導線材の製造方法において好ましくは、 熱処理する工程は、 熱間等方圧加圧法 (H I P : H o t I s o s t a t i c P r e s s i n g ) により行なわれる。
これにより、 酸化物超電導線材は等方的に加圧されるので、 均一に線材の空隙 および膨れは防止される。
上記の酸化物超電導線材の製造方法において好ましくは、 酸化物超電導体は、 ビスマスと鉛とス ト口ンチウムとカルシウムと銅とを含み、 その原子比として (ビスマスと鉛) :ス トロンチウム : カルシウム:銅が 2 : 2 : 2 : 3と近似し て表される B i 2 2 2 3相を含む B i— P b— S r— C a— C u— O系の酸化物 超電導体である。
これにより、 結晶間の空隙および酸化物超電導線材の膨れの生成が抑止される 結果、 臨界電流密度を向上できる。
上記の酸化物超電導線材の製造方法において好ましくは、 熱処理する工程は、 酸素雰囲気中で行なわれ、 かつ、 酸素分圧は◦. 0 0 3 M P a以上 0 . 0 2 M P a以下である。
このように酸素分圧を 0 . 0 0 3 ? &以上0 . 0 2 M P a以下の範囲に保つ ことにより、 安定した酸化物超電導相が生成し、 臨界電流密度を向上させること が可能となる。 なお、 酸素分圧が 0 . 0 2 M P aを超えると異相が生成し、 0 . 0 0 3 M P a未満では酸化物超電導相が生成しにくくなり臨界電流密度が低下す る。
上記の酸化物超電導線材の製造方法において好ましくは、 熱処理する工程にお ける熱処理前の昇温時には、 加圧雰囲気中の温度上昇に伴なつて酸素分圧が増加 するように制御される。
酸化物超電導相の生成に最適な酸素分圧の値は、 温度上昇とともに大きくなる。 これにより、 熱処理する工程における熱処理前の昇温時においても適切な酸素分 圧となるので、 安定した酸化物超電導相が生成し、 臨界電流密度を向上させるこ とが可能となる。
上記の酸化物超電導線材の製造方法において好ましくは、 熱処理時には加圧雰 囲気中の全圧力が一定となるように制御される。
熱処理時には、 加圧容器中で線材を支える支持具の酸化により酸素ガスが消費 されることや、 保圧弁などの圧力調整器の圧力制御時のハンチングや、 消費され た酸素を補うために追加するガス導入時の圧力変動などにより、 全圧力が減少傾 向を示すことがある。 これにより容器内で急激な減圧が生じると、 線材内部の圧 力が線材外部の圧力と比較して高くなり、 線材の膨れが生成する。 し力、し、 本発 明の好ましい局面では熱処理時の全圧力が一定となるように制御されているため、 熱処理時の急激な減圧による線材の膨れの生成を防止することが可能となる。 上記の酸化物超電導線材の製造方法において好ましくは、 熱処理する工程は、 酸素雰囲気中で行なわれ、 かつ、 熱処理時の酸素分圧が 1 0 %以内の変動範囲で 一定となるように制御される。
これにより、 温度の変動があっても、 酸化物超電導相の生成に最適な酸素分圧 の範囲内に酸素分圧をおさめることができるので、 安定した酸化物超電導相が生 成し、 臨界電流密度を向上させることが可能となる。 上記の酸化物超電導線材の製造方法において好ましくは、 熱処理直後の降温時 には、 降温による圧力の低下を補うようにガスが注入される。
熱処理直後の降温時には温度変化に伴なう圧力低下が起こる。 このときに加熱 容器内,.が急激に減圧されると、 線材内部の圧力が線材外部の圧力と比較して高く なり、 線材の膨れが生成する。 しかし、 本発明の好ましい局面では降温による圧 力低下を補うようにガスが注入されるため、 熱処理直後の降温時の急激な減圧に よる線材の膨れの生成を防止することが可能となる。
上記の酸化物超電導線材の製造方法において好ましくは、 原材料粉末を被覆す る金属が銀を含み、 熱処理する工程後の線材の横断面における酸化物超電導体部 分の面積に対する金属部分の面積の比 (以下、 銀比) が 1 . 5である場合には、 熱処理直後の降温時の減圧速度が 0 . 0 5 M P a /m i n以下に制御される。
これにより、 銀比が 1 . 5である場合において、 急激な減圧による線 $tの膨れ の生成を防止する効果がより顕著である。
上記の酸化物超電導線材の製造方法において好ましくは、 原材料粉末を被覆す る金属が銀を含み、 銀比が 1 . 5である場合には、 熱処理する工程において、 雰 囲気中の温度が 2 0 0 °C以上の場合には、 加圧雰囲気中の全圧力の減圧速度が 0 . 0 5 M P a /m i n以下となるように制御される。
雰囲気中の温度が 2 0 0 °C以上の場合に加熱容器内が急激に減圧されると、 線 材内部の圧力が線材外部の圧力と比較して高くなり、 それにより線材の膨れが生 成する。 そこで、 これにより、 銀比が 1 . 5である場合において、 熱処理するェ 程中 (熱処理前、 熱処理時、 熱処理後) における急激な減圧による線材の膨れの 生成を抑止する効果がより顕著である。
上記の酸化物超電導線材の製造方法において好ましくは、 原材料粉末を被覆す る金属が銀を含み、 銀比が 3 . 0である場合には、 熱処理直後の降温時の減圧速 度が 0 . 0 3 MP a /m i 11以下に制御される。
これにより、 銀比が 3 . 0である場合において、 急激な減圧による線材の膨れ の生成を防止する効果がより顕著である。
上記の酸化物超電導線材の製造方法において好ましくは、 原材料粉末を被覆す る金属が銀を含み、 銀比が 3 . 0であり、 熱処理する工程において、 雰囲気中の 温度が 2 0 0 °C以上の場合には、 加圧雰囲気中の全圧力の減圧速度が 0 . 0 3 M P a /m i n以下となるように制御される。
雰囲気中の温度が 2 0 0 °C以上の場合に加熱容器内が急激に減圧されると、 線 材内部の圧力が線材外部の圧力と比較して高くなり、 それにより線材の膨れが生 成する。 そこで、 これにより、 銀比が 3 . 0である場合において、 熱処理するェ 程中 (熱処理前、 熱処理時、 熱処理後) における急激な減圧による線材の膨れの 生成を抑止する効果がより顕著である。
上記の酸化物超電導線材の製造方法において好ましくは、 熱処理する工程にお いて、 加圧雰囲気の全圧力が I M P a以上の場合には、 加圧雰囲気中の全圧力の 減圧速度が 0 . 0 5 M P a /m i n以下となるように制御される。
雰囲気中の全圧力が I M P a以上の場合に加熱容器内が急激に減圧されると、 線材内部の圧力が線材外部の圧力と比較して高くなり、 それにより線材の膨れが 生成する。 これにより、 熱処理する工程中 (熱処理前、 熱処理時、 熱処理後) に おける急激な減圧による線材の膨れの生成を抑止する効果がより顕著である。 上記の酸化物超電導線材の製造方法において好ましくは、 泉材を作製する工程 の後であって熱処理する工程の前に、 線材をロールにより圧延する工程をさらに 備え、 圧延する工程後の線材の外皮厚みは 2 0 0 μ ιη以上である。
ピンホールは、 線材と圧延のロールとの摩擦により線材の表面が荒らされて、 外部から酸化物超電導体フィラメントまで貫通することにより主に形成される。 し力 し、 圧延する工程後において酸化物超電導線材の外皮厚みがどの部分でも 2 0 m以上となるような状態で圧延されれば、 線材の表面が圧延で荒らされた としても、 外部から酸化物超電導体フィラメントまで穴が貫通することがないた め、 ピンホールが生成することはない。 これにより、 上記熱処理する工程により 空隙や膨れの生成が抑止され、 臨界電流密度を向上できる。 なお、 本明細書中に おいてピンホールとは、 外部から酸化物超電導体線材フィラメントまで貫通して いる直径 1 0 0 m以上の径を有する穴を意味している。 また、 ピンホールのあ る線材とは、 4 mm X 1 0 mmの線材中に直径 1 0 0 μ πι以上の穴が 2個以上含 まれている線材を意味している。
上記の酸化物超電導線材の製造方法において好ましくは、 線材を作製する工程 の後であって熱処理する工程の前に、 銀もしくは銀合金を前記線材の表面に付着 させる工程をさらに備えている。
単位面積当たりに流すことのできる超電導電流を增やすため、 酸化物超電導線 材の銀比はできるだけ小さくされている。 し力 し、 銀比が小さい線材は、 金属部 分の割合が少ないため、 外皮厚みを大きくすることができない。 特に、 熱処理す る工程後の外皮厚みが 2 0 0 μ ιη未満の線材は、 熱処理する工程前の圧延等の処 理の際にピンホールが形成されやすい。 ピンホールのある線材は、 上記の加圧雰 囲気中で熱処理する工程が行なわれても、 加圧している気体がピンホールから線 材内部に侵入する。 このため、 f泉材内外での圧力差がなくなり、 加圧により空隙 や膨れの生成が抑止されることにより、 臨界電流密度の低下が防止される効果が 小さい。 そこで、 線材を作製する工程後であって熱処理する工程前に、 銀もしく は銀合金を線材の表面に付着させることにより、 ピンホールが銀や銀合金で被覆 されて表面から消滅する。 したがって、 前もってピンホールがない線材にされて から熱処理する工程が行なわれるので、 熱処理する工程の際に、 加圧している気 体がピンホールから線材内部に侵入しなくなる。 これにより、 上記加圧雰囲気中 で熱処理する工程により空隙や膨れの生成が抑止され、 臨界電流密度を向上でき る。
上記の酸化物超電導線材の製造方法において好ましくは、 線材を作製する工程 の後であって熱処理する工程の前に、 線材をロールにより圧延する工程をさらに 備え、 ロールの線材が接する部分の表面粗さ R yは 3 2 0 μ πι以下である。 これにより、 線材とロールとの摩擦が小さくなるので、 線材の表面が荒らされ にくくなり、 線材の外皮厚みに関係なくピンホールのない線材が得られる。 した がって、 熱処理する工程の際に、 加圧している気体がピンホールから線材内部に 侵入しなくなる。 これにより、 線材の外皮厚みに関係なく、 上記加圧雰囲気中で 熱処理する工程により、 空隙や膨れの生成が抑止され、 臨界電流密度を向上でき る。 なお、 表面粗さ R yとは、 J I S (Japanese Industrial Standards) に規 定された最大高さのことである。
上記の酸化物超電導線材の製造方法において好ましくは、 熱処理する工程にお ける熱処理前の昇温時には、 雰囲気中の温度上昇に伴なつて段階的に圧力が増加 するように制御される。
