CN100549630C - 超声波流速分布计和流量计以及超声波流速分布测量方法和流量测量方法 - Google Patents

超声波流速分布计和流量计以及超声波流速分布测量方法和流量测量方法 Download PDF

Info

Publication number
CN100549630C
CN100549630C CNB038171643A CN03817164A CN100549630C CN 100549630 C CN100549630 C CN 100549630C CN B038171643 A CNB038171643 A CN B038171643A CN 03817164 A CN03817164 A CN 03817164A CN 100549630 C CN100549630 C CN 100549630C
Authority
CN
China
Prior art keywords
ultrasonic
flow
signal
velocity
aforementioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038171643A
Other languages
English (en)
Other versions
CN1668895A (zh
Inventor
菱田公一
武田靖
森治嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Keio University
Original Assignee
Tokyo Electric Power Co Inc
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP150398/2002 priority Critical
Priority to JP2002150398A priority patent/JP3669580B2/ja
Application filed by Tokyo Electric Power Co Inc, Keio University filed Critical Tokyo Electric Power Co Inc
Publication of CN1668895A publication Critical patent/CN1668895A/zh
Application granted granted Critical
Publication of CN100549630C publication Critical patent/CN100549630C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/241Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by measuring frequency, phaseshift, or propagation time of electromagnetic or other waves, e.g. ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by measuring frequency, phaseshift, or propagation time of electromagnetic or other waves, e.g. ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by measuring frequency, phaseshift, or propagation time of electromagnetic or other waves, e.g. ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by measuring frequency, phaseshift, or propagation time of electromagnetic or other waves, e.g. ultrasonic flowmeters
    • G01F1/667Schematic arrangements of transducers of ultrasonic flowmeters; Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Abstract

超声波流量计(10)具备:触发振荡装置(14);脉冲接收机(16);换能器(20),其通过来自脉冲接收机(16)的电信号,向流体配管(22)内的测定线(ML)发射超声波脉冲;信号处理机构(27),其对来自该换能器(20)的反射波即超声波回波信号进行信号处理;流速分布算出机构(28)以及流量算出机构(29),其对信号处理后的超声波回波信号进行解析,求得沿测定线(ML)的超声波反射体的位置和速度,信号处理机构(27)备有对超声波回波信号进行滤波处理的滤波处理部(21)和进行AD转换的AD转换器(17)。另外,触发振荡装置(14)控制脉冲接收机(16)和AD转换器(17)间的信号发送接收时机,而且将其调节设定为,多次连续进行超声波脉冲振荡以及超声波回波信号接收,其后设置一定的等待时间。根据上述构成,本发明除以往的测定对象流体以外,对于难以测定流体的流量的比较纯净的流体的流量,也可以精度良好地准确地进行测定。

