WO2003100357A1 - Debitmetre a ultrasons et procede de mesure du flux par ultrasons - Google Patents

Debitmetre a ultrasons et procede de mesure du flux par ultrasons Download PDF

Info

Publication number
WO2003100357A1
WO2003100357A1 PCT/JP2003/006421 JP0306421W WO03100357A1 WO 2003100357 A1 WO2003100357 A1 WO 2003100357A1 JP 0306421 W JP0306421 W JP 0306421W WO 03100357 A1 WO03100357 A1 WO 03100357A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
signal
velocity distribution
fluid
trigger
Prior art date
Application number
PCT/JP2003/006421
Other languages
English (en)
French (fr)
Inventor
Koichi Hishida
Yasushi Takeda
Michitsugu Mori
Original Assignee
Keio University
The Tokyo Electric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, The Tokyo Electric Power Company, Incorporated filed Critical Keio University
Priority to KR1020047018963A priority Critical patent/KR100772795B1/ko
Priority to CA2487317A priority patent/CA2487317C/en
Priority to US10/514,234 priority patent/US7289914B2/en
Priority to EP03730591A priority patent/EP1500910B1/en
Priority to AU2003242403A priority patent/AU2003242403A1/en
Publication of WO2003100357A1 publication Critical patent/WO2003100357A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/241Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic pulses, and more particularly to an ultrasonic flowmeter that can measure the flow rates of various fluids including a relatively clean fluid in a non-contact manner.
  • This Doppler type ultrasonic flow meter emits ultrasonic pulses from a trans-user to a measurement line in a fluid pipe, and an ultrasonic echo which is a reflected wave from suspended fine particles in a fluid flowing in the fluid pipe.
  • This device analyzes one signal and calculates the flow rate of fluid along the measurement line from the position and velocity of suspended particulates.
  • the measurement line is formed by the ultrasonic pulse beam emitted from the transuser.
  • the Doppler ultrasonic flow meter can be applied to opaque fluid and opaque fluid piping, can measure the fluid flowing in the fluid piping in a non-contact manner, and can measure the flow velocity distribution in the fluid piping by measuring the line along the measurement line. While it can measure the flow rate, it can also be applied to flow velocity distribution and flow rate measurement of opaque fluids, and has the advantage that it can be used for flow measurement of liquid metals such as mercury and sodium.
  • the temporal change of the fluid velocity distribution on the measurement line of the ultrasonic pulse emitted into the fluid from the transducer can be obtained, so that the transient flow and turbulent flow of the fluid flowing through the fluid piping can be obtained. It is expected to be applied to the measurement of the velocity distribution and flow rate of fluids in the field.
  • Conventional Doppler ultrasonic flowmeters process and analyze ultrasonic echo signals, which are reflected waves from ultrasonic reflectors, to determine the velocity distribution and flow velocity of fluids.
  • ultrasonic echo signals which are reflected waves from ultrasonic reflectors
  • the conventional Doppler ultrasonic flowmeter that repeatedly emits ultrasonic pulses has a low time resolution of at most 10 ms, so if there is a transient flow or turbulence in the fluid flow field flowing through the fluid piping, It has been difficult to accurately and accurately measure the flow rate of the fluid.
  • the present invention has been made in consideration of the above circumstances, and has an object to improve the time resolution and accurately and accurately measure the flow rate of a fluid even when a transient flow or a turbulent flow exists in a fluid pipe. It is an object of the present invention to provide an ultrasonic flowmeter capable of performing the above.
  • Another object of the present invention is to accumulate position / velocity data of an ultrasonic reflector even when the ultrasonic reflector is discontinuously and intermittently flowing on a measurement line of a fluid to be measured, and reduce the flow rate of the fluid.
  • An object of the present invention is to provide an ultrasonic flowmeter capable of measuring accurately.
  • an ultrasonic flowmeter provides a trigger oscillating unit that outputs a trigger signal, and an ultrasonic oscillating device that uses a trigger signal from the trigger oscillating unit.
  • a pulser receiver that outputs a pulse oscillation signal
  • a transgeuser that oscillates an ultrasonic pulse toward a measurement line in a fluid by an ultrasonic pulse oscillation signal from the pulser receiver, and a pulse that is emitted from the transgeuser.
  • Signal processing means for reflecting the ultrasonic pulse to an ultrasonic reflector suspended in a fluid, receiving an ultrasonic echo signal as the reflected wave, and processing the received ultrasonic echo signal; and Signal analyzing means for analyzing the ultrasonic echo signal processed by the signal processing means to determine the position and velocity of the ultrasonic reflector along the measurement line;
  • the rigger oscillating means controls the signal transmission / reception timing between the pulser receiver and the AD converter, and is adjusted and set so that ultrasonic pulse oscillation and ultrasonic echo signal reception are repeated several times and then a certain waiting time is provided. It is characterized by the following.
  • an ultrasonic flowmeter is characterized in that As described above, the signal processing means transmits an ultrasonic echo signal, which is a reflected wave of an ultrasonic pulse, from a transducer, and generates an ultrasonic wave in a frequency band corresponding to an ultrasonic oscillation frequency from the transducer.
  • a pulser receiver having a filtering processing unit for selecting an echo signal; and an AD converter for AD converting the ultrasonic echo signal from the pulser receiver, wherein the signal analyzing means is digitized.
  • a phase difference obtained by taking a cross-correlation between ultrasonic echo signals is obtained, a velocity distribution of the ultrasonic reflector is calculated, and a flow velocity distribution of a fluid in which the ultrasonic reflector is suspended is calculated. And a flow rate calculating means for calculating a flow rate of the fluid whose flow velocity distribution has been calculated.
  • an ultrasonic flowmeter is configured such that, as set forth in claim 3, the signal analyzing means calculates a cross-correlation between the digitized ultrasonic echo signals. And analyzing the signal phase difference, calculating the velocity distribution of the ultrasonic reflector, and calculating the flow velocity distribution of the fluid in which the ultrasonic reflector is suspended.
  • an ultrasonic flowmeter is configured such that, as set forth in claim 4, the signal analyzing means includes a digital signal processor for distinguishing between reflected waves and noise.
  • a threshold value is set for the amplitude of the converted ultrasonic echo signal, an ultrasonic echo signal having an amplitude exceeding the threshold value is selected as the reflected wave, a cross-correlation is calculated for the selected ultrasonic echo signals, and
  • a threshold value is set for the correlation value for which the cross-correlation was calculated, and when the correlation value exceeds the threshold value, the same ultrasonic reflector And determining a phase difference by calculating the velocity distribution of the ultrasonic reflector from the obtained phase difference.
  • the signal analyzing means includes a signal processing means for distinguishing a reflected wave from noise.
  • a threshold value is set for the amplitude of the digitized ultrasonic echo signal and the correlation value obtained by calculating the cross-correlation between the ultrasonic echo signals for the purpose of identifying the reflected wave from the same ultrasonic reflector in the fluid. It is characterized by comprising a flow velocity distribution calculating means and a flow rate measuring means for setting and varying this threshold value and for obtaining an optimized velocity distribution depending on the number of ultrasonic reflectors in the fluid to be measured.
  • an ultrasonic flowmeter is configured such that, as described in claim 6, the signal analyzing unit uses an ultrasonic wave to set a sampling time interval of a reflected wave.
  • the discrete cross-correlation function with To preserve the shape of the pulse reflected wave using these ultrasonic waves, to reduce the interval of the discrete interval ⁇ 7, to calculate the flow velocity distribution to find the cross-correlation function with a more finely divided mesh using sine wave approximation Means and a flow rate measuring means.
  • an ultrasonic flowmeter is configured such that, as described in claim 7, the pulser receiver includes a trigger arm for inputting a trigger signal and an ultrasonic pulse oscillation signal. Digital trigger processing is performed to correct the signal transmission time by cross-correlating the variation between the signal transmission time and the signal transmission time to output the ultrasonic wave echo signal of the reflected wave from the emission area.
  • the trigger oscillating means is configured such that after the ultrasonic pulse oscillation and the ultrasonic echo signal are repeated a plurality of times,
  • the feature is that a certain waiting time is set to improve the time resolution.
  • the ultrasonic flowmeter according to the present invention by changing the number of pulses and the waiting time of the trigger signal oscillated by the trigger oscillation means,
  • the method is characterized in that the flow velocity distribution of a fluid is measured by one of three types of fluid flow velocity distribution measurement methods, namely, the continuous pulse method, the two-pulse pulse method, and the three-pulse pulse method.
  • an ultrasonic flowmeter is configured such that, as described in claim 10, the trigger oscillating means oscillates an external trigger, and transmits the external trigger to a pulsar receiver. And controlling the timing of signal transmission and reception between the pulsar receiver and the AD converter by outputting the signal to the AD converter.
  • An ultrasonic flow rate measuring method in order to solve the above-mentioned problems, as described in claim 11, a trigger signal oscillating procedure for oscillating a trigger signal, and transmitting an ultrasonic pulse to a fluid to be measured.
  • Procedure for transmitting an ultrasonic pulse to make it incident an ultrasonic echo signal acquisition procedure for converting a received reflected wave into an electric signal and acquiring an ultrasonic echo signal, and a signal processing for signal processing of an ultrasonic echo signal It is characterized by comprising a procedure, a signal analysis for analyzing an ultrasonic echo signal, and a display procedure for selectively displaying at least one of a flow velocity distribution and a flow rate measurement result.
  • an ultrasonic flow rate measuring method as described in claim 12, wherein the signal analyzing step includes: an individual ultrasonic reflection reflected in a fluid. Calculating a velocity distribution of the ultrasonic reflector from the position and velocity of the body; calculating a flow velocity distribution of the fluid; and calculating a flow rate of the fluid from the flow velocity distribution. And a calculation step.
  • an ultrasonic flow rate measuring method as described in claim 13, wherein the signal analyzing procedure comprises: an individual ultrasonic wave suspended in a fluid.
  • the method is characterized by comprising a flow velocity distribution calculating step of calculating a velocity distribution of the ultrasonic reflector from a position and a velocity of the reflector, and calculating a velocity distribution of the fluid.
  • the ultrasonic flow rate measuring method as described in claim 14, wherein the flow velocity distribution calculating step is an autonomous method for distinguishing between reflected waves and noise.
  • An ultrasonic echo signal having an amplitude exceeding a set threshold with respect to the amplitude of the digitized ultrasonic echo signal is selected as the reflected wave, a cross-correlation is calculated for the selected ultrasonic echo signals, and a fluid
  • the correlation value calculated from the threshold set for the correlation value exceeds the correlation value for the purpose of identifying the reflected wave from the same ultrasonic reflector inside, the reflected wave from the same ultrasonic reflector is
  • the method is characterized in that a phase difference is determined by making a determination, and a velocity distribution of the ultrasonic reflector is calculated.
  • the ultrasonic flow rate measuring method is a digital flow measuring method for distinguishing a reflected wave from a noise. Selecting an ultrasonic echo signal having an amplitude exceeding a threshold value set with respect to the amplitude of the converted ultrasonic echo signal as the reflected wave, and calculating a cross-correlation between the selected ultrasonic echo signals. It is characterized by.
  • the ultrasonic flow rate measuring method reflects a correlation value between the ultrasonic echo signals.
  • the cross-correlation function is calculated using a discrete cross-correlation function with a sampling interval of the wave.This cross-correlation function is used to preserve the shape of the pulse reflected wave using ultrasonic waves from the tracer particle group. In order to shorten the interval, it is characterized by using a mesh that is further subdivided using sine wave approximation.
  • an ultrasonic flow rate measuring method as described in claim 17, wherein the trigger oscillation procedure comprises an ultrasonic pulse oscillation and an ultrasonic echo signal. Is characterized by setting a fixed waiting time after a number of times have been repeated.
  • the ultrasonic flow rate measuring method is characterized in that, as set forth in claim 18, the trigger oscillation procedure oscillates an external trigger as the trigger signal.
  • an ultrasonic flow rate measuring method as described in claim 19, wherein the trigger oscillation procedure comprises a pulse of an oscillating trigger signal.
  • the method is characterized in that the continuous pulse method, the two-pulse method, and the three-pulse method are performed by changing the number and the waiting time.
  • FIG. 1 schematically shows an embodiment of an ultrasonic flowmeter according to the present invention, and is a diagram showing an example applied to an experimental facility.
  • FIG. 2 (A) is a cross-sectional plan view of a fluid pipe in which the ultrasonic flowmeter of FIG. 1 is installed
  • FIG. 2 (B) is a cross-sectional view showing a test area of FIG. 2 (A).
  • FIG. 3 shows a trigger oscillator, a pulser receiver, and an AD converter when a trigger signal is applied using a continuous pulse method (tri-pulse method) in the flow velocity distribution and flow rate measurement of the ultrasonic flow meter according to the present invention.
  • FIG. 4 is an explanatory diagram for explaining how to take a signal transfer timing between the two.
  • FIG. 4 is a view for explaining the flow velocity distribution and the principle of flow rate measurement in the ultrasonic flow meter according to the present invention, and explains the movement of tracer particles (ultrasonic reflectors) in a fluid pipe between two times.
  • tracer particles ultrasonic reflectors
  • FIG. 5 shows the variation of the signal transmission time between the trigger time of the trigger signal input to the pulser-receiver and the signal transmission time output from the pulser-receiver.
  • FIG. 9 is a probability density distribution shown in comparison with and without processing, and is an explanatory diagram for explaining a digital trigger effect.
  • FIG. 6 is an explanatory diagram illustrating an ultrasonic echo signal which is a reflected wave of an ultrasonic pulse oscillated from a transuser of the ultrasonic flowmeter according to the present invention.
  • FIG. 4 is an explanatory diagram showing the displacement of tracer particles and the amount of time change of reflected waves at + ⁇ ⁇ ⁇ ⁇ t. ,
  • Fig. 8 shows the ultrasonic flow meter according to the present invention, which compares the time lag between the reference wave and the search wave in measuring the flow velocity distribution and flow rate before and after the introduction of the emission trigger. It is explanatory drawing explaining the effect of introduction of a shout trigger.
  • FIG. 9 illustrates a method of applying a trigger signal used when measuring the flow velocity distribution or flow rate of a fluid by the ultrasonic flow meter according to the present invention, wherein (A) shows a conventional pulsed doubler method and (B) () Is an explanatory diagram of a trigger pulse interval in the continuous pulse method, (C) is a double pulse method, and (D) is a trigger oscillation interval in the tri-pulse method.
  • FIGS. 10 (A) and (B) are explanatory diagrams for explaining the movement state of the tracer particles on the ultrasonic beam from the transducer by the pulse Doppler method and the double pulse method.