ピンホールのある線材は、 通常の加圧方法で加圧雰囲気中で熱処理する工程が 行なわれても、 加圧している気体がピンホールから線材内部に侵入するため、 線 材内外での圧力差がなくなり、 加圧により空隙や膨れによる臨界電流密度の低下 が防止される効果が小さい。 しかし、 雰囲気中の温度上昇に伴なつて段階的に圧 力が増加するように制御されることにより、 加圧している気体がピンホールから 線材内部に侵入する前に外部圧力が増加される。 これにより、 線材内外での圧力 差が生じ、 熱処理する工程前の線材がピンホールを有しているか否かにかかわら ず、 空隙や膨れの生成が抑止され、 臨界電流密度を向上できる。
上記超電導線材の製造方法において好ましくは、 熱処理する工程における熱処 理前の昇温時には、 0. 05MP a/m i n以上の速度で雰囲気の全圧力が増加 するように制御される。
本願発明者らは、 線材を熱処理する工程において、 加圧している気体がピンホ ールから線材内部に侵入する速度は約 0. 05 MP a/m i n未満であることを 見出した。 したがって、 熱処理前の昇温時において、 0. 05MP a/m i n以 上の速度で雰囲気の全圧力が増加し続けるように制御することで、 常に線材内部 の圧力よりも雰囲気中の圧力を高く保ち続けることができる。 これにより、 熱処 理する工程前の線材がピンホールを有しているか否かにかかわらず、 熱処理前の 昇温時において線材に対して圧縮する力を加えることができるので、 空隙や膨れ の生成が抑止される。 その結果、 IMP a以上 5 OMP a未満の加圧雰囲気中で の熱処理により臨界電流密度の低下を効果的に抑止することができる。
上記超電導線材の製造方法において好ましくは、 熱処理する工程における熱処 理時には、 雰囲気中の全圧力が増加し続けるように制御される。
これにより、 熱処理時において、 線材内部の圧力と雰囲気中の圧力とが等しく なるのを遅らせることができ、 線材内部の圧力よりも雰囲気中の圧力が高い状態 をより長く保ち続けることができる。 したがって、 熱処理時において空隙や膨れ の生成が抑止され、 IMP a以上 50MP a未満の加圧雰囲気中での熱処理によ り臨界電流密度の低下を効果的に抑止することができる。
上記超電導線材の製造方法において好ましくは、 線材を作製する工程の後であ つて熱処理する工程の前に、 線材を圧延する工程をさらに備え、 圧延する工程に おける線材の圧下率は 8 4 %以下であり、 好ましくは 8 0 %以下である。
線材を熱処理する工程が I M P a以上 5 0 M P a未満の加圧雰囲気中で行なわ れる場合には、 酸化物超電導線材は熱処理する工程の際においても圧縮される。 したがって、 線材を圧延する工程が、 従来の圧下率より低い 8 4 %以下の圧下率 で行なわれても、 その後の熱処理する工程にお V、て原材料粉末が圧縮されるので、 結果的に超電導フィラメントの密度を高くすることができる。 一方で、 線材を圧 延する工程が、 従来の圧下率より低い 8 4 %以下の圧下率で行なわれることによ り、 原材料粉末中に空隙が生じにくくなるので、 酸化物超電導線材の長手方向に 垂直な方向に伸びる空隙の発生を抑止することができる。 以上の理由により、 酸 化物超電導線材の臨界電流密度を向上することができる。 また、 線材を圧延する 工程が、 8 0 %以下の圧下率で行なわれることにより、 原材料粉末中に空隙が生 じなくなるので、 酸化物超電導線材の長手方向に垂直な方向に伸びる空隙の発生 を一層抑止することができる。
なお、 本明細書中において、 圧下率 (%) は以下の式で定義されるものである。
線材の圧延後の厚さ
圧下率 (%) = 1. x lOO
V 線材の圧延前の厚さ,
上記の酸化物超電導線材の製造方法において好ましくは、 線材に複数回の熱処 理が施され、 その複数回の熱処理のうち少なくとも 1つの熱処理は、 全圧力が 1 M P a以上 5 O M P a未満の加圧雰囲気中で行なわれる。
これにより、 熱処理時に発生する酸化物超電導結晶間の空隙および酸化物超電 導線材の膨れの生成を抑止することが可能となる。 図面の簡単な説明
図 1は、 酸化物超電導線材の構成を概念的に示す部分断面斜視図である。
図 2は、 酸化物超電導線材の一の製造工程を示す図である。
図 3は、 熱間等方圧加圧法 (H I P ) 装置の概略断面図である。
図 4 A〜 4 Dは、 酸化物超電導結晶間の空隙の挙動を段階的に示す概念図であ る。 図 5は、 加圧雰囲気の全圧力 P (M P a ) と線材の膨れ数 (個/ 1 0 m) の関 係を示す図である。
図 6は、 窒素が約 8 0 %、 酸素が約 2 0 %の割合の混合ガスについての全圧力 と酸素分圧を表した図である。
図 7は、 酸素分圧を一定にした場合の全圧力と酸素濃度値の関係を表した図で ある。
図 8 Aは、 熱処理直後の減圧速度制御を行った場合の時間と線材の温度との関 係を示す図、 図 8 Bは、 熱処理直後の減圧速度制御を行った場合の時間と容器内 の全圧力との関係を示す図である。
図 9 Aは、 加圧雰囲気中における熱処理前後におけるピンホールのない酸化物 超電導,锒材の線材厚さを示すグラフ、 図 9 Bは、 ピンホールのある酸化物超電導 線材の線材厚さを示すグラフである。
図 1 0は、 ピンホールのある酸化物超電導線材の構成を概念的に示す部分断面 斜視図である。
図 1 1は、 実施の形態 2における圧延方法を示す模式断面図である。
図 1 2は、 酸化物超電導線材の他の製造工程を示す図である。
図 1 3は、 銀もしくは銀合金を線材にメツキする工程後の酸化物超電導線材の 構成を概念的に示す部分断面斜視図である。
図 1 4は、 実施の形態 2の第 4の手法における熱処理時の温度および圧力と時 間との関係を示す図である。
図 1 5 Aは、 実施の形態 2における銀比が 1 . 5である場合の熱処理する工程 の温度と時間の関係を示す図、 図 1 5 Bは、 実施の形態 2における銀比が 1 . 5 である場合の熱処理する工程の圧力と時間の関係を示す図、 図 1 5 Cは、 実施の 形態 2における銀比が 1 . 5である場合の熱処理する工程の酸素濃度と時間の関 係を示す図、 図 1 5 Dは、 実施の形態 2における銀比が 1 . 5である場合の熱処 理する工程の酸素分圧と時間との関係を示す図である。
図 1 6は、 実施の形態 2の第 5の手法における熱処理する工程の温度および圧 力と時間との関係を示す図である。
図 1 7は、 熱処理時における温度と酸素分圧との最適な組み合わせを示した図 9 である。
図 1 8は、 空隙が残る酸化物超電導線材の構成を概念的に示す部分断面斜視図 であ 。
図 1 9は、 酸化物超電導線材における 1次圧延における圧下率と臨界電流密度 との関係を模式的に示した図である。 発明を実施するための最良の形態 ·
以下、 本発明の実施の形態について図を用いて説明する。
実施の形態 1 .
図 1を参照して、 たとえば、 多芯線の酸化物超電導線材について説明する。 酸 化物超電導線材 1は、 長手方向に伸びる複数本の酸化物超電導体フイラメント 2 と、 それらを被覆するシース部 3とを有している。 複数本の酸化物超電導体フィ ラメント 2の各々の材質は、 たとえば B i - P b - S r - C a一 C u—O系の組 成が好ましく、 特に、 (ビスマスと鉛) :ストロンチウム:カルシウム:銅の原 子比がほぼ 2 : 2 : 2 : 3の比率で近似して表される B i 2 2 2 3相を含む材質 が最適である。 シース部 3の材質は、 たとえば銀よりなっている。
なお、 上記においては多芯線について説明したが、 1本の酸化物超電導体フィ ラメント 2がシース部 3により被覆される単芯線構造の酸化物超電導線材が用い られてもよい。
次に、 上記の酸化物超電導線材の製造方法について説明する。
図 2を参照して、 まず、 酸化物超電導体の原材料粉末が金属管に充填される (ステップ S 1 ) 。 この酸化物超電導体の原材料粉末は、 たとえば、 B i 2 2 2 3相を含む材質よりなっている。
なお、 金属管としては熱伝導率の高い銀や銀合金などを用いるのが好ましい。 これにより、 超電導体がタエンチ現象を部分的に生じた場合に発生した熱を金属 管から速やかに取り去ることができる。
次に、 原材料粉末を充填した金属管は、 伸線加工により所望の直径の線材とさ れる (ステップ S 2 ) 。 これにより、 酸化物超電導線材の原材料粉末を金属で被 覆した形態を有する線材が得られる。 この線材に 1次圧延が行なわれ S 3) 、 その後に 1回目の熱処理が行なわれる (ステップ S 4) 。 これらの操作 により原材料粉末から酸化物超電導相が生成される。 この熱処理を施された線材 に 2次圧延が施される (ステップ S 5) 。 これにより 1回目の熱処理で生じたポ イドが除去される。 2次圧延された線材に 2回目の熱処理が施される。 (ステツ プ S 6) 。 2回目の熱処理で酸化物超電導相の焼結が進むと同時に酸化物超電導 相の単相化が行なわれる。
上記の製造方法により、 たとえば図 1に示す酸化物超電導線材を製造すること ができる。
本実施の形態においては、 1回目の熱処理 (ステップ S 4) および 2回目の熱 処理 (ステップ S 6) の少なくともいずれかが、 全圧力として IMP a以上 50 MP a未満の圧力を加えた加圧雰囲気中で行なわれる。
この加圧雰囲気中における熱処理は、 たとえば熱間等方圧加圧法 (H I P) に より行なわれる。 この熱間等方圧加圧法について以下に説明する。
図 3を参照して、 熱間等方圧加圧法を行なう装置 1 3は、 圧力容器円筒 6と、 その圧力容器円筒 6の両端を密閉する上蓋 5および下蓋 1 1と、 圧力容器円筒 6 中にガスを導入するために上蓋 5に設けられたガス導入口 4と、 処理品 8を加熱 するヒータ 9と、 断熱層 7と、 処理品 8を支える支持具 10とにより構成されて いる。
本実施の形態では、 原材料粉末を金属管に充填した後に伸線 ·圧延した線材が、 処理品 8として圧力容器円筒 6内で支持具 10に支持される。 この状態で、 ガス 導入口 4から所定のガスが圧力容器円筒 6内に導入されることで、 圧力容器円筒 6内は IMP a以上 5 OMP a未満の加圧雰囲気とされ、 その加圧雰囲気下でヒ ータ 9により線材 8が所定温度に加熱される。 この熱処理は酸素雰囲気中で行な われることが好ましく、 酸素分圧は 0. 003MP a以上 0. 02MP a以下で あることが好ましい。 このようにして線材 8に熱間等方圧加圧による熱処理が施 される。