Description

超声波流速分布计和流量计以及 超声波流速分布测量方法和流量测量方法技术领域本发明涉及利用超声波脉冲来测定流体的流量的超声波流量计, 特别是涉及可以对含有比较纯净的流体的各种流体的流量进行非接触 测定的超声波流量计,背景技术作为利用超声波脉冲的多普勒效应的多普勒式超声波流量计,有在特开2000 - 97742号公报中公开的技术。该多普勒式超声波流量计是这样的装置,将超声波脉冲从换能器 向流体配管内的测定线发射,对来自在流体配管内流动的流体内的悬 浮微粒的反射波即超声波回波进行解析,从悬浮微粒的位置和速度求 得沿测定线的流体的流量。测定线由从换能器发射的超声波脉冲的声 束形成。多普勒式超声波流量计具有下述优点,可以适用于不透明流体'不 透明流体配管内,可以对在流体配管内流动的流体进行非接触测定, 可以通过沿测定线进行的线测定来测定流体配管内的流速分布或流 量,另一方面,既可以应用于不透明流体的流速分布或流量测定,也 可以在水银.钠等液体金属的流动测定中加以利用.利用多普勒式超声波流量计,可以得到从换能器发射到流体内的 超声波脉冲的测定线上的流体速度分布的时效变化,所以可望应用于 在流体配管内流动的流体的过渡流或紊流场中的流体速度分布或流量 的测量。上述超声波流量计的一例记栽于特开2000 - 97"2号公报中,(例 如,参照特许文献l) 【特许文献1】 特开2000 - 97742号公报对于以往的多普勒式超声波流量计来说,在流体配管内流动的测 定对象流体中存在多个悬浮微粒或气泡等超声波反射体、并且超声波反射体连续地流到测定线(超声波声束)上,这是测定流体的流速分 布的必要条件。如果超声波反射体不是混杂在流体中连续地流到来自 换能器的测定线上,则会在流体的流速分布测定方面产生缺陷,从而 存在流体的流速分布测定以及流量测定的精度降低的问题。另外,以往的多普勒式超声波流量计是通过对来自超声波反射体 的反射波即超声波回波信号进行信号处理并解析,来求得流体的速 度分布或流速的,但在现存的多普勒式超声波流量计的信号处理法 中,为得到一組速度分布,不得不反复发射多个超声波脉冲。对于 反复发射超声波脉冲的以往的多普勒式超声波流量计,时间分解度最高为10ms左右,这是较低的,所以如果在流体配管中流动的流体 流动场中存在过渡流或紊流,则难以准确地精度良好地测定流体的 流量。本发明考虑上述问题而提出,目的在于提供这样一种超声波流量 计,其提高了时间分解度,即使在流体配管内存在过渡流或紊流也能 准确地精度良妤地测定流体的流量。本发明的另一目的在于提供这样一种超声波流量计,即使在超声 波反射体不连续且间歇地沿测定对象流体的测定线流动的状态下,也 可以精度良好地储存超声波反射体的位置-速度数据,测定流体的流发明内容为解决上迷问题,本发明技术方案1的超声波流速分布计的特征 在于,具备:触发振荡机构,其输出触发信号;脉冲接收机,其通过 来自该触发振荡机构的触发信号输出超声波脉冲振荡信号;换能器, 其通过来自该脉冲接收机的超声波脉冲振荡信号,向流体内的测定线 振荡产生超声波脉冲;信号处理机构,其使在流体内悬浮的超声波反 射体反射从该换能器发射的超声波脉冲,并接收该反射波、即超声波 回波信号,并对接收到的超声波回波信号进行信号处理;信号解析机 构,其对由该信号处理机构进行了信号处理的超声波回波信号进行信 号解析,求得沿前述测定线的超声波反射体的位置和速度,前述触发 振荡机构控制脉冲接收机和AD转换器间的信号发送接收时机,而且将 其调节设定为,多次连续进行超声波脉冲振荡以及超声波回波信号接7收,其后设置一定的等待时间。另外,为解决上述问题,本发明技术方案2的超声波流速分布计 的特征在于,前迷信号处理机构备有脉冲接收机和AD转换器,超声 波脉冲的反射波、即超声波回波信号从换能器传递至所述脉冲接收 机,并且所述脉冲接收机具有滤波处理部,所述滤波处理部选择与 来自换能器的超声波振荡频率对应的频带的超声波回波信号,所迷 AD转换器对来自该脉冲接收机的超声波回波信号进行AD转换,前述 信号解析机构具有流速分布算出机构,所述流速分布算出机构通过 得到数字化的超声波回波信号之间的互相关求得相位差,而算出所 述超声波反射体的流速分布,并由此算出悬浮有前述超声波反射体 的流体的流速分布。另外,为解决上述问题,本发明技术方案3的超声波流速分布计 的特征在于,前述信号解析机构为区别反射波和噪音,对由前述信号 处理机构进行了数字化的超声波回波信号的振幅设定阈值,将具有超 过所述阈值的振幅的超声波回波信号作为前述反射波筛选出来,对篩 选出来的超声波信号信号之间计算互相关,并且,为识别是来自流体 中的同一超声波反射体的反射波,对计算互相关而得的相关值设定阈 值,在相关值超过阈值的情况下,判断为是来自同一超声波反射体的 反射波并求得相位差,从求得的相位差算出前述超声波反射体的速度 分布。另外,为解决上述问题,本发明技术方案4的超声波流速分布计 的特征在于,前述信号解析机构备有流速分布算出机构,所述流速分 布算出机构为区別反射波和噪音而对由前述信号处理机构进行了数字 化的超声波回波信号的振幅设定阈值,为识別是来自流体内的同 一超 声波反射体的反射波而对计算超声波回波信号之间的互相关而得的相 关值设定阈值,并使该阈值可变,根据被测定流体中的超声波反射体 的多少求得使这些阈值最优化的速度分布。另夕卜,为解决上述问题,本发明技术方案5的超声波流速分布计 的特征在于,前述信号解析机构备有流速分布算出机构,所述流速 分布算出机构利用超声波求得具有反射波的取样时间间隔的离散的 互相关函数,进而为了保持利用了来自超声波反射体、即示踪粒子 群的超声波的脉冲反射波的形状,应将超声波脉冲的振荡间隔At的间隔缩短,为此利用正弦波近似法来用较细地分割成的网格求得互 相关函数。另外,为解决上述问题,本发明技术方案6的超声波流速分布计 的特征在于,前述脉冲接收机对于输入触发信号的触发时间和输出超 声波脉冲振荡信号的信号发送时间之间的标准离差,进行数字触发处 理,即通过在来自发射区域的反射波的超声波回波信号之间进行互相 关计算来补正信号发送时间。另外,为解决上述问题,本发明技术方案7的超声波流速分布计 的特征在于,前述触发振荡机构在多次连续进行超声波脉冲振荡以 及超声波回波信号之后,设有一定的等待时间,来提高时间分解度。另外,为解决上述问题,本发明技术方案8的超声波流速分布计 的特征在于,通过改变前述触发振荡机构振荡产生的触发信号的脉 冲数以及等待时间,利用连续脉冲法、2发送脉冲法、3发送脉冲法 这3种流体流速分布测量方法的任何一种来进行流体的流速分布测 量。另外,为解决上述问题,本发明技术方案9的超声波流速分布计 的特征在于,前述触发振荡机构通过振荡产生外部触发并将该外部触 发向脉冲接收机及AD转换器输出,对前迷脉冲接收机以及AD转换器 的信号发送接收时机进行控制。另外,为解决上述问题,本发明技术方案10的超声波流量计特征 在于,在上述任一项所述的超声波流速分布计中进一步备有流量算出 机构而构成,所迷流量算出机构基于算出的流速分布算出前迷流体的 流量。另外,为解决上述问题,本发明技术方案11的超声波流速分布测 量方法的特征在于,包括:触发信号振荡步骤,振荡产生触发信号; 超声波脉冲发送步骤,振荡产生超声波脉冲,向测定对象流体发送振 荡产生的超声波脉冲并使之入射;超声波回波信号获取步骤,将接收 到的反射波转换成电信号,获取超声波回波信号;信号处理步骤,对 前迷超声波回波信号进行信号处理;信号解析步骤,进行前述超声波 回波信号的解析;选择显示流速分布以及流量测量结果的至少一者的 显示步骤,前迷触发信号振荡步骤在多次连续进行超声波脉冲振荡以 及超声波回波信号之后,设置一定的等待时间。9另外,为解决上迷问题,本发明技术方案12的超声波流速分布测 量方法的特征在于,前述信号解析步骤包括流速分布算出过程,从悬 浮在流体中的各个超声波反射体的位置以及速度算出前述超声波反射 体的速度分布,并算出前迷流体的流速分布。另外,为解决上迷问题,本发明技术方案13的超声波流速分布测 量方法的特征在于,前迷流速分布算出过程为区别反射波和噪音,将波回波信号作为前迷反射波筛选出来,对篩选出的超声波回波信号之 间计算互相关,并且,为识别是来自流体中的同一超声波反射体的反 射波,在计算得到的相关值超过了相对于相关值设定的阈值的情况下, 判断为是来自同一超声波反射体的反射波并求得相位差,算出前述超 声波反射体的速度分布。