  • FIG. 5 is a diagram showing an instantaneous velocity distribution of the ultrasonic flowmeter according to the present invention for five consecutive hours, when the time resolution is 500 s.
  • FIG. 13 is a diagram showing instantaneous velocities at one point near the center of a fluid pipe and near a wall using an ultrasonic flowmeter according to the present invention.
  • FIG. 1 shows a schematic configuration diagram of a measurement system schematically showing an embodiment of an ultrasonic flowmeter according to the present invention.
  • the ultrasonic flowmeter 10 is a personal computer as a computer (hereafter referred to as a computer).
  • 11 is a program for measuring fluid flow (hereafter referred to as a flow measurement PG, and the program is abbreviated as PG).
  • PG 13 By reading and executing PG 13, it controls the devices connected to the personal computer 11 and performs the arithmetic processing necessary for measuring the flow velocity distribution and flow rate of the fluid.
  • the equipment functions as an ultrasonic flowmeter.
  • the flow measurement PG 13 is a program that allows the personal computer 11 to execute arithmetic processing directly related to flow measurement.
  • the basic processing PG 13 is not directly related to flow measurement, but the measurement results are 11 Necessary for displaying on display means such as display This is a program that causes the personal computer 11 to execute necessary arithmetic processing, that is, the computer 11 to execute arithmetic processing incidental to flow rate measurement.
  • the flow measurement PG 12 and the basic processing PG 13 are stored in the personal computer 11, and the personal computer 11 can read out and execute the flow measurement PG 12 and the basic processing PG 13.
  • the ultrasonic flow meter 10 is connected to a personal computer 11, a trigger oscillator 14 as an emission trigger oscillator, and a connector cable 15 as a signal transmission line to the trigger oscillator 14.
  • Pulsar receiver 16 and an analog-to-digital (hereinafter, referred to as AD) converter AD converter 1 night, PC 11, trigger oscillator device 14, pulsar receiver 16 and AD converter 1 7 are connected via connector cables 18 respectively.
  • control PG that controls the trigger oscillator 14 connected to the personal computer 11, the pulser receiver 16 and the AD converter 17 is required.
  • this control PG is included in the basic processing PG 13 set in advance.
  • the trigger oscillator 14 of the ultrasonic flowmeter 10 generates a trigger signal, and transmits the generated trigger signal to the pulsar receiver 16 and the AD comparator 17 to generate a pulsar-receiver. Controls the signal transfer timing of 16 and AD converter 17.
  • the output waveform of the trigger signal can be arbitrarily set by controlling the trigger oscillator 14 by the personal computer 11 executing the preset basic process PG 13.
  • the pulser-receiver 16 is connected to the transformer user 20 via a connector cable 19 which is a signal transmission line, and receives a trigger signal (electric signal) transmitted from the trigger oscillator 14 via the connector cable 15. It functions as an ultrasonic pulse oscillation signal means that receives and generates an ultrasonic pulse oscillation signal (electric signal) and outputs it to the transducer 20.
  • the pulser-receiver 16 has a built-in digital synthesizer, can output ultrasonic pulse oscillation signals from 50 kHz to 2 OMHz, and is a trans-user with various oscillation frequency characteristics. 20 can be supported.
  • the transuser 20 connected to the pulsar receiver 16 converts the ultrasonic pulse oscillation signal output from the pulsar receiver 16 into an ultrasonic pulse, and converts the converted ultrasonic pulse into a measurement line. It functions as an ultrasonic pulse oscillator that transmits along the ML.
  • the transducer 20 is installed from the outside at a predetermined installation angle 0 to a fluid pipe 22 that guides the fluid 21 to be measured, which is the fluid to be measured, and has an acoustic impedance to the fluid pipe 22. In general, it is provided via an acoustic force bra 23 for matching.
  • the ultrasonic pulse launched from the transgene user 20 to the fluid 21 to be measured enters the fluid 21 flowing through the fluid pipe 22 and is reflected by the suspended (mixed) ultrasonic reflector. Is done.
  • the reflected wave generated by the reflection from the ultrasonic reflector returns to the transgeuser 20 and is received.
  • the transuser 20 also functions as an ultrasonic pulse receiving means and an ultrasonic echo signal generating means for converting the received reflected wave into an ultrasonic echo signal (electric signal) corresponding to the magnitude of the reflected wave.
  • the reflected wave of the ultrasonic pulse received by the transuser 20 is converted into an ultrasonic echo signal according to its magnitude. This ultrasonic echo signal is transmitted from the transducer 20 to the pulser receiver 16 subsequently.
  • the pulser-receiver 16 includes a filtering unit 25 that rejects a noise component superimposed on the ultrasonic echo signal.
  • This filtering processing unit 25 has a low-pass filter and a high-pass filter, or a band-pass filter, filters the ultrasonic echo signal that is a reflected wave, and executes the frequency of the ultrasonic pulse to be used. Extract only bands. By filtering the ultrasonic echo signal, the adverse effect on the measurement caused by noise is minimized. That is, the pulsar receiver 16 also functions as an ultrasonic echo signal receiving means for receiving an ultrasonic echo signal as a reflected wave of the ultrasonic pulse and a signal processing means for processing the ultrasonic echo signal.
  • the analog ultrasonic echo signal filtered by the pulsar receiver 16 is then sent to the AD converter 17, which converts the ultrasonic echo signal from the analog signal to a digital signal. Converted to a signal.
  • the A / D converter 17 digitally samples the ultrasonic echo signal as a reflected wave at a high speed to obtain digital data of the ultrasonic echo signal.
  • the digital data converted by the AD converter 17 is stored in the memory 26 built into the AD converter 17, and the data stored in the memory 26 can be read from the PC 11 and read out
  • the stored data can be stored in a recording medium capable of storing digital data, such as a hard disk built in the personal computer 11.
  • the resolution of the AD converter 17 is, for example, 8 bits and the sampling frequency can be up to 50 OMHz.
  • the AD converter 17 can convert an analog input signal into a digital output signal by reading and executing a control program for controlling the AD converter 17 by the personal computer 11, while the digital signal output Signal processing is started at the same time, and the speed distribution can be displayed in real time.
  • the filtering unit 25 and the AD converter 17 of the pulsar receiver 16 constitute signal processing means 27, and the signal processing means 27 is a signal of an ultrasonic echo signal which is a reflected wave of an ultrasonic pulse. Perform processing.
  • the signal-processed ultrasonic echo signal is subjected to signal analysis by flow velocity distribution calculating means 28 as signal analyzing means, and the position and velocity of the ultrasonic reflector or the ultrasonic reflector group are obtained.
  • the flow velocity distribution calculating means 28 calculates the position and velocity of the ultrasonic reflector or the ultrasonic reflector group, and calculates and calculates the flow velocity of the fluid 21 at the determined position in the fluid pipe 22 to obtain the fluid pipe.
  • the flow velocity distribution of the fluid 21 flowing inside 22 is measured.
  • the flow velocity distribution calculating means 28 is an arithmetic processing means built in the personal computer 11, and performs arithmetic processing on digital data read from the AD converter 17 to form an ultrasonic reflector or an ultrasonic wave. The position and speed of the reflector group can be obtained.
  • the flow velocity distribution data of the fluid 21 measured by the flow velocity distribution calculation means 28 is input to the flow rate calculation means 29 as signal analysis means.
  • the flow rate calculating means 29 is an arithmetic processing means built in the personal computer 11 like the flow velocity distribution calculating means 28, and the flow rate calculating means 29 calculates the flow rate by calculating the flow velocity distribution data of the fluid 21. Is calculated.
  • the calculated flow velocity distribution and flow rate are output and displayed on a display means such as a display of the personal computer 11.
  • the flow rate distribution calculating means 28 and the flow rate calculating means 29 used the arithmetic processing means built in the personal computer 11, the arithmetic processing may be performed by other arithmetic processing means such as a workstation or a main frame. I do not care.
  • the required performance processing function may be built in the memory 26 of the AD converter 17 and the flow velocity distribution calculating means 28 may be provided together with the memory 26.
  • the ultrasonic flowmeter 10 may be configured such that the personal computer 11 has only the flow velocity distribution calculating means 28 and calculates only the flow velocity distribution of the fluid. Furthermore, the ultrasonic flow meter 10 does not necessarily need to display both the flow velocity distribution and the flow measurement result as the final result to be displayed, and selects and displays at least one of the flow velocity distribution and the flow measurement result.
  • the flow velocity distribution calculating means 28 and the flow rate calculating means 29 may be configured.
  • the flow velocity distribution calculating means 28 may be configured to include a flow rate calculating means 29. That is, the flow velocity distribution detecting means 28 may be configured to be able to perform both the flow velocity distribution measurement and the flow rate measurement of the fluid.
  • the flow rate distribution of the fluid 21 such as the flow rate measurement PG 12 and the basic processing PG 13 and the PG necessary for the flow rate measurement are stored in the personal computer 11.
  • the data may be stored in an external device that can be read and executed by the personal computer 11.
  • the flow rate measurement PG 12 may be a flow rate distribution PG that executes up to the calculation of the flow velocity distribution, as long as the ultrasonic flow meter 10 functions as a flow velocity distribution meter that does not calculate the flow rate.
  • the trigger oscillator 14, pulser receiver 16 and AD comparator 17 are configured as one device independent of the personal computer 11, but they are not necessarily configured as one device independent of the personal computer 11. You don't have to.
  • the transuser 20 is mounted underwater at a required angle (installation angle) ⁇ with respect to the axial direction of the acrylic resin tube 22 a through which the fluid 21 to be measured, which is the fluid to be measured, flows.
  • the transducer 20 is attached to the fluid pipe 22 via the acoustic force bra 23, and the ultrasonic pulse oscillated from the transducer 20 is smoothly incident on the acryl resin pipe 22a. You will be guided as follows.
  • Reference numeral 31 denotes an overflow tank
  • reference numeral 32 denotes a flow contractor
  • reference numeral 33 denotes a fluid pipe installation container for installing an acrylic resin tube 22a in an experimental area in water. Water was used in this experimental facility as the fluid to be measured. Note that F shown in the figure represents the direction of water flow.
  • the ultrasonic flowmeter 10 performs signal processing using the cross-correlation method with the signal processing means 27, and obtains a fluid along the measurement line ML from at least two reflected waves obtained at a certain time interval.
  • the flow rate is measured using a method that derives the velocity distribution of the flow rate, and the time resolution can be dramatically improved compared to the conventional Doppler ultrasonic flow meter. You.
  • the procedure of the method of measuring the flow rate of the fluid performed by the ultrasonic flowmeter 10 includes a trigger signal oscillating procedure of oscillating a trigger signal, an ultrasonic pulse transmitting procedure of transmitting an ultrasonic pulse to the measurement target fluid 21 and injecting the same.
  • An ultrasonic echo signal acquisition procedure for converting a received reflected wave into an electric signal to acquire an ultrasonic echo signal, a signal processing procedure for processing the ultrasonic echo signal, and a signal analysis for analyzing the ultrasonic echo signal.
  • a display procedure for selectively displaying at least one of a flow velocity distribution and a flow rate measurement result.
  • the trigger oscillator 14 In the method of measuring the fluid flow rate performed by the ultrasonic flow meter 10, first, as a trigger signal oscillation procedure, the trigger oscillator 14 generates a trigger signal (electric signal), and the generated trigger signal is transmitted to the pulser receiver 16 and the AD. Output on 17th of July. After the trigger signal is input to the pulser receiver 16, the pulser receiver 16 performs an ultrasonic pulse oscillation signal generation process as an ultrasonic pulse transmission procedure, and the generated ultrasonic pulse oscillation signal is output to the pulser receiver 16. Sent from 16 to trans user 20.
  • the trans user 20 After receiving the ultrasonic pulse oscillation signal by the trans user 20, the trans user 20 performs an ultrasonic pulse oscillation process as an ultrasonic pulse investigation procedure, and converts the ultrasonic pulse oscillation signal to a required frequency, for example, 4 The signal is converted into a sine wave ultrasonic burst signal of MHz and the ultrasonic pulse is oscillated.
  • an ultrasonic pulse oscillating process is performed as an ultrasonic pulse transmitting procedure, and the oscillated ultrasonic pulse is transmitted from the trans user 20.
  • the transjeuser 20 enters an ultrasonic pulse beam (hereinafter, referred to as an ultrasonic beam) into the fluid pipe 22, and after the ultrasonic beam enters, bubbles and / or bubbles mixed in the fluid 21 to be measured.
  • An ultrasonic echo signal acquisition procedure for starting reception of a reflected wave from an ultrasonic reflector such as a particle particle and acquiring an ultrasonic echo signal corresponding to the magnitude of the received reflected wave is performed.
  • the ultrasonic echo signal of the reflected wave obtained in the ultrasonic echo signal acquisition procedure is returned to the pulsar receiver 16.
  • the reflected wave of the returned ultrasonic pulse is used as a signal processing procedure.
  • the filtered ultrasonic echo signal is output to the AD converter 17 I do.
  • the AD converter 17 performs digital sampling processing of the received ultrasonic echo signal after the filtering processing at a high speed, and performs AD conversion as a signal processing procedure.
  • the ultrasonic echo signal subjected to the filtering process and the AD conversion as a signal processing procedure is then subjected to signal analysis in a signal analysis procedure.
  • the signal analysis procedure includes calculating a velocity distribution of the ultrasonic reflector from the position and velocity of each ultrasonic reflector suspended in the fluid, and calculating a flow velocity distribution of the fluid 21. And a flow rate calculation step of calculating the flow rate of the fluid 21 from the flow velocity distribution.
  • one of the ultrasonic echo signals is converted by using a cross-correlation method that takes a cross-correlation between each of the digitized ultrasonic echo signals for a very short time, for example, every 1 S.
  • the position of the group of ultrasonic reflectors included in the above, and the same ultrasonic reflector as the individual ultrasonic reflector of the group of ultrasonic reflectors is detected from the other ultrasonic echo signal, and the detected individual ultrasonic reflections Find the displacement (phase difference) with respect to the body. Then, the velocity distribution of the ultrasonic reflector group suspended in the fluid is calculated from the time difference and the phase difference between the two signals.
  • the flow rate of the fluid is calculated from the flow velocity distribution calculated in the flow rate distribution calculation step, and the flow rate of the fluid is measured.
  • the flow rate of the fluid is obtained by integrating the flow velocity distribution of the fluid along the internal area of the acrylic resin tube 22a.
  • the velocity distribution along the measurement line ML of the fluid 21 flowing through the fluid pipe 22 (diameter line of the acrylic resin pipe 22a) is obtained. And the flow rate can be easily, accurately, and accurately obtained.
  • FIG. 3 is an explanatory diagram showing how to set the timing of signal transmission and reception among the trigger transmitting device 14, the pulser receiver 16 and the AD converter 17.
  • the timing of signal transmission and reception between the pulser receiver 16 and the AD converter 17 is performed by the trigger oscillator 14.