本実施の形態によれば、 上記のように IMP a以上 5 OMP a未満の加圧雰囲 気中で熱処理を行なうことにより、 主に以下の 3つの効果が得られる。
第一に、 熱処理時に酸化物超電導結晶間に生成する空隙を少なくすることがで さる。
本願発明者は、 I M P a以上の加圧雰囲気中で熱処理することにより、 主に熱 処理時に生成する酸化物超電導結晶間の空隙を、 I M P a未満の場合よりも格別 に少なくできることを見出した。
すなわち、 図 4 A〜4 Dを参照して、 加圧雰囲気中で熱処理すると、 熱処理時 に生成する酸化物超電導結晶間の接触面積が塑性流動により増加し、 超電導結晶 間に存在している数 <α m〜数十 mオーダーの空隙が減少する (図 4 A→図 4 B ) 。 この状態で保持すると、 図 4 Cのようにクリープ変形を起こし、 接合界面 に存在している空隙が収縮するとともに、 酸化被膜などの汚染部が一部破壊 ·分 解し、 原子の拡散が生じ焼結が進行する。 そして最終的に図 4 Dのように超電導 結晶間の空隙がほとんどなくなり、 安定した接合界面が形成される。
ここで、 超電導線に電流を流すということは、 超電導線材を構成する超電導結 晶間に電流を流すことである。 通常、 超電導線を使用する冷媒中 (たとえば液体 窒素やヘリウム、 または冷凍機) において、 超電導状態 (電気抵抗を発生しな い) を維持して流すことができる電流量を制限するのは超電導状態が弱い超電導 結晶間の接合部である (超電導結晶の方が結晶間の接合部より超電導性は強い) 。 超電導結晶間の接合部の隙間は、 通常の大気焼成ではどうしても残留する。 この ため、 超電導結晶間の隙間を減らすことにより、 超電導線の性能がよくなり、 臨 界電流密度の低下を防止することができる。
具体的には、 B i 2 2 2 3相を含む酸化物超電導線材について、 大気圧中で熱 処理した場合の酸化物超電導体の焼結密度は 8 0〜9 0 %であるのに対し、 加圧 雰囲気の全圧力を 1 O M P aとして、 本発明における製造方法により作製した場 合の酸化物超電導体の焼結密度は 9 3〜 9 6 %であり、 酸化物超電導体結晶間に 生成する空隙の減少が見られた。
第二に、 熱処理時に生成する酸化物超電導線材の膨れを防止することができる。 本願発明者は、 酸化物超電導線材を加圧雰囲気中で熱処理する際に全圧力を変 えたときの熱処理後の線材に生じた膨れ数を調べた。 図 5を参照して、 加圧雰囲 気の全圧力が 0 . 5 M P aを超えると酸化物超電導,棣材中の膨れが大幅に減少し、 さらに 1 M P a以上になると、 酸化物超電導線材中の膨れがほぼなくなることが わかる。 このような結果が得られた理由は以下のように考えられる。
金属管中の酸化物超電導体の粉末は通常、 焼結前には理論密度の約 80%の充 填率であるため、 粉末の隙間内にはガスが存在する。 この粉末の隙間内のガスは 熱処理時に高温になると体積膨張し、 線材に膨れを生じさせる。 しかし、 本実施 の形態では 1 MP a以上の加圧雰囲気で熱処理が行なわれるため、 金属管内部の 圧力よりも金属管外部の圧力を大きくできる。 このため、 粉末の隙間内のガスに よる線材の膨れが防止されるものと考えられる。
また、 本願発明者が線材の膨れの原因をさらに検討したところ、 酸化物超電導 体の原材料粉末に付着している炭素 (C) 、 水 (H20) 、 酸素 (02) などの 吸着物が焼結中に気化して、 この気体によって金属管内の体積が膨張して線材の 膨れが発生することもわかった。 しかし、 この粉末の吸着物の気化による線材の 膨れも、 IMP a以上の加圧雰囲気で熱処理を行なうことにより、 金属間の内部 の圧力よりも外部の圧力を大きくできるため防止できるものと考えられる。 以上により、 IMP a以上とすることで、 このような酸化物超電導体の原料粉 末の隙間に存在するガスによる膨れだけでなく、 その粒子の表面に付着している 吸着物の気化による膨れもほとんどなくすことができると考えられる。 酸化物超 電導線材の膨れは臨界電流密度を低下させる原因となるものであるので、 線材の 膨れを防止することで、 臨界電流密度の低下を防止することができる。
第三に、 熱処理時における酸素分圧の制御を容易にすることができる。
本願発明者は、 全圧力にかかわらず、 酸素分圧を 0. 003MP a以上 0. 0
2MP a以下に制御することにより、 B i系酸化物超電導体の 2223相が安定 して生成することを見出した。 すなわち、 酸素分圧が 0. 02 MP aを超えると C a 2P b 04のような異相が生成してしまレ、、 0. 003MP a未満になると B i 2223相が生成しにくくなり、 臨界電流密度が低くなる。
図 6を参照して、 たとえば、 加圧雰囲気の全圧力が 1気圧 (0. IMP a) の 大気圧である場合には、 酸素分圧制御を行なわなくとも、 酸素分圧が点線で示す 0. 2気圧 (0. 02MP a) のレベルと同等であるため、 B i 2223相が安 定して生成する。 しかしながら、 加圧雰囲気の全圧力が 2気圧、 3気圧 ' ' ■ と 大きくなるにつれて、 酸素分圧も大きくなるため、 点線で示す 0. 2気圧のレべ ルを超えてしまう。 その結果 B i 2223相が安定して生成しなくなる。 そこで、 図 7に示すように混合ガス中の酸素ガスの混合割合を変えることにより酸素分圧 を 0. 003 MP a以上 0. 02 MP a以下に制御する必要がある。 なお、 図 7 の点線は図 6の点線と同様に 0. 2気圧 (0. 02MP a) のレベルを示してい る。
実際の酸素分圧制御は、 全圧力と酸素濃度とがモニターされることで行なわれ る。 すなわち、 酸素分圧は全圧力の値に酸素濃度を掛けることで算出される。 このため、 たとえば、 全圧力が 5 OMP aのときには、 0. 005MP aの酸 素分圧で熱処理を行なう場合、 酸素濃度は◦. 01%となる。 したがって、 0. 01%の酸素濃度を測定して、 注入する混合ガスを制御する必要がある。 しかし ながら、 0. 01%の酸素濃度は測定誤差と同程度であるため、 この酸素濃度を 正確に測定し、 注入する混合ガス中の酸素ガスを制御することは困難である。 本 実施の形態では、 加圧雰囲気中の全圧力を 5 OMP a未満とすることにより、 酸 素濃度の測定誤差の影響を少なくし、 注入する混合ガス中の酸素ガスの濃度をあ る程度高く保つことができるため、 酸素分圧を容易に制御することが可能となる。 ところで、 IMP a以上の加圧雰囲気中で熱処理を行なう際には、 熱処理時お よび熱処理後に加圧雰囲気で急激な減圧が起こらないように減圧速度を制御する ことが好ましい。
すなわち、 IMP a以上の加圧雰囲気中で熱処理を行なう際には、 線材表面の 微細な空孔から外部のガスが線材内部に入り込み、 外部と同じ圧力になっている と考えられる。 このような高圧力雰囲気中では、 急激な減圧により外部の圧力が 下がると、 内部からのガスの放出が外部圧力の減少に追いつけなくなり、 内部圧 力が高くなつて膨れを生成することを本願発明者は発見した。
したがってこのような膨れを防止するために好ましくは、 熱処理時には、 全圧 力が一定となるように A r (アルゴン) や N2 (窒素) などの不活性ガスと 02 ガスとの混合ガスが容器内に注入される。 また、 熱処理直後の降温時には、 降温 による圧力の低下を補うように不活性ガスと酸素ガスとの混合ガスが容器内に注 入される。 熱処理時およぴ熱処理直後の降温時にこれらの減圧速度の制御を行な うことにより、 急激な減圧による膨れの生成を防止することができる。 図 8A、 8 Bを参照して、 図 8 Aの熱処理時 (約 800°Cの温度) には図 8 B に示すように全圧力が一定となるように制御される。 つまり、 熱処理啤には加熱 容器中で線材を支える支持具の酸化などにより容器中の酸素ガスが消費されるた め、 容器内の圧力が減少する。 これを防止するために、 混合ガスが容器中に注入 されて圧力が一定に保たれる。 そして、 図 8 Aの熱処理直後の降温時 (約 800 〜約 300°Cの温度範囲) には図 8 Bに示すように降温による圧力の低下を捕う ように混合ガスが容器中に注入され、 減圧速度が一定以下に制御される。 つまり、 降温時には、 温度の急激な低下により気体の状態方程式に基づいてガスの圧力も 急激に低下しようとするため、 混合ガスを注入して降温を緩やかにする必要があ る。 なお、 300°C以下では、 約 800°C〜約 300°Cの場合と比較して温度が 低いので、 線材内部の圧力が既に十分低くなつている。 したがって、 減圧速度を 制御しなくても線材の膨れが生成しないと考えられる。
また、 酸化物超電導線材の膨れの生成防止のために必要な減圧速度の範囲は、 熱処理後の線材の横断面における酸化物超電導体部分の面積に対する金属部分の 面積の比 (銀比) により異なることを本願発明者は見出した。 すなわち、 好まし くは、 銀比が 1. 5である場合には、 熱処理直後の降温時 ( 800°C〜 300 °C の温度範囲) の減圧速度は 0. 05 M P a /m i 11以下であり、 銀比が 3. 0で ある場合には、 熱処理直後の降温時 (800°C〜300°Cの温度範囲) の減圧速 度は 0. 03MP a/m i n以下である。
実施の形態 2
図 9A、 9 Bの熱処理の条件は、 全圧力 20 MP a、 酸素分圧 0. 008MP a、 雰囲気中の温度 825°C、 熱処理時間 5◦時間である。 図 9Aを参照して、 ピンホールのない酸化物超電導線材は、 熱処理後において厚さが約 0. 006m π!〜 0. 01mm減少している。 これは、 全圧力 20 M P aの加圧雰囲気中で熱 処理されることにより、 酸化物超電導結晶間の空隙および酸化物超電導線材の膨 れの生成が抑止されているためである。 一方、 図 9 Bを参照して、 ピンホールの ある酸化物超電導線材は、 熱処理後において厚さが約 0. 002mm〜0. 00 5 mmしか減少せず、 酸化物超電導結晶間の空隙および酸化物超電導,線材の膨れ の生成が十分に抑止されていない。 また、 線材中のピンホールがあった部分 (A 部分) は、 熱処理前よりも熱処理後の方が厚さが大きくなつている。
以上により、 ピンホールがない場合には、 実施の形態 1の圧力範囲 (I M P a 以上 5 O M P a未満) で熱処理すれば空隙や膨れの生成が効果的に抑止できる力 ピンホールがある場合には、 実施の形態 1の圧力範囲で熱処理するだけでは空隙 や膨れの生成が十分に抑止できないことがわかった。