另外,为解决上述问题,本发明技术方案14的超声波流速分布测 量方法的特征在于,前述流速分布算出过程为区別反射波和噪音,将回波信号作为前述反射波筛选出来,对筛选出的超声波回波信号之间 计算互相关.另外,为解决上述问题,本发明技术方案15的超声波流速分布测 量方法的特征在于,前述流速分布算出过程使用具有反射波的取样时 间间隔的离散的互相关函数求得前述超声波回波信号之间的相关值, 为了保持利用了来自示踪粒子群的超声波的脉冲反射波的形状,应将 离散间隔At的间隔缩短,为此利用正弦波近似法来用较细地分割成的 网格求得该互相关函数.另外,为解决上迷问题,本发明技术方案16的超声波流速分布测 量方法的特征在于,前述触发信号振荡步骤振荡产生外部触发作为前 述触发信号。另外,为解决上述问题,本发明技术方案17的超声波流速分布测 量方法的特征在于,前述触发信号振荡步骤使振荡产生的触发信号的 脉冲数以及等待时间变化,进行连续脉冲法、2发送脉冲法以及3发送 脉冲法。另外,为解决上迷问题,本发明技术方案18的超声波流量测量方 法的特征在于,在上述任一项所迷的超声波流速分布测量方法中备有10基于算出的流速分布算出前迷流体的流量的流量算出过程。 附图说明图1概略地表示本发明的超声波流量计的一实施方式,是表示应 用于实验设备中的例子的图。图2 (A)是设置有图1的超声波流量计的流体配管的平剖视图, 图2 (B)是表示图2 (A)的实验区域的剖视图。图3是对在用本发明的超声波流量计进行的流速分布以及流量的 测量中、使用连续脉冲法(三重脉冲法)施加触发信号的情况下的触 发振荡装置、脉冲接收机以及AD转换器之间的信号发送/接收时机的 选取方法进行说明的说明图.图4是说明本发明的超声波流量计进行的流速分布以及流量的测 量的原理的图,是对流体配管内的2个时刻间的示踪粒子(超声波反 射体)的移动进行说明的说明图,图5是在对信号发送时间的时间偏差进行了补正(数字触发处理) 的情况和未进行这种处理的情况下、对输入到脉冲接收机的触发信号 的触发时间与从脉冲接收机输出的信号发送时间之间的信号发送时间 的标准离差情况进行比较并表示的概率密度分布,是说明数字触发效 果的说明图。图6是对由本发明的超声波流量计的换能器振荡而得的超声波脉 冲的反射波即超声波回波信号进行说明的说明图,图7是说明用本发明的超声波流量计进行的流速分布以及流量的 测量的原理的图,是表示t-t。以及t=t。+At时的示踪粒子的位移以及 反射波的时间变化量的说明图.图8是对在本发明的超声波流量计中导入发射触发之前和导入发 射触发之后的、流速分布以及流量的测量时的参照波和探测波的时间 偏差进行比较,来说明发射触发导入的效果的说明图。图9是说明在利用本发明的超声波流量计测量流体的流速分布或 者流量时所使用的触发信号的施加方法的图,图9 (A)是以往的脉冲 多普勒法下的触发振荡间隔的说明图,图9 (B)是连续脉冲法下的触发振荡间隔的说明图,图9 (C)是双重脉冲法下的触发振荡间隔的说 明图,图9 (D)是三重脉冲法下的触发振荡间隔的说明图。图10 (A)及图10 (B)是对脉冲多普勒法以及双脉冲法下的、来 自换能器的超声波声束中的示踪粒子的移动状态进行说明的说明图。图ll是对用本发明的超声波流量计得到的流体配管内的平均速度 分布和用LDV (激光多普勒流速计)得到的平均速度分布进行比较说明 的说明图。图12是表示将时间分解度设为500 ms时、用本发明的超声波流 量计得到的5个时刻连续的瞬时速度分布的图。图13是表示使用本发明的超声波流量计表示流体配管的管中央附 近和壁附近的一点处的瞬时速度。 【标记说明】IO...超声波流量计 ll...个人计算机 12…超声波流量测量PG 13…基本处理PG 14…触发振荡装置(触发振荡机构)15、 18、 19... 连接线缆(信号传送线)16...脉沖接收机 17…AD转换器 20… 换能器 21…测定对象流体(被测定流体)22…流体配管 22a…丙 烯酸树脂管 23…声音耦合器 25…滤波处理部 26…存储器 27… 信号处理机构 28…流速分布算出机构 29…流量算出机构 35… 示踪粒子(超声波反射体)36…超声波声束具体实施方式参照附图对本发明的超声波流量计的实施方式进行说明。 【测定系统】图1中示出了概略地表示本发明的超声波流量计的一实施方式的 测定系统的构成概略图。超声波流量计IO通过由作为计算机的个人计算机(以下称为个人 计算机)11读出并运行流体的流量测量用程序(以下称为流量测量PG , 程序简称为PG) 12以及基本处理PG13,对与个人计算机ll连接的各 仪器进行控制以及进行流体的流速分布和流量的测量所必需的运算处 理,使个人计算机11以及与个人计算机11连接的各仪器作为超声波 流量计而起作用。流量测量PG12是用于使个人计算机11运行与流量测量直接相关的运算处理的程序,基本处理PG13与流量测量没有直接的关系,是用 于使个人计算机11运行将测量结果显示在个人计算机11的显示器等 显示机构上所必要的运算处理的程序、即是用于使个人计算机11运行 所谓附属于流量测量的运算处理的程序。流量测量PG12以及基本处理 PG13储存在个人计算机11中,个人计算机11可以读出并运行流量测 量PG12以及基本处理PG13。 ,超声波流量计10具备:个人计算机ll、作为发射触发振荡机构的 触发振荡装置14、经由作为信号传送线的连接线缆15与该触发振荡装 置14连接的脉沖接收机16、进行模拟/数字(以下称为AD )转换的AD 转换器17,个人计算机ll、触发振荡装置14、脉冲接收机16、 AD转 换器17分别经由连接线缆18连接在一起。另外,为利用超声波流量计IO进行流速分布以及流量的测量,需 要有对与个人计算机ll连接的触发振荡装置14、脉冲接收机16以及 AD转换器17进行控制的控制PG,该控制PG包含在预先设定好的基本 处理PG13中。超声波流量计10的触发振荡装置14生成触发信号,并将生成的 触发信号向脉冲接收机16以及AD转换器17发送,由此来控制脉冲接 收机16以及AD转换器17的信号发送/接收时机。通过个人计算机11 运行预先设定好的基本处理PG13来控制触发振荡装置14,由此可以任 意地设定触发信号的输出波形。脉冲接收机16经由作为信号传送线的连接线缆19与换能器20连 接,并作为经由连接线缆15接收从触发振荡装置14发送来的触发信 号(电信号)、生成超声波脉冲振荡信号(电信号)并向换能器20输 出的超声波脉冲振荡信号机构而起作用。另外,脉冲接收机16内装有 数字合成器,可以输出50kHZ到20MHZ的超声波脉冲振荡信号,从而 能够对应具有各种振荡频率特性的换能器20。另一方面,与脉冲接收机16连接的换能器20是将从脉冲接收机 16输出的超声波脉冲振荡信号转换为超声波脉冲、并使转换得到的超 声波脉冲沿测定线ML发送的超声波脉沖振荡机构。换能器20从外侧 以规定的设置角度6设置在对作为被测定流体的测定对象流体21进行 导引的流体配管22上,并且一般经由声音辆合器23设置,以使流体 配管22与声阻抗匹配。13从换能器20向测定对象流体21发出的超声波脉沖入射到在流体 配管22内流^的流体21中,并由悬浮(混杂)的超声波反射体反射。 由超声波反射体反射而产生的反射波返回到换能器20并被接收。另外,换能器20还作为将接收到的反射波转换成与其大小相应的 超声波回波信号(电信号)的超声波脉冲接收机构以及超声波回波信 号生成机构而起作用。换能器20所接收到的超声波脉冲的反射波被转 换为与其大小相应的超声波回波信号。该超声波回波信号从换能器20 被继续发送到脉冲接收机16。脉冲接收机16备有除去与超声波回波信号重叠的噪音成分的滤波 处理部25。该滤波处理部25具有低通滤波器以及高通滤波器、或者带 通滤波器,对反射波即超声波回波信号进行滤波处理,只抽出使用的 频带的超声波脉冲。通过对超声波回波信号进行滤波处理,将由噪音 导致的对测量的不良影响抑制到最小限度。即,脉冲接收机16还兼作 接收超声波脉冲的反射波即超声波回波信号的超声波回波信号接收机 构以及对超声波回波信号进行信号处理的信号处理机构。由脉冲接收机16进行了滤波的模拟式超声波回波信号接着被送至 AD转换器17,超声波回波信号由该AD转换器17从模拟信号转换成数 字信号。