  • the way of setting the signal transmission / reception timing between the trigger transmission device 14, the pulser receiver 16 and the AD converter 17 is controlled as shown in FIG.
  • Trigger signal transmission, signal reception, and sampling are performed at short time intervals, and then a certain waiting time (Interval) is provided to make one cycle. Is controlled to be repeated.
  • the waiting time By setting the waiting time (Interval), the time resolution can be greatly improved.
  • the conventional ultrasonic flow meter obtains the movement amount of the tracer particles (ultrasonic reflector) 35 by analyzing the ultrasonic echo signal.
  • the input time (trigger time) of the trigger signal input to the receiver 16 and the signal transmission time of the ultrasonic echo signal as shown in FIG. Exists.
  • the range of the amount of movement that can be correctly obtained by the signal processing is limited, the inevitable error in the signal transmission time due to the hardware by the pulser receiver 16 causes a great problem in the measurement accuracy.
  • FIG. 5 is a probability density distribution diagram for explaining the variation in the signal transmission time of the ultrasonic burst signal when the digital trigger processing is not performed and when it is performed.
  • the time variation of the signal transmission time of the ultrasonic burst signal when the processing is performed is about 1/4 compared to the case where the digital trigger processing is not performed, and the highest probability is obtained when the time variation is 0. Density. Therefore, by correcting the time lag of the ultrasonic burst signal, a digital trigger effect appears, and the variation in signal transmission can be greatly reduced. Due to the effect of the digital trigger, fluid measurement accuracy can be improved.
  • a transducer 20 of an ultrasonic flowmeter 10 was set in an acryl resin tube 22a existing in water, and tracer particles 35 were suspended as an ultrasonic reflector.
  • the flow velocity distribution of the fluid when the water 21 as the fluid flows into the acryl resin tube 22a is measured.
  • an ultrasonic pulse is oscillated from the piezoelectric element of the Transgeuser 20, and the oscillated ultrasonic pulse is incident on water along the measurement line ML. Is reflected on the surface of the tracer particle 35, which is an ultrasonic reflector, and returns to the transgene user 20. Since this reflected wave occurs at various points in the flow field in the acrylic resin tube 22a, the reflected wave appears as shown in FIG.
  • the first ultrasonic burst signal (ultrasonic echo signal) a which is called an emission region, is a signal generated due to the remaining vibration of the piezoelectric element immediately after the ultrasonic oscillation.
  • the next ultrasonic burst signal b appears due to the upper part of the pipe, and is a signal resulting from the difference in acoustic impedance between the water 21 to be measured and the acrylic resin that is the material of the fluid pipe.
  • the ultrasonic burst signal c is due to the lower part of the tube and is the same as the signal b.
  • the signal d between the ultrasonic burst signals b and c is a signal containing the fluid flow velocity information in the acrylic resin tube 22a, and the peak laser beam 35 exists at the peak.
  • the position of the tracer particle 35 is obtained from the ultrasonic burst signal d which is a reflected wave. Assuming that the distance from the transuser 20 to the tracer particle 35 is x, the time from the generation of the ultrasonic pulse to the reception of the reflected wave, and the velocity of the ultrasonic wave is c,
  • the ultrasonic pulse is oscillated and the reflected wave is received again after a certain time interval ⁇ t, a similar reflected wave can be obtained.However, if the fluid 21 moves during the time interval ⁇ t, As shown in FIG. 7, the tracer particle 35 also moves and changes even during the time until the reflected wave is received.
  • ⁇ ⁇ is the movement amount of the tracer particles 35 at a certain time interval ⁇ t.
  • the flow velocity measurement of the fluid on the measurement line ML can be performed at the same time, and the flow velocity distribution of the fluid can be obtained.
  • the reflected wave from the tracer particles 35 which is an ultrasonic reflector, is obtained by setting the oscillation interval ⁇ 7 of the ultrasonic pulse to be sufficiently small with respect to the fluid velocity fluctuation scale, so that the time interval (oscillation interval) ⁇ t Almost saved between.
  • the pulser receiver 16 of the ultrasonic flow meter 10 shown in Fig. 1 converts the analog ultrasonic echo signal of the reflected wave into a digital signal by high-speed sampling at the AD Comparator 17 Calculates the cross-correlation function of two reflected waves (reference wave, which is the previous reflected wave, and search wave, which is the reflected wave after ⁇ t), obtained with the oscillation interval ⁇ t of the same ultrasonic wave in the fluid
  • a threshold value for the correlation value for the purpose of identifying the reflected wave from the body, it is determined whether or not the reflected wave is from the same tracer particle group based on the quantified numerical value. Can be.
  • Is the reference time delay, i is the reference.
  • the position in the search window, £ is the difference between the reference wave and the search window, and m is the period of the ultrasonic pulse.
  • the arrival time difference of the reflected wave due to the oscillation interval ⁇ t of the ultrasonic pulse necessary to obtain the flow velocity distribution speed of the fluid can be obtained by using the cross-correlation function of the digitally sampled reflected wave.
  • This cross-correlation function R ( ⁇ , r) is discrete with the sampling time interval of the reflected wave, and the shorter the interval of ⁇ t, the more the shape of the pulse reflected wave from the tracer particle group becomes Since it is stored, it is indispensable to use a method for finding the grid with a more subdivided mesh.
  • the maximum value P k of the discretely obtained correlation values is its maximum value of the correlation values before and after if it with P k one had P k + 1,
  • the signal processing is performed by performing complementation using this sine wave approximation, thereby greatly improving the speed resolution. It can be done.
  • the ultrasonic flow meter 10 In the measurement of the actual flow velocity distribution and flow rate by the ultrasonic flow meter 10, there is a possibility that erroneous position and velocity information of the tracer particles may be obtained when analyzing the reflected wave signal. To avoid this, the position and velocity information of the tracer particle is not erroneously obtained by using the threshold value of the amplitude / correlation value.
  • the setting of the threshold value of the amplitude and the correlation value of the reflected wave will be described.
  • One of the first ways to obtain the wrong position and velocity information of the tolaser particle is to convert the signal portion (invalid signal) where no reflection actually occurs from the reflected pulse of the ultrasonic pulse (effective signal) from the tracer particle. It is the case that it is caught as. This occurs because an invalid signal that does not include the position and velocity information of the tracer particle is regarded as a reflected wave (effective signal).
  • the amplitude of the signal portion (valid signal) including the position and velocity information of the tracer particles is larger than the amplitude of the signal portion (invalid signal) not including the position and velocity information of the tracer particles. Focusing on the tendency to increase, a threshold is set for the amplitude of the reflected wave (search wave). Then, only when the amplitude of the search wave is larger than the set threshold, the cross-correlation between the reference wave and the search wave is calculated. On the other hand, if the amplitude of the search wave is smaller than the set threshold, it is rejected as an invalid signal. Thus, the reflected wave By setting a threshold value for the amplitude of the search wave, a valid signal that contains the position and velocity information of the tracer particle is distinguished from an invalid signal that does not.
  • the next conceivable way to obtain the incorrect position and velocity information of the tolaser particle is to calculate the cross-correlation between the reference wave and the search wave, which is different from the reflected wave from the tracer particle group referred to in the reference wave. This is the case where the reflected wave from the group of laser particles is regarded as the reflected wave from the same group of laser particles.
  • a threshold value is set for a correlation value obtained by calculating a cross-correlation between the reference wave and the search wave.
  • the size of mu7 will be made sufficiently small.
  • the threshold value of the settable correlation value can be set closer to 1, and the same tracer included in the reference wave from the search wave
  • the reflected waves from the particle group can be extracted with higher accuracy.
  • a threshold value is set for the amplitude and the correlation value of such a reflected wave, and the ultrasonic flowmeter 10 that specifies the same tracer particle group as the tracer particle group included in the reference wave from the search wave is set. After determining the phase difference of the specified tolaser particle group using only the signal that satisfies the threshold value, the position and velocity of the tracer particle group are determined from the obtained phase difference, and the flow velocity distribution and The flow rate is being measured. In addition, the ultrasonic flow meter 10 sets a threshold value for the amplitude and the correlation value of the reflected wave according to the obtained reflected wave, and performs a signal analysis of the reflected wave (reference wave and search wave) to obtain a fluid flow. The flow velocity distribution and the reliability of flow measurement have been improved.
  • the ultrasonic flow meter 10 shown in FIG. 1 is a schematic diagram of the measurement system used in the experiment.
  • the control of the pulser receiver 16 used for reception of the sine wave ultrasonic pulse, the AD converter 17 for AD conversion of the ultrasonic echo signal, and the external trigger from the trigger oscillator 14 are performed. I'm sorry.
  • the external trigger is not a trigger signal oscillated by the CPU built in the personal computer 11, but a trigger signal oscillated by a part other than the CPU.
  • the trigger signal generated by the trigger oscillator 14 is referred to. If a trigger oscillation board as a trigger oscillation means is provided inside the personal computer 11 and the trigger oscillation board oscillates a trigger signal upon receiving a signal from the CPU, that is, Even when the trigger oscillator 14 as the oscillating means is provided inside the personal computer 11, the trigger signal oscillated from the trigger oscillating means becomes an external trigger.
  • the sampling frequency of AD converter 17 is set on the order of several hundred MHz.
  • Fig. 8 is an explanatory diagram comparing the time lag between the reference wave and the search wave when measuring the flow velocity distribution and flow rate using the ultrasonic flowmeter 10 before and after the introduction of the emission trigger. It is.
  • the continuous pulse method is a method of measuring the flow velocity distribution and flow rate of a fluid by transmitting the continuous pulses shown in Fig. 9 (B), and the number of pulse transmission (M) is M ⁇ 3. .
  • M the number of pulse transmission
  • the continuous pulse method greatly improves the time resolution as compared with the pulse Doppler method shown in FIG. 9 (A), and can measure a value with an extremely high time resolution of, for example, 150 s.
  • the double pulse method can measure the flow velocity distribution and flow rate of a fluid with a small number of tracer particles.
  • the installation angle of the transuser 20 to the fluid pipe 22 is represented by ⁇
  • the diameter of the transuser 20 (effective diameter) ) Is D is, in the pulsed Dobra method
  • the double-pulse method can measure up to a higher flow velocity region than the pulse Dobbler method. Furthermore, the double pulse method requires only one cross-correlation of the waveforms of the two reflected waves, so the amount of calculation is extremely small, and it is easier to display the flow velocity distribution and flow rate of the fluid in real time. is there.
  • the tripulse method is an evolution of the double pulse method. In principle, this is the same as the double pulse method.As shown in Fig. 10, a double velocity distribution can be obtained during the same cycle, and a double velocity distribution and flow rate measurement can be performed. .
  • This ultrasonic flowmeter 10 can improve the time resolution to 500 s or more and about 100 s, and even if a transient flow or a turbulent flow occurs in the fluid piping 22 due to the improvement in the time resolution. Also, even if the flow is discontinuous and intermittent, the flow rate of the fluid can be measured accurately and accurately.
  • the flow velocity of the fluid 21 theoretically depends on the measurement precision of ⁇ .
  • two reflected waves are digitally sampled and their cross-correlation is taken, so that the movement amount is an integer value. If the sampling time interval is t s amp , the measured result is ⁇ 0. There will be an error of about 5 t s amp .
  • the speed corresponding to the sampling time interval that is, the speed u s amp corresponding to the case where one is one sampling time interval, can be calculated by simply setting ⁇ to t s amp . That is, the speed resolution dv is
  • the ultrasonic flowmeter 10 measures the amount of signal movement between two times by using a cross-correlation method as the ultrasonic reflector 35 such as tracer particles mixed in the fluid moves. Measured by processing, the flow velocity distribution and flow rate of the fluid are measured.
  • the ultrasonic flowmeter 10 performs pulse oscillation and signal reception several times in succession as shown in FIG. 3 for a pulser receiver 16 and an AD converter 17 and thereafter, for a certain period of time.
  • the flow velocity distribution and the flow rate of the fluid are measured by the continuous gun pulse method, which constitutes one cycle with a waiting time.
  • the time resolution can be freely adjusted by setting the waiting time.
  • the wait time is set by the PC 11 executing the basic processing PG 13 and controlling the wait time input to the PC 11 or the wait time programmed in advance to trigger the trigger oscillator 14 Can be set freely.
  • the time resolution is set to about 500, which can be several tens times higher than the time resolution of the conventional ultrasonic flowmeter.
  • Fig. 11 shows the comparison between the average flow velocity distribution of the fluid measured using the ultrasonic flowmeter 10 and the average flow velocity distribution of the fluid measured using the LDV (Laser Doppler Velocimetry).
  • the transducer 20 of the ultrasonic flow meter 10 is connected to the fluid pipe 22.
  • the average flow velocity distribution 40 obtained by measuring at an angle to the time and taking the time average of 300 times, and this flow velocity distribution 40 agrees very well with the average velocity distribution 41 for LDV measurement. Data was obtained, and it was found that the flow rate could be measured with high accuracy.
  • FIG. 12 shows an instantaneous velocity distribution for five consecutive times when the time resolution is set to, for example, about 500 s in the ultrasonic flowmeter 10.
  • the five instantaneous velocity distribution curves shown in Fig. 12 are also close approximations, indicating that the fluid velocity distribution can be measured accurately and accurately.
  • FIG. 13 shows the instantaneous velocities of the acryl resin pipe 22a, which is the fluid pipe 22, at a point near the center of the pipe and at a point near the wall.
  • the acryl resin pipe 22a which is the fluid pipe 22
  • the flow velocity there is little variation in the flow velocity, and only fluctuations can be seen in the high frequency component.
  • there is a large variation in the flow velocity near the wall and it can be seen that there is a periodic wave in the fluid velocity.
  • the ultrasonic flowmeter according to the present invention can measure the flow rate of a liquid such as gas or water flowing in a fluid pipe or liquid metal in a non-contact manner, and is relatively clean which has been difficult to measure by a conventional pulsed Doppler method.
  • the flow velocity and flow rate of the fluid can be accurately and accurately determined by analyzing the digital flow rate of the fluid using the cross-correlation method employing the continuous pulse method. .
  • the ultrasonic flowmeter according to the present invention improves the time resolution, so that the fluid flow in the fluid piping when the fluid flows transiently or turbulently, or when the fluid flows discontinuously and intermittently, The flow rate can be measured accurately and accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Volume Flow (AREA)