本発明における加圧雰囲気中での熱処理においては、 I M P a以上という大き な線材外部の圧力によって、 熱処理時に生成する超電導結晶の塑性流動およびク リープ変形が起こるため、 熱処理時に生成する酸化物超電導結晶間の空隙は抑止 される。 また、 熱処理時に生成する酸化物超電導結晶粉末の隙間内のガスゃ熱処 理時に生成する酸化物超電導結晶粉末に付着したガスが、 熱処理時に膨張するこ とを、 金属管外部からの圧力により抑制することができるので、 酸化物超電導線 材の膨れの生成は抑止される。 以上の結果、 空隙や膨れによる臨界電流密度の低 下は防止される。
しかし、 ピンホールのある線材は、 上記の加圧雰囲気中での熱処理が行なわれ ても、 加圧している気体がピンホールから線材内部に侵入するため、 線材内外で の圧力差がなくなり、 加圧により空隙や膨れの生成が十分抑止されない。 この結 果、 臨界電流密度の低下が防止される効果が小さくなっている。
そこで本願発明者らは、 鋭意検討し、 熱処理前にピンホールのない線材とする ことで空隙や膨れの生成を十分抑止可能な手法を見出した。
第 1の手法は、 図 2の圧延 (ステップ S 3または S 5 ) 後であって熱処理 (ス テツプ S 4またはステップ S 6 ) 前の酸化物超電導線材の外皮厚みを 2 0 0 μ πι 以上にすることである。
また、 第 2の手法は、 図 2の圧延 (ステップ S 3または S 5 ) に用いるロール の線材が接する部分の表面粗さ R yを 3 2 0 z m以下にすることである。
また、 第 3の手法は、 図 2の圧延 (ステップ S 3または S 5 ) 後であって熱処 理 (ステップ S 4または S 6 ) 前に酸化物超電導線材に銀または銀合金をメツキ することである。
以下、 これらの各手法について具体的に説明する。
第 1の手法として、 図 2の圧延 (ステップ S 3または S 5 ) 後であって熱処理 (ステップ S 4または S 6 ) 前の酸化物超電導線材の外皮厚み Wが、 どの部分で も 2 0 0 μ πι以上となるようにすることで、 圧延 (ステップ S 3または S 5 ) の 際ピンホールが生成しないことを本願発明者らは見出した。 ここで外皮厚み Wと は、 図 1 0に示されるように、 線材 1の断面において外周部に並んでいる酸化物 超電導体フイラメント 2と f泉材 1の外表面との圧延後における距離 Wを意味して いる。 外皮厚み Wを 2 0 0 μ ιη以上となるようにすることでピンホール 1 4が生 成しない理由は、 以下のように考えられる。
ピンホーノレ 1 4は、 線材 1と圧延のロールとの摩擦により,線材 1の表面が荒ら されて、 外部から酸化物超電導体フイラメント 2まで貫通することにより主に形 成される。 しカゝし、 圧延後において酸化物超電導線材 1の外皮厚み Wがどの部分 でも 2 0 0 μ m以上となるような状態で圧延されれば、 線材 1の表面が圧延で荒 らされたとしても、 外部から酸化物超電導体フィラメント 2まで穴が貫通するこ とがないため、 ピンホール 1 4が生成することはないと考えられる。 なお、 図 1 0の上述した以外の構成は、 図 1に示す構成とほぼ同じであるため、 同一部材に は同一符号を付し、 その説明を省略する。
また、 圧延後の酸化物超電導線材の外皮厚み Wが 2 0 0 μ m未満であっても、 上述の第 2、 第 3の手法を用いれば、 熱処理の前にピンホール 1 4のない線材が 得られ、 その結果、 加圧雰囲気中で熱処理により空隙や膨れの生成が抑止され、 臨界電流密度の低下が効果的に防止されることを本願発明者らは見出した。
図 1 1を参照して、 圧延は、 回転する複数 (通常 2本) のロール 1 5間に板状 または棒状の材料を通して、 その厚さまたは断面積を減じ、 同時に断面を目的の 形状に成形する加工法である。 圧延の際、 酸化物超電導線材 1はロール 1 5から の摩擦力によって複数のロール 1 5間に引き込まれ、 そこでロール 1 5の表面 1 5 aからの圧縮力を受けて変形する。
第 2の手法においては、 図 2に示す 1次圧延 (ステップ S 3 ) および 2次圧延
(ステップ S 5 ) の少なくともいずれかにおいて、 線材 1が接する部分である表 面 1 5 aにおける表面粗さ R yが 3 2 0 μ m以下であるロール 1 5が用いられる。 すなわち、 圧延の際に用いられるロール 1 5の表面 1 5 aの表面粗さ R yが 3 2 0 μ m以下であれば、 線材 1と口ール 1 5の表面 1 5 aの摩擦が小さくなるの で、 線材 1の表面が荒らされにくくなり、 線材 1の外皮厚みに関係なくピンホー ルのない線材 1が得られる。 したがって、 熱処理する工程の際に、 加圧している 気体がピンホールから線材 1内部に侵入しなくなる。 これにより、 線材 1の外皮 厚み Wに関係なく、 上記加圧雰囲気中で熱処理する工程により空隙や膨れの生成 が抑止され、 臨界電流密度の低下が効果的に防止される。
また、 第 3の手法においては、 図 1 2に示すように圧延 (ステップ S 3または S 5 ) の後であって熱処理 (ステップ S 4または S 6 ) 前において、 銀もしくは 銀合金を線材の表面にメツキする工程 (ステップ S 1 1または S 1 2 ) が行なわ れる。 なお、 メツキする工程 (ステップ S 1 1または S 1 2 ) を追加した以外は 図 2の方法とほぼ同じであるため、 対応する工程には対応する符号を付し、 その 説明を省略する。
図 1 3を参照して、 シース部 3の外周部分には銀もしくは銀合金 1 6がメツキ されていて、 これにより外部に開口していたピンホール 1 4は銀もしくは銀合金 1 6により塞がれている。 なお、 これ以外の構成は、 図 1の構成とほぼ同じであ るため、 同一の部材については同一の符号を付し、 その説明を省略する。
通常、 単位面積あたりに流すことのできる超電導電流を増やすため、 酸化物超 電導線材 1の銀比はできるだけ小さくされている。 しかし、 銀比が小さい線材 1 は、 金属部分の割合が少ないため、 外皮厚み Wを大きくすることができない。 し たがって、 銀比が小さレ、線材 1は外皮厚みが 2 0 0 μ m未満となり、 熱処理する 工程前の処理 (たとえば圧延等) でピンホール 1 4が形成されやすい。 ピンホー ノレ 1 4のある線材 1は、 上述のように加圧により空隙や膨れの生成が十分抑止さ れない。 この結果、 臨界電流密度の低下が防止される効果が小さくなつている。 そこで、 熱処理する工程前に銀もしくは銀合金 1 6を線材 1の表面にメツキさせ ることにより、 ピンホール 1 4が銀もしくは銀合金 1 6で塞がれて、 表面から消 滅する。 したがって、 線材 1からピンホール 1 4が消滅されてから熱処理するェ 程が行なわれるので、 熱処理する工程の際に、 加圧している気体がピンホール 1 4から線材 1内部に侵入しなくなる。 これにより、 線材 1の外皮厚み Wの値およ び圧延に用いられるロール 1 5の表面粗さ R yの値に関係なく、 上記加圧雰囲気 中で熱処理する工程により空隙や膨れの生成が抑止され、 臨界電流密度の低下が 効果的に防止される。
また、 次に説明する第 4の手法または第 5の手法を用いれば、 ピンホール 1 4 のある線材 1であっても空隙や膨れの生成が抑止され、 臨界電流密度の低下が効 果的に防止されることを本願発明者らは見出した。 第 4の手法においては、 図 2 に示す 1回目の熱処理 (ステップ S 4) および 2回目の熱処理 (ステップ S 6) の少なくともいずれかにおいて、 熱処理前の昇温時には、 温度上昇に伴なつて段 階的に圧力が増加するように制御される。 また、 第 5の手法においては、 図 2に 示す 1回目の熱処理 (ステップ S 4) および 2回目の熱処理 (ステップ S 6) の 少なくともいずれかにおいて、 熱処理前の昇温時には、 0. 0 5MP a /m i n 以上の速度で雰囲気の全圧力が増加するように制御される。 そして、 熱処理時に は、 雰囲気中の全圧力が增加し続けるように制御される。 さらに、 熱処理直後の 降温時には、 降温による圧力の低下を補うように (圧力を追加するように) 制御 される。 はじめに、 第 4の手法について説明する。
図 1 4を参照して、 熱処理温度 800 °C、 圧力 20 M P aという条件で熱処理 が行なわれている。 このとき、 温度上昇に伴なつて段階的に圧力が増加するよう に制御されている。 つまり、 圧力増加時に、 所定圧力で一定時間保持した後に圧 力を増加させ、 増加後の圧力で再度一定時間保持するというプロセスを繰り返す ように圧力が制御されている。 具体的には、 圧力増加過程において、 7MP a程 度、 l OMP a程度、 1 2. 5MP a程度、 1 5 M P a程度、 および 1 7 M P a 程度で一定時間圧力が保持される。 また、 圧力を一定時間保持した後に増加させ るタイミングは、 雰囲気中の温度の測定値に基づいて行なわれる。 つまり、 室温 で圧力を 7 MP a程度に增加させ、 温度が 400°C程度に達した時点で圧力を 1 OMP a程度に増加させ、 500°Cに達した時点で圧力を 1 2. 5MP aに增カロ させ、 6 00°Cに達した時点で圧力を 1 5MP a程度に増加させ、 700°Cに達 した時点で圧力を 1 7MP a程度に増加させるようにして圧力が制御される。 な お、 安定した酸化物超電導相を生成するために、 酸素分圧は常に 0. 00 3~0. 008MP aの範囲となるように制御される。
ピンホールのある線材は、 通常の加圧方法で加圧雰囲気中で熱処理する工程が 行なわれても、 加圧している気体がピンホールから線材内部に侵入するため、 線 材内外での圧力差がなくなり、 加圧により空隙や膨れによる臨界電流密度の低下 が防止される効果が小さい。 し力、し、 第 4の手法のように、 温度上昇に伴なつて 段階的に圧力が増加するように制御されることにより、 加圧している気体がピン ホールから線材内部に侵入する前に外部圧力が増加する。 これにより、 線材内外 での圧力差が生じ、 熱処理する工程前の線材がピンホールを有しているか否かに かかわらず、 空隙や膨れの生成が抑止され、 臨界電流密度の低下が効果的に防止 される。
さらに、 上記手法 1〜 4に以下の手法を組み合わせることにより、 線材の空隙 および膨れの生成をさらに効果的に抑止することができる。 以下、 その手法につ いて説明する。