AD转换器17是用于对作为反射波的超声波回波信号高速地进 行数字抽样来获取超声波回波信号的数字数据的装置。由AD转换器17转换了的数字数据存储在内装于AD转换器17中 的存储器26中,存储在存储器26中的数据可以从个人计算机11读 出,读出的数据可以保存在例如内装于个人计算机ll中的硬盘等可保 存数字数据的记录介质中。另外,AD转换器17的分辨率例如可为 8bit,而取样频率可以达到500MHZ。另外,AD转换器17构成为,通过由个人计算机ll读出并运行控 制AD转换器17的控制程序,可以将模拟输入信号转换成数字输出信 号,另一方面,对输出的数字信号的信号处理也同时开始,可以实时 显示速度分布。前述脉冲接收机16的滤波处理部"以及AD转换器17构成信号 处理机构27,该信号处理机构27进行超声波脉冲的反射波即超声波回 波信号的信号处理。信号处或者超声波反射体群的位置和速度。流速分布算出机构28求得超声波反射体或者超声波反射体群的位 置和速度,并作为位于所求得的流体配管22内的位置上的流体21的 流速进行运算处理,由此来测量在流体配管22的内部流动的流体21 的流速分布。流速分布算出机构28是内装在个人计算机11中的运算 处理机构,通过对从AD转换器17读出的数字数据进行运算处理,可 以求得超声波反射体或者超声波反射体群的位置和速度。由流速分布算出机构28测量的流体21的流速分布数据被输入作 为信号解析机构的流量算出机构29。流量算出机构29与流量分布算出 机构28同样,是内装在个人计算机11中的运算处理机构,流量算出 机构29通过对流体21的流速分布数据进行运算处理来算出流量。算 出的流速分布以及流量被输出到个人计算机11的显示器等显示机构中 并被显示出来。而且,流速分布算出机构28以及流量算出机构29使用的是内装 在个人计算机11中的运算处理机构,但也可以通过工作站、主机等其 他运算处理机构来进行运算处理。例如可以构成为,使AD转换器17 的存储器26具有必要的运算处理功能,备有存储器26和流速分布算 出机构28。另外,超声波流量计10也可以构成为,使个人计算机11只具有 流速分布算出才几构28,只算出流体的流速分布。进而,超声波流量计 10还可以这样构成流速分布算出机构28以及流量算出机构29,即作 为显示的最终结果,不一定必须把流速分布以及流量的测量结果这两 者都显示出来,而是选择流速分布以及流量的测量结果的至少一者来 表示。进而,流速分布算出机构28还可以以备有流量算出机构29的方 式构成。即,可以将流速分布算出机构28构成为能够进行流体的流速 分布测量以及流量测量这两种测量。另一方面,在超声波流量计10中,将流量测量PG12以及基本处 理PG13等进行流体21的流速分布以及流量测量所必需的PG储存在个 人计算机11中,但是也可以储存在个人计算机11能够从中读出并运 行的外部装置中。另外,如果超声波流量计IO作为不进行流量的算出 的流速分布计而起作用,则流量测量PG12可以是连流速分布的算出也运行的流速分布测量PG。进而,触发振荡装置14、脉冲接收机16以及AD转换器17是与个 人计算机ll独立的装置,但不限于此,也可以不构成为与个人计算机 ll独立的装置。例如,将触发振荡装置14、脉沖接收机16以及AD转 换器17分别作成为触发振荡板、脉冲接收机板以及AD转换器板而与 内装在个人计算机11中的母板连接,储存在个人计算机11内部。进 而,也可以将触发振动板、脉沖接收机板以及AD转换器板集成为一块 板。【流体流量的测定】其次,对使用超声波流量计IO进行的流体流量的测量步骤及其作 用进行说明。为使用该超声波流量计10测量测定对象流体21的流量,作为实 验设备,使用内径D为例如44mmcf)的丙烯酸树脂管22a作为流体配管 22,如图2 (A)以及图2 (B)所示,将换能器20从外侧设置于在管 轴方向(X方向)上距管开始位置19D (=内径D的19倍)的位置上。换能器20以相对于作为被测定流体的测定对象流体21所流过的 丙烯酸树脂管22a的轴线方向成所需要的角度(设置角度)6的方式 安装在水中。换能器20经由声音耦合器23安装在流体配管22上,从 而由换能器20振荡的超声波脉冲受到导引,而平稳地入射到丙烯酸树 脂管22a中。标记31是溢流灌,标记32是缩流器、标记33是用于将实验区域 的丙烯酸树脂管22a设置在水中的流体配管设置容器。在该实验设备 中,使用水作为测定对象流体。另外,图中所示的F表示水的流动方 向。该超声波流量计IO通过信号处理机构27进行采用了互相关法的 信号处理,采用从以一定的时间间隔得到的最低2个反射波导出沿测 定线ML的流体的速度分布的方法,进行流量测量,与以往的多普勒式 超声波流量计相比,可以显著地提高时间分解度。但是,由于该方法是将非常短的时间间隔的反射波的数据连续地 存储在AD转换器17中之后进行计算的,所以反射波的数据量较大, 反射波数据的获取和计算费时,在实时显示流体的流速分布的情况下 不方便。因此,为减小处理的反射波的数据量,从连续的2个反射波或者3个反射波获取数据来显示流体的流速分布,然后进行下一个反 射波的获取。超声波流量计IO进行的流体的流量测量方法的步骤包括:振荡产 生触发信号的触发信号振荡步骤、向测定对象流体21发送超声波脉冲 并使之入射的超声波脉冲发送步骤、将接收到的反射波转换为电信号 以获取超声波回波信号的超声波回波信号获取步骤、对超声波回波信 号进行信号处理的信号处理步骤、进行超声波回波信号的解析的信号 解析步骤、选择显示流速分布以及流量测量结果的至少一者的显示步 骤。在超声波流量计IO所进行的流体流量的测量方法中,首先,作为 触发信号振荡步骤,触发振荡装置14生成触发信号(电信号),将生 成的触发信号输出到脉冲接收机16以及AD转换器17中。继触发信号 输入到脉冲接收机16中,脉冲接收机16进行作为超声波脉冲发送步 骤的超声波脉冲振荡信号生成过程,生成的超声波脉沖振荡信号从脉 沖接收机16发送到换能器20。换能器20接收到超声波脉冲振荡信号之后,接着,换能器20进 行作为超声波脉冲发送步骤的超声波脉冲振荡过程,将超声波脉冲振 荡信号转换为所需要的频率、例如4MHz的正弦波状的超声波猝发信 号,进行超声波脉冲的振荡,然后,在进行超声波脉冲的振荡之后, 进行作为超声波脉沖发送步骤的超声波脉冲发送过程,将振荡后的超 声波脉冲从换能器20发送。换能器20将超声波脉冲的声束(以下,称为超声波声束)入射到 液体配管22内,另一方面,在超声波脉冲入射之后,开始接收混杂在 测定对象流体21中的气泡或微粒粒子等超声波反射体所反射的反射 波,进行超声波回波信号获取步骤,即获取与接收到的反射波的大小 相应的超声波回波信号。在超声波回波信号荻取步骤中得到的反射波的超声波回波信号被 发回到脉冲接收机16中。作为信号处理步骤,脉沖接收机16的滤波 处理部25对发回的超声波脉冲的反射波进行滤波处理,抽出使用的超 声波频带,之后,将滤波处理后的超声波回波信号输出到AD转换器 17。AD转换器17以高速对接收到的滤波处理后的超声波回波信号进行 数字抽样处理,进行作为信号处理步骤的AD转换。接着,在信号解析步骤中对进行了作为信号处理步骤的滤波处理以及AD转换后的超声波回波信号进行信号解析。信号解析步骤包括流 速分布算出过程和从流速分布算出流体21的流量的流量算出过程,所 述流速分布算出过程是指从悬浮于流体中的各个超声波反射体的位置 以及速度算出前述超声波反射体的速度分布,从而算出流体21的流速 分布。在信号解析步骤的流速分布算出过程中,将数字化的超声波回波 信号彼此以极短的时间宽度,例如每隔ljiS,利用采取互相关的互相 关法,检测出包含在一个超声波回波信号中的超声波反射体群的位 置,并从另 一个超声波回波信号中检测出与该超声波反射体群的各个 超声波反射体相同的超声波反射体,求得相对于检测到的各个超声波 反射体的位移量(相位差)。然后,从两个信号的时间差以及相位差 算出悬浮在流体中的前述超声波反射体群的速度分布。接着,在流量算出过程中,从在流速分布算出过程中算出的流速 分布算出流体的流量,来测量流体的流量。流体的流量通过沿丙烯酸 树脂管22a的内部面积对该流体的流速分布进行积分而求得。