Description

明 細 書 超音波流量計及び超音波流量計測方法 技術分野
本発明は、 超音波パルスの利用して流体の流量を測定する超音波流量計に係り、 特に、 比較的クリーンな流体を含む種々の流体の流量を非接触測定できる超音波流 量計に関する。 背景技術
超音波パルスのドッブラ効果を利用したドッブラ式超音波流量計として特鬨 2 0 0 0 - 9 7 7 4 2号公報に開示された技術がある。
このドヅブラ式超音波流量計は、 トランスジユーザから超音波パルスを流体配管 内の測定線に向けて発射し、 流体配管内を流れる流体内の懸濁微粒子からの反射波 である超音波ェコ一信号を解析して懸濁微粒子の位置と速度から測定線に沿う流体 の流量を求める装置である。 測定線はトランスジユーザから発射される超音波パル スのビームにより形成される。
ドッブラ式超音波流量計は、 不透明流体 ·不透明流体配管内に適応することがで き、 流体配管内を流れる流体を非接触測定でき、 測定線に沿う線測定で流体配管内 の流速分布や、 流量が測定できる一方、 不透明流体の流速分布や流量測定にも適用 でき、 水銀 ·ナトリウム等の液体金属の流動測定にも利用できる利点がある。
ドッブラ式超音波流量計では、 トランスジユーサから流体内に発射される超音波 パルスの測定線上における流体速度分布の経時変化が得られるので、 流体配管内を 流れる流体の過渡流れや乱流の場における流体の速度分布や流量計測への応用が期 待されている。
上述した超音波流量計の一例は、 特開 2 0 0 0— 9 7 7 4 2号公報に掲載されて いる。 (例えば、 特許文献 1参照) 。
[特許文献 1 ]
特鬨 2 0 0 0— 9 7 7 4 2号公報 (明細書段落番号 [ 0 0 1 5 ]〜[ 0 0 1 9 ], [ 0 0 2 6 ]〜!: 0 0 3 2 ], [ 0 0 7 8:!〜 [ 0 0 8 2 ] )
従来のドッブラ式超音波流量計では、 流体配管内を流れる測定対象流体に懸濁微 小粒子や気泡等の超音波反射体が多数存在し、 超音波反射体が連続的に測定線 (超 音波ビーム) 上に流れてくることが流体の流速分布に必要な測定条件である。 トラ ンスジユーザからの測定線上に、 超音波反射体が流体に混在して連続して流れてこ ないと、 流体の流速分布測定に欠陥が生じ、 流体の流速分布測定及び流量測定の精 度が低下する問題があった。
また、 従来のドッブラ式超音波流量計は、 超音波反射体からの反射波である超音 波エコー信号を信号処理して解析し、 流体の速度分布や流速を求めているが、 既存 のドッブラ式超音波流量計の信号処理法では、 ひとつの速度分布を得るために、 多 数の超音波パルスを繰り返し発射させなければならない。 超音波パルスを繰り返し 発射させる従来のドッブラ式超音波流量計では、 時間分解能が最高でも 1 0 m s程 度と低いために、 流体配管内を流れる流体流動場に過渡流れや乱流が存在すると、 流体の流量を正確に精度よく測定することが困難であった。
本発明は、 上述した事情を考慮してなされたもので、 時間分解能を向上させ、 流 体配管内に過渡流れや乱流が存在しても、 流体の流量を正確に精度よく測定するこ とができる超音波流量計を提供することにある。
本発明の別の目的は、 測定対象流体の測定線上に超音波反射体が不連続かつ間^ 的に流れてくる状態でも、 超音波反射体の位置 ·速度データを蓄積し、 流体の流量 を精度よく測定できる超音波流量計を提供することにある。 発明の鬨示
本発明に係る超音波流量計は、 上述した課題を解決するため、 請求項 1に記載し たように、 トリガ信号を出力するトリガ発振手段と、 このトリガ発振手段からのト リガ信号により超音波パルス発振信号を出力するパルサーレシーバと、 このパルサ 一レシーバからの超音波パルス発振信号により、 超音波パルスを流体内の測定線に 向けて発振させるトランスジユーザと、 このトランスジユーザから発射された超音 波パルスを流体内に懸濁する超音波反射体に反射させ、 その反射波である超音波ェ コー信号を受信し、 受信した超音波エコー信号を信号処理する信号処理手段と、 こ の信号処理手段で信号処理した超音波ェコ一信号を信号解析して、 前記測定線に沿 う超音波反射体の位置と速度を求める信号解析手段とを具備し、 前記トリガ発振手 段は、 パルサーレシーバと A Dコンバータ間の信号授受タイミングを制御し、 かつ 超音波パルス発振及び超音波エコー信号受信が複数回連続し、 その後一定の待ち時 間を備えるように調節設定したことを特徴とする。
また、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求項 2に 記載したように、 前記信号処理手段は、 超音波パルスの反射波である超音波エコー 信号がトランスジュ一ザから伝達され、 トランスジュ一ザからの超音波発振周波数 に応じた周波数帯の超音波ェコ一信号を選択するフィル夕リング処理部を有するパ ルサーレシーバと、 このパルサーレシーバからの超音波ェコ一信号を A D変換する A Dコンバータとを備え、 前記信号解析手段は、 デジタル化された超音波エコー信 号同士の相互相関をとつて得られる位相差を求め、 前記超音波反射体の速度分布を 算出して前記超音波反射体が懸濁される流体の流速分布を算出する流速分布算出手 段と、 流速分布を算出した流体の流量を算出する流量算出手段とを備えることを特 徴とする。
さらに、 上述した課題を解決するために、 本発明に係る超音波流量計は、 請求項 3に示したように、 前記信号解析手段は、 デジタル化された超音波エコー信号同士 の相互相関をとつて信号位相差を解析し、 前記超音波反射体の速度分布を算出して 前記超音波反射体が懸濁される流体の流速分布を算出する流速分布算出手段を備え ることを特徴とする。
上述した課題を解決するため、 本発明に係る超音波流量計は、 請求項 4に示した ように、 前記信号解析手段は、 反射波とノイズを区別する目的で前記信号処理手段 がデジ夕ル化した超音波ェコ一信号の振幅に閾値を設定し、 閾値を超えた振幅を有 する超音波エコー信号を前記反射波として選別し、 選別した超音波エコー信号同士 について相互相関を計算するとともに、 流体中の同一超音波反射体からの反射波で あることを識別する目的で、 相互相関を計算した相関値に閾値を設定し、 相関値が 閾値を超えた場合、 同一超音波反射体からの反射波と判断して位相差を求め、 求め た位相差から前記超音波反射体の速度分布を算出することを特徴とする。
また、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求項 5に 示したように、 前記信号解析手段は、 反射波とノイズを区別する目的で前記信号処 理手段がデジタル化した超音波エコー信号の振幅と、 流体内の同一超音波反射体か らの反射波であることを識別する目的で超音波エコー信号同士の相互相関を計算し た相関値とに閾値を設定し、 この閾値を可変させ、 被測定流体中の超音波反射体の 多少に応じて、 これらを最適化した速度分布を求める流速分布算出手段及び流量測 定手段を備えることを特徴とする。
さらに、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求項 6 に記載したように、 前記信号解析手段は、 超音波を利用して、 反射波のサンプリン グ時間間隔をもった、 離散的な相互相関関数をもとめ、 さらに、 トレーサ粒子群か らの超音波を利用したパルス反射波の形状を保存するため、 離散間隔△七の間隔を 短くすべく、 正弦波近似を利用してより細分割したメッシュで相互相関関数を求め る流速分布算出手段及び流量測定手段を備えたものである。
さらにまた、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求 項 7に記載したように、 前記パルサーレシーバは、 トリガ信号を入力するトリガ夕 ィムと超音波パルス発振信号を出力する信号発信時間との間のバラツキを、 ェミツ シヨンエリアからの反射波の超音波エコー信号同士に相互相関をかけて信号発信時 間を補正するデジタルトリガ処理を行なうことを特徴とする。
また、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求項 8に 記載したように、 前記トリガ発振手段は、 超音波パルス発振及び超音波エコー信号 が複数回連続した後、 一定の待ち時間を設定して時間分解能を向上させたことを特 徴とする。
さらに、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求項 9 に記載したように、 前記トリガ発振手段が発振するトリガ信号のパルス数及び待ち 時間を変化させることで、 連続パルス法、 2発信パルス法、 及び 3発信パルス法の 3種類の流体流速分布計測方法のいずれかにより流体の流速分布計測を行なうこと を特徴とする。
さらにまた、 上述した課題を解決するため、 本発明に係る超音波流量計は、 請求 項 1 0に記載したように、 前記トリガ発振手段は、 外部トリガを発振し、 この外部 トリガをパルサ一レシーバ及び A Dコンバータへ出力することで、 前記パルサーレ シーバ及び A Dコンバータの信号授受のタイミングを制御することを特徴とする。 本発明に係る超音波流量計測方法は、 上述した課題を解決するため、 請求項 1 1 に記載したように、 トリガ信号を発振するトリガ信号発振手順と、 測定対象流体に 超音波パルスを発信して入射させる超音波パルス発信手順と、 受信した反射波を電 気信号に変換して超音波エコー信号を取得する超音波エコー信号取得手順と、 超音 波ェコ一信号を信号処理する信号処理手順と、 超音波ェコ一信号の解析を行なう信 号解析と、 流速分布及び流量計測結果の少なくとも一方を選択表示する表示手順と を具備することを特徴とする。
また、 上述した課題を解決するため、 本発明に係る ·超音波流量計測方法は、 請求 項 1 2に記載したように、 前記信号解析手順は、 流体中に懸濁された個々の超音波 反射体の位置及び速度から前記超音波反射体の速度分布を算出し、 前記流体の流速 分布を算出する流速分布算出行程と、 流速分布から前記流体の流量を算出する流量 算出行程とを備えることを特徴とする。
さらに、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請 求項 1 3に記載したように、 前記信号解析手順は、 流体中に懸濁された個々の超音 波反射体の位置及び速度から前記超音波反射体の速度分布を算出し、 前記流体の流 速分布を算出する流速分布算出行程を備えることを特徴とする。
さらにまた、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請求項 1 4に記載したように、 前記流速分布算出行程は、 反射波とノイズを区別す る自的でデジタル化した超音波エコー信号の振幅に対して設定された閾値を超えた 振幅を有する超音波エコー信号を前記反射波として選別し、 選別した超音波エコー 信号同士について相互相関を計算するとともに、 流体中の同一超音波反射体からの 反射波であることを識別する目的で、 相関値に対して設定された閾値を計算した相 関値が超えた場合、 同一超音波反射体からの反射波と判断して位相差を求め、 前記 超音波反射体の速度分布を算出することを特徴とする。
また、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請求 項 1 5に記載したように、 前記流速分布算出行程は、 反射波とノイズを区別する目 的でデジ夕ル化した超音波ェコ一信号の振幅に対して設定された閾値を超えた振幅 を有する超音波エコー信号を前記反射波として選別し、 選別した超音波エコー信号 同士について相互相関を計算することを特徴とする。
さらに、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請 求項 1 6に記載したように、 前記流速分布算出行程は、 前記超音波エコー信号同士 の相関値を反射波のサンプリング時間間隔をもつ離散的な相互相関関数を用いて求 め、 この相互相関関数は、 トレーサ粒子群からの超音波を利用したパルス反射波の 形状を保存するため、 離散間隔△ tの間隔を短くすべく、 正弦波近似を利用してよ り細分割したメッシュを用いて求めることを特徴とする。
さらにまた、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請求項 1 7に記載したように、 前記トリガ発振手順は、 超音波パルス発振及び超音 波ェコ一信号が複数回連続した後、 一定の待ち時間を設定することを特徴とする。 また、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請求 項 1 8に記載したように、 前記トリガ発振手順は、 前記トリガ信号として外部トリ ガを発振することを特徴とする。
さらに、 上述した課題を解決するため、 本発明に係る超音波流量計測方法は、 請 求項 1 9に記載したように、 前記トリガ発振手順は、 発振するトリガ信号のパルス 数及び待ち時間を変化させて、 連続パルス法、 2発信パルス法、 及び 3発信パルス 法を行なうことを特徴とする。 図面の簡単な説明
第 1図は、 本発明に係る超音波流量計の一実施形態を概略的に示すもので、 実験 設備に適用した例を示す図である。
第 2図 (A ) は図 1の超音波流量計が設置される流体配管の平断面図、 第 2図 ( B ) は第 2図 (A ) の試験領域を示す断面図である。
第 3図は、 本発明に係る超音波流量計の流速分布及び流量計測において、 連続パ ルス法 (トライパルス法) を用いてトリガ信号をかけた場合におけるトリガ発振装 置、 パルサーレシーバ及び A Dコンバータ間の信号授受タイミングの取り方を説明 する説明図である。
第 4図は、 本発明に係る超音波流量計における流速分布及び流量計測の原理を説 明した図であり、 流体配管内における 2時刻間のトレーサ粒子 (超音波反射体) の 移動を説明する説明図である。
第 5図は、 パルサ一レシーバに入力される トリガ信号のトリガタイムとパルサ一 レシーバから出力される信号発信時間との間における信号発信時間のバラツキを信 号発信時間の時間ずれを補正 (デジタルトリガ処理) をした場合としない場合にお いて比較して表した確率密度分布であり、 デジタルトリガ効果を説明する説明図で ある。
第 6図は、 本発明に係る超音波流量計のトランスジユーザから発振される超音波 パルスの反射波である超音波ェコ一信号を説明する説明図である。
第 7図は、 本発明に係る超音波流量計における流速分布及び流量計測の原理を説 明した図であり、 t =七。及び t =七。 +△ tにおけるトレーサー粒子の変位及び反 射波の時間変化量を示した説明図である。 ,
第 8図は、 本発明に係る超音波流量計において、 流速分布及び流量計測の際の参 照波と探索波の時間ずれをエミッシヨントリガ導入前とエミッシヨントリガ導入後 とを比較してエミッシヨントリガ導入の効果を説明する説明図である。
第 9図は、 本発明に係る超音波流量計による流体の流速分布又は流量を計測する 際に用いるトリガ信号のかけ方を説明したものであり、 (A ) は従来のパルスドヅ ブラ法、 (B ) は連続パルス法、 (C ) はダブルパルス法、 (D ) はトライパルス 法におけるトリガ発振間隔の説明図である。 第 1 0図 (A ) 及び (B ) は、 トランスジュ一ザからの超音波ビーム上における トレ一サ粒子の移動状態をパルスドップラ法及びダブルパルス法について説明する 説明図である。
第 1 1図は、 本発明に係る超音波流量計による流体配管内の平均速度分布と L D V (Laser Doppler Velocimetry) の平均速度分布を比較して説明する説明図である c 第 1 2図は、 時間分解能を 5 0 0 sとしたとき、 本発明に係る超音波流量計の 5時刻連続の瞬間速度分布を示す図である。
第 1 3図は、 本発明に係る超音波流量計を用いて流体配管の管中央付近と壁近傍 の一点における瞬間速度を示す図である。
[符号の説明]
1 0…超音波流量計、 1 1…パソコン、 1 2…超音波流量計測 P G、 1 3…基本 処理 P G、 1 4…トリガ発振装置 (トリガ発振手段) 、 1 5, 1 8 , 1 9…コネク 夕ケーブル (信号伝送線) 、 1 6…パルサーレシーバ、 1 7〜A Dコンバータ、 2 0…トランスジユーザ、 2 1…測定対象流体 (被測定流体) 、 2 2…流体配管、 2 2 a…アクリル樹脂管、 2 3…音響力ブラ、 2 5…フィルタリング処理部、 2 6— メモリ、 2 7…信号処理手段、 2 8…流速分布算出手段、 2 9…流量算出手段、 3 5…トレーサ粒子 (超音波反射体) 、 3 6…超音波ビーム。 発明を実施するための最良の形態
本発明に係る超音波流量計の実施の形態について添付図面を参照し説明する。
[測定システム]
第 1図に、 本発明に係る超音波流量計の一実施形態を概略的に表した測定システ ムの構成概略図を示す。
超音波流量計 1 0は、 コンピュータとしてのパーソナルコンピュータ (以下、 Λ ソコンという。 ) 1 1が流体の流量計測用プログラム (以下、 流量計測 P Gとし、 プログラムを P Gと省略する) 1 2及び基本処理 P G 1 3を読み取り実行すること で、 パソコン 1 1と接続される各機器の制御及び流体の流速分布及び流量計測に必 要な演算処理を行ない、 パソコン 1 1及びパソコン 1 1と接続される各機器を超音 波流量計として機能させるものである。
流量計測 P G 1 2は、 流量計測に直接的に関わる演算処理をパソコン 1 1に実行 させるためのプログラムであり、 基本処理 P G 1 3は、 流量計測に直接的に関わら ないが、 計測結果をパソコン 1 1のディスプレイ等の表示手段に表示するために必 要な演算処理をパソコン 1 1に実行させる、 いわば流量計測に付随的な演算処理を パソコン 1 1に実行させるためのプログラムである。 流量計測 P G 1 2及び基本処 理 P G 1 3は、 パソコン 1 1に格納され、 パソコン 1 1は、 流量計測 P G 1 2及び 基本処理 P G 1 3を読み出し実行することができる。