その手法においては、 図 2に示す 1回目の熱処理 (ステップ S 4) および 2回 目の熱処理 (ステップ S 6) の少なくともいずれかにおいて、 熱処理する工程に おいて、 雰囲気中の温度が 200°C以上の場合には、 加圧雰囲気中の全圧力の減 圧速度が一定速度未満となるように制御される。
図 15 A〜l 5Dを参照して、 熱処理前の昇温時には、 上述した第 4の手法と 同様、 雰囲気中の温度上昇に伴なつて段階的に圧力が増加するように制御されて いる。 なお、 図 15 Bでは、 所定圧力で一定時間保持されていないように見える 力 これは図 14よりも図 15 Bの経過時間のスケールが大きすぎるため、 圧力 保持部が省略されたように見えるだけで、 実際には図 14の場合と同様に所定圧 力で一定時間保持されている。 この昇温工程により、 温度 815°C、 圧力 2 QM P aとされ、 その状態で 50時間の熱処理が行なわれる。 熱処理前の昇温時およ び熱処理時においては、 雰囲気中の温度が 200°C以上の場合には、 加圧雰囲気 中の全圧力の減圧速度が 0. 05MP a/m i n以下となるように制御される。 そして熱処理後においては、 50°C/hの速度で温度が降温される。 熱処理後に おいても、 雰囲気中の温度が 200°C以上である場合には、 加圧雰囲気中の全圧 力の減圧速度が 0. 05 MP a/m i n以下となるように制御される。 なお、 熱 処理後の降温速度が 50°C/hである場合には、 温度低下に伴なう自然減圧速度 は常に 0. 05 MP a/m i n以下となるので、 減圧速度を制御する必要はない。 さらに、 熱処理前、 熱処理時、 熱処理後にわたって、 酸素濃度は 0. 04%に保 429 たれている。 これにより、 酸素分圧は常に 0. 003〜0. 008MP aの範囲 となり、 安定した酸化物超電導相が生成可能である。
雰囲気中の温度が 200°C以上の場合に加熱容器內が急激に減圧されると、 線 材内部の圧力が線材外部の圧力と比較して高くなり、 線材の膨れが生成する。 そ こで、 加圧雰囲気中の全圧力の減圧速度が一定速度未満となるように制御される ことにより、 熱処理中 (熱処理前、 熱処理時、 熱処理後) における急激な減圧に よる線材の膨れの生成を抑止する効果がより顕著である。
なお、 銀比が 3. 0である線材については、 雰囲気中の温度が 200°C以上の 場合に、 減圧速度は 0. 03 MP a /m i n以下となるように制御される。
次に、 第 5の手法について説明する。 第 5の手法においては、 1回目の熱処理 (ステップ S 4) および 2回目の熱処理 (ステップ S 6) の少なくともいずれか において、 熱処理前の昇温時には、 0. 05 MP a /m i n以上の速度で雰囲気 の全圧力が増加し続けるように制御される。 そして、 熱処理時には、 雰囲気中の 全圧力が増加し続けるように制御される。 さらに、 熱処理直後の降^時には、 降 温による圧力の低下を補うように (圧力を追加するように) 制御される。
図 16を参照して、 熱処理前の昇温時には、 雰囲気の温度がたとえば 700°C 以下の場合には、 気体の状態方程式にしたがって緩やかに圧力が増加される。 そ して、 雰囲気の温度が 700°Cを超えるあたりで、 雰囲気中の圧力が 10 MP a 程度まで増加される。 このとき、 雰囲気中の圧力は 0. 05MP a/m i n以上 の加圧速度で一気に増加される。
ここで、 本願発明者らは、 ピンホールのある酸化物超電導線材を加圧雰囲気中 で熱処理する際に、 加圧している気体がピンホールから線材内部に侵入する速度 は約 0. 05MP a/m i n未満であることを見出した。 したがって、 熱処理前 の昇温時において、 0. 05 MP a/m i n以上の速度で雰囲気の全圧力が増加 し続けるように制御することで、 熱処理前の昇温時において線材內部よりも雰囲 気中の圧力を高く保ち続けることができる。
その後、 熱処理時において温度はたとえば 830°Cに保たれる。 一方で雰囲気 中の圧力は増加され続ける。 熱処理時における加圧速度はなるべく速いことが好 ましいが、 加圧速度があまり速すぎると全圧力が 5 OMP aを超えてしまうので、 熱処理時の全圧力が 50 MP aを超えないような適切な加圧速度で圧力が增加さ れ続ける必要がある。 図 16においては、 3 OMP a程度まで圧力が増加されて レ、る。 これにより、 熱処理時において圧力が一定に保たれる場合と比べて、 線材 内部の圧力と雰囲気中の圧力とが等しくなる時間を時間 から時間 t2に遅らせ ることができる。 このように、 熱処理中において線材内部の圧力よりも雰囲気中 の圧力が高い状態をより長く保ち続けることができる。
その後、 熱処理直後の降温時には、 気体の状態方程式にしたがって、 雰囲気中 の温度の低下とともに圧力も低下しょうとする。 このとき、 降温による圧力の低 下を補うように (圧力を追加するように) 圧力が制御される。 なお、 安定した酸 化物超電導相を生成するために、 酸素分圧は常に 0. 003〜0. 02MP aの 範囲となるように制御される。
第 5の手法によれば、 熱処理前の昇温時において線材内部の圧力よりも雰囲気 中の圧力が高くなるので、 線材に対して圧縮する力を加えることができる。 また、 熱処理時において線材内部の圧力よりも雰囲気中の圧力が高い状態をより長く保 ち続けることができる。 その結果、 熱処理前の昇温時および昇温時において空隙 や膨れの生成が抑止され、 IMP a以上 5 OMP a未満の加圧雰囲気中での熱処 理により臨界電流密度の低下を効果的に抑止することができる。
実施の形態 3
酸化物超電導線材の臨界電流密度をさらに向上するために、 本願発明者らは、 熱処理前の昇温時および熱処理時における最適な酸素分圧につレ、て鋭意検討を行 なった。 それにより、 図 17に示す結果が得られた。
図 17を参照して、 たとえば酸素分圧が 0. 007MP aである場合には、 8 15°C以上 825 °C以下の温度範囲であれば、 安定した酸化物超電導相が生成し、 臨界電流密度が向上することがわかる。 また、 図には示されていないが、 酸素分 圧が 0. 0003MP aである場合には、 750 °C以上 800 °C以下の温度範囲、 好ましくは 770°C以上大きく 800°C以下の温度範囲であれば、 安定した酸化 物超電導相が生成し、 臨界電流密度が向上する。 また、 酸素分圧が 0. 02MP aである場合には、 820°C以上 850°C以下の温度範囲、 好ましくは 830°C 以上 845°C以下の温度範囲であれば、 安定した酸化物超電導相が生成し、 臨界 電流密度が向上する。 さらに'、 温度が 650°C以下の場合には酸素分圧を 0. 0 0005MP a以上 0. 02MP a以下の範囲に制御する必要があることもわか つた。
以上の温度と酸素分圧との関係から、 酸化物超電導相の生成に最適な酸素分圧 の値は、 温度上昇とともに大きくなつている。 したがって、 熱処理前の昇温時に おいては、 雰囲気中の温度上昇に伴なつて酸素分圧を増加するように制御するこ とにより、 酸素分圧を酸化物超電導相の生成に最適な範囲にすることができる。 これにより、 安定した酸化物超電導相が生成し、 臨界電流密度を向上することが できる。
また、 熱処理時の一定温度で線材が保持される際には、 温度に数。 Cの変動 (誤 差) が生じることが多い。 この温度の変動と、 最適な酸素分圧の範囲との関係を 考えると、 たとえば 822. 5 °Cで線材が保持される場合には、 最適な酸素分圧 は 0. 0061\[? &以上0. 0 IMP a以下となるが、 825°Cに温度が変動し た場合には、 最適な酸素分圧は 0. 007MP a以上 0. O l lMP a以下とな る。 また、 820°Cに温度が変動した場合には、 最適な酸素分圧は 0. 005M &以上0. 009MP a以下となる。 そこで、 このような温度の変 S¾があって も常に最適な酸素分圧となるようにするためには、 822. 5°Cで線材が保持さ れる場合には、 酸素分圧は 0. 007MP a以上 0. 009MP a以下の変動範 囲 (図 1 7中斜線部分) で一定となるように制御すればよいこととなる。
ところで、 この酸素分圧の変動範囲は酸素分圧の値の 10 %程度となっている。 したがって、 熱処理時の酸素分圧が 10%以内の変動範囲で一定となるように制 御されることにより、 温度の変動があつても最適な酸素分圧の範囲内に酸素分圧 をおさめることができるので、 安定した酸化物超電導相が生成し、 臨界電流密度 を向上させることが可能となる。
実施の形態 4
酸化物超電導線材の臨界電流密度をさらに向上するために、 本願発明者らは、 熱処理中の全圧力の減圧速度が 0. 05MP a/m i nとなるように制御し、 全 圧力の値と線材の膨れの生成との関係について鋭意検討を行なった。
B i : P b : S r : C a : C u = 1. 82 : 0. 33 : 1, 92 : 2. 01 : 3. 02の組成比の原料粉末を調整した。 この原料粉末を 750 °Cで 10時間熱 処理した後、 800°Cで 8時間熱処理した。 その後、 粉砕により得られた粉末を 850°Cで 4時間熱処理した後、 再び粉碎を行なった。 粉砕により得られた粉末 を減圧下で加熱処理した後、 外径 36mm、 内径 31 mmの銀からなる金属管に 充填した。 次に、 粉末を充填した金属管について伸線加工を行なった。 さらに、 伸線した線材を 61本に束ねて、 外径 36 mm, 内径 3 1mmの金属管に嵌合し た。 次に、 伸線加工および 1次圧延を行ない、 厚さ 0. 25mm、 幅 3. 6 mm のテープ形状の B i 2223相を有する超電導線材を得た。 次に、 この線材に 1 回目の熱処理を行なった。 1回目の熱処理は、 大気中で行ない、 熱処理温度を 8 42°Cとし、 熱処理時間を 50時間として行なった。 次に 2次圧延を行なった後、 2回目の熱処理を行なった。 2回目の熱処理は、 酸素分圧を 0. 008MP aと し、 熱処理温度を 825°Cとし、 熱処理時間を 50時間とし、 熱処理中の全圧力 の減圧速度が 0. 05 MP aノ m i nとなるように制御し、 表 1に示すように全 圧力を変化させて行なった。 2回目の熱処理後、 線材の膨れの有無を調べた。 全 圧力と線材の膨れの有無とを表 1に併せて示す。
Figure imgf000027_0001
表 1の結果から、 全圧力が IMP a以上の場合には線材の膨れが発生している。 これにより、 線材の膨れを抑止するためには、 全圧力が IMP a以上の場合に加 圧雰囲気中の減圧速度が 0. 05MP aZm i n以下となるように制御する必要 がある。