因此,在超声波流量计IO进行的流体的流量测量方法中,可以求 得在流体配管22内流动的流体21的沿测定线ML的速度分布,并且可 以容易且准确、精度良好地求得流量。在图3中,示出了表示触发振荡装置14、脉冲接收机16以及AD 转换器17之间的信号发送接收时机的选取方法的说明图。在该超声波流量计10中,信号接收机16以及AD转换器17的信 号发送接收时机由触发振荡装置14确定。触发振荡装置14、脉冲接收 机16以及AD转换器17之间的信号发送接收时机的选取方法受到图3 所示那样的时机控制,以例如3次连续等多次连续并用较短的时间间 隔进行脉冲状的触发信号发送、信号接收以及取样,之后,设置一定 的等待时间(间歇),这样作为1个周期,以后重复该周期。通过设 定等待时间(间歇),可以大幅地提高时间分解度。但是,以往的超声波流量计如图4所示,通过超声波回波信号的 解析来求得示踪粒子(超声波反射体)35的移动量,但在输入到脉冲 接收机16的触发信号的输入时刻(触发时间)、和超声波回波振荡信18号的信号发送时间之间,存在图5所示那样的不确定的时间标准离差。 另外,由于用信号处理正确求得的移动量的范围受到限制,所以由脉 沖接收机16产生的硬件上的不可避免的信号发送时间的标准离差误差 会为测量精度带来较大的障碍。因此,在超声波流量计10中,着眼于下述一点,即超声波回波信 号中的从发出超声波猝发信号开始立即反射回来的振幅较大的部分信 号(来自发射区域的反射波)无论发送时间如何、信号形状总是相同, 而在振幅较大的部分信号之间进行互相关计算,来进行补正超声波幹 发信号的时间偏差的处理(数字触发处理)。图5是将对超声波摔发信号的信号发送时间的标准离差进行了数 字触发处理的情况、和没有进行这种处理的情况这两种情况进行比较 说明的概率密度分布图。根据图5,进行了数字触发处理的情况下的超声波猝发信号的信号 发送时间的时间标准离差是没有进行数字触发处理的情况下的大约 1/4,在时间标准离差为0的时刻,概率密度最高。因此,通过补正超 声波猝发信号的时间偏差,显示出了数字触发的效果,即可以大幅地 减小信号发送的标准离差。通过该数字触发的效果,可以提高流体的 测定精度。【超声波流量计的测定原理】如图2所示那样,在存在于水中的丙烯酸树脂管22a上设置超声 波流量计10的换能器20,对水21的在树脂管22a内流动时的流体流 速分布进行测定,所述水21作为悬浮有作为超声波反射体的示踪粒子 35的流体。在测定流体的流速分布时,利用换能器20的压电元件振荡出超声 波脉冲,将振荡得到的超声波脉沖沿测定线ML入射到水中,振荡得到 的超声波脉冲在超声波反射体即示踪粒子35的表面发生发射,并返回 换能器20。该反射波产生于丙烯酸树脂管22a内的流动场的各处,所 以反射波显示为图6所示那样。最初显示的超声波伴发信号(超声波回波信号)a称为发射区域, 是由于超声波振荡刚结束时残留着压电元件的振动而产生的信号。接 着出现的超声波猝发信号b是管上部产生的信号,是由于作为测定对 象流体的水21和作为流体配管的材料的丙烯酸树脂的声阻抗不同而产生的信号。另外,超声波猝发信号c是管下部产生的信号,与信号b同样。超声波猝发信号b和c之间的信号d是包含有丙烯酸树脂管22a 内的流体流速信息的信号,峰值所处的地方存在有示踪粒子35。示踪粒子35的位置从作为反射波的超声波猝发信号d求得。如果 设从换能器20至示踪粒子35的距离为x、从振荡产生超声波脉冲开始 至接收到反射波的时间为t 、超声波的速度为c,则 【数1】的关系成立。如果一定时间间隔△t之后再一次进行该超声波脉沖的振荡以及 反射波的接收,可以得到同样的反射波,但如果流体21在At的时间 间隔内移动,则如图7所示,示踪粒子35也随之移动,从而接收到反 射波之前的时间t也发生变化。如果设接收到反射波的时间t的变化量为△ t ,则某一位置x上 的x方向速度u (x)可以用 【数2】、7 A《2'Af表示。其中Ax是一定时间间隔厶t中、示踪粒子35的移动量。超声波脉沖的反射发生在测定线ML上的各处,所以可以同时进行该测定线ML上的流体的流速测量,从而可以得到流体的流速分布。 在以At的时间间隔连续地用连续脉冲法进行n (n是》2的自然数)次流体的流速分布测量的情况下,可以得到n - 1组时间分解度At的连续流速分布数据。 【互相关函数】通过使超声波脉冲的振荡间隔△t相对于流体的流速变动比例来 说足够地小,由作为超声波反射体的示踪粒子35产生的反射波在该时 间间隔(振荡间隔)At内大致保持不变。图1所示的超声波流量计10的脉冲接收机16在通过AD转换器17用髙速取样处理将反射波的模拟超声波回波信号转换成数字信号之 后,计算以超声波脉沖的振荡间隔厶t得到的两个反射波(参照波即开 始的反射波,探测波即厶t后的反射波)的互相关函数,为了识别出是 否是来自流体内的同一超声波反射体的反射波,设定相对于相关值的 阁值,由此可以以定量化的数值为基础判断是否是来自同一示踪粒子 群的反射波。一般地,互相关函数(R ( s , t ))定义为: <formula>formula see original document page 21</formula>t是作为基准的时间滞后,i是在参照.探测窗口内的位置,e是 参照.探测窗口的偏差,m是超声波脉沖的周期数。使用该互相关函数R( s, t )来定量地判别是否是来自同一示踪 粒子群的反射波,并计算各自的时间滞后t,由此求得时间变化量厶 t。即,求得最初得到的反射波和下一个反射波的时间滞后t,这两个反射波的时间滞后t之差(时间差)为厶t。另一方面,得到流体的流速分布所必要的由超声波脉沖的振荡间隔At导致的反射波的到达时间差A t可以通过使用数字取样而得到的反射波的互相关函数得到。该互相关函数R( e, t )是具有反射波的取样时间间隔的离散函 数,At的间隔越短,则来自示踪粒子群的脉沖反射波的形状越可以保 持不变,所以必须采用以分割得较细的网格求解A t的方法。因此,为缩短At的时间间隔,例如可以利用正弦波近似进^亍补 充。通过该补充,可以以分割地较细的网格来求得互相关函数的峰值, 其结果,速度分解度也得到了提高。现在,如果设离散地得到的各相关值的最大值为Pk,设其前后的 相关值的最大值分别为Ph、 Pw,则 【数4】AT 一 "i(Igg^i) —D...…(6) 2 、1og(i^) - 21《)+ log(。在本发明的超声波流量计中,除权利要求2至4的方法之外,还通过 进行该利用了正弦波近似的补充来进行信号处理,由此可以显著地提 高速度分解度。【反射波的振幅•相关值的阈值的设定】在用超声波流量计10进行的实际的流速分布以及流量的测量中, 有可能在对反射波进行信号解析时得到错误的示踪粒子的位置及速度 信息。为避免这个问题,利用振幅•相关值的阁值使得不会获取错误 的示踪粒子的位置及速度信息。以下,对反射波的振幅•相关值的阈 值的设定进行说明。作为得到错误的示踪粒子的位置及速度信息的情况,首先考虑到 的是下述情况,即将实际上并未发生反射的信号部分(无效信号)作 为来自示踪粒子的超声波脉冲的反射波(有效信号)而捕捉到。这是 因将不包含示踪粒子的位置及速度信息的无效信号作为反射波(有效 信号)而荻取所造成的。因此,在该超声波流量计10中,着眼于包含有示踪粒子的位置及 速度信息的信号部分(有效信号)的振幅比不包含示踪粒子的位置及 速度信息的信号部分(无效信号)的振幅大这一倾向,相对于反射波 (探测波)的振幅来设定阈值。这样,仅在探测波的振幅比设定的阈 值更大的情况下,计算参照波和探测波的互相关。另一方面,在探测22波的振幅比设定的阈值小的情况下,作为无效信号除去。这样,通过 相对于反射波(探测波)的振幅设定阈值,可以区别包含有示踪粒子 的位置及速度信息的有效信号和不包含这些信息的无效信号。
作为得到错误的示踪粒子的位置以及速度信息的情况,接着考虑 到的是下述情况,即计算参照波和探测波的互相关,将来自与在参照 波中参照的示踪粒子群不同的示踪粒子群的反射波视为来自同一示踪 粒子群的反射波。为防止这样的情况发生,对计算参照波和探测波的 互相关而得到的相关值设定阈值。另外,同时^f吏At的值足够小。如果 将At的值取得足够小,则反射波的形状几乎不变化,所以可以将能够 设定的相关值的阈值设定得更接近于1,从而可以更高精度地从探测波 中抽出来自与包含在参照波中的示踪粒子群相同的示踪粒子群的反射 波。
