JPH07232960A - 酸化物超電導体の製造方法 - Google Patents

酸化物超電導体の製造方法

Info

Publication number
JPH07232960A
JPH07232960A JP6022255A JP2225594A JPH07232960A JP H07232960 A JPH07232960 A JP H07232960A JP 6022255 A JP6022255 A JP 6022255A JP 2225594 A JP2225594 A JP 2225594A JP H07232960 A JPH07232960 A JP H07232960A
Authority
JP
Japan
Prior art keywords
oxide superconductor
sintered body
pressure
oxide
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6022255A
Other languages
English (en)
Inventor
Hiromi Fujioka
ひろみ 藤岡
Takayuki Inoue
貴之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6022255A priority Critical patent/JPH07232960A/ja
Publication of JPH07232960A publication Critical patent/JPH07232960A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【構成】酸化物超電導体を構成する元素の酸化物あるい
は酸化物形成可能な化合物からなる混合物を成形する
か、あるいは該混合物を仮焼後成形する工程と、該成形
体を酸化性雰囲気中で焼成する工程と、該焼結体を80
0〜860℃の加熱状態で50kg/cm2 以上の圧力
を付与及び圧力解除を繰り返す工程とを具備する。 【効果】焼結体で結晶粒子の配向度を高めるとともに高
密度化が達成でき、臨界電流密度が高い酸化物超電導体
を安定して得ることができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に関し、詳細には、高密度で且つ高配向の酸化物超
電導体の組織的な均質性を向上させるための製造方法に
関する。
【0002】
【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体よりも高い臨界温度Tc(抵抗がゼ
ロになる温度)を有する材料として酸化物超電導体が発
見され、その実用化が期待されている。
【0003】現在、酸化物超電導体としては、主として
Y−Ba−Cu−O系(以下、Y系という)およびBi
−Sr−Ca−Cu−O系(以下、Bi系という)およ
びTl−Ba−Ca−Cu−O系(以下、Tl系とい
う)の3種が主として知られている。これらの酸化物超
電導体は、その実用化に際しては高い臨界温度を有する
とともに臨界電流密度(抵抗ゼロにおける電流値)が大
きいことが必要とされている。このような特性を得ため
にはその相対密度を高めると共に高配向化することが最
も重要であると言われている。
【0004】そこで、従来より高密度の酸化物超電導体
を作製する方法として、従来より高い機械的な圧力を加
えつつ加熱するホットプレス法が採用されている。
【0005】
【発明が解決しようとする問題点】しかしながら、ホッ
トプレス法については結晶粒子の配向性が不十分である
ために得られる焼結体の臨界電流密度もせいぜい300
0A/cm2 以下であり、実用的レベルには到底達して
いないのが現状であった。
【0006】そこで、本発明者等は先に低Tc相の仮焼
粉末を常圧で焼成して充分に高Tc相を生成した後、該
焼結体に圧力を加えつつ加熱処理を行う、いわゆるホッ
トフォージング処理を行うことによって、高配向、高密
度でJc値が4500A/cm2 程度の優れた酸化物超
電導体が得られることを提案した。しかしながら、かか
る方法によれば、加圧時に超電導体中にクラックが生じ
るために得られた構造体が不均一な組織になりかつ超電
導特性も部分的に不均質になるという問題があった。
【0007】
【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、先に提案した方法をさ
らに改良し、前記の構成においてホットフォージング処
理を行うに際し、800〜860℃で加熱した状態で5
0kg/cm2 以上の圧力を付与及び圧力解除を繰り返
すことにより、加圧により酸化物超電導体中に生じたク
ラックを焼結により消失させることができ均質な組織を
有し、かつ均質な高い超電導特性が得られることを知見
した。
【0008】即ち、本発明の酸化物超電導体の製造方法
は、酸化物超電導体を構成する元素の酸化物あるいは酸
化物形成化合物からなる混合体を成形するか、あるいは