続いて、 2回目の熱処理の熱処理温度を 500 °Cとして、 同様に線材の膨れの 有無を調べた。 全圧力と線材の膨れの有無とを表 1に併せて示す。
表 2
Figure imgf000028_0001
表 2の結果から、 熱処理温度が 500°Cの場合においても全圧力が IMP a以 上の場合には線材の膨れが発生している。 これにより、 熱処理温度が 500°Cの 場合においても、 線材の膨れを抑止するためには、 全圧力が IMP a以上の場合 に加圧雰囲気中の減圧速度が 0. 05MP a/m i n以下となるように制御する 必要がある。
実施の形態 5
図 18を参照して、 全圧力が IMP a以上 5 OMP a未満の加圧雰囲気中にお ける熱処理後の酸化物超電導線材 1の超電導フィラメント 2においては、 長手方 向 (図 18中横方向) に長い空隙はほぼ無くなっているのに対して、 長手方向に 垂直な方向に伸びる空隙 20がわずかに残っている。 なお、 図 18においては、 超電導フィラメントが 1本である単芯線の酸ィヒ物超電導線材について示している。 すなわち、 本願発明者らは、 酸化物超電導線材 1の長手方向に垂直な方向に伸 びる空隙 20は、 加圧雰囲気中での熱処理によっても減少し難いことを見出した。 これは以下の理由によるものと考えられる。 加圧雰囲気中においては.、 圧力が酸 化物超電導線材の全ての面に等しく加わる。 そして、 この圧力により酸化物超電 導結晶がクリープ変形を起こし、 結晶同士の接合界面に存在している空隙が収縮 する。 このようにして、 酸化物超電導結晶間に生成する空隙は減少する。 しかし ながら、 酸化物超電導線材 1は長手方向に長く伸びた形状を有しているので、 長 手方向には力が伝わりにくく、 線材 1は長手方向に圧縮されにくい。 その結果、 酸化物超電導線材 1の長手方向に垂直な方向に伸びる空隙 2 0は、 加圧雰囲気中 での熱処理によっても減少し難レ、。
酸化物超電導線材 1の長手方向に垂直な方向に伸びる空隙 2 0は、 超電導フィ ラメント中の電流を遮っているので、 酸化物超電導線材 1の臨界電流密度が低下 する原因の 1つとなっている。 したがって、 この空隙 2 0の生成を抑えれば、 酸 化物超電導,锒材 1の臨界電流密度をさらに向上することができる。
そこで、 図 2の 1次圧延 (ステップ S 5 ) において、 酸化物超電導線材の圧下 率を 8 4 %以下、 好ましくは 8 0 %以下とすることで、 酸化物超電導線材の長手 方向に垂直な方向に伸びる空隙の生成を熱処理前に抑えることができ、 その結果 酸化物超電導線材の臨界電流密度を向上できることを本願発明者らは見出した。 この理由について以下に説明する。
1次圧延は、 金属管に充填された原材料粉末の密度を高めるために行なわれる 工程である。 1次圧延において、 酸化物超電導線材の圧下率を大きくする (加工 率を大きくする) 程、 金属管に充填された原材料粉末の密度は高くなる。 原材料 粉末の密度が高くなると、 その後の熱処理 (ステップ S 4およびステップ S 5 ) により生成する超電導結晶の密度が高くなり、 酸化物超電導線材の臨界電流密度 が向上する。
一方で、 1次圧延において、 酸化物超電導線材の圧下率を大きくすると、 加工 率が大きくなることに起因する以下の 3つの現象が認められる場合がある。 第 1 に、 原材料粉末中に空隙 (クラック) が生じる。 第 2に、 酸化物超電導線材中の フィラメントの形状が長手方向に不均一になるソーセージングが生成しやすくな る。 第 3に、 ソーセージングの発生により、 超電導フィラメントの断面積が局所 的に大きくなった部分において別の超電導フィラメントと接触するプリッジング が発生しやすくなる。 これらの現象は、 いずれも酸化物超電導線材の臨界電流密 度を低下させる原因となり得る。 したがって、 1次圧延は、 原材料粉末の密度が高くなり、 かつ原材料粉末中に 空隙等が生じないような圧下率で行なわれる必要がある。 従来の 1次圧延におい ては、 酸化物超電導線材は約 8 6〜 9 0 %という圧下率で圧延されていた。 しかしながら、 熱処理が I M P a以上 5 O M P a未満の加圧雰囲気中で行なわ れる場合には、 熱処理の際においても酸化物超電導線材が圧縮される効果が得ら れる。 したがって、 1次圧延が 8 4 %以下の圧下率で行なわれても、 その後の加 圧雰囲気中での熱処理において原材料粉末が圧縮されるので、 結果的に酸化物超 電導線材の超電導フィラメントの密度を高くすることができる。 一方で、 1次圧 延が 8 4 %以下の圧下率で行なわれることにより、 原材料粉末中に空隙が生じに くくなるので、 酸化物超電導線材の長手方向に垂直な方向に伸びる空隙が生じる ことを抑止できる。 さらに、 1次圧延が 8 0 %以下の圧下率で行なわれることに より、 原材料粉末中に空隙が完全に生じなくなる。 以上の理由により、 酸化物超 電導線材の臨界電流密度を向上できる。
図 1 9を参照して、 大気中で熱処理を行なう場合には、 1次圧延が約 8 6 %の 圧下率で行なわれるときに酸化物超電導線材の臨界電流密度が最も高くなつてい る。 一方、 本発明の加圧雰囲気中で熱処理を行なう場合には、 1次圧延が約 8 2 %の圧下率で行なわれるときに酸化物超電導線材の臨界電流密度が最も高くな つている。 このように、 熱処理が I M P a以上 5 0 M P a未満の加圧雰囲気中で 行なわれる場合、 酸化物超電導線材の臨界電流密度を向上するための最適な 1次 圧延の圧下率は、 低圧下率側にシフトすることがわかる。
本願発明者らは、 上記の効果を確認すべく、 本実施の形態における酸化物超電 導線材を以下の条件で作製し、 臨界電流密度の計測を行なった。
図 2に示す酸化物超電導線材の製造工程に基づいて、 原材料粉末を金属管に充 填し、 伸線加工を行なった。 次に 1次圧延を行ない、 テープ形状の超電導線材を 得た。 1次圧延は 8 2 %、 8 7 %の 2種類の圧下率で行なった。 また、 1次圧延 は、 直径 1 0 O mmのロールを用い、 動粘度が 1 O mm2Z sである潤滑油を用 いた。 次に、 この線材に 1回目の熱処理を行なった。 1回目の熱処理は、 酸素文 圧を 0 . 0 0 8 M P aとし、 熱処理温度を 8 3 0 °Cとし、 熱処理時間.を 3 0時間 として行なった。 次に、 2次圧延加工を行なった。 2次圧延は、 5〜3 0 %の圧 下率で、 直径 3 0 O mmのロールを用い、 潤滑油を用いずに行なった。 次に、 2 回目の熱処理を行なった。 2回目の熱処理は、 酸素分圧を 0 . 0 0 8 M P aとし、 熱処理温度を 8 2 0 °Cとし、 熱処理時間を 5 0時間として行なつた。 2回自の熱 処理後、 得られた酸化物超電導線材の臨界電流密度の計測を行なった。
その結果、 1次圧延において、 圧下率を 8 7 %とした酸化物超電導線材では 3 0 k AZ c m2の臨界電流密度となった。 一方、 圧下率を 8 2 %とした酸化物超 電導線材では 4 0 k AZ c m2の臨界電流密度となった。 また以上の結果により、 1次圧延 (ステップ S 5 ) において、 酸化物超電導線材の圧下率を 8 4 %以下と することで、 酸化物超電導線材の長手方向に垂直な方向に伸びる空隙の生成を熱 処理前に抑えることができ、 その結果酸化物超電導線材の臨界電流密度を向上で きることがわ力 る。
なお、 上記各実施の形態においては、 熱間等方圧加圧法による B i 2 2 2 3相 を有する酸化物超電導線材の製造方法について説明を行っているが、 I M P a以 上 5 O M P a未満の加圧雰囲気で熱処理する方法であれば、 熱間等方圧加圧法以 外の加圧法により本発明を実施することも可能である。 また、 本発明はビスマス 系以外のィットリゥム系などの他の組成を有する酸化物超電導線材の製造方法に ついても適応できる。
本発明の実施の形態 2においては、 銀もしくは銀合金を線材にメツキする工程 が行なわれる場合について示したが、 銀もしくは銀合金が線材に付着される工程 であれば、 たとえばスパッタする工程により本発明を実施することも可能である。 加えて、 図 1 4、 図 1 5 A〜l 5 Dにおいては、 温度と圧力と酸素濃度と酸素分 圧との具体的な制御条件が示されている力 S、 本発明はこの条件に限定されるもの ではなく、 温度上昇に伴なつて段階的に圧力が増加するように制御され、 雰囲気 中の温度が 2 0 0 °C以上の場合には、 加圧雰囲気中の全圧力の減圧速度が 0 . 0 5 M P a /m i n以下となるように制御されればよレ、。
本発明の実施の形態 2の第 1〜第.5の手法は、 実施の形態 1の熱処理条件と組 み合せられることにより、 ピンホールの発生を防止でき、 またはピンホールが発 生した場合でも、 線材の空隙や膨れの生成を効果的に抑止することができる。 また、 本発明の実施の形態 2の第 1〜第 5の手法は、 適宜組み合わせることに より、 線材の空隙や膨れの生成をより効果的に抑止することができる。
本発明の実施の形態 2の第 5の手法においては、 熱処理直後の降温時には、 降 温による圧力の低下を補うように (圧力を追加するように) 制御される場合につ いて示したが、 本発明はこのような場合に限定されるものではなく、 少なくとも 熱処理時に雰囲気中の圧力が増加し続けるように制御されればよい。
本発明の実施の形態 3においては、 熱処理前の昇温時おょぴ熱処理時における 最適な酸素分圧の数値範囲の一例が示されたが、 本発明はこの数値範囲で酸素分 圧を制御する場合に限定されるものではなく、 雰囲気中の温度上昇に伴なつて酸 素分圧が增加するように制御するものであればよい。
実施の形態 5においては、 圧延時の潤滑油の動粘度や圧延に用いられるロール の直径についての一例が示されたが、 本発明はこのような圧延条件に限定される ものではなく、 圧延する工程における線材の圧下率が 8 4 %以下であればよい。 以上に開示された実施の形態はすべての点で例示であって制限的なものではな いと考慮されるべきである。 本発明の範囲は、 以上の実施の形態ではなく、 特許 請求の範囲によって示され、 特許請求の範囲と均等の意味および範囲内でのすべ ての修正や変形を含むものと意図される。 産業上の利用可能性
以上のように本発明に係る酸化物超電導線材の製造方法は、 臨界電流密度の低 下を防止できる酸化物超電導線材の製造方法に適用され得る。