这种通过相对于反射波的振幅以及相关值设定阈值、而从探测波 中特定了与包含在参照波中的示踪粒子群相同的示踪粒子群的超声波 流量计IO只使用满足设定的阈值的信号,并求得特定的示踪粒子群的
相位差,之后从求得的相位差求得示踪粒子群的位置以及速度,来测 量测定对象流体21的流速分布以及流量。另外,超声波流量计10与 得到的反射波对应地设定相对于反射波的振幅以及相关值的阈值,并 进行反射波(参照波以及探测波)的信号解析,由此提高了流体的流 速分布以及流量测量的可靠性。 【发射触发的导入】
图1所示的超声波流量计10是在实验中使用的测定系统的概略 图。在该测定系统中,通过来自触发振荡装置14的外部触发来进行脉 冲接收机16以及AD转换器17的控制,所述脉冲接收机16用于正弦 波状的超声波脉冲的振荡.接收,所述AD转换器17进行超声波回波 信号的AD转换。
其中,所谓外部触发指的是,不是内装在个人计算机ll中的CPU 振荡产生的触发信号,而是由CPU以外的部分振荡产生的触发信号, 在图1所示的超声波流量计10中指的是由触发振荡装置l4振荡产生 的触发信号。而且,即使在将作为振荡机构的触发振荡板设置在个人 计算机ll的内部、由触发振荡板接收来自CPU的信号并振荡产生触发 信号的情况下,即将作为触发振荡机构的触发振荡装置14设置在个人计算机ll的内部的情况下,由触发振荡机构振荡产生的触发信号也是 外部触发。
另一方面,在以数百MHz级设定AD转换器17的取样频率的情况 下,要使其严格地按照触发工作是非常困难的,会产生频率偏差。因 此,注意来自换能器2 0的超声波脉冲的振荡刚结束时产生于反射波的 发射区域,将首先接收到的反射波的发射区域作为参照波、其后接收 到的反射波的发射区域作为探测波,计算这时参照波和探测波的互相 关,求得时间变化量AT,进而利用正弦波近似进行补充,在进行互 相关的计算之前,修正该厶T部分。不过,在用反射波的取样时间间 隔进行了修正之后,用以更小的离散间隔细分割成的网格最后对测量 线上的各点上的A T进行修正,来补正由来自触发振荡装置14的触发 产生的微小的时间偏差。
图8是对导入发射触发之前和导入发射触发之后的、使用超声波 流量计10进行流速分布以及流量测量时的参照波和探测波的时间偏差 进行比较的说明图。
根据图8,导入发射触发之前产生的参照波和探测波的时间偏差在 导入发射触发之后消除了 ,从而可知发射触发有效地产生了作用。 【触发间隔】
在该超声波流量计10中,如图9所示,可以改变由触发振荡装置 14振荡产生的触发信号的施加方法,通过施加图9 (B) 、 (C)及(D) 所示那样的触发信号,可以利用连续脉冲法、2发送(双重)脉沖法以 及3发送(三重)脉沖法,进行3种方法的流体流速分布和流量的测 定。
连续脉冲法是指,通过发送图9(B)所示的连续脉冲来测定流体 的流速分布以及流量的测定法,指的是脉冲发送数(M)为M>3的情 况。另外,在连续脉冲法中,最小的M-3的情况又特别地称作3发送 (三重)脉冲法,如图9 (D)所示。
连续脉沖法与图9 U)所示的脉冲多普勒法相比时间分解度得到 了大幅提高,可以在例如150y s的极高的时间分解度下进行测定,双 重脉沖法可以用较少的示踪粒子数进行流体的流速分布以及流量测 定。
另外,在脉冲多普勒法中,假定进行1次速度分布测定所需的脉冲发射次数为25 ( = 32 )次,则如图9(A)所示那样,测量需要花费 31 x At的时间,但在双重脉冲法中,如图9 (C)所示那样,只需At, 可大幅地缩短流速分布测量时间,从而可以大幅提高时间分解度。
这里,考虑换能器20的测定线ML和示踪粒子35的关系,如果将 换能器20在流体配管"上的设置角度设为6 ,将换能器20的直径(有 效径)设为D,则如图10所示,要从1个示踪粒子35求出速度,所需 的条件在脉冲多普勒法中是, 【数5】
;<formula>formula see original document page 25</formula>......(7)
与其相对,在双重脉沖法中则是
【数6】
COS0
根据(7)式及(8)式,若用双重脉冲法,与脉冲多普勒法相比, 可以在更高流速的区域内进4亍测定。进而,在双重脉冲法中,由于仅 用一次就可以得到两个反射波的波形的互相关,所以计算量非常少, 实时显示流体的流速分布或流量就比较容易。
三重脉冲法是双重脉沖法的发展型。在原理上与双重脉冲法同 样,如图10所示,可以在同1周期之内得到2倍的速度分布,从而可 以进行2倍的流速分布以及流量测量。 【时间分解度】
该超声波流量计10可以将时间分解度提高到500 ms以上,直到 100ms左右,通过该时间分解度的提高,即使在流体配管22内产生过 渡流或紊流,此外即使产生不连续且间歇性的流动,也可以准确地精 度良好地测定流体的流量。
在超声波流量计10中可以应用连续脉冲法、双重脉冲法或者三重 脉冲法来得到流体的流量,所以容易将得到的2个反射波所需的时间判断为时间分解度。但是,实际上,在连续脉冲法的情况下,在存在n 个反射波时,可以得到n-l组速度分布。即,在最初收到l个反射波 之后,每新收到一个反射波就可以得到速度分布。因此,在该超声波 流量计10中,时间分解度定义为,在连续地收到反射波时、收到一个 反射波所需的时间,这其实就是超声波脉冲的振荡间隔At。 【速度分解度和测定界限】
根据流体21的流速的实验条件,声速c以及At为常量,所以速 度的测定精度理论上依赖于at的测定精度.为得到该at,对2个 反射波进行数字取样,并且为得到其互相关,使移动量为整数值,如 果设取样时间间隔为ts,.p,则△ t的测定结果会伴随有± 0. 5tsa.p左右 的误差,
在与取样时间间隔对应的速度即A T为1个取样时间间隔的情况 下,对应的速度U加p只是以A T为tsa,p,可以计算出来.即速度分解度
dv
【数7】
通过在此基础上实施分布函数的补充,可以提高速度分解度的测 定精度,
该超声波流量计10如图4所示,伴随着混杂在流体中的示踪粒子 等超声波反射体35的移动,通过使用互相关法的信号处理来求得2个 时刻间的信号移动量,测量流体的流速分布及流量,
对于该超声波流量计10,脉冲接收机16以及AD转换器17的板间 时机如图3所示,以数次连续的方式进行脉冲振荡以及信号接收,其 后设置一定时间的等待时间,这样构成一个周期,利用这样的连续脉 冲法来进行流体的流速分布和流量的测量。
此时,通过设定等待时间,可以自由地调节时间分解度。等待时 间的设定通过由个人计算机11运行基本处理PG 13而控制为输入到个 人计算机ll中的等待时间或者预先在程序中设计好的等待时间,这样 可以自由地设定由触发振荡装置14振荡产生的触发的等待时间。在实验中使用的超声波流量计10中,可以将时间分解度设定为 500ns左右,比以往的超声波流量计的时间分解度提高数十倍。
图11是对使用超声波流量计10测量的流体平均流速分布和使用 LDV (激光多普勒流速计)测量的流体平均流速分布进行比较的说明 图。
根据图ll可知,使超声波流量计10的换能器20相对于流体配管 22倾斜来进行测量,可以得到下述流速分布数据,即进行了 3000时刻 的时间平均的平均流速分布40、以及该流速分布40相对于LDV的测定 的平均流速分布41这两组数据非常好地一致的流速分布数据,从而可 以高精度地进行流量测量。
如12是表示在超声波流量计10中、将时间分解度设定为例如大 约500 ms时5时刻连续的瞬时速度分布的图。图12中所示的5条瞬 时速度分布曲线较好地近似,从而可以看出,可以精确地、精度良好 地测定流体的流速分布。
另外,图13是采集作为流体配管22的丙烯酸树脂管22a的管中 央附近和壁附近的一点上的瞬时速度而得的图。在管中央附近,流速 的标准离差小,变动也只是在高频成分中才能看出,但在壁附近,流 速的标准离差则大,流体的流速存在周期性的波。
工业实用性
本发明的超声波流量计可以以非接触的方式对在流体配关内流动 的气体或水等液体、液体金属进行流量测定,而且对于用以往的脉冲 多普勒法难以测定的比较纯净的流体的流量,也可以利用采取了连续
本发明的超声波流量计通过提高时间分解度,可以准确地精度良 好地对在流体配管内流动的流体在发生过渡流或紊流时的流体流动进 行测定,并且即使对不连续的间歇的流动,也可以精度良好地准确地 测定流体的流量。
27