該混合体を仮焼した後に成形し、該成形体を一旦酸化性
雰囲気中で焼成した後に、800〜860℃の加熱状態
で50kg/cm2 以上の加圧及び圧力解除を繰り返す
ことを特徴とするものである。
【0009】以下、本発明を詳述する。本発明の製造方
法によれば、まず酸化物超電導体を構成する金属の酸化
物粉末あるいは焼成により酸化物を形成しうる炭酸塩や
硝酸塩粉末を用い、酸化物超電導体を形成する割合に秤
量混合する。
【0010】具体的には前述したBi系酸化物超電導体
のうち高Tc相を作成する場合には、Bi2 3 、Sr
O、CaCO3 、CuOの各粉末を用いてこれらを原子
比においてSrを2としたとき、Biが1.8〜2.
2、Caが2.0〜3.5、Cuが3.0〜4.5の範
囲になるように秤量する。また、高Tc相の生成量を増
加させることを目的として上記の混合体にさらにPbO
粉末、およびK2 CO3、Na2 CO3 、Li2 CO2
等をSrを2としてPbを0.1〜0.5、K、Li、
Naを0.05〜0.6の割合で混合することができ
る。得られた混合物は所望により700〜850℃の酸
化性雰囲気中で1〜20時間程度仮焼した後に成形す
る。
【0011】成形は公知の成形手段によって行うことが
でき、例えばプレス成形、押出し成形、ドクターブレー
ド成形法等により実施される。
【0012】次に、上記のようにして得られた成形体を
840〜855℃の酸化性雰囲気中で焼成する。この焼
成によって一旦低Tc相の燐片状の結晶が生成されると
ともに焼成が進行するに従い、低Tc相から高Tc相に
変換される。
【0013】この焼成を非加圧で行うと燐片状の結晶の
成長により低密度の焼結体となるため、ホットプレス焼
成で行ってもよい。上記焼成工程終了時点では、焼結体
の燐片状結晶はほとんど無配向状態である。
【0014】次に、上記の酸化物超電導焼結体をホット
フォージング処理する。この処理方法を図1を用いて説
明する。図中、1は酸化物超電導体焼結体、2,3はプ
レスパンチである。本発明によれば、酸化物超電導体焼
結体1を適当な加熱手段(図示せず)によって加熱しな
がらプレスパンチ2,3によってA方向に圧力を付与し
た後、圧力を解除し,再度圧力を付与しこれを複数回繰
り返す。この時の圧力は50kg/cm2 以上、1回の
加圧時間は1〜3600秒、加熱温度は800〜860
℃が適当である。また圧力解除状態での加熱時間は1〜
3600秒が適当である。尚、繰り返し回数は1〜50
0回程度がよい。
【0015】本発明において加熱温度を800〜860
℃に限定したのは800℃より低いと、焼結が進まず超
電導体が破断された状態になる為であり、860℃を越
えると、溶融が起こり超電導相が分解するためである。
尚、820〜850℃が好適である。
【0016】また、圧力は50kg/cm2 より低い
と、得られる超電導体の密度及び配向度が低く、超電導
特性も低くなる。尚、100〜1000kg/cm2
好適である。
【0017】更に、一回の加圧時間を3600秒以内に
限定したのは、3600秒より長く加圧するとクラック
が大きくなり焼結によってクラックを消失させることが
困難となる場合があるためである。また、加圧時に比べ
圧力解除時の温度は1〜20℃程度高くすることも出来
る。
【0018】このホットフォージング処理により、酸化
物超電導体焼結体は均一な高密度と配向度を有する組織
体となる。
【0019】また、このホットフォージング処理によれ
ば、図1において、酸化物超電導体1とプレスパンチ
2,3との間にAl2 3 、ZrO2 などの酸化物系セ
ラミック粉末またはそれらの焼結体Ag、Au、Cu、
Pt等の延性のある 金属からなる厚さ0.05mm以
上の金属板を介在して処理を行うことも強度や配向度を
高める上で望ましい。
【0020】
【作用】本発明の構成によれば、焼成によって得た酸化
物超電導焼結体をホットフォージング処理中に加圧及び
圧力解除を繰り返すことが最も重要である。このような
処理を施すと、加圧時に酸化物超電導体中に生じたクラ
ックが圧力解除時に焼結により消失することによって加
圧時のクラックが解消されるためホットフォ−ジング処
理により得られる酸化物超電導焼結体の組織的な均質性
を飛躍的に向上させることができる。
【0021】また、超電導焼結体とプレスパンチの間に
延性金属を介在させると、延性金属自身が加圧方向と直
角な方向に圧延され、それと同時に焼結体も同様な方向
に圧延されるために焼結体中の燐片状結晶粒子が配向さ
れるとともに圧縮され焼結体の密度を高くすることがで
きる。この時、加圧により生じた金属中の転位が圧力解
除時に消失するために再度加圧する時に加圧状態で保持
した場合よりも容易に圧延される。それにより、燐片状
結晶同士の密着性が飛躍的に向上するため に酸化物超
電導体の臨界電流密度をさらに高くすることができる。
【0022】また、ホットフォージング処理時に、加圧
時の温度に比べ圧力解除時の温度を高くすると加圧によ
り110K相の生成温度領域が低くなり、高温超電導焼