Claims

請求の範囲
1. 酸化物超電導体の原材料粉末を金属で被覆した形態を有する線材を作製する 工程 ( S 1、 S 2) と、
前記線材を加圧雰囲気中で熱処理する工程 (S 4、 S 6) とを備え、
前記加圧雰囲気の全圧力は IMP a以上 5 OMP a未満である、 酸化物超電導 線材の製造方法。
2. 前記熱処理する工程 (S 4、 S 6) は、 熱間等方圧加圧法により行なわれる、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
3. 前記酸化物超電導体は、 ビスマスと鉛とストロンチウムとカルシウムと銅と を含み、 その原子比として (ビスマスと鉛) : ストロンチウム : カルシウム :銅 力 2 : 2 : 2 : 3と近似して表される B i 2223相を含む B i— P b— S r— C a— C u— O系の酸化物超電導体である、 請求の範囲第 1項記載の酸化物超電 導線材の製造方法。
4. 前記熱処理する工程 (S 4、 S 6) は、 酸素雰囲気中で行なわれ、 かつ、 酸 素分圧は 0. 003MP a以上 0. 02 M P a以下であることを特徴とする、 請 求の範囲第 1項記載の酸化物超電導線材の製造方法。
5. 前記熱処理する工程 (S 4、 S 6) における熱処理前の昇温時には、 前記加 圧雰囲気中の温度上昇に伴なつて前記酸素分圧が増加するように制御することを 特徴とする、 請求の範囲第 4項記載の酸化物超電導線材の製造方法。
6. 熱処理時には前記加圧雰囲気中の全圧力が一定となるように制御することを 特徴とする、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
7. 前記熱処理する工程 (S 4、 S 6) は、 酸素雰囲気中で行なわれ、 かつ、 熱 処理時の酸素分圧が 10 %以内の変動範囲で一定となるように制御することを特 徴とする、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
8. 熱処理直後の降温時には、 降温による圧力の低下を補うようにガスを注入す ることを特徴とする、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
9. 前記原材料粉末を被覆する前記金属が銀を含み、 前記熱処理する工程後の前 記線材 (1) の横断面における前記酸化物超電導体部分 (2) の面積に対する前 記金属部分 (3) の面積の比が 1. 5であり、
前記熱処理直後の降温時の減圧速度が 0. 05MP a/m i n以下であること を特徴とする、 請求の範囲第 8項記載の酸化物超電導線材の製造方法。
10. 前記原材料粉末を被覆する前記金属が銀を含み、 前記熱処理する工程後の 前記線材 (1) の横断面における前記酸化物超電導体部分 (2) の面積に対する 前記金属部分 (3) の面積の比が 1. 5であり、
前記熱処理する工程 (S4、 S 6) において、 前記加圧雰囲気中の温度が 20 0°C以上の場合には、 前記加圧雰囲気中の全圧力の減圧速度が 0. 05MP aZ m i n以下となるように制御することを特徴とする、 請求の範囲第 9項記載の記 載の酸化物超電導線材の製造方法。
11. 前記原材料粉末を被覆する前記金属が銀を含み、 前記熱処理する工程 (S 4、 S 6) 後の前記線材 (1) の横断面における前記酸化物超電導体部分 (2) の面積に対する前記金属部分 (3) の面積の比が 3. 0であり、
前記熱処理直後の降温時の減圧速度が 0. 03MP a/m i n以下であること を特徴とする、 請求の範囲第 8項記載の酸化物超電導線材の製造方法。
12. 前記原材料粉末を被覆する前記金属が銀を含み、 前記熱処理する工程 (S 4、 S6) 後の前記線材 (1) の横断面における前記酸化物超電導体部分 (2) の面積に対する前記金属部分 (3) の面積の比が 3. 0であり、
前記熱処理する工程 (S4、 S 6) において、 前記加圧雰囲気中の温度が 20 0°C以上の場合には、 前記加圧雰囲気中の全圧力の減圧速度が 0. 03MP aZ m i n以下となるように制御することを特徴とする、 請求の範囲第 1 1項記載の 酸化物超電導線材の製造方法。
13. 前記熱処理する工程 (S4、 S 6) において、 前記加圧雰囲気の全圧力が IMP a以上の場合には、 前記加圧雰囲気中の全圧力の減圧速度が 0. 05MP a/m i n以下となるように制御することを特徴とする、 請求の範囲第 1項記載 の酸化物超電導線材の製造方法。
14. 前記線材を作製する工程 (S l、 S 2) の後であって前記熱処理する工程 (S4、 S 6) の前に、 前記線材をロール (15) により圧延する工程 (S 3) をさらに備え、 前記圧延する工程 (S 3) 後の前記線材 (1) の外皮厚みは 20 0 u m以上である、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
15. 前記線材を作製する工程 (S l、 S 2) の後であって前記熱処理する工程 (S 4、 S 6) の前に、 銀もしくは銀合金 (16) を前記線材 (1) の表面に付 着させる工程 (S 1 1) をさらに備える、 請求の範囲第 1項記載の酸化物超電導 線材の製造方法。
16. 前記線材を作製する工程 (S l、 S 2) の後であって前記熱処理する工程 (S 4、 S 6) の前に、 前記線材をロール (16) により圧延する工程 (S 3) をさらに備え、
前記ロール (1 6) の前記線材 ( 1 ) が接する部分の表面粗さは最大高さ R y が 320 μ m以下である、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
17. 前記熱処理する工程 (S4、 S 6) における熱処理前の昇温時には、 雰囲 気中の温度上昇に伴なつて段階的に圧力が増加するように制御することを特徴と する、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
18. 前記熱処理する工程 (S4、 S 6) における熱処理前の昇温時には、 0. 05 MP a /m i n以上の速度で雰囲気中の全圧力が増加するように制御するこ とを特徴とする、 請求の範囲第 1項記載の酸化物超電導線材の製造方法。
19. 前記熱処理する工程 (S4、 S 6) における熱処理時には、 前記雰 IS気中 の全圧力が増加し続けるように制御することを特徴とする、 請求の範囲第 18項 記載の酸化物超電導線材の製造方法。
20. 前記線材を作製する工程 (S l、 S 2) の後であって前記熱処理する工程 (S4、 S 6) の前に、 前記線材を圧延する工程 (S 3) をさらに備え、 前記圧 延する工程 (S 3) における前記線材 (1) の圧下率は 84%以下である、 請求 の範囲第 1項記載の酸化物超電導線材の製造方法。
21. 前記圧延する工程 (S 3) における前記線材 (1) の圧下率は 80%以下 である、 請求の範囲第 20項記載の酸化物超電導線材の製造方法。
22. 前記線材に複数回の熱処理 (S 4、 S 6) が施され、 前記複数回の熱処理 (S 4、 S 6) のうち少なくとも 1つの熱処理は、 全圧力が IMP a以上 50M P a未満の加圧雰囲気中で行なわれる、 請求の範囲第 1項記載の酸化物超電導線 材の製造方法。
PCT/JP2003/006429 2002-05-24 2003-05-22 Oxide superconducting wire producing method WO2003100795A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2003242406A AU2003242406B2 (en) 2002-05-24 2003-05-22 Oxide superconducting wire producing method
CNB038018012A CN1296943C (zh) 2002-05-24 2003-05-22 氧化物超导线材的制造方法
US10/487,354 US6993823B2 (en) 2002-05-24 2003-05-22 Method of manufacturing oxide superconducting wire
EP03730593A EP1508904B1 (en) 2002-05-24 2003-05-22 Oxide superconducting wire producing method
PCT/JP2003/006429 WO2003100795A1 (en) 2002-05-24 2003-05-22 Oxide superconducting wire producing method
KR1020047019038A KR100900417B1 (ko) 2002-05-24 2003-05-22 산화물 초전도 와이어의 제조방법
JP2004508357A JP4513567B2 (ja) 2002-05-24 2003-05-22 酸化物超電導線材の製造方法
HK05105990A HK1073385A1 (en) 2002-05-24 2005-07-14 Method of manufacturing oxide superconducting wire