Claims (18)

1.一种超声波流速分布计,其特征在于,具备:触发振荡机构,其输出触发信号;脉冲接收机,其通过来自该触发振荡机构的触发信号输出超声波脉冲振荡信号;换能器,其通过来自该脉冲接收机的超声波脉冲振荡信号,向流体内的测定线振荡产生超声波脉冲;信号处理机构,其使在流体内悬浮的超声波反射体反射从该换能器发射的超声波脉冲,并接收该反射波、即超声波回波信号,并对接收到的超声波回波信号进行信号处理;信号解析机构,其对由该信号处理机构进行了信号处理的超声波回波信号进行信号解析,求得沿前述测定线的超声波反射体的位置和速度, 前述触发振荡机构控制脉冲接收机和AD转换器间的信号发送接收时机,而且将其调节设定为,多次连续进行超声波脉冲振荡以及超声波回波信号接收,其后设置一定的等待时间。
2. 如权利要求1所迷的超声波流速分布计,其特征在于,前迷信 号处理机构备有脉冲接收机和AD转换器,超声波脉冲的反射波、即超 声波回波信号从换能器传递至所述脉冲接收机,并且所述脉冲接收机 具有滤波处理部,所述滤波处理部选择与来自换能器的超声波振荡频 率对应的频带的超声波回波信号,所述AD转换器对来自该脉冲接收机 的超声波回波信号进行AD转换,前述信号解析机构具有流速分布算出机构,所述流速分布算出机 构通过得到数字化的超声波回波信号之间的互相关求得相位差,而算 出所述超声波反射体的流速分布,并由此算出悬浮有前述超声波反射 体的流体的流速分布。
3. 如权利要求1所述的超声波流速分布计,其特征在于,前迷信 号解析机构为区別反射波和噪音,对由前述信号处理机构进行了数字 化的超声波回波信号的振幅设定阈值,将具有超过所述阈值的振幅的 超声波回波信号作为前述反射波筛选出来,对筛选出来的超声波回波 信号之间计算互相关,并且,为识别是来自流体中的同一超声波反射 体的反射波,对计算互相关而得的相关值设定阈值,在相关值超过阈 值的情况下,判断为是来自同一超声波反射体的反射波并求得相位差,从求得的相位差算出前迷超声波反射体的速度分布。
4. 如权利要求1或2所述的超声波流速分布计,其特征在于,前迷信号解析机构备有流速分布算出机构,所述流速分布算出机构为区 別反射波和噪音而对由前述信号处理机构进行了数字化的超声波回波 信号的振幅设定阈值,为识别是来自流体内的同 一超声波反射体的反 射波而对计算超声波回波信号之间的互相关而得的相关值设定阈值, 并使该阈值可变,根据被测定流体中的超声波反射体的多少求得使这 些阈值最优化的速度分布。
5. 如权利要求1所述的超声波流速分布计,其特征在于,前述信 号解析机构备有流速分布算出机构,所述流速分布算出机构利用超声 波求得具有反射波的取样时间间隔的离散的互相关函数,进而为了保 持利用了来自超声波反射体、即示踪粒子群的超声波的脉冲反射波的 形状,应将超声波脉冲的振荡间隔厶t的间隔缩短,为此利用正弦波近 似法来用较细地分割成的网格求得互相关函数。
6. 如权利要求1所迷的超声波流速分布计,其特征在于,前迷脉信号发送时间之间的标;i:差,进行数字触发处理:即通过在:自发 射区域的反射波的超声波回波信号之间进行互相关计算来补正信号发 送时间。
7. 如权利要求1所述的超声波流速分布计,其特征在于,前述触 发振荡机构在多次连续进行超声波脉冲振荡以及超声波回波信号之 后,设有一定的等待时间,来提高时间分解度。
8. 如权利要求l所迷的超声波流速分布计,其特征在于,通过改 变前述触发振荡机构振荡产生的触发信号的脉冲数以及等待时间,利 用连续脉冲法、2发送脉冲法、3发送脉沖法这3种流体流速分布测量 方法的任何一种来进行流体的流速分布测量。
9. 如权利要求l所迷的超声波流速分布计,其特征在于,前迷触 发振荡机构通过振荡产生外部触发并将该外部触发向脉冲接收机及AD 转换器输出,对前述脉冲接收机以及AD转换器的信号发送接收时机进 行控制。
10. —种超声波流量计,其特征在于,在权利要求1至9中任一项 所述的超声波流速分布计中进一步备有流量算出机构而构成,所迷流 量算出机构基于算出的流速分布算出前迷流体的流量。
11. 一种超声波流速分布测量方法,其特征在于,包括:触发信号振荡步骤,振荡产生触发信号;超声波脉冲发送步骤,振荡产生超声波脉冲,向测定对象流体发送振荡产生的超声波脉冲并使之入射;超声波回波信号获取步骤,将接收到的反射波转换成电信号,获取超声波回波信号;信号处理步骤,对前述超声波回波信号进行信号处理; 信号解析步骤,进行前述超声波回波信号的解析; 选择显示流速分布以及流量测量结果的至少一者的显示步骤, 前述触发信号振荡步骤在多夂连续进行超声波脉冲振荡以及超声波回波信号之后,设置一定的等挣时间。
12. 如权利要求11所迷的超声波流速分布测量方法,其特征在于, 前述信号解析步骤包括流速分布算出过程,从悬浮在流体中的各个超 声波反射体的位置以及速度算出前述超声波反射体的速度分布,并算 出前述流体的流速分布。
13. 如权利要求12所迷的超声波流速分布测量方法,其特征在于, 前述流速分布算出过程为区别反射波和噪音,将振幅超过相对于数字 化的超声波回波信号的振幅所设定的阈值的超声波回波信号作为前述 反射波筛选出来,对篩选出的超声波回波信号之间计算互相关,并且, 为识别是来自流体中的同 一超声波反射体的反射波,在计算得到的相 关值超过了相对于相关值设定的阈值的情况下,判断为是来自同一超 声波式射体的反射波并求得相位差,算出前述超声波反射体的速度分 布。
14. 如权利要求12所述的超声波流速分布测量方法,其特征在于, 前述流速分布算出过程为区别反射波和噪音,将振幅超过相对于数字 化的超声波回波信号的振幅设定的阈值的超声波回波信号作为前述反 射波筛选出来,对筛选出的超声波回波信号之间计算互相关.
15. 如权利要求12所述的超声波流速分布测量方法,其特征在于, 前述流速分布算出过程使用具有反射波的取样时间间隔的离散的互相 关函数求得前迷超声波回波信号之间的相关值,为了保持利用了来自 示踪粒子群的超声波的脉冲反射波的形状,应将离散间隔△ t的间隔缩 短,为此利用正弦波近似法来用较细地分割成的网格求得该互相关函 数。
16. 如权利要求11所迷的超声波流速分布测量方法,其特征在于, 前述触发信号振荡步骤振荡产生外部触发作为前述触发信号。
17. 如权利要求12或13所述的超声波流速分布测量方法,其特征 在于,前迷触发信号振荡步骤使振荡产生的触发信号的脉冲数以及等 待时间变化,进行连续脉冲法、2发送脉冲法以及3发送脉冲法。
18. —种超声波流量测量方法,其特征在于,在前述权利要求11 至17中任一项所迷的超声波流速分布测量方法中备有基于算出的流速 分布算出前迷流体的流量的流量算出过程。
CNB038171643A 2002-05-24 2003-05-22 超声波流速分布计和流量计以及超声波流速分布测量方法和流量测量方法 Expired - Fee Related CN100549630C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP150398/2002 2002-05-24
JP2002150398A JP3669580B2 (ja) 2002-05-24 2002-05-24 超音波流速分布及び流量計