超音波流量計 1 0は、 パソコン 1 1と、 エミヅシヨントリガ発振手段としてのト リガ発振装置 1 4と、 このトリガ発振装置 1 4に信号伝送線としてのコネクタケー ブル 1 5を介して接続されたパルサーレシーバ 1 6と、 アナログデジタル (以下、 A Dとする) 変換する A Dコンパ '一夕 1 Ίとを具備し、 パソコン 1 1、 トリガ発振 装置 1 4、 パルサ一レシーバ 1 6、 A Dコンバータ 1 7は、 それそれコネクターケ 一ブル 1 8を介して接続される。
また、 超音波流量計 1 0による流速分布及び流量計測を行なうには、 パソコン 1 1と接続されるトリガ発振装置 1 4、 パルサーレシーバ 1 6及び A Dコンバータ 1 7を制御する制御 P Gが必要となるが、 この制御 P Gは、 予め設定された基本処理 P G 1 3に包含される。
超音波流量計 1 0のトリガ発振装置 1 4は、 トリガ信号を生成し、 生成したトリ ガ信号をパルサ一レシ一バ 1 6及び A Dコンパ'一夕 1 7を送信することで、 パルサ —レシーバ 1 6及び A Dコンバータ 1 7の信号授受タイミングを制御する。 トリガ 信号の出力波形は、 パソコン 1 1が予め設定された基本処理 P G 1 3を実行するこ とにより、 トリガ発振装置 1 4を制御して任意に設定できる。
パルサ一レシーバ 1 6は、 信号伝送線であるコネクタケーブル 1 9を介してトラ ンスジユーザ 2 0と接続され、 コネクタケーブル 1 5を介してトリガ発振装置 1 4 から送信されたトリガ信号 (電気信号) を受信し、 超音波パルス発振信号 (電気信 号) を生成し、 トランスジュ一サ 2 0に出力する超音波パルス発振信号手段として 機能する。 また、 パルサ一レシーバ 1 6は、, デジタルシンセサイザを内蔵し、 5 0 k H zから 2 O M H zまでの超音波パルス発振信号の出力が可能であり、 様々な発 振周波数特性を有するトランスジユーザ 2 0に対応できる。
一方、 パルサ一レシーバ 1 6と接続されるトランスジユーザ 2 0は、 パルサーレ シ一バ 1 6から出力される超音波パルス発振信号を超音波パルスに変換し、 変換し た超音波パルスを測定線 M Lに沿って発信させる超音波パルス発振手段として機能 する。 トランスジュ一サ 2 0は、 被測定流体である測定対象流体 2 1を案内する流 体配管 2 2に所定の設置角度 0をなして外側から設置され、 流体配管 2 2に音響ィ ンピ一ダンスを整合させるため、 一般的には音響力ブラ 2 3を介して設けられる。 トランスジユーザ 2 0から測定対象流体 2 1へ発進された超音波パルスは流体配 管 2 2内を流れる流体 2 1中に入射され、 懸濁する (混在する) 超音波反射体によ り反射される。 超音波反射体に反射し生じた反射波は、 トランスジユーザ 2 0に戻 り、 受信される。
また、 トランスジユーザ 2 0は、 受信した反射波をその大きさに応じた超音波ェ コー信号 (電気信号) に変換する超音波パルス受信手段及び超音波エコー信号生成 手段としても機能する。 トランスジユーザ 2 0が受信した超音波パルスの反射波は、 その大きさに応じた超音波エコー信号に変換される。 この超音波エコー信号は、 ト ランスジュ一サ 2 0から続いてパルサーレシーバ 1 6に送信される。
パルサ一レシーバ 1 6は、 超音波エコー信号に重畳するノイズ成分を棄却するフ ィル夕リング処理部 2 5を備える。 このフィルタリング処理部 2 5は、 ローパスフ ィル夕及びハイパスフィル夕、 又はバンドパスフィル夕を有し、 反射波である超音 波エコー信号をフィル夕リング処理して、 使用する超音波パルスの周波数帯のみを 抽出する。 超音波エコー信号をフィルタリング処理することにより、 ノイズにより 生じる計測への悪影響を最小限に抑制する。 すなわち、 パルサーレシーバ 1 6は、 超音波パルスの反射波としての超音波エコー信号を受信する超音波エコー信号受信 手段及び超音波エコー信号を信号処理する信号処理手段を兼ねている。
パルサーレシーバ 1 6でフィルタリングされたアナログ式の超音波エコー信号は 続いて A Dコンパ'一夕 1 7に送られ、 この A Dコンパ'一夕 1 7により超音波ェコ一 信号は、 アナログ信号からデジタル信号に変換される。 A Dコンバータ 1 7は、 反 射波としての超音波ェコ一信号を高速にデジタルサンプリングして超音波ェコ一信 号のデジタルデータを取得するためのものである。
A Dコンバータ 1 7で変換されたデジタルデータは、 A Dコンパ一夕 1 7に内蔵 されるメモリ 2 6に蓄えられ、 メモリ 2 6に蓄えられたデ一夕はパソコン 1 1から 読み出すことができ、 読み出したデータは、 例えば、 パソコン 1 1に内蔵されるハ ードディスク等のデジタルデータを保存可能な記録媒体に保存できる。 また、 A D コンバータ 1 7の解像度は、 例えば 8 b i tでサンプリング周波数が 5 0 O M H z まで可能である。
また、 A Dコンバータ 1 7は、 パソコン 1 1が A Dコンバータ 1 7を制御する制 御プログラムを読み出して実行することにより、 アナログ入力信号をデジタル出力 信号に変換することができる一方、 出力されたデジタル信号の信号処理を同時に開 始し、 リアルタイムで速度分布の表示ができるように構成される。 前記パルサーレシーバ 1 6のフィル夕リング処理部 2 5及び A Dコンバータ 1 7 は、 信号処理手段 2 7を構成し、 この信号処理手段 2 7が超音波パルスの反射波で ある超音波エコー信号の信号処理を行なう。 信号処理された超音波エコー信号は、 信号解析手段としての流速分布算出手段 2 8で信号解析され、 前記超音波反射体あ るいは超音波反射体群の位置と速度が求められる。
流速分布算出手段 2 8は、 超音波反射体あるいは超音波反射体群の位置と速度を 求め、 求めた流体配管 2 2内の位置における流体 2 1の流速として演算処理するこ とにより、 流体配管 2 2の内部を流動する流体 2 1の流速分布を計測する。 流速分 布算出手段 2 8は、 パソコン 1 1に内蔵される演算処理手段であり、 A Dコンパ'一 夕 1 7から読み出したデジタルデータを演算処理することで、 超音波反射体あるい は超音波反射体群の位置と速度を求めることができる。
流速分布算出手段 2 8により計測された流体 2 1の流速分布データは、 信号解析 手段としての流量算出手段 2 9に入力される。 流量算出手段 2 9は、 流速分布算出 手段 2 8と同様にパソコン 1 1に内蔵される演算処理手段であり、 流量算出手段 2 9が、 流体 2 1の流速分布データを演算処理することで流量が算出される。 算出さ れた流速分布及び流量は、 パソコン 1 1のディスプレイ等の表示手段に出力され表 示される。
尚、 流速分布算出手段 2 8及び流量算出手段 2 9は、 パソコン 1 1に内蔵される 演算処理手段を用いたが、 ワークステーション、 メインフレーム等の他の演算処理 手段により演算処理を行っても構わない。 例えば、 A Dコンバータ 1 7のメモリ 2 6に必要な演箅処理機能を内蔵させて、 流速分布算出手段 2 8をメモリ 2 6ととも に備えるよう構成してもよい。
また、 超音波流量計 1 0は、 パソコン 1 1に流速分布算出手段 2 8のみを持たせ、 流体の流速分布のみを算出するよう構成としてもよい。 さらに、 超音波流量計 1 0 は、 表示する最終結果として、 必ずしも流速分布及び流量計測結果の両者を表示す る必要はなく、 流速分布及び流量計測結果の少なくとも一方を選択して表示するよ うに流速分布算出手段 2 8及び流量算出手段 2 9を構成しても良い。
さらにまた、 流速分布算出手段 2 8は、 流量算出手段 2 9を備えるように構成し ても良い。 すなわち、 流速分布箅出手段 2 8を流体の流速分布計測及び流量計測の 両者を行ない得るように構成してもよい。
一方、 超音波流量計 1 0では、 流量計測 P G 1 2及び基本処理 P G 1 3等の流体 2 1の流速分布及び流量計測に必要な P Gは、 パソコン 1 1に格納されるとしたが、 パソコン 1 1が読み出し実行可能な外部装置に格納しても良い。 また、 流量計測 P G 1 2は、 超音波流量計 1 0が流量の算出を行なわない流速分布計として機能させ るのであれば、 流速分布の算出までを実行する流速分布計測 P Gであっても良い。 さらに、 トリガ発振装置 1 4、 パルサ一レシーバ 1 6、 及び A Dコンパ一夕 1 7 は、 パソコン 1 1と独立した一装置として構成されているが、 必ずしも、 パソコン 1 1と独立した一装置として構成されなくても良い。 例えば、 トリガ発振装置 1 4、 パルサーレシーバ 1 6、 及び A Dコンバータ 1 7をそれそれトリガ発振ボード、 パ ルサ一レシーバ一ボ一ド及び A Dコンバ一夕ボードとしてパソコン 1 1に内蔵され るマザ一ボードと接続し、 パソコン 1 1内部に格納される構成としても良い。 さら にまた、 トリガ発振ボード、 パルサ一レシーバーボード及び A Dコンパ'一夕ボード は 1枚のボード上に集約しても良い。
[流体の流量の測定]
次に、 超音波流量計 1 0を用いた流体の流量の計測手順およびその作用について 説明する。
この超音波流量計 1 0を用いて測定対象流体 2 1の流量を計測するために、 実験 設備では、 流体配管 2 2として内径 Dが例えば 4 4 mm のァクリル樹脂管 2 2 a を使用し、 第 2図 (A ) 及び (B ) に示すように、 管開始位置より管軸方向 (X方 向) に 1 9 D ( =内径 Dの 1 9倍) の位置にトランスジユーザ 2 0を外側から設置 した。
トランスジユーザ 2 0は、 被測定流体である測定対象流体 2 1を流すアクリル樹 脂管 2 2 aの軸線方向に対し所要の角度 (設置角度) Θをなして水中に取り付けら れる。 トランスジユーザ 2 0は、 音響力ブラ 2 3を介して流体配管 2 2に取り付け られ、 トランスジュ一サ 2 0から発振される超音波パルスがァクリル樹脂管 2 2 a 内にスムーズに入射されるように案内される。
符号 3 1はオーバフロータンク、 符号 3 2は縮流器、 符号 3 3は実験領域のァク リル樹脂管 2 2 aを水中に設置するための流体配管設置容器である。 測定対象流体 としてこの実験設備では水を用いた。 尚、 図中に示される Fは水の流れ方向を表し たものである。
この超音波流量計 1 0は、 信号処理手段 2 7で相互相関法を用いた信号処理を行 い、 ある一定の時間間隔をもって得られた、 最低 2つの反射波から測定線 M Lに沿 う流体の速度分布を導き出す手法を用いて流量計測を行なうようになっており、 従 来のドップラ式超音波流量計に較べ、 時間分解能を飛躍的に向上させることができ る。
しかし、 この方法は、 非常に短い時間間隔の反射波のデータを連続して A Dコン バー夕 1 7に蓄積してから計算を行なうため、 反射波のデータ量が多く、 反射波デ 一夕の取得や計算に時間がかかり、 流体の流速分布をリアルタイムで表示させる場 合、 不都合である。 そこで、 取扱う反射波のデータ量を小さくするため、 連続する 2つの反射波もしくは 3つの反射波からデータを取得し、 流体の流速分布を表示し てから、 次の反射波の取得を行なう。
超音波流量計 1 0が行なう流体の流量計測方法の手順は、 トリガ信号を発振する トリガ信号発振手順と、 測定対象流体 2 1に超音波パルスを発信して入射させる超 音波パルス発信手順と、 受信した反射波を電気信号に変換して超音波エコー信号を 取得する超音波エコー信号取得手順と、 超音波エコー信号を信号処理する信号処理 手順と、 超音波エコー信号の解析を行なう信号解析と、 流速分布及び流量計測結果 の少なくとも一方を選択表示する表示手順とを具備する。
超音波流量計 1 0が行なう流体の流量計測方法では、 まず、 トリガ信号発振手順 としてトリガ発振装置 1 4がトリガ信号 (電気信号) を生成し、 生成したトリガ信 号をパルサーレシーバ 1 6及び A Dコンパ一夕 1 7に出力する。 トリガ信号がパル サ一レシーバ 1 6に入力されると続いて、 パルサーレシーバ 1 6は、 超音波パルス 発信手順としての超音波パルス発振信号生成行程を行ない、 生成した超音波パルス 発振信号がパルサーレシーバ 1 6からトランスジユーザ 2 0に送信される。
超音波パルス発振信号をトランスジユーザ 2 0が受信すると続いて、 トランスジ ユーザ 2 0は、 超音波パルス究信手順としての超音波パルス発振行程を行ない、 超 音波パルス発振信号を所要周波数、 例えば 4 M H zの正弦波状の超音波バースト信 号に変換し、 超音波パルスの発振を行なう。 そして、 超音波パルスを発振すると、 超音波パルス発信手順としての超音波パルス発振行程を行ない、 発振した超音波パ ルスをトランスジユーザ 2 0から発信する。
トランスジユーザ 2 0は、 超音波パルスのビーム (以下、 超音波ビームとする) を流体配管 2 2内に入射する一方、 超音波ビームの入射後は、 測定対象流体 2 1に 混在する気泡やパーティクル粒子等の超音波反射体からの反射波の受信を開始し、 受信した反射波の大きさに応じた超音波エコー信号を取得する超音波エコー信号取 得手順を行なう。
超音波ェコ一信号取得手順で得られた反射波の超音波エコー信号は、 パルサーレ シーバ 1 6に返信される。 返信された超音波パルスの反射波は、 信号処理手順とし て、 パルサ一レシーバ 1 6のフィル夕リング処理部 2 5がフィルタリング処理を行 ない、 使用した超音波周波数帯を抽出した後、 フィルタリング処理後の超音波ェコ 一信号を A Dコンバータ 1 7に出力する。 A Dコンバータ 1 7は、 受信したフィル 夕リング処理後の超音波エコー信号を高速でデジタルサンプリング処理し、 信号処 理手順としての A D変換を行なう。
信号処理手順としてのフィルタリング処理及び A D変換された超音波エコー信号 は、 次に、 信号解析手順で信号解析される。 信号解析手順は、 流体中に懸濁された 個々の超音波反射体の位置及び速度から前記超音波反射体の速度分布を算出し、 流 体 2 1の流速分布を算出する流速分布算出行程と、 流速分布から流体 2 1の流量を 算出する流量算出行程とを備える。
信号解析手順の流速分布算出行程では、 デジ夕ル化された超音波ェコ一信号同士 を極めて短時間幅、 例えば 1 S毎に、 相互相関をとる相互相関法によって、 一方 の超音波エコー信号に含まれる超音波反射体群の位置と、 この超音波反射体群の 個々の超音波反射体と同一の超音波反射体を他方の超音波エコー信号から検出し、 検出した個々の超音波反射体に対する変位量 (位相差) を求める。 そして、 2つの 信号の時間差及び位相差から流体中に懸濁される前記超音波反射体群の速度分布を 算出する。
続いて、 流量算出行程では、 流速分布算出行程で算出した流速分布から流体の流 量を算出し、 流体の流量を計測する。 流体の流量は、 この流体の流速分布をァクリ ル樹脂管 2 2 aの内部面積に沿って積分することにより求められる。
従って、 超音波流量計 1 0が行なう流体の流量計測方法では、 流体配管 2 2内を 流れる流体 2 1の測定線 (アクリル樹脂管 2 2 aの直径方向線) M Lに沿う速度分 布を求めることができるとともに、 流量を容易にかつ正確に精度よく求めることが できる。
第 3図に、 トリガ発信装置 1 4、 パルサーレシーバ 1 6及び A Dコンバータ 1 7 間の信号授受タイミングの取り方を表した説明図を示す。
この超音波流量計 1 0では、 パルサ一レシーバ 1 6及び A Dコンバータ 1 7にお ける信号授受タイミングは、 トリガ発振装置 1 4により行なわれる。 トリガ発信装 置 1 4、 パルサーレシーバ 1 6及び A Dコンバータ 1 7間の信号授受タイミングの 取り方は、 第 3図に示すようなタイミング制御され、 例えば、 3回連続等の複数回 連続でパルス状のトリガ信号発信、 信号受信及びサンプリングを短時間間隔で行な つた後、 一定の待ち時間 (Interval ) を設けて 1サイクルとし、 以後、 このサイク ルが繰り返されるように制御される。 待ち時間 (Interval) を設定することで、 時 間分解能を大幅に向上させることができる。
ところで、 従来の超音波流量計は、 第 4図に示すように、 トレ一サ粒子 (超音波 反射体) 3 5の移動量を超音波ェコ一信号の解析により求めるのであるが、 パルサ 一レシーバ 1 6に入力されるトリガ信号の入力時点 (トリガタイム) と、 超音波ェ コ一発振信号の信号発信時間との間には、 第 5図に示すような不確定な時間のバラ ヅキが存在する。 また、 信号処理で正しく求められる移動量の範囲は限られるので、 パルサーレシーバ 1 6によるハードウエア上不可避な信号発信時間のバラヅキ誤差 は計測精度上大きな支障を来す。
そこで、 超音波流量計 1 0では、 超音波エコー信号のうち、 超音波バースト信号 を打ってから直く、に反射する振幅の大きな部分 (エミヅシヨンエリアからの反射 波) が、 発信時間によらず、 信号形状が常に等しいことに着目し、 振幅の大きな部 分の信号同士に相互相関をかけて超音波バースト信号の時間ずれを補正する処理 (デジタルトリガ処理) を行なう。
第 5図は、 超音波バースト信号の信号発信時間のバラツキをデジタルトリガ処理 を行なわなかつた場合と行なった場合とを比較して説明する確率密度分布図である 第 5図によれば、 デジタルトリガ処理を行なった場合の超音波バースト信号の信 号発信時間の時間バラツキは、 デジタルトリガ処理を行なわなかった場合に対し、 約 1 / 4となっており、 時間バラツキが 0の時点で最も高い確率密度となっている。 従って、 超音波バースト信号の時間ずれを補正することより、 デジタルトリガ効果 が表われ、 信号発信のバラツキを大幅に減少させることができる。 このデジタルト リガの効果により、 流体の測定精度を向上させることができる。
[超音波流量計の測定原理]
第 2図に示すように、 水中に存在するァクリル樹脂管 2 2 aに超音波流量計 1 0 のトランスジュ一サ 2 0をセヅトし、 超音波反射体としてトレーサ粒子 3 5を懸濁 させた流体としての水 2 1をァクリル樹脂管 2 2 a内に流したときの流体の流速分 布を測定する。