結体を得ることができる。
【0023】
【実施例】
実施例1 原料粉末としてBi2 3 、PbO、SrCO3 、Ca
CO3 、CuOの各粉末を各金属のモル比がBi:P
b:Sr:Ca:Cu=1.93:0.36:2:3.
17:4.25となるように秤量後、750〜810℃
で20時間仮焼し、粉砕して平均粒径5μm の低Tc相
を多量に含む仮焼粉末を得た。この仮焼粉末をφ60m
mの金型を用いて成形圧0.5ton/cm2 で成形し
て厚み約2mmの円板状成形体を得た。
【0024】次に、上記成形体を大気中で840℃の温
度で150時間焼成したところ、比重2.0(アルキメ
デス法に基づく)の焼結体が得られた。また、組織観察
したところ、高Tc相の燐片状の結晶がランダムに配列
していた。
【0025】次に、酸化物超電導体焼結体を図1に従
い、焼結体の上下面にアルミナ質焼結体製の厚み0.5
mmのプレートを配置し、このプレートを介して焼結体
に対して830℃の温度で5ton/cm2 の圧力で加
圧時間5分、圧力解除時間5分を1回として、繰り返し
回数120回でホットフォージング処理した。このよう
にして得られた焼結体を試料No,1とした。
【0026】最終的に得られた焼結体に対してアルキメ
デス法により比重を調べるとともにX線回折測定を行
い、X線回折のチャートデータに基づき、下記数1から
(001)面の配向度fを求めた。
【0027】
【数1】
【0028】さらに、上記焼結体について、抵抗法に基
づき、試料を液体窒素中で電流を徐々に高め、高圧端子
に1μV/cmの電圧が生じた時の電流値を臨界電流密
度Jcとして求め、同時に臨界温度Tcも測定した。結
果は表1に示した。
【0029】また、試料の超電導特性の均質性を調べる
ために、上記焼結体について、試料を液体窒素中で片面
から磁場を印加し反対側の面で検出される磁場(磁気シ
−ルド特性)を測定し、検出される磁場が5ガウスを越
える印加磁場値(Bsh)を測定するとともに試料面で
のシールド特性の分布を測定し、その結果を図2に示し
た。
【0030】実施例2 実施例1において、ホットフォージング処理を、酸化物
超電導体と酸化物セラミックス焼結体との間に銀製の厚
み0.1mmのプレートを配置する以外は、実施例1と
全く同様にして焼結体試料No,2を作製し、同様に特性
の評価を行った。結果は表1、図3に示した。
【0031】比較例1 実施例2において、ホットフォージング処理の加圧条件
を5ton/cm2 の圧力で10時間とする以外は、実
施例1と全く同様にして焼結体試料No,3を作製し、同
様に特性の評価を行った。結果は表1、図4に示した。
【0032】実施例3 実施例1において、ホットフォージング処理時に、酸化
物超電導体と酸化物セミックス焼結体との間に銀製の厚
み0.1mmのプレートを配置し、ホットフォージング
処理の加圧条件を830℃の温度で5ton/cm2
圧力で加圧時間5分、840℃の温度で圧力解除時間5
分を1回とし、繰り返し回数120回でホットフォージ
ング処理とする以外は、実施例1と全く同様にして焼結
体(試料No,4)を作製し、同様に特性の評価を行っ
た。結果は表1、図5に示した。
【0033】
【表1】
【0034】表1及び図2〜5から明らかなように、加
圧及び圧力解除を繰り返した実施例1は、加圧状態のみ
で保持した比較例1に比べ、磁気シ−ルド特性にばらつ
きがなく、超電導特性が試料内で均一であることがわか
る。また、ホットフォージング処理に際して延性金属を
焼結体と酸化物系セラミックスの間に介在させた実施例
2は配向度、Jc値、Tc値のいずれにおいても、実施
例1よりもさらに優れた酸化物超電導体を得ることがで
きた。さらに、圧力解除時の温度を10℃高くした実施
例3は配向度、Jc値、Tc値のいずれにおいても、実
施例2よりもさらに優れたものであった。
【0035】
【発明の効果】以上、詳述した通り、本発明の方法によ
れば、焼結体の結晶粒子の配向度を高めるとともに高密
度化が達成できるために高臨界温度を有し且つ臨界電流
密度が極めて高い酸化物超電導体を安定して得るととも
に均質な組織および超伝導特性を有する構造体を得るこ
とができる。
【0036】このように、試料全体が均一に臨界電流密
度の高い酸化物超電導体が得られることにより優れた磁
気シールド特性を示し、磁気シールド体をはじめとする
各種の酸化物超電導体の実用化を進めることができる。
【図面の簡単な説明】
【図1】本発明の酸化物超電導体の製造方法におけるホ
ットフォージング処理を説明するための図である。
【図2】本発明の実施例1の酸化物超電導体の磁気シ−
ルド特性の分布状態を表すための図である。
【図3】本発明の実施例2の酸化物超電導体の磁気シ−
ルド特性の分布状態を表すための図である。
【図4】比較例1の酸化物超電導体の磁気シ−ルド特性
の分布状態を表すための図である。
【図5】本発明の実施例3の酸化物超電導体の磁気シ−
ルド特性の分布状態を表すための図である。
【符号の説明】
1・・・酸化物超電導焼結体 2,3・プレスパンチ