Publications (2)

Publication Number Publication Date
CN1668895A CN1668895A (zh) 2005-09-14
CN100549630C true CN100549630C (zh) 2009-10-14

Family

ID=29561227

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038171643A Expired - Fee Related CN100549630C (zh) 2002-05-24 2003-05-22 超声波流速分布计和流量计以及超声波流速分布测量方法和流量测量方法

Country Status (9)

Country Link
US (1) US7289914B2 (zh)
EP (1) EP1500910B1 (zh)
JP (1) JP3669580B2 (zh)
KR (1) KR100772795B1 (zh)
CN (1) CN100549630C (zh)
AU (1) AU2003242403A1 (zh)
CA (1) CA2487317C (zh)
TW (1) TWI221188B (zh)
WO (1) WO2003100357A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669580B2 (ja) 2002-05-24 2005-07-06 学校法人慶應義塾 超音波流速分布及び流量計
JP3669588B2 (ja) * 2003-05-06 2005-07-06 学校法人慶應義塾 超音波流速分布計及び流量計、超音波流速分布及び流量測定方法並びに超音波流速分布及び流量測定処理プログラム
JP2005181268A (ja) * 2003-12-24 2005-07-07 Yokogawa Electric Corp 超音波流量計
CN100401022C (zh) * 2004-02-26 2008-07-09 富士电机系统株式会社 超声波流量计和超声波流量测量方法
DE602005012241D1 (de) * 2004-02-27 2009-02-26 Fuji Electric Systems Co Ltd Verfahren zur Ultraschall-Durchflussmessung nach dem Dopplerprinzip
DE102004053673A1 (de) * 2004-11-03 2006-05-04 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
KR100600993B1 (ko) 2004-12-08 2006-07-13 두산중공업 주식회사 배관의 유체 동특성 해석 방법
US8343100B2 (en) 2006-03-29 2013-01-01 Novartis Ag Surgical system having a non-invasive flow sensor
US8006570B2 (en) * 2006-03-29 2011-08-30 Alcon, Inc. Non-invasive flow measurement
US7523676B2 (en) 2006-12-07 2009-04-28 General Electric Company Ultrasonic flow rate measurement method and system
JP2008157677A (ja) * 2006-12-21 2008-07-10 Tokyo Electric Power Co Inc:The 流量計測システム、流量計測方法、コンピュータプログラムおよび超音波トランスデューサ
JP2008232965A (ja) * 2007-03-23 2008-10-02 Tokyo Electric Power Co Inc:The 超音波流量計、流量測定方法およびコンピュータプログラム
JP4953001B2 (ja) * 2007-03-29 2012-06-13 東京電力株式会社 流量計測装置、流量測定方法およびコンピュータプログラム
JP5239438B2 (ja) * 2008-03-25 2013-07-17 東京電力株式会社 流速測定装置および流速測定方法
JP2009236595A (ja) * 2008-03-26 2009-10-15 Tokyo Electric Power Co Inc:The 超音波流量計測方法およびプログラム
NZ590023A (en) * 2008-06-25 2012-05-25 Pure Technologies Ltd Apparatus and method to locate an object within a pipeline using one fixed and one mobile ultrasonic acoustic transmitter and receiver
US7735380B2 (en) * 2008-07-09 2010-06-15 Daniel Measurement & Control, Inc. Method and system of coordination of measurement subsystems of a flow meter
JP5641491B2 (ja) * 2008-10-24 2014-12-17 横河電機株式会社 超音波流量計
JP4983787B2 (ja) * 2008-12-24 2012-07-25 横河電機株式会社 超音波計測器
JP5321106B2 (ja) * 2009-02-06 2013-10-23 横河電機株式会社 超音波計測器
JP5288188B2 (ja) * 2009-02-13 2013-09-11 横河電機株式会社 超音波流量計
JP5408411B2 (ja) * 2009-03-13 2014-02-05 横河電機株式会社 超音波測定器
KR101080711B1 (ko) * 2010-08-20 2011-11-10 한국건설기술연구원 하천 연직 유속분포 측정 장치 및 방법
US9453853B2 (en) * 2011-08-09 2016-09-27 Hach Company Target set processing in a fluid flow velocity instrument to reduce noise
GB2503760A (en) * 2012-07-02 2014-01-08 Koninkl Philips Electronics Nv A Method for Processing Scanner Signals from an Ultrasound Transducer
DE102012013774A1 (de) * 2012-07-11 2014-01-16 Wilo Se Kreiselpumpe mit Durchflussmesser
KR101396875B1 (ko) * 2013-05-16 2014-05-19 한국지질자원연구원 상호상관을 이용한 반사파 중첩에 의해 초음파 또는 탄성파 속도를 측정하기 위한 측정시스템 및 측정방법
KR101401308B1 (ko) * 2014-01-21 2014-05-29 웨스글로벌 주식회사 초음파 중첩법에 의한 계면 측정 방법
JP6468790B2 (ja) * 2014-10-21 2019-02-13 日立Geニュークリア・エナジー株式会社 超音波式漏洩検知装置及びそれを用いた漏洩検知方法
CN104330121B (zh) * 2014-10-28 2017-09-19 姜跃炜 用于流量检测系统的计时脉宽分割方法及电路
CN104316120B (zh) * 2014-10-28 2017-12-05 姜跃炜 用于高精度超声波流量表的流量检测方法及系统
CN104596601B (zh) * 2014-12-25 2018-08-03 重庆川仪自动化股份有限公司 八声道超声波流量计传感器
CN104501889B (zh) * 2015-01-23 2018-05-01 中煤科工集团重庆研究院有限公司 基于互相关时差法超声波流量的检测方法
CN106706050B (zh) * 2015-08-10 2019-03-19 杭州思筑智能设备有限公司 一种利用超声波流量计测量气体流量的方法
US10006791B2 (en) 2015-09-23 2018-06-26 Texas Instruments Incorporated Ultrasonic flow meter auto-tuning for reciprocal operation of the meter
CN106248157B (zh) * 2016-06-27 2018-12-07 浙江大学 互相关时差法气体超声波流量计参考波形的确定方法
FR3063815B1 (fr) * 2017-03-10 2019-03-22 Sagemcom Energy & Telecom Sas Procede de mesure d’une vitesse d’un fluide
FR3063814B1 (fr) * 2017-03-10 2019-03-22 Sagemcom Energy & Telecom Sas Procede de mesure d’une vitesse d’un fluide
EP3376177B1 (en) * 2017-03-14 2019-11-20 Endress + Hauser Flowtec AG Ultrasonic flowmeter
CN106895890B (zh) * 2017-04-25 2019-04-16 浙江大学 一种多声道超声波气体流量计声道权系数计算方法
DE102017006909A1 (de) * 2017-07-20 2019-01-24 Diehl Metering Gmbh Messmodul zur Ermittlung einer Fluidgröße
KR101981459B1 (ko) * 2017-11-22 2019-05-24 주식회사 포스코 유동 계측장치 및 유동 계측방법
CN109781356B (zh) * 2019-03-01 2020-07-03 合肥工业大学 一种基于峰峰值标准差的钠中气泡探测信号处理方法
JP6544844B1 (ja) * 2019-04-24 2019-07-17 株式会社琉Sok 超音波式流量測定装置
CN211602049U (zh) * 2020-01-10 2020-09-29 青岛海威茨仪表有限公司 内衬式超声波流量计用固定安装结构
CN111458535A (zh) * 2020-04-14 2020-07-28 武汉新烽光电股份有限公司 流速测量装置及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118190C (zh) * 1997-04-29 2003-08-13 三星电子株式会社 复合视频装置的外部设备连接状态显示装置及其方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019038A (en) * 1971-06-10 1977-04-19 Kent Instruments Limited Correlators
US3813939A (en) * 1973-05-07 1974-06-04 Fischer & Porter Co Tag-sensing flowmeters
US4528857A (en) * 1983-07-25 1985-07-16 Bruner Ronald F Phase modulation, ultrasonic flowmeter
US4787252A (en) * 1987-09-30 1988-11-29 Panametrics, Inc. Differential correlation analyzer
GB2237639B (en) * 1989-10-31 1994-07-06 British Gas Plc Measurement system
JPH073350B2 (ja) * 1991-09-25 1995-01-18 株式会社エヌケーエス 流体速度測定方法およびその装置
US5777892A (en) * 1992-03-30 1998-07-07 Isco, Inc. Doppler shift velocity measuring system with correction factors
JP3028723B2 (ja) * 1993-05-20 2000-04-04 横河電機株式会社 超音波式流体振動流量計
US5741980A (en) * 1994-11-02 1998-04-21 Foster-Miller, Inc. Flow analysis system and method
US5650571A (en) * 1995-03-13 1997-07-22 Freud; Paul J. Low power signal processing and measurement apparatus
SE510296C2 (sv) * 1995-05-22 1999-05-10 Jerker Delsing Sätt och anordningar vid mätning av flöde
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US6234016B1 (en) 1997-12-31 2001-05-22 Honeywell International Inc. Time lag approach for measuring fluid velocity
US6067861A (en) * 1998-06-18 2000-05-30 Battelle Memorial Institute Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler
JP2000097742A (ja) 1998-09-25 2000-04-07 Tokyo Electric Power Co Inc:The ドップラ式超音波流量計
GB9823675D0 (en) * 1998-10-30 1998-12-23 Schlumberger Ltd Flowmeter
CN1293369C (zh) * 1999-06-24 2007-01-03 松下电器产业株式会社 流量计
US6196973B1 (en) 1999-09-30 2001-03-06 Siemens Medical Systems, Inc. Flow estimation using an ultrasonically modulated contrast agent
US6535835B1 (en) * 2000-01-31 2003-03-18 Ge Medical Systems Global Technology Company, Llc Angle independent ultrasound volume flow measurement
US6378357B1 (en) 2000-03-14 2002-04-30 Halliburton Energy Services, Inc. Method of fluid rheology characterization and apparatus therefor
GB2363455B (en) * 2000-06-12 2002-10-16 Schlumberger Holdings Flowmeter
US6609069B2 (en) * 2000-12-04 2003-08-19 Weatherford/Lamb, Inc. Method and apparatus for determining the flow velocity of a fluid within a pipe
JP4135056B2 (ja) * 2001-02-15 2008-08-20 横河電機株式会社 超音波流量計
JP4886120B2 (ja) * 2001-05-16 2012-02-29 東京計器株式会社 超音波流速計
JP4169504B2 (ja) * 2001-10-26 2008-10-22 東京電力株式会社 ドップラ式超音波流量計
JP3669580B2 (ja) 2002-05-24 2005-07-06 学校法人慶應義塾 超音波流速分布及び流量計
WO2003102513A1 (fr) 2002-06-04 2003-12-11 The Tokyo Electric Power Company, Incorporated Debitmetre ultrasonore du type doppler, procede de mesure de debit faisant appel a un debitmetre ultrasonore du type doppler, et programme de mesure de debit utilise dans un tel debitmetre ultrasonore du type doppler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118190C (zh) * 1997-04-29 2003-08-13 三星电子株式会社 复合视频装置的外部设备连接状态显示装置及其方法

Also Published As

Publication number Publication date
CA2487317C (en) 2011-03-22
KR20050004213A (ko) 2005-01-12
TW200307807A (en) 2003-12-16
CA2487317A1 (en) 2003-12-04
JP2003344131A (ja) 2003-12-03
US7289914B2 (en) 2007-10-30
KR100772795B1 (ko) 2007-11-01
TWI221188B (en) 2004-09-21
EP1500910A4 (en) 2007-02-28
JP3669580B2 (ja) 2005-07-06
US20050241411A1 (en) 2005-11-03
WO2003100357A1 (fr) 2003-12-04
CN1668895A (zh) 2005-09-14
AU2003242403A1 (en) 2003-12-12
EP1500910B1 (en) 2013-04-03
EP1500910A1 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
CN100549630C (zh) 超声波流速分布计和流量计以及超声波流速分布测量方法和流量测量方法
JP6727308B2 (ja) 改良型ビーム整形音響信号伝搬時間差式流量計
US7409300B2 (en) Ultrasonic flow-velocity distribution meter/flowmeter, method of ultrasonically measuring flow velocity distribution/flowrate, program for ultrasonically measuring flow velocity distribution/flowrate
US4947683A (en) Pulsed ultrasonic doppler borehole fluid measuring apparatus
JP2017525948A (ja) 信号伝搬時間差式流量計
JP3795510B2 (ja) 超音波流速分布計及び流量計、超音波流速分布及び流量測定方法並びに超音波流速分布及び流量測定処理プログラム
JP4953001B2 (ja) 流量計測装置、流量測定方法およびコンピュータプログラム
WO1990005283A1 (en) Method and apparatus for measuring mass flow
SE445261B (sv) Ultrasonisk flodesmetare och sett att meta hastigheten av en fluid som strommar inuti en ledning
RU2014120513A (ru) Скважинный инструмент для определения скорости потока
US4032259A (en) Method and apparatus for measuring fluid flow in small bore conduits
CN101762298A (zh) 超声波测量仪
EP1726920A1 (en) Doppler type ultrasonic flowmeter
US5099691A (en) Method for measuring length, and apparatus for implementing the method
CN100443860C (zh) 用于确定和/或监控介质的体积和/或质量流量的超声测量仪表
SU1631401A1 (ru) Способ контрол несплошностей потока жидкости в трубопроводе
RU2126143C1 (ru) Ультразвуковой расходомер компонентов многофазной среды
RU2195635C1 (ru) Способ измерения уровня жидких и сыпучих сред
SU723431A1 (ru) Способ контрол физических параметров жидкости
RU2133015C1 (ru) Ультразвуковой дистанционный уровнемер
SU696295A1 (ru) Ультразвуковой расходомер
JP2002022509A (ja) 超音波流量計
RU2225082C1 (ru) Акустический блок ультразвукового измерительного устройства
RU2165085C2 (ru) Устройство для измерения скорости потока вещества
Morala et al. Department of Engineering Physics

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091014

Termination date: 20150522

EXPY Termination of patent right or utility model