流体の流速分布を測定する際、 トランスジユーザ 2 0の圧電素子から超音波パル スを発振させ、 発振した超音波パルスを測定線 M Lに沿って水中に入射すると、 発 振された超音波パルスは、 超音波反射体であるトレーサ粒子 3 5の表面で反射し、 トランスジユーザ 2 0に戻ってくる。 この反射波は、 アクリル樹脂管 2 2 a内の流 動場の各所で起こるため、 第 6図に示されるように反射波が表われる。 最初に表われる超音波バースト信号 (超音波エコー信号) aは、 ェミッション領 域と呼ばれ、 超音波の発振直後に圧電素子の振動が残っているために生じる信号で ある。 次に出現する超音波バース ト信号 bは、 管上部によるものであり、 測定対象 流体である水 2 1と流体配管の材料であるアクリル樹脂との音響インピーダンスの 違いから生じる信号である。 また、 超音波バースト信号 cは、 管下部によるもので あり、 信号 bと同様である。 超音波バースト信号 bと cの間にある信号 dがァクリ ル樹脂管 2 2 a内の流体流速情報を含む信号であり、 ピークが立っているところに トレーザ粒子 3 5が存在する。
トレ一サ粒子 3 5の位置は、 反射波である超音波バースト信号 dから求める。 ト ランスジユーザ 2 0からトレーサ粒子 3 5までの距離を x、 超音波パルスを発振し てから反射波を受信するまでの時間をて、 超音波の速度を cとすると、
【数 1】 x =— …… (1) の関係が成立する。
この超音波パルスの発振及び反射波の受信をある時間間隔△ t後にもう一度行な うと、 同様の反射波を得ることができるが、 △ tの時間間隔の間に流体 2 1が移動 すれば、 第 7図に示すようにトレーザ粒子 3 5も追従移動することとなり、 反射波 受信までの時間ても変化する。
反射波受信までの時間 τの変化量を Δてとすると、 ある位置 Xにおける X方向速 度 u ( X ) は、
【数 2】
. . Ax c -Δτ .
At 2 - At
で表わされる。 ここで Δ χはある時間間隔△ tにおけるトレ一サ粒子 3 5の移動量 である。
超音波パルスの反射は、 測定線 M L上の各所で起こるため、 この測定線 M L上に おける流体の流速計測を同時に行なうことができ、 流体の流速分布を得ることがで きる。
流体の流速分布計測を△ tの時間間隔で n回 (但し、 n≥ 2の自然数) 連続的に 連続パルス法で行なった場合、 時間分解能 Δ tの連続流速分布データを n— 1枚得 ることができる。 [相互相関関数]
超音波反射体であるトレーサ粒子 3 5による反射波は、 超音波パルスの発振間隔 Δ七を、 流体の流速変動スケールに対して十分小さくとることにより、 その時間間 隔 (発振間隔) Δ tの間でほぼ保存される。
第 1図に示す超音波流量計 1 0のパルサーレシーバ 1 6は、 反射波のアナログ超 音波エコー信号を A Dコンパ'一夕 1 7で高速サンプリング処理でデジタル信号に変 換した後、 超音波パルスの発振間隔△ tをもって得られた 2つの反射波 (先の反射 波である参照波と、 △ t後の反射波である探索波) の相互相関関数を計算し、 流体 内の同一超音波反射体からの反射波であることを識別する目的で、 相関値に対する 閾値を設定することにより、 定量化した数値を基に同一のトレーサ粒子群からの反 射波であるか否かを判断することができる。
一般的に、 相互相関関数 (R ( £, r ) ) は次のように定義される。
【数 3】
Figure imgf000018_0001
.で、
Figure imgf000018_0002
τ = …… (
m i l
Ant (T + e) = ^ …… (5)
m
てが基準となる時間遅れ、 iが参照 .探索窓内での位置、 £が参照波と探索窓と のずれ、 mは超音波パルスの周期分をそれそれ表している。
この相互相関関数 R ( ε , τ ) を用いて同一のトレ一サ粒子群からの反射波かど うかを定量的に判別し、 それぞれの時間遅れてを計算し、 そこから時間変化量 を求める。 つまり、 最初に得られた反射波、 次の反射波の時間遅れ rを求め、 この 2つの反射波の時間遅れ τの差 (時間差) が△てとなる。
一方、 流体の流速分布速度を得るために必要な超音波パルスの発振間隔 Δ tによ る反射波の到達時間差厶ては、 デジタルサンプリングされた反射波の相互相関関数 を用いることにより得られる。 この相互相関関数 R ( ε , r ) は、 反射波のサンプリング時間間隔をもった離散 的なものであり、 △ tの間隔を短くすればするほど、 トレーサ粒子群からのパルス 反射波の形状は保存されるため、 より細分割したメッシュで△てを求める手法が不 可欠である。
そこで、 A tの間隔を短くするために、 例えば、 正弦波近似を利用した補完を行 なうことができる。 この補完により、 より細分割したメヅシュで相互相関関数のピ —クを求めることができ、 その結果、 速度分解能も向上する。
今、 離散的に得られた各相関値の最大値を P k、 その前後の相関値の最大値をそ れそれ P k一い P k + 1とすれば、
【数 4】
Δ + log(P")一10 ) …… (6)
2 hog(P,_1) - 21og(F,) + log(P,+1)
となる。 本発明に係る超音波流量計においては、 請求項 2から 4の手法に加え、 さ らに、 この正弦波近似を利用した補完を行なって信号処理することにより、 速度分 解能を格段に向上させることが きる。
[反射波の振幅 ·相関値の閾値の設定]
超音波流量計 1 0による実際の流速分布や流量の計測においては、 反射波を信号 解析する際に誤ったトレーサ粒子の位置及び速度情報を得る可能性がある。 これを 避けるため、 振幅 ·相関値の閾値を利用してトレ一サ粒子の位置及び速度情報を誤 つて取得しないようにしている。 以下に、 反射波の振幅 ·相関値の閾値の設定につ いて説明する。
誤ったトレーザ粒子の位置及び速度情報を得る場合として第 1に考えられるのが、 実際に反射が起こっていない信号部分 (無効信号) をトレーサ粒子からの超音波パ ルスの反射波 (有効信号) として捉えてしまう場合である。 これは、 トレーサ粒子 の位置及び速度情報を含まない無効信号を反射波 (有効信号) として捉えてしまう ために生じるものである。
そこで、 この超音波流量計 1 0では、 トレーサ粒子の位置及び速度情報を含む信 号部分 (有効信号) の振幅がトレーサ粒子の位置及び速度情報を含まない信号部分 (無効信号) の振幅よりも大きくなる傾向にある点に着目し、 反射波 (探索波) の 振幅に対して閾値を設定する。 そして、 探索波の振幅が設定した閾値よりも大きい 場合に限り参照波と探索波との相互相関を計算する。 一方、 探索波の振幅が設定し た閾値よりも小さい場合には、 無効信号として棄却する。 このように、 反射波 (探 索波) の振幅に対して閾値を設定することで、 トレーサ粒子の位置及び速度情報を 含む有効信号と含まない無効信号とを区別する。
誤ったトレーザ粒子の位置及び速度情報を得る場合として次に考えられるのは、 参照波と探索波との相互相関を計算し、 参照波において参照しているトレーサ粒子 群からの反射波とは異なるトレーザ粒子群からの反射波を同一のトレーザ粒子群か らの反射波とみなしてしまう場合である。 このような事態を防止するため、 参照波 と探索波との相互相関を計算して求まる相関値に閾値を設ける。 また、 併せて厶七 の大きさを十分小さくとる。 △ tの大きさを十分小さくとれば、 反射波の形状は殆 ど変化しないので、 設定可能な相関値の閾値をより 1に近く設定でき、 探索波から 参照波に含まれる同一のトレ一サ粒子群からの反射波をより精度良く抽.出すること ができる。
このような反射波の振幅及び相関値に対して閾値を設定し、 探索波から参照波に 含まれるトレ一サ粒子群と同一のトレーサ粒子群を特定する超音波流量計 1 0は、 設定した閾値を満足する信号のみを用いて、 特定したトレーザ粒子群の位相差を求 めた後、 求めた位相差からトレ一サ粒子群の位置及び速度を求め、 測定対象流体 2 1の流速分布及び流量を計測している。 また、 超音波流量計 1 0は、 反射波の振幅 及び相関値に対する閾値を得られた反射波に応じて設定し、 反射波 (参照波及び探 索波) の信号解析を行なうことによって、 流体の流速分布及び流量計測の信頼性を 向上させている。
[エミヅシヨントリガの導入]
第 1図に示した超音波流量計 1 0は、 実験で使用された測定システムの概略図で ある。 この測定システムでは、 正弦波状の超音波パルスの発振 .受信に用いるパル サーレシーバ 1 6及び超音波エコー信号の A D変換を行なう A Dコンバータ 1 7の 制御をトリガ発振装置 1 4からの外部トリガで行なつている。
ここで、 外部トリガとは、 パソコン 1 1に内蔵される C P Uが発振するトリガ信 号ではなく、 C P U以外の部分で発振したトリガ信号であり、 第 1図に示した超音 波流量計 1 0では、 トリガ発振装置 1 4が発振したトリガ信号をいう。 尚、 パソコ ン 1 1の内部にトリガ発振手段としてのトリガ発振ボードを設け、 C P Uからの信 号を受信してトリガ発振ボードがトリガ信号を発振するように構成した場合、 すな わち、 トリガ発振手段としてのトリガ発振装置 1 4をパソコン 1 1の内部に設ける 場合においても、 トリガ発振手段から発振されるトリガ信号は外部トリガとなる。 一方、 A Dコンバータ 1 7のサンプリング周波数を数百 M H zのオーダで設定す る場合、 厳密にトリガ通りに動かすことは非常に難しく、 周波数シフトが生じる。 そこで、 トランスジユーザ 2 0からの超音波パルスの発振直後に反射波に生じるェ ミツション領域に注目し、 先に受信した反射波のェミツション領域を参照波、 後に 受信した反射波のェミッション領域を探索波としての相互相関の計算を行ない、 時 間変化量 Δ τを求め、 さらに正弦波近似による補完を行ない、 相互相関の計算を行 なう前に、 この の分だけ修正する。 但し、 反射波のサンプリング時間間隔で修 正を行った後、 より小さい離散間隔で細分割したメッシュで最後に計測線上の各点 での△てに修正を加え、 トリガ発振装置 1 4からのトリガによる微妙な時間のずれ を補正する。
第 8図は、 超音波流量計 1 0を用いて流速分布及び流量計測の際の参照波と探索 波との時間ずれをエミッシヨントリガ導入前とエミッシヨントリガ導入後とで比較 をした説明図である。
第 8図によれば、 ェミッショントリガ導入前において生じている参照波と探索波 との時間のずれは、 エミヅシヨントリガを導入後においては、 解消されており、 ェ ミッショントリガが有効に作用していることがわかる。
[トリガ間隔]
この超音波流量計 1 0においては、 第 9図に示すように、 トリガ発振装置 1 4か ら発振される トリガ信号のかけ方を変えることが可能であり、 第 9図 (B ) , ( C ) 及び (D ) に示すようなトリガ信号をかけることにより、 連続パルス法、 2 発信 (ダブル) パルス法、 及び 3発信 (トライ) パルス法により、 3種類の流体の 流速分布及び流量測定法を行なうことができる。
連続パルス法とは、 第 9図 (B ) に示される連続パルスを発信することにより流 体の流速分布及び流量を測定する測定法をいい、 パルス発信数 (M) が M≥ 3をい う。 尚、 連続パルス法において、 最小の M = 3の場合は、 特に、 3発信 (トライ) パルス法といい、 第 9図 (D ) に示される。
連続パルス法は、 第 9図 (A ) に示すパルスドヅブラ法と比べて時間分解能が大 幅に向上し、 例えば 1 5 0 sという極めて時間分解能が高い値で測定することが できる。 ダブルパルス法は、 少ないトレーサ粒子数で流体の流速分布及び流量測定 を行なうことができる。
また、 パルスドッブラ法では、 1つの速度分布測に必要なパルス発射回数を 2 5 ( = 3 2 ) 回と仮定すると、 第 9図 (A ) に示すように計測に 3 1 X厶 tの時間が かかるが、 ダブルパルス法では、 第 9図 (C ) に示すように、 しかかからず、 流速分布計測時間を大幅に短縮でき、 時間分解能を大幅に向上させ得る。
ここで、 トランスジユーザ 2 0の測定線 M Lとトレーザ粒子 3 5の関係を考え、 トランスジユーザ 2 0の流体配管 2 2への設置角度を Θとし、 トランスジユーザ 2 0の直径 (有効径) を Dとすると、 第 1 0図に示すように、 1つの卜レーザ粒子 3 5から速度を求めるための条件は、 パルスドヅブラ法では、
【数 5】 x(t + 31 - At) - x(t)≤ -^— (7)
cosd
であるのに対し、 ダブルパルス法では、
【数 6】 x(t + At)一 x(t)≤ -^— …… (8)
cos^
となる。
( 7 ) 式及び (8 ) 式より、 ダブルパルス法ではパルスドッブラ法に比較し、 よ り高流速の領域まで測定可能である。 さらに、 ダブルパルス法は、 2つの反射波の 波形の相互相関を 1回とるだけで良いことから、 計算量が極めて少なく、 リアル夕 ィムでの流体の流速分布や流量の表示がより容易である。
トライパルス法は、 ダブルパルス法の発展型である。 原理的にはダブルパルス法 と同様であり、 第 1 0図に示すように同じ 1サイクル間に 2倍の速度分布を得るこ とができ、 2倍の流速分布及び流量計測を行なうことができる。
[時間分解能]
この超音波流量計 1 0は、 時間分解能を 5 0 0 s以上 1 0 0 s程度まで向上 させることができ、 この時間分解能の向上により流体配管 2 2内に過渡流れや乱流 が生じても、 また、 不連続かつ間欠的な流れが生じても、 流体の流量を正確に精度 よく測定できる。
超音波流量計 1 0に連続パルス法、 ダブルパルス法又はトライパルス法を適用し て流体の流量を得るため、 2つの反射波を得るために必要な時間が時間分解能と判 断されがちである。 しかし、 実際には、 連続パルス法の場合、 n個の反射波があつ たとき、 n— 1枚の速度分布を得ることができる。 つまり、 最初に 1つの反射波を 取り込んだ後は、 新たに 1つの反射波を取り込む虔に速度分布を得ることができる 従って、 この超音波流量計 1 0では、 時間分解能は、 連続的に反射波を取り込む際、 1つの反射波を取り込むのに必要な時間であると評価でき、 これは、 超音波パルス の発振間隔△ tに他ならない。
[速度分解能と測定限界]
流体 2 1の流速は、 実験条件により、 音速 c及び△七が定数となるから、 速度の 測定精度は理論的に Δτの測定精度に依存する。 この Δτを得るため、 2つの反射 波をデジタルサンプリングし、 その相互相関を取るため、 移動量は整数値となり、 サンプリング時間間隔を t s ampとすれば、 厶ての測定結果には±0. 5 t s amp程 度の誤差を伴うことになる。
サンプリング時間間隔に対応する速度、 すなわち△てが 1サンプリング時間間隔 であった場合に対応する速度 us ampは Δτを t s ampとするだけであり、 計算でき る。 すなわち速度分解能 dvは、
【数 7】 ……
2Δί ,
これに分布関数の補完を施すことにより、 速度分解能の測定精度の向上が可能で ある。
この超音波流量計 10は、 流体中に混在するトレーサ粒子等の超音波反射体 35 の移動に伴い、 第 4図に示すように、 2時刻間の信号移動量を相互相関法を用いた 信号処理により求め、 流体の流速分布や流量を計測している。
この超音波流量計 10は、 パルサーレシーバ 16及び ADコンバ一夕 1 7のボー ド間タイミングは、 第 3図に示すように、 数回連続でパルス発振及び信号受信を行 ない、 その後、 一定時間の待ち時間を設けて 1サイクルを構成する連銃パルス法に より、 流体の流速分布や流量計測が行なわれる。
その際、 待ち時間を設定することで、 時間分解能を自由に調節できる。 待ち時間 の設定は、 パソコン 1 1が基本処理 P G 13を実行してパソコン 1 1に入力された 待ち時間又は予めプログラミングされた待ち時間に制御することにより、 トリガ発 振装置 14から発振されるトリガの待ち時間を自由に設定することができる。
実験に用いた超音波流量計 10では、 時間分解能を約 500 に設定し、 従来 の超音波流量計の時間分解能よりも数十倍向上させることができる。
第 1 1図は、 超音波流量計 1 0を用いて計測した流体の平均流速分布と LDV (Laser Doppler Velocimetry: レーザ一ドップラー流速計) を用いて計測した流体 の平均流速分布とを比較した説明図である。
第 1 1図によれば、 超音波流量計 1 0のトランスジュ一サ 20を流体配管 22に 対して傾けて計測し、 3 0 0 0時刻の時間平均をとつた平均流速分布 4 0と、 この 流速分布 4 0は、 L D Vの測定に対する平均流速分布 4 1と非常によく一致する流 速分布データが得られ、 高精度に流量計測が行ない得ることがわかった。
第 1 2図は、 超音波流量計 1 0において、 時間分解能を例えば約 5 0 0 sに設 定したとき、 5時刻連続の瞬間速度分布を示すものである。 第 1 2図に示された 5 枚の瞬間速度分布曲線も良く近似しており、 流体の流速分布を正確に精度よく測定 できることを表わしている。
また、 第 1 3図は流体配管 2 2であるァクリル樹脂管 2 2 aの管中央付近と壁近 傍の一点における瞬間速度をとつたものである。 管中央付近では流速のバラヅキが 小さく、 変動も高周波成分が見られるのみであるが、 壁近傍では流速のバラツキが 大きく、 流体の流速に周期的な波が存在することが分かる。 産業上の利用可能性
本発明に係る超音波流量計は、 流体配管内に流れる気体や水等の液体、 液体金属 の流量測定が非接触にて行ない得る他、 従来のパルスドッブラ法では測定が困難で あった比較的クリーンな流体の流量を、 デジ夕ル化された超音波ェコ一信号同士を 連続パルス法を採用した相互相関法により信号解析することで流体の流速分布及び 流量を正確に精度よく求めることができる。
本発明に係る超音波流量計は、 時間分解能を向上させることにより、 流体配管内 を流れる流体の過渡流れや乱流発生時の流体流れ、 また、 不連続的かつ間欠的な流 れでも流体の流量を精度よく正確に測定することができる。'