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002-150963 2002-05-24
JP2002150963 2002-05-24
JP2002-325243 2002-11-08
JP2002325243 2002-11-08
JPPCT/JP03/02449 2003-03-03
JP0302449 2003-03-03
PCT/JP2003/006429 WO2003100795A1 (en) 2002-05-24 2003-05-22 Oxide superconducting wire producing method

Publications (2)

Publication Number Publication Date
WO2003100795A1 true WO2003100795A1 (en) 2003-12-04
WO2003100795A8 WO2003100795A8 (en) 2004-05-27

Family

ID=34068785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006429 WO2003100795A1 (en) 2002-05-24 2003-05-22 Oxide superconducting wire producing method

Country Status (7)

Country Link
US (1) US6993823B2 (ja)
EP (1) EP1508904B1 (ja)
JP (1) JP4513567B2 (ja)
KR (1) KR100900417B1 (ja)
AU (1) AU2003242406B2 (ja)
HK (1) HK1073385A1 (ja)
WO (1) WO2003100795A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054538A1 (ja) * 2004-11-19 2006-05-26 Sumitomo Electric Industries, Ltd. 酸化物超電導線材の製造方法
EP1667173A1 (en) * 2003-09-17 2006-06-07 SUMITOMO ELECTRIC INDUSTRIES Ltd Superconducting device and superconducting cable
WO2006082767A1 (ja) * 2005-02-02 2006-08-10 Sumitomo Electric Industries, Ltd. 酸化物超電導体の原料の製造方法、酸化物超電導線材の製造方法、および超電導機器
WO2006115007A1 (ja) * 2005-04-21 2006-11-02 Sumitomo Electric Industries, Ltd. 超電導線材の検査装置および検査方法
AU2004275126B2 (en) * 2003-08-28 2010-12-23 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088677A1 (ja) * 2003-03-31 2004-10-14 The Furukawa Electric Co., Ltd. 酸化物超電導線材用金属基板、酸化物超電導線材及びその製造方法
CA2529894A1 (en) * 2003-08-28 2005-03-10 Sumitomo Electric Industries, Ltd. Method of manufacturing oxide superconducting wire, method of modifying oxide superconducting wire and oxide superconducting wire
JP4626134B2 (ja) * 2003-09-17 2011-02-02 住友電気工業株式会社 超電導体およびその製造方法
JP4715672B2 (ja) * 2006-08-04 2011-07-06 住友電気工業株式会社 酸化物超電導線材およびその製造方法
US11887751B2 (en) * 2020-10-24 2024-01-30 The Texas A&M University System Textured-powder Bi-2212/Ag wire and method of fabrication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285812A (ja) * 1987-05-19 1988-11-22 Toshiba Corp 酸化物超電導線材の製造方法
EP0404966A1 (en) * 1989-01-14 1991-01-02 Sumitomo Electric Industries, Ltd. Method of producing ceramic-type superconductive wire
JPH0345301A (ja) * 1989-07-13 1991-02-26 Nippon Cement Co Ltd 酸化物超伝導テープ線材の製造方法
JPH03153559A (ja) * 1989-11-13 1991-07-01 Mitsubishi Heavy Ind Ltd 酸化物超電導材料の製造方法
JPH05101723A (ja) 1991-10-07 1993-04-23 Mitsubishi Cable Ind Ltd 酸化物超電導線の製造方法
JPH07232960A (ja) * 1994-02-21 1995-09-05 Kyocera Corp 酸化物超電導体の製造方法
JP2592846B2 (ja) 1987-07-23 1997-03-19 株式会社フジクラ 酸化物超電導導体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952554A (en) * 1987-04-01 1990-08-28 At&T Bell Laboratories Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body
WO1991000622A1 (en) * 1989-07-04 1991-01-10 Unisearch Limited Silver doped superconductor composite
JP2567505B2 (ja) * 1990-08-08 1996-12-25 住友電気工業株式会社 ビスマス系酸化物超電導体の製造方法
US5550103A (en) * 1991-09-04 1996-08-27 Igc/Advanced Superconductors, Inc. Superconductor tapes and coils and method of manufacture
US5306698A (en) * 1991-10-10 1994-04-26 International Business Machines Corporation Methods for producing Tl2 Ca2 Ba2 Cu3 oxide superconductors
US5661114A (en) * 1993-04-01 1997-08-26 American Superconductor Corporation Process of annealing BSCCO-2223 superconductors
US5635456A (en) * 1993-04-01 1997-06-03 American Superconductor Corporation Processing for Bi/Sr/Ca/Cu/O-2223 superconductors
JPH0881221A (ja) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The 酸化物超電導体およびその製造方法
US6311386B1 (en) * 1994-10-28 2001-11-06 American Superconductor Corporation Processing of (Bi,Pb)SCCO superconductor in wires and tapes
US5942466A (en) * 1994-10-28 1999-08-24 American Superconductor Corporation Processing of (Bi,Pb) SCCO superconductor in wires and tapes
US6202287B1 (en) * 1996-01-18 2001-03-20 American Superconductor Corporation Method for producing biaxially aligned super conducting ceramics
AU7594700A (en) * 1999-09-21 2001-04-24 American Superconductor Corporation Simultaneous constraint and phase conversion processing of oxide superconductors
JP4016601B2 (ja) * 2000-07-14 2007-12-05 住友電気工業株式会社 酸化物超電導線材の製造方法とその製造方法に用いられる加圧熱処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285812A (ja) * 1987-05-19 1988-11-22 Toshiba Corp 酸化物超電導線材の製造方法
JP2592846B2 (ja) 1987-07-23 1997-03-19 株式会社フジクラ 酸化物超電導導体の製造方法
EP0404966A1 (en) * 1989-01-14 1991-01-02 Sumitomo Electric Industries, Ltd. Method of producing ceramic-type superconductive wire
JPH0345301A (ja) * 1989-07-13 1991-02-26 Nippon Cement Co Ltd 酸化物超伝導テープ線材の製造方法
JPH03153559A (ja) * 1989-11-13 1991-07-01 Mitsubishi Heavy Ind Ltd 酸化物超電導材料の製造方法
JPH05101723A (ja) 1991-10-07 1993-04-23 Mitsubishi Cable Ind Ltd 酸化物超電導線の製造方法
JPH07232960A (ja) * 1994-02-21 1995-09-05 Kyocera Corp 酸化物超電導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1508904A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004275126B2 (en) * 2003-08-28 2010-12-23 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
AU2004275126B8 (en) * 2003-08-28 2011-03-24 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
EP1667173A1 (en) * 2003-09-17 2006-06-07 SUMITOMO ELECTRIC INDUSTRIES Ltd Superconducting device and superconducting cable
EP1667173A4 (en) * 2003-09-17 2009-12-30 Sumitomo Electric Industries SUPERCONDUCTING DEVICE AND SUPERCONDUCTING CABLE
WO2006054538A1 (ja) * 2004-11-19 2006-05-26 Sumitomo Electric Industries, Ltd. 酸化物超電導線材の製造方法
JP2006147357A (ja) * 2004-11-19 2006-06-08 Sumitomo Electric Ind Ltd 酸化物超電導線材の製造方法
WO2006082767A1 (ja) * 2005-02-02 2006-08-10 Sumitomo Electric Industries, Ltd. 酸化物超電導体の原料の製造方法、酸化物超電導線材の製造方法、および超電導機器
US7514388B2 (en) 2005-02-02 2009-04-07 Sumitomo Electric Industries, Ltd. Method of producing a material of oxide superconductor, method of producing an oxide superconducting wire, and superconducting apparatus
CN1956926B (zh) * 2005-02-02 2011-06-15 住友电气工业株式会社 氧化物超导体原料的制造方法、氧化物超导线材的制造方法及超导装置
WO2006115007A1 (ja) * 2005-04-21 2006-11-02 Sumitomo Electric Industries, Ltd. 超電導線材の検査装置および検査方法
US7755749B2 (en) 2005-04-21 2010-07-13 Sumitomo Electric Industries, Ltd. Superconducting wire inspection apparatus and method
CN101163961B (zh) * 2005-04-21 2011-07-27 住友电气工业株式会社 超导导线检测装置及其方法

Also Published As

Publication number Publication date
KR100900417B1 (ko) 2009-06-01
KR20050004224A (ko) 2005-01-12
EP1508904B1 (en) 2012-06-13
US6993823B2 (en) 2006-02-07
EP1508904A1 (en) 2005-02-23
AU2003242406A2 (en) 2003-12-12
JPWO2003100795A1 (ja) 2005-09-29
JP4513567B2 (ja) 2010-07-28
AU2003242406B2 (en) 2007-09-13
HK1073385A1 (en) 2005-09-30
WO2003100795A8 (en) 2004-05-27
US20040237294A1 (en) 2004-12-02
EP1508904A4 (en) 2010-03-03
AU2003242406A1 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
EP1667173B1 (en) Method of suppressing ballooning of an oxide superconducting wire upon temperature increase
US6632776B2 (en) Method of preparing oxide superconducting wire and pressure heat treatment apparatus employed for the method
WO2003100795A1 (en) Oxide superconducting wire producing method
RU2316837C2 (ru) Способ изготовления сверхпроводящего провода, способ модифицирования оксидного сверхпроводящего провода и оксидный сверхпроводящий провод
JP2006228665A (ja) 酸化物超電導線材およびその製造方法ならびに超電導機器
AU2006223967A1 (en) Process for producing superconducting wire rod
TW200407915A (en) Manufacturing method for oxide super conductivity wire
AU2004275126B2 (en) Superconducting device and superconducting cable
JP2002175732A (ja) 酸化物超電導線材およびその使用方法
Beilin et al. The blistering phenomenon in BiSCCO-2223 high-superconducting tapes
JP2004186025A (ja) 超電導線材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004508357

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10487354

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003242406

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003730593

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 49/2003 UNDER (30) REPLACE "2003-02449" BY "PCT/JP2003/002449"

WWE Wipo information: entry into national phase

Ref document number: 20038018012

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047019038

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047019038

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003730593

Country of ref document: EP