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】酸化物超電導体を構成する元素の酸化物あ
    るいは酸化物形成可能な化合物からなる混合物を成形す
    るか、あるいは該混合物を仮焼後成形する工程と、該成
    形体を酸化性雰囲気中で焼成する工程と、該焼結体を8
    00〜860℃の加熱状態で50kg/cm2 以上の圧
    力を付与及び圧力解除を繰り返す工程とを具備する酸化
    物超電導体の製造方法。
JP6022255A 1994-02-21 1994-02-21 酸化物超電導体の製造方法 Pending JPH07232960A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6022255A JPH07232960A (ja) 1994-02-21 1994-02-21 酸化物超電導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6022255A JPH07232960A (ja) 1994-02-21 1994-02-21 酸化物超電導体の製造方法

Publications (1)

Publication Number Publication Date
JPH07232960A true JPH07232960A (ja) 1995-09-05

Family

ID=12077676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022255A Pending JPH07232960A (ja) 1994-02-21 1994-02-21 酸化物超電導体の製造方法

Country Status (1)

Country Link
JP (1) JPH07232960A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100795A1 (en) * 2002-05-24 2003-12-04 Sumitomo Electric Industries, Ltd. Oxide superconducting wire producing method
WO2005022563A1 (ja) * 2003-08-28 2005-03-10 Sumitomo Electric Industries, Ltd. 酸化物超電導線材の製造方法、酸化物超電導線材の改質方法、および酸化物超電導線材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100795A1 (en) * 2002-05-24 2003-12-04 Sumitomo Electric Industries, Ltd. Oxide superconducting wire producing method
US6993823B2 (en) 2002-05-24 2006-02-07 Sumitomo Electric Industries, Ltd. Method of manufacturing oxide superconducting wire
WO2005022563A1 (ja) * 2003-08-28 2005-03-10 Sumitomo Electric Industries, Ltd. 酸化物超電導線材の製造方法、酸化物超電導線材の改質方法、および酸化物超電導線材

Similar Documents

Publication Publication Date Title
KR970007765B1 (ko) 초전도 산화물 와이어 및 그 제조 방법
JPH07232960A (ja) 酸化物超電導体の製造方法
JP2969220B2 (ja) 酸化物超電導体の製造方法
JPH03159954A (ja) 改良された物理特性及び超伝導性を有する製品の製造法
JP3314102B2 (ja) 酸化物超電導体の製造方法
Nellis et al. Novel Preparation Methods for High TcOxide Superconductors
JP3164640B2 (ja) 酸化物超電導体の製造方法
JP2969221B2 (ja) 酸化物超電導体の製造方法
JP3285646B2 (ja) 酸化物超電導構造体の製造方法
JP3187089B2 (ja) 酸化物超電導構造体
JP2866503B2 (ja) 酸化物超電導構造体の製造方法
JP3285636B2 (ja) 酸化物超電導体の製造方法
JP3568657B2 (ja) 酸化物超電導体の製造法
EP0500966B1 (en) Oxide superconductor and method of manufacturing said superconductor
JPH06263520A (ja) 酸化物超電導体の製造方法
JP2838129B2 (ja) 超伝導セラミックスの製造方法
JP2803823B2 (ja) T1系酸化物超電導体の製造方法
JPH01160876A (ja) 超電導体部品の製造方法
JP2866484B2 (ja) 酸化物超電導体の製法
JPH08181487A (ja) 磁気シールド体の製造方法
JP2590157B2 (ja) 超電導体線材の製造方法
JPH07242424A (ja) 酸化物超電導構造体およびその製造方法
JP2922740B2 (ja) 酸化物超電導磁気シールド体
JPH07291631A (ja) 酸化物超電導体の製造方法
Balachandran et al. Processing Y-and Bi-based superconductors