Claims

請 求 の 範 囲 . トリガ信号を出力するトリガ発振手段と、
このトリガ発振手段からのトリガ信号により超音波パルス発振信号を出力する パルサーレシーバと、
このパルサーレシーバからの超音波パルス発振信号により、 超音波パルスを流 体内の測定線に向けて発振させるトランスジユーザと、
このトランスジュ一ザから発射された超音波パルスを流体内に懸濁する超音波 反射体に反射させ、 その反射波である超音波エコー信号を受信し、 受信した超音 波エコー信号を信号処理する信号処理手段と、
この信号処理手段で信号処理した超音波エコー信号を信号解析して、 前記測定 線に沿う超音波反射体の位置と速度を求める信号解析手段とを具備し、
前記トリガ発振手段は、 パルサーレシーバと A Dコンバータ間の信号授受タイ ミングを制御し、 かつ超音波パルス発振及び超音波エコー信号受信が複数回連続 し、 その後一定の待ち時間を備えるように調節設定したことを特徴とする超音波 里 !"。 . 前記信号処理手段は、 超音波パルスの反射波である超音波エコー信号がトラン スジュ一ザから伝達され、 トランスジユーザからの超音波発振周波数に応じた周 波数帯の超音波エコー信号を選択するフィルタリング処理部を有するパルサーレ シ一バと、 このパルサーレシーバからの超音波エコー信号を A D変換する A Dコ ンバ一夕とを備え、
前記信号解析手段は、 デジ夕ル化された超音波ェコ一信号同士の相互相関をと つて得られる位相差を求め、 前記超音波反射体の速度分布を算出して前記超音波 反射体が懸濁される流体の流速分布を算出する流速分布算出手段と、 流速分布を 算出した流体の流量を算出する流量算出手段とを備えることを特徴とする請求の 範囲第 1項記載の超音波流量計。 . 前記信号解析手段は、 デジタル化された超音波エコー信号同士の相互相関をと つて信号位相差を解析し、 前記超音波反射体の速度分布を算出して前記超音波反 射体が懸濁される流体の流速分布を算出する流速分布算出手段を備えることを特 徴とする請求の範囲第 1項記載の超音波流量計。
4 . 前記信号解析手段は、 反射波とノイズを区別する目的で前記信号処理手段がデ ジ夕ル化した超音波エコー信号の振幅に閾値を設定し、 閾値を超えた振幅を有す る超音波エコー信号を前記反射波として選別し、 選別した超音波エコー信号同士 について相互相関を計算するとともに、 流体中の同一超音波反射体からの反射波 であることを識別する目的で、 相互相関を計算した相関値に閾値を設定し、 相関 値が閾値を超えた場合、 同一超音波反射体からの反射波と判断して位相差を求め、 求めた位相差から前記超音波反射体の速度分布を算出することを特徴とする請求 の範囲第 1項または第 2項記載の超音波流量計。
5 . 前記信号解析手段は、 反射波とノイズを区別する目的で前記信号処理手段がデ ジ夕ル化した超音波ェコ一信号の振幅と、 流体内の同一超音波反射体からの反射 波であることを識別する目的で超音波エコー信号同士の相互相関を計算した相関 値とに閾値を設定し、 この閾値を可変させ、 被測定流体中の超音波反射体の多少 に応じて、 これらを最適化した速度分布を求める流速分布算出手段及び流量測定 手段を備えることを特徴とする請求の範囲第 1項または第 2項記載の超音波流量 計。
6 . 前記信号解析手段は、 超音波を利用して、 反射波のサンプリング時間間隔をも つた、 離散的な相互相関関数をもとめ、 さらに、 トレーサ粒子群からの超音波を 利用したパルス反射波の形状を保存するため、 離散間隔△ tの間隔を短くすべく、 正弦波近似を利用してより細分割したメッシュで相互相関関数を求める流速分布 算出手段及び流量測定手段を備えた請求の範囲第 1項記載の超音波流量計。
7 . 前記パルサーレシーバは、 トリガ信号を入力するトリガタイムと超音波パルス 発振信号を出力する信号発信時間との間のバラツキを、 ェミッションエリアから の反射波の超音波エコー信号同士に相互相関をかけて信号発信時間を補正するデ ジ夕ルトリガ処理を行なうことを特徴とする請求の範囲第 1項記載の超音波流量 計。
8 . 前記トリガ発振手段は、 超音波パルス発振及び超音波エコー信号が複数回連続 した後、 一定の待ち時間を設定して時間分解能を向上させたことを特徴とする請 求の範囲第 1項記載の超音波流量計。 . 前記トリガ発振手段が発振するトリガ信号のパルス数及び待ち時間を変化させ ることで、 連続パルス法、 2発信パルス法、 及び 3発信パルス法の 3種類の流体 流速分布計測方法のいずれかにより流体の流速分布計測を行なうことを特徴とす る請求の範囲第 1項記載の超音波流量計。 0 . 前記トリガ発振手段は、 外部トリガを発振し、 この外部トリガをパルサーレ シーバ及び A Dコンバ一夕へ出力することで、 前記パルサーレシーバ及び A Dコ ンバ一夕の信号授受のタイミングを制御することを特徴とする請求の範囲第 1項 記載の超音波流量計。 1 . トリガ信号を発振するトリガ信号発振手順と、
測定対象流体に超音波パルスを発信して入射させる超音波パルス発信手順と、 受信した反射波を電気信号に変換して超音波ェコ一信号を取得する超音波ェコ 一信号取得手順と、
超音波ェコ一信号を信号処理する信号処理手順と、
超音波エコー信号の解析を行なう信号解析と、
流速分布及び流量計測結果の少なくとも一方を選択表示する表示手順とを具備 することを特徴とする超音波流量計測方法。 2 . 前記信号解析手順は、 流体中に懸濁された個々の超音波反射体の位置及び速 度から前記超音波反射体の速度分布を算出し、 前記流体の流速分布を算出する流 速分布算出行程と、 流速分布から前記流体の流量を算出する流量算出行程とを備 えることを特徴とする請求の範囲第 1 1項記載の超音波流量計測方法。 3 . 前記信号解析手順は、 流体中に懸濁された個々の超音波反射体の位置及び速 度から前記超音波反射体の速度分布を算出し、 前記流体の流速分布を算出する流 速分布算出行程を備えることを特徴とする請求の範囲第 1 1項記載の超音波流量 計測方法。 4 . 前記流速分布算出行程は、 反射波とノイズを区別する目的でデジタル化した 超音波ェコ一信号の振幅に対して設定された閾値を超えた振幅を有する超音波ェ コ一信号を前記反射波として選別し、 選別した超音波エコー信号同士について相 互相関を計算するとともに、 流体中の同一超音波反射体からの反射波であること を識別する目的で、 相関値に対して設定された閾値を計算した相関値が超えた場 合、 同一超音波反射体からの反射波と判断して位相差を求め、 前記超音波反射体 の速度分布を算出することを特徴とする請求の範囲第 1 1項または第 1 2項記載 の超音波流量計測方法。
1 5 . 前記流速分布算出行程は、 反射波とノイズを区別する目的でデジタル化した 超音波エコー信号の振幅に対して設定された閾値を超えた振幅を有する超音波ェ コ一信号を前記反射波として選別し、 選別した超音波ェコ一信号同士について相 互相関を計算することを特徴とする請求の範囲第 1 1項または第 1 2項記載の超 音波流量計測方法。 1 6 . 前記流速分布算出行程は、 前記超音波エコー信号同士の相関値を反射波のサ ンプリング時間間隔をもつ離散的な相互相関関数を用いて求め、 この相互相関閧 数は、 トレーザ粒子群からの超音波を利用したパルス反射波の形状を保存するた め、 離散間隔 A tの間隔を短くすべく、 正弦波近似を利用してより細分割したメ ッシュを用いて求めることを特徴とする請求の範囲第 1 1項または第 1 2項記載 の超音波流量計測方法。
1 7 . 前記トリガ発振手順は、 超音波パルス発振及び超音波エコー信号が複数回連 続した後、 一定の待ち時間を設定することを特徴とする請求の範囲第 1 1項また は第 1 2項記載の超音波流量計測方法。
1 8 . 前記トリガ発振手順は、 前記トリガ信号として外部トリガを発振することを 特徴とする請求の範囲第 1 2項または第 1 3項記載の超音波流量計測方法。
1 9 . 前記トリガ発振手順は、 発振するトリガ信号のパルス数及び待ち時間を変化 させて、 連続パルス法、 2発信パルス法、 及び 3発信パルス法を行なうことを特 徴とする請求の範囲第 1 2項または第 1 3項記載の超音波流量計測方法。
PCT/JP2003/006421 2002-05-24 2003-05-22 Debitmetre a ultrasons et procede de mesure du flux par ultrasons WO2003100357A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020047018963A KR100772795B1 (ko) 2002-05-24 2003-05-22 초음파 유속분포계, 초음파 유량계, 초음파 유속분포 계측방법 및 초음파 유량계측방법
CA2487317A CA2487317C (en) 2002-05-24 2003-05-22 Ultrasonic flowmeter and ultrasonic flowmetering method
US10/514,234 US7289914B2 (en) 2002-05-24 2003-05-22 Ultrasonic flowmeter and ultrasonic flowmetering method
EP03730591A EP1500910B1 (en) 2002-05-24 2003-05-22 Ultrasonic flowmeter and ultrasonic flowmetering method
AU2003242403A AU2003242403A1 (en) 2002-05-24 2003-05-22 Ultrasonic flowmeter and ultrasonic flowmetering method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-150398 2002-05-24
JP2002150398A JP3669580B2 (ja) 2002-05-24 2002-05-24 超音波流速分布及び流量計

Publications (1)

Publication Number Publication Date
WO2003100357A1 true WO2003100357A1 (fr) 2003-12-04

Family

ID=29561227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006421 WO2003100357A1 (fr) 2002-05-24 2003-05-22 Debitmetre a ultrasons et procede de mesure du flux par ultrasons

Country Status (9)

Country Link
US (1) US7289914B2 (ja)
EP (1) EP1500910B1 (ja)
JP (1) JP3669580B2 (ja)
KR (1) KR100772795B1 (ja)
CN (1) CN100549630C (ja)
AU (1) AU2003242403A1 (ja)
CA (1) CA2487317C (ja)
TW (1) TWI221188B (ja)
WO (1) WO2003100357A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380101C (zh) * 2004-02-27 2008-04-09 富士电机系统株式会社 多普勒型超声波流量计
CN100401022C (zh) * 2004-02-26 2008-07-09 富士电机系统株式会社 超声波流量计和超声波流量测量方法
CN104596601A (zh) * 2014-12-25 2015-05-06 重庆川仪自动化股份有限公司 八声道超声波流量计传感器
CN107449475A (zh) * 2017-09-07 2017-12-08 上海诺仪表有限公司 超声流量计
WO2021139033A1 (zh) * 2020-01-10 2021-07-15 青岛海威茨仪表有限公司 内衬式超声波流量计用固定安装结构

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669580B2 (ja) 2002-05-24 2005-07-06 学校法人慶應義塾 超音波流速分布及び流量計
JP3669588B2 (ja) * 2003-05-06 2005-07-06 学校法人慶應義塾 超音波流速分布計及び流量計、超音波流速分布及び流量測定方法並びに超音波流速分布及び流量測定処理プログラム
JP2005181268A (ja) * 2003-12-24 2005-07-07 Yokogawa Electric Corp 超音波流量計
DE102004053673A1 (de) * 2004-11-03 2006-05-04 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
KR100600993B1 (ko) 2004-12-08 2006-07-13 두산중공업 주식회사 배관의 유체 동특성 해석 방법
US8343100B2 (en) 2006-03-29 2013-01-01 Novartis Ag Surgical system having a non-invasive flow sensor
US8006570B2 (en) * 2006-03-29 2011-08-30 Alcon, Inc. Non-invasive flow measurement
US7523676B2 (en) 2006-12-07 2009-04-28 General Electric Company Ultrasonic flow rate measurement method and system
JP2008157677A (ja) * 2006-12-21 2008-07-10 Tokyo Electric Power Co Inc:The 流量計測システム、流量計測方法、コンピュータプログラムおよび超音波トランスデューサ
JP2008232965A (ja) * 2007-03-23 2008-10-02 Tokyo Electric Power Co Inc:The 超音波流量計、流量測定方法およびコンピュータプログラム
JP4953001B2 (ja) * 2007-03-29 2012-06-13 東京電力株式会社 流量計測装置、流量測定方法およびコンピュータプログラム
JP5239438B2 (ja) * 2008-03-25 2013-07-17 東京電力株式会社 流速測定装置および流速測定方法
JP2009236595A (ja) * 2008-03-26 2009-10-15 Tokyo Electric Power Co Inc:The 超音波流量計測方法およびプログラム
NZ590023A (en) * 2008-06-25 2012-05-25 Pure Technologies Ltd Apparatus and method to locate an object within a pipeline using one fixed and one mobile ultrasonic acoustic transmitter and receiver
US7735380B2 (en) * 2008-07-09 2010-06-15 Daniel Measurement & Control, Inc. Method and system of coordination of measurement subsystems of a flow meter
JP5641491B2 (ja) * 2008-10-24 2014-12-17 横河電機株式会社 超音波流量計
JP4983787B2 (ja) 2008-12-24 2012-07-25 横河電機株式会社 超音波計測器
JP5321106B2 (ja) * 2009-02-06 2013-10-23 横河電機株式会社 超音波計測器
JP5288188B2 (ja) * 2009-02-13 2013-09-11 横河電機株式会社 超音波流量計
JP5408411B2 (ja) * 2009-03-13 2014-02-05 横河電機株式会社 超音波測定器
KR101080711B1 (ko) * 2010-08-20 2011-11-10 한국건설기술연구원 하천 연직 유속분포 측정 장치 및 방법
EP2557401A1 (en) * 2011-08-09 2013-02-13 Hach Corporation Target set processing in a fluid velocity instrument to reduce noise
GB2503760A (en) * 2012-07-02 2014-01-08 Koninkl Philips Electronics Nv A Method for Processing Scanner Signals from an Ultrasound Transducer
DE102012013774A1 (de) * 2012-07-11 2014-01-16 Wilo Se Kreiselpumpe mit Durchflussmesser
KR101396875B1 (ko) * 2013-05-16 2014-05-19 한국지질자원연구원 상호상관을 이용한 반사파 중첩에 의해 초음파 또는 탄성파 속도를 측정하기 위한 측정시스템 및 측정방법
KR101401308B1 (ko) * 2014-01-21 2014-05-29 웨스글로벌 주식회사 초음파 중첩법에 의한 계면 측정 방법
JP6468790B2 (ja) * 2014-10-21 2019-02-13 日立Geニュークリア・エナジー株式会社 超音波式漏洩検知装置及びそれを用いた漏洩検知方法
CN104330121B (zh) * 2014-10-28 2017-09-19 姜跃炜 用于流量检测系统的计时脉宽分割方法及电路
CN104316120B (zh) * 2014-10-28 2017-12-05 姜跃炜 用于高精度超声波流量表的流量检测方法及系统
CN104501889B (zh) * 2015-01-23 2018-05-01 中煤科工集团重庆研究院有限公司 基于互相关时差法超声波流量的检测方法
CN106706050B (zh) * 2015-08-10 2019-03-19 杭州思筑智能设备有限公司 一种利用超声波流量计测量气体流量的方法
US10006791B2 (en) 2015-09-23 2018-06-26 Texas Instruments Incorporated Ultrasonic flow meter auto-tuning for reciprocal operation of the meter
CN106248157B (zh) * 2016-06-27 2018-12-07 浙江大学 互相关时差法气体超声波流量计参考波形的确定方法
FR3063815B1 (fr) * 2017-03-10 2019-03-22 Sagemcom Energy & Telecom Sas Procede de mesure d’une vitesse d’un fluide
FR3063814B1 (fr) * 2017-03-10 2019-03-22 Sagemcom Energy & Telecom Sas Procede de mesure d’une vitesse d’un fluide
EP3376177B1 (en) 2017-03-14 2019-11-20 Endress + Hauser Flowtec AG Ultrasonic flowmeter
CN106895890B (zh) * 2017-04-25 2019-04-16 浙江大学 一种多声道超声波气体流量计声道权系数计算方法
DE102017006909A1 (de) * 2017-07-20 2019-01-24 Diehl Metering Gmbh Messmodul zur Ermittlung einer Fluidgröße
KR101981459B1 (ko) * 2017-11-22 2019-05-24 주식회사 포스코 유동 계측장치 및 유동 계측방법
TW201946763A (zh) 2018-05-16 2019-12-16 日商琉Sok股份有限公司 超音波流量計的測量管路部的製造方法
CN109239714A (zh) * 2018-08-28 2019-01-18 天津海之星水下机器人有限公司 一种基于宽带线性调频信号检测原理的侧高声呐
CN109781356B (zh) * 2019-03-01 2020-07-03 合肥工业大学 一种基于峰峰值标准差的钠中气泡探测信号处理方法
WO2020186383A1 (zh) * 2019-03-15 2020-09-24 深圳市汇顶科技股份有限公司 校正电路以及相关信号处理电路及芯片
JP6544844B1 (ja) * 2019-04-24 2019-07-17 株式会社琉Sok 超音波式流量測定装置
CN111458535A (zh) * 2020-04-14 2020-07-28 武汉新烽光电股份有限公司 流速测量装置及系统
WO2022181698A1 (ja) 2021-02-25 2022-09-01 国立大学法人北海道大学 超音波物性測定装置
TWI790714B (zh) * 2021-08-17 2023-01-21 桓達科技股份有限公司 超音波流量計之聲波訊號的特徵時間參考波判斷方法
CN117110644B (zh) * 2023-10-23 2023-12-26 江苏省环境监测中心 超声波气体流速测量仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587608A (ja) * 1991-09-25 1993-04-06 N K S:Kk 流体速度測定方法およびその装置
JP2000097742A (ja) * 1998-09-25 2000-04-07 Tokyo Electric Power Co Inc:The ドップラ式超音波流量計

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019038A (en) * 1971-06-10 1977-04-19 Kent Instruments Limited Correlators
US3813939A (en) * 1973-05-07 1974-06-04 Fischer & Porter Co Tag-sensing flowmeters
US4528857A (en) * 1983-07-25 1985-07-16 Bruner Ronald F Phase modulation, ultrasonic flowmeter
US4787252A (en) * 1987-09-30 1988-11-29 Panametrics, Inc. Differential correlation analyzer
GB2237639B (en) * 1989-10-31 1994-07-06 British Gas Plc Measurement system
US5777892A (en) * 1992-03-30 1998-07-07 Isco, Inc. Doppler shift velocity measuring system with correction factors
JP3028723B2 (ja) * 1993-05-20 2000-04-04 横河電機株式会社 超音波式流体振動流量計
US5741980A (en) * 1994-11-02 1998-04-21 Foster-Miller, Inc. Flow analysis system and method
US5650571A (en) * 1995-03-13 1997-07-22 Freud; Paul J. Low power signal processing and measurement apparatus
SE510296C2 (sv) * 1995-05-22 1999-05-10 Jerker Delsing Sätt och anordningar vid mätning av flöde
KR100237303B1 (ko) * 1997-04-29 2000-01-15 윤종용 복합 영상기기의 주변 시스템 연결 표시장치 및 그 방법
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US6234016B1 (en) 1997-12-31 2001-05-22 Honeywell International Inc. Time lag approach for measuring fluid velocity
US6067861A (en) * 1998-06-18 2000-05-30 Battelle Memorial Institute Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler
GB9823675D0 (en) * 1998-10-30 1998-12-23 Schlumberger Ltd Flowmeter
AU5569300A (en) * 1999-06-24 2001-01-31 Matsushita Electric Industrial Co., Ltd. Flowmeter
US6196973B1 (en) * 1999-09-30 2001-03-06 Siemens Medical Systems, Inc. Flow estimation using an ultrasonically modulated contrast agent
US6535835B1 (en) * 2000-01-31 2003-03-18 Ge Medical Systems Global Technology Company, Llc Angle independent ultrasound volume flow measurement
US6378357B1 (en) 2000-03-14 2002-04-30 Halliburton Energy Services, Inc. Method of fluid rheology characterization and apparatus therefor
GB2363455B (en) * 2000-06-12 2002-10-16 Schlumberger Holdings Flowmeter
US6609069B2 (en) * 2000-12-04 2003-08-19 Weatherford/Lamb, Inc. Method and apparatus for determining the flow velocity of a fluid within a pipe
JP4135056B2 (ja) * 2001-02-15 2008-08-20 横河電機株式会社 超音波流量計
JP4886120B2 (ja) * 2001-05-16 2012-02-29 東京計器株式会社 超音波流速計
JP4169504B2 (ja) * 2001-10-26 2008-10-22 東京電力株式会社 ドップラ式超音波流量計
JP3669580B2 (ja) 2002-05-24 2005-07-06 学校法人慶應義塾 超音波流速分布及び流量計
AU2003241982A1 (en) 2002-06-04 2003-12-19 Yasushi Takeda Doppler type ultrasonic flowmeter, flow rate measuring method using doppler type ultrasonic flowmeter and flow rate measuring program used in this doppler type ultrasonic flowmeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587608A (ja) * 1991-09-25 1993-04-06 N K S:Kk 流体速度測定方法およびその装置
JP2000097742A (ja) * 1998-09-25 2000-04-07 Tokyo Electric Power Co Inc:The ドップラ式超音波流量計

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401022C (zh) * 2004-02-26 2008-07-09 富士电机系统株式会社 超声波流量计和超声波流量测量方法
CN100380101C (zh) * 2004-02-27 2008-04-09 富士电机系统株式会社 多普勒型超声波流量计
CN104596601A (zh) * 2014-12-25 2015-05-06 重庆川仪自动化股份有限公司 八声道超声波流量计传感器
CN107449475A (zh) * 2017-09-07 2017-12-08 上海诺仪表有限公司 超声流量计
CN107449475B (zh) * 2017-09-07 2024-03-19 上海一诺仪表有限公司 超声流量计
WO2021139033A1 (zh) * 2020-01-10 2021-07-15 青岛海威茨仪表有限公司 内衬式超声波流量计用固定安装结构

Also Published As

Publication number Publication date
US7289914B2 (en) 2007-10-30
US20050241411A1 (en) 2005-11-03
JP3669580B2 (ja) 2005-07-06
KR20050004213A (ko) 2005-01-12
EP1500910B1 (en) 2013-04-03
AU2003242403A1 (en) 2003-12-12
EP1500910A4 (en) 2007-02-28
CA2487317C (en) 2011-03-22
CN1668895A (zh) 2005-09-14
KR100772795B1 (ko) 2007-11-01
CA2487317A1 (en) 2003-12-04
JP2003344131A (ja) 2003-12-03
CN100549630C (zh) 2009-10-14
TWI221188B (en) 2004-09-21
TW200307807A (en) 2003-12-16
EP1500910A1 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
WO2003100357A1 (fr) Debitmetre a ultrasons et procede de mesure du flux par ultrasons
JP3795510B2 (ja) 超音波流速分布計及び流量計、超音波流速分布及び流量測定方法並びに超音波流速分布及び流量測定処理プログラム
JP4953001B2 (ja) 流量計測装置、流量測定方法およびコンピュータプログラム
JP6682500B2 (ja) 信号伝搬時間差式流量計
JP3669588B2 (ja) 超音波流速分布計及び流量計、超音波流速分布及び流量測定方法並びに超音波流速分布及び流量測定処理プログラム
CN101762298B (zh) 超声波测量仪
JP2019502119A (ja) 改良型ビーム整形音響信号伝搬時間差式流量計
US8019559B1 (en) Sonic flow meter and method
EP1726920A1 (en) Doppler type ultrasonic flowmeter
JP3421412B2 (ja) 配管減肉測定方法と装置
JP2008157677A (ja) 流量計測システム、流量計測方法、コンピュータプログラムおよび超音波トランスデューサ
JP2009229346A (ja) 流速測定装置および流速測定方法
JP2012058186A (ja) 超音波流量計
JP2009198388A (ja) 超音波流量計
JP5516783B2 (ja) 流速測定装置および流速測定方法
JP2008232965A (ja) 超音波流量計、流量測定方法およびコンピュータプログラム
JP2009236595A (ja) 超音波流量計測方法およびプログラム
JPS6226050A (ja) 超音波装置
JP2005195372A (ja) 超音波流量計および超音波流量計に用いるくさび
JPH03249515A (ja) 超音波距離測定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10514234

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2487317

Country of ref document: CA

Ref document number: 1020047018963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003730591

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047018963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038171643

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003730591

Country of